Numerical Approximation of Vortex Density Evolution in a Superconductor.
Styles, Vanessa
Numerical Approximation of Vortex Density Evolution in a Superconductor. C.M. Elliott & V. Styles Abstract A #12;nite volume/element approximation of a mean #12;eld model of superconducting vortices in one approximations of a two-dimensional version of the mean #12;eld model of superconducting vortices considered
Crystallization of polyethylene by modified weighted density approximation(MWDA)
Razeghizadeh, Alireza; Lavafpour, Farhad
2015-01-01
In this article, we use the modified weighted density approximation to study the crystallization of polyethylene. We also use a direct correlation function of polyethylene based on RISM theory. The free energy of a polyethylene is calculated using density functional theory. The crystallization and solid and liquid density are calculated and finally compared with the prism simulation and experimental results. That shown the result obtained by MWDA is in better agreement, compared with the experimental result than the prism.
Crystallization of polyethylene by modified weighted density approximation(MWDA)
Alireza Razeghizadeh; Vahdat Rafee; Farhad Lavafpour
2015-02-07
In this article, we use the modified weighted density approximation to study the crystallization of polyethylene. We also use a direct correlation function of polyethylene based on RISM theory. The free energy of a polyethylene is calculated using density functional theory. The crystallization and solid and liquid density are calculated and finally compared with the prism simulation and experimental results. That shown the result obtained by MWDA is in better agreement, compared with the experimental result than the prism.
Benchmarking mean-field approximations to level densities
Y. Alhassid; G. F. Bertsch; C. N. Gilbreth; H. Nakada
2015-12-11
We assess the accuracy of finite-temperature mean-field theory using as a standard the Hamiltonian and model space of the shell model Monte Carlo calculations. Two examples are considered: the nucleus $^{162}$Dy, representing a heavy deformed nucleus, and $^{148}$Sm, representing a nearby heavy spherical nucleus with strong pairing correlations. The errors inherent in the finite-temperature Hartree-Fock and Hartree-Fock-Bogoliubov approximations are analyzed by comparing the entropies of the grand canonical and canonical ensembles, as well as the level density at the neutron resonance threshold, with shell model Monte Carlo (SMMC) calculations, which are accurate up to well-controlled statistical errors. The main weak points in the mean-field treatments are seen to be: (i) the extraction of number-projected densities from the grand canonical ensembles, and (ii) the symmetry breaking by deformation or by the pairing condensate. In the absence of a pairing condensate, we confirm that the usual saddle-point approximation to extract the number-projected densities is not a significant source of error compared to other errors inherent to the mean-field theory. We also present an alternative formulation of the saddle-point approximation that makes direct use of an approximate particle-number projection and avoids computing the usual three-dimensional Jacobian of the saddle-point integration. We find that the pairing condensate is less amenable to approximate particle-number projection methods due to the explicit violation of particle-number conservation in the pairing condensate. Nevertheless, the Hartree-Fock-Bogoliubov theory is accurate to less than one unit of entropy for $^{148}$Sm at the neutron threshold energy, which is above the pairing phase transition.
Quigg, Chris; /Fermilab
2005-02-01
It is a pleasure to be part of the SLAC Summer Institute again, not simply because it is one of the great traditions in our field, but because this is a moment of great promise for particle physics. I look forward to exploring many opportunities with you over the course of our two weeks together. My first task in talking about Nature's Greatest Puzzles, the title of this year's Summer Institute, is to deconstruct the premise a little bit.
Deviations from piecewise linearity in the solid-state limit with approximate density functionals
Baer, Roi
Deviations from piecewise linearity in the solid-state limit with approximate density functionals (2015) Deviations from piecewise linearity in the solid-state limit with approximate density functionals functional methods J. Chem. Phys. 141, 124123 (2014); 10.1063/1.4896455 Thermally-assisted-occupation density
Double-Pole Approximation in Time-Dependent Density Functional Theory
Gross, E.K.U.
Double-Pole Approximation in Time-Dependent Density Functional Theory H. Appel and E.K.U. Gross-dependent density func- tional theory (TDDFT) is given. This extends the single-pole approximation (SPA) to two strongly- coupled poles. The analysis provides both an illustration of how TDDFT works when strong exchange
Error Analysis of Free Probability Approximations to the Density of States of Disordered Systems
Chen, Jiahao
Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the electronic structure of disordered systems. We use free probability to approximate the ensemble-averaged density of states ...
The low-energy nuclear density of states and the saddle point approximation
Sanjay K. Ghosh; Byron K. Jennings
2001-07-30
The nuclear density of states plays an important role in nuclear reactions. At high energies, above a few MeV, the nuclear density of states is well described by a formula that depends on the smooth single particle density of states at the Fermi surface, the nuclear shell correction and the pairing energy. In this paper we present an analysis of the low energy behaviour of the nuclear density of states using the saddle point approximation and extensions to it. Furthermore, we prescribe a simple parabolic form for excitation energy, in the low energy limit, which may facilitate an easy computation of level densities.
Nishikawa, Takeshi
2014-07-15
Most conventional atomic models in a plasma do not treat the effect of the plasma on the free-electron state density. Using a nearest neighbor approximation, the state densities in hydrogenic plasmas for both bound and free electrons were evaluated and the effect of the plasma on the atomic model (especially for the state density of the free electron) was studied. The model evaluates the electron-state densities using the potential distribution formed by the superposition of the Coulomb potentials of two ions. The potential from one ion perturbs the electronic state density on the other. Using this new model, one can evaluate the free-state density without making any ad-hoc assumptions. The resulting contours of the average ionization degree, given as a function of the plasma temperature and density, are shifted slightly to lower temperatures because of the effect of the increasing free-state density.
Double-hybrid density-functional theory with meta-generalized-gradient approximations
Souvi, Sidi M. O. Sharkas, Kamal; Toulouse, Julien; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris
2014-02-28
We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.
Relativistic equation of state at subnuclear densities in the Thomas-Fermi approximation
Zhang, Z. W.; Shen, H., E-mail: shennankai@gmail.com [School of Physics, Nankai University, Tianjin 300071 (China)
2014-06-20
We study the non-uniform nuclear matter using the self-consistent Thomas-Fermi approximation with a relativistic mean-field model. The non-uniform matter is assumed to be composed of a lattice of heavy nuclei surrounded by dripped nucleons. At each temperature T, proton fraction Y{sub p} , and baryon mass density ? {sub B}, we determine the thermodynamically favored state by minimizing the free energy with respect to the radius of the Wigner-Seitz cell, while the nucleon distribution in the cell can be determined self-consistently in the Thomas-Fermi approximation. A detailed comparison is made between the present results and previous calculations in the Thomas-Fermi approximation with a parameterized nucleon distribution that has been adopted in the widely used Shen equation of state.
Kraisler, Eli; Kronik, Leeor
2014-05-14
The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT), even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt change in slope of the exchange-correlation energy as a function of electron number, expected across an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative discontinuity, strongly compromising their performance for prediction of spectroscopic properties. Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity, which arises naturally from the application of ensemble considerations within DFT, without any empiricism. This derivative discontinuity can be expressed in closed form using only quantities obtained in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental gap, even when based on the most simple approximate exchange-correlation density functional – the local density approximation (LDA). For solids, the same scheme is exact in principle, but when applied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be directly related to the failure of LDA in predicting fundamental gaps from total energy differences in extended systems.
Thermally-assisted-occupation density functional theory with generalized-gradient approximations
Chai, Jeng-Da
2014-05-14
We extend the recently proposed thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] to generalized-gradient approximation (GGA) exchange-correlation density functionals. Relative to our previous TAO-LDA (i.e., the local density approximation to TAO-DFT), the resulting TAO-GGAs are significantly superior for a wide range of applications, such as thermochemistry, kinetics, and reaction energies. For noncovalent interactions, TAO-GGAs with empirical dispersion corrections are shown to yield excellent performance. Due to their computational efficiency for systems with strong static correlation effects, TAO-LDA and TAO-GGAs are applied to study the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy) of acenes with different number of linearly fused benzene rings (up to 100), which is very challenging for conventional electronic structure methods. The ground states of acenes are shown to be singlets for all the chain lengths studied here. With the increase of acene length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy (i.e., a measure of polyradical character) increase monotonically.
Relativistic Coulomb excitation within the time dependent superfluid local density approximation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.
2015-01-06
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore »dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width ???0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less
Truhlar, Donald G
Tests of the RPBE, revPBE, -HCTHhyb, B97X-D, and MOHLYP density functional approximations and 29 density functional approximations are tested against two diverse databases, one with 18 bond energies Some tests of density functionals against the representa- tive databases have already been reported.2
Oak Ridge Removes Laboratory's Greatest Source of Groundwater...
Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...
local-density approximations give a satisfactory descrip- tion of the exchange energy. For other elec- trons can be expressed as functionals of the density n(r). In the case of the total energy EPHYSICAL REVIEW B VOLUME 31, NUMBER 12 15 JUNE 1985 Total-energy differences: Sources of error
New Lessons Learned: Peer Exchange Call "Greatest Hits" Out Now...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
a cart with an umbrella, interacting with several people standing nearby, and a sign and car on the curb. The latest in a series of Lessons Learned: Peer Exchange Call "greatest...
Is climate change the greatest threat to global health?
Jones, Peter JS
Commentary Is climate change the greatest threat to global health? ANDREW PAPWORTH, MARK MASLIN for publication in October 2014 This commentary critically engages with the argument that climate change that although it is important to be aware of the risk that climate change presents, health status is caused
Aquino, Fredy W.; Govind, Niranjan; Autschbach, Jochen
2011-10-01
Density functional theory (DFT) calculations of NMR chemical shifts and molecular g-tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X=F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po), and Te chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F NMR shielding in UF6-nCln, n = 1 to 6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs. correlation. For the uranium halides, the results with the range-separated functionals are mixed.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore »can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less
Sato, Shunsuke A; Shinohara, Yasushi; Yabana, Kazuhiro
2015-01-01
We develop numerical methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta generalized gradient approximation (meta-GGA) proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt a predictor-corrector step for stable time-evolution. Since energy functional is not known for the TB-mBJ potential, we propose a method to evaluate electronic excitation energy without referring to the energy functional. Calculations using the HSE hybrid functional is computationally expensive due to the nonlocal Fock-like term. We develop a computational method for the operation of the Fock-like term in Fourier space, for which we employ massively parallel ...
Mardirossian, Narbe; Head-Gordon, Martin
2014-05-14
The limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the training and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491 508 candidate functionals. For each of the 9 functional classes considered, the results illustrate the trade-off between improved training set performance and diminished transferability. Since all 491 508 functionals are uniformly trained and tested, this methodology allows the relative strengths of each type of functional to be consistently compared and contrasted. The range-separated hybrid GGA functional paired with the VV10 nonlocal correlation functional emerges as the most accurate form for the present training and test sets, which span thermochemical energy differences, reaction barriers, and intermolecular interactions involving lighter main group elements.
The Position of Greatest College of Natural Resources and Environment Strategic Plan
The Position of Greatest Potential College of Natural Resources and Environment Strategic Plan 2012-2018 October 2012 #12;College of Natural Resources and Environment Strategic Plan 2012-2018 Page 2 The Position of Greatest Potential College of Natural Resources and Environment Strategic Plan 2012-2018 The current
Climate change is one of the greatest threats facing us today. CICERO's mission
Johansen, Tom Henning
Climate change is one of the greatest threats facing us today. CICERO's mission is to provide reliable and comprehensive knowledge about all aspects of the climate change problem. Foto: Scanpix #12;Climate change is one of the greatest threats facing us today. CICERO's mission is to provide reliable
Cuendet, Michel
coupling vectors and compared them with results from high level MR-CISD electronic structure calculations electrons and nuclei dynamics from the adiabatic BO approximation. The knowl- edge of the NACs is therefore; published online 16 November 2010 Recently, we have proposed a scheme for the calculation of nonadiabatic
Steury, Todd D.
to tube. 5) Vortex for 15 min to break cells. 6) Add 1 µL of 50 µg/µL Proteinase K to each tube. 7L eppie tube. Pellet cells by centrifugation (approximately 3 min). 2) Remove f/2 media and replace with ddH2O. Vortex and pellet cells again by centrifugation. Remove all but 25 µL of the ddH2O. 3) Vortex
A. Sergeev; R. Jovanovic; S. Kais; F. H. Alharbi
2015-08-27
The gradient expansion of the kinetic energy functional, when applied for atoms or finite systems, usually grossly overestimates the energy in the fourth order and generally diverges in the sixth order. We avoid the divergence of the integral by replacing the asymptotic series including the sixth order term in the integrand by a rational function. Pade approximants show moderate improvements in accuracy in comparison with partial sums of the series. The results are discussed for atoms and Hooke law model for two electron atoms.
A. M. Sukhovoj; V. A. Khitrov
2011-05-30
In the frameworks of hypothesis of practical constancy of the neutron resonance number in small fixed intervals of neutron energy, their most probable value was determined for nucleus mass region 230approximation of the reduced neutron widths by superposition of two or four independent distributions. This was done under assumption that a set of the measured neutron amplitudes can correspond to one or to superposition of some normal distributions with non-zero average and dispersion differing from reduced neutron width. The main result of the analysis: the mean spacing and neutron strength function values can be determined only with unknown systematical uncertainty whose magnitude is determined by unknown precision of the Porter-Thomas hypothesis correspondence to concrete experimental sets of resonances and unknown experimental mean neutron widths.
Chuan, Toh Kim
for the Degree of Doctor of Philosophy by Kim Chuan Toh August 1996 c fl Kim Chuan Toh 1996 ALL RIGHTS RESERVED #12; MATRIX APPROXIMATION PROBLEMS AND NONSYMMETRIC ITERATIVE METHODS Kim Chuan Toh, Ph.D. Cornell
Lead in Species of Greatest Conservation Need: Free-flying Bald Eagles as Indicators
Koford, Rolf R.
Lead in Species of Greatest Conservation Need: Free-flying Bald Eagles as Indicators Principal Wildlife Grant Goals and Objectives: o Characterize lead levels in nesting and wintering Bald Eagles in Iowa State University o Compare lead exposure in free-flying eagles with eagles admitted
he late Nobel laureate Richard Smalley often said that "energy is the single greatest chal-
, but it is a finite re- source. We must develop energy-saving technologies that can stretch oil reserves while we to electrical energy, may be part of the pic- ture. MFCs could be used in biomass-based energy productionT he late Nobel laureate Richard Smalley often said that "energy is the single greatest chal- lenge
SCIENCE SUBJECT GUIDE -I/S 100 greatest science discoveries of all time / Kendall Haven
Fletcher, Robin
SCIENCE SUBJECT GUIDE - I/S Books: 100 greatest science discoveries of all time / Kendall Haven Q180.55.D57 H349 2007 All in a day's work: careers using science / by Megan Sullivan Q149.U5 S92 2007 Analyze this!: understanding the scientific method / Susan Glass on order Assessment in science: practical
Multivariate approximation Robert Schaback
Schaback, Robert
Multivariate approximation Robert Schaback July 30, 2013 1 Synonyms Approximation by functions Approximations of functions are multivariate, if they replace functions of n 2 variables defined on a domain. 4 Overview Multivariate approximation is an extension of Approximation Theory and Approximation
Fast Approximate Convex Decomposition
Ghosh, Mukulika
2012-10-19
Approximate convex decomposition (ACD) is a technique that partitions an input object into "approximately convex" components. Decomposition into approximately convex pieces is both more efficient to compute than exact ...
Approximate Information Theory
Penny, Will
Approximate Inference Will Penny Information Theory Information Entropy Kullback-Liebler Divergence Approximate Inference Will Penny 31st March 2011 #12;Approximate Inference Will Penny Information Theory Will Penny Information Theory Information Entropy Kullback-Liebler Divergence Gaussians Asymmetry
Gedanken densities and exact constraints in density functional theory
Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 ; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
Ayako Yoshisato; Takahiko Matsubara; Masahiro Morikawa
1997-08-11
Among various analytic approximations for the growth of density fluctuations in the expanding Universe, Zel'dovich approximation and its extensions in Lagrangian scheme are known to be accurate even in mildly non-linear regime. The aim of this paper is to investigate the reason why these Zel'dovich-type approximations work accurately beyond the linear regime from the following two points of view: (1) Dimensionality of the system and (2) the Lagrangian scheme on which the Zel'dovich approximation is grounded. In order to examine the dimensionality, we introduce a model with spheroidal mass distribution. In order to examine the Lagrangian scheme, we introduce the Pad\\'e approximation in Eulerian scheme. We clarify which of these aspects supports the unusual accuracy of the Zel'dovich-type approximations. We also give an implication for more accurate approximation method beyond the Zel'dovich-type approximations.
Retrocommissioning's Greatest Hits
Haasl, T.; Potter, A.; Irvine, L.
2001-01-01
It is possible to save thousands of dollars in energy costs through a few low-cost operational adjustments but those opportunities are often hidden. Retrocommissioning is a systematic investigation process for improving and optimizing the operation...
Density-dependent covariant energy density functionals
Lalazissis, G. A.
2012-10-20
Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.
Approximations non-recursively
ÃbrahÃ¡m, Erika
) * x Regard non-recursively de#12;ned approximations fact 0 = nx -> bot fact 1 = nx -> if x else fact 0 (x 1) #3; x fact 2 = nx -> if x fact of fact should satisfy the de#12;ning equation fact = nx -> if x
Wave-mechanics and the adhesion approximation
C. J. Short; P. Coles
2006-11-22
The dynamical equations describing the evolution of a self-gravitating fluid of cold dark matter (CDM) can be written in the form of a Schrodinger equation coupled to a Poisson equation describing Newtonian gravity. It has recently been shown that, in the quasi-linear regime, the Schrodinger equation can be reduced to the exactly solvable free-particle Schrodinger equation. The free-particle Schrodinger equation forms the basis of a new approximation scheme -the free-particle approximation - that is capable of evolving cosmological density perturbations into the quasi-linear regime. The free-particle approximation is essentially an alternative to the adhesion model in which the artificial viscosity term in Burgers' equation is replaced by a non-linear term known as the quantum pressure. Simple one-dimensional tests of the free-particle method have yielded encouraging results. In this paper we comprehensively test the free-particle approximation in a more cosmologically relevant scenario by appealing to an N-body simulation. We compare our results with those obtained from two established methods: the linearized fluid approach and the Zeldovich approximation. We find that the free-particle approximation comprehensively out-performs both of these approximation schemes in all tests carried out and thus provides another useful analytical tool for studying structure formation on cosmological scales.
SOUTHWESTERNENTOMOLOGIST JUN.1999 THE DIFFERENCESBETWEEN HORN FLY' DENSITIES ON CATTLE PASTURED IN
Kaufman, Phillip E.
SOUTHWESTERNENTOMOLOGIST JUN.1999 THE DIFFERENCESBETWEEN HORN FLY' DENSITIES ON CATTLE PASTURED, 1800and 2400 m) over two years using fly counts on cattle. In 1995, cattle at the 800 m elevation had the highest density of flies. In 1996,the greatest density of flies occurred on cattle at the 1800m elevation
Ions in solution: Density corrected density functional theory (DC-DFT)
Kim, Min-Cheol; Sim, Eunji; Burke, Kieron
2014-05-14
Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl{sup ?} and HO·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.
Phenomenological Relativistic Energy Density Functionals
Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.
2009-08-26
The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.
Relativistic Random Phase Approximation At Finite Temperature
Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.
2009-08-26
The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.
Approximation Algorithms for Covering Problems
Koufogiannakis, Christos
2009-01-01
1.3.1 Sequential Algorithms . . . . . . . . . . . . .Distributed 2-approximation algorithm for CMIP 2 (Alg.2 Sequential Algorithm 2.1 The Greedy Algorithm for Monotone
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-12-22
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Takahiko Matsubara; Ayako Yoshisato; Masahiro Morikawa
1997-08-17
Among several analytic approximations for the growth of density fluctuations in the expanding Universe, Zel'dovich approximation in Lagrangian coordinate scheme is known to be unusually accurate even in mildly non-linear regime. This approximation is very similar to the Pad\\'e approximation in appearance. We first establish, however, that these two are actually different and independent approximations with each other by using a model of spheroidal mass collapse. Then we propose Pad\\'e-prescribed Zel'dovich-type approximations and demonstrate, within this model, that they are much accurate than any other known nonlinear approximations.
Approximate Graph Products Marc Hellmutha
Stadler, Peter F.
Approximate Graph Products Marc Hellmutha , Wilfried Imrichb , Werner Kl¨ocklb , Peter F. Stadlera or fingers) can vary independently of other traits, or Email addresses: marc@bioinf.uni-leipzig.de (Marc
APPROXIMATELY UNITARILY EQUIVALENT MORPHISMS AND ...
2010-07-28
?(a) = diag(a(x)1,...,a(xk)), then we say that ? and ? are approximately unitarily ... Mr?1(C(X)) and a unital ?-homomorphism µ : C(X) ? Mr(C(X)) with finite.
Turbulent density fluctuations in the solar wind
Ingale, Madhusudan
2015-01-01
Treatments of the radio scattering due to density turbulence in the solar wind typically employ asymptotic approximations to the phase structure function. We use a general structure function (GSF) that straddles the asymptotic limits and quantify the relative error introduced by the approximations. We show that the regimes where GSF predictions are accurate than those of its asymptotic approximations is not only of practical relevance, but are where inner scale effects influence the estimate of the scatter-broadening. Thus we propose that GSF should henceforth be used for scatter broadening calculations and estimates of quantities characterizing density turbulence in the solar corona and solar wind. In the next part of this thesis we use measurements of density turbulence in the solar wind from previously publish observations of radio wave scattering and interplanetary scintillations. Density fluctuations are inferred using the GSF for radio scattering data and existing analysis methods for IPS. Assuming that...
Gluon Condensate in Pion Superfluid beyond Mean Field Approximation
Yin Jiang; Pengfei Zhuang
2011-03-04
We study gluon condensate in a pion superfluid, through calculating the equation of state of the system in the Nambu-Jona-Lasinio model. While in mean field approximation the growing pion condensate leads to an increasing gluon condensate, meson fluctuations reduce the gluon condensate and the broken scalar symmetry can be smoothly restored at finite isospin density.
Planning numerical approximations Richard Power
Williams, Sandra
Planning numerical approximations Richard Power Sandra Williams 21st September 2009 #12;Table proportions (e.g., more than a quarter, 25.9 per cent) Proportions are a convenient well-defined subproblem Common in factual discourse (e.g., newspaper articles) Important for generating from data (but neglected
Burke, Kieron
Leading corrections to local approximations Attila Cangi, Donghyung Lee, Peter Elliott, and Kieron efficiency and accuracy. The original density functional theory was that of Thomas1 and Fermi2 TF , in which
Linear Value Function Approximation Linear Models
Parr, Ronald
Linear Value Function Approximation and Linear Models Ronald Parr Duke University Joint work terminology Â· Various forms of linear value function approximation Â· Linear approximate model formulation #12;Outline Â· Introduce terminology Â· Various forms of linear value function approximation Â· Linear
LUBRICATION APPROXIMATION WITH PRESCRIBED NONZERO CONTACT ANGLE
Otto, Felix
LUBRICATION APPROXIMATION WITH PRESCRIBED NONZERO CONTACT ANGLE Felix Otto Department--time existence for a weak solution s(t; x) â?? 0 of the lubrication approximation @ t s + @ x (s @ 3 x s) = 0 in fs will later motivate the way we construct approximate solutions for the lubrication approximation we are going
Laboratory Density Functionals
B. G. Giraud
2007-07-26
We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.
The slope-dependent nuclear-symmetry energy within the effective surface approximation
J. P. Blocki; A. G. Magner; P. Ring
2015-06-08
The effective surface approximation is extended taking into account derivatives of the symmetry energy density per particle over the mean particle density. The isoscalar and isovector particle densities in this extended effective surface approximation are derived. The improved expressions of the surface symmetry energy, in particular, its surface tension coefficients in the sharp edged proton-neutron asymmetric nuclei take into account important gradient terms of the energy density functional. For most Skyrme forces the surface symmetry-energy constants and the corresponding neutron skins and isovector stiffnesses are calculated as functions of the Swiatecki derivative of the non-gradient term of the symmetry energy density per particle with respect to the isoscalar density. Using the analytical isovector surface energy constants in the framework of the Fermi-liquid droplet model we find energies and sum rules of the isovector giant dipole resonance structure in a reasonable agreement with the experimental data and other theoretical approaches.
An approximation technique for jet impingement flow
Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.
2015-03-10
The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.
Low rank approximations of matrices and tensors
Friedland, Shmuel
Low rank approximations of matrices and tensors S. Friedland, V. Mehrmann, A. Miedlar and M, 2008 S. Friedland, V. Mehrmann, A. Miedlar and M. Nkengla Low rank approximations of matrices and tensors #12;Overview S. Friedland, V. Mehrmann, A. Miedlar and M. Nkengla Low rank approximations
Density profile of strongly correlated spherical Yukawa plasmas
Bonitz, Michael
by means of local density approximation (LDA) similar to 2D system [6] Usage of the energy density und Astrophysik,Christian-Albrechts-UniversitÂ¨at Kiel, D-24118 Kiel, Germany 2 Institut fÂ¨ur Physik, UniversitÂ¨at Rostock, D-18051 Rostock, Germany 3 Institut fÂ¨ur Experimentelle und Angewandte Physik
Density functional theory for self-bound systems
Nir Barnea
2007-11-06
The density functional theory is extended to account for self-bound systems. To this end the Hohenberg-Kohn theorem is formulated for the intrinsic density and a Kohn-Sham like procedure for an $N$--body system is derived using the adiabatic approximation to account for the center of mass motion.
Particle number density fluctuations and pressure effects on structure formation
D. R. Matravers; J. Triginer
2001-09-21
We provide a covariant and gauge-invariant approach to the question of how a first order pressure can be incorporated self-consistently in a cosmological scenario. The approximation is relevant, in the linear regime, to weakly self-interacting or warm dark matter models. We also derive number density fluctuations in which new modes appear because the number density fluctuations are no longer simply proportional to the density fluctuations.
Frogel, Jay A
2010-01-01
This paper is based on the 100 most cited papers in astronomy for each year from 2000 to 2009 and from 1995 and 1990. The main findings are: The total number of authors of the top 100 articles per year has more than tripled. This is seen most strongly in papers with more than 6 authors. The yearly number of papers with 5 or fewer authors has declined over the same time period. The most highly cited papers tend to have the largest number of authors and visa versa. The distribution of normalized citation counts versus ranking is constant from year to year except for the top ranked half dozen or so papers. It is closely approximated by a power law. The papers that show the most divergence from the power law all have a high number of citations and are based on large surveys. The average page length of the top 100 papers is one and a half times that for astronomy papers in general. The same 5 journals (A&A, AJ, ApJ, ApJS, and MNRAS; Nature and Science are not included here) account for 80 to 85% of the total c...
Near approximations via general ordered topological spaces
M. Abo-Elhamayel
2014-12-27
Rough set theory is a new mathematical approach to imperfect knowledge. The notion of rough sets is generalized by using an arbitrary binary relation on attribute values in information systems, instead of the trivial equality relation. The topology induced by binary relations is used to generalize the basic rough set concepts. This paper studies near approximation via general ordered topological approximation spaces which may be viewed as a generalization of the study of near approximation from the topological view. The basic concepts of some increasing (decreasing) near approximations, increasing (decreasing) near boundary regions and increasing (decreasing) near accuracy were introduced and sufficiently illustrated. Moreover, proved results, implications and add examples.
APPROXIMATION OF ELECTROMAGNETIC FIELDS: PART I ...
2003-08-06
Opérateurs, 1984, Commissariat `a l'Energie Atomique, Masson, Paris. [10] J. DOUGLAS, JR., J. E. SANTOS, AND D. SHEEN, Approximation of scalar waves in ...
Lower bounds for approximate factorizations via semidefinite ...
ABSTRACT The problem of approximately factoring a real or complex multivariate polynomial f seeks minimal perturbations ? f to the coefficients of the input ...
Optimization Online - Probabilistic optimization via approximate p ...
W. van vAckooij
2015-05-27
May 27, 2015 ... Probabilistic optimization via approximate p-efficient points and bundle methods. W. van vAckooij(wim.van-ackooij ***at*** edf.fr )
Approximations by Orthonormal Mapped Chebyshev Functions for ...
2014-03-12
a School of Mathematical Science, Xiamen University, 361005 Xiamen, China .... suitable mapping can be used to approximate functions on the whole line R (cf.
Visualization of electronic density
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan
2015-04-22
An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.
Approximate Euclidean Ramsey theorems Adrian Dumitrescu
Dumitrescu, Adrian
Approximate Euclidean Ramsey theorems Adrian Dumitrescu October 27, 2010 Abstract According condition is needed in this case. Keywords: Euclidean Ramsey theory, approximate arithmetic progression result of Ramsey from 1930: Theorem 1 (Ramsey [24]). Let p q, and r be positive integers
APPROXIMATE SIMULATION RELATIONS FOR HYBRID SYSTEMS 1
Pappas, George J.
. Pappas Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia, PA been introduced as a powerful tool for the approximation of discrete and continuous systems systems approximation. An example of application in the context of safety verification is shown. Keywords
APPROXIMATION RESULTS FOR REFLECTIONLESS JACOBI MATRICES
Remling, Christian
APPROXIMATION RESULTS FOR REFLECTIONLESS JACOBI MATRICES ALEXEI POLTORATSKI AND CHRISTIAN REMLING Abstract. We study spaces of reflectionless Jacobi matrices. The main theme is the following type of question: Given a reflectionless Jacobi matrix, is it possible to approximate it by other reflection- less
Lula, J.W.
