Sample records for greater cincinnati energy

  1. Greater Cincinnati Energy Alliance- Residential Rebate Program (Kentucky)

    Broader source: Energy.gov [DOE]

    The Greater Cincinnati Energy Alliance provides rebate incentives for homeowners in Hamilton, Boone, Kenton, and Campbell counties. To qualify for rebates, homeowners must receive a [http://www...

  2. Greater Cincinnati Energy Alliance- Residential Rebate Program (Ohio)

    Broader source: Energy.gov [DOE]

    The Greater Cincinnati Energy Alliance provides rebate incentives for homeowners in Hamilton, Boone, Kenton, and Campbell counties. To qualify for rebates, homeowners must receive a [http://www...

  3. Greater Cincinnati Energy Alliance- Residential Loan Program (Ohio)

    Broader source: Energy.gov [DOE]

    The Greater Cincinnati Energy Alliance provides loans for single family residencies and owner occupied duplexes in Hamilton county in Ohio and Boone, Kenton, and Campbell counties in Kentucky. To...

  4. Greater Cincinnati Energy Alliance- Residential Loan Program (Kentucky)

    Broader source: Energy.gov [DOE]

    The Greater Cincinnati Energy Alliance provides loans for single family residencies and owner occupied duplexes in Hamilton county in Ohio and Boone, Kenton, and Campbell counties in Kentucky. To...

  5. Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdf MoreRevisedProgram Breaks Down Barriers for

  6. Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen andMeeting Date:FocusProgram

  7. Focus Series: The Greater Cincinnati Energy Alliance (GCEA) Equipment Lease Program Breaks Down Barriers for Cincinnati Contractors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen andMeeting Date:FocusProgramFocus

  8. ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT (EECBG) - BETTER BUILDINGS NEIGHBORHOOD PROGRAM AT GREATER CINCINNATI ENERGY ALLIANCE Project Title: Home Performance with Energy Star® and Better Buildings Performance

    SciTech Connect (OSTI)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy; Meyer, Chris; Van Divender, Lisa

    2013-12-30T23:59:59.000Z

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operation in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training Center, a program that was developed and funded by the Energy Alliance and housed at Cincinnati State Technical and Community College. Nearly 100 residential and commercial contractors currently participate in the Energy Alliance’s two major programs, which have together served over 2,800 residential and 100 commercial customers. Additionally, the Energy Alliance established loan programs for homeowners, nonprofits and commercial businesses. The GC-HELP program was established to provide up to ten year low interest, unsecured loans to homeowners to cover the energy efficiency products they purchased through the Energy Alliance approved contractor base. To date the Energy Alliance has financed over $1 million in energy efficiency loans for homeowners, without any loans written off. The nonprofit business community is offered five year, fixed-interest rate loans through the Building Communities Loan Fund of $250,000. Additionally, the Energy Alliance has developed GC-PACE, a commercial financing tool that enables buildings owners to finance their energy upgrades through voluntary property assessments deploying low-interest extended-term capital from the bond market. The Energy Alliance and its partners are actively evaluating additional market-based financing solutions.

  9. Cincinnati, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTech JumpCincinnati, OH)

  10. Cincinnati, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport | OpenChristianCimarron Electric Coop

  11. Cincinnati, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTech Jump

  12. Cincinnati Data Dashboard | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - April 2014Christopher SmithWin" | DepartmentData

  13. Greater Cincinnati Regional High School Science Bowl | U.S. DOE...

    Office of Science (SC) Website

    News Media WDTS Home Contact Information National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P:...

  14. Cincinnati Non-profits Getting Help Saving Energy | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Alliance, the church can accomplish its goals of reducing energy costs and shrinking its carbon footprint. GCEA provides energy-efficiency services to residences and nonprofits in...

  15. Melink Solar Canopy at the Cincinnati Zoo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°,Meeteetse, Wyoming: EnergyMegtecMelbeta,Melink

  16. EA-159 Cincinnati Gas and Electric Corporation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |Final Site-Wide EnvironmentalY-12Williams Energy

  17. Energy Secretary Chu to visit Cincinnati and Massillon, Ohio | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy PolicyEnvironmental Cleanup inof Energy to

  18. Cincinnati Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - April 2014Christopher SmithWin" |

  19. Cincinnati Canvassing Spreads Retrofitting Message | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWasteDepartmentUtilities in manyJoshuaDepartmentA volunteer

  20. EA-159 Cincinnati Gas and Electric Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner56:

  1. ORNL, CINCINNATI partner to develop commercial large-scale additive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory 865-574-7308 ORNL, CINCINNATI partner to develop commercial large-scale additive manufacturing system (From left) David Danielson, the Energy Department's...

  2. Promoting greater Federal energy productivity [Final report

    SciTech Connect (OSTI)

    Hopkins, Mark; Dudich, Luther

    2003-03-05T23:59:59.000Z

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  3. Greater Boston Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,II Wind FarmGratiotLakesWind

  4. Eight Approaches to Enable Greater Energy Efficiency: A Guide...

    Office of Environmental Management (EM)

    Eight Approaches to Enable Greater Energy Efficiency: A Guide for State Government Officials Prepared by The National Council on Electricity Policy November 2009 NATIONAL COUNCIL...

  5. EECBG Success Story: Cincinnati Canvassing Spreads Retrofitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cincinnati Canvassing Spreads Retrofitting Message EECBG Success Story: Cincinnati Canvassing Spreads Retrofitting Message May 28, 2010 - 3:07pm Addthis A volunteer canvasses the...

  6. Thirteen States Receive Energy Department Awards to Drive Greater Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology PerformanceDepartmentforEfficiency, Save Money |

  7. Thirteen States Receive Energy Department Awards to Drive Greater Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavings forinitialThose

  8. Thirteen States Receive Energy Department Awards to Drive Greater Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavings forinitialThoseEfficiency,

  9. Greater Carrollwood, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska: EnergyGratingsGreatRiverCarrollwood,

  10. Greater Sun Center, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:Ethanol LLC GO Ethanol Jump to:EnergySun

  11. Greater Northdale, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:

  12. Thirteen States Receive Energy Department Awards to Drive Greater Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department Third Report to theEfficiency, Save

  13. Greater sage-grouse winter habitat selection and energy development

    SciTech Connect (OSTI)

    Doherty, K.E.; Naugle, D.E.; Walker, B.L.; Graham, J.M. [University of Montana, Missoula, MT (United States)

    2008-01-15T23:59:59.000Z

    Recent energy development has resulted in rapid and large-scale changes to western shrub-steppe ecosystems without a complete understanding of its potential impacts on wildlife populations. We modeled winter habitat use by female greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, to 1) identify landscape features that influenced sage-grouse habitat selection, 2) assess the scale at which selection occurred, 3) spatially depict winter habitat quality in a Geographic Information System, and 4) assess the effect of coal-bed natural gas (CBNG) development on winter habitat selection. We developed a model of winter habitat selection based on 435 aerial relocations of 200 radiomarked female sage-grouse obtained during the winters of 2005 and 2006. Percent sagebrush (Artemisia spp.) cover on the landscape was an important predictor of use by sage-grouse in winter. Sage-grouse were 1.3 times more likely to occupy sagebrush habitats that lacked CBNG wells within a 4-km{sup 2} area, compared to those that had the maximum density of 12.3 wells per 4 km{sup 2} allowed on federal lands. We validated the model with 74 locations from 74 radiomarked individuals obtained during the winters of 2004 and 2007. This winter habitat model based on vegetation, topography, and CBNG avoidance was highly predictive (validation R{sup 2} = 0.984). Our spatially explicit model can be used to identify areas that provide the best remaining habitat for wintering sage-grouse in the PRB to mitigate impacts of energy development.

  14. Thirteen States Receive Energy Department Awards to Drive Greater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WASHINGTON - Building on the Obama Administration's efforts to double energy productivity by 2030 and help communities save on energy bills, the Energy Department today...

  15. Thirteen States Receive Energy Department Awards to Drive Greater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - 12:00am Addthis Building on the Obama Administration's efforts to double energy productivity by 2030 and help communities save on energy bills, the Energy Department today...

  16. Seeking Greater Influence in the World of Low-Energy Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    Seeking Greater Influence in the World of Low-Energy Buildings Seeking Greater Influence in the World of Low-Energy Buildings July 23, 2010 - 4:03pm Addthis Cindy Regnier,...

  17. LLNL Predicts Wind Power with Greater Accuracy | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAMEnergyInvestigativeCogginLES' URENCO-USA

  18. KCP&L Greater Missouri Operations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida: Energy

  19. Setting the Stage for Greater Renewable Energy Penetration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/Union WorkSession Chair:Energy

  20. Eight Approaches to Enable Greater Energy Efficiency: A Guide for

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup ReportLow IncomeE-Government ActEight

  1. Greater Ohio Ethanol LLC GO Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:Ethanol LLC GO Ethanol Jump to:

  2. Dr. Bill Brinkman: Working Towards Greater Energy Security | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69Christopher Fecko ChemicalJohnBenjamin L.

  3. Prioritizing winter habitat quality for greater sage-grouse in a landscape influenced by energy development

    E-Print Network [OSTI]

    Beck, Jeffrey L.

    Prioritizing winter habitat quality for greater sage-grouse in a landscape influenced by energy, and F. C. Blomquist. 2014. Prioritizing winter habitat quality for Greater Sage-Grouse in a landscape influenced by energy development. Ecosphere 5(2):15. http://dx.doi.org/10.1890/ES13-00238. 1 Abstract

  4. Cincinnati Incorporated - A Success Story in American Manufacturing |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma ofTopDepartment of Energy Cincinnati

  5. Space use by female Greater Prairie-Chickens in response to wind energy development

    E-Print Network [OSTI]

    Sandercock, Brett K.

    Space use by female Greater Prairie-Chickens in response to wind energy development V. L. WINDER,1-Chickens in response to wind energy development. Ecosphere 5(1):3. http://dx.doi.org/10.1890/ ES13-00206.1 Abstract. Wind energy development is targeted to meet 20% of U.S. energy demand by 2030. In Kansas, optimal sites

  6. Effects of wind energy development on survival of female greater prairie-chickens

    E-Print Network [OSTI]

    Sandercock, Brett K.

    community, grouse, hazard function, mortality, preda- tion, wind turbine *Correspondence author. EEffects of wind energy development on survival of female greater prairie-chickens Virginia L of Florida, Gainesville, FL 32611, USA Summary 1. The potential effects of wind energy development

  7. City of Cincinnati- Property Tax Abatement for Green Buildings

    Broader source: Energy.gov [DOE]

    The City of Cincinnati offers property tax abatements for residential and commercial buildings constructed or renovated to meet LEED certification standards. The original green building tax...

  8. World-Class Energy Assessments: Industrial Action Plans for Greater and More Durable Energy Cost Control

    E-Print Network [OSTI]

    Russell, C.

    2007-01-01T23:59:59.000Z

    This report summarizes recommendations for improving the impact of industrial energy assessments. This initiative responds to the observation that less than half of recommended energy improvements are implemented as a result of traditional...

  9. Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2011-11-01T23:59:59.000Z

    At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

  10. Haiti-Low-Carbon Energy Roadmaps for the Greater Antilles | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy | Open EnergyHackberry,gateway

  11. SME Annual Meeting February 24-26, 2003, Cincinnati Ohio

    E-Print Network [OSTI]

    SME Annual Meeting February 24-26, 2003, Cincinnati Ohio Preprint Results of Practical Design dust. The previous year's work, published SME 2002 pre-print, consisted of laboratory testing to help

  12. Jamaica-Low-Carbon Energy Roadmaps for the Greater Antilles | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensysIslandJackson(EC-LEDS)

  13. lem of greater complexity than the overhaul of the global energy system. Energy touches

    E-Print Network [OSTI]

    into place. Substantial govern- ment spending on research and development will be required, along of energy for the world in this century,and we will have to develop new technologies for its use if we.N.Secretary-GeneralKofiAnnanontheMil- lennium Development Goals. In April 2004, Timemagazinenamedhimoneofthe100most influential people

  14. Greater sage-grouse population response to energy development and habitat loss

    SciTech Connect (OSTI)

    Walker, B.L.; Naugle, D.E.; Doherty, K.E. [University of Montana, Missoula, MT (United States)

    2007-11-15T23:59:59.000Z

    Modification of landscapes due to energy development may alter both habitat use and vital rates of sensitive wildlife species. Greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, have experienced rapid, widespread changes to their habitat due to recent coal-bed natural gas (CBNG) development. We analyzed lek-count, habitat, and infrastructure data to assess how CBNG development and other landscape features influenced trends in the numbers of male sage-grouse observed and persistence of leks in the PRB. From 2001 to 2005, the number of males observed on leks in CBNG fields declined more rapidly than leks outside of CBNG. Of leks active in 1997 or later, only 38% of 26 leks in CBNG fields remained active by 2004-2005, compared to 84% of 250 leks outside CBNG fields. By 2005, leks in CBNG fields had 46% fewer males per active lek than leks outside of CBNG. Persistence of 110 leks was positively influenced by the proportion of sagebrush habitat within 6.4 km of the lek. After controlling for habitat, we found support for negative effects of CBNG development within 0.8 km and 3.2 km of the lek and for a time lag between CBNG development and lek disappearance. Current lease stipulations that prohibit development within 0.4 km of sage-grouse leks on federal lands are inadequate to ensure lek persistence and may result in impacts to breeding populations over larger areas. Seasonal restrictions on drilling and construction do not address impacts caused by loss of sagebrush and incursion of infrastructure that can affect populations over long periods of time. Regulatory agencies may need to increase spatial restrictions on development, industry may need to rapidly implement more effective mitigation measures, or both, to reduce impacts of CBNG development on sage-grouse populations in the PRB.

  15. Cincinnati, Ohio, Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" | Department of Energy Chu:Cincinnati,

  16. Energy impacts of heat island reduction strategies in the Greater Toronto Area, Canada

    E-Print Network [OSTI]

    Konopacki, Steven; Akbari, Hashem

    2001-01-01T23:59:59.000Z

    1999. “Cool Home Features Bring Peak Energy Savings. ”Home Energy 16:22–27. Sherman, M. , D. Wilson and D. Kiel.Residential Heating and Cooling Energy Use in Four Canadian

  17. Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Morrell, D.K.; Fischer, D.K.

    1995-01-01T23:59:59.000Z

    This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW.

  18. Greater Sage-Grouse Populations and Energy Development in Wyoming | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:Ethanol LLC GO Ethanol Jump to:Energy

  19. Dominican Republic-Low-Carbon Energy Roadmaps for the Greater Antilles |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling FarmCenter,Dolliver,Open Energy

  20. Greater Caribbean Energy and Environment Future. Ad hoc working group report, Key Biscayne, Florida, October 26-28, 1980

    SciTech Connect (OSTI)

    Thorhaug, A. (ed.)

    1980-01-01T23:59:59.000Z

    This report of Workshop I (presented in outline form) by the Greater Caribbean Energy and Environment Foundation begin an intensive focus on the energy problems of the Caribbean. The process by which environmental assessments by tropical experts can be successfully integrated into energy decisions is by: (1) international loan institutions requiring or strongly recommending excellent assessments; (2) engineering awareness of total effects of energy projects; (3) governmental environmental consciousness-raising with regard to natural resource value and potential inadvertent and unnecessary resource losses during energy development; and (4) media participation. Section headings in the outline are: preamble; introduction; research tasks: today and twenty years hence; needed research, demonstration and information dissemination projects to get knowledge about Caribbean energy-environment used; summary; recommendations; generalized conclusions; and background literature. (JGB)

  1. GovEnergy 2011 Offers Federal Energy Professionals Strategies...

    Office of Environmental Management (EM)

    and military energy professionals participated in GovEnergy last month - an annual trade show held in Cincinnati, Ohio cosponsored by the Energy Department along with several...

  2. Model Examines Cumulative Impacts of Wind Energy Development on the Greater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProducts | Department of EnergyMobile

  3. CINCINNATI PARTNERS WITH CONTRACTORS FOR SUSTAINABILITY | Department...

    Broader source: Energy.gov (indexed) [DOE]

    rather than explaining the advantages in abstract terms. Find the "sweet spot" with pricing. The price for home energy assessments should be low enough that the assessments...

  4. Eight Approaches to Enable Greater Energy Efficiency: A Guide for State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient Cooling inEffluentGovernment

  5. Model Examines Cumulative Impacts of Wind Energy Development on the Greater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriorityof Energy Poneman || Department

  6. J.L. Raaf, University of Cincinnati

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON 2004 February 12, 2004 ¢ ¡ £ ¤¥

  7. J.L. Raaf, University of Cincinnati

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON 2004 February 12, 2004 ¢ ¡ £

  8. Planning for a Sustainable Future of the Cincinnati Union Terminal

    SciTech Connect (OSTI)

    None

    2012-04-30T23:59:59.000Z

    The Cincinnati Museum Center invited a number of local stakeholders, political leaders, nationally and internationally recognized design professionals and the Design Team, that has been engaged to help shape the future of this remarkable resource, to work together in a Workshop that would begin to shape a truly sustainable future for both the Museum and its home, the Union Terminal, one of the most significant buildings in America. This report summarizes and highlights the discussions that took place during the Workshop and presents recommendations for shaping a direction and a framework for the future.

  9. CCM PREPARATORY DEPARTMENT The 2011-2012 Cincinnati Symphony Club Scholarship

    E-Print Network [OSTI]

    Papautsky, Ian

    CCM PREPARATORY DEPARTMENT The 2011-2012 Cincinnati Symphony Club Scholarship The Cincinnati Symphony Club has graciously awarded the CCM Preparatory Department $3,700 to be awarded to CCM Prep music music students enrolled in the new CCM Prep Honors Program (applied to Spring, 2012 tuition) · Four $250

  10. Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG&G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report.

  11. Preserving the Queen (City's) crown jewel : historic preservation in Cincinnati's Over-the-Rhine

    E-Print Network [OSTI]

    Rieman-Klingler, Daniel G. (Daniel Glenn)

    2006-01-01T23:59:59.000Z

    Over-the-Rhine is a nationally significant historic district in Cincinnati, Ohio, and one of the City's greatest assets. Despite its tremendous character and potential, for years the district has languished through ...

  12. Greater Everglades Ecosystem Restoration

    E-Print Network [OSTI]

    Watson, Craig A.

    Greater Everglades Ecosystem Restoration (G.E.E.R.) Science Conference 'HILQLQJ6XFFHVV Naples Beach a Committee of the South Florida Ecosystem Restoration Task Force and Working Group #12;Greater Everglades Ecosystem Restoration (G.E.E.R.) Science Conference Page ii #12;December 11-15, 2000 z Naples, Florida Page

  13. Kinetic Energy Driven Pairing in Cuprate Superconductors Th. A. Maier,1

    E-Print Network [OSTI]

    Jarrell, Mark

    Kinetic Energy Driven Pairing in Cuprate Superconductors Th. A. Maier,1 M. Jarrell,2 A. Macridin,2, Tennessee 37831-6164, USA 2 Department of Physics, University of Cincinnati, Cincinnati Ohio 45221, USA 3 of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical

  14. ORNL, CINCINNATI partner to develop commercial large-scale additive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627HomelandACRF Archive: Raymond McCord, Giri

  15. CINCINNATI PARTNERS WITH CONTRACTORS FOR SUSTAINABILITY | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report, March 2013CIGNL

  16. EECBG Success Story: Cincinnati Canvassing Spreads Retrofitting Message |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah River Site forCommunity' |

  17. DOE - Office of Legacy Management -- Cincinnati Milling and Machining Co -

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NYBowen LabSouth, Illinois,

  18. Secretary Chu's Remarks at the Cincinnati State Technical and Community

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »Usage »DownloadSolarSequestrationof theWebchatRequestDepartmentforCollege

  19. Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility

    E-Print Network [OSTI]

    Maynard, J. Barry

    Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati and Cincinnati, Ohio was measured to as- sess the degree of contamination such soils contain and the likelihood that this contamination can be remobilized. High values of Ba, Cu, Pb, and Zn can be attributed to anthropogenic effects

  20. EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste

    Broader source: Energy.gov [DOE]

    This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS.

  1. Greater West Texas State Employee

    E-Print Network [OSTI]

    Rock, Chris

    together we change lives Greater West Texas State Employee Charitable Campaign 2013 Annual Report of Transportation-Odessa Vickie Wilhite, Health and Human Services Commission Greater West Texas Local Campaign.ttuhsc.edu/relations/secc www.facebook.com/gwtsecc #12;2013 Top Greater West Texas State Agencies In Employee Participation 2013

  2. Post Doctoral Positions at University of Cincinnati/Argonne National Laboratory/Oak Ridge National Laboratory and the University of Cape Town

    E-Print Network [OSTI]

    Beaucage, Gregory

    Post Doctoral Positions at University of Cincinnati/Argonne National in a project that links Oak Ridge National Laboratory, Argonne National Laboratory, University of Cape Town At Argonne National Laboratory Dr. Jan Ilavsky and at Oak

  3. Health-hazard evaluation report HETA 90-232-2138, Schulte Corporation, Cincinnati, Ohio

    SciTech Connect (OSTI)

    Venable, H.L.; Kawamoto, M.M.

    1991-09-01T23:59:59.000Z

    In response to a confidential request from employees of the Schulte Corporation (SIC-3496), Cincinnati, Ohio, an evaluation was undertaken of complaints of chest tightness, itching, metallic taste in the mouth, and discharge of black dust from the noses of workers in the machine shop of the facility. The facility was involved in the manufacturing and shipping of epoxy coated steel wire shelving. Total dust samples taken in the breathing zone of the workers ranged from 0.49 to 4.78mg/cu m, well below the permissible limits. Respirable dust samples ranged from 0.05 to 0.43mg/cu m. Exposures to nitrogen oxides were well below acceptable limits. Aldehydes were not detected in samples evaluating exposure to two resistance welders. The NIOSH ceiling level of 0.1 part per million for ozone (10028156) was exceeded near welders. Six workers interviewed reported symptoms including black nasal discharge, headaches, sore throat, cough, hoarseness of voice, metallic taste and chest tightness. There was a potential ergonomic problem due to repetitive wrist motion. The authors conclude that a potential hazard from ozone exposure existed. The authors recommend measures to reduce exposures and development of a program for the prevention of cumulative trauma.

  4. Preliminary survey report: control technology for brake lining at Northwest Local School District, Cincinnati, Ohio

    SciTech Connect (OSTI)

    Cooper, T.C.; McGlothlin, J.D.; Godbey, F.W.; Sheehy, J.W.; O'Brien, D.M.

    1986-05-01T23:59:59.000Z

    A walk-through survey of control technology for reducing asbestos exposure during maintenance and repair of vehicular brakes was conducted at Northwest Local School District, Cincinnati, Ohio in January, 1986. The primary method for controlling and collecting dust during brake servicing was a wet-washing technique and good work practices, ensuring that exposure to hazardous physical or chemical agents was reduced or eliminated. Also available was an enclosed-type brake assembly cleaner designed to be connected to the shop air and a vacuum system. The brake assembly cleaner did not have a viewing port to examine the area being cleaned. The operator had to remove the unit to inspect the cleaned area potentially exposing himself to any dust remaining on the brake shoes or hub. The unit itself was a potential dust source as it was designed to fit 16-inch wheels and did not form a tight seal on the smaller 15-inch wheels of the newer buses. The authors conclude that the wet wash technique is an excellent method for controlling asbestos emissions during brake maintenance. The vacuum brake-assembly cleaner is inadequate and potentially hazardous. An in-depth survey of the wet technique is recommended.

  5. Distinguishing Between Greater and Lesser

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    .e. knee high), minimal cover at ground level, and an abundance of flowering plants that harbor insects, see Ecology and Management of the Greater Prairie-Chicken E-969 at nrem.okstate.edu/extension. Threats power devel- opment. GPCs can tolerate some minimal levels of fragmentation, but at higher levels

  6. Greater West Texas State Employee Charitable Campaign

    E-Print Network [OSTI]

    Rock, Chris

    together we changed lives Greater West Texas State Employee Charitable Campaign 2011 Annual Report of Transportation Vickie Wilhite, Health and Human Services Commission Greater West Texas Campaign Manager Nicole campaign information 2011 Local Employee Committee Darcy Pollock (chair), Texas Tech University Health

  7. 2010 Annual Report Greater West Texas

    E-Print Network [OSTI]

    Rock, Chris

    2010 Annual Report Greater West Texas State Employee Charitable Campaign You will find, as you look,717 and West Central Texas SECC raised $131,797 for a combined total of $957,514! · 4,608 state employees gave a fan! www.facebook.com/pages/Greater-West-Texas-State- Employee-Charitable-Campaign/103542263037744

  8. VEA-0008 - In the Matter of Cincinnati Gas & Electric Company | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivilegesUnauthorized Access |Darryl H.requestof

  9. DOE - Office of Legacy Management -- University of Cincinnati - OH 0-07

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntownUnited Nuclear Corp

  10. Greater West Texas State Employee Charitable Campaign

    E-Print Network [OSTI]

    Rock, Chris

    together we changed lives Greater West Texas State Employee Charitable Campaign 2012 Annual Report campaign information 2012 Local Employee Committee Darcy Pollock (Chair), Texas Tech University Health Sciences Center David Abercia, Texas Tech University Dianah Ascencio, Texas Department of Transportation

  11. AESOP XXI: summary of proceedings. [Cincinnati, Ohio, May 20-22, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    The theme of the May 1980 meeting of the Association for Energy Systems, Operations, and Programming (AESOP) was Information Exchange With An Emphasis on Management. Session I, the AESOP Washington Report, involved organizational, personnel, and structural changes to the Department of Energy since its inception in 1977, ADP management and changes in Federal ADP activity, and progress in telecommunications through legislative and technological change. Session II consisted of three management discussion sessions: the national laboratories group discussed available options for changing from leasing to owning computer facilities, costs of conversion, and effects of the Service Contract Act, the educational institutions and laboratories group discussed management and organizational structure for distributed computing, the relationship of ADP to word processing, and the development of security plans as described in DOE Order 1360.2, A Computer Security Program for Unclassified Computer Systems, the production facilities group exchanged views on the implementation of DOE Order 1360.2 and experiences with distributed data processing. Session II described methods for improving productivity of computer systems. Sessions IV addressed the issue of ADP management and the development and implementation of various computer systems. Session V described recent trends in networking, results of computer performance evaluation group meetings, and teleconferencing and electronic mail. Session VI provided more information concerning DOE Order 1360.2; security, propriety, sensitivity, and privacy were discussed.

  12. UNIVERSITY OF CINCINNATI _____________ , 20 _____

    E-Print Network [OSTI]

    Maynard, J. Barry

    and Wills Creek wetland in Ohio, were studied to determine their treatment efficiencies for sulfate is occurring at all five wetlands, but varies in degrees of treatment effectiveness. The Friar Tuck wetland: ________________________ ________________________ ________________________ ________________________ ________________________ May 24 01 Adam E. Flege Master of Science Geology Sulfate Reduction in Five Constructed Wetlands

  13. Recovering Energy From Ventilation and Process Airstreams

    E-Print Network [OSTI]

    Cheney, W. A.