1982-01-01
A formulation for low density syntactic foam desiccant, using a polyimide resin binder, glass microbubble filler, and molecular sieve desiccant powder has been developed. The formulation may be modified easily to meet specific part requirements such as density and desired moisture pickup. Some parts can be molded to size.
An improved proximity force approximation for electrostatics
C. D. Fosco; F. C. Lombardo; F. D. Mazzitelli
2012-04-23
A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated to their shapes. Indeed, in the so called "proximity force approximation" the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contribution of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied to different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful to discuss the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Xianlong, Gao; Polini, Marco; Tosi, M. P.; Campo, Vivaldo L. Jr.; Capelle, Klaus; Rigol, Marcos
2006-04-15
We present an extensive numerical study of the ground-state properties of confined repulsively interacting fermions in one-dimensional optical lattices. Detailed predictions for the atom-density profiles are obtained from parallel Kohn-Sham density-functional calculations and quantum Monte Carlo simulations. The density-functional calculations employ a Bethe ansatz based local-density approximation for the correlation energy that accounts for Luttinger-liquid and Mott-insulator physics. Semianalytical and fully numerical formulations of this approximation are compared with each other and with a cruder Thomas-Fermi-type local-density approximation for the total energy. Precise quantum Monte Carlo simulations are used to assess the reliability of the various local-density approximations, and in conjunction with these provide a detailed microscopic picture of the consequences of the interplay between particle-particle interactions and confinement in one-dimensional systems of strongly correlated fermions.
Chiral dynamics and peripheral transverse densities
Granados, Carlos G.; Weiss, Christian
2014-01-01
In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.
Statistical mechanics of the nonlinear Schroedinger equation. II. Mean field approximation
Lebowitz, J.L.; Rose, H.A.; Speer, E.R.
1989-01-01
The authors investigate a mean field approximation to the statistical mechanics of complex fields with dynamics governed by the nonlinear Schroedinger equation. Such fields, whose Hamiltonian is unbounded below, may model plasmas, lasers, and other physical systems. Restricting themselves to one-dimensional systems with periodic boundary conditions, we find in the mean field approximation a phase transition from a uniform regime to a regime in which the system is dominated by solitons. They compute explicitly, as a function of temperature and density (L/sup 2/ norm), the transition point at which the uniform configuration becomes unstable to local perturbations; static and dynamic mean field approximations yield the same result.
Generalized random phase approximation of soft-matter systems
Derek Frydel
2015-07-30
A general RPA approximation is developed within the liquid-state formalism as a systematic first step beyond the mean-field and toward a more realistic description of the weak-coupling regime. The resulting RPA is self-consistent and, in principle, valid for arbitrary particle interactions. RPA is introduced into the liquid-state framework via adiabatic connection -- by adiabatically switching on the particle interactions while keeping the particle density fixed at its physical value by means of an auxiliary external potential. Correlational free energy Fc involves a coupling-strength integral $\\int_0^1d{\\lambda}\\,h_{\\lambda}({\\bf r},{\\bf r}')$, where a correlation function of a fictitious system, $h_{\\lambda}({\\bf r},{\\bf r}')$, is obtained from the Ornstein-Zernike equation and an appropriate closure relation. The closure $c_{\\lambda}({\\bf r},{\\bf r}')=-\\beta\\lambda u({\\bf r},{\\bf r}')$ yields the RPA approximation. The coupling constant integral within Fc can alternatively be expressed as a summation of ring diagrams to infinite order, a known feature of RPA. The ring series can, in turn, be linked to a functional determinant known to be a solution of a Gaussian integral, therefore, connecting the RPA to the Gaussian type of an approximation.
Accurate neutralino relic density
Paolo Gondolo; Joakim Edsjo
1998-04-30
We enlarge our set of supersymmetric models and update accelerator constraints in our precise calculation of the relic density of the lightest neutralino, which includes relativistic Boltzmann averaging, subthreshold and resonant annihilations, and coannihilation processes among charginos and neutralinos.
Harmonic Wavelet Transform and Image Approximation
Zhang, Zhihua; Saito, Naoki
2010-01-01
DOI 10.1007/s10851-010-0202-x Harmonic Wavelet Transform andwe approximate f by a harmonic function u such that thebanks. We call this the Harmonic Wavelet Transform (HWT).
Approximate inference in Gaussian graphical models
Malioutov, Dmitry M., 1981-
2008-01-01
The focus of this thesis is approximate inference in Gaussian graphical models. A graphical model is a family of probability distributions in which the structure of interactions among the random variables is captured by a ...
A fresh look at the adhesion approximation
Thomas Buchert
1997-11-04
I report on a systematic derivation of the phenomenological ``adhesion approximation'' from gravitational instability together with a brief evaluation of the related status of analytical modeling of large-scale structure.
Energy-efficient approximate computation in Topaz
Achour, Sara
2015-01-01
The increasing prominence of energy consumption as a first-order concern in contemporary computing systems has motivated the design of energy-efficient approximate computing platforms. These computing platforms feature ...
Updated: June 21, 2010 Diophantine approximation,
Waldschmidt, Michel
Updated: June 21, 2010 Diophantine approximation, irrationality and transcendence Michel] Chap. 3. See also [1] Chap. III. References [1] S. Lang, Introduction to transcendental numbers transcendants, Springer-Verlag, Berlin, 1974. Lecture Notes in Mathematics, Vol. 402. http
Optimization in Geometric Graphs: Complexity and Approximation
Kahruman-Anderoglu, Sera
2011-02-22
We consider several related problems arising in geometric graphs. In particular, we investigate the computational complexity and approximability properties of several optimization problems in unit ball graphs and develop ...
Signal approximation using the bilinear transform
Venkataraman, Archana, Ph. D. Massachusetts Institute of Technology
2007-01-01
This thesis explores the approximation properties of a unique basis expansion. The expansion implements a nonlinear frequency warping between a continuous-time signal and its discrete-time representation according to the ...
Polymer state approximations of Schroedinger wave functions
Klaus Fredenhagen; Felix Reszewski
2006-08-25
It is shown how states of a quantum mechanical particle in the Schroedinger representation can be approximated by states in the so-called polymer representation. The result may shed some light on the semiclassical limit of loop quantum gravity.
An improved proximity force approximation for electrostatics
Fosco, Cesar D.; Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche ; Lombardo, Fernando C.; IFIBA ; Mazzitelli, Francisco D.
2012-08-15
A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.
The problem of the universal density functional and the density matrix functional theory
Bobrov, V. B. Trigger, S. A.
2013-04-15
The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.
Grover, William H.
We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of ...
High Energy Density Laboratory Plasmas
High Energy Density Laboratory Plasmas General Plasma Science Developing founda/ons and advancing fundamental understanding #12;The High Energy Density developing innovative techniques to study the properties of instabilities in magnetized-high-energy-density
Extending the Eikonal Approximation to Low Energy
Pierre Capel; Tokuro Fukui; Kazuyuki Ogata
2014-11-21
E-CDCC and DEA, two eikonal-based reaction models are compared to CDCC at low energy (e.g. 20AMeV) to study their behaviour in the regime at which the eikonal approximation is supposed to fail. We confirm that these models lack the Coulomb deflection of the projectile by the target. We show that a hybrid model, built on the CDCC framework at low angular momenta and the eikonal approximation at larger angular momenta gives a perfect agreement with CDCC. An empirical shift in impact parameter can also be used reliably to simulate this missing Coulomb deflection.
Approximating European Options by Rebate Barrier Options
Song, Qingshuo
2011-01-01
When the underlying stock price is a strict local martingale process under an equivalent local martingale measure, Black-Scholes PDE associated with an European option may have multiple solutions. In this paper, we study an approximation for the smallest hedging price of such an European option. Our results show that a class of rebate barrier options can be used for this approximation, when its rebate and barrier are chosen appropriately. An asymptotic convergence rate is also achieved when the knocked-out barrier moves to infinity under suitable conditions.
January 2006 The 11 Greatest Supply
Bartholdi III, John J.
project to revamp both its IT systems and its distribution facilities. This involved a new ERP system, this was perhaps SAP's first foray into the world of high volume distribution. The system was unable to handle for product movement. The company was estimating huge efficiency gains from the new systems so much so
1987A: The greatest supernova since Kepler
Trimble, V; Trimble, V
1988-01-01
Woosley, S. E. , 1988b, in Supernovae 19873 in the LargeGalactic Nuclei, and Supernovae, edited by S. Hayakawa andGalactic nuclei, and Supernovae, edited by S. Hayakawa and
The Columbia Americas Greatest Power Stream
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(active tab) 2016 Â«TheComputingThe Cold
Reduced Operator Approximation for Modelling Open Quantum Systems
Agnieszka Werpachowska
2015-08-05
We present the Reduced Operator Approximation: a simple, physically transparent and computationally efficient method of modelling open quantum systems. It employs the Heisenberg picture of the quantum dynamics, which allows us to focus on the system degrees of freedom in a natural and easy way. We describe different variants of the method, low- and high-order in the system-bath interaction operators, defining them for either general quantum harmonic oscillator baths or specialising them for independent baths with Lorentzian spectral densities. Its wide applicability is demonstrated on the examples of systems coupled to different baths (with varying system-bath interaction strength and bath memory length), and compared with the exact pseudomode and the popular quantum state diffusion approach. The method captures the decoherence of the system interacting with the bath, while conserving the total energy. Our results suggest that quantum coherence effects persist in open quantum systems for much longer times than previously thought.
Multiple density layered insulator
Alger, Terry W. (Tracy, CA)
1994-01-01
A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.
Exact and Approximate REML for Heteroscedastic Regression
Smyth, Gordon K.
Exact and Approximate REML for Heteroscedastic Regression Gordon K. Smyth Department of Mathematics, the above het- eroscedastic regression model is the most general model of the type considered by LN98 and SV to estimate the het- eroscedastic regression model by way of two coupled generalized linear models
Semicirculant approximations in preconditioners for incompressible flow
be successfully used as an approximate solver of a convectiondiffusion problem in the BFB T preconditioner ([1 of the convection diffusion problem in the BFB T preconditioner for the incompressible Navier Stokes equations of discrete pressures. The square matrix F here is a discrete convectiondiffusion operator. The BFB
The Observer Algorithm for Visibility Approximation
Doherty, Patrick
, with dif- ferent view ranges and grid cell sizes. By changing the size of the grid cells that the algorithm or more sentries while moving to a goal position. Algorithms for finding a covert paths in the presence of stationary and moving sentries has been devised by [5] [6]. An approximate visibility algorithm was devised
Approximate Inference and Protein-Folding
Weiss, Yair
Approximate Inference and Protein-Folding Chen Yanover and Yair Weiss School of Computer Science Side-chain prediction is an important subtask in the protein-folding problem. We show that #12;nding algorithms, including a widely used protein-folding software (SCWRL). 1 Introduction Inference in graphical
Notion of p-value Parametric Approximations
Nuel, Gregory
Notion of p-value Parametric Approximations Power Significance of an Observation in Post-Genomics G, March 7 - 10, 2011 G. NUEL Significance of an Observation in Post-Genomics #12;Notion of p Power of a test ROC and AUC Example with GWAS G. NUEL Significance of an Observation in Post-Genomics
Stochastic Approximation: Sturen in een veranderende wereld
Bhulai, Sandjai
gedaan door middel van simulaties of experimenten. Twee bekende algoritmes binnen Stochastic Approximation zijn het Robbins- Monro algoritme en het Kiefer-Wolfowitz algoritme. Deze algoritmes benaderen formule is de kleine rekentijd en het gebruik van beperkte geheugenruimte. Echter, het algoritme hangt af
Approximations to the Distributed Activation Energy Model
Approximations to the Distributed Activation Energy Model for Pyrolysis C.P. Please, 1 M.J. Mc, then resubmitted after minor revisions in September 2002. Abstract The Distributed Activation Energy Model (DAEM effective method for estimating kinetic parameters and the distribution of activation energies. Comparison
Updated: May 28, 2010 Diophantine approximation,
Waldschmidt, Michel
Updated: May 28, 2010 Diophantine approximation, irrationality and transcendence Michel Waldschmidt [3] is: Theorem 121 (Lambert, 1761). For any r Q \\ {0}, the numbers tan r and er are irrational. In particular the number is irrational. The main tool is continued fractions, and the first goal of Lambert
Updated: June 16, 2010 Diophantine approximation,
Waldschmidt, Michel
Updated: June 16, 2010 Diophantine approximation, irrationality and transcendence Michel. It is known (see for instance [31] p. 25) that if k is a positive integer, if an irrational real number has, 31, 13, 1]. Definition Given a real irrational number , a function = N R>0 is an irrationality
Updated: May 16, 2010 Diophantine approximation,
Waldschmidt, Michel
Updated: May 16, 2010 Diophantine approximation, irrationality and transcendence Michel Waldschmidt of 2 We first give a geometrical proof of the irrationality of the number 2 = 1, 414 213 562 373 095 rectangle. This proves the irrationality of 2. In algebraic terms, the number x = 1 + 2 satisfies x = 2
Updated: June 1, 2010 Diophantine approximation,
Waldschmidt, Michel
Updated: June 1, 2010 Diophantine approximation, irrationality and transcendence Michel Waldschmidt on the irrationality of er when r is a non-zero rational number. Next we show how a slight modification implies.1.1 Irrationality of er for r Q If r = a/b is a rational number such that er is also rational, then e|a| is also
Updated: June 23, 2010 Diophantine approximation,
Waldschmidt, Michel
Updated: June 23, 2010 Diophantine approximation, irrationality and transcendence Michel://www.math.jussieu.fr/ miw/articles/ps/eccm.ps [5] -- , Elliptic functions and transcendence, in Surveys in number theory of and . Schneider's Theorem on the transcendence of j() (corollary 174). 11 Algebraic independence 11.1 Chudnovskii
Communication: Random phase approximation renormalized many-body perturbation theory
Bates, Jefferson E.; Furche, Filipp, E-mail: filipp.furche@uci.edu [Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025 (United States)] [Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025 (United States)
2013-11-07
We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations.
Slope-dependent nuclear-symmetry energy within the effective surface approximation
J. P. Blocki; A. G. Magner; P. Ring
2015-12-16
The effective-surface approximation is extended taking into account derivatives of the symmetry-energy density per particle with respect to the mean particle density. The isoscalar and isovector particle densities in this extended effective-surface approximation are derived. The improved expressions of the surface symmetry energy, in particular, its surface tension coefficients in the sharp-edged proton-neutron asymmetric nuclei take into account important gradient terms of the energy density functional. For most Skyrme forces the surface symmetry-energy constants and the corresponding neutron skins and isovector stiffnesses are calculated as functions of the Swiatecki derivative of the nongradient term of the symmetry-energy density per particle with respect to the isoscalar density. Using the analytical isovector surface-energy constants in the framework of the Fermi-liquid droplet model we find energies and sum rules of the isovector giant-dipole resonance structure in a reasonable agreement with the experimental data, and they are compared with other theoretical approaches.
Weber, J. W.; Bol, A. A. [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sanden, M. C. M. van de [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research (DIFFER), Nieuwegein (Netherlands)
2014-07-07
This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant effect on the extracted optical conductivity and hence on derived parameters as carrier mobility and density. By excluding the backside reflections, the error for these parameters for typical chemical vapor deposited (CVD) graphene on a silicon substrate can be as high as 17% and 45% for the carrier mobility and density, respectively. For the mid- and near-infrared, the approximation can be simplified such that the real part of the optical conductivity is extracted without the need for a parameterization of the optical conductivity. This direct extraction is shown for Fourier transform infrared (FTIR) transmittance measurements of CVD graphene on silicon in the photon energy range of 370–7000?cm{sup ?1}. From the real part of the optical conductivity, the carrier density, mobility, and number of graphene layers are determined but also residue, originating from the graphene transfer, is detected. FTIR transmittance analyzed with the improved thin film approximation is shown to be a non-invasive, easy, and accurate measurement and analysis method for assessing the quality of graphene and can be used for other 2-D materials.
Second derivatives for approximate spin projection methods
Thompson, Lee M.; Hratchian, Hrant P.
2015-02-07
The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.
Aggelen, Helen van; Department of Chemistry, Duke University, Durham, North Carolina 27708 ; Yang, Yang; Yang, Weitao
2014-05-14
Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H{sub 2}, and eliminates delocalization errors in H{sub 2}{sup +} and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R{sup ?6} asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.
Pulse design without rotating wave approximation
S. Ibáñez; Yi-Chao Li; Xi Chen; J. G. Muga
2015-10-21
We design realizable time-dependent semiclassical pulses to invert the population of a two-level system faster than adiabatically when the rotating-wave approximation cannot be applied. Different approaches, based on the counterdiabatic method or on invariants, may lead to singularities in the pulse functions. Ways to avoid or cancel the singularities are put forward when the pulse spans few oscillations. For many oscillations an alternative numerical minimization method is proposed and demonstrated.
Approximate convex decomposition and its applications
Lien, Jyh-Ming
2009-05-15
Approved by: Chair of Committee, Nancy M. Amato Committee Members, Ergun Akleman Ricardo Gutierrez-Osuna Donald H. House John C. Keyser Head of Department, Valerie E. Taylor December 2006 Major Subject: Computer Science iii ABSTRACT Approximate Convex...-Yen Li, for teaching me about research. I would like to thank my committee members, John Keyser, Donald House, Ergun Akleman, and Ricardo Gutierrez-Osuna, who supported me through this challenging journey. I would like to thank everyone in the Algorithms...
Semiclassical approximation in Batalin-Vilkovisky formalism
Albert Schwarz
1992-10-23
The geometry of supermanifolds provided with $Q$-structure (i.e. with odd vector field $Q$ satisfying $\\{ Q,Q\\} =0$), $P$-structure (odd symplectic structure ) and $S$-structure (volume element) or with various combinations of these structures is studied. The results are applied to the analysis of Batalin-Vilkovisky approach to the quantization of gauge theories. In particular the semiclassical approximation in this approach is expressed in terms of Reidemeister torsion.
WKB Approximation to the Power Wall
F. D. Mera; S. A. Fulling; J. D. Bouas; K. Thapa
2013-03-28
We present a semiclassical analysis of the quantum propagator of a particle confined on one side by a steeply, monotonically rising potential. The models studied in detail have potentials proportional to $x^{\\alpha}$ for $x>0$; the limit $\\alpha\\to\\infty$ would reproduce a perfectly reflecting boundary, but at present we concentrate on the cases $\\alpha =1$ and 2, for which exact solutions in terms of well known functions are available for comparison. We classify the classical paths in this system by their qualitative nature and calculate the contributions of the various classes to the leading-order semiclassical approximation: For each classical path we find the action $S$, the amplitude function $A$ and the Laplacian of $A$. (The Laplacian is of interest because it gives an estimate of the error in the approximation and is needed for computing higher-order approximations.) The resulting semiclassical propagator can be used to rewrite the exact problem as a Volterra integral equation, whose formal solution by iteration (Neumann series) is a semiclassical, not perturbative, expansion. We thereby test, in the context of a concrete problem, the validity of the two technical hypotheses in a previous proof of the convergence of such a Neumann series in the more abstract setting of an arbitrary smooth potential. Not surprisingly, we find that the hypotheses are violated when caustics develop in the classical dynamics; this opens up the interesting future project of extending the methods to momentum space.
Nonlinear adaptive control using radial basis function approximants
Petersen, Jerry Lee
1993-01-01
The purpose of this research is to present an adaptive control strategy using the radial basis function approximation method. Surface approximation methods using radial basis function approximants will first be discussed. ...
Thermodynamics of the low density excluded volume hadron gas
Zalewski, Kacper
2015-01-01
We discuss the influence of the excluded volume of hadrons on macroscopic variables and thermal parameters of the hadron gas at finite temperature and chemical potential in the low density approximation. Based solely on elementary thermodynamics we show that when the excluded volume grows at constant temperature, pressure, and number of particles, the overall volume increases just as much as the excluded volume, while the entropy and energy remain unchanged. The growth of the chemical potentials is equal to the work needed to create the respective excluded volumes. Consequently, the bulk density functions of a gas with excluded volume are expressed by the corresponding variables in a system of point particles with the shifted chemical potentials. Our results are fully consistent with the previous findings obtained upon applications of more advanced methods of statistical physics. A validity limit for the low density approximation is derived and discussed in the context of the hadron gas created in heavy ion c...
Pion Superfluidity and Meson Properties at Finite Isospin Density
Lianyi He; Meng Jin; Pengfei Zhuang
2009-09-27
We investigate pion superfluidity and its effect on meson properties and equation of state at finite temperature and isospin and baryon densities in the frame of standard flavor SU(2) NJL model. In mean field approximation to quarks and random phase approximation to mesons, the critical isospin chemical potential for pion superfluidity is exactly the pion mass in the vacuum, and corresponding to the isospin symmetry spontaneous breaking, there is in the pion superfluidity phase a Goldstone mode which is the linear combination of the normal sigma and charged pion modes. We calculate numerically the gap equations for the chiral and pion condensates, the phase diagrams, the meson spectra, and the equation of state, and compare them with that obtained in other effective models. The competitions between pion superfluidity and color superconductivity at finite baryon density and between pion and kaon superfluidity at finite strangeness density in flavor SU(3) NJL model are briefly discussed.
Thermodynamics of the low density excluded volume hadron gas
Kacper Zalewski; Krzysztof Redlich
2015-07-20
We discuss the influence of the excluded volume of hadrons on macroscopic variables and thermal parameters of the hadron gas at finite temperature and chemical potential in the low density approximation. Based solely on elementary thermodynamics we show that when the excluded volume grows at constant temperature, pressure, and number of particles, the overall volume increases just as much as the excluded volume, while the entropy and energy remain unchanged. The growth of the chemical potentials is equal to the work needed to create the respective excluded volumes. Consequently, the bulk density functions of a gas with excluded volume are expressed by the corresponding variables in a system of point particles with the shifted chemical potentials. Our results are fully consistent with the previous findings obtained upon applications of more advanced methods of statistical physics. A validity limit for the low density approximation is derived and discussed in the context of the hadron gas created in heavy ion collisions.
High Energy Density Capacitors
2010-07-01
BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.
Corrections to Thomas-Fermi densities at turning points and beyond
Raphael F. Ribeiro; Donghyung Lee; Attila Cangi; Peter Elliott; Kieron Burke
2015-02-25
Uniform semiclassical approximations for the number and kinetic-energy densities are derived for many non-interacting fermions in one-dimensional potentials with two turning points. The resulting simple, closed-form expressions contain the leading corrections to Thomas-Fermi theory, involve neither sums nor derivatives, are spatially uniform approximations, and are exceedingly accurate.
Sensitivity approximation for robust stability and tracking
McLean, Chris Steven
1984-01-01
) Norman W. Na gle (Member) Don R. Halverson (Member) William B. Jones (Head of Department) May 1984 1n Abstract Sensitivity Approximation for Robust Stability and Tracking. (May 1984) Chris Steven McLean, B. S, , Louisiana Tech University... indispensable to the completion of this thesis. I would like to thank Dr. S. P. Bhattacharyya for introducing me to the wonders of automatic control. I also would like to thank Dr. D. R. Halverson and Dr. N. W. Naugle for serving on my committee, Dr. John...
Chu, Shih-I
Time-dependent localized Hartree-Fock density-functional linear response approach-dependent localized Hartree-Fock density-functional linear response approach for the treatment of photoionization, density-functional theory DFT com- bined with linear response approximation LRA 1,2 has been successfully
V. E. Oberacker; A. S. Umar
2015-02-13
In this manuscript we provide an outline of the numerical methods used in implementing the density constrained time-dependent Hartree-Fock (DC-TDHF) method and provide a few examples of its application to nuclear fusion. In this approach, dynamic microscopic calculations are carried out on a three-dimensional lattice and there are no adjustable parameters, the only input is the Skyrme effective NN interaction. After a review of the DC-TDHF theory and the numerical methods, we present results for heavy-ion potentials $V(R)$, coordinate-dependent mass parameters $M(R)$, and precompound excitation energies $E^{*}(R)$ for a variety of heavy-ion reactions. Using fusion barrier penetrabilities, we calculate total fusion cross sections $\\sigma(E_\\mathrm{c.m.})$ for reactions between both stable and neutron-rich nuclei. We also determine capture cross sections for hot fusion reactions leading to the formation of superheavy elements.
Nuclear Energy Density Optimization
M. Kortelainen; T. Lesinski; J. Moré; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild
2010-05-27
We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.
Oberacker, V E
2015-01-01
In this manuscript we provide an outline of the numerical methods used in implementing the density constrained time-dependent Hartree-Fock (DC-TDHF) method and provide a few examples of its application to nuclear fusion. In this approach, dynamic microscopic calculations are carried out on a three-dimensional lattice and there are no adjustable parameters, the only input is the Skyrme effective NN interaction. After a review of the DC-TDHF theory and the numerical methods, we present results for heavy-ion potentials $V(R)$, coordinate-dependent mass parameters $M(R)$, and precompound excitation energies $E^{*}(R)$ for a variety of heavy-ion reactions. Using fusion barrier penetrabilities, we calculate total fusion cross sections $\\sigma(E_\\mathrm{c.m.})$ for reactions between both stable and neutron-rich nuclei. We also determine capture cross sections for hot fusion reactions leading to the formation of superheavy elements.
Low density microcellular foams
LeMay, James D. (Castro Valley, CA)
1991-01-01
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Low density microcellular foams
LeMay, James D. (Castro Valley, CA)
1992-01-01
Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Low density microcellular foams
LeMay, J.D.
1991-11-19
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.
The Background Field Approximation in (quantum) cosmology
R. Parentani
1998-03-12
We analyze the Hamilton-Jacobi action of gravity and matter in the limit where gravity is treated at the background field approximation. The motivation is to clarify when and how the solutions of the Wheeler-DeWitt equation lead to the Schr\\"odinger equation in a given background. To this end, we determine when and how the total action, solution of the constraint equations of General Relativity, leads to the HJ action for matter in a given background. This is achieved by comparing two neighboring solutions differing slightly in their matter energy content. To first order in the change of the 3-geometries, the change of the gravitational action equals the integral of the matter energy evaluated in the background geometry. Higher order terms are governed by the ``susceptibility'' of the geometry. These classical properties also apply to quantum cosmology since the conditions which legitimize the use of WKB gravitational waves are concomitant with those governing the validity of the background field approximation.
The validity of the Background Field Approximation
R. Parentani
1997-10-10
In the absence of a tractable theory of quantum gravity, quantum matter field effects have been so far computed by treating gravity at the Background Field Approximation. The principle aim of this paper is to investigate the validity of this approximation which is not specific to gravity. To this end, for reasons of simplicity and clarity, we shall compare the descriptions of thermal processes induced by constant acceleration (i.e. the Unruh effect) in four dynamical frameworks. In this problem, the position of the ``heavy'' accelerated system plays the role of gravity. In the first framework, the trajectory is treated at the BFA: it is given from the outset and unaffected by radiative processes. In the second one, recoil effects induced by these emission processes are taken into account by describing the system's position by WKB wave functions. In the third one, the accelerated system is described by second quantized fields and in the fourth one, gravity is turned on. It is most interesting to see when and why transitions amplitudes evaluated in different frameworks but describing the same process do agree. It is indeed this comparison that determines the validity of the BFA. It is also interesting to notice that the abandonment of the BFA delivers new physical insights concerning the processes. For instance, in the fourth framework, the ``recoils'' of gravity show that the acceleration horizon area acts as an entropy in delivering heat to accelerated systems.
The local potential approximation in quantum gravity
Dario Benedetti; Francesco Caravelli
2012-10-09
Within the context of the functional renormalization group flow of gravity, we suggest that a generic f(R) ansatz (i.e. not truncated to any specific form, polynomial or not) for the effective action plays a role analogous to the local potential approximation (LPA) in scalar field theory. In the same spirit of the LPA, we derive and study an ordinary differential equation for f(R) to be satisfied by a fixed point of the renormalization group flow. As a first step in trying to assess the existence of global solutions (i.e. true fixed point) for such equation, we investigate here the properties of its solutions by a comparison of various series expansions and numerical integrations. In particular, we study the analyticity conditions required because of the presence of fixed singularities in the equation, and we develop an expansion of the solutions for large R up to order N=29. Studying the convergence of the fixed points of the truncated solutions with respect to N, we find a characteristic pattern for the location of the fixed points in the complex plane, with one point stemming out for its stability. Finally, we establish that if a non-Gaussian fixed point exists within the full f(R) approximation, it corresponds to an R^2 theory.
Low density microcellular foams
Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.
1985-10-02
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.
Low density microcellular foams
Aubert, James H. (Albuquerque, NM); Clough, Roger L. (Albuquerque, NM); Curro, John G. (Placitas, NM); Quintana, Carlos A. (Albuquerque, NM); Russick, Edward M. (Albuquerque, NM); Shaw, Montgomery T. (Mansfield Center, CT)
1987-01-01
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.
Recycling Authorizations: Toward Secondary and Approximate Authorizations Model
of matching best suitable approximate authorizations. 1 Introduction Although, every authorization decision
Bethe free energy, Kikuchi approximations and belief propagation
Bethe free energy, Kikuchi approximations and belief propagation algorithms Jonathan S. Yedidia to a stationary point of an approximate free energy, known as the Bethe free energy in statis- tical physics- curate free energy approximations, of which Bethe's approximation is the simplest. Exploiting
Collective Modes in a Superfluid Neutron Gas within the Quasiparticle Random-Phase Approximation
Noël Martin; Michael Urban
2015-01-05
We study collective excitations in a superfluid neutron gas at zero temperature within the quasiparticle random phase approximation. The particle-hole residual interaction is obtained from a Skyrme functional, while a separable interaction is used in the pairing channel which gives a realistic density dependence of the pairing gap. In accordance with the Goldstone theorem, we find an ungapped collective mode (analogous to the Bogoliubov-Anderson mode). At low momentum, its dispersion relation is approximately linear and its slope coincides with the hydrodynamic speed of sound calculated with the Skyrme equation of state. The response functions are compared with those obtained within the Landau approximation. We also compute the contribution of the collective mode to the specific heat of the neutron gas, which is relevant for the thermodynamic properties of the inner crust of neutron stars.
Approximate Stokes Drift Profiles in Deep Water
Breivik, Øyvind; Bidlot, Jean-Raymond
2014-01-01
A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.
High Energy Density Microwaves
Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)
1999-04-01
These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)
Level Density in the Complex Scaling Method
Ryusuke Suzuki; Takayuki Myo; Kiyoshi Kato
2005-05-18
It is shown that the continuum level density (CLD) at unbound energies can be calculated with the complex scaling method (CSM), in which the energy spectra of bound states, resonances and continuum states are obtained in terms of $L^2$ basis functions. In this method, the extended completeness relation is applied to the calculation of the Green functions, and the continuum-state part is approximately expressed in terms of discretized complex scaled continuum solutions. The obtained result is compared with the CLD calculated exactly from the scattering phase shift. The discretization in the CSM is shown to give a very good description of continuum states. We discuss how the scattering phase shifts can inversely be calculated from the discretized CLD using a basis function technique in the CSM.
Broader source: Energy.gov [DOE]
This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of a soil moisture/density gauge (Class 7 -...
A Conjecture about the Density of Prime Numbers
L. A. Amarante Ribeiro
2008-03-04
We present in this work a heuristic expression for the density of prime numbers. Our expression leads to results which possesses approximately the same precision of the Riemann's function in the domain that goes from 2 to 1010 at least. Instead of using a constant as was done by Legendre and others in the formula of Gauss, we try to adjust the data through a function. This function has the remarkable property: its points of discontinuity are the prime numbers.
On the complexity of approximating a nash equilibrium
Daskalakis, Constantinos
2011-01-01
We show that computing a relative---that is, multiplicative as opposed to additive---approximate Nash equilibrium in two-player games is PPAD-complete, even for constant values of the approximation. Our result is the first ...
Approximations for the rotational excitation of molecules by atoms
Chu, Shih-I; Dalgarno, A.
1975-01-01
The applicability of the effective close?coupling approximation of Rabitz and the centrifugal decoupling approximation of McGuire and Kouri is examined for a system which models the rotational excitation of molecular nitrogen in collisions...
Report on some recent advances in Diophantine approximation
Waldschmidt, Michel
by linear forms Â· irrationality measures Â· transcendence criterion Â· criteria for algebraic inde- pendence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Rational approximation to a real number . . . . . . . . . . . . . . . . . . . . . . . . 6 1, algebraic and simultaneous approximation to a single number
Guest Editorial Sparse Approximations in Signal and Image Processing
Paris-Sud XI, Université de
Guest Editorial Sparse Approximations in Signal and Image Processing Sparse approximation to solve many other signal processing problems, including blind source separation, feature extraction techniques to images as well as audio and biomedical signals, new efficient im- plementations of greedy
Bond selective chemistry beyond the adiabatic approximation
Butler, L.J. [Univ. of Chicago, IL (United States)
1993-12-01
One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.
Approximation Algorithms for Multi-criteria Traveling Salesman Problems
Al Hanbali, Ahmad
+3-42 +, respectively. Moreover, we design ran- domized approximation algorithms for multi-criteria () -ATSP (ratio 1 2. Therefore, we design randomized approximation schemes for multi-criteria cycle cover problems by showingApproximation Algorithms for Multi-criteria Traveling Salesman Problems Bodo Manthey1 and L
Input-ouput approximation for nonlinear structural dynamics
Beaver, Stefanie Rene'
2009-05-15
. Nonlinear Assumed Model with Fixed Rotation Rate . 51 V NONLINEAR INPUT-OUTPUT APPROXIMATION . . . . . . 54 A. Algorithm Overview . . . . . . . . . . . . . . . . . . . . . 54 B. Linear Input-Output Approximation . . . . . . . . . . . . 57 C. Least Squares.... Quadratic Assumed Modes with Higher-Order Terms . 77 ix CHAPTER Page 2. Application of Nonlinear Input-Output Approxi- mation Algorithm . . . . . . . . . . . . . . . . . . . . 81 a. Linear Input-Output Approximation . . . . . . . 82 b. Least Squares...
Technical Note Variational free energy and the Laplace approximation
Daunizeau, Jean
Technical Note Variational free energy and the Laplace approximation Karl Friston,a, Jérémie October 2006 This note derives the variational free energy under the Laplace approximation, with a focus. This is relevant when using the free energy as an approximation to the log-evidence in Bayesian model averaging
Improved association in a classical density functional theory for water
Eric J. Krebs; Jeff B. Schulte; David Roundy
2013-09-07
We present a modification to our recently published SAFT-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes: a hard hydrophobic rod and a hard sphere. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the solutes.We present a modification to our recently published SAFT-based classical density functional theory for water. We have recently developed and tested a functional for the averaged radial distribution function at contact of the hard-sphere fluid that is dramatically more accurate at interfaces than earlier approximations. We now incorporate this improved functional into the association term of our free energy functional for water, improving its description of hydrogen bonding. We examine the effect of this improvement by studying two hard solutes: a hard hydrophobic rod and a hard sphere. The improved functional leads to a moderate change in the density profile and a large decrease in the number of hydrogen bonds broken in the vicinity of the solutes.
Densities and energies of nuclei in dilute matter
P. Papakonstantinou; J. Margueron; F. Gulminelli; Ad. R. Raduta
2013-05-01
We explore the ground-state properties of nuclear clusters embedded in a gas of nucleons with the help of Skyrme-Hartree-Fock microscopic calculations. Two alternative representations of clusters are introduced, namely coordinate-space and energy-space clusters. We parameterize their density profiles in spherical symmetry in terms of basic properties of the energy density functionals used and propose an analytical, Woods-Saxon density profile whose parameters depend, not only on the composition of the cluster, but also of the nucleon gas. We study the clusters' energies with the help of the local-density approximation, validated through our microscopic results. We find that the volume energies of coordinate-space clusters are determined by the saturation properties of matter, while the surface energies are strongly affected by the presence of the gas. We conclude that both the density profiles and the cluster energies are strongly affected by the gas and discuss implications for the nuclear EoS and related perspectives. Our study provides a simple, but microscopically motivated modeling of the energetics of clusterized matter at subsaturation densities, for direct use in consequential applications of astrophysical interest.
Linear response of homogeneous nuclear matter with energy density functionals
A. Pastore; D. Davesne; J. Navarro
2014-12-07
Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.
Communication: Self-interaction correction with unitary invariance in density functional theory
Pederson, Mark R.; Ruzsinszky, Adrienn; Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
2014-03-28
Standard spin-density functionals for the exchange-correlation energy of a many-electron ground state make serious self-interaction errors which can be corrected by the Perdew-Zunger self-interaction correction (SIC). We propose a size-extensive construction of SIC orbitals which, unlike earlier constructions, makes SIC computationally efficient, and a true spin-density functional. The SIC orbitals are constructed from a unitary transformation that is explicitly dependent on the non-interacting one-particle density matrix. When this SIC is applied to the local spin-density approximation, improvements are found for the atomization energies of molecules.
Physical approximations for the nonlinear evolution of perturbations in dark energy scenarios
L. R. Abramo; R. C. Batista; L. Liberato; R. Rosenfeld
2008-06-20
The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy as well, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model, and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.
Abramo, L. R.; Batista, R. C. [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970, Sao Paulo (Brazil); Liberato, L.; Rosenfeld, R. [Instituto de Fisica Teorica, Universidade Estadual Paulista, R. Pamplona 145, 01405-900, Sao Paulo (Brazil)
2009-01-15
The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.
Low density carbonized composite foams
Kong, Fung-Ming (Pleasanton, CA)
1991-01-01
A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.
Neutralino relic density including coannihilations
Paolo Gondolo; Joakim Edsjo
1997-11-25
We give an overview of our precise calculation of the relic density of the lightest neutralino, in which we included relativistic Boltzmann averaging, subthreshold and resonant annihilations, and coannihilation processes with charginos and neutralinos.
Robust Validation Of Approximate 1-Matrix Functionals With Few-Electron Harmonium Atoms
Cioslowski, Jerzy; Matito, Eduard
2015-01-01
A simple comparison between the exact and approximate correlation components U of the electron-electron repulsion energy of several states of few-electron harmonium atoms with varying confinement strengths provides a superior validation tool for 1-matrix functionals. The robustness of this tool is clearly demonstrated in a survey of 14 known functionals, which reveals their substandard performance within different electron correlation regimes. Unlike spot-testing that employs dissociation curves of diatomic molecules or more extensive benchmarking against experimental atomization energies of molecules comprising one of standard sets, the present approach not only uncovers the flaws and patent failures of the functionals but, even more importantly, allows for pinpointing their root causes. Since the approximate values of U are computed at exact 1-densities, the testing requires minimal programming, and thus is particularly useful in quick screening of new functionals.
Low density metal hydride foams
Maienschein, Jon L. (Oakland, CA); Barry, Patrick E. (Pleasant Hill, CA)
1991-01-01
Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.
Maximum-likelihood density modification
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Structural Biology Group, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2000-08-01
A likelihood-based density modification approach is developed that can incorporate expected electron-density information from a wide variety of sources. A likelihood-based approach to density modification is developed that can be applied to a wide variety of cases where some information about the electron density at various points in the unit cell is available. The key to the approach consists of developing likelihood functions that represent the probability that a particular value of electron density is consistent with prior expectations for the electron density at that point in the unit cell. These likelihood functions are then combined with likelihood functions based on experimental observations and with others containing any prior knowledge about structure factors to form a combined likelihood function for each structure factor. A simple and general approach to maximizing the combined likelihood function is developed. It is found that this likelihood-based approach yields greater phase improvement in model and real test cases than either conventional solvent flattening and histogram matching or a recent reciprocal-space solvent-flattening procedure [Terwilliger (1999 ?), Acta Cryst. D55, 1863–1871].
Ou, Qi; Fatehi, Shervin; Alguire, Ethan; Subotnik, Joseph E.; Shao, Yihan
2014-07-14
Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by noting that, for closely separated electronic states in the infinite basis limit, our final expression agrees exactly with the Chernyak-Mukamel expression (with transition densities from response theory). Finally, we also validate our approach empirically by analyzing the behavior of the derivative couplings around the T{sub 1}/T{sub 2} conical intersection of benzaldehyde.
Automating approximate Bayesian computation by local linear regression
Thornton, Kevin R
2009-01-01
computation by local linear regression Kevin R Thorntonof ABC based on using a linear regression to approximate theimplements the local linear-regression approach to ABC. The
The Numerical Approximation of Solutions of Partial Differential ...
2009-05-05
i.e., instead of thinking of the approximate solution as being linear between .... Consider the mildly nonlinear two-point boundary problem given by. ?(aux )x + c(
How to Solve Schroedinger Problems by Approximating the Potential Function
Ledoux, Veerle; Van Daele, Marnix
2010-09-30
We give a survey over the efforts in the direction of solving the Schroedinger equation by using piecewise approximations of the potential function. Two types of approximating potentials have been considered in the literature, that is piecewise constant and piecewise linear functions. For polynomials of higher degree the approximating problem is not so easy to integrate analytically. This obstacle can be circumvented by using a perturbative approach to construct the solution of the approximating problem, leading to the so-called piecewise perturbation methods (PPM). We discuss the construction of a PPM in its most convenient form for applications and show that different PPM versions (CPM,LPM) are in fact equivalent.
Approximation Algorithms for the Fault-Tolerant Facility Placement Problem
Yan, Li
2013-01-01
5.2 Algorithm ECHS with Ratio5.3 Algorithm EBGS with RatioFormulation 2.1.3 Approximation Algorithms . 2.1.4 Bifactor
ANALOG QUANTUM NEURON FOR FUNCTIONS APPROXIMATION A. EZHOV; A...
Office of Scientific and Technical Information (OSTI)
FOR FUNCTIONS APPROXIMATION A. EZHOV; A. KHROMOV; G. BERMAN 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; IMPLEMENTATION; NERVE CELLS; WAVEGUIDES We describe a system able...
Upgrading of biorenewables to high energy density fuels
Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. "" Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH
2010-12-07
According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.
Partial level density of the n-quasiparticle excitations in the nuclei of the 39< A <201 region
A. M. Sukhovoj; V. A. Khitrov
2005-12-16
Level density and radiative strength functions are obtained from the analysis of two-step cascades intensities following the thermal neutrons capture. The data on level density are approximated by the sum of the partial level densities corresponding to n quasiparticles excitation. The most probable values of the collective enhancement factor of the level density are found together with the thresholds of the next Cooper nucleons pair breaking. These data allow one to calculate the level density of practically any nucleus in given spin window in the framework of model concepts, taking into account all known nuclear excitation types. The presence of an approximation results discrepancy with theoretical statements specifies the necessity of rather essentially developing the level density models. It also indicates the possibilities to obtain the essentially new information on nucleon correlation functions of the excited nucleus from the experiment.
Adiabatic electronic flux density: a Born-Oppenheimer Broken Symmetry ansatz
Pohl, Vincent
2015-01-01
The Born-Oppenheimer approximation leads to the counterintuitive result of a vanishing electronic flux density upon vibrational dynamics in the electronic ground state. To circumvent this long known issue, we propose using pairwise anti-symmetrically translated vibronic densities to generate a symmetric electronic density that can be forced to satisfy the continuity equation approximately. The so-called Born-Oppenheimer broken symmetry ansatz yields all components of the flux density simultaneously while requiring only knowledge about the nuclear quantum dynamics on the electronic adiabatic ground state potential energy surface. The underlying minimization procedure is transparent and computationally inexpensive, and the solution can be computed from the standard output of any quantum chemistry program. Taylor series expansion reveals that the implicit electron dynamics originates from non-adiabatic coupling to the explicit Born-Oppenheimer nuclear dynamics. The new approach is applied to the ${\\rm H}_2^+$ mo...
Cosmic density and velocity fields in Lagrangian perturbation theory
Mikel Susperregi; Thomas Buchert
1997-08-04
A first- and second-order relation between cosmic density and peculiar-velocity fields is presented. The calculation is purely Lagrangian and it is derived using the second-order solutions of the Lagrange-Newton system obtained by Buchert & Ehlers. The procedure is applied to two particular solutions given generic initial conditions. In this approach, the continuity equation yields a relation between the over-density and peculiar-velocity fields that automatically satisfies Euler's equation because the orbits are derived from the Lagrange-Newton system. This scheme generalizes some results obtained by Nusser et al. (1991) in the context of the Zel'dovich approximation. As opposed to several other reconstruction schemes, in this approach it is not necessary to truncate the expansion of the Jacobian given by the continuity equation in order to calculate a first- or second-order expression for the density field. In these previous schemes, the density contrast given by (a) the continuity equation and (b) Euler's equation are mutually incompatible. This inconsistency arises as a consequence of an improper handling of Lagrangian and Eulerian coordinates in the analysis. Here, we take into account the fact that an exact calculation of the density is feasible in the Lagrangian picture and therefore an accurate and consistent description is obtained.
Jacek Dobaczewski Density functional theory and energy
Dobaczewski, Jacek
Jacek Dobaczewski Density functional theory and energy density functionals in nuclear physics Jacek UNEDFCollaboration,http://unedf.org/ Universal Nuclear Energy Density FunctionalUniversal Nuclear Energy Density in Poland per voivodship Energy density functional 245 647 Price voivodship functional 654 763 295 580
Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals
Vu, Kevin; Li, Li; Rupp, Matthias; Chen, Brandon F; Khelif, Tarek; Müller, Klaus-Robert; Burke, Kieron
2015-01-01
Accurate approximations to density functionals have recently been obtained via machine learning (ML). By applying ML to a simple function of one variable without any random sampling, we extract the qualitative dependence of errors on hyperparameters. We find universal features of the behavior in extreme limits, including both very small and very large length scales, and the noise-free limit. We show how such features arise in ML models of density functionals.
Density functional theory of freezing for soft interactions in two dimensions
Sven van Teeffelen; Christos N. Likos; Norman Hoffmann; Hartmut Löwen
2006-04-18
A density functional theory of two-dimensional freezing is presented for a soft interaction potential that scales as inverse cube of particle distance. This repulsive potential between parallel, induced dipoles is realized for paramagnetic colloids on an interface, which are additionally exposed to an external magnetic field. An extended modified weighted density approximation which includes correct triplet correlations in the liquid state is used. The theoretical prediction of the freezing transition is in good agreement with experimental and simulation data.
Approximate Dynamic Programming for Networks: Fluid Models and Constraint Reduction
Veatch, Michael H.
of approximating functions for the differential cost. The first contribution of this paper is identifying new or piece-wise quadratic. Fluid cost has been used to initialize the value iteration algorithm [5Approximate Dynamic Programming for Networks: Fluid Models and Constraint Reduction Michael H
USING THE LINEAR NOISE APPROXIMATION TO CHARACTERIZE MOLECULAR NOISE IN
Ingalls, Brian
USING THE LINEAR NOISE APPROXIMATION TO CHARACTERIZE MOLECULAR NOISE IN REACTION PATHWAYS Matthew Canada N2L 3G1 Abstract The Linear Noise Approximation offers an elegant analytic method to probe the effects of molecular noise on small-scale chemical reaction pathways by expanding the full chemical Master
Motivation and Outline Hatree-Fock Theory and KLI Approximation
Holzwarth, Natalie
Motivation and Outline Hatree-Fock Theory and KLI Approximation Frozen core orbital approximation March 24, 2011 Xiao Xu, N. A. W. Holzwarth PAW + HF & KLI #12;Motivation and Outline Hatree-Fock Theory of HF and KLI Conclusion Outline 1 Motivation of this work: Why? orbital dependent functionals + PAW 2
Transport approximations in partially diffusive media Guillaume Bal
Bal, Guillaume
Transport approximations in partially diffusive media Guillaume Bal Department of Applied Physics concerns the analysis of approximations of transport equations in diffusive media. Firstly, we consider a variational formulation for the first-order transport equation that has the correct diffusive behavior
PROJECT REPORT USING NEURAL NETWORKS FOR APPROXIMATE RADIOSITY FORM FACTOR
Anderson, Charles W.
PROJECT REPORT USING NEURAL NETWORKS FOR APPROXIMATE RADIOSITY FORM FACTOR COMPUTATION Submitted, between each pair of objects within the scene. This project report explores the use of neural networks.3 Approximation with Neural Networks : : : : : : : : : : : : : : : : : : : : : : : 2 1.4 Outline of Project Report
Tighter Bounds for Graph Steiner Tree Approximation Gabriel Robins
Zelikovsky, Alexander
and properties. In Section 3 we present our main algorithm, called k-LCA. The basic approximation result for k-LCA is proved in Section 4. In Sections 5 and 6 we prove an approximation ratio of the k-LCA algorithm in general graphs, and estimate the performance of the Iterated 1-Steiner and k-LCA heuristics in qu
Tutorial, GECCO'05, Washington D.C. Fitness Approximation
Yang, Shengxiang
1 Tutorial, GECCO'05, Washington D.C. Fitness Approximation in Evolutionary Computation Yaochu Jin Honda Research Institute Europe Khaled Rasheed University of Georgia Tutorial, GECCO'05, Washington D expensive fitness evaluations Tutorial, GECCO'05, Washington D.C. Fitness Approximation Methods · Problem
The Approximation of Nuclear Contaminant Transport in Porous Media
Douglas Jr., Jim
of a chain of radioactive waste products and to present the results of some typical simulationsThe Approximation of Nuclear Contaminant Transport in Porous Media Jim Douglas, Jr. #3; Chieh;ective and eÆcient numerical method for approximating the solution of equations that govern the transport
Technical Note Variational free energy and the Laplace approximation
Penny, Will
Technical Note Variational free energy and the Laplace approximation Karl Friston,a, Jérémie the variational free energy under the Laplace approximation, with a focus on accounting for additional model complexity induced by increasing the number of model parameters. This is relevant when using the free energy
Fast Vectorless Power Grid Verification Using an Approximate Inverse Technique
Najm, Farid N.
Fast Vectorless Power Grid Verification Using an Approximate Inverse Technique Nahi H. Abdul Ghani Department of ECE University of Toronto Toronto, Ontario, Canada f.najm@utoronto.ca ABSTRACT Power grid Aids General Terms Performance, Algorithms, Verification Keywords Power grid, voltage drop, approximate
Fresnel approximations for acoustic fields of rectangularly symmetric sources
Mast, T. Douglas
Fresnel approximations for acoustic fields of rectangularly symmetric sources T. Douglas Masta for determining the acoustic fields of rectangularly symmetric, baffled, time-harmonic sources under the Fresnel. The expressions presented are generalized to three different Fresnel approximations that correspond, respectively
Energy Content of Colliding Plane Waves using Approximate Noether Symmetries
M. Sharif; Saira Waheed
2011-09-19
This paper is devoted to study the energy content of colliding plane waves using approximate Noether symmetries. For this purpose, we use approximate Lie symmetry method of Lagrangian for differential equations. We formulate the first-order perturbed Lagrangian for colliding plane electromagnetic and gravitational waves. It is shown that in both cases, there does not exist
Approximate and Multipartite Quantum Correlation (Communication) Zhaohui Wei
Jain, Rahul
classical distributions or bipartite quantum states in the single-shot setting by Zhang (Proc. 3rd Innov that the cost to approximate a bipartite quantum state equals that to approximate its exact purifications, which the latter. We characterize the relationship between them by giving upper and lower bounds. 4
High-density fluid compositions
Sanders, D.C.
1981-09-29
Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.
Hollman, David S.; Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 ; Schaefer, Henry F.; Valeev, Edward F.
2014-02-14
A local density fitting scheme is considered in which atomic orbital (AO) products are approximated using only auxiliary AOs located on one of the nuclei in that product. The possibility of variational collapse to an unphysical “attractive electron” state that can affect such density fitting [P. Merlot, T. Kjærgaard, T. Helgaker, R. Lindh, F. Aquilante, S. Reine, and T. B. Pedersen, J. Comput. Chem. 34, 1486 (2013)] is alleviated by including atom-wise semidiagonal integrals exactly. Our approach leads to a significant decrease in the computational cost of density fitting for Hartree–Fock theory while still producing results with errors 2–5 times smaller than standard, nonlocal density fitting. Our method allows for large Hartree–Fock and density functional theory computations with exact exchange to be carried out efficiently on large molecules, which we demonstrate by benchmarking our method on 200 of the most widely used prescription drug molecules. Our new fitting scheme leads to smooth and artifact-free potential energy surfaces and the possibility of relatively simple analytic gradients.
Properties of the Boltzmann equation in the classical approximation
Tanji, Naoto; Epelbaum, Thomas; Gelis, Francois; Wu, Bin
2014-12-30
We study the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since one has also access to the non-approximated result for comparison.
Properties of the Boltzmann equation in the classical approximation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Epelbaum, Thomas; Gelis, François; Tanji, Naoto; Wu, Bin
2014-12-30
We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since onemore »has also access to the non-approximated result for comparison.« less
Time Dependent Density Functional Theory An introduction
Botti, Silvana
Time Dependent Density Functional Theory An introduction Francesco Sottile LSI, Ecole Polytechnique (ETSF) Time Dependent Density Functional Theory Palaiseau, 7 February 2012 1 / 32 #12;Outline 1 Frontiers 4 Perspectives and Resources Francesco Sottile (ETSF) Time Dependent Density Functional Theory
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
Evolution of the angular momentum of protogalaxies from tidal torques: Zel'dovich approximation
Paolo Catelan; Tom Theuns
1996-04-15
The growth of the angular momentum L of protogalaxies induced by tidal torques is reconsidered within the Zel'dovich approximation. We obtain a general expression for the ensemble expectation value of the square of L in terms of the first and second invariant of the inertia tensor of the Lagrangian volume enclosing the protoobject's collapsing mass. We then specialize the formalism to the particular case in which this volume is centered on a peak of the smoothed Gaussian density field and approximated by an isodensity ellipsoid. The result is the appropriate analytical estimate for the rms angular momentum of peaks to be compared against simulations that make use of the Hoffman-Ribak algorithm to set up a constrained density field that contains a peak with given shape. Extending the work of Heavens & Peacock, we calculate the joint probability distribution function for several spin parameters and peak mass M using the distribution of peak shapes, for different initial power spectra. The values of observed specific angular momentum versus mass are well fitted by our theoretical isoprobability contours. In contrast, the observed lower values for the specific angular momentum for ellipticals of the same mass cannot be accounted for within our linear regime investigation, highlighting the importance of strongly non-linear phenomena to explain the spin of such objects.
About density functional theory interpretation
Kirill Koshelev
2015-05-28
Two forms of relativistic density functional are derived from Dirac equation. Based on their structure analysis model of split electron is proposed. In this model electric charge and mass of electron behave like two point-like particles. It is shown that two electrons obeying this model cannot occupy the same quantum state. Empirical verification of the model is discussed.
Longitudinal polarized parton densities updated
Leader, Elliot; Sidorov, Aleksander V.; Stamenov, Dimiter B. [Imperial College, Prince Consort Road, London SW7 2BW (United Kingdom); Bogoliubov Theoretical Laboratory Joint Institute for Nuclear Research 141980 Dubna (Russian Federation); Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences Blvd. Tsarigradsko Chaussee 72, Sofia 1784 (Bulgaria)
2006-02-01
We have reanalyzed the world data on inclusive polarized DIS, in both NLO and LO QCD, including the new HERMES and COMPASS data. The updated NLO polarized densities are given in both the MS and JET schemes. The impact of the new data on the results is discussed.
Higher-degree linear approximations of nonlinear systems
Karahan, S.
1989-01-01
In this dissertation, the author develops a new method for obtaining higher degree linear approximations of nonlinear control systems. The standard approach in the analysis and synthesis of nonlinear systems is a first order approximation by a linear model. This is usually performed by obtaining a series expansion of the system at some nominal operating point and retaining only the first degree terms in the series. The accuracy of this approximation depends on how far the system moves away from the normal point, and on the relative magnitudes of the higher degree terms in the series expansion. The approximation is achieved by finding an appropriate nonlinear coordinate transformation-feedback pair to perform the higher degree linearization. With the proposed method, one can improve the accuracy of the approximation up to arbitrarily higher degrees, provided certain solvability conditions are satisfied. The Hunt-Su linearizability theorem makes these conditions precise. This approach is similar to Poincare's Normal Form Theorem in formulation, but different in its solution method. After some mathematical background the author derives a set of equations (called the Homological Equations). A solution to this system of linear equations is equivalent to the solution to the problem of approximate linearization. However, it is generally not possible to solve the system of equations exactly. He outlines a method for systematically finding approximate solutions to these equations using singular value decomposition, while minimizing an error with respect to some defined norm.
Yang, Yang [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States)] [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Aggelen, Helen van [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States) [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Inorganic and Physical Chemistry, Ghent University, 9000 Ghent (Belgium); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)] [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)
2013-12-14
Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.
Shulenburger, Luke; Desjarlais, M P
2015-01-01
Motivated by the disagreement between recent diffusion Monte Carlo calculations and experiments on the phase transition pressure between the ambient and beta-Sn phases of silicon, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an oppor- tunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation. After removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.
Harsij, Zeynab Mirza, Behrouz
2014-12-15
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.
Improved approximate formulas for flux from cylindrical and rectangular sources
Wallace, O.J.; Bokharee, S.A.
1993-03-01
This report provides two new approximate formulas for the flux at detector points outside the radial and axial extensions of a homogeneous cylindrical source and improved approximate formulas for the flux at points opposite rectangular surface sources. These formulas extend the range of geometries for which analytic approximations may be used by shield design engineers to make rapid scoping studies and check more extensive calculations for reasonableness. These formulas can be used to support skeptical, independent evaluations and are also valuable teaching tools for introducing shield designers to complex shield analyses.
Density waves in the shearing sheet I. Swing amplification
B. Fuchs
2001-03-02
The shearing sheet model of a galactic disk is studied anew. The theoretical description of its dynamics is based on three building blocks: Stellar orbits, which are described here in epicyclic approximation, the collisionless Boltzmann equation determining the distribution function of stars in phase space, and the Poisson equation in order to take account of the self-gravity of the disk. Using these tools I develop a new formalism to describe perturbations of the shearing sheet. Applying this to the unbounded shearing sheet model I demonstrate again how the disturbances of the disk evolve always into `swing amplified' density waves, i.e. spiral-arm like, shearing density enhancements, which grow and decay while the wave crests swing by from leading to trailing orientation. Several examples are given how such `swing amplification' events are incited in the shearing sheet.
Investigation of physical processes limiting plasma density in H-mode on DIII-D
Maingi, R.; Mahdavi, M.A.; Jernigan, T.C.
1996-12-01
A series of experiments was conducted on the DIII-D tokamak to investigate the physical processes which limit density in high confinement mode (H-mode) discharges. The typical H-mode to low confinement mode (L-mode) transition limit at high density near the empirical Greenwald density limit was avoided by divertor pumping, which reduced divertor neutral pressure and prevented formation of a high density, intense radiation zone (MARFE) near the X-point. It was determined that the density decay time after pellet injection was independent of density relative to the Greenwald limit and increased non-linearly with the plasma current. Magnetohydrodynamic (MHD) activity in pellet-fueled plasmas was observed at all power levels, and often caused unacceptable confinement degradation, except when the neutral beam injected (NBI) power was {le} 3 MW. Formation of MARFEs on closed field lines was avoided with low safety factor (q) operation but was observed at high q, qualitatively consistent with theory. By using pellet fueling and optimizing discharge parameters to avoid each of these limits, an operational space was accessed in which density {approximately} 1.5 {times} Greenwald limit was achieved for 600 ms, and good H-mode confinement was maintained for 300 ms of the density flattop. More significantly, the density was successfully increased to the limit where a central radiative collapse was observed, the most fundamental density limit in tokamaks.