    RECOVERING ENERGY FROM VENTILATION AND PROCESS AIRSTREAMS Heat Exchangers and contaminant Recovery William A. Cheney united Air Specialists, Inc. Cincinnati, Ohio The high cost of energy has prompted industry to look for new ways to reduce... 17-19, 1986 CONTAMINANT RECOVERY The ability to capture waste energy from an airstream, while simultaneously condensing hydrocarbon vapors, is a rela tively new technique in the heat-recovery market. In this process, high concentra tions...

  14. Greater Green River Basin Production Improvement Project

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01T23:59:59.000Z

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  15. Clean Cities: Greater Long Island Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro CleanGeneseeGreater Long

  16. Clean Cities: Greater New Haven Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro CleanGeneseeGreater

  17. Eight Approaches to Enable Greater Energy Efficiency: A Guide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verification Plan: Residential Retrofits A Primer on EM&V, Data Collection, Tracking and Reporting of Efficiency Savings, and Supporting Available Tools for EECBG and SEP Grantees...

  18. Setting the Stage for Greater Renewable Energy Penetration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle|SecurityDepartment ofSeptember 2013Service

  19. Cinco Renewable Energy Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTech JumpCincinnati,Cinco

  20. Clean Cities: Greater Indiana Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro CleanGenesee RegionIndiana

  1. Cinco Ranch, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTech JumpCincinnati,

  2. Molluscan Mariculture in the Greater Caribbean: An Overview

    E-Print Network [OSTI]

    Molluscan Mariculture in the Greater Caribbean: An Overview DARRYL E. JORY and EDWIN S. IVERSEN mariculture in the greater Caribbean area (Fig. 1). Sea- food is and has been a staple for Carib- bean people since pre-Columbian times. ABSIRACF-Marine mollusks suitable for mariculture in the Caribbean area have

  3. asymptomatic greater kudus: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land Cover Change (1975-2000) in the Greater Border Lakes Region Research Map NRS-3 United land cover classifications and change detection for a 13.8 million ha landscape...

  4. Captive propagation and brood behavior of greater prairie chickens

    E-Print Network [OSTI]

    Drake, David

    1994-01-01T23:59:59.000Z

    CAPTIVE PROPAGATION AND BROOD BEHAVIOR OF GREATER PRAIRIE CHICKENS A Thesis by DAVID DRAKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1994 Major Subject: Wildlife and Fisheries Sciences CAPTIVE PROPAGATION AND BROOD BEHAVIOR OF GREATER PRAIRIE CHICKENS A Thesis by DAVID DRAKE Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

  5. The Potential of Distributed Cogeneration in Commercial Sites in the Greater Vancouver

    E-Print Network [OSTI]

    (production of electricity at the point of use) may reduce CO2 emissions relative to the most likely of electricity and CO2 emissions. The results showed that while greater energy efficiency is achieved: December 10, 1999 #12;iii ABSTRACT The Canadian government is evaluating options to reduce CO2 emissions

  6. Novel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety Standard

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    acceptance; o power and energy capability; o reliability; o lifetime and life cycle cost. ThereofNovel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety,Denmark. Temperature excursions and non-uniformity of the temperature inside the battery systems are the main concern

  7. COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING

    E-Print Network [OSTI]

    Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  8. CAN INTEGRATED WATERSHED MANAGEMENT BRING GREATER FOOD SECURITY IN ETHIOPIA?

    E-Print Network [OSTI]

    Walter, M.Todd

    CAN INTEGRATED WATERSHED MANAGEMENT BRING GREATER FOOD SECURITY IN ETHIOPIA? Oloro V. McHugh, Amy S, Ethiopia Gete Zeleke ARARI, Bahir Dar, Ethiopia Abstract: In the food insecure regions, short annual. Ethiopia's agricultural sector is driven by the subsistence strategies of smallholder farmers

  9. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale

    E-Print Network [OSTI]

    Jackson, Don

    Paleoecology of the Greater Phyllopod Bed community, Burgess Shale Jean-Bernard Caron , Donald A and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale ecosystems further suggest the Burgess Shale community was probably highly dependent on immigration from

  10. Ice Storm Damage Greater Along the Terrestrial-Aquatic Interface

    E-Print Network [OSTI]

    Kraft, Clifford E.

    Ice Storm Damage Greater Along the Terrestrial-Aquatic Interface in Forested Landscapes Andrew A- tems. In 1998, a severe ice storm damaged over ten million hectares of forest across northern New York investigated the spatial arrangement of forest damage at the terrestrial-aquatic interface, an ecological edge

  11. Distribution of Permo-Carboniferous clastics of Greater Arabian basin

    SciTech Connect (OSTI)

    Al-Laboun, A.A.

    1987-05-01T23:59:59.000Z

    Strikingly correlative sequences of sediments composed of sandstones, siltstones, shales, and thin argillaceous carbonate beds are present, practically everywhere, underlying the Late Permian carbonates in the Greater Arabian basin. The Greater Arabian basin as defined here occupies the broad Arabian Shelf that borders the Arabian shield. This basin is composed of several smaller basins. These clastics are exposed as thin bands and scattered small exposures in several localities around the margins of the basin. The Permo-Carboniferous clastics are represented by the Unayzah Formation of Arabia, the Doubayat Group of Syria, the Hazro Formation of southeast Turkey, the Ga'arah Formation of Iraq, the Faraghan Formation of southwest Iran, and the Haushi Group of Oman. A Late Carboniferous-Early Permian age is assigned to these clastics because they contain fossil plants and palynomorphs. These sediments represent time-transgressive fluctuating sea deposits following a phase of regional emergence, erosion, and structural disturbance which preceded the Permian transgression. The basal contact of these clastics is marked by a well-pronounced angular unconformity with various older units, ranging in age from early Carboniferous to late Precambrian. This regional unconformity is probably related to the Hercynian movements. The upper contact is conformable with the Permian carbonates. The porous sandstones of the Permo-Carboniferous sediments are important hydrocarbon exploration targets. These reservoir rocks sometimes overlie mature source rocks and are capped by shales, marls, and tight carbonates. Significant quantities of hydrocarbons are contained in these reservoirs in different parts of the Greater Arabian basin.

  12. Greater Green River basin well-site selection

    SciTech Connect (OSTI)

    Frohne, K.H. [USDOE Morgantown Energy Technology Center, WV (United States); Boswell, R. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-12-31T23:59:59.000Z

    Recent estimates of the natural gas resources of Cretaceous low-permeability reservoirs of the Greater Green River basin indicate that as much as 5000 trillion cubic feet (Tcf) of gas may be in place (Law and others 1989). Of this total, Law and others (1989) attributed approximately 80 percent to the Upper Cretaceous Mesaverde Group and Lewis Shale. Unfortunately, present economic conditions render the drilling of many vertical wells unprofitable. Consequently, a three-well demonstration program, jointly sponsored by the US DOE/METC and the Gas Research Institute, was designed to test the profitability of this resource using state-of-the-art directional drilling and completion techniques. DOE/METC studied the geologic and engineering characteristics of ``tight`` gas reservoirs in the eastern portion of the Greater Green River basin in order to identify specific locations that displayed the greatest potential for a successful field demonstration. This area encompasses the Rocks Springs Uplift, Wamsutter Arch, and the Washakie and Red Desert (or Great Divide) basins of southwestern Wyoming. The work was divided into three phases. Phase 1 consisted of a regional geologic reconnaissance of 14 gas-producing areas encompassing 98 separate gas fields. In Phase 2, the top four areas were analyzed in greater detail, and the area containing the most favorable conditions was selected for the identification of specific test sites. In Phase 3, target horizons were selected for each project area, and specific placement locations were selected and prioritized.

  13. Texas: City of San Antonio Demonstrates Value of Greater Investments...

    Energy Savers [EERE]

    Antonio International Airport. The city's EECBG management team knew the new airport terminal offered a highly visible location to showcase renewable energy technologies and help...

  14. Sustainable Development Strategy for the Greater Mekong Subregion | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker Energy HoldingEnergy Information Subregion

  15. Hydrothermal Convection Systems with Reservoir Temperatures greater than or

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat of Long Valley Caldera | Openequal

  16. The health of manufacturing in the UK is assuming greater

    E-Print Network [OSTI]

    Mottram, Nigel

    , energy production and mineral extraction would place the total to nearer 25% of the economy manufac- turing processes, are in- volved. A wider definition, including, for example, con- struction

  17. DOE Announces $17 Million to Promote Greater Automobile Efficiency |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartment ofNuclear Energy forDepartment of

  18. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipalNumber ofTexas-Louisiana-

  19. Stocks of Distillate Fuel Oil Greater Than 500 ppm Sulfur

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO) Highlights ï‚·2008DeutscheState470,6036,190

  20. Study: Environmental Benefits of LEDs Greater Than CFLs | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -Blueprint | DepartmentExcellence |Science BowlSimulation Model

  1. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  2. PLANNING FOR WATER CONSERVATION Greater Vancouver Regional District

    E-Print Network [OSTI]

    of the public and private sectors in providing a supply of high quality urban water? Best management practices in urban areas around the globe, yet per capita water consumption continues to increase. Faced with increasing populations and costs associated with urban growth--related to infrastructure, energy, operation

  3. Greater fuel diversity needed to meet growing US electricity demand

    SciTech Connect (OSTI)

    Burt, B.; Mullins, S. [Industrial Info Resources (United States)

    2008-01-15T23:59:59.000Z

    Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

  4. DOE prepared for Greater Sage-Grouse designation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOE

  5. STATE OF CALIFORNIA NEWLY CONSTRUCTED BUILDINGS AND ADDITIONS GREATER THAN 1,000 FT2

    E-Print Network [OSTI]

    STATE OF CALIFORNIA NEWLY CONSTRUCTED BUILDINGS AND ADDITIONS GREATER THAN 1,000 FT2 CEC- CF-1R Newly Constructed Buildings and Additions Greater Than 1,000 ft2 (Page 1 of 5) Project Name: Climate________ Project Type: New Building Construction New Addition1 greater than 1,000 ft2 1. Additions greater than 1

  6. How to Extract Energy from Dirty Interior Air

    E-Print Network [OSTI]

    Cheney, W. A.

    1982-01-01T23:59:59.000Z

    HOW TO EXTRACT ENERGY FROM DIRTY INTERIOR AIR William A. Cheney United Air Specialists, Inc. Cincinnati, Ohio ABSTRACT Industry is often faced with the problem of reducing the level of contaminated air in its plants. The common method... in residential and HVAC applications. With modi ~icatio~s, it .is used to control a wide range of mdustrIal partIculate contaminants. A simple diagram may help clear up any confusion that exists between the basic design of the Cottrell single stage ESP used...

  7. DOE Announces $17 Million to Promote Greater Automobile Efficiency |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentI Office of ENERGYAgrees withDepartment of

  8. Cooperation Among Balancing Authorities Offers Greater Use of Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex(GC-72) |Reserve |Sadesh Sookraj,ImproveEnergy with

  9. Clean Cities: Greater Lansing Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro CleanGenesee

  10. Clean Cities: Greater Washington Region Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro

  11. Asymptotic Zero Energy States for SU(N greater or equal 3)

    E-Print Network [OSTI]

    Jens Hoppe

    1999-12-17T23:59:59.000Z

    Some ideas are presented concerning the question which of the harmonic wavefunctions constructed in [hep-th/9909191] may be annihilated by all supercharges.

  12. Eight Approaches to Enable Greater Energy Efficiency: A Guide for State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune-YearEffectEfficientGovernment

  13. Reviews: From the End of Energy and Unlocking Energy Innovation

    E-Print Network [OSTI]

    Kunnas, Jan

    2013-01-01T23:59:59.000Z

    help move toward greater energy security and reduced carbonthat would guarantee energy security, and calls for muchof Energy: The Unmaking of America’s Environment, Security

  14. State of Indiana/Greater IN Clean Cities Alternative Fuels Implementat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications State of IndianaGreater IN Clean Cities Alternative Fuels Implementation Plan State of IndianaGICC Alternative Fuels Implementation...

  15. CCMPreparatoryDepartment UniversityofCincinnati

    E-Print Network [OSTI]

    Papautsky, Ian

    available, both in classes and in individual lessons taught by CCM Prep faculty, guest artists and educators. For more information, please contact CCM Prep at )513-556-2595 or 8www.ccm.uc.edu/ prep or *ccmprep. CCM Preparatory Department is a Member of the National Guild for Community Arts Education, the Suzuki

  16. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Regnier, low-energy building designer Seeking Greater Influence in the World of Low-Energy Buildings Cindy Regnier is making a difference. Read how here. July 23, 2010 METRO...

  17. 0040: 1-24 2008 The bees of Greater Puerto Rico

    E-Print Network [OSTI]

    Franz, Nico M.

    1 0040: 1-24 2008 The bees of Greater Puerto Rico (Hymenoptera: Apoidea: Anthophila) Julio A-mail:polimita@hotmail.com Nico M. Franz Department of Biology, University of Puerto Rico PO Box 9012, Mayagüez, PR 00681, U.S.A. E-mail:franz@uprm.edu Abstract. The bee fauna of the Greater Puerto Rico area was studied. A review

  18. Greater-than-Class C low-level radioactive waste characterization. Appendix H: Packaging factors for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Quinn, G.; Grant, P.

    1991-08-01T23:59:59.000Z

    This report develops and presents estimates for a set of three values that represent a reasonable range for the packaging factors for several waste streams that are potential greater-than-Class C low-level radioactive waste. The packaging factor is defined as the volume of a greater-than-Class C low-level waste disposal container divided by the original, as-generated or ``unpackaged,`` volume of the wastes loaded into the disposal container. Packaging factors take into account any processes that reduce or increase an original unpackaged volume of a greater-than-Class C low-level radioactive waste, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. The three values developed represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated volume of waste for disposal, and (c) a low case packaging factor for the smallest volume expected. Three categories of greater-than-Class C low-level waste are evaluated in this report: activated metals, sealed sources, and all other wastes. Estimates of reasonable packaging factors for the low, base, and high cases for the specific waste streams in each category are shown in Table H-1.