Progress at the interface of wave-function and density-functional theories
Gidopoulos, Nikitas I.
2011-04-15
The Kohn-Sham (KS) potential of density-functional theory (DFT) emerges as the minimizing effective potential in a variational scheme that does not involve fixing the unknown single-electron density. Using Rayleigh Schroedinger (RS) perturbation theory (PT), we construct ab initio approximations for the energy difference, the minimization of which determines the KS potential directly - thereby bypassing DFT's traditional algorithm to search for the density that minimizes the total energy. From second-order RS PT, we obtain variationally stable energy differences to be minimized, solving the severe problem of variational collapse of orbital-dependent exchange-correlation functionals based on second-order RS PT.
Xi Yanbin; Liu Yue [MOE Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2012-07-15
Considering different typical electron density profiles, a multi slab approximation model is built up to study the power absorption of broadband (0.75-30 GHz) electromagnetic waves in a partially ionized nonuniform magnetized plasma layer. Based on the model, the power absorption spectra for six cases are numerically calculated and analyzed. It is shown that the absorption strongly depends on the electron density fluctuant profile, the background electron number density, and the collision frequency. A potential optimum profile is also analyzed and studied with some particular parameters.
The local potential approximation in the background field formalism
I. Hamzaan Bridle; Juergen A. Dietz; Tim R. Morris
2014-03-20
Working within the familiar local potential approximation, and concentrating on the example of a single scalar field in three dimensions, we show that the commonly used approximation method of identifying the total and background fields, leads to pathologies in the resulting fixed point structure and the associated spaces of eigenoperators. We then show how a consistent treatment of the background field through the corresponding modified shift Ward identity, can cure these pathologies, restoring universality of physical quantities with respect to the choice of dependence on the background field, even within the local potential approximation. Along the way we point out similarities to what has been previously found in the f(R) approximation in asymptotic safety for gravity.
The WKB approximation for a linear potential and ceiling
Zapata, Todd Austin
2009-05-15
The physical problem this thesis deals with is a quantum system with linear potential driving a particle away from a ceiling (impenetrable barrier). This thesis will construct the WKB approximation of the quantum mechanical propagator...
Mean Field Variational Approximations in Continuous-Time Markov Processes
Friedman, Nir
Mean Field Variational Approximations in Continuous-Time Markov Processes A thesis submitted Processes . . . . . . . . . . . . . . . . . . . 18 2.3 Continuous Time Markov Processes-component Representation - Continuous Time Bayesian Networks . 24 2.3.3 Inference in Continuous Time Markov Processes
Numerical Approximations of Stochastic Optimal Stopping and Control Problems
Siska, David
2007-01-01
We study numerical approximations for the payoff function of the stochastic optimal stopping and control problem. It is known that the payoff function of the optimal stopping and control problem corresponds to the solution ...
Approximate translation : media, narrative, and experience in urban design
Crisman, Jonathan
2013-01-01
Approximate translation is developed as a design process through which the place-embedded history of an urban environment can be understood, allowing for better design and intervention in that urban environment. Generally, ...
Tractability through approximation : a study of two discrete optimization problems
Farahat, Amr, 1973-
2004-01-01
(cont.) algorithm, at one extreme, and complete enumeration, at the other extreme. We derive worst-case approximation guarantees on the solution produced by such an algorithm for matroids. We then define a continuous ...
Queueing systems subject to random server failures: an approximation
Matis, Timothy
1998-01-01
research into finding exact or approximate methods that adjust key performance measures of a system to reflect server failures. Many of the methods that have been developed suffer either from a high degree of computational complexity or from tight...
APPROXIMATING SPECTRAL INVARIANTS OF HARPER OPERATORS ON GRAPHS II
Schick, Thomas
APPROXIMATING SPECTRAL INVARIANTS OF HARPER OPERATORS ON GRAPHS II VARGHESE MATHAI, THOMAS SCHICK;2 VARGHESE MATHAI, THOMAS SCHICK, AND STUART YATES subset E+ of these edges in which each combinatorial edge
Approximate dynamic programming with applications in multi-agent systems
Valenti, Mario J. (Mario James), 1976-
2007-01-01
This thesis presents the development and implementation of approximate dynamic programming methods used to manage multi-agent systems. The purpose of this thesis is to develop an architectural framework and theoretical ...
Corrections to Thomas-Fermi Densities at Turning Points and Beyond Raphael F. Ribeiro,1
Burke, Kieron
Corrections to Thomas-Fermi Densities at Turning Points and Beyond Raphael F. Ribeiro,1 Donghyung Lee,2 Attila Cangi,3 Peter Elliott,3 and Kieron Burke1 1 Department of Chemistry, University corrections to Thomas-Fermi theory, involve neither sums nor derivatives, are spatially uniform approximations
A Density Functional Theory Study of Hydrogen Adsorption in MOF-5 Tim Mueller and Gerbrand Ceder*
Ceder, Gerbrand
. The effect of the framework on the physical structure and electronic structure of the organic linker initio molecular dynamics in the generalized gradient approximation to density functional theory, and calculations indicate that the sites with the strongest interaction with hydrogen are located near the Zn4O
Density Functional Theory (DFT) Rob Parrish
Sherrill, David
· References 2 #12;Wavefunction Approach 3 Hydrogen 421 Wavefunction at Density Isosurface. Really hard to find Easy to do this Why? Because of Hermitian Operators: Kinetic Energy Density: #12;Density Functional Approach 4 Hydrogen 421 Density (Why is it grayscale?) A bit less obvious Probably easier to find
Updated Axion CDM energy density
Ji-Haeng Huh
2008-10-08
We update cosmological bound on axion model. The contribution from the anharmonic effect and the newly introduced initial overshoot correction are considered. We present an explicit formula for the axion relic density in terms of the QCD scale Lambda_{QCD}, the current quark masses m_q's and the Peccei-Quinn scale F_a, including firstly introduced 1.85 factor which is from the initial overshoot.
Approximate Description of the Mandelbrot Set. Thermodynamic Analogy
O. B. Isaeva; S. P. Kuznetsov
2005-04-29
Analogy between an approximate version of Feigenbaum renormalization group analysis in complex domain and the phase transition theory of Yang-Lee (based on consideration of formally complexified thermodynamic values) is discussed. It is shown that the Julia sets of the renormalization transformation correspond to the approximation of Mandelbrot set of the original map. New aspects of analogy between the theory of dynamical systems and the phase transition theory are uncovered.
Resonant-state expansion Born Approximation applied to Schrodinger's Equation
Doost, M B
2015-01-01
The RSE Born Approximation is a new scattering formula in Physics, it allows the calculation of strong scattering via the Fourier transform of the scattering potential and Resonant-states. In this paper I apply the RSE Born Approximation to Schr\\"odinger's Equation. The resonant-states of the system can be calculated using the recently discovered RSE perturbation theory and normalised correctly to appear in spectral Green's functions via the flux volume normalisation.
Mean field approximation for noisy delay coupled excitable neurons
Nikola Buric; Dragana Rankovic; Kristina Todorovic; Nebojsa Vasovic
2010-03-26
Mean field approximation of a large collection of FitzHugh-Nagumo excitable neurons with noise and all-to-all coupling with explicit time-delays, modelled by $N\\gg 1$ stochastic delay-differential equations is derived. The resulting approximation contains only two deterministic delay-differential equations but provides excellent predictions concerning the stability and bifurcations of the averaged global variables of the exact large system.
Lykissa, Iliana; Li, Shu-Yi; Granqvist, Claes G.; Niklasson, Gunnar A.; Ramzan, Muhammad; Chakraborty, Sudip; Ahuja, Rajeev
2014-05-14
Thin films of V{sub 2}O{sub 5} were prepared by sputter deposition onto transparent and electrically conducting substrates and were found to be X-ray amorphous. Their electrochemical density of states was determined by chronopotentiometry and displayed a pronounced low-energy peak followed by an almost featureless contribution at higher energies. These results were compared with density functional theory calculations for amorphous V{sub 2}O{sub 5}. Significant similarities were found between measured data and computations; specifically, the experimental low-energy peak corresponds to a split-off part of the conduction band apparent in the computations. Furthermore, the calculations approximately reproduce the experimental band gap observed in optical measurements.
Rapid chain tracing of polypeptide backbones in electron-density maps
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2010-03-01
A method for rapid chain tracing of polypeptide backbones at moderate resolution is presented. A method for the rapid tracing of polypeptide backbones has been developed. The method creates an approximate chain tracing that is useful for visual evaluation of whether a structure has been solved and for use in scoring the quality of electron-density maps. The essence of the method is to (i) sample candidate C{sup ?} positions at spacings of approximately 0.6 Å along ridgelines of high electron density, (ii) list all possible nonapeptides that satisfy simple geometric and density criteria using these candidate C{sup ?} positions, (iii) score the nonapeptides and choose the highest scoring ones, and (iv) find the longest chains that can be made by connecting nonamers. An indexing and storage scheme that allows a single calculation of most distances and density values is used to speed up the process. The method was applied to 42 density-modified electron-density maps at resolutions from 1.5 to 3.8 Å. A total of 21 428 residues in these maps were traced in 24 CPU min with an overall r.m.s.d. of 1.61 Å for C{sup ?} atoms compared with the known refined structures. The method appears to be suitable for rapid evaluation of electron-density map quality.
Density variations and anomalies in palladium compacts
Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.
1992-05-14
Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.
Density variations and anomalies in palladium compacts
Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.
1992-05-14
Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.
Probability distribution of the vacuum energy density
Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen
2010-12-15
As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.
Relativistic Mean-Field Theory and the High-Density Nuclear Equation of State
Horst Mueller; Brian D. Serot
1996-03-22
The properties of high-density nuclear and neutron matter are studied using a relativistic mean-field approximation to the nuclear matter energy functional. Based on ideas of effective field theory, nonlinear interactions between the fields are introduced to parametrize the density dependence of the energy functional. Various types of nonlinearities involving scalar-isoscalar ($\\sigma$), vector-isoscalar ($\\omega$), and vector-isovector ($\\rho$) fields are studied. After calibrating the model parameters at equilibrium nuclear matter density, the model and parameter dependence of the resulting equation of state is examined in the neutron-rich and high-density regime. It is possible to build different models that reproduce the same observed properties at normal nuclear densities, but which yield maximum neutron star masses that differ by more than one solar mass. Implications for the existence of kaon condensates or quark cores in neutron stars are discussed.
Unequal density effect on static structure factor of coupled electron layers
Saini, L. K. Nayak, Mukesh G.
2014-04-24
In order to understand the ordered phase, if any, in a real coupled electron layers (CEL), there is a need to take into account the effect of unequal layer density. Such phase is confirmed by a strong peak in a static structure factor. With the aid of quantum/dynamical version of Singwi, Tosi, Land and Sjölander (so-called qSTLS) approximation, we have calculated the intra- and interlayer static structure factors, S{sub ll}(q) and S{sub 12}(q), over a wide range of density parameter r{sub sl} and interlayer spacing d. In our present study, the sharp peak in S{sub 22}(q) has been found at critical density with sufficiently lower interlayer spacing. Further, to find the resultant effect of unequal density on intra- and interlayer static structure factors, we have compared our results with that of the recent CEL system with equal layer density and isolated single electron layer.
Marushka, Viktor; Zabeida, Oleg Martinu, Ludvik
2014-11-01
The uniformity of ion density is critical for applications relying on the ion assisted deposition technique for the fabrication of the high quality thin films. The authors propose and describe here a method allowing one to calculate the ion density distribution on spherical substrate holders under stationary and rotating conditions for different positions of the ion source. The ion beam shape was approximated by a cos{sup n} function, and the ion current density was represented by a function inversely proportional to the distance from the ion source in accordance with our experimental results. As an example, a calculation of the current density distribution on the spherical cap substrate was performed for a broad beam ion source operated with an anode current of 3?A. The authors propose an approach for process optimization with respect to the ion source position and its inclination, in terms of uniformity and absolute value of the ion current density.
Density functional theory of freezing: Analysis of crystal density
Laird, Brian Bostian; McCoy, John D.; Haymet, A. D. J.
1987-09-01
the natural variables are temperature, chemical potential, and volume. The pressures are set equal by varying the liquid density until the grand thermodynamic potential, flO = - pV /kT, of the solid phase equals that of the liquid phase. It should... with temperature T, volume V, and chemical potential J.L. The particles interact via a potential energy U(rl, ... ,rn ) and feel an external single particle potential ifJ (r). Defining a dimen sionless single particle effective potential by u (r) = pJ.L - pif...
Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian
Blum, Michael G. B.
Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation or not. In this paper, I incorporate Approximate Bayesian Computation into a local Bayesian regression Computation, evidence approximation, empirical Bayes, Bayesian local regression 1 Introduction Approximate
Dependence of polar hole density on magnetic and solar conditions
Hoegy, W.R.; Grebowsky, J.M. (NASA Goddard Space Flight Center, Greenbelt, MD (USA))
1991-04-01
The dependence of electron density in the polar F region ionization hole on solar activity, universal time (UT), magnetic activity, season, and hemisphere is studied using data from the Langmuir probes on Atmosphere Explorer C and Dynamics Explorer 2. The AE-C data were obtained during solar minimum when the 3-month average 10.7-cm solar flux index varied from 70 to 140; the DE 2 data were obtained near solar maximum when 10.7-cm solar flux index varied from 120 to 220. The polar hole is a region on the nightside of the polar cap where reduced ionization exists because of the long transport time of ionization from the dayside across the polar cap. The behavior of this region as a function of 10.7-cm solar flux (F10.7), UT, and Kp is statistically modeled for equinox, summer, and winter conditions for each hemisphere separately. The strongest dependencies are observed in F10.7 and UT; the Kp dependence is weak because it poorly represents the complexities of convection across the polar cap. A strong hemispherical difference due to the offset of the magnetic poles from the Earth's rotation axis is observed in the UT dependence of the ionization hole: there is a density minimum at about 20.3 hours UT in the south and at about 4.8 hours UT in the north; the minimum to maximum UT density variation is about a factor of 8.9 in the south and about a factor of 2.1 in the north. There is a seasonal variation in the dependence of ion density (N{sub i}) on solar flux (F10.7). Use of the relationship (N{sub i}{approximately}F10.7{sup D}) yields values of D of approximately unity (1.) in the summer polar hole and about 2.1 during equinox. There is an overall asymmetry in the density level between hemispheres; it was found that the winter hole density is about a factor of 10 greater in the north than in the south. The Utah State University time dependent ionosphere model gives similar UT behavior to that found in the AE-C and DE 2 data.
Rock Density | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|Gas and Electric JumpDensity Jump to:
Ensemble density variational methods with self- and ghost-interaction-corrected functionals
Pastorczak, Ewa; Pernal, Katarzyna
2014-05-14
Ensemble density functional theory (DFT) offers a way of predicting excited-states energies of atomic and molecular systems without referring to a density response function. Despite a significant theoretical work, practical applications of the proposed approximations have been scarce and they do not allow for a fair judgement of the potential usefulness of ensemble DFT with available functionals. In the paper, we investigate two forms of ensemble density functionals formulated within ensemble DFT framework: the Gross, Oliveira, and Kohn (GOK) functional proposed by Gross et al. [Phys. Rev. A 37, 2809 (1988)] alongside the orbital-dependent eDFT form of the functional introduced by Nagy [J. Phys. B 34, 2363 (2001)] (the acronym eDFT proposed in analogy to eHF – ensemble Hartree-Fock method). Local and semi-local ground-state density functionals are employed in both approaches. Approximate ensemble density functionals contain not only spurious self-interaction but also the so-called ghost-interaction which has no counterpart in the ground-state DFT. We propose how to correct the GOK functional for both kinds of interactions in approximations that go beyond the exact-exchange functional. Numerical applications lead to a conclusion that functionals free of the ghost-interaction by construction, i.e., eDFT, yield much more reliable results than approximate self- and ghost-interaction-corrected GOK functional. Additionally, local density functional corrected for self-interaction employed in the eDFT framework yields excitations energies of the accuracy comparable to that of the uncorrected semi-local eDFT functional.
Variational principles with Padé approximants for tearing mode analysis
Cole, Andrew J.; Finn, John M.
2014-03-15
Tearing modes occur in several distinct physical regimes, and it is often important to compute the inner layer response for these modes with various effects. There is a need for an approximate and efficient method of solving the inner layer equations in all these regimes. In this paper, we introduce a method of solving the inner layer equations based on using a variational principle with Padé approximants. For all the regimes considered, the main layer equations to be solved are inhomogeneous, and Padé approximants give a convenient and efficient method of satisfying the correct asymptotic behavior at the edge of the layer. Results using this variational principle—Padé approximant method in three of these regimes is presented. These regimes are the constant-? resistive-inertial (RI) regime, the constant-? viscoresistive regime, and the non-constant-? inviscid tearing regime. The last regime includes the constant-? RI regime and the inertial regime. The results show that reasonable accuracy can be obtained very efficiently with Padé approximants having a small number of parameters.
Electronic Structure via Potential Functional Approximations Attila Cangi,1
Burke, Kieron
Elliott,2 Kieron Burke,1 and E. K. U. Gross3 1 Department of Chemistry, University of California, 1102 of density-functional theory (DFT), suggested by Thomas [1] and Fermi [2] (TF) and made formally exact
SHOCK EMERGENCE IN SUPERNOVAE: LIMITING CASES AND ACCURATE APPROXIMATIONS
Ro, Stephen; Matzner, Christopher D.
2013-08-10
We examine the dynamics of accelerating normal shocks in stratified planar atmospheres, providing accurate fitting formulae for the scaling index relating shock velocity to the initial density and for the post-shock acceleration factor as functions of the polytropic and adiabatic indices which parameterize the problem. In the limit of a uniform initial atmosphere, there are analytical formulae for these quantities. In the opposite limit of a very steep density gradient, the solutions match the outcome of shock acceleration in exponential atmospheres.
Fourth-post-Newtonian-exact approximation to General Relativity
David Brizuela; Gerhard Schaefer
2010-04-12
An approximation to General Relativity is presented that agrees with the Einstein field equations up to and including the fourth post-Newtonian (PN) order. This approximation is formulated in a fully constrained scheme: all involved equations are explicitly elliptic except the wave equation that describes the two independent degrees of freedom of the gravitational field. The formalism covers naturally the conformal-flat-condition (CFC) approach by Isenberg, Wilson, and Mathews and the improved second PN-order exact approach CFC+. For stationary configurations, like Kerr black holes, agreement with General Relativity is achieved even through 5PN order. In addition, a particularly interesting 2PN-exact waveless approximation is analyzed in detail, which results from imposing more restrictive conditions. The proposed scheme can be considered as a further development on the waveless approach suggested by Schaefer and Gopakumar [Phys. Rev. D {\\bf 69}, 021501 (2004)].
Trigonometric Pade approximants for functions with regularly decreasing Fourier coefficients
Labych, Yuliya A; Starovoitov, Alexander P [Gomel State University, Gomel (Belarus)
2009-08-31
Sufficient conditions describing the regular decrease of the coefficients of a Fourier series f(x)=a{sub 0}/2 + {sigma} a{sub n} cos kx are found which ensure that the trigonometric Pade approximants {pi}{sup t}{sub n,m}(x;f) converge to the function f in the uniform norm at a rate which coincides asymptotically with the highest possible one. The results obtained are applied to problems dealing with finding sharp constants for rational approximations. Bibliography: 31 titles.
L^p Bernstein Inequalities and Radial Basis Function Approximation
Ward, John P.
2012-10-19
are bounded in terms of certain measurements of the set X. The error of approximation will typically be given in terms of the ll distance hX = sup x2Rd inf 2X jjx jj2 ; which measures how far a point in Rd can be from X, and the stability of the ap... will typically be restricted to sets X for which hX is comparable to qX , and sets for which the mesh ratio X := hX=qX is bounded by a constant will be called quasi-uniform. In this paper, we will only consider approximation spaces SX( ) where X is quasi...
On the approximation of crack shapes found during inservice inspection
Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others
1997-04-01
This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component.
DENSITY OF STATES CALCULATIONS FOR CARBON
Adler, Joan
DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES EDUARDO WARSZAWSKI #12;#12;DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES Research Thesis Submitted in Partial;#12;Contents Abstract xiii 1 Introduction 1 1.1 Carbon allotropes
Low density expansion for Lyapunov exponents
Hermann Schulz-Baldes
2006-07-12
In some quasi-one-dimensional weakly disordered media, impurities are large and rare rather than small and dense. For an Anderson model with a low density of strong impurities, a perturbation theory in the impurity density is developed for the Lyapunov exponent and the density of states. The Lyapunov exponent grows linearly with the density. Anomalies of the Kappus-Wegner type appear for all rational quasi-momenta even in lowest order perturbation theory.
Oxides having high energy densities
Ceder, Gerbrand; Kang, Kisuk
2013-09-10
Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.
Low-Density Attack Revisited Tetsuya Izu
International Association for Cryptologic Research (IACR)
Low-Density Attack Revisited Tetsuya Izu Jun Kogure Takeshi Koshiba Takeshi Shimoyama Secure The low-density attack proposed by Lagarias and Odlyzko is a powerful algorithm against the subset sum, densities of the subset sum problems should be higher than 0.9408... in order to avoid the low
Ultimate Energy Densities for Electromagnetic Pulses
Mankei Tsang
2008-03-06
The ultimate electric and magnetic energy densities that can be attained by bandlimited electromagnetic pulses in free space are calculated using an ab initio quantized treatment, and the quantum states of electromagnetic fields that achieve the ultimate energy densities are derived. The ultimate energy densities also provide an experimentally accessible metric for the degree of localization of polychromatic photons.
Approximations of very weak solutions to boundary-value problems.
Berggren, Martin Olof
2003-03-01
Standard weak solutions to the Poisson problem on a bounded domain have square-integrable derivatives, which limits the admissible regularity of inhomogeneous data. The concept of solution may be further weakened in order to define solutions when data is rough, such as for inhomogeneous Dirichlet data that is only square-integrable over the boundary. Such very weak solutions satisfy a nonstandard variational form (u, v) = G(v). A Galerkin approximation combined with an approximation of the right-hand side G defines a finite-element approximation of the very weak solution. Applying conforming linear elements leads to a discrete solution equivalent to the text-book finite-element solution to the Poisson problem in which the boundary data is approximated by L{sub 2}-projections. The L{sub 2} convergence rate of the discrete solution is O(h{sub s}) for some s {element_of} (0,1/2) that depends on the shape of the domain, asserting a polygonal (two-dimensional) or polyhedral (three-dimensional) domain without slits and (only) square-integrable boundary data.
APPROXIMATION OF A TWOPHASE CONTINUOUS CASTING STEFAN PROBLEM
APPROXIMATION OF A TWOPHASE CONTINUOUS CASTING STEFAN PROBLEM Zhiming Chen \\Lambda Lishang Jiang y Abstract. The continuous casting Stefan problem is a mathematical model describing the solidification with convection of a material being cast continuously with a prescribed velocity. We propose a practical piecewise
Accelerating Search of Approximate Match on Large Protein Sequence Databases
Wang, Wei
of supporting indexed search on large biological sequence databases since the construction cost of the index Yang 2 , Yi Xia 3 , Philip Yu 4 Keywords: protein sequence index, approximate match. Due. Building an appropriate index structure is one of the possibilities to achieve such a goal, which
APPROXIMATION THEORY OF OUTPUT STATISTICS Dept. Information Systems
Verdú, Sergio
. In order to generate a ran- dom process we assume that a primary random source with an equiprobableAPPROXIMATION THEORY OF OUTPUT STATISTICS Te Sun Han Dept. Information Systems Senshu University-length) source coding rate of any finite-alphabet source, and a strong converse of the identijication coding
Expected Approximation Guarantees for the Demand Matching Problem
Boucher, Christina
Expected Approximation Guarantees for the Demand Matching Problem C. Boucher D. Loker September 2006 Abstract The objective of the demand matching problem is to obtain the subset M of edges which if for each vertex v the total demand of edges in M incident to v is at most bv. In the case where each
Approximability of Partitioning Graphs with Supply and Demand
Demaine, Erik
Approximability of Partitioning Graphs with Supply and Demand Takehiro Ito a,, Erik D. Demaine b vertex or a demand vertex and is assigned a positive real number, called the supply or the demand. Each demand vertex can receive "power" from at most one supply vertex through edges in G. One thus wishes
Approximability of Partitioning Graphs with Supply and Demand
Demaine, Erik
Approximability of Partitioning Graphs with Supply and Demand (Extended Abstract) Takehiro Ito1 vertex or a demand vertex and is assigned a positive real number, called the supply or the demand. Each demand vertex can receive "power" from at most one supply vertex through edges in G. One thus wishes
Approximability of Partitioning Graphs with Supply and Demand
Demaine, Erik
Approximability of Partitioning Graphs with Supply and Demand (Extended Abstract) Takehiro Ito 1 vertex or a demand vertex and is assigned a positive real number, called the supply or the demand. Each demand vertex can receive ``power'' from at most one supply vertex through edges in G. One thus wishes
New approximate radial wave functions for power-law potentials
Vladimir Kudryashov
2007-09-26
Radial wave functions for power-law potentials are approximated with the help of power-law substitution and explicit summation of the leading constituent WKB series. Our approach reproduces the correct behavior of the wave functions at the origin, at the turning points and far away from the turning points
A new shallow approximation for tridimensional non-isothermal viscoplastic
Saramito, Pierre
. The risk assessments for volcanic lava flow pose a difficult challenge to numerical methods. Indeed approximated by an autoadaptive finite element method, based on the Rheolef C++ library, allowing to track with non-isothermal experimental measurements for a silicone oil dome. Next, the December 2010 eruption
A Study of Approximate Data Management Techniques for Sensor Networks
Martin, Ralph R.
the monitoring operation of sensor nodes by efficiently using their limited energy, bandwidth and computation. The network can therefore be treated as a distributed sensor data management system. Sensor networks differA Study of Approximate Data Management Techniques for Sensor Networks Adonis Skordylis, Niki
Approximate bisimulation for a class of stochastic hybrid systems
Pappas, George J.
, target tracking, robotics, and power systems [35]. The field of stochastic hybrid systems is a veryApproximate bisimulation for a class of stochastic hybrid systems (Invited Paper) Agung Julius of stochastic hybrid systems, namely, the jump linear stochastic systems (JLSS). The idea is based
Approximate Minimum-Energy Multicasting in Wireless Ad Hoc Networks
Liang, Weifa
Approximate Minimum-Energy Multicasting in Wireless Ad Hoc Networks Weifa Liang, Senior Member, IEEE Abstract--A wireless ad hoc network consists of mobile nodes that are equipped with energy on energy conservation in wireless ad hoc networks have been conducted. For example, energy efficient
Aqua: A Fast Decision Support System Using Approximate Query Answers
Gibbons, Phillip B.
commercial relational DBMS. Aqua precomputes synopses (special sta- tistical summaries) of the original data and stores them in the DBMS. It provides approximate an- swers (with quality guarantees) by rewriting on top of any SQL- compliant DBMS managing a data warehouse. Aqua pre- computes statistical summaries
Approximating many-body induction to efficiently describe molecular liquids
Herbert, John
on the structure and solvation dynamics of the excess electron (in the ground state) but does have a large impact as the structures and properties of molecular systems. This study focuses on approximating many-body electronic methods in order to allow "on-the-fly" energy and force evaluations in dynamical calculations
Approximating Minimum-Power Degree and Connectivity Problems
Kortsarz, Guy
. The power con- sumption of a station determines its transmission range, and thus also the stations it can. Assigning power levels to the stations (nodes) determines the resulting communi- cation network. ConverselyApproximating Minimum-Power Degree and Connectivity Problems Guy Kortsarz Vahab S. Mirrokni Zeev
Dynamic Adaptive Search Based Software Engineering Needs Fast Approximate Metrics
Harman, Mark
1 Dynamic Adaptive Search Based Software Engineering Needs Fast Approximate Metrics Mark Harman. University College Dublin, Ireland. Abstract--Search Based Software Engineering (SBSE) uses fitness functions to guide an automated search for solutions to challenging software engineering problems. The fitness
Novel approximations for inference and learning in nonlinear dynamical systems
Heskes, Tom
Novel approximations for inference and learning in nonlinear dynamical systems Alexander Ypma #3 from marketing research. 1 Introduction Many real-world systems are nonlinear, dynamical and stochastic in nature. Inference and learning of nonlinear system models with hidden dynamics is a diÆcult task, which
Exploiting Correlated Keywords to Improve Approximate Information Filtering
Tryfonopoulos, Christos
, Christos Tryfonopoulos, and Gerhard Weikum Databases and Information Systems Department Max-Planck Institut- scribe to information sources and be notified whenever new documents of interest are published. In approximate infor- mation filtering only selected information sources, that are likely to publish documents
Approximating Radon measures on first--countable compact spaces
Plebanek, Grzegorz
Approximating Radon measures on first--countable compact spaces Grzegorz Plebanek (Wroc/law) Abstract The assertion every Radon measure defined on a first--countable compact space is uniformly regular under CH. In this note we consider some properties of finite Radon measures defined on compact spaces
Approximation in Mechanism Design By JASON D. HARTLINE
Hartline, Jason D.
Approximation in Mechanism Design By JASON D. HARTLINE A mechanism gives a mapping between will arise in the equilibrium of selfish agent play. Mechanism design then considers the optimization question of what mechanisms have good outcomes in equilibrium. Optimal mechanism design searches
Single-frequency approximation of the coupling ray theory
Cerveny, Vlastislav
. Introduction There are two different highfrequency asymptotic ray theories with frequencyindepen- dent) demonstrated analytically that the highfrequency asymptotic error of the In: Seismic Waves in Complex 3DSingle-frequency approximation of the coupling ray theory Ludek Klimes & Petr Bulant Department
Asymptotic Approximations to the Distributed Activation Energy Model
McGuinness, Mark
Asymptotic Approximations to the Distributed Activation Energy Model M.J.McGuinness1 , E. Donskoi2 by a continuum distribution in activation energy of individual re- actions. An individual reaction is characterised by a pre-exponential coefficient and an activation energy. The distribution, usually Gaussian
Continued fractions with low complexity: Transcendence measures and quadratic approximation
Bugeaud, Yann
expansion of an irrational algebraic number either is ultimately periodic (this is the case if, and only if. Theorems 3.2 and 3.3 give transcendence mea- sures for a class of transcendental numbers defined by theiContinued fractions with low complexity: Transcendence measures and quadratic approximation Yann
NUMERICAL APPROXIMATION OF A MACROSCOPIC MODEL OF PEDESTRIAN FLOWS
Chalons, Christophe
NUMERICAL APPROXIMATION OF A MACROSCOPIC MODEL OF PEDESTRIAN FLOWS CHRISTOPHE CHALONS Abstract for the description of the flow of pedestrians. Solutions of the associated Riemann problem are known to be possibly in obtaining an efficient numerical scheme. Numerical evidences are proposed. Key words. macroscopic pedestrian
NON-LINEAR FUNCTIONAL APPROXIMATION OF HETEROGENEOUS DYNAMICS
in a latent variable model designed to account for both switching multi-scaling regimes and cascade system or resolution levels. We aim to design ad hoc approximation instruments dealing with a particularly complex in improving the volatility feature detection power. Then we show the good performance of greedy approxima
CP-networks: semantics, complexity, approximations and extensions
Walsh, Toby
CP-networks: semantics, complexity, approximations and extensions F. Rossi, K. B. Venable Dept Constraint Computation Centre, University College Cork Cork, Ireland tw@4c.ucc.ie July 23, 2002 Abstract CP-networks are an elegant and compact qualitative framework for ex- pressing preferences. Unfortunately, reasoning with CP
Robust Nonparametric Data Approximation of Point Sets via Data Reduction
Durocher, Stephane
, and the cardinality of Q is minimized among all such maximizing subsets of P. Our algorithms have respective running), where k optimizes one or more functions of P, where approximations are used to render vector-based features such as streets, rivers, or coastlines
The Exemplar Breakpoint Distance for nontrivial genomes cannot be approximated
Fertin, Guillaume
The Exemplar Breakpoint Distance for nonÂtrivial genomes cannot be approximated Guillaume Blin 1 Â France guillaume.fertin@univÂnantes.fr Abstract. A promising and active field of comparative genomics conÂ sists in comparing two genomes by establishing a oneÂtoÂone corresponÂ dence (i.e., a matching) between
Approximate Dynamic Programming in Transportation and Logistics: A Unified Framework
Powell, Warren B.
Approximate Dynamic Programming in Transportation and Logistics: A Unified Framework Warren B Engineering Princeton University, Princeton, NJ 08544 European J. of Transportation and Logistics, Vol. 1, No optimization has enjoyed a rich place in transportation and logistics, where it repre- sents a mature field
Nikiforov, Alexander; Gamez, Jose A.; Thiel, Walter; Huix-Rotllant, Miquel; Filatov, Michael
2014-09-28
Quantum-chemical computational methods are benchmarked for their ability to describe conical intersections in a series of organic molecules and models of biological chromophores. Reference results for the geometries, relative energies, and branching planes of conical intersections are obtained using ab initio multireference configuration interaction with single and double excitations (MRCISD). They are compared with the results from more approximate methods, namely, the state-interaction state-averaged restricted ensemble-referenced Kohn-Sham method, spin-flip time-dependent density functional theory, and a semiempirical MRCISD approach using an orthogonalization-corrected model. It is demonstrated that these approximate methods reproduce the ab initio reference data very well, with root-mean-square deviations in the optimized geometries of the order of 0.1 Å or less and with reasonable agreement in the computed relative energies. A detailed analysis of the branching plane vectors shows that all currently applied methods yield similar nuclear displacements for escaping the strong non-adiabatic coupling region near the conical intersections. Our comparisons support the use of the tested quantum-chemical methods for modeling the photochemistry of large organic and biological systems.
Zeynab Harsij; Behrouz Mirza
2014-09-24
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert-Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation.
Branch xylem density variations across the Amazon Basin
2009-01-01
increase wood density in Eucalyptus grandis seedlings? ,Changes in wood density of Eucalyptus camaldulensis due to
Statistical density modification using local pattern matching
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2003-10-01
Statistical density modification can make use of local patterns of density found in protein structures to improve crystallographic phases. A method for improving crystallographic phases is presented that is based on the preferential occurrence of certain local patterns of electron density in macromolecular electron-density maps. The method focuses on the relationship between the value of electron density at a point in the map and the pattern of density surrounding this point. Patterns of density that can be superimposed by rotation about the central point are considered equivalent. Standard templates are created from experimental or model electron-density maps by clustering and averaging local patterns of electron density. The clustering is based on correlation coefficients after rotation to maximize the correlation. Experimental or model maps are also used to create histograms relating the value of electron density at the central point to the correlation coefficient of the density surrounding this point with each member of the set of standard patterns. These histograms are then used to estimate the electron density at each point in a new experimental electron-density map using the pattern of electron density at points surrounding that point and the correlation coefficient of this density to each of the set of standard templates, again after rotation to maximize the correlation. The method is strengthened by excluding any information from the point in question from both the templates and the local pattern of density in the calculation. A function based on the origin of the Patterson function is used to remove information about the electron density at the point in question from nearby electron density. This allows an estimation of the electron density at each point in a map, using only information from other points in the process. The resulting estimates of electron density are shown to have errors that are nearly independent of the errors in the original map using model data and templates calculated at a resolution of 2.6 Å. Owing to this independence of errors, information from the new map can be combined in a simple fashion with information from the original map to create an improved map. An iterative phase-improvement process using this approach and other applications of the image-reconstruction method are described and applied to experimental data at resolutions ranging from 2.4 to 2.8 Å.
Aerodynamic Focusing Of High-Density Aerosols
Ruiz, D. E.; Fisch, Nathaniel
2014-02-24
High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.
Energy density bounds for black strings
Shinya Tomizawa
2005-06-07
The conserved charge called Y-ADM mass density associated with asymptotically translational Killing-Yano tensor gives us an appropriate physical meaning about the energy density of $p$ brane spacetimes or black strings. We investigated the positivity of energy density in black string spacetimes, using the spinorial technique introduced by Witten. Recently, the positivity of Y-ADM mass density in p brane spacetimes was discussed. In this paper, we will extend this discussion to the transversely asymptotically flat black string spacetimes containing an apparent horizon. We will give the sufficient conditions for the Y-ADM mass density to become positive in such spacetimes.
Short-Range Correlations and the One-Body Density Matrix in Finite Nuclei
A. Polls; H. Müther; W. H. Dickhoff
1995-03-28
The effects of short-range correlations derived from a realistic meson-exchange potential on the single-particle density matrix in finite nuclei are investigated by analyzing the one-body density in terms of the natural orbits. Basic features of these natural orbits and their spectral distributions are discussed. For many observables it seems to be sufficient to approximate the one-body density matrix in terms of those natural orbits, which exhibit the largest occupation probabilities. For the investigation of the high-momentum components in the single-particle density, however, it is important to take into account natural orbits with small occupation probabilities, originating from the single-particle Green function at large negative energies.
Allan Tameshtit
2012-04-09
High temperature and white noise approximations are frequently invoked when deriving the quantum Brownian equation for an oscillator. Even if this white noise approximation is avoided, it is shown that if the zero point energies of the environment are neglected, as they often are, the resultant equation will violate not only the basic tenet of quantum mechanics that requires the density operator to be positive, but also the uncertainty principle. When the zero-point energies are included, asymptotic results describing the evolution of the oscillator are obtained that preserve positivity and, therefore, the uncertainty principle.
Measuring the Density Fluctuation From the Cluster Gas Mass Function
Kazuhiro Shimasaku
1997-01-27
We investigate the gas mass function of clusters of galaxies to measure the density fluctuation spectrum on cluster scales. The baryon abundance confined in rich clusters is computed from the gas mass function and compared with the mean baryon density in the universe which is predicted by the Big Bang Nucleosynthesis. This baryon fraction and the slope of the gas mass function put constraints on $\\sigma_8$, the rms linear fluctuation on scales of $8h^{-1}\\Mpc$, and the slope of the fluctuation spectrum, where $h$ is the Hubble constant in units of 100 $\\kms \\oMpc$. We find $\\sigma_8 = 0.80 \\pm 0.15$ and $n \\sim -1.5$ for $0.5 \\le h \\le 0.8$, where we assume that the density spectrum is approximated by a power law on cluster scales: $\\sigma(r) \\propto r^{-{3+n\\over{2}}}$. Our value of $\\sigma_8$ is independent of the density parameter, $\\Omega_0$, and thus we can estimate $\\Omega_0$ by combining $\\sigma_8$ obtained in this study with those from $\\Omega_0$-dependent analyses to date. We find that $\\sigma_8(\\Omega_0)$ derived from the cluster abundance such as the temperature function gives $\\Omega_0 \\sim 0.5$ while $\\sigma_8(\\Omega_0)$ measured from the peculiar velocity field of galaxies gives $\\Omega_0 \\sim 0.2-1$, depending on the technique used to analyze peculiar velocity data. Constraints are also derived for open, spatially flat, and tilted Cold Dark Matter models and for Cold + Hot Dark Matter models.
On the Peterlin approximation for turbulent flows of polymer solutions
Vincenzi, Dario; Biferale, Luca; Toschi, Federico
2015-01-01
We study the impact of the Peterlin approximation on the statistics of the end-to-end separation of poly- mers in a turbulent flow. The FENE and FENE-P models are numerically integrated along a large number of Lagrangian trajectories resulting from a direct numerical simulation of three-dimensional homogeneous isotropic turbulence. Although the FENE-P model yields results in qualitative agreement with those of the FENE model, quantitative differences emerge. The steady-state probability of large extensions is overesti- mated by the FENE-P model. The alignment of polymers with the eigenvectors of the rate-of-strain tensor and with the direction of vorticity is weaker when the Peterlin approximation is used. At large Weissenberg numbers, both the correlation times of the extension and of the orientation of polymers are underestimated by the FENE-P model.
Axially symmetric dissipative fluids in the quasi--static approximation
Herrera, L; Ospino, J; Carot, J
2015-01-01
Using a framework based on the $1+3$ formalism we carry out a study on axially and reflection symmetric dissipative fluids, in the quasi--static regime. We first derive a set of invariantly defined "velocities", which allow for an inambiguous definition of the quasi--static approximation. Next we rewrite all the relevant equations in this aproximation and extract all the possible, physically relevant, consequences ensuing the adoption of such an approximation. In particular we show how the vorticity, the shear and the dissipative flux, may lead to situations where different kind of "velocities" change of sign within the fluid distribution with respect to theirs sign on the boundary surface. It is shown that states of gravitational radiation are not {\\it a priori} incompatible with the quasistatic--regime. However, any such state must last for an infinite period of time, thereby diminishing its physical relevance.
Quasielastic electron-deuteron scattering in the weak binding approximation
Ethier, Jacob J. [William and Mary College, JLAB; Doshi, Nidhi P. [Carnegie Mellon University; Malace, Simona P. [JLAB; Melnitchouk, Wally [JLAB
2014-06-01
We perform a global analysis of all available electron-deuteron quasielastic scattering data using Q^2-dependent smearing functions that describe inclusive inelastic e-d scattering within the weak binding approximation. We study the dependence of the cross sections on the deuteron wave function and the off-shell extrapolation of the elastic electron-nucleon cross section, which show particular sensitivity at x >> 1. The excellent overall agreement with data over a large range of Q^2 and x suggest a limited need for effects beyond the impulse approximation, with the exception of the very high-x or very low-Q^2 regions, where short-distance effects in the deuteron become more relevant.
Feedback stabilisation of switched systems via iterative approximate eigenvector assignment
Haimovich, Hernan
2010-01-01
This paper presents and implements an iterative feedback design algorithm for stabilisation of discrete-time switched systems under arbitrary switching regimes. The algorithm seeks state feedback gains so that the closed-loop switching system admits a common quadratic Lyapunov function (CQLF) and hence is uniformly globally exponentially stable. Although the feedback design problem considered can be solved directly via linear matrix inequalities (LMIs), direct application of LMIs for feedback design does not provide information on closed-loop system structure. In contrast, the feedback matrices computed by the proposed algorithm assign closed-loop structure approximating that required to satisfy Lie-algebraic conditions that guarantee existence of a CQLF. The main contribution of the paper is to provide, for single-input systems, a numerical implementation of the algorithm based on iterative approximate common eigenvector assignment, and to establish cases where such algorithm is guaranteed to succeed. We inc...
On the Peterlin approximation for turbulent flows of polymer solutions
Dario Vincenzi; Prasad Perlekar; Luca Biferale; Federico Toschi
2015-05-26
We study the impact of the Peterlin approximation on the statistics of the end-to-end separation of poly- mers in a turbulent flow. The FENE and FENE-P models are numerically integrated along a large number of Lagrangian trajectories resulting from a direct numerical simulation of three-dimensional homogeneous isotropic turbulence. Although the FENE-P model yields results in qualitative agreement with those of the FENE model, quantitative differences emerge. The steady-state probability of large extensions is overesti- mated by the FENE-P model. The alignment of polymers with the eigenvectors of the rate-of-strain tensor and with the direction of vorticity is weaker when the Peterlin approximation is used. At large Weissenberg numbers, both the correlation times of the extension and of the orientation of polymers are underestimated by the FENE-P model.
Peer Exchange Calls Inspire New Lessons Learned Greatest Hits...
Network members, from tips to collaborating with utilities to cost-effective rebate models. The Residential Network hosts a series of Peer Exchange Calls for members to...
JAMES E. HANSEN World's Greatest Crime against Humanity and Nature
Hansen, James E.
down in an emergency such as an earthquake and cool themselves without outside power. "Fast" reactors, "slow" reactors that utilize less than 1% of the nuclear fuel, can be made passively safe, so they shut
Question of the Week: What are Your Greatest Energy Concerns...
Broader source: Energy.gov (indexed) [DOE]
Perhaps upgrades performed by the renter should be allowed to be taken off of their rent. Posted by: Greg Ramlow | September 09, 2008 at 12:05 AM Well I would have to say...
Oak Ridge Removes Laboratory's Greatest Source of Groundwater
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 NewsORMAT NEVADA ORMAT NEVADA
What the World's GREATEST Energy Managers Do Differently | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 - Employers139WebmasterHibernation (201)What is
Peer Exchange Calls Inspire New Lessons Learned Greatest Hits | Department
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLICofPatricia A. Hoffman AboutPaulaPeerof
What the World's Greatest Energy Managers Do Differently
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics Â» USAJobs SearchAMERICA'S FUTURE.Projects atWeRenewableDoes the2015
Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry
Sechopoulos, Ioannis; Bliznakova, Kristina; Qin Xulei; Fei Baowei; Feng, Steve Si Jia
2012-08-15
Purpose: To compare the estimate of normalized glandular dose in mammography and breast CT imaging obtained using the actual glandular tissue distribution in the breast to that obtained using the homogeneous tissue mixture approximation. Methods: Twenty volumetric images of patient breasts were acquired with a dedicated breast CT prototype system and the voxels in the breast CT images were automatically classified into skin, adipose, and glandular tissue. The breasts in the classified images underwent simulated mechanical compression to mimic the conditions present during mammographic acquisition. The compressed thickness for each breast was set to that achieved during each patient's last screening cranio-caudal (CC) acquisition. The volumetric glandular density of each breast was computed using both the compressed and uncompressed classified images, and additional images were created in which all voxels representing adipose and glandular tissue were replaced by a homogeneous mixture of these two tissues in a proportion corresponding to each breast's volumetric glandular density. All four breast images (compressed and uncompressed; heterogeneous and homogeneous tissue) were input into Monte Carlo simulations to estimate the normalized glandular dose during mammography (compressed breasts) and dedicated breast CT (uncompressed breasts). For the mammography simulations the x-ray spectra used was that used during each patient's last screening CC acquisition. For the breast CT simulations, two x-ray spectra were used, corresponding to the x-ray spectra with the lowest and highest energies currently being used in dedicated breast CT prototype systems under clinical investigation. The resulting normalized glandular dose for the heterogeneous and homogeneous versions of each breast for each modality was compared. Results: For mammography, the normalized glandular dose based on the homogeneous tissue approximation was, on average, 27% higher than that estimated using the true heterogeneous glandular tissue distribution (Wilcoxon Signed Rank Test p= 0.00046). For dedicated breast CT, the overestimation of normalized glandular dose was, on average, 8% (49 kVp spectrum, p= 0.00045) and 4% (80 kVp spectrum, p= 0.000089). Only two cases in mammography and two cases in dedicated breast CT with a tube voltage of 49 kVp resulted in lower dose estimates for the homogeneous tissue approximation compared to the heterogeneous tissue distribution. Conclusions: The normalized glandular dose based on the homogeneous tissue mixture approximation results in a significant overestimation of dose to the imaged breast. This overestimation impacts the use of dose estimates in absolute terms, such as for risk estimates, and may impact some comparative studies, such as when modalities or techniques with different x-ray energies are used. The error introduced by the homogeneous tissue mixture approximation in higher energy x-ray modalities, such as dedicated breast CT, although statistically significant, may not be of clinical concern. Further work is required to better characterize this overestimation and potentially develop new metrics or correction factors to better estimate the true glandular dose to breasts undergoing imaging with ionizing radiation.
Product-state Approximations to Quantum Ground States
Fernando G. S. L. Brandão; Aram W. Harrow
2014-12-15
The local Hamiltonian problem consists of estimating the ground-state energy (given by the minimum eigenvalue) of a local quantum Hamiltonian. First, we show the existence of a good product-state approximation for the ground-state energy of 2-local Hamiltonians with one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state with sublinear entanglement with respect to some partition into small pieces. The approximation based on degree is a surprising difference between quantum Hamiltonians and classical CSPs (constraint satisfaction problems), since in the classical setting, higher degree is usually associated with harder CSPs. The approximation based on low entanglement, in turn, was previously known only in the regime where the entanglement was close to zero. Since the existence of a low-energy product state can be checked in NP, the result implies that any Hamiltonian used for a quantum PCP theorem should have: (1) constant degree, (2) constant expansion, (3) a "volume law" for entanglement with respect to any partition into small parts. Second, we show that in several cases, good product-state approximations not only exist, but can be found in polynomial time: (1) 2-local Hamiltonians on any planar graph, solving an open problem of Bansal, Bravyi, and Terhal, (2) dense k-local Hamiltonians for any constant k, solving an open problem of Gharibian and Kempe, and (3) 2-local Hamiltonians on graphs with low threshold rank, via a quantum generalization of a recent result of Barak, Raghavendra and Steurer. Our work introduces two new tools which may be of independent interest. First, we prove a new quantum version of the de Finetti theorem which does not require the usual assumption of symmetry. Second, we describe a way to analyze the application of the Lasserre/Parrilo SDP hierarchy to local quantum Hamiltonians.
Denoising MR Spectroscopic Imaging Data with Low-Rank Approximations
Do, Minh N.
1 Denoising MR Spectroscopic Imaging Data with Low-Rank Approximations Hien M. Nguyen, Member, IEEE- temporal imaging data as well. Index Terms--MR spectroscopy, MR spectroscopic imaging, denoising, low spectroscopic (MRS) signal in (k, t)-space can be expressed as s(k, t) = (r, f)e-i2k·r e-i2ft drdf + (k, t), (1
COMPLEXITY & APPROXIMABILITY OF QUANTIFIED & STOCHASTIC CONSTRAINT SATISFACTION PROBLEMS
H. B. HUNT; M. V. MARATHE; R. E. STEARNS
2001-06-01
Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S and T be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the complexity of decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. We present simple yet general techniques to characterize simultaneously, the complexity or efficient approximability of a number of versions/variants of the problems SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such D,C,S,T. These versions/variants include decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. Our unified approach is based on the following two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic representability. Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94] Our techniques and results reported here also provide significant steps towards obtaining dichotomy theorems, for a number of the problems above, including the problems MAX-Q-SAT(S), and MAX-S-SAT(S). The discovery of such dichotomy theorems, for unquantified formulas, has received significant recent attention in the literature [CF+93, CF+94, Cr95, KSW97]. Keywords: NP-hardness; Approximation Algorithms; PSPACE-hardness; Quantified and Stochastic Constraint Satisfaction Problems.
Tao, Jianmin; Perdew, John P; Staroverov, Viktor N; Scuseria, Gustavo E
2008-01-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because of error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact constraints, including exactness for all one-electron densities, and provides an excellent, fit 1.0 the 223 molecular enthalpies of formation of the G3/99 set and the 42 reaction barrier heights of the BH42/03 set, improving both (but especially the latter) over most semilocal functionals and global hybrids. Exact constraints, physical insights, and paradigm examples hopefully suppress 'overfitting'.
Adiabatic electronic flux density: a Born-Oppenheimer Broken Symmetry ansatz
Vincent Pohl; Jean Christophe Tremblay
2015-10-20
The Born-Oppenheimer approximation leads to the counterintuitive result of a vanishing electronic flux density upon vibrational dynamics in the electronic ground state. To circumvent this long known issue, we propose using pairwise anti-symmetrically translated vibronic densities to generate a symmetric electronic density that can be forced to satisfy the continuity equation approximately. The so-called Born-Oppenheimer broken symmetry ansatz yields all components of the flux density simultaneously while requiring only knowledge about the nuclear quantum dynamics on the electronic adiabatic ground state potential energy surface. The underlying minimization procedure is transparent and computationally inexpensive, and the solution can be computed from the standard output of any quantum chemistry program. Taylor series expansion reveals that the implicit electron dynamics originates from non-adiabatic coupling to the explicit Born-Oppenheimer nuclear dynamics. The new approach is applied to the ${\\rm H}_2^+$ molecular ion vibrating in its ${}^2\\Sigma^+_g$ ground state. The electronic flux density is found to have the correct nodal structure and symmetry properties at all times.
The Vainshtein mechanism beyond the quasi-static approximation
Hans A. Winther; Pedro G. Ferreira
2015-05-13
Theories of modified gravity, in both the linear and fully non-linear regime, are often studied under the assumption that the evolution of the new (often scalar) degree of freedom present in the theory is quasi-static. This approximation significantly simplifies the study of the theory, and one often has good reason to believe that it should hold. Nevertheless it is a crucial assumption that should be explicitly checked whenever possible. In this paper we do so for the Vainshtein mechanism. By solving for the full spatial and time evolution of the Dvali-Gabadadze-Porrati and the Cubic Galileon model, in a spherical symmetric spacetime, we are able to demonstrate that the Vainshtein solution is a stable attractor and forms no matter what initial conditions we take for the scalar field. Furthermore,the quasi-static approximation is also found to be a very good approximation whenever it exists. For the best-fit Cubic Galileon model, however, we find that for deep voids at late times, the numerical solution blows up at the same time as the quasi-static solution ceases to exist. We argue that this phenomenon is a true instability of the model.
The periodic standing-wave approximation: post-Minkowski computation
Christopher Beetle; Benjamin Bromley; Napoleón Hernández; Richard H. Price
2007-08-08
The periodic standing wave method studies circular orbits of compact objects coupled to helically symmetric standing wave gravitational fields. From this solution an approximation is extracted for the strong field, slowly inspiralling motion of black holes and binary stars. Previous work on this model has dealt with nonlinear scalar models, and with linearized general relativity. Here we present the results of the method for the post-Minkowski (PM) approximation to general relativity, the first step beyond linearized gravity. We compute the PM approximation in two ways: first, via the standard approach of computing linearized gravitational fields and constructing from them quadratic driving sources for second-order fields, and second, by solving the second-order equations as an ``exact'' nonlinear system. The results of these computations have two distinct applications: (i) The computational infrastructure for the ``exact'' PM solution will be directly applicable to full general relativity. (ii) The results will allow us to begin supplying initial data to collaborators running general relativistic evolution codes.
Yao, Kun
2015-01-01
We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from electron density. The output of the network is used as a non-local correction to the conventional local and semi-local kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. Numerical noise inherited from the non-linearity of the neural network is identified as the major challenge for the model. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.
De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, Santo André, SP, 09210-170 (Brazil)
2014-03-01
We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.
Density and Tensile Properties Changed by Aging Plutonium
Chung, B W; Choi, B W; Thompson, S R; Woods, C H; Hopkins, D J; Ebbinghaus, B B
2005-03-14
We present volume, density, and tensile property change observed from both naturally and accelerated aged plutonium alloys. Accelerated alloys are plutonium alloys with a fraction of Pu-238 to accelerate the aging process by approximately 18 times the rate of unaged weapons-grade plutonium. After thirty-five equivalent years of aging on accelerated alloys, the dilatometry shows the samples at 35 C have swelled in volume by 0.12 to 0.14% and now exhibit a near linear volume increase due to helium in-growth while showing possible surface effects on samples at 50 C and 65 C. The engineering stress of the accelerated alloy at 18 equivalent years increased significantly compared to at 4.5 equivalent years.
New theory of superconductivity. Method of equilibrium density matrix
Boris Bondarev
2013-09-22
A new variational method for studying the equilibrium states of an interacting particles system has been proposed. The statistical description of the system is realized by means of a density matrix. This method is used for description of conduction electrons in metals. An integral equation for the electron distribution function over wave vectors has been obtained. The solutions of this equation have been found for those cases where the single-particle Hamiltonian and the electron interaction Hamiltonian can be approximated by a quite simple expression. It is shown that the distribution function at temperatures below the critical value possesses previously unknown features which allow to explain the superconductivity of metals and presence of a gap in the energy spectrum of superconducting electrons.
Galaxy rotation curves with log-normal density distribution
Marr, John H
2015-01-01
The log-normal distribution represents the probability of finding randomly distributed particles in a micro canonical ensemble with high entropy. To a first approximation, a modified form of this distribution with a truncated termination may represent an isolated galactic disk, and this disk density distribution model was therefore run to give the best fit to the observational rotation curves for 37 representative galaxies. The resultant curves closely matched the observational data for a wide range of velocity profiles and galaxy types with rising, flat or descending curves in agreement with Verheijen's classification of 'R', 'F' and 'D' type curves, and the corresponding theoretical total disk masses could be fitted to a baryonic Tully Fisher relation (bTFR). Nine of the galaxies were matched to galaxies with previously published masses, suggesting a mean excess dynamic disk mass of dex0.61+/-0.26 over the baryonic masses. Although questionable with regard to other measurements of the shape of disk galaxy g...
Density gradient free electron collisionally excited x-ray laser
Campbell, E.M.; Rosen, M.D.
1984-11-29
An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.
Density gradient free electron collisionally excited X-ray laser
Campbell, Edward M. (Pleasanton, CA); Rosen, Mordecai D. (Berkeley, CA)
1989-01-01
An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.
The Quantum Energy Density: Improved E
Krogel, Jaron; Yu, Min; Kim, Jeongnim; Ceperley, David M.
2013-01-01
We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, dened in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon \\gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy dierences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more eciently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.
Lubrication approximation for thin viscous films: asymptotic behavior of nonnegative solutions
Tudorascu, Adrian
Lubrication approximation for thin viscous films: asymptotic behavior of nonnegative solutions-order nonlinear de- generate parabolic equations of lubrication approximation for thin viscous film type. The weak
Considering Air Density in Wind Power Production
Zénó Farkas
2011-03-11
In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.
Method of synthesizing a low density material
Lorensen, L.E.; Monaco, S.B.
1987-02-27
A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.
Considering Air Density in Wind Power Production
Farkas, Zénó
2011-01-01
In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.
Level density of the Hénon-Heiles system above the critical barrier Energy
M. Brack; J. Kaidel; P. Winkler; S. N. Fedotkin
2005-11-05
We discuss the coarse-grained level density of the H\\'enon-Heiles system above the barrier energy, where the system is nearly chaotic. We use periodic orbit theory to approximate its oscillating part semiclassically via Gutzwiller's semiclassical trace formula (extended by uniform approximations for the contributions of bifurcating orbits). Including only a few stable and unstable orbits, we reproduce the quantum-mechanical density of states very accurately. We also present a perturbative calculation of the stabilities of two infinite series of orbits (R$_n$ and L$_m$), emanating from the shortest librating straight-line orbit (A) in a bifurcation cascade just below the barrier, which at the barrier have two common asymptotic Lyapunov exponents $\\chi_{\\rm R}$ and $\\chi_{\\rm L}$.
Zhang, Ping; Zhao, Xian-Geng
2010-01-01
Plutonium dioxide is of high technological importance in nuclear fuel cycle and is particularly crucial in long-term storage of Pu-based radioactive waste. Using first-principles density-functional theory, in this paper we systematically study the structural, electronic, mechanical, thermodynamic properties, and pressure induced structural transition of PuO$_{2}$. To properly describe the strong correlation in the Pu $5f$ electrons, the local density approximation$+U$ and the generalized gradient approximation$+U$ theoretical formalisms have been employed. We optimize the $U$ parameter in calculating the total energy, lattice parameters, and bulk modulus at the nonmagnetic, ferromagnetic, and antiferromagnetic configurations for both ground state fluorite structure and high pressure cotunnite structure. The best agreement with experiments is obtained by tuning the effective Hubbard parameter $U$ at around 4 eV within the LDA$+U$ approach. After carefully testing the validity of the ground state, we further in...