  19. CX-002897: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sustainability at Cincinnati's Union TerminalCX(s) Applied: B5.1Date: 07/09/2010Location(s): Cincinnati, OhioOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  20. The impact of multifamily development on single family home prices in the Greater Boston Area

    E-Print Network [OSTI]

    Schuur, Arah (Arah Louise Adele)

    2005-01-01T23:59:59.000Z

    The impact of large, multifamily developments on nearby single-family home prices was tested in five towns in the Greater Boston Area. Case studies that had recent multifamily developments built near transit nodes or town ...

  1. Landscape-scale patterns of forest pest and pathogen damage in the Greater Yellowstone Ecosystem

    E-Print Network [OSTI]

    Moorcroft, Paul R.

    rust by examining changes in the spatial scale of significant stress and mortality clusters computedLandscape-scale patterns of forest pest and pathogen damage in the Greater Yellowstone Ecosystem

  2. You are on a path to greater prosperity and knowledge of nature, science, and

    E-Print Network [OSTI]

    Behmer, Spencer T.

    You are on a path to greater prosperity and knowledge of nature, science, and engineering. Our'Texas Aggie football team is nationally acclaimed, and every game brings a festive atmosphere

  3. An extinct monkey from Haiti and the origins of the Greater Antillean primates

    E-Print Network [OSTI]

    Rosenberger, Alfred H.

    An extinct monkey from Haiti and the origins of the Greater Antillean primates Siobhán B. Cookea from Haiti, Insulacebus toussaintiana, is described here from the most complete Caribbean subfossil

  4. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01T23:59:59.000Z

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ``unpackaged`` volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste.

  5. Greater-than-Class C low-level radioactive waste characterization. Appendix D-3: Characterization of greater-than-Class C low-level radioactive waste from other generators

    SciTech Connect (OSTI)

    Fish, L.W.

    1994-09-01T23:59:59.000Z

    The Other Generators category includes all greater-than-Class C low-level radioactive waste (GTCC LLW) that is not generated or held by nuclear utilities or sealed sources licensees or that is not stored at Department of Energy facilities. To determine the amount of waste within this category, 90 LLW generators were contacted; 13 fit the Other Generators category. Based on information received from the 13 identified Other Generators, the GTCC LLW Management Program was able to (a) characterize the nature of industries in this category, (b) estimate the 1993 inventory of Other Generator waste for high, base, and low cases, and (c) project inventories to the year 2035 for high, base, and low cases. Assumptions were applied to each of the case estimates to account for generators who may not have been identified in this study.

  6. FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT,

    E-Print Network [OSTI]

    Chapter GS FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

  7. Impact of folivory on photosynthesis is greater than the sum of its holes

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Impact of folivory on photosynthesis is greater than the sum of its holes A. R. Zangerl*, J. G), pp. 135­151.]. An impediment to understanding the effects of leaf damage on photosynthesis has been chlorophyll fluo- rescence and used it to map the effects of caterpillar feeding on whole-leaf photosynthesis

  8. Citizen Science System Assemblages: Toward Greater Understanding of Technologies to Support Crowdsourced

    E-Print Network [OSTI]

    Crowston, Kevin

    Citizen Science System Assemblages: Toward Greater Understanding of Technologies to Support crowston@syr.edu ABSTRACT We explore the nature of technologies to support citizen science, a method different citizen science platforms may be comprised of widely varying functionalities, yet still support

  9. Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: Insights from Greater Antilles

    E-Print Network [OSTI]

    of the Greater Antilles in Hispaniola. We use numerical models of intra-oceanic subduction to explain exhumation Antilles in Hispaniola [Abbott et al., 2006; Abbott et al., 2005]. Field observations show that the garnet and Hispaniola islands [e.g., Lewis et al., 2006]. It was formed during subduction of the Proto-Caribbean oceanic

  10. Catalog of documents produced by the Greater-Than-Class C Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Winberg, M.R.

    1995-03-01T23:59:59.000Z

    This catalog provides a ready reference for documents prepared by the Greater-Than-Class C Low-Level Waste (GTCC LLW) Management Program. The GTCC LLW Management Program is part of the National Low-Level Waste Management Program (NLLWMP). The NLLWMP is sponsored by the US Department of Energy (DOE) and is responsible for assisting the DOE in meeting its obligations under Public Law 99-240, The Low-Level Radioactive Waste Policy Amendments Act of 1985. This law assigns DOE the responsibility of ensuring the safe disposal of GTCC LLW in a facility licensed by the Nuclear Regulatory Commission (NRC). The NLLWMP is managed at the Idaho National Engineering Laboratory (INEL).

  11. National Energy Action Month

    Broader source: Energy.gov [DOE]

    President Obama calls on Americans to work together to achieve greater U.S. energy security and build a more robust economy.

  12. Solid waste workers and livelihood strategies in Greater Port-au-Prince, Haiti

    SciTech Connect (OSTI)

    Noel, Claudel, E-mail: claudelnoel@gmail.co [University of the West Indies, Institute for Sustainable Development, Environmental Management Unit, 13 Gibraltar Camp Way, Mona Campus, Kingston (Jamaica)

    2010-06-15T23:59:59.000Z

    The solid waste management industry in Haiti is comprised of a formal and an informal sector. Many basic activities in the solid waste management sector are being carried out within the context of profound poverty, which exposes the failure of the socioeconomic and political system to provide sufficient job opportunities for the urban population. This paper examines the involvement of workers in the solid waste management industry in Greater Port-au-Prince and the implications for livelihood strategies. The findings revealed that the Greater Port-au-Prince solid waste management system is very inclusive with respect to age, while highly segregated with regard to gender. In terms of earning capacity, the results showed that workers hired by the State agencies were the most economically vulnerable group as more than 50% of them fell below the official nominal minimum wage. This paper calls for better salary scales and work compensation for the solid waste workers.

  13. Drilling Off-Shore (Mademoiselle From Armentiers) Pedrolina "Paige" Delaparrucca and the Greater Westerly Grannies

    E-Print Network [OSTI]

    Nightingale, Peter

    Drilling Off-Shore (Mademoiselle From Armentiers) Pedrolina "Paige" Delaparrucca and the Greater- George ofU Old Drill- Litt- heat lost had need had get E his no more his more belch, ba- Bush, A, Rea Car- Ba- Litt- U Old Drill- B 7 5 bon rack le S Ron- ing more oil, D o we his no more his in ma who we

  14. Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Fiebig, M.

    2010-10-01T23:59:59.000Z

    As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

  15. Method to produce alumina aerogels having porosities greater than 80 percent

    DOE Patents [OSTI]

    Poco, John F.; Hrubesh, Lawrence W.

    2003-09-16T23:59:59.000Z

    A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.

  16. Activities of ?-ray emitting isotopes in rainwater from Greater Sudbury, Canada following the Fukushima incident

    E-Print Network [OSTI]

    B. T. Cleveland; F. A. Duncan; I. T. Lawson; N. J. T. Smith; E. Vazquez-Jauregui

    2012-02-29T23:59:59.000Z

    We report the activity measured in rainwater samples collected in the Greater Sudbury area of eastern Canada on 3, 16, 20, and 26 April 2011. The samples were gamma-ray counted in a germanium detector and the isotopes 131I and 137Cs, produced by the fission of 235U, and 134Cs, produced by neutron capture on 133Cs, were observed at elevated levels compared to a reference sample of ice-water. These elevated activities are ascribed to the accident at the Fukushima Dai-ichi nuclear reactor complex in Japan that followed the 11 March earthquake and tsunami. The activity levels observed at no time presented health concerns.

  17. Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAM DOEofScienceDepartmentEnergy

  18. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    SciTech Connect (OSTI)

    Sandercock, Brett K. [Kansas State University

    2013-05-22T23:59:59.000Z

    Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most abandoned lek sites were located <5 km from turbines. Probability of lek persistence was significantly related to habitat and number of males. Leks had a higher probability of persistence in grasslands than agricultural fields, and increased from ~0.2 for leks of 5 males, to >0.9 for leks of 10 or more males. Large leks in grasslands should be a higher priority for conservation. Overall, wind power development had a weak effect on the annual probability of lek persistence. 3. We used molecular methods to investigate the mating behavior of prairie chickens. The prevailing view for lek-mating grouse is that females mate once to fertilize the clutch and that conspecific nest parasitism is rare. We found evidence that females mate multiple times to fertilize the clutch (8-18% of broods, 4-38% of chicks) and will parasitize nests of other females during egg-laying (~17% of nests). Variable rates of parentage were highest in the fragmented landscapes at the Smoky Hills field site, and were lower at the Flint Hills field site. Comparisons of the pre- and postconstruction periods showed that wind energy development did not affect the mating behaviors of prairie chickens. 4. We examined use of breeding habitats by radio-marked females and conducted separate analyses for nest site selection, and movements of females not attending nests or broods. The landscape was a mix of native prairie and agricultural habitats, and nest site selection was not random because females preferred to nest in grasslands. Nests tended to be closer to turbines during the postconstruction period and there was no evidence of behavioral avoidance of turbines by females during nest site selection. Movements of females not attending nests or broods showed that females crossed the site of the wind power development at higher rates during the preconstruction period (20%) than the postconstruction period (11%), and that movements away from turbines were more frequent during the postconstruction period. Thus, wind power development appears to affect movements in breeding habitats but not nest site s

  19. Greater-Than-Class C low-level radioactive waste treatment technology evaluation

    SciTech Connect (OSTI)

    Garrison, T W; Fischer, D K

    1993-01-01T23:59:59.000Z

    This report was developed to provide the Greater-Than-Class C Low-Level Radioactive Waste Management Program with criteria and a methodology to select candidate treatment technologies for Greater-Than-Class C low-level radioactive waste (GTCC LLW) destined for dedicated storage and ultimately disposal. The technology selection criteria are provided in a Lotus spreadsheet format to allow the methodology to evolve as the GTCC LLW Program evolves. It is recognized that the final disposal facility is not yet defined; thus, the waste acceptance criteria and other facility-specific features are subject to change. The spreadsheet format will allow for these changes a they occur. As additional treatment information becomes available, it can be factored into the analysis. The technology selection criteria were established from program goals, draft waste acceptance criteria for dedicated storage (including applicable regulations), and accepted remedial investigation methods utilized under the Comprehensive Environmental Response, Compensation, and Liability Act. Kepner-Tregoe decisionmaking techniques are used to compare and rank technologies against the criteria.

  20. ARRA Proposed Award: Energy Technology Assistance Program

    E-Print Network [OSTI]

    ARRA Proposed Award: Energy Technology Assistance Program Statewide Program ­ covering Greater. Highlights: Energy Technology Assistance Program (ETAP) is a statewide program that will focus on providing

  1. Texas: City of San Antonio Demonstrates Value of Greater Investments in

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon DOE-HDBK-1046-2008CommerceClean Energy |

  2. DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0and Transparency, and MoreEnergyof Energy DOEEnergy DOEDOE|

  3. Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region

    SciTech Connect (OSTI)

    Steiner, A. L.; Tawfik, A. B.; Shalaby, A.; Zakey, A. S.; Abdel Wahab, M. M.; Salah, Z.; Solmon, F.; Sillman, S.; Zaveri, Rahul A.

    2014-04-16T23:59:59.000Z

    An integrated chemistry-climate model (RegCM4-CHEM) simulates present-day climate, ozone and tropospheric aerosols over Egypt with a focus on Greater Cairo (GC) region. The densley populated GC region is known for its severe air quality issues driven by high levels of anthropogenic pollution in conjuction with natural sources such as dust and agricultural burning events. We find that current global emission inventories underestimate key pollutants such as nitrogen oxides and anthropogenic aerosol species. In the GC region, average-ground-based NO2 observations of 40-60 ppb are substantially higher than modeled estimates (5-10 ppb), likely due to model grid resolution, improper boundary layer representation, and poor emissions inventories. Observed ozone concentrations range from 35 ppb (winter) to 80 ppb (summer). The model reproduces the seasonal cycle fairly well, but modeled summer ozone is understimated by approximately 15 ppb and exhibits little interannual variability. For aerosols, springtime dust events dominate the seasonal aerosol cycle. The chemistry-climate model captures the springtime peak aerosol optical depth (AOD) of 0.7-1 but is slightly greater than satellite-derived AOD. Observed AOD decreases in the summer and increases again in the fall due to agricultural burning events in the Nile Delta, yet the model underestimates this fall observed AOD peak, as standard emissions inventories underestimate this burning and the resulting aerosol emissions. Our comparison of modeled gas and particulate phase atmospheric chemistry in the GC region indicates that improved emissions inventories of mobile sources and other anthropogenic activities are needed to improve air quality simulations in this region.

  4. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    SciTech Connect (OSTI)

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27T23:59:59.000Z

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for fo

  5. Characterization of Greater-Than-Class C sealed sources. Volume 1, Sealed sources held by specific licensees

    SciTech Connect (OSTI)

    Harris, G.

    1994-09-01T23:59:59.000Z

    Sealed sources are small, relatively high-activity radioactive sources typically encapsulated in a metallic container. The activities can range from less than 1 mCi to over 1,000 Ci. They are used in a variety of industries and are commonly available. Many of the sources will be classified as Greater-Than-Class C low-level radioactive waste (GTCC LLW) for the purpose of waste disposal. The US Department of Energy is responsible for disposing of this class of low-level radioactive waste. To better understand the scope of the GTCC LLW situation regarding sealed sources and to provide data to a model that projects future quantities of GTCC material, data from a comprehensive 1991 US Nuclear Regulatory Commission (NRC) survey and a related 1992 survey of Agreement States were analyzed to estimate the number, volume, and activity of Potential GTCC sealed sources currently available from specific licensees. Potential GTCC sealed sources are sources that exceed the limits stated in 10 CFR 61 when isotope concentrations are averaged over the volume of the capsule. Based on the surveys, the estimated number of existing Potential GTCC sealed sources held by specific licensees is 89,000, with an unpackaged volume of 0.93 m{sup 3} and an activity of 2,300,000 Ci. However, current disposal practices allow concentration averaging over the disposal container, substantially reducing the number of sealed sources which will actually be classified as GTCC LLW.

  6. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    SciTech Connect (OSTI)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01T23:59:59.000Z

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

  7. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    SciTech Connect (OSTI)

    Hulse, R.A.

    1991-08-01T23:59:59.000Z

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.

  8. Computing, Energy, and the Environment

    E-Print Network [OSTI]

    Ellis, Carla

    devices with significant computing resources · Limited improvements in battery life have not kept up energy management · Example: Smart House applications ­ Enable greater understanding: Sensor networks to Effective Energy Research 1) Choosing an appropriate metric ­ Energy (Joules) ­ Power (Watts) ­ Battery

  9. EnergyWorks Final Report: A Better Buildings Neighborhood Program in the Five-County Greater Philadelphia Region

    SciTech Connect (OSTI)

    Gajewski, Katherine [City of Philadelphia] [City of Philadelphia

    2014-03-05T23:59:59.000Z

    This report covers the grant performance period of July 1, 2010-September 30, 2013 and discusses of the program design, outcomes and best practices as they relate to the following six areas: 1. Institutional Design and Business Model; 2. Program Design and Customer Experience; 3. Driving Demand; 4. Workforce Development; 5. Financing and Incentives; 6. Data and Evaluation.

  10. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

  11. Are We Heading Towards a Reversal of the Trend for Ever-Greater Mobility? |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftware and hardware orIndexes LLC Jump

  12. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.png Energy

  13. Eocene climates, depositional environments, and geography, greater Green River basin, Wyoming, Utah, and Colorado

    SciTech Connect (OSTI)

    Roehler, H.W.

    1993-12-31T23:59:59.000Z

    The climates, depositional environments, and geography of Eocene rocks in the greater Green River basin are investigated to determine the origin, mode of deposition, and areal distribution of the Wasatch, Green River, Bridger, and Washakie Formations. The data indicate that Eocene climates ranged from cool temperature to tropical and were affected by both terrestrial and astronomical factors. The terrestrial factors were mainly latitude, altitude, regional geography, tectonism, and volcanism. The astronomical factors are interpreted from reptitious rock sequences in the Wilkins Peak Member of the Green River Formation that record seasonal changes, 21,000 year precession of the equinox cycles, 100,000 year eccentricity cycles, and an undetermined cycle of 727,000 years. Eight depositional environments are identified, discussed, and illustrated by diagrams, columnar sections, and photographs. They are: (1) fluvial, (2) paludal, (3) freshwater lacustrine, (4) saltwater lacustrine, (5) pond and playa lake, (6) evaporite (salt pan), (7) mudflat, and (8) volcanic and fluviovolcanic. The areal distribution of the eight depositional environments in the Wasatch, Green River, Bridger, and Washakie Formations is illustrated by photographs and 13 paleogeographic maps. 76 refs., 90 figs.

  14. Stocks of Distillate Fuel Oil Greater Than 15 ppm to 500 ppm Sulfur

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO) Highlights ï‚·2008DeutscheState470,6036,190 5,932

  15. State of Indiana/Greater IN Clean Cities Alternative Fuels Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideosSpringout by electric and gas utilitiesEnergy

  16. State of Indiana/Greater IN Clean Cities Alternative Fuels Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideosSpringout by electric and gas utilitiesEnergyPlan

  17. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment Openings

  18. Greater Green River Basin production improvement project, Phase 1: Site characterization report

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Krystinik, L.F.; Mead, R.H.; Poe, S.C.

    1996-05-01T23:59:59.000Z

    Several tight, naturally-fractured, gas-productive formations in the Greater Green River Basin (GGRB) in Wyoming have been exploited using conventional vertical well technology. Typically, hydraulic fracture treatments must be performed in completing these wells to increase gas production rates to economic levels. However, with the maturation of horizontal drilling technology hydraulic fracture treatments may not be the most effective method for improving gas production from these tight reservoirs. Two of the most prolific tight gas reservoirs in the Green River Basin, the Frontier and the Mesaverde, are candidates for the application of horizontal well completion technology. The objective of the proposed project is to apply the DOE`s technical concept to the Second Frontier Formation on the western flank of the Rock Springs Uplift. Previous industry attempts to produce in commercial quantities from the Second Frontier Formation have been hampered by lack of understanding of both the in-situ natural fracture system and lack of adequate stimulation treatments. The proposed technical approach involves drilling a vertical characterization well to the Second Frontier Formation at a depth of approximately 16,000 ft. from a site located about 18 miles northwest of Rock Springs, Wyoming. Logging, coring, and well testing information from the vertical well will be used to design a hydraulic fracturing treatment and to assess the resulting production performance. Data from the vertical drilling phase will be used to design a 2,500 to 3,000-ft lateral wellbore which will be kicked off from the vertical hole and extend into the blanket marine sandstone bench of the Second Frontier Formation. The trajectory of this wellbore will be designed to intersect the maximum number of natural fractures to maximize production rates. Production testing of the resulting completion will provide an assessment of reserve potential related to horizontal lateral completions.

  19. Behavioral Ecology Vol. 13 No. 3: 375380 Female greater wax moths reduce sexual

    E-Print Network [OSTI]

    Auckland, University of

    , and Stuart Parsons School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK in the evolution of audition (Faure and Hoy, 2000) and will present the greatest challeng- es when conspecifics) with peak energy between 80 and 100 kHz, and they are emitted in ap- proximatley 0.5-s bursts

  20. Management and Conservation Short-Term Impacts of Wind Energy

    E-Print Network [OSTI]

    Beck, Jeffrey L.

    Management and Conservation Short-Term Impacts of Wind Energy Development on Greater Sage associated with wind energy development on greater sage-grouse populations. We hypothesized that greater sage-grouse nest, brood, and adult survival would decrease with increasing proximity to wind energy infrastructure

  1. DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |ProductionDepartmentDevelopment |to|

  2. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...) "..

  3. EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F,-SA-01:5-SA-01:DraftoftotoRecord of

  4. Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfter LeaseMeters Deep

  5. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Greater than

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfter LeaseMeters200 Meters

  6. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfterthan 200 Meters Deep

  7. Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfterthanReserves fromthan

  8. Draft Environmental Impact Statement for the Disposal of Greater-Than-Class

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471 FederalDonnaDraft3:C Low-Level Radioactive

  9. Draft Environmental Impact Statement for the Disposal of Greater-Than-Class

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69Christopher FeckoDraft ResourceAdvice:ProjectC

  10. Draft Greater Than Class C EIS Public Hearings to Come to Pasco, WA and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69Christopher FeckoDraftDraft For-Profit

  11. affecting energy capacity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organization of Santiago affects its capacity to design and apply urban energy initiatives MIT - DSpace Summary: The need for greater levels of energy efficiency has never...

  12. New Energy Efficiency Standards for External Power Supplies to...

    Energy Savers [EERE]

    on President Obama's State of the Union address, which called for reducing carbon pollution and helping communities move to greater energy efficiency, the Energy Department...

  13. Energy Refits in Philadelphia

    Broader source: Energy.gov [DOE]

    The Greater Philadelphia region's historic buildings and homes are among the most significant in American history, but they predate modern energy-efficient designs by centuries. In fact, some...

  14. ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM RecoveryManagement'sJuneAprilEMS U.S.

  15. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwoJaniceEnerG2Energetics of Hydrogen .M

  16. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    energy consumption is projected through 2050 using the linear trendtrends that lead to greater or lesser energy consumption,energy consumption is projected through 2050 based on projected near-term trends

  17. Meteorological and air quality impacts of increased urban albedo and vegetative cover in the Greater Toronto Area, Canada

    SciTech Connect (OSTI)

    Taha, Haider; Hammer, Hillel; Akbari, Hashem

    2002-04-30T23:59:59.000Z

    The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., ''cool-city'' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important during critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenari os for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area. Our si mulations suggest that cool-city strategies can typically reduce local urban air temperature by 0.5-1 degrees C; as more sporadic events, larger decreases (1.5 degrees C, 2.5-2.7 degrees C and 4-6 degrees C) were also simulated. With regard to ozone mixing ratios along the simulated trajectories, the effects of cool-city strategies appear to be on the order of 2 ppb, a typical decrease. The photochemical trajectory model (CIT) also simulates larger decreases (e.g., 4 to 8 ppb), but these are not taken as representative of the potential impacts in this report. A comparison with other simulations suggest very crudely that a decrease of this magnitude corresponds to significant ''equivalent'' decreases in both NOx and VOCs emissions in the region. Our preliminary results suggest that significant UHI control can be achieved with cool-cities strategies in the GTA and is therefore worth further study. We recommend that better input data and more accurate modeling schemes be used to carry out f uture studies in the same direction.

  18. Does `Facebooking' lead to greater student engagement? Junco, R. (2012). The relationship between frequency of Facebook use, participation in

    E-Print Network [OSTI]

    Levinson, David M.

    2012-01-01T23:59:59.000Z

    Does `Facebooking' lead to greater student engagement? Junco, R. (2012). The relationship between frequency of Facebook use, participation in Facebook activities, and student engagement. Computers, such as Facebook (FB) is also a somewhat prickly topic in higher education as the stakeholders listed above attempt

  19. Summary We tested the hypothesis that greater cavitation resistance correlates with less total inter-vessel pit area per ves-

    E-Print Network [OSTI]

    Hacke, Uwe

    Summary We tested the hypothesis that greater cavitation resistance correlates with less total cavitation safety and transport efficiency. Fourteen species of diverse growth form (vine, ring- and diffuse species total). Two types of vulnerability-to-cavitation curves were found. Ring-porous trees and vines

  20. The seismic monitoring of buildings is particularly important in high-population urban areas like Greater Boston. While

    E-Print Network [OSTI]

    Polz, Martin

    PROBLEM The seismic monitoring of buildings is particularly important in high-population urban areas like Greater Boston. While Massachusetts' seismic building codes are adapted from Cali- fornia to damage from earthquakes of small magnitude, particularly if the fundamen- tal frequency of the seismic

  1. Secretary Chu's Remarks at the Cincinnati State Technical and...

    Office of Environmental Management (EM)

    to be here. Many of you are the first in your families to have gone beyond high school. Some may have dropped out of school, and this event celebrates your return and...

  2. Secretary Chu's Remarks at the Cincinnati State Technical and Community

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle SchoolPhysicsDelivery | Department ofCollege

  3. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    Commercial Primary Energy Use (Mtce) More gas boiler & heat pumps with greater efficiency 40% more efficient cooling technologies more efficient lighting more efficient water heaters

  4. Bark beetle and wood borer infestation in the greater Yellowstone area during four postfire years. Forest Service research paper

    SciTech Connect (OSTI)

    Rasmussen, L.A.; Amman, G.D.; Vandygriff, J.C.; Oakes, R.D.; Munson, A.S.

    1996-03-01T23:59:59.000Z

    Surveys of bark beetle and wood borer infestation in the Greater Yellowstone Area were conducted from 1991 through 1993 to determine the effect of delayed tree mortality on mosaics of fire-killed and green tree stands, the relationship between fire injury and infestation, but both types of mortality greatly altered the mosaics immediately apparent after the 1988 fires. The high level of infestation suggests that insects built up in fire-injured trees and then caused increased infestation of uninjured trees.

  5. Achieving Energy Efficiency Through Real-Time Feedback

    SciTech Connect (OSTI)

    Nesse, Ronald J.

    2011-09-01T23:59:59.000Z

    Through the careful implementation of simple behavior change measures, opportunities exist to achieve strategic gains, including greater operational efficiencies, energy cost savings, greater tenant health and ensuing productivity and an improved brand value through sustainability messaging and achievement.

  6. A joint U.S.-China demonstration energy efficient office building

    E-Print Network [OSTI]

    Zimmerman, Mary Beth; Huang, Yu JoeWatson, Rob; Shi, Han; Judkoff, Ron; She rman, Micah

    2000-01-01T23:59:59.000Z

    and IAQ comfort increases significantly with properly designed and maintained floor distribution, leading to greater energy effectiveness and enhanced productivity.

  7. Michael Langley GREATER MSP

    E-Print Network [OSTI]

    Levinson, David M.

    prosper here. People prosper here. OUR REGION'S STORY #12;RAPID URBANIZATION & GROWING MIDDLE CLASS Mumbai and Insurance Reports (examples) · Met Council: NARC Study · MGI: Game Changers Data Analysis · Sectors (Mc · Nutrition · Water filtration · Water purification Food & Water Solutions #12;BUSINESS AND PEOPLE PROSPER

  8. Green Jobs and Energy Economy

    E-Print Network [OSTI]

    Kammen, Daniel M.

    as a key area for investment for three primary reasons: greater energy in- dependence, improvedGreen Jobs and the Clean Energy Economy THOUGHT LEADERSHIP SERIES Co-authors Ditlev Engel, Chief Distinguished Professor of Energy Founding Director, Renewable and Appropriate Energy Laboratory Co

  9. Activities of \\gamma-ray emitting isotopes in rainwater from Greater Sudbury, Canada following the Fukushima incident

    E-Print Network [OSTI]

    Cleveland, B T; Lawson, I T; Smith, N J T; Vazquez-Jauregui, E

    2012-01-01T23:59:59.000Z

    We report the activity measured in rainwater samples collected in the Greater Sudbury area of eastern Canada on 3, 16, 20, and 26 April 2011. The samples were gamma-ray counted in a germanium detector and the isotopes 131I and 137Cs, produced by the fission of 235U, and 134Cs, produced by neutron capture on 133Cs, were observed at elevated levels compared to a reference sample of ice-water. These elevated activities are ascribed to the accident at the Fukushima Dai-ichi nuclear reactor complex in Japan that followed the 11 March earthquake and tsunami. The activity levels observed at no time presented health concerns.