Time-dependent density functional theory quantum transport simulation in non-orthogonal basis
Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Chen, Guan Hua; Zheng, Xiao
2013-12-14
Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.
3-D capacitance density imaging system
Fasching, G.E.
1988-03-18
A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.
Mini-review of Electron Density Visualization
Adler, Joan; Adler, Omri; Kreif, Meytal; Cohen, Or; Grosso, Bastien; Hashibon, Adham; Cooper, Valentino R
2015-01-01
We describe both educational and research oriented examples of electronic density visualization with AViz. Several detailed cases are presented and the procedures for their preparation are described.
Chiral dynamics and peripheral transverse densities Granados...
Office of Scientific and Technical Information (OSTI)
dynamics and peripheral transverse densities Granados, Carlos G. Uppsala University (Sweden); Weiss, Christian JLAB, Newport News, VA (United States) 72 PHYSICS OF ELEMENTARY...
Uncertainty Quantification for Nuclear Density Functional Theory...
Office of Scientific and Technical Information (OSTI)
Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements Citation Details In-Document Search Title: Uncertainty Quantification...
Uncertainty Quantification for Nuclear Density Functional Theory...
Office of Scientific and Technical Information (OSTI)
Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements Citation Details In-Document Search This content will become publicly...
Building a Universal Nuclear Energy Density Functional
Bertulani, Carlos A.
2014-09-10
This grant had two components: Density functional theory and pairing and Nuclear reactions. This final report summarizes the activities for this SciDAC-2 project.
Linear-response calculation in the time-dependent density functional theory
Takashi Nakatsukasa; Tsunenori Inakura; Paolo Avogadro; Shuichiro Ebata; Koichi Sato; Kazuhiro Yabana
2012-09-22
Linear response calculations based on the time-dependent density-functional theory are presented. Especially, we report results of the finite amplitude method which we have recently proposed as an alternative and feasible approach to the (quasiparticle-)random-phase approximation. Calculated properties of the giant resonances and low-energy E1 modes are discussed. We found a universal linear correlation between the low-energy E1 strength and the neutron skin thickness.
Particle-vibration coupling within covariant density functional theory
E. Litvinova; P. Ring; V. Tselyaev
2007-05-08
Covariant density functional theory, which has so far been applied only within the framework of static and time dependent mean field theory is extended to include Particle-Vibration Coupling (PVC) in a consistent way. Starting from a conventional energy functional we calculate the low-lying collective vibrations in Relativistic Random Phase Approximation (RRPA) and construct an energy dependent self-energy for the Dyson equation. The resulting Bethe-Salpeter equation in the particle-hole ($ph$) channel is solved in the Time Blocking Approximation (TBA). No additional parameters are used and double counting is avoided by a proper subtraction method. The same energy functional, i.e. the same set of coupling constants, generates the Dirac-Hartree single-particle spectrum, the static part of the residual $ph$-interaction and the particle-phonon coupling vertices. Therefore a fully consistent description of nuclear excited states is developed. This method is applied for an investigation of damping phenomena in the spherical nuclei with closed shells $^{208}$Pb and $^{132}$Sn. Since the phonon coupling terms enrich the RRPA spectrum with a multitude of $ph\\otimes$phonon components a noticeable fragmentation of the giant resonances is found, which is in full agreement with experimental data and with results of the semi-phenomenological non-relativistic approach.
COMPLEXITY&APPROXIMABILITY OF QUANTIFIED&STOCHASTIC CONSTRAINT SATISFACTION PROBLEMS
Hunt, H. B.; Marathe, M. V.; Stearns, R. E.
2001-01-01
Let D be an arbitrary (not necessarily finite) nonempty set, let C be a finite set of constant symbols denoting arbitrary elements of D, and let S and T be an arbitrary finite set of finite-arity relations on D. We denote the problem of determining the satisfiability of finite conjunctions of relations in S applied to variables (to variables and symbols in C) by SAT(S) (by SATc(S).) Here, we study simultaneously the complexity of decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. We present simple yet general techniques to characterize simultaneously, the complexity or efficient approximability of a number of versions/variants of the problems SAT(S), Q-SAT(S), S-SAT(S),MAX-Q-SAT(S) etc., for many different such D,C ,S, T. These versions/variants include decision, counting, maximization and approximate maximization problems, for unquantified, quantified and stochastically quantified formulas. Our unified approach is based on the following two basic concepts: (i) strongly-local replacements/reductions and (ii) relational/algebraic represent ability. Some of the results extend the earlier results in [Pa85,LMP99,CF+93,CF+94O]u r techniques and results reported here also provide significant steps towards obtaining dichotomy theorems, for a number of the problems above, including the problems MAX-&-SAT( S), and MAX-S-SAT(S). The discovery of such dichotomy theorems, for unquantified formulas, has received significant recent attention in the literature [CF+93,CF+94,Cr95,KSW97
Nonlocal effective medium approximation for metallic nanorod metamaterials
Geng, Tao; Gao, Jie; Yang, Xiaodong
2015-01-01
We present an analytical nonlocal effective medium approximation to describe the optical nonlocal effects in metallic nanorod metamaterials based on Mie scattering theory. It is shown that the developed nonlocal effective medium theory can predict a coexistence state of two modes around the epsilon-near-zero region, where strong optical nonlocal effects lead to the behavior of both positive refraction and negative refraction in the nanorod metamaterials. Outside of the coexistence region, only one mode can be excited and its behavior can be well described using the local effective medium theory.
Invariant-based pulse engineering without rotating wave approximation
S. Ibáñez; Yi-Chao Li; Xi Chen; J. G. Muga
2015-07-02
We inverse engineer realizable time-dependent semiclassical pulses to invert or manipulate a two- level system faster than adiabatically when the rotating-wave approximation cannot be applied. Different inversion routes, based on a counterdiabatic approach or invariants, lead quite generally to singular fields. Making use of the relation between the invariants of motion and the Hamiltonian, and canceling the troublesome singularities, an inversion scheme is put forward for the regime in which the pulse spans few oscillations. For many oscillations an alternative numerical minimization method is proposed and demonstrated.
Analytical Approximation for 2-D Nonlinear Periodic Deep Water Waves
Saleh Tanveer
2013-09-20
A recently developed method has been extended to a nonlocal equation arising in steady water wave propagation in two dimensions. We obtain analyic approximation of steady water wave solution in two dimensions with rigorous error bounds for a set of parameter values that correspond to heights slightly smaller than the critical. The wave shapes are shown to be analytic. The method presented in quite general and does not assume smallness of wave height or steepness and can be readily extended to other interfacial problems involving Laplace's equation.
Breakdown of the Dipole Approximation in Strong-Field Ionization
A. Ludwig; J. Maurer; B. W. Mayer; C. R. Phillips; L. Gallmann; U. Keller
2014-10-02
We report the breakdown of the electric dipole approximation in the long-wavelength limit in strong-field ionization with linearly polarized few-cycle mid-infrared laser pulses at intensities on the order of 10$^{13}$ W/cm$^2$. Photoelectron momentum distributions were recorded by velocity map imaging and projected onto the beam propagation axis. We observe an increasing shift of the peak of this projection opposite to the beam propagation direction with increasing laser intensities. From a comparison with semi-classical simulations, we identify the combined action of the magnetic field of the laser pulse and the Coulomb potential as origin of our observations.
Compton scattering from positronium and validity of the impulse approximation
Kaliman, Z.; Pisk, K.; Pratt, R. H.
2011-05-15
The cross sections for Compton scattering from positronium are calculated in the range from 1 to 100 keV incident photon energy. The calculations are based on the A{sup 2} term of the photon-electron or photon-positron interaction. Unlike in hydrogen, the scattering occurs from two centers and the interference effect plays an important role for energies below 8 keV. Because of the interference, the criterion for validity of the impulse approximation for positronium is more restrictive compared to that for hydrogen.
Time Dependent Density Functional Theory An Introduction
Botti, Silvana
Time Dependent Density Functional Theory An Introduction Francesco Sottile Laboratoire des Solides) Belfast, 29 Jun 2007 Time Dependent Density Functional Theory Francesco Sottile #12;Intro Formalism Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources Time
Enhancing critical current density of cuprate superconductors
Chaudhari, Praveen
2015-06-16
The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.
Neutral depletion and the helicon density limit
Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E.
2013-12-15
It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.
Density functional theory for carbon dioxide crystal
Chang, Yiwen; Mi, Jianguo Zhong, Chongli
2014-05-28
We present a density functional approach to describe the solid?liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.
Approximation Algorithms for Wireless Link Scheduling with Flexible Data Rates
Kesselheim, Thomas
2012-01-01
We consider scheduling problems in wireless networks with respect to flexible data rates. That is, more or less data can be transmitted per time depending on the signal quality, which is determined by the signal-to-interference-plus-noise ratio (SINR). Each wireless link has a utility function mapping SINR values to the respective data rates. We have to decide which transmissions are performed simultaneously and (depending on the problem variant) also which transmission powers are used. In the capacity-maximization problem, one strives to maximize the overall network throughput, i.e., the summed utility of all links. For arbitrary utility functions (not necessarily continuous ones), we present an O(log n)-approximation when having n communication requests. This algorithm is built on a constant-factor approximation for the special case of the respective problem where utility functions only consist of a single step. In other words, each link has an individual threshold and we aim at maximizing the number of lin...
Approximate Weighted Matching On Emerging Manycore and Multithreaded Architectures
Halappanavar, Mahantesh; Feo, John T.; Villa, Oreste; Tumeo, Antonino; Pothen, Alex
2012-11-30
Graph matching is a prototypical combinatorial problem with many applications in computer science and scientific computing, but algorithms for computing optimal matchings are challenging to parallelize. Approximate matching algorithms provide an alternate route for parallelization, and in many contexts compute near-optimal matchings for large-scale graphs. We present sharedmemory parallel implementations for computing half-approximate weighted matching on state-of-the-art multicore (Intel Nehalem and AMD Magny-Cours), manycore (Nvidia Tesla and Nvidia Fermi) and massively multithreaded (Cray XMT) platforms. We provide two implementations: the first implementation uses shared work queues, and is suited to all these platforms; the second implementation is based on dataflow principles, and exploits the architectural features of the Cray XMT. Using a carefully chosen dataset that exhibits characteristics from a wide range of real-world applications, we show scalable performance across different platforms. In particular, for one instance of the input, an R-MAT graph (RMAT-G), we show speedups of: about 32 on 48 cores of an AMD Magny-Cours; 7 on 8 cores of Intel Nehalem; 3 on Nvidia Tesla and 10 on Nvidia Fermi relative to one core of Intel Nehalem; and 60 on 128 processors of Cray XMT. We demonstrate good weak and strong scaling for graphs with up to a billion edges using up to 12, 800 threads. Given the breadth of this work, we focus on simplicity and portability of software rather than excessive fine-tuning for each platform. To the best of our knowledge, this is the first such large-scale study of the half-approximate weighted matching problem on shared-memory platforms. Driven by the critical enabling role of combinatorial algorithms such as matching in scientific computing and the emergence of informatics applications, there is a growing demand to support irregular computations on current and future computing platforms. In this context, we evaluate the capability of emerging multithreaded platforms to tolerate latency induced by irregular memory access patterns, and to support fine-grained parallelism via light-weight synchronization mechanisms. By contrasting the architectural features of these platforms against the Cray XMT, which is specifically designed to support irregular memory-intensive applications, we delineate the impact of these choices on performance.
Isovector part of nuclear energy density functional from chiral two- and three-nucleon forces
N. Kaiser
2012-03-28
A recent calculation of the nuclear energy density functional from chiral two- and three-nucleon forces is extended to the isovector terms pertaining to different proton and neutron densities. An improved density-matrix expansion is adapted to the situation of small isospin-asymmetries and used to calculate in the Hartree-Fock approximation the density-dependent strength functions associated with the isovector terms. The two-body interaction comprises of long-range multi-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition, the leading order chiral three-nucleon interaction is employed with its parameters fixed in computations of nuclear few-body systems. With this input one finds for the asymmetry energy of nuclear matter the value $A(\\rho_0) \\simeq 26.5\\,$MeV, compatible with existing semi-empirical determinations. The strength functions of the isovector surface and spin-orbit coupling terms come out much smaller than those of the analogous isoscalar coupling terms and in the relevant density range one finds agreement with phenomenological Skyrme forces. The specific isospin- and density-dependences arising from the chiral two- and three-nucleon interactions can be explored and tested in neutron-rich systems.
Alekseev, A E; Potapov, V T
2013-10-31
Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)
Effect of low density H-mode operation on edge and divertor plasma parameters
Maingi, R. [Oak Ridge Associated Universities, Inc., TN (United States); Mioduszewski, P.K. [Oak Ridge National Lab., TN (United States); Cuthbertson, J.W. [Sandia National Labs., Albuquerque, NM (United States)] [and others
1994-07-01
We present a study of the impact of H-mode operation at low density on divertor plasma parameters on the DIII-D tokamak. The line-average density in H-mode was scanned by variation of the particle exhaust rate, using the recently installed divertor cryo-condensation pump. The maximum decrease (50%) in line-average electron density was accompanied by a factor of 2 increase in the edge electron temperature, and 10% and 20% reductions in the measured core and divertor radiated power, respectively. The measured total power to the inboard divertor target increased by a factor of 3, with the major contribution coming from a factor of 5 increase in the peak heat flux very close to the inner strike point. The measured increase in power at the inboard divertor target was approximately equal to the measured decrease in core and divertor radiation.
Bordbar, G H; Taghizade, M
2015-01-01
In this work, we have done a completely microscopic calculation using a many-body variational method based on the cluster expansion of energy to compute the asymmetry energy of nuclear matter. In our calculations, we have employed the $AV_{18}$ nuclear potential. We have also investigated the temperature and density dependence of asymmetry energy. Our results show that the asymmetry energy of nuclear matter depends on both density and temperature. We have also studied the effects of different terms in the asymmetry energy of nuclear matter. These investigations indicate that at different densities and temperatures, the contribution of parabolic term is very substantial with respect to the other terms. Therefore, we can conclude that the parabolic approximation is a relatively good estimation, and our calculated binding energy of asymmetric nuclear matter is in a relatively good agreement with that of semi-empirical mass formula. However, for the accurate calculations, it is better to consider the effects of o...
Molecular Density Functional Theory for water with liquid-gas coexistence and correct pressure
Jeanmairet, Guillaume; Sergiievskyi, Volodymyr; Borgis, Daniel
2015-01-01
The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. With this correction, molecular density functional theory gives, at a modest computational cost, quantita...
Spectral density of the Dirac operator in two-flavour QCD
Georg P. Engel; Leonardo Giusti; Stefano Lottini; Rainer Sommer
2014-11-24
We compute the spectral density of the (Hermitean) Dirac operator in Quantum Chromodynamics with two light degenerate quarks near the origin. We use CLS/ALPHA lattices generated with two flavours of O(a)-improved Wilson fermions corresponding to pseudoscalar meson masses down to 190 MeV, and with spacings in the range 0.05-0.08 fm. Thanks to the coverage of parameter space, we can extrapolate our data to the chiral and continuum limits with confidence. The results show that the spectral density at the origin is non-zero because the low modes of the Dirac operator do condense as expected in the Banks-Casher mechanism. Within errors, the spectral density turns out to be a constant function up to eigenvalues of approximately 80 MeV. Its value agrees with the one extracted from the Gell-Mann-Oakes-Renner relation.
Periodic subsystem density-functional theory
Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Gorham, Caroline S.; Gaskins, John T.; Hopkins, Patrick E.; Parsons, Gregory N.; Losego, Mark D.
2014-06-23
We report on the thermal conductivity of atomic layer deposition-grown amorphous alumina thin films as a function of atomic density. Using time domain thermoreflectance, we measure the thermal conductivity of the thin alumina films at room temperature. The thermal conductivities vary ?35% for a nearly 15% change in atomic density and are substrate independent. No density dependence of the longitudinal sound speeds is observed with picosecond acoustics. The density dependence of the thermal conductivity agrees well with a minimum limit to thermal conductivity model that is modified with a differential effective-medium approximation.
Surface wake in the random-phase approximation
Garcia de Abajo, F.J. ); Echenique, P.M. )
1993-11-01
The scalar-electric-potential distribution set up by an ion traveling in the vicinity of a plane solid-vacuum interface, that is, the surface-wake potential, is investigated with the specular-reflection model to describe the response of the surface and with the random-phase approximation for the dielectric function of the bulk material. This permits us to address the study of the low-velocity surface wake: the static potential is found to have a dip at the position of the ion; that dip is shifted towards the direction opposite to the velocity vector for velocities smaller than the threshold of creation of plasmons ([approx]1.3[ital v][sub [ital F
Procedures for realizing an approximate universal NOT gate
Jeongho Bang; Seung-Woo Lee; Hyunseok Jeong; Jinhyoung Lee
2012-12-19
We consider procedures to realize an approximate universal NOT gate in terms of average fidelity and fidelity deviation. The average fidelity indicates the optimality of operation on average, while the fidelity deviation does the universality of operation. We show that one-qubit operations have a sharp trade-off relation between average fidelity and fidelity deviation, and two-qubit operations show a looser trade-off relation. The genuine universality holds for operations of more than two qubits, and those of even more qubits are beneficial to compensating imperfection of control. In addition, we take into account operational noises which contaminate quantum operation in realistic circumstances. We show that the operation recovers from the contamination by a feedback procedure of differential evolution. Our feedback scheme is also applicable to finding an optimal and universal operation of NOT.
Pion - Nucleon Bremsstrahlung beyond the Soft-Photon approximation
A. Mariano
2000-04-06
A dynamical model based on effective Lagrangians is proposed to describe the bremsstrahlung reaction $ \\pi N \\to \\pi N \\gamma$ at low energies. The $\\Delta(1232)$ degrees of freedom are incorporated in a way consistent with both, electromagnetic gauge invariance and invariance under contact transformations. The model also includes the initial and final state rescattering of hadrons via a T-matrix with off the momentum-shell effects. The double differential distribution of photons is computed for three different T-matrix models and the results are compared with the soft photon approximation, and with experimental data. The aim of this analysis is to test the off-shell behaviour of the different T-matrices under consideration. Finally an alternative simpler dynamical model that incorporates the unstable character of the isobar-$\\Delta(1232)$ through a complex mass, is presented. As we will see it is suitable for the study of the magnetic moment of the resonance.
A renormalisation group method. II. Approximation by local polynomials
David C. Brydges; Gordon Slade
2014-11-25
This paper is the second in a series devoted to the development of a rigorous renormalisation group method for lattice field theories involving boson fields, fermion fields, or both. The method is set within a normed algebra $\\mathcal{N}$ of functionals of the fields. In this paper, we develop a general method---localisation---to approximate an element of $\\mathcal{N}$ by a local polynomial in the fields. From the point of view of the renormalisation group, the construction of the local polynomial corresponding to $F$ in $\\mathcal{N}$ amounts to the extraction of the relevant and marginal parts of $F$. We prove estimates relating $F$ and its corresponding local polynomial, in terms of the $T_{\\phi}$ semi-norm introduced in part I of the series.
Particle-particle random phase approximation applied to Beryllium isotopes
Guillaume Blanchon; Nicole Vinh Mau; Angela Bonaccorso; Marc Dupuis; Nathalie Pillet
2010-07-16
This work is dedicated to the study of even-even 8-14 Be isotopes using the particle-particle Random Phase Approximation that accounts for two-body correlations in the core nucleus. A better description of energies and two-particle amplitudes is obtained in comparison with models assuming a neutron closed-shell (or subshell) core. A Wood-Saxon potential corrected by a phenomenological particle-vibration coupling term has been used for the neutron-core interaction and the D1S Gogny force for the neutron-neutron interaction. Calculated ground state properties as well as excited state ones are discussed and compared to experimental data. In particular, results suggest the same 2s_1/2-1p_1/2 shell inversion in 13Be as in 11Be.
Low density, resorcinol-formaldehyde aerogels
Pekala, R.W.
1989-10-10
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Low density, resorcinol-formaldehyde aerogels
Pekala, R.W.
1988-05-26
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.
Low density, resorcinol-formaldehyde aerogels
Pekala, Richard W. (Pleasant Hill, CA)
1989-01-01
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Low density, resorcinol-formaldehyde aerogels
Pekala, Richard W. (Pleasant Hill, CA)
1991-01-01
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Instabilities in the Nuclear Energy Density Functional
M. Kortelainen; T. Lesinski
2010-02-05
In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.
Mixed series in ultraspherical polynomials and their approximation properties
Sharapudinov, I I
2003-04-30
New (mixed) series in ultraspherical polynomials P{sub n}{sup {alpha}}{sup ,{alpha}}(x) are introduced. The basic difference between a mixed series in the polynomials P{sub n}{sup {alpha}}{sup ,{alpha}}(x) and a Fourier series in the same polynomials is as follows: a mixed series contains terms of the form (2{sup r}f{sub r,k}{sup {alpha}})/(k+2{alpha}){sup [r]}) P{sub k+r}{sup {alpha}}{sup -r,{alpha}}{sup -r}(x), where 1{<=}r is an integer and f{sub r,k}{sup {alpha}} is the kth Fourier coefficient of the derivative f{sup (r)}(x) with respect to the ultraspherical polynomials P{sub k}{sup {alpha}}{sup ,{alpha}}(x). It is shown that the partial sums Y{sub n+2r}{sup {alpha}}(f,x) of a mixed series in the polynomial P{sub k}{sup {alpha}}{sup ,{alpha}}(x) contrast favourably with Fourier sums S{sub n}{sup {alpha}}(f,x) in the same polynomials as regards their approximation properties in classes of differentiable and analytic functions, and also in classes of functions of variable smoothness. In particular, the Y{sub n+2r}{sup {alpha}}(f,x) can be used for the simultaneous approximation of a function f(x) and its derivatives of orders up to (r- 1), whereas the S{sub n}{sup {alpha}}(f,x) are not suitable for this purpose.
Polymer quantization and the saddle point approximation of partition functions
Hugo A. Morales Técotl; Daniel H. Orozco Borunda; Saeed Rastgoo
2015-07-31
The saddle point approximation of the path integral partition functions is an important way of deriving the thermodynamical properties of black holes. However, there are certain black hole models and some mathematically analog mechanical models for which this method can not be applied directly. This is due to the fact that their action evaluated on a classical solution is not finite and its first variation does not vanish for all consistent boundary conditions. These problems can be dealt with by adding a counter-term to the classical action, which is a solution of the corresponding Hamilton-Jacobi equation. In this work we study the effects of polymer quantization on a mechanical model presenting the aforementioned difficulties and contrast it with the above counter-term method. This type of quantization for mechanical models is motivated by the loop quantization of gravity which is known to play a role in the thermodynamics of black holes systems. The model we consider is a non relativistic particle in an inverse square potential and analyze two polarizations of the polymer quantization in which either the position or the momentum is discrete. In the former case, Thiemann's regularization is applied to represent the inverse power potential but we still need to incorporate the Hamilton-Jacobi counter-term which is now modified by polymer corrections. In the latter, momentum discrete case however, such regularization could not be implemented. Yet, remarkably, due to the fact that the position is bounded, we do not need a Hamilton-Jacobi counter-term in order to have a well defined saddle point approximation. Further developments and extensions are commented upon in the discussion.
Polymer quantization and the saddle point approximation of partition functions
Hugo A. Morales-Técotl; Daniel H. Orozco-Borunda; Saeed Rastgoo
2015-11-10
The saddle point approximation of the path integral partition functions is an important way of deriving the thermodynamical properties of black holes. However, there are certain black hole models and some mathematically analog mechanical models for which this method cannot be applied directly. This is due to the fact that their action evaluated on a classical solution is not finite and its first variation does not vanish for all consistent boundary conditions. These problems can be dealt with by adding a counterterm to the classical action, which is a solution of the corresponding Hamilton-Jacobi equation. In this work we study the effects of polymer quantization on a mechanical model presenting the aforementioned difficulties and contrast it with the above counterterm method. This type of quantization for mechanical models is motivated by the loop quantization of gravity which is known to play a role in the thermodynamics of black hole systems. The model we consider is a nonrelativistic particle in an inverse square potential, and analyze two polarizations of the polymer quantization in which either the position or the momentum is discrete. In the former case, Thiemann's regularization is applied to represent the inverse power potential but we still need to incorporate the Hamilton-Jacobi counterterm which is now modified by polymer corrections. In the latter, momentum discrete case however, such regularization could not be implemented. Yet, remarkably, owing to the fact that the position is bounded, we do not need a Hamilton-Jacobi counterterm in order to have a well-defined saddle point approximation. Further developments and extensions are commented upon in the discussion.
Gui Lu Long; Yi-Fan Zhou; Jia-Qi Jin; Yang Sun; Hai-Woong Lee
2006-04-20
We clarify different definitions of the density matrix by proposing the use of different names, the full density matrix for a single-closed quantum system, the compressed density matrix for the averaged single molecule state from an ensemble of molecules, and the reduced density matrix for a part of an entangled quantum system, respectively. We show that ensembles with the same compressed density matrix can be physically distinguished by observing fluctuations of various observables. This is in contrast to a general belief that ensembles with the same compressed density matrix are identical. Explicit expression for the fluctuation of an observable in a specified ensemble is given. We have discussed the nature of nuclear magnetic resonance quantum computing. We show that the conclusion that there is no quantum entanglement in the current nuclear magnetic resonance quantum computing experiment is based on the unjustified belief that ensembles having the same compressed density matrix are identical physically. Related issues in quantum communication are also discussed.
Spin- and Pair-Density-Wave Glasses
Mross, David F.
Spontaneous breaking of translational symmetry, known as density-wave order, is common in nature. However, such states are strongly sensitive to impurities or other forms of frozen disorder leading to fascinating glassy ...
LANDAU'S NECESSARY DENSITY CONDITIONS FOR LCA GROUPS
Kutyniok, Gitta
LANDAU'S NECESSARY DENSITY CONDITIONS FOR LCA GROUPS KARLHEINZ GRÂ¨OCHENIG, GITTA KUTYNIOK's conditions to the setting of locally compact abelian (LCA) groups, relying in an analogous way on the basics
Density controlled carbon nanotube array electrodes
Ren, Zhifeng F. (Newton, MA); Tu, Yi (Belmont, MA)
2008-12-16
CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.
Shock compression of low-density foams
Holmes, N.C.
1993-07-01
Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.
Magnetic fields and density functional theory
Salsbury Jr., Freddie
1999-02-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.
Breast Density and Cancer | GE Global Research
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Breast Cancer Awareness Series: Understanding Breast Density Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...
Alpha track density using a semiconductor detector
Hamilton, Ian Scott
1993-01-01
of factors including variation in the initial dielectric thickness, and other undefined parameters. In addition, the resultant radon concentration reading is dependent upon the calibration factor used to interpret the track density reading. Obtaining...
Primordial Density Fluctuations in Phase Coupling Gravity
C. E. M. Batista; M. Schiffer
1996-01-10
In this paper we study the evolution of density perturbations in the framework of Phase Coupling Gravity theory at the very early universe. We show that these perturbation display an exponential-like behaviour.
Density shock waves in confined microswimmers
Tsang, Alan Cheng Hou
2015-01-01
Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from `subsonic' with compression at the back to `supersonic' with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a non-trivial interplay between hydrodynamic interactions and geometric confinement, and is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechan...
Density of states of disordered systems
van Rossum, Mark; Nieuwenhuizen, Th.M; Hofstetter, E; Schreiber, M
1994-05-15
Density of states calculations for the tight-binding model with diagonal disorder are presented. An instanton approach is used to calculate the tails of the spectrum, including all prefactors. It is shown that a Hartree ...
Densities of Minor-Closed Graph Families
Eppstein, David
2010-01-01
N. Robertson and P. D. Seymour. Graph Minors. XX. Wagner’sChudnovsky, B. Reed, and P. Seymour. The edge-density for KReferences [1] N. Alon, P. Seymour, and R. Thomas. A
Spacetime Average Density (SAD) cosmological measures
Page, Don N.
2014-11-01
The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.
Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States) [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)
2014-05-14
Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.
Ligand identification using electron-density mapcorrelations
Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn,Judith D.
2006-12-01
A procedure for the identification of ligands bound incrystal structuresof macromolecules is described. Two characteristics ofthe density corresponding to a ligand are used in the identificationprocedure. One is the correlation of the ligand density with each of aset of test ligands after optimization of the fit of that ligand to thedensity. The other is the correlation of a fingerprint of the densitywith the fingerprint of model density for each possible ligand. Thefingerprints consist of an ordered list of correlations of each the testligands with the density. The two characteristics are scored using aZ-score approach in which the correlations are normalized to the mean andstandard deviation of correlations found for a variety of mismatchedligand-density pairs, so that the Z scores are related to the probabilityof observing a particular value of the correlation by chance. Theprocedure was tested with a set of 200 of the most commonly found ligandsin the Protein Data Bank, collectively representing 57 percent of allligands in the Protein Data Bank. Using a combination of these twocharacteristics of ligand density, ranked lists of ligand identificationswere made for representative (F-o-F-c) exp(i phi(c)) difference densityfrom entries in the Protein Data Bank. In 48 percent of the 200 cases,the correct ligand was at the top of the ranked list of ligands. Thisapproach may be useful in identification of unknown ligands in newmacromolecular structures as well as in the identification of whichligands in a mixture have bound to a macromolecule.