  10. The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado

    SciTech Connect (OSTI)

    Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S. [Univ. of Texas, Austin, TX (United States)

    1997-01-01T23:59:59.000Z

    Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

  11. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    SciTech Connect (OSTI)

    Kirner, N.P. [Ebasco Environmental, Idaho Falls, ID (United States)

    1994-09-01T23:59:59.000Z

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m{sup 3} to 187 m{sup 3}, depending on assumptions and treatments applied to the wastes.

  12. Greater Biopsy Core Number Is Associated With Improved Biochemical Control in Patients Treated With Permanent Prostate Brachytherapy

    SciTech Connect (OSTI)

    Bittner, Nathan [Tacoma/Valley Radiation Oncology Centers, Tacoma, WA (United States); Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.or [Schiffler Cancer Center/Wheeling Jesuit University, Wheeling, WV (United States); Galbreath, Robert W.; Butler, Wayne M. [Schiffler Cancer Center/Wheeling Jesuit University, Wheeling, WV (United States); Adamovich, Edward [Department of Pathology, Wheeling Hospital, Wheeling, WV (United States); Wallner, Kent E. [Radiation Oncology, Puget Sound Health Care System, Department of Veterans Affairs, Seattle, WA (United States)

    2010-11-15T23:59:59.000Z

    Purpose: Standard prostate biopsy schemes underestimate Gleason score in a significant percentage of cases. Extended biopsy improves diagnostic accuracy and provides more reliable prognostic information. In this study, we tested the hypothesis that greater biopsy core number should result in improved treatment outcome through better tailoring of therapy. Methods and Materials: From April 1995 to May 2006, 1,613 prostate cancer patients were treated with permanent brachytherapy. Patients were divided into five groups stratified by the number of prostate biopsy cores ({<=}6, 7-9, 10-12, 13-20, and >20 cores). Biochemical progression-free survival (bPFS), cause-specific survival (CSS), and overall survival (OS) were evaluated as a function of core number. Results: The median patient age was 66 years, and the median preimplant prostate-specific antigen was 6.5 ng/mL. The overall 10-year bPFS, CSS, and OS were 95.6%, 98.3%, and 78.6%, respectively. When bPFS was analyzed as a function of core number, the 10-year bPFS for patients with >20, 13-20, 10-12, 7-9 and {<=}6 cores was 100%, 100%, 98.3%, 95.8%, and 93.0% (p < 0.001), respectively. When evaluated by treatment era (1995-2000 vs. 2001-2006), the number of biopsy cores remained a statistically significant predictor of bPFS. On multivariate analysis, the number of biopsy cores was predictive of bPFS but did not predict for CSS or OS. Conclusion: Greater biopsy core number was associated with a statistically significant improvement in bPFS. Comprehensive regional sampling of the prostate may enhance diagnostic accuracy compared to a standard biopsy scheme, resulting in better tailoring of therapy.

  13. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Tyacke, M.

    1993-08-01T23:59:59.000Z

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  14. Stakeholder Engagement on the Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste -12565

    SciTech Connect (OSTI)

    Gelles, Christine; Joyce, James; Edelman, Arnold [Office of Environmental Management, Office of Disposal Operations-EM-43 (United States)

    2012-07-01T23:59:59.000Z

    The Department of Energy's (DOE) Office of Disposal Operations is responsible for developing a permanent disposal capability for a small volume, but highly radioactive, class of commercial low-level radioactive waste, known as Greater-Than-Class C (GTCC) low-level radioactive waste. DOE has issued a draft environmental impact statement (EIS) and will be completing a final EIS under the National Environmental Policy Act (NEPA) that evaluates a range of disposal alternatives. Like other classes of radioactive waste, proposing and evaluating disposal options for GTCC waste is highly controversial, presents local and national impacts, and generates passionate views from stakeholders. Recent national and international events, such as the cancellation of the Yucca Mountain project and the Fukushima Daiichi nuclear accident, have heighten stakeholder awareness of everything nuclear, including disposal of radioactive waste. With these challenges, the Office of Disposal Operations recognizes that informed decision-making that will result from stakeholder engagement and participation is critical to the success of the GTCC EIS project. This paper discusses the approach used by the Office of Disposal Operations to engage stakeholders on the GTCC EIS project, provides advice based on our experiences, and proffers some ideas for future engagements in today's open, always connected cyber environment. (authors)

  15. Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Tyacke, M.; Schmitt, R.

    1993-07-01T23:59:59.000Z

    The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

  16. Greater-than-Class C low-level radioactive waste characterization. Appendix E-5: Impact of the 1993 NRC draft Branch Technical Position on concentration averaging of greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Tuite, P.; Tuite, K.; Harris, G. [Waste Management Group, Inc., Peekskill, NY (United States)

    1994-09-01T23:59:59.000Z

    This report evaluates the effects of concentration averaging practices on the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) generated by the nuclear utility industry and sealed sources. Using estimates of the number of waste components that individually exceed Class C limits, this report calculates the proportion that would be classified as GTCC LLW after applying concentration averaging; this proportion is called the concentration averaging factor. The report uses the guidance outlined in the 1993 Nuclear Regulatory Commission (NRC) draft Branch Technical Position on concentration averaging, as well as waste disposal experience at nuclear utilities, to calculate the concentration averaging factors for nuclear utility wastes. The report uses the 1993 NRC draft Branch Technical Position and the criteria from the Barnwell, South Carolina, LLW disposal site to calculate concentration averaging factors for sealed sources. The report addresses three waste groups: activated metals from light water reactors, process wastes from light-water reactors, and sealed sources. For each waste group, three concentration averaging cases are considered: high, base, and low. The base case, which is the most likely case to occur, assumes using the specific guidance given in the 1993 NRC draft Branch Technical Position on concentration averaging. To project future GTCC LLW generation, each waste category is assigned a concentration averaging factor for the high, base, and low cases.

  17. Green Jobs and Energy Economy

    E-Print Network [OSTI]

    Kammen, Daniel M.

    , that is The clean energy industry has been targeted as a key area for investment for three primary reasons: greaterGreen Jobs and the Clean Energy Economy ThoughT Leadership series Co-authors Daniel M. Kammen, Founding Director, Renewable and Appropriate Energy Laboratory University of California, Berkeley Ditlev

  18. Obama Administration Awards More than $54 Million for State Energy...

    Broader source: Energy.gov (indexed) [DOE]

    priority to high accident rate intersections. This funding will significantly reduce energy consumption and improve safety through greater visibility. Funding will also be...

  19. Model Examines Cumulative Impacts of Wind Energy Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an area that currently supports important populations of greater sage-grouse and has high wind energy development potential. This early model prototype demonstrated the utility of...

  20. CX-002001: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cincinnati City American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant Act 3 (Mill Creek Restoration Project)CX(s) Applied: B3.1, A9, A11Date: 04/28/2010Location(s): Cincinnati, OhioOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  1. CX-004458: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cincinnati City American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant Act 3 (Mill Creek Restoration Project - Phase 3)CX(s) Applied: A9, A11, B5.1Date: 11/16/2010Location(s): Cincinnati, OhioOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  2. Characterization of Greater-Than-Class C sealed sources. Volume 3, Sealed sources held by general licensees

    SciTech Connect (OSTI)

    Harris, G.

    1994-09-01T23:59:59.000Z

    This is the third volume in a series of three volumes characterizing the population of sealed sources that may become greater-than-Class C low-level radioactive waste (GTCC LLW). In this volume, those sources possessed by general licensees are discussed. General-licensed devices may contain sealed sources with significant amounts of radioactive material. However, the devices are designed to be safe to use without special knowledge of radiological safety practices. Devices containing Am-241 or Cm-244 sources are most likely to become GTCC LLW after concentration averaging. This study estimates that there are about 16,000 GTCC devices held by general licensees; 15,000 of these contain Am-241 sources and 1,000 contain Cm-244 sources. Additionally, this study estimates that there are 1,600 GTCC devices sold to general licensees each year. However, due to a lack of available information on general licensees in Agreement States, these estimates are uncertain. This uncertainty is quantified in the low and high case estimates given in this report, which span approximately an order of magnitude.

  3. How the institutional organization of Santiago affects its capacity to design and apply urban energy initiatives

    E-Print Network [OSTI]

    Cruzat Correa, Raimundo

    2013-01-01T23:59:59.000Z

    The need for greater levels of energy efficiency has never been as clear as it is now. In the case of Chile, factors such as high energy consumption, high energy prices and growing concern for the environment and energy ...

  4. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    SciTech Connect (OSTI)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14T23:59:59.000Z

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  5. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage Paul Denholm of CSP with Thermal Energy Storage Paul Denholm and Mark Mehos Prepared under Task No. SS10NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency

  6. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

  7. Industrial Energy Use Indices

    E-Print Network [OSTI]

    Hanegan, A.; Heffington, W. M.

    2007-01-01T23:59:59.000Z

    of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

  8. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03T23:59:59.000Z

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  9. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23T23:59:59.000Z

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  10. Vectren Energy Delivery of Ohio (Gas)- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    The custom rebate program offers a rebate of $0.75 per therm for energy savings of up to 7,500 therms and $1.00 per therm for energy savings of greater than 7,500 therms. The maximum rebate for...

  11. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; West, David L [ORNL] [ORNL; Mallow, Anne M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

  12. Cambrian Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind-BrizaHKC WindCTCalRENEW-1Greater

  13. New Orleans and Energy Efficiency

    ScienceCinema (OSTI)

    Rosenburg, Zachary

    2013-05-29T23:59:59.000Z

    The Saint Bernard Project works tirelessly with volunteers, veterans and homeowners to continue the rebuilding. With the help of the Department of Energy and the Department of Housing and Urban Development they will be able to apply a greater energy efficiency strategy to help New Orleans and the country reduce our dependence on foreign oil.

  14. Motor Energy Saving Opportunities in an Industrial Plant

    E-Print Network [OSTI]

    Kumar, B.; Elwell, A.

    Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

  15. Cooling Towers - Energy Conservation and Money Making Mechanisms 

    E-Print Network [OSTI]

    Burger, R.

    1981-01-01T23:59:59.000Z

    The utilization of colder water conserves energy, creates profits, increases product output. In an effort to obtain greater efficiencies and conserve both energy and dollars, all too many engineers neglect the potential of the cooling tower. Many...

  16. Kansas City Power & Light- Home Performance with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Kansas City Power & Light (KCP&L) offers rebates to residential customers of KCP&L's Greater Missouri Operations towards the cost of an ENERGY STAR Home Energy Assessment and a portion...

  17. Lumbee River EMC- Energy Efficient Homes Program for Builders

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to builders who construct single-family Energy Star Homes in the LREMC service territory. Energy Star homes are able to provide greater comfort, efficiency,...

  18. Energy Savings Through Steam Trap Management

    E-Print Network [OSTI]

    Gibbs, C.

    2008-01-01T23:59:59.000Z

    Sustainability and energy management are broad topics which have become a common focus in industry. Recognizing the need for greater cost reduction and competitive advantage through sustainability, industry is putting forth resources to improve...

  19. Frothy Bloat Mitigation in Grazing Cattle Frothy bloat impacts on cattle production in the United States in 1999 were estimated to be greater than $300 million dollars.

    E-Print Network [OSTI]

    Frothy Bloat Mitigation in Grazing Cattle Frothy bloat impacts on cattle production in the United States in 1999 were estimated to be greater than $300 million dollars. Frothy bloat is the major nonpathogenic cause of death loss and depressed weight gains in stocker cattle grazing winter wheat

  20. What is the Eelgrass Stressor Response Project? The Eelgrass Stressor Response Project was established in 2005 to identify causes of eelgrass decline in greater Puget

    E-Print Network [OSTI]

    Carrington, Emily

    was established in 2005 to identify causes of eelgrass decline in greater Puget Sound. It is closely connected to DNR's long term eelgrass monitoring program. Both projects are part of the Puget Sound Assessment and Monitoring Program (PSAMP), a multi-agency monitoring effort that is coordinated by the Puget Sound

  1. Brandon Heller A number of recent advances in the physical layer are enabling wireless communications devices to reach ever-greater speeds. These

    E-Print Network [OSTI]

    Jain, Raj

    -Division Multiplexing (OFDM) 3. Multi-Antenna Techniques 3.1 Multiple Input Single Output (MISO) 3.2 Multiple Input range, better bit rates, greater battery life, and increased reliability. Upcoming standards bit-error rates. Section 4 describes options for more reliably encoding data. Section five discusses

  2. Geohydrologic feasibility study of the greater Green River Basin for the potential applicability of Jack W. McIntyre`s patented tool

    SciTech Connect (OSTI)

    Reed, P.D.

    1994-02-01T23:59:59.000Z

    Geraghty & Miller, Inc, of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented tool for the recovery of natural gas from coalbed/sand formations in the Greater Green River Basin through literature surveys.

  3. Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?

    E-Print Network [OSTI]

    Kammen, Daniel M.

    clean energy supply can provide greater energy independence and security, has notable environmentalPutting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US? Max Wei a,Ã, Shana Patadia b , Daniel M. Kammen a a Energy and Resources Group, 310

  4. Overview of Geothermal Energy Anan Suleiman

    E-Print Network [OSTI]

    Lavaei, Javad

    University in the City of New York New York, United States as4123@columbia.edu Abstract--As economies expand1 Overview of Geothermal Energy Anan Suleiman Department of Electrical Engineering Columbia, populations increase, and energy-intensive technologies spread, our demand for energy is growing greater

  5. Programs in Renewable Energy

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

  6. Greater-than-Class C low-level waste characterization. Appendix I: Impact of concentration averaging low-level radioactive waste volume projections

    SciTech Connect (OSTI)

    Tuite, P.; Tuite, K.; O`Kelley, M.; Ely, P.

    1991-08-01T23:59:59.000Z

    This study provides a quantitative framework for bounding unpackaged greater-than-Class C low-level radioactive waste types as a function of concentration averaging. The study defines the three concentration averaging scenarios that lead to base, high, and low volumetric projections; identifies those waste types that could be greater-than-Class C under the high volume, or worst case, concentration averaging scenario; and quantifies the impact of these scenarios on identified waste types relative to the base case scenario. The base volume scenario was assumed to reflect current requirements at the disposal sites as well as the regulatory views. The high volume scenario was assumed to reflect the most conservative criteria as incorporated in some compact host state requirements. The low volume scenario was assumed to reflect the 10 CFR Part 61 criteria as applicable to both shallow land burial facilities and to practices that could be employed to reduce the generation of Class C waste types.

  7. Detrital U-Pb geochronology provenance analyses: case studies in the Greater Green River Basin, Wyoming, and the Book Cliffs, Utah

    E-Print Network [OSTI]

    Lippert, Peter Gregory

    2014-05-31T23:59:59.000Z

    ! ! Detrital U-Pb geochronology provenance analyses: case studies in the Greater Green River Basin, Wyoming, and the Book Cliffs, Utah By Peter Gregory Lippert Submitted to the graduate degree program in Geology and the Graduate Faculty... i Acceptance Page ii Abstract iii-iv Table of contents v-viii List of figures and tables ix-x Chapter 1. Introduction 11-16 Chapter 2. Geologic History...

  8. Data:D3c7fe8e-aa83-4df5-801d-864cadc82b19 | Open Energy Information

    Open Energy Info (EERE)

    greater than 30 KWs as defined in the determination of billing demand section of this tariff. 2. Average monthly energy consumption is equal to greater than 3,000KW based on the...

  9. Data:1e969327-8244-4db7-9c77-1fb5b2244bed | Open Energy Information

    Open Energy Info (EERE)

    greater than 30 KWs as defined in the determination of billing demand section of this tariff. 2. Average monthly energy consumption is equal to greater than 3,000KW based on the...

  10. Contributed Paper Effects of Wind Energy Development on Nesting

    E-Print Network [OSTI]

    Sandercock, Brett K.

    Contributed Paper Effects of Wind Energy Development on Nesting Ecology of Greater Prairie 32611, U.S.A. Abstract: Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We

  11. Saving Energy at Ford

    E-Print Network [OSTI]

    McReynolds, C. J.

    surveys, automatic motor shutoff timers, fast acting fabric traffic doors, and area metering. Steps requiring greater investment included energy man agement systems, waste incinerators with heat recovery, cogeneration and ',ariable-frequency drives... with an annular air opening which entrains large quantities of surrounding air, creating a flow greatly exceeding the amount of compressed air consumed. In general, we try to eliminate compressed air blowoffs by investigating alternative ways of doing the job...

  12. Data:95ccccaa-1be3-43ee-a239-8015513ab448 | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  13. Data:28d59351-f16b-4707-bbb7-d7ad1dd3342a | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  14. Data:68959f43-f77f-4792-9094-34fab5f50b07 | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  15. Data:657a387e-3f66-4337-bf86-1983088978fd | Open Energy Information

    Open Energy Info (EERE)

    subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: KCP&L Greater...

  16. Call for Papers Journal of Energy Engineering

    E-Print Network [OSTI]

    Tseng, Chung-Li

    extent, which will require significant changes to the industry's traditional business model. Along on climate change. Part of this effort involves embracing renewable energy and efficiency to a much greater energy resources as well as the ability to manufacture the labor-intensive infrastructures to harness

  17. Energy Audit Practices in China: National and Local Experiences and Issues

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    energy conservatio n centers, cleaner production centers, industrial association s, ESCOs, engineering firms, universities ? Detailed auditsenergy audits due to its limited staff, it can, however, leverage greater resources by building strategic alliances with provincial energy conservation centers, university-

  18. President Obama Talks Energy at the State of the Union 2013 ...

    Broader source: Energy.gov (indexed) [DOE]

    like China keep going all in on clean energy, so must we. "Now, in the meantime, the natural gas boom has led to cleaner power and greater energy independence. We need to...

  19. Business & technology strategies to promote the development and commercialization of alternative energy technologies like fuel cells

    E-Print Network [OSTI]

    Jayaraman, Sundar

    2008-01-01T23:59:59.000Z

    Globalization has led to the development of emerging markets and economies. With economic expansion around the globe, there is a greater energy demand to sustain this growth. Increasing energy demand has resulted in increase ...

  20. Cooling Towers - Energy Conservation and Money Making Mechanisms

    E-Print Network [OSTI]

    Burger, R.

    1981-01-01T23:59:59.000Z

    cooling towers in operation are performing at levels as low as 50% of capability. This is energy wasteful and financially foolish. There are many reasons for this deficiency, among them the present service is greater than the original requirements...

  1. Gaining Top Management Support for Energy Conservation Programs

    E-Print Network [OSTI]

    Kenney, W. F.

    1984-01-01T23:59:59.000Z

    Sometimes seemingly attractive energy conservation opportunities encounter road blocks by top management. Generally, this happens because the engineer is not working the whole problem as management sees it. Management may be placing greater weight...

  2. Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects from Development

    SciTech Connect (OSTI)

    Becker, James M.; Tagestad, Jerry D.; Duberstein, Corey A.; Downs, Janelle L.

    2009-07-15T23:59:59.000Z

    Proposed development of domestic energy resources, including wind energy, is expected to impact the sagebrush steppe ecosystem in the western United States. The greater sage-grouse relies on habitats within this ecosystem for survival, yet very little is known about how wind energy development may affect sage-grouse. The purpose of this report is to inform organizations of the impacts wind energy development could have on greater sage-grouse populations and identify information needed to fill gaps in knowledge.

  3. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  4. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  5. Rising Above the Water: New Orleans Implements Energy

    E-Print Network [OSTI]

    for Humanity DOE/NREL worked with Florida Solar Energy Center to assist the New Orleans Area Habitat for Humanity, the largest builder in the greater New Orleans area, to achieve ENERGY STAR® efficiency levelsRising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices

  6. Delivering energy savings through community-based Organizations

    SciTech Connect (OSTI)

    Berry, David

    2010-11-15T23:59:59.000Z

    To achieve greater energy savings through energy efficiency programs, participation in those programs must increase. Community-based organizations provide a potentially effective way to reach more residential and small commercial consumers and increase the adoption of energy efficiency measures. (author)

  7. Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis

    SciTech Connect (OSTI)

    Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

    2011-09-30T23:59:59.000Z

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

  8. Data:Babe856b-ea7a-49ef-b709-a8c39c96076b | Open Energy Information

    Open Energy Info (EERE)

    (75 gallons or greater capacity) Sector: Residential Description: Rates are subject to an Energy Cost Adjustment Tracking Factor, determined quarterly, to reflect changes in the...

  9. Data:F8126233-c178-4705-98cb-1b03f1360a4b | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  10. Data:6bd927cc-eaf0-4061-b52d-b05926a7a872 | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  11. Data:053540f9-6bab-4e9e-9fc4-1827bceb7cd2 | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  12. Data:95e41e6f-0caf-4e74-bff9-714e68dec7cb | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  13. Data:8ad31a67-1818-436a-94d0-87f93d2271e4 | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  14. Data:600ef8d4-7a2d-4e77-aa8d-45124bd5e804 | Open Energy Information

    Open Energy Info (EERE)

    20000101 End date if known: Rate name: Commercial-for Energy greater than 2500 kWh-Distributed generation Rider Sector: Commercial Description: Customers requesting...

  15. Data:5a0ad747-8db3-4b0b-b705-fa38acf391e9 | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  16. Data:20ca22af-871f-44fe-9416-14e28a4b07ae | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  17. Data:Aa1ada0c-ecbc-424e-90d6-76a85c64d44b | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  18. Data:Badff9c8-b392-400c-8fcc-16f3378c67a8 | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  19. Data:C17caada-b5b9-4367-b179-bbd821e9468e | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  20. Data:2310b373-609d-43a7-a227-bbf2435c1b73 | Open Energy Information

    Open Energy Info (EERE)

    subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: KCP&L Greater...

  1. Data:Ed777808-d0b0-404a-845b-1d383e58c2a3 | Open Energy Information

    Open Energy Info (EERE)

    subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: KCP&L Greater...

  2. Data:110628cb-8bca-42d2-82ed-7b6f1b08f6f8 | Open Energy Information

    Open Energy Info (EERE)

    subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: KCP&L Greater...

  3. Data:9f0b0bc8-7e09-4369-adb5-a5a23758df04 | Open Energy Information

    Open Energy Info (EERE)

    subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: KCP&L Greater...

  4. Data:D87f8a17-d879-4204-b57e-1c15a265a13b | Open Energy Information

    Open Energy Info (EERE)

    subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: KCP&L Greater...

  5. Energy Balance and Emissions Associated with Biochar

    E-Print Network [OSTI]

    Lehmann, Johannes

    to produce biochar for land application, the energy produced per unit energy input at 2­7 MJ/MJ is greaterEnergy Balance and Emissions Associated with Biochar Sequestration and Pyrolysis Bioenergy Production J O H N L . G A U N T * , , A N D J O H A N N E S L E H M A N N College of Agriculture and Life

  6. Greater accordance with the DASH dietary pattern is associated with lower diet-related greenhouse gas production but higher dietary costs in the United Kingdom

    E-Print Network [OSTI]

    Monsivais, Pablo; Scarborough, Peter; Lloyd, Tina; Mizdrak, Anja; Luben, Robert; Mulligan, Angela A.; Wareham, Nicholas J.; Woodcock, James

    2015-04-30T23:59:59.000Z

    of the DASH score. The FFQ data were processed by using the FFQ EPIC Tool for Analysis (17), software based on the earlier analysis system (16), to estimate average daily nutrient and energy intakes. Dietary data were deemed implausible when energy estimates... : climate, diet quality, food prices, prevention, public health INTRODUCTION Diets that are consistent with the Dietary Approaches to Stop Hypertension (DASH)5 are associated with reduced cardiometabolic risk and better health outcomes. The design...

  7. Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: Some novel findings

    SciTech Connect (OSTI)

    Samadder, Asmita; Das, Jayeeta; Das, Sreemanti; De, Arnab; Saha, Santu Kumar; Bhattacharyya, Soumya Sundar; Khuda-Bukhsh, Anisur Rahman, E-mail: prof_arkb@yahoo.co.in

    2013-02-15T23:59:59.000Z

    Diabetes is a menacing problem, particularly to inhabitants of groundwater arsenic contaminated areas needing new medical approaches. This study examines if PLGA loaded nano-insulin (NIn), administered either intraperitoneally (i.p.) or through oral route, has a greater cost-effective anti-hyperglycemic potential than that of insulin in chronically arsenite-fed hyperglycemic mice. The particle size, morphology and zeta potential of nano-insulin were determined using dynamic light scattering method, scanning electronic and atomic force microscopies. The ability of the nano-insulin (NIn) to cross the blood–brain barrier (BBB) was also checked. Circular dichroic spectroscopic (CD) data of insulin and nano-insulin in presence or absence of arsenic were compared. Several diabetic markers in different groups of experimental and control mice were assessed. The mitochondrial functioning through indices like cytochrome c, pyruvate-kinase, glucokinase, ATP/ADP ratio, mitochondrial membrane potential, cell membrane potential and calcium-ion level was also evaluated. Expressions of the relevant marker proteins and mRNAs like insulin, GLUT2, GLUT4, IRS1, IRS2, UCP2, PI3, PPAR?, CYP1A1, Bcl2, caspase3 and p38 for tracking-down the signaling cascade were also analyzed. Results revealed that i.p.-injected nano-encapsulated-insulin showed better results; NIn, due to its smaller size, faster mobility, site-specific release, could cross BBB and showed positive modulation in mitochondrial signaling cascades and other downstream signaling molecules in reducing arsenic-induced-hyperglycemia. CD data indicated that nano-insulin had less distorted secondary structure as compared with that of insulin in presence of arsenic. Thus, overall analyses revealed that PLGA nano-insulin showed better efficacy in combating arsenite-induced-hyperglycemia than that of insulin and therefore, has greater potentials for use in nano-encapsulated form. - Highlights: ? PLGA encapsulated nano-insulin attenuates arsenic-induced diabetes in mice. ? Encapsulated insulin acts effectively at nearly 10 fold lesser dose than insulin. ? Injection route is more effective than oral administration route. ? Nano-insulin can cross blood–brain barrier with added physiological implications. ? Nano-insulin acts mainly through regulation of mitochondrial signaling cascade.

  8. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect (OSTI)

    Karl, Bernie [CHSR,LLC Owner] [CHSR,LLC Owner

    2013-05-31T23:59:59.000Z

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  9. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  10. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  11. Task Order Awarded for Audit and Review Services | Department...

    Office of Environmental Management (EM)

    Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy today awarded a Task Order to KPMG, LLP of McLean, VA for auditreview services...