Redshift Evolution of Galaxy Cluster Densities
R. G. Carlberg; S. L. Morris; H. K. C. Yee; E. Ellingson
1997-01-20
The number of rich galaxy clusters per unit volume is a strong function of Omega, the cosmological density parameter, and sigma_8, the linear extrapolation to z=0 of the density contrast in 8/h Mpc spheres. The CNOC cluster redshift survey provides a sample of clusters whose average mass profiles are accurately known, which enables a secure association between cluster numbers and the filtered density perturbation spectrum. We select from the CNOC cluster survey those EMSS clusters with bolometric L_x>=10^45 erg/s and a velocity dispersion exceeding 800 km/s in the redshift ranges 0.18-0.35 and 0.35-0.55. We compare the number density of these subsamples with similar samples at both high and low redshift. Using the Press-Schechter formalism and CDM style structure models, the density data are described with sigma_8=0.75+/-0.1 and Omega=0.4+/-0.2 (90% confidence). The cluster dynamical analysis gives Omega=0.2+/-0.1$ for which sigma_8=0.95+/-0.1 (90% confidence). The predicted cluster density evolution in an \\Omega=1 CDM model exceeds that observed by more than an order of magnitude.
Force Density Balance inside the Hydrogen Atom
Himpsel, F J
2015-01-01
Motivated by the long-debated question about the internal stability of the electron, the force densities acting on the charge density of the 1s electron in the H atom are investigated. The problem is mapped onto the canonical formalism for a classical Dirac field coupled to the electric field of an external point charge. An explicit calculation shows that the attractive Coulomb force density is balanced exactly at every point in space by the repulsive confinement force density. The latter requires evaluating the divergence of the stress tensor for the 1s solution of the Dirac equation. Such a local force balance goes beyond the global stability criteria that are usually given for the H atom. This concept is extended to the internal stability of any charged particle by investigating the force densities acting on its surrounding vacuum polarization. At large distances one has to consider only the charge density of virtual electrons and positrons, induced by a point charge in the vacuum of quantum electrodynamic...
Asymptotic safety in the f(R) approximation
Juergen A. Dietz; Tim R. Morris
2013-01-28
In the asymptotic safety programme for quantum gravity, it is important to go beyond polynomial truncations. Three such approximations have been derived where the restriction is only to a general function f(R) of the curvature R>0. We confront these with the requirement that a fixed point solution be smooth and exist for all non-negative R. Singularities induced by cutoff choices force the earlier versions to have no such solutions. However, we show that the most recent version has a number of lines of fixed points, each supporting a continuous spectrum of eigen-perturbations. We uncover and analyse the first five such lines. Sensible fixed point behaviour may be achieved if one consistently incorporates geometry/topology change. As an exploratory example, we analyse the equations analytically continued to R<0, however we now find only partial solutions.We show how these results are always consistent with, and to some extent can be predicted from, a straightforward analysis of the constraints inherent in the equations.
Approximating Ground and Excited State Energies on a Quantum Computer
Stuart Hadfield; Anargyros Papageorgiou
2015-08-06
Approximating ground and a fixed number of excited state energies, or equivalently low order Hamiltonian eigenvalues, is an important but computationally hard problem. Typically, the cost of classical deterministic algorithms grows exponentially with the number of degrees of freedom. Under general conditions, and using a perturbation approach, we provide a quantum algorithm that produces estimates of a constant number $j$ of different low order eigenvalues. The algorithm relies on a set of trial eigenvectors, whose construction depends on the particular Hamiltonian properties. We illustrate our results by considering a special case of the time-independent Schr\\"odinger equation with $d$ degrees of freedom. Our algorithm computes estimates of a constant number $j$ of different low order eigenvalues with error $O(\\epsilon)$ and success probability at least $\\frac34$, with cost polynomial in $\\frac{1}{\\epsilon}$ and $d$. This extends our earlier results on algorithms for estimating the ground state energy. The technique we present is sufficiently general to apply to problems beyond the application studied in this paper.
Polymer quantization and the saddle point approximation of partition functions
Técotl, Hugo A Morales; Rastgoo, Saeed
2015-01-01
The saddle point approximation of the path integral partition functions is an important way of deriving the thermodynamical properties of black holes. However, there are certain black hole models and some mathematically analog mechanical models for which this method can not be applied directly. This is due to the fact that their action evaluated on a classical solution is not finite and its first variation does not vanish for all consistent boundary conditions. These problems can be dealt with by adding a counter-term to the classical action, which is a solution of the corresponding Hamilton-Jacobi equation. In this work we study the effects of polymer quantization on a mechanical model presenting the aforementioned difficulties and contrast it with the above counter-term method. This type of quantization for mechanical models is motivated by the loop quantization of gravity which is known to play a role in the thermodynamics of black holes systems. The model we consider is a non relativistic particle in an i...
Quasilocalized charge approximation in strongly coupled plasma physics
Golden, Kenneth I. [Department of Mathematics and Statistics, Department of Physics, University of Vermont, Burlington, Vermont 05401-1455 (United States)] [Department of Mathematics and Statistics, Department of Physics, University of Vermont, Burlington, Vermont 05401-1455 (United States); Kalman, Gabor J. [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States)] [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States)
2000-01-01
The quasilocalized charge approximation (QLCA) was proposed in 1990 [G. Kalman and K. I. Golden, Phys. Rev. A 41, 5516 (1990)] as a formalism for the analysis of the dielectric response tensor and collective mode dispersion in strongly coupled Coulomb liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. The authors review the application of the QLC approach to a variety of systems which can exhibit strongly coupled plasma behavior: (i) the one-component plasma (OCP) model in three dimensions (e.g., laser-cooled trapped ions) and (ii) in two dimensions (e.g., classical 2D electron liquid trapped above the free surface of liquid helium), (iii) binary ionic mixture in a neutralizing uniform background (e.g., carbon-oxygen white dwarf interiors), (iv) charged particle bilayers (e.g., semiconductor electronic bilayers), and (v) charged particles in polarizable background (e.g., laboratory dusty plasmas). (c) 2000 American Institute of Physics.
Convergence analysis of the thermal discrete dipole approximation
Edalatpour, Sheila; Trueax, Tyler; Backman, Roger; Francoeur, Mathieu
2015-01-01
The thermal discrete dipole approximation (T-DDA) is a numerical approach for modeling near-field radiative heat transfer in complex three-dimensional geometries. In this work, the convergence of the T-DDA is investigated using the exact solution for two spheres separated by a vacuum gap. The error associated with the T-DDA is reported for various size parameters, refractive indices and vacuum gap sizes. The results reveal that for a fixed number of sub-volumes, the accuracy of the T-DDA degrades as the refractive index and the sphere diameter to gap ratio increase. A converging trend is observed as the number of sub-volumes increases. The large computational requirements associated with increasing the number of sub-volumes, and the shape error induced by large sphere diameter to gap ratios, are mitigated by using a non-uniform discretization scheme. Non-uniform discretization is shown to significantly accelerate the convergence of the T-DDA, and is thus recommended for near-field thermal radiation simulation...
DARCY'S FLOW WITH PRESCRIBED CONTACT ANGLE WELL-POSEDNESS AND LUBRICATION APPROXIMATION
DARCY'S FLOW WITH PRESCRIBED CONTACT ANGLE Â WELL-POSEDNESS AND LUBRICATION APPROXIMATION HANS KN at the contact point. In the so called lubrication approximation (long-wave limit) we show that the solutions
Journal of Approximation Theory 147 (2007) 185195 www.elsevier.com/locate/jat
Elad, Michael
2007-01-01
Journal of Approximation Theory 147 (2007) 185195 www.elsevier.com/locate/jat On Lebesgue.L. Donoho et al. / Journal of Approximation Theory 147 (2007) 185195 Inequality (1.1) relates the error
Kudzu (Pueraria montana) community responses to herbicides, burning, and high-density loblolly pine
T.B. Harrington; L.T. Rader-Dixon; J.W. Taylor, Jr.
2003-11-01
Kudzu is an aggressive, nonnative vine that currently dominates an estimated 810,000 ha of mesic forest communities in the eastern United States. To test an integrated method of weed control, abundances of kudzu and other plant species were compared during 4 yr after six herbicide treatments (clopyralid, triclopyr, metsulfuron, picloram 1 2,4-D, tebuthiuron, and a nonsprayed check), in which loblolly pines were planted at three densities (0, 1, and 4 seedlings m22) to induce competition and potentially delay kudzu recovery. This split-plot design was replicated on each of the four kudzu-dominated sites near Aiken, SC. Relative light intensity (RLI) and soil water content (SWC) were measured periodically to identify mechanisms of interference among plant species. Two years after treatment (1999), crown coverage of kudzu averaged , 2% in herbicide plots compared with 93% in the nonsprayed check, and these differences were maintained through 2001, except in clopyralid plots where kudzu cover increased to 15%. In 2001, pine interference was associated with 33, 56, and 67% reductions in biomass of kudzu, blackberry, and herbaceous vegetation, respectively. RLI in kudzu-dominated plots (4 to 15% of full sun) generally was less than half that of herbicide-treated plots. SWC was greatest in tebuthiuron plots, where total vegetation cover averaged 26% compared with 77 to 111% in other plots. None of the treatments eradicated kudzu, but combinations of herbicides and induced pine competition delayed its recovery.
Energy Density Fluctuations in Inflationary Cosmology
Harald F. Muller; Christoph Schmid
1994-12-07
We analyze the energy density fluctuations contributed by scalar fields $\\Phi$ with vanishing expectation values, $\\langle\\Phi\\rangle=0$, which are present in addition to the inflaton field. For simplicity we take $\\Phi$ to be non--interacting and minimally coupled to gravity. We use normal ordering to define the renormalized energy density operator $\\rho$, and we show that any normal ordering gives the same result for correlation functions of $\\rho$. We first consider massless fields and derive the energy fluctuations in a single mode $\\vk$, the two--point correlation function of the energy density, the power spectrum, and the variance of the smeared energy density, $\\ddR$. Mass effects are investigated for energy fluctuations in single modes. All quantities considered are scale invariant at the second horizon crossing (Harrison--Zel'dovich type) for massless and for unstable massive fields. The magnitude of the relative fluctuations $\\de\\rho/\\rt$ is of order $(\\Hi/\\Mp)^2$ in the massless case, where $\\Hi$ is the Hubble constant during inflation. For an unstable field of mass $m_\\Phi\\ll\\Hi$ with a decay rate $\\Gamma_\\Phi$ the magnitude is enhanced by a factor $\\sqrt{m_\\Phi/\\Gamma_\\Phi}$. Finally, the prediction for the cosmic variance of the average energy density in a sample is given in the massless case.
Orbital-optimized density cumulant functional theory
Sokolov, Alexander Yu. Schaefer, Henry F.
2013-11-28
In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.
Gillespie, Dirk
2013-10-01
An algorithm to approximately calculate the partition function (and subsequently ensemble averages) and density of states of lattice spin systems through non-Monte-Carlo random sampling is developed. This algorithm (called the sampling-the-mean algorithm) can be applied to models where the up or down spins at lattice nodes interact to change the spin states of other lattice nodes, especially non-Ising-like models with long-range interactions such as the biological model considered here. Because it is based on the Central Limit Theorem of probability, the sampling-the-mean algorithm also gives estimates of the error in the partition function, ensemble averages, and density of states. Easily implemented parallelization strategies and error minimizing sampling strategies are discussed. The sampling-the-mean method works especially well for relatively small systems, systems with a density of energy states that contains sharp spikes or oscillations, or systems with little a priori knowledge of the density of states.
Local random quantum circuits are approximate polynomial-designs
Fernando G. S. L. Brandao; Aram W. Harrow; Michal Horodecki
2015-08-13
We prove that local random quantum circuits acting on n qubits composed of O(t^{10} n^2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are infty-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O(t^{10}n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O(n^k) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O(n^{(k-9)/11}) that are given oracle access to U.
Comparison of moment-closure approximations for stochastic chemical kinetics
David Schnoerr; Guido Sanguinetti; Ramon Grima
2015-08-07
In recent years moment-closure approximations (MA) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reaction systems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper we study the normal, Poisson, log-normal and central-moment-neglect MAs by applying them to understand the stochastic properties of chemical systems whose deterministic rate equations show the properties of bistability, ultrasensitivity and oscillatory behaviour. Our results suggest that the normal MA is favourable over the other studied MAs. In particular we found that (i) the size of the region of parameter space where a closure gives physically meaningful results, e.g. positive mean and variance, is considerably larger for the normal closure than for the other three closures; (ii) the accuracy of the predictions of the four closures (relative to simulations using the stochastic simulation algorithm) is comparable in those regions of parameter space where all closures give physically meaningful results; (iii) the Poisson and log-normal MAs are not uniquely defined for systems involving conservation laws in molecule numbers. We also describe the new software package MOCA which enables the automated numerical analysis of various MA methods in a graphical user interface and which was used to perform the comparative analysis presented in this paper. MOCA allows the user to develop novel closure methods and can treat polynomial, non-polynomial, as well as time-dependent propensity functions, thus being applicable to virtually any chemical reaction system.
Markov Jump Processes Approximating a Non-Symmetric Generalized Diffusion
Limic, Nedzad
2011-08-15
Consider a non-symmetric generalized diffusion X( Dot-Operator ) in Double-Struck-Capital-R {sup d} determined by the differential operator A(x) = -{Sigma}{sub ij} {partial_derivative}{sub i}a{sub ij}(x){partial_derivative}{sub j} + {Sigma}{sub i} b{sub i}(x){partial_derivative}{sub i}. In this paper the diffusion process is approximated by Markov jump processes X{sub n}( Dot-Operator ), in homogeneous and isotropic grids G{sub n} Subset-Of Double-Struck-Capital-R {sup d}, which converge in distribution in the Skorokhod space D([0,{infinity}), Double-Struck-Capital-R {sup d}) to the diffusion X( Dot-Operator ). The generators of X{sub n}( Dot-Operator ) are constructed explicitly. Due to the homogeneity and isotropy of grids, the proposed method for d{>=}3 can be applied to processes for which the diffusion tensor {l_brace}a{sub ij}(x){r_brace}{sub 11}{sup dd} fulfills an additional condition. The proposed construction offers a simple method for simulation of sample paths of non-symmetric generalized diffusion. Simulations are carried out in terms of jump processes X{sub n}( Dot-Operator ). For piece-wise constant functions a{sub ij} on Double-Struck-Capital-R {sup d} and piece-wise continuous functions a{sub ij} on Double-Struck-Capital-R {sup 2} the construction and principal algorithm are described enabling an easy implementation into a computer code.
Fabrication of low density ceramic material
Meek, T.T.; Blake, R.D.; Sheinberg, H.
1985-01-01
A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.
Statistical approach to nuclear level density
Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.
2014-10-15
We discuss the level density in a finite many-body system with strong interaction between the constituents. Our primary object of applications is the atomic nucleus but the same techniques can be applied to other mesoscopic systems. We calculate and compare nuclear level densities for given quantum numbers obtained by different methods, such as nuclear shell model (the most successful microscopic approach), our main instrument - moments method (statistical approach), and Fermi-gas model; the calculation with the moments method can use any shell-model Hamiltonian excluding the spurious states of the center-of-mass motion. Our goal is to investigate statistical properties of nuclear level density, define its phenomenological parameters, and offer an affordable and reliable way of calculation.
High power density solid oxide fuel cells
Pham, Ai Quoc; Glass, Robert S.
2004-10-12
A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.
Strongly Interacting Matter at High Energy Density
Larry McLerran
2008-12-08
This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition . At high baryon density and low temperature, large $N_c$ arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.
Pugh, Mary
THE LUBRICATION APPROXIMATION FOR THIN VISCOUS FILMS: REGULARITY AND LONG TIME BEHAVIOR OF WEAK = - Â· (f(h) h) in one space dimension. This equation, derived from a `lubrication approximation', models from a `lubrication approximation', models surface tension dominated motion of thin viscous films
Pugh, Mary
THE LUBRICATION APPROXIMATION FOR THIN VISCOUS FILMS: REGULARITY AND LONG TIME BEHAVIOR OF WEAK t = -# Â· (f(h)##h) in one space dimension. This equation, derived from a `lubrication approximation', models. This equation, derived from a `lubrication approximation', models surface tension dominated motion of thin
Matrix multiplication over word-size prime fields using Bini's approximate formula
Paris-Sud XI, Université de
Matrix multiplication over word-size prime fields using Bini's approximate formula Brice Boyer Jean-Guillaume Dumas Abstract Bini's approximate formula (or border rank) for matrix multiplication achieves a better the approximate formula in the special case where the ring is Z/pZ. Besides, we show an implemen- tation à la
A New Look at the High Frequency Boundary Element and Rayleigh Integral Approximations
Seybert, Andrew F.
03NVC-114 A New Look at the High Frequency Boundary Element and Rayleigh Integral Approximations D of Automotive Engineers, Inc. ABSTRACT This paper revisits the popular Rayleigh integral approximation, and also to the Rayleigh integral. Both methods are approximations to the boundary integral equation, and can solve
An analytic approximation to the Diffusion Coefficient for the periodic Lorentz Gas
C. Angstmann; G. P. Morriss
2012-02-14
An approximate stochastic model for the topological dynamics of the periodic triangular Lorentz gas is constructed. The model, together with an extremum principle, is used to find a closed form approximation to the diffusion coefficient as a function of the lattice spacing. This approximation is superior to the popular Machta and Zwanzig result and agrees well with a range of numerical estimates.
Approximate Dynamic Programming for Dynamic Capacity Allocation with Multiple Priority Levels
Topaloglu, Huseyin
Approximate Dynamic Programming for Dynamic Capacity Allocation with Multiple Priority Levels In this paper, we consider a quite general dynamic capacity allocation problem. There is a fixed amount of daily to construct separable approximations to the value functions. We use the value function approximations for two
Comparison of Approximation Methods for Computing Tolerance Factors for a Multivariate
Krishnamoorthy, Kalimuthu
Comparison of Approximation Methods for Computing Tolerance Factors for a Multivariate Normal approximation methods for computing the tolerance factors of a multivariate normal population. These approximate on the multivariate setup is rather limited, how- ever. The first attempt at constructing tolerance regions
A mixed formulation for the direct approximation -weighted controls for the linear heat
Boyer, Edmond
A mixed formulation for the direct approximation of L2 -weighted controls for the linear heat of null controls for the linear heat equa- tion. The goal is to compute approximations of controls-Cara & MÂ¨unch, Strong convergence approximations of null controls for the 1D heat equation, 2013], a so
Approximate and Fiducial Confidence Intervals for the Difference Between Two Binomial Proportions
Krishnamoorthy, Kalimuthu
Approximate and Fiducial Confidence Intervals for the Difference Between Two Binomial Proportions K of estimating the difference between two binomial proportions is considered. Closed-form approximate confidence intervals (CIs), and a fiducial CI for the difference between proportions are proposed. The approximate CIs
PreDVS: Preemptive Dynamic Voltage Scaling for Real-time Systems using Approximation Scheme
Mishra, Prabhat
, dynamic voltage scal- ing, approximation algorithm 1. INTRODUCTION Energy conservation has been the main to save energy is that linear reduction in the supply voltage leads to approximately linear slow downPreDVS: Preemptive Dynamic Voltage Scaling for Real-time Systems using Approximation Scheme Weixun
Density functional theory study of (OCS)2^-
Bilalbegovic, G
2007-01-01
The structural and electronic properties of the carbonyl sulfide dimer anion are calculated using density functional theory within a pseudopotential method. Three geometries are optimized and investigated: C2v and C2 symmetric, as well as one asymmetric structure. A distribution of an excess charge in three isomers are studied by the Hirshfeld method. In an asymmetric (OCS)2^- isomer the charge is not equally divided between the two moieties, but it is distributed as OCS^{-0.6} OCS^{-0.4}. Low-lying excitation levels of three isomers are compared using the time-dependent density functional theory in the Casida approach.
Low density, microcellular foams, preparation, and articles
Young, Ainslie T. (Los Alamos, NM); Marsters, Robert G. (Jemez Springs, NM); Moreno, Dawn K. (Espanola, NM)
1984-01-01
A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
Low density, microcellular foams, preparation, and articles
Young, A.T.
1982-03-03
A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
Dark Energy Density in Brane World
Hai-Bao Wen; Xin-Bing Huang
2005-02-08
We present a possible explanation to the tiny positive cosmological constant under the frame of AdS$_5$ spacetime embedded by a dS$_4$ brane. We calculate the dark energy density by summing the zero point energy of massive scalar fields in AdS$_5$ spacetime. Under the assumption that the radius of AdS$_5$ spacetime is of the same magnitude as the radius of observable universe, the dark energy density in dS$_4$ brane is obtained, which is smaller than the observational value. The reasons are also discussed.
Configuration Interactions Constrained by Energy Density Functionals
B. Alex Brown; Angelo Signoracci; Morten Hjorth-Jensen
2010-09-24
A new method for constructing a Hamiltonian for configuration interaction calculations with constraints to energies of spherical configurations obtained with energy-density-functional (EDF) methods is presented. This results in a unified model that reproduced the EDF binding-energy in the limit of single-Slater determinants, but can also be used for obtaining energy spectra and correlation energies with renormalized nucleon-nucleon interactions. The three-body and/or density-dependent terms that are necessary for good nuclear saturation properties are contained in the EDF. Applications to binding energies and spectra of nuclei in the region above 208Pb are given.
Vazquez-Mayagoitia, Alvaro; Sherrill, David; Apra, Edoardo; Sumpter, Bobby G
2010-01-01
A recently proposed double-hybrid functional called XYG3 and a semilocal GGA functional (B97-D) with a semiempirical correction for van der Waals interactions have been applied to study the potential energy curves along the dissociation coordinates of weakly bound pairs of molecules governed by London dispersion and induced dipole forces. Molecules treated in this work were the parallel sandwich, T-shaped, and parallel-displaced benzene dimer, (C6H6)2; hydrogen sulfide and benzene, H2S C6H6; methane and benzene, CH4 C6H6; the methane dimer, (CH4)2; and the pyridine dimer, (C5H5N)2. We compared the potential energy curves of these functionals with previously published benchmarks at the coupled cluster singles, doubles, and perturbative triplets [CCSD(T)] complete-basis-set limit. Both functionals, XYG3 and B97-D, exhibited very good performance, reproducing accurate energies for equilibrium distances and a smooth behavior along the dissociation coordinate. Overall, we found an agreement within a few tenths of one kcal mol-1 with the CCSD(T) results across the potential energy curves.
Scalettar, Richard T.
occupancy, we find a noticeable decrease in correlation on compression across the transition; however, even-liquid behavior with an effective mass of about 20me .6 Also the magnetic susceptibility and its temperature dependence change from a Curie-Weiss-like behavior in the phase to a Pauli paramagnetic behavior in the phase
On the Determination of the Mean Cosmic Matter Density and the Amplitude of Density Fluctuations
Thomas H. Reiprich
2002-07-02
The cosmological implications from a new estimate of the local X-ray galaxy cluster abundance are summarized. The results are then compared to independent observations. It is suggested that `low' values for the mean cosmic matter density and the amplitude of mass density fluctuations currently do not appear unreasonable observationally.
neutron density. The neutron density (nn) of the source was modeled by solving the simul-
West, Stuart
neutron density. The neutron density (nn) of the source was modeled by solving the simul- taneousT is the thermal neutron velocity, l is the decay constant, Ns is the s-process abun- dance, bsÀ is the maxwellian-averaged neutron capture cross-section, and t0 is the average neutron exposure (21). The branching decay of 186Re
Matteo Viel; Martin G. Haehnelt; Volker Springel
2006-04-20
We implement the hydro-PM (HPM) technique (Gnedin & Hui 1998) in the hydrodynamical simulation code GADGET-II and quantify the differences between this approximate method and full hydrodynamical simulations of the Lyman-alpha forest in a concordance LCDM model. At redshifts z=3 and z=4, the differences between the gas and dark matter (DM) distributions, as measured by the one-point distribution of density fluctuations, the density power spectrum and the flux power spectrum, systematically decrease with increasing resolution of the HPM simulqation. However, reducing these differences to less than a few percent requires a significantly larger number of grid-cells than particles, with a correspondingly larger demand for memory. Significant differences in the flux decrement distribution remain even for very high resolution hydro-PM simulations, particularly at low redshift. At z=2, the differences between the flux power spectra obtained from HPM simulations and full hydrodynamical simulations are generally large and of the order of 20-30 %, and do not decrease with increasing resolution of the HPM simulation. This is due to the presence of large amounts of shock-heated gas, a situation which is not adequately modelled by the HPM approximation. We confirm the results of Gnedin & Hui (1998) that the statistical properties of the flux distribution are discrepant by > 5-20 % when compared to full hydrodynamical simulations. The discrepancies in the flux power spectrum are strongly scale- and redshift-dependent and extend to large scales. Considerable caution is needed in attempts to use calibrated HPM simulations for quantitative predictions of the flux power spectrum and other statistical properties of the Lyman-alpha forest.
Pauling bond strength, bond length and electron density distribution
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.
2014-01-18
A power law regression equation, /r)-0.21, determined for a large number of oxide crystals at ambient conditions and /r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ?(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, ?, power law expression ? = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, = r[(1.41)/
Self-interaction corrections in density functional theory
Tsuneda, Takao; Hirao, Kimihiko
2014-05-14
Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds.
Hybrid Dynamic Density Functional Theory for Polymer Melts and Blends
Takashi Honda; Toshihiro Kawakatsu
2006-09-05
We propose a high-speed and accurate hybrid dynamic density functional theory for the computer simulations of the phase separation processes of polymer melts and blends. The proposed theory is a combination of the dynamic self-consistent field (SCF) theory and a time-dependent Ginzburg-Landau type theory with the random phase approximation (GRPA). The SCF theory is known to be accurate in evaluating the free energy of the polymer systems in both weak and strong segregation regions although it has a disadvantage of the requirement of a considerable amount of computational cost. On the other hand, the GRPA theory has an advantage of much smaller amount of required computational cost than the SCF theory while its applicability is limited to the weak segregation region. To make the accuracy of the SCF theory and the high-performance of the GRPA theory compatible, we adjust the chemical potential of the GRPA theory by using the SCF theory every constant time steps in the dynamic simulations. The performance of the GRPA and the hybrid theories is tested by using several systems composed of an A/B homopolymer, an AB diblock copolymer, or an ABC triblock copolymer. Using the hybrid theory, we succeeded in reproducing the metastable complex phase-separated domain structures of an ABC triblock copolymer observed by experiments.
Energy density fluctuations in inflationary cosmology
Müller, H F; Muller, Harald F; Schmid, Christoph
1994-01-01
We analyze the energy density fluctuations contributed by scalar fields \\Phi with vanishing expectation values, \\langle\\Phi\\rangle=0, which are present in addition to the inflaton field. For simplicity we take \\Phi to be non--interacting and minimally coupled to gravity. We use normal ordering to define the renormalized energy density operator \\rho, and we show that any normal ordering gives the same result for correlation functions of \\rho. We first consider massless fields and derive the energy fluctuations in a single mode \\vk, the two--point correlation function of the energy density, the power spectrum, and the variance of the smeared energy density, \\ddR. Mass effects are investigated for energy fluctuations in single modes. All quantities considered are scale invariant at the second horizon crossing (Harrison--Zel'dovich type) for massless and for unstable massive fields. The magnitude of the relative fluctuations \\de\\rho/\\rt is of order (\\Hi/\\Mp)^2 in the massless case, where \\Hi is the Hubble constan...
Photovoltaic retinal prosthesis with high pixel density
Palanker, Daniel
Photovoltaic retinal prosthesis with high pixel density Keith Mathieson1,4 , James Loudin1 to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high
Density Functional Theory Models for Radiation Damage
Density Functional Theory Models for Radiation Damage S.L. Dudarev EURATOM/CCFE Fusion Association and informative as the most advanced experimental techniques developed for the observation of radiation damage investigation and assessment of radiation damage effects, offering new insight into the origin of temperature
Liquid Walls Innovative High Power Density Concepts
California at Los Angeles, University of
erosion as limiting factors -Results in smaller and lower cost components (chambLiquid Walls Innovative High Power Density Concepts (Based on the APEX Study) http for the Chamber Technology that can: 1. Improve the vision for an attractive fusion energy system 2. Lower
IMPROVED DENSITY ESTIMATORS FOR INVERTIBLE LINEAR PROCESSES
Wefelmeyer, Wolfgang
IMPROVED DENSITY ESTIMATORS FOR INVERTIBLE LINEAR PROCESSES Anton Schick Department of Mathematical-statistic with kernel of the form K(x) = k(x - ay)k(y) dy. Schick and Wefelmeyer (2004b, 2007a) prove functional central and Schick (2007) obtain similar results for derivatives of convolutions. Schick and Wefelmeyer (2008b
Population density of San Joaquin kit fox
McCue, P.; O'Farrell, T.P.; Kato, T.; Evans, B.G.
1982-01-01
Populations of the endangered San Joaquin kit fox, vulpes macrotis mutica, are known to occur on the Elk Hills Naval Petroleum Reserve No. 1. This study assess the impact of intensified petroleum exploration and production and associated human activities on kit fox population density. (ACR)
ADAPTIVE DENSITY ESTIMATION WITH MASSIVE DATA SETS
Scott, David W.
recognition, density estima tion, and data visualization. However, one already hears stories of logistic the data, and some require the data to be in core. 1.1 Reversing Efficiency Roles What general solution can we propose? It is our po sition that massive data sets reverse our usual focus This research
Nuclear spin-density wave theory
Yao Cheng
2009-09-15
Recently [arXiv:0906.5417], we reported a quantum phase transition of 103mRh excited by bremsstrahlung pumping. The long-lived Moessbauer excitation is delocalized as a neutral quasiparticle carrying a spin current. This letter gives a general theory for a nuclear spin-density wave propagating on crystals consisting of identical nuclei with a multipolar transition.
Durable high-density data storage
Stutz, R.A.; Lamartine, B.C.
1996-09-01
This paper will discuss the Focus Ion Beam (FIB) milling process, media life considerations, and methods of reading the micromilled data. The FIB process for data storage provides a new non-magnetic storage method for archiving large amounts of data. The process stores data on robust materials such as steel, silicon, and gold coated silicon. The storage process was developed to provide a method to insure the long term storage life of data. We estimate the useful life of data written on silicon or gold coated silicon to be a few thousand years. The process uses an ion beam to carve material from the surface much like stone cutting. The deeper information is carved into the media the longer the expected life of the information. The process can read information in three formats: (1) binary at densities of 3.5 Gbits/cm{sup 2}, (2) alphanumeric at optical or non-optical density, and (3) graphical at optical and non-optical density. The formats can be mixed on the same media; and thus it is possible to record, in a human readable format, instructions that can be read using an optical microscope. These instructions provide guidance on reading the higher density information.
Density waves in the Calogero model - revisited
Bardek, V. Feinberg, J. Meljanac, S.
2010-03-15
The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.
Ping Han; Rui-Xue Xu; Baiqing Li; Jian Xu; Ping Cui; Yan Mo; YiJing Yan
2006-04-11
A nonperturbative electron transfer rate theory is developed based on the reduced density matrix dynamics, which can be evaluated readily for the Debye solvent model without further approximation. Not only does it recover for reaction rates the celebrated Marcus' inversion and Kramers' turnover behaviors, the present theory also predicts for reaction thermodynamics, such as equilibrium Gibbs free-energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. Moreover, a continued fraction Green's function formalism is also constructed, which can be used together with Dyson equation technique, for efficient evaluation of nonperturbative reduced density matrix dynamics.
High Energy Density Laboratory Plasmas Program | National Nuclear...
National Nuclear Security Administration (NNSA)
Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program...
Controlling the Actuation Rate of Low Density Shape Memory Polymer...
Office of Scientific and Technical Information (OSTI)
Controlling the Actuation Rate of Low Density Shape Memory Polymer Foams in Water Citation Details In-Document Search Title: Controlling the Actuation Rate of Low Density Shape...
Using Radio Waves to Control Fusion Plasma Density
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics...
Real-Time Simultaneous Measurements of Size, Density, and Composition...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Real-Time Simultaneous Measurements of Size, Density, and Composition of...
Density Log At Valles Caldera - Redondo Geothermal Area (Wilt...
Density Log At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log At Valles...
DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS
Bieniosek, F.M.
2010-01-01
for high energy density physics and fusion applications,IFSA 2007, Journal of Physics, Conference Series 112 (2008)high energy density physics experiments F. M. Bieniosek, E.
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory Authors: Schunck, N ; McDonnell,...
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory You are accessing a document...
Mitigating Breakdown in High Energy Density Perovskite Polymer...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012...
Inhomogeneity smoothing using density valley formed by ion beam...
Office of Scientific and Technical Information (OSTI)
Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet Citation Details In-Document Search Title: Inhomogeneity smoothing using density...
Time-dependent density functional studies of nuclear quantum dynamics in large amplitudes
Wen, Kai; Fang, Ni; Nakatsukasa, Takashi
2015-01-01
The time-dependent density functional theory (TDDFT) provides a unified description of the structure and reaction. The linear approximation leads to the random-phase approximation (RPA) which is capable of describing a variety of collective motion in a harmonic regime. Beyond the linear regime, we present applications of the TDDFT to nuclear fusion and fission reaction. In particular, the extraction of the internuclear potential and the inertial mass parameter is performed using two different methods. A fusion hindrance mechanism for heavy systems is investigated from the microscopic point of view. The canonical collective variables are determined by the adiabatic self-consistent collective coordinate method. Preliminary results of the spontaneous fission path, the potential, and the collective mass parameter are shown for 8Be --> alpha+alpha.
Knyazev, D. V. [Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg. 2, Moscow 125412 (Russian Federation); Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); State Scientific Center of the Russian Federation—Institute for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute,” Bolshaya Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Levashov, P. R. [Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg. 2, Moscow 125412 (Russian Federation); Tomsk State University, Lenin Prospekt 36, Tomsk 634050 (Russian Federation)
2014-07-15
This work is devoted to the investigation of transport and optical properties of liquid aluminum in the two-temperature case. At first optical properties, static electrical, and thermal conductivities were obtained in the ab initio calculation which is based on the quantum molecular dynamics, density functional theory, and the Kubo-Greenwood formula. Then the semiempirical approximation was constructed based on the results of our simulation. This approximation yields the dependences ?{sub 1{sub D{sub C}}}?1/T{sub i}{sup 0.25} and K?T{sub e}/T{sub i}{sup 0.25} for the static electrical conductivity and thermal conductivity, respectively, for liquid aluminum at ??=?2.70?g/cm{sup 3}, 3?kK???T{sub i}???T{sub e}???20?kK. Our results are well described by the Drude model with the effective relaxation time ??T{sub i}{sup ?0.25}. We have considered a number of other models for the static electrical and thermal conductivities of aluminum, they are all reduced in the low-temperature limit to the Drude model with different expressions for the relaxation time ?. Our results are not consistent with the models in which ??T{sub i}{sup ?1} and support the models which use the expressions with the slower decrease of the relaxation time.
Branch cuts of Stokes wave on deep water. Part I: Numerical solution and Pad\\'e approximation
Dyachenko, S A; Korotkevich, A O
2015-01-01
Complex analytical structure of Stokes wave for two-dimensional potential flow of the ideal incompressible fluid with free surface and infinite depth is analyzed. Stokes wave is the fully nonlinear periodic gravity wave propagating with the constant velocity. Simulations with the quadruple and variable precisions are performed to find Stokes wave with high accuracy and study the Stokes wave approaching its limiting form with $2\\pi/3$ radians angle on the crest. A conformal map is used which maps a free fluid surface of Stokes wave into the real line with fluid domain mapped into the lower complex half-plane. The Stokes wave is fully characterized by the complex singularities in the upper complex half-plane. These singularities are addressed by rational (Pad\\'e) interpolation of Stokes wave in the complex plane. Convergence of Pad\\'e approximation to the density of complex poles with the increase of the numerical precision and subsequent increase of the number of approximating poles reveals that the only singu...
WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA
Cary, John R.
2012-01-01
A LiBRARY ANL WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITYof Califomia. To be in WAVE-ENERGY DENSITY AND WAVE~HOMENTUMExpress1ons for the wave-energy density and wave-momentum
?Linear Gas Jet with Tailored Density Profile"
KRISHNAN, Mahadevan
2012-12-10
Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.
Freezing of soft spheres: A critical test for weighted-density-functional theories
Laird, Brian Bostian; Kroll, D. M.
1990-10-15
~ d e ry, r2, & p r2 —p, 0 4814 BRIAN B. LAIRD AND D. M. KROLL 42 Since C is, for the most part, unknown, we approxi- mate it by an as yet unspecified homogeneous two-point function g: C(ri, r2; [p]) = g(~ ri —rz ~; p) . (25) This approximation is due..., NUMBER 8 15 OCTOBER 1990 Freezing of soft spheres: A critical test for weighted-density-functional theories Brian B. Laird and D.M. Kroll Institut fur Festkorperforschung, Forschungszentrurn Julich G rn .b H. .., Postfach I9IS, D SI7-0 Jiilich I, Federal...
Comparison of transition densities in the DDHMS model of pre-equilibrium emission
Brito, L.; Carlson, B. V.
2014-11-11
The DDHMS (double differential hybrid Monte Carlo simulation) model treats nucleon-induced pre-equilibrium reactions as a series of particle-particle and particle-hole interactions in the space of energy and angle. This work compares spectra obtained within the model using diferent approximations to the density of accessible states. The calculations are performed with the EMPIRE reaction model code, a modular system containing several nuclear reaction models that permits a fairly complete descritpion of the reaction, from elastic scattering and absorption through the pre-equilbrium stage to the final decay by statistical emission.
Growth mechanism of atomic layer deposition of zinc oxide: A density functional theory approach
Afshar, Amir; Cadien, Kenneth C., E-mail: kcadien@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)
2013-12-16
Atomic layer deposition of zinc oxide (ZnO) using diethylzinc (DEZ) and water is studied using density functional theory. The reaction pathways between the precursors and ZnO surface sites are discussed. Both reactions proceed by the formation of intermediate complexes on the surface. The Gibbs free energy of the formation of these complexes is positive at temperatures above ?120?°C and ?200?°C for DEZ and water half-reactions, respectively. Spectroscopic ellipsometry results show that the growth per cycle changes at approximately the same temperatures.
Lipkin translational-symmetry restoration in the mean-field and energy-density-functional methods
Jacek Dobaczewski
2009-06-25
Based on the 1960 idea of Lipkin, the minimization of energy of a symmetry-restored mean-field state is equivalent to the minimization of a corrected energy of a symmetry-broken state with the Peierls-Yoccoz mass. It is interesting to note that the "unphysical" Peierls-Yoccoz mass, and not the true mass, appears in the Lipkin projected energy. The Peierls-Yoccoz mass can be easily calculated from the energy and overlap kernels, which allows for a systematic, albeit approximate, restoration of translational symmetry within the energy-density formalism. Analogous methods can also be implemented for all other broken symmetries.
Complete density perturbations in the Jordan-Fierz-Brans-Dicke theory
J. A. R. Cembranos; A. de la Cruz Dombriz; L. Olano Garcia
2013-07-01
In the context of scalar-tensor theories we study the evolution of the density contrast for Jordan-Fierz-Brans-Dicke theories in a Friedmann-Lemaitre-Robertson-Walker Universe. Calculations are performed in the Einstein Frame with the cosmological background described as Lambda-Cold Dark Matter (Lambda-CDM) and supplemented by a Jordan-Fierz-Brans-Dicke field. By using a completely general procedure valid for all scalar-tensor theories, we obtain the exact fourth-order differential equation for the density contrast evolution in modes of arbitrary size. In the case of sub-Hubble modes, the expression reduces to a simpler but still fourth-order equation that is then compared with the standard (quasistatic) approximation. Differences with respect to the evolution as predicted by the standard Concordance Lambda-CDM model are observed depending on the value of the coupling.
Density matrix expansion for the isospin- and momentum-dependent MDI interaction
Xu, Jun; Ko, Che Ming.
2010-01-01
? s), (25) with j1 and j3 being, respectively, the first- and third-order spherical Bessel functions and k? = (3pi2?? )1/3 the Fermi momentum. For the function F (?n, ?p), it is defined as F (?n, ?p) = 12V L(?n)?n + 12V U (?p, ?n)?p. (26) In Fig... energy density in the exchange potential in terms of the density via the extended Thomas-Fermi (ETF) approximation [28,29] ?q = a?5/3q + b (??q)2 ?q + c?2?q, q = n, p, (34) where a = 35 (3pi2)2/3, b = 1/36 and c = 1/3, the neutron potential can...
The Van der Waals interaction of the hydrogen molecule - an exact local energy density functional
T. C. Choy
1999-11-26
We verify that the van der Waals interaction and hence all dispersion interactions for the hydrogen molecule given by: W"= -{A/R^6}-{B/R^8}-{C/R^10}- ..., in which R is the internuclear separation, are exactly soluble. The constants A=6.4990267..., B=124.3990835 ... and C=1135.2140398... (in Hartree units) first obtained approximately by Pauling and Beach (PB) [1] using a linear variational method, can be shown to be obtainable to any desired accuracy via our exact solution. In addition we shall show that a local energy density functional can be obtained, whose variational solution rederives the exact solution for this problem. This demonstrates explicitly that a static local density functional theory exists for this system. We conclude with remarks about generalising the method to other hydrogenic systems and also to helium.
Ion Density Deviations in Semipermeable Ionic Microcapsules
Qiyun Tang; Alan R. Denton
2015-07-07
By implementing the nonlinear Poisson-Boltzmann theory in a cell model, we theoretically investigate the influence of polyelectrolye gel permeability on ion densities and pH deviations inside the cavities of ionic microcapsules. Our calculations show that variations in permeability of a charged capsule shell cause a redistribution of ion densities within the capsule, which ultimately affects the pH deviation and Donnan potential induced by the electric field of the shell. We find that semipermeable capsules can induce larger pH deviations inside their cavities that can permeable capsules. Furthermore, with increasing capsule charge, the influence of permeability on pH deviations progressively increases. Our theory, while providing a self-consistent method for modeling the influence of permeability on fundamental properties of ionic microgels, makes predictions of practical significance for the design of microcapsules loaded with fluorescent dyes, which can serve as biosensors for diagnostic purposes.
Ultra-high density diffraction grating
Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.
2012-12-11
A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.
Density of States for HP Lattice Proteins
Michael Bachmann; Wolfhard Janke
2007-10-22
The density of states contains all informations on energetic quantities of a statistical system, such as the mean energy, free energy, entropy, and specific heat. As a specific application, we consider in this work a simple lattice model for heteropolymers that is widely used for studying statistical properties of proteins. For short chains, we have derived exact results from conformational enumeration, while for longer ones we developed a multicanonical Monte Carlo variant of the nPERM-based chain growth method in order to directly simulate the density of states. For simplification, only two types of monomers with respective hydrophobic (H) and polar (P) residues are regarded and only the next-neighbour interaction between hydrophobic monomers, being nonadjacent along the chain, is taken into account. This is known as the HP model for the folding of lattice proteins.
Global coherence of dust density waves
Killer, Carsten; Melzer, André
2014-06-15
The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.
Inductor Geometry With Improved Energy Density
Cui, H; Ngo, KDT; Moss, J; Lim, MHF; Rey, E
2014-10-01
The "constant-flux" concept is leveraged to achieve high magnetic-energy density, leading to inductor geometries with height significantly lower than that of conventional products. Techniques to shape the core and to distribute the winding turns to shape a desirable field profile are described for the two basic classes of magnetic geometries: those with the winding enclosed by the core and those with the core enclosed by the winding. A relatively constant flux distribution is advantageous not only from the density standpoint, but also from the thermal standpoint via the reduction of hot spots, and from the reliability standpoint via the suppression of flux crowding. In this journal paper on a constant-flux inductor (CFI) with enclosed winding, the foci are operating principle, dc analysis, and basic design procedure. Prototype cores and windings were routed from powder-iron disks and copper sheets, respectively. The design of CFI was validated by the assembled inductor prototype.
The 2dF Galaxy Redshift Survey: luminosity functions by density environment and galaxy type
Darren J. Croton; Glennys R. Farrar; Peder Norberg; Matthew Colless; John A. Peacock; I. K. Baldry; C. M. Baugh; J. Bland-Hawthorn; T. Bridges; R. Cannon; S. Cole; C. Collins; W. Couch; G. Dalton; R. De Propris; S. P. Driver; G. Efstathiou; R. S. Ellis; C. S. Frenk; K. Glazebrook; C. Jackson; O. Lahav; I. Lewis; S. Lumsden; S. Maddox; D. Madgwick; B. A. Peterson; W. Sutherland; K. Taylor
2005-02-08
We use the 2dF Galaxy Redshift Survey to measure the dependence of the bJ-band galaxy luminosity function on large-scale environment, defined by density contrast in spheres of radius 8h-1Mpc, and on spectral type, determined from principal component analysis. We find that the galaxy populations at both extremes of density differ significantly from that at the mean density. The population in voids is dominated by late types and shows, relative to the mean, a deficit of galaxies that becomes increasingly pronounced at magnitudes brighter than M_bJ-5log10h <-18.5. In contrast, cluster regions have a relative excess of very bright early-type galaxies with M_bJ-5log10h < -21. Differences in the mid to faint-end population between environments are significant: at M_bJ-5log10h=-18 early and late-type cluster galaxies show comparable abundances, whereas in voids the late types dominate by almost an order of magnitude. We find that the luminosity functions measured in all density environments, from voids to clusters, can be approximated by Schechter functions with parameters that vary smoothly with local density, but in a fashion which differs strikingly for early and late-type galaxies. These observed variations, combined with our finding that the faint-end slope of the overall luminosity function depends at most weakly on density environment, may prove to be a significant challenge for models of galaxy formation.
Arianna Carbone; Arnau Rios; Artur Polls
2014-11-19
The properties of symmetric nuclear and pure neutron matter are investigated within an extended self-consistent Green's function method that includes the effects of three-body forces. We use the ladder approximation for the study of infinite nuclear matter and incorporate the three-body interaction by means of a density-dependent two-body force. This force is obtained via a correlated average over the third particle, with an in-medium propagator consistent with the many-body calculation we perform. We analyze different prescriptions in the construction of the average and conclude that correlations provide small modifications at the level of the density-dependent force. Microscopic as well as bulk properties are studied, focusing on the changes introduced by the density dependent two-body force. The total energy of the system is obtained by means of a modified Galitskii-Migdal-Koltun sum rule. Our results validate previously used uncorrelated averages and extend the availability of chirally motivated forces to a larger density regime.
Energy flux density in a thermoacoustic couple
Cao, N.; Chen, S. |; Olson, R.; Swift, G.W.
1996-06-01
The hydro- and thermodynamical processes near and within a thermoacoustic couple are simulated and analyzed by numerical solution of the compressible Navier-Stokes, continuity, and energy equations for an ideal gas, concentrating on the time-averaged energy flux density in the gas. The numerical results show details of the heat sink at one end of the plates in the thermoacoustic couple. 15 refs., 10 figs., 1 tab.
Fluctuations at finite temperature and density
Borsanyi, Szabolcs
2015-01-01
Fluctuations of conserved charges in a grand canonical ensemble can be calculated as derivatives of the free energy with respect to the respective chemical potential. They are directly related to experimentally available observables that describe the hadronization in heavy ion collisions. The same derivatives can be used to extrapolate zero density results to finite chemical potential. We review the recent lattice calculations in the staggered formalism and discuss its implications to phenomenology and resummed perturbation theory.
Nuclear fission in covariant density functional theory
A. V. Afanasjev; H. Abusara; P. Ring
2013-09-12
The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN) is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation.
Energy-momentum Density of Gravitational Waves
Amir M. Abbassi; Saeed Mirshekari
2014-11-29
In this paper, we elaborate the problem of energy-momentum in general relativity by energy-momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to same results that have been obtained by Einstein and Papapetrou prescriptions.
Energy trapping from Hagedorn densities of states
Connor Behan; Klaus Larjo; Nima Lashkari; Brian Swingle; Mark Van Raamsdonk
2013-04-26
In this note, we construct simple stochastic toy models for holographic gauge theories in which distributions of energy on a collection of sites evolve by a master equation with some specified transition rates. We build in only energy conservation, locality, and the standard thermodynamic requirement that all states with a given energy are equally likely in equilibrium. In these models, we investigate the qualitative behavior of the dynamics of the energy distributions for different choices of the density of states for the individual sites. For typical field theory densities of states (\\log(\\rho(E)) ~ E^{\\alphaenergy spread out relatively quickly. For large N gauge theories with gravitational duals, the density of states for a finite volume of field theory degrees of freedom typically includes a Hagedorn regime (\\log(\\rho(E)) ~ E). We find that this gives rise to a trapping of energy in subsets of degrees of freedom for parametrically long time scales before the energy leaks away. We speculate that this Hagedorn trapping may be part of a holographic explanation for long-lived gravitational bound states (black holes) in gravitational theories.
2010-04-01
Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.
Gambacurta, D.; Grasso, M.; Catara, F.
2012-10-20
The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.
Validity of Born Approximation for Nuclear Scattering in Path Integral Representation
M. R. Pahlavani; R. Morad
2009-07-01
The first and second Born approximation are studied with the path integral representation for $ {\\cal T} $ matrix. The $ {\\cal T}$ matrix is calculated for Woods-Saxon potential scattering. To make corresponding integrals solvable analytically, an approximate function for the Woods-Saxon potential is used. Finally it shown that the Born series is converge at high energies and orders higher than two in Born approximation series can be neglected.
Radiography to measure the longitudinal density gradients of Pd compacts
Back, D.D.
1992-05-14
This study used radiography to detect and quantify density gradients in green compacts of Palladium powder. Ultrasonic velocity measurements had been tried previously, but they were affected by material properties, in addition to the density, so that an alternative was sought. The alternative technique used radiographic exposures of a series of standard compacts whose density is known and correlated with the radiographic film density. These correlations are used to predict the density in subsequent compacts.
Approximate life-cycle assessment of product concepts using learning systems
Sousa, Inês (Maria Inês Silva Sousa), 1972-
2002-01-01
This thesis develops an approximate, analytically based environmental assessment method that provides fast evaluations of product concepts. Traditional life-cycle assessment (LCA) studies and their streamlined analytical ...
A complete analytic inversion of supernova lines in the Sobolev approximation
Kasen, Daniel; Branch, David; Baron, E.; Jeffery, David
2001-01-01
D . & Branch, D . 1990, in Supernovae, ed. J . C . Wheeler &radia tive transfer — supernovae Lawrence Berkeley Nationalgradients, such as supernovae. The Sobolev approximation has
Roberto Peverati; Donald G. Truhlar
2013-09-06
Kohn-Sham density functional theory is in principle an exact formulation of quantum mechanical electronic structure theory, but in practice we have to rely on approximate exchange-correlation (xc) functionals. The objective of our work has been to design an xc functional with broad accuracy across as wide an expanse of chemistry and physics as possible, leading-as a long-range goal-to a functional with good accuracy for all problems, i.e., a universal functional. To guide our path toward that goal and to measure our progress, we have developed-building on earlier work in our group-a set of databases of reference data for a variety of energetic and structural properties in chemistry and physics. These databases include energies of molecular processes such as atomization, complexation, proton addition, and ionization; they also include molecular geometries and solid-state lattice constants, chemical reaction barrier heights, and cohesive energies and band gaps of solids. For the present paper we gather many of these databases into four comprehensive databases, two with 384 energetic data for chemistry and solid-state physics and another two with 68 structural data for chemistry and solid-state physics, and we test 2 wave function methods and 77 density functionals (12 Minnesota meta functionals and 65 others) in a consistent way across this same broad set of data. We especially highlight the Minnesota density functionals, but the results have broader implications in that one may see the successes and failures of many kinds of density functionals when they are all applied to the same data. Therefore the results provide a status report on the quest for a universal functional.
Nuclear Energy Density Optimization: UNEDF2
M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore
2014-10-30
The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.
Landau's necessary density conditions for LCA groups
Gröchenig, K; Seip, K
2008-01-01
H. Landau's necessary density conditions for sampling and interpolation may be viewed as a general principle resting on a basic fact of Fourier analysis: The complex exponentials $e^{i kx}$ ($k$ in $\\mathbb{Z}$) constitute an orthogonal basis for $L^2([-\\pi,\\pi])$. The present paper extends Landau's conditions to the setting of locally compact abelian (LCA) groups, relying in an analogous way on the basics of Fourier analysis. The technicalities--in either case of an operator theoretic nature--are however quite different. We will base our proofs on the comparison principle of J. Ramanathan and T. Steger.
Particle transport inferences from density sawteeth
Chen, J.; Li, Q.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Liao, K.; Gentle, K. W., E-mail: k.gentle@mail.utexas.edu [Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States)
2014-05-15
Sawtooth oscillations in tokamaks are defined by their effect on electron temperature: a rapid flattening of the core profile followed by an outward heat pulse and a slow core recovery caused by central heating. Recent high-resolution, multi-chord interferometer measurements on JTEXT extend these studies to particle transport. Sawteeth only partially flatten the core density profile, but enhanced particle diffusion on the time scale of the thermal crash occurs over much of the profile, relevant for impurities. Recovery between crashes implies an inward pinch velocity extending to the center.
Method of high-density foil fabrication
Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.
2003-12-16
A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.
Symmetry energy in nuclear density functional theory
W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar
2013-07-22
The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.
Identification of cell density signal molecule
Schwarz, R.I.
1998-04-21
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use. 2 figs.
Identification of cell density signal molecule
Schwarz, Richard I. (Oakland, CA)
1998-01-01
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.
Category:Rock Density | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID Roadmap ContactRock Density Jump to: navigation,
The density of states approach for the simulation of finite density quantum field theories
K. Langfeld; B. Lucini; A. Rago; R. Pellegrini; L. Bongiovanni
2015-03-02
Finite density quantum field theories have evaded first principle Monte-Carlo simulations due to the notorious sign-problem. The partition function of such theories appears as the Fourier transform of the generalised density-of-states, which is the probability distribution of the imaginary part of the action. With the advent of Wang-Landau type simulation techniques and recent advances, the density-of-states can be calculated over many hundreds of orders of magnitude. Current research addresses the question whether the achieved precision is high enough to reliably extract the finite density partition function, which is exponentially suppressed with the volume. In my talk, I review the state-of-play for the high precision calculations of the density-of-states as well as the recent progress for obtaining reliable results from highly oscillating integrals. I will review recent progress for the $Z_3$ quantum field theory for which results can be obtained from the simulation of the dual theory, which appears to free of a sign problem.
The density of states approach for the simulation of finite density quantum field theories
Langfeld, K; Rago, A; Pellegrini, R; Bongiovanni, L
2015-01-01
Finite density quantum field theories have evaded first principle Monte-Carlo simulations due to the notorious sign-problem. The partition function of such theories appears as the Fourier transform of the generalised density-of-states, which is the probability distribution of the imaginary part of the action. With the advent of Wang-Landau type simulation techniques and recent advances, the density-of-states can be calculated over many hundreds of orders of magnitude. Current research addresses the question whether the achieved precision is high enough to reliably extract the finite density partition function, which is exponentially suppressed with the volume. In my talk, I review the state-of-play for the high precision calculations of the density-of-states as well as the recent progress for obtaining reliable results from highly oscillating integrals. I will review recent progress for the $Z_3$ quantum field theory for which results can be obtained from the simulation of the dual theory, which appears to fr...
The complexity of approximate Nash equilibrium in congestion games with negative delays
Magniez, FrÃ©dÃ©ric
The complexity of approximate Nash equilibrium in congestion games with negative delays Fr of the complexity of computing an - approximate Nash equilibrium in symmetric congestion games from the case that in symmetric games with increasing delay functions and with - bounded jump the -Nash dynamic converges
Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria
Vetta, Adrian
Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2@math.mcgill.ca Abstract. In an -approximate Nash equilibrium, a player can gain at most in expectation by unilateral deviation. An -well-supported ap- proximate Nash equilibrium has the stronger requirement that every pure
How hard is it to approximate the best Nash equilibrium? IBM Almaden
Krauthgamer, Robert
How hard is it to approximate the best Nash equilibrium? Elad Hazan IBM Almaden ehazan for a PTAS for Nash equilibrium in a two-player game seeks to circumvent the PPAD- completeness of an (exact) Nash equilibrium by find- ing an approximate equilibrium, and has emerged as a major open question
Approximate Nash Equilibria for Multi-player Games Sebastien Hemon1,2
Fondements et Applications, Université Paris 7
Approximate Nash Equilibria for Multi-player Games S´ebastien H´emon1,2 , Michel de Rougemont1 approximate Nash equilibria in the additive and multiplicative sense, where the number of pure strategies. In the additive case we show that for 0 Nash equilibrium with support size 2r ln(nr+r) 2
Every linear threshold function has a low-weight approximator Rocco A. Servedio
Servedio, Rocco
Every linear threshold function has a low-weight approximator Rocco A. Servedio Department threshold function f on n Boolean vari- ables, we construct a linear threshold function g which dis- agrees of ( n) on the weights required to approximate a particular linear thresh- old function. We give two
Dyna-Style Planning with Linear Function Approximation and Prioritized Sweeping
Szepesvari, Csaba
Dyna-Style Planning with Linear Function Approximation and Prioritized Sweeping Richard S. Sutton to linear function approximation. Dyna- style planning proceeds by generating imaginary experience from Abstract We consider the problem of efficiently learning optimal control policies and value functions over
Botti, Silvana
Motivation Green's functions The GW Approximation The Bethe-Salpeter Equation Introduction to Green's functions Matteo Gatti ETSF Users' Meeting and Training Day Ecole Polytechnique - 22 October 2010 #12;bg=whiteMotivation Green's functions The GW Approximation The Bethe-Salpeter Equation Outline 1 Motivation 2 Green
Validation of the correctness of the Hald approximation in assessing tolerance
Gurevich, M. I., E-mail: gur.m@mail.ru; Kalugin, M. A.; Chukbar, B. K. [National Research Center Kurchatov Institute (Russian Federation)
2014-12-15
An analysis was performed of the correctness of employing the approximate formula which is widely used when assessing tolerances in the results of regression analysis. The correctness of approximation with the frequently used ratio between the probability and significance level equal to 95/95 is demonstrated. Conditions of application of the formula under stricter requirements, for example, 99/99, are formulated.
Approximation Technique of Finite Capacity Queuing Networks Exploiting Petri Net Analysis
Gribaudo, Marco
Approximation Technique of Finite Capacity Queuing Networks Exploiting Petri Net Analysis Marco for deriving approximate measures for finite capacity queuing networks. The fact that buffers have finite capacity makes the analysis of such networks very difficult. Indeed, FC-QNs do not have a product form
Ada Numerica (1998), pp. 51-150 Cambridge University Press, 1998 Nonlinear approximation
DeVore, Ronald
1998-01-01
References 146 1. Nonlinear approximation: an overview The fundamental problem of approximation theory functionals applied to the target function are known. This information is then used to construct by certain smoothness conditions which are significantly weaker than required in the linear theory. Emphasis
Semi-analytic approximations for production of atmospheric muons and neutrinos
Thomas K. Gaisser
2001-04-19
Simple approximations for fluxes of atmospheric muons and muon neutrinos are developed which display explicitly how the fluxes depend on primary cosmic ray energy and on features of pion production. For energies of approximately 10 GeV and above the results are sufficiently accurate to calculate response functions and to use for estimates of systematic uncertainties.