  12. ResearchUCResearchUC Photonics | Stem Cells

    E-Print Network [OSTI]

    Papautsky, Ian

    -consumer fiber, is EcoLogo certified and manufactured using biogas energy. 8 24 16 #12;Noted........ UC RESEARCH | july 2008 uNIVERSITy OF CINCINNATI 2 Turning Up the Heat on Plastic Bottles Heating liquids

  13. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  14. Project management plan for low-level mixed wastes and greater-than category 3 waste per Tri-Party Agreement M-91-10

    SciTech Connect (OSTI)

    BOUNINI, L.

    1999-06-17T23:59:59.000Z

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-Than-Category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10. The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; and (4) an acquisition plan was developed to establish the techuical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are summarized in the table below, along with the required treatment for disposal.

  15. Project management plan for low-level mixed waste and greater-than-category 3 waste per tri-party agreement M-91-10

    SciTech Connect (OSTI)

    BOUNINI, L.

    1999-05-20T23:59:59.000Z

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-thaw category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10, The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; (4) an acquisition plan was developed to establish the technical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are tabulated, along with the required treatment for disposal.

  16. Energy in density gradient

    E-Print Network [OSTI]

    Vranjes, J

    2015-01-01T23:59:59.000Z

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindric configuration. This is of practical importance for drift wave instability in various plasmas, and in particular in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit ...

  17. UNIVERSITY OF CINCINNATI Environmental University Health Services 556-4968 Health and Safety

    E-Print Network [OSTI]

    Papautsky, Ian

    Advisory 11.0 UC Respiratory Protection 01-19-11 Program UC Respiratory Protection Program Purpose) hazards during routine operations. These hazards include: chemical vapors, biohazards, asbestos and other particulates. The purpose of this UC Respiratory Protection Program is to ensure that all University

  18. Proceedings: In Situ Contaminated Sediment Capping Workshop: Cincinnati, Ohio, May 12-14, 2003

    SciTech Connect (OSTI)

    None

    2004-03-01T23:59:59.000Z

    The In Situ Contaminated Sediment Capping Workshop was designed to provide the most current information and bring about consensus in understanding of a technology that offers one of the few options for remediation of contaminated sediments. These electronic proceedings document workshop sessions on various capping issues, such as site assessment; cap suitability, performance, and design; site monitoring; and research and development in capping.

  19. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    new Federal buildings which begin the planning process by 2020 to achieve zero net energy by 2030zero-net

  20. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    National Harbor #12;U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 2 #12 · Efficiencies can be 60% (electrical) and 85% (with CHP) · > 90% reduction in criteria pollutants U.S. Department of Energy #12;7 Market Transformation Government acquisitions could significantly reduce the cost

  1. Sandia Energy - Installation Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Energy Security Home Stationary Power Grid Modernization Resilient Electric Infrastructures Military Installation Energy Security Installation Energy SecurityTara...

  2. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Products from Fiber

    E-Print Network [OSTI]

    Pathways #12;HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Biomass Resources in Hawaii Manure Bagasse for transportation, greater power generation efficiency, greater number of potential end uses ­ Gasification quality standards (e.g. ash chemistry) to meet requirements of pyrolysis and gasification technologies

  3. Data:B5d8053a-eb8b-4a4d-acca-3a3ac8d9ad02 | Open Energy Information

    Open Energy Info (EERE)

    Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing Source or reference: http:psc.wi.govapps40tariffs...

  4. ENERGY CONSERVATION AND ENERGY DECENTRALIZATION: ISSUES AND PROSPECTS

    SciTech Connect (OSTI)

    Levine, Mark D.; Craig, Paul P.

    1980-01-01T23:59:59.000Z

    We have presented views of the seemingly paradoxical nature and irrationality of the energy system and the decisions that determine its evolution. An economic approach to energy decisions, while widely espoused and generally believed to be the underpinning of our system. appears not to be functioning in very important areas. The result is enormous waste of economic and intangible resources to produce energy that could be effectively replaced by energy conservation at low costs. This inefficiency in the economic system is, in our judgment. far greater than is recognized either by the public or by 'experts.' It has led to an over-investment in centralized energy systems and has discouraged the use of decentralized systems that could contribute significantly in the near term to a lessening of our energy problems. There are some signs that the situation is changing. albeit rather slowly. High prices and the widespread recognition of the seriousness of our energy problems have contributed to an increasing involvement of individuals in energy decisions profoundly affecting their future. To achieve an evolution of the energy system in which decentralized technologies (and, in the near term, particularly technologies that improve the efficiency of energy use) play an important role, the government must act forcefully. This action needs to recognize and be responsive to the powerful discriminatory effect of the economic system, as it is presently constituted, against investments in energy conservation.

  5. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    water heaters to heat pump water heaters with energy factorheat pumps with greater efficiency 40% more efficient cooling technologies more efficient lighting more efficient water heatersheat pumps, boilers 100% OLED TVs, 0.1W standby, more efficient AC, refrigerator, washers More efficient gas water heater

  6. Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the

    SciTech Connect (OSTI)

    Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

    2011-08-01T23:59:59.000Z

    Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

  7. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    won this nationally recognized science competition. May 1, 2012 Greater application of CO2-EOR could yield a significant boost to the U.S. economy, including increased economic...

  8. 2013 Energy Code Changes That Effect the HVAC

    E-Print Network [OSTI]

    California at Davis, University of

    2013 Energy Code Changes That Effect the HVAC Industry Tav Commins Mechanical Engineer California Energy Commission #12;HVAC Mandatory Measures For All Newly Installed Residential HVAC Systems (New tons provided by air cooled chillers #12;Non Residential HVAC Measures Cooling Towers greater than 150

  9. GreenCharge: Managing Renewable Energy in Smart Buildings

    E-Print Network [OSTI]

    Shenoy, Prashant

    1 GreenCharge: Managing Renewable Energy in Smart Buildings Aditya Mishra, David Irwin, Prashant that combines market-based electricity pricing models with on-site renewables and modest energy storage (in renewables). We show that GreenCharge's savings for a typical home today are near 20%, which are greater than

  10. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems Permalink

  11. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &ClimateContactEnergyEnergy

  12. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems PermalinkEnergy Storage

  13. Data:0d7255b1-f647-41c9-959b-4783fca4c9be | Open Energy Information

    Open Energy Info (EERE)

    Parallel Generation (20kW or less)- Net Energy Billing Customer-Owned Generation Systems (Greater than 20 kW) Billing Solar Renewable Energy Distributed Generation Billing...

  14. Simple Payback: The Wrong Tool for Energy Project Analysis?

    E-Print Network [OSTI]

    Russell, C.

    2008-01-01T23:59:59.000Z

    will want to know the risk of losing their investment, or at least the risk of failing to invest in more valuable alternatives. Here?s how payback measures can frustrate energy management efforts. The greater the investor?s concern with investment loss..., or paying the cost to avoid it. The energy at-risk concept is depicted here: Figure 1: Energy At-Risk Annual energy use, current application in-place Annual energy use, energy-efficient alternative Energy consumption avoided...

  15. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    In the United States: > 200 fuel cell vehicles > 20 fuel cell buses ~ 60 fueling stations Production & Delivery biomass & solar). · Potential U.S. employment from fuel cell and hydrogen industries of up to 925,000 jobsEnergy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program

  16. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    None

    2014-05-27T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  17. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  18. Slide13 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    to Alerts. * Search results pages are now printer friendly. * DOE Data Explorer and DOE Green Energy have been added to the federated search. * A greater emphasis has been placed...

  19. Evaluating energy dissipation during expansion in a refrigeration cycle using flue pipe acoustic resonators

    E-Print Network [OSTI]

    Luckyanova, Maria N. (Maria Nickolayevna)

    2008-01-01T23:59:59.000Z

    This research evaluates the feasibility of using a flue pipe acoustic resonator to dissipate energy from a refrigerant stream in order to achieve greater cooling power from a cryorefrigeration cycle. Two models of the ...

  20. INNOVATIONSummer 2014 One of Penn State Institutes of Energy and the Environment

    E-Print Network [OSTI]

    Maranas, Costas

    for Practical Research ............................. 8 Remembering the Life & Work of Influential Coal to Greater University Community................................................................ 12 Clean presence in energy science and technology. We are already well on our way to realizing some of the goals

  1. Energy Policy

    Broader source: Energy.gov [DOE]

    The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

  2. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary Power EnergyRenewable Energy

  3. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware HometdheinrWater/Energy

  4. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy CouncilEnergy Surety Home

  5. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEventNotECWillie LukEnergy

  6. Timing of the deposition of uppermost Cretaceous and Paleocene coal-bearing deposits in the Greater Glendive area, Montana and North Dakota

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    With the aid of a grant from the National Geographic Society, a cooperative agreement with the State University of New York at Stony Brook, and contract with the U.S. Department of Energy, Late Cretaceous and Paleocene geologic and paleontologic field studies were undertaken in Makoshika, State Park and vicinity, Dawson County, Montana. This region was chosen as a study area because of its potential for yielding new fossil localities and extensive exposures both above and below the K/T boundary, as suggested by previous research by David W. Krause and Joseph H. Hartman. Related field studies were also undertaken in areas adjacent to the Cedar Creek Anticline in North Dakota. This work was part of ongoing research to document change in the composition of mammalian and molluscan faunas during the Late Cretaceous and Paleocene and to relate observed patterns to floral and invertebrate changes in composition. This study focuses on the record of mammals and mollusks in the Makoshika stratigraphic section and places old and new observations into a paleomagnetic and palynomorph framework. Of particular interest is the appearance and diversification of archaic ungulate mammals. Simultaneous dinosaur extinction with ungulate radiation has been invoked in gradual, as opposed to catastrophic, models of faunal change at the K/T boundary. However, supposed Cretaceous localities bearing archaic ungulates and other mammals of {open_quotes}Paleocene aspect{close_quotes} may be the product of faunal reworking. Elsewhere in the Williston Basin (e.g., Garfield and McCone Counties, Montana), the molluscan record of uppermost Cretaceous and Paleocene strata indicates the extinction of all of the highly sculptured unionid bivalves just prior to the onset of coal swamps and subsequent coal formation.

  7. Sandia Energy - Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...

  8. Department of Energy - Energy Sources

    Broader source: Energy.gov (indexed) [DOE]

    295 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

  9. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    has launched the Energy Data Initiative (EDI). May 17, 2012 The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. |...

  10. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to Mainstream: The Growth of the Global Clean Energy Marketplace Analyzing the past, present and future of the global clean energy marketplace. January 17, 2013 The Energy...

  11. Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

  12. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Future On Monday, the Energy Information Administration (EIA) issued the Annual Energy Outlook 2012 Early Release. This preview report provides updated projections for U.S....

  13. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 13, 2013 Energy Analysis Energy analysis informs EERE decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy...

  14. Symmetry Energy

    E-Print Network [OSTI]

    P. Danielewicz

    2006-07-15T23:59:59.000Z

    Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.

  15. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o

  16. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North American

  17. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall

  18. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan AtcittyRenewablesAnalysis

  19. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan

  20. Sandia Energy » Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This author hasSandia StudentSandia

  1. STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN Jr., Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    companies in the clean energy sector and encourage greater interaction between them and future PIER funded of venture capital investment. The Commissioners from the Energy Commission may also attend and participate from the clean technology energy sectors to show how PIER funded research can result in big #12;returns

  2. Reducing Energy Costs in Internet-Scale Distributed Systems Using Load Shifting

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    -response technique where the system temporarily reduces its energy usage in response to pricing signals from a smart offline algorithm can achieve 12% energy cost savings for time-of-use electricity pricing, even when only-efficiency techniques. These include the availability of novel electricity pricing models to encourage greater energy

  3. Wind Power: A Clean and Renewable Supplement to the World's Energy Mix Michael Treadow

    E-Print Network [OSTI]

    Mauzerall, Denise

    in less developed regions, demand for energy is greater now than ever before and will continue to riseWind Power: A Clean and Renewable Supplement to the World's Energy Mix Michael Treadow May 8, 2006 contributor to the world's energy supply in years to come. Not only is it inexhaustible and free

  4. Energy Security, Innovation & Sustainability Initiative

    SciTech Connect (OSTI)

    None

    2010-04-30T23:59:59.000Z

    More than a dozen energy experts convened in Houston, Texas, on February 13, 2009, for the first in a series of four regionally-based energy summits being held by the Council on Competitiveness. The Southern Energy Summit was hosted by Marathon Oil Corporation, and participants explored the public policy, business and technological challenges to increasing the diversity and sustainability of U.S. energy supplies. There was strong consensus that no single form of energy can satisfy the projected doubling, if not tripling, of demand by the year 2050 while also meeting pressing environmental challenges, including climate change. Innovative technology such as carbon capture and storage, new mitigation techniques and alternative forms of energy must all be brought to bear. However, unlike breakthroughs in information technology, advancing broad-based energy innovation requires an enormous scale that must be factored into any equation that represents an energy solution. Further, the time frame for developing alternative forms of energy is much longer than many believe and is not understood by the general public, whose support for sustainability is critical. Some panelists estimated that it will take more than 50 years to achieve the vision of an energy system that is locally tailored and has tremendous diversity in generation. A long-term commitment to energy sustainability may also require some game-changing strategies that calm volatile energy markets and avoid political cycles. Taking a page from U.S. economic history, one panelist suggested the creation of an independent Federal Energy Reserve Board not unlike the Federal Reserve. The board would be independent and influence national decisions on energy supply, technology, infrastructure and the nation's carbon footprint to better calm the volatile energy market. Public-private efforts are critical. Energy sustainability will require partnerships with the federal government, such as the U.S. Department of Energy's National Laboratories, that can provide real-world improvements in both the short- and long-term. Indeed, the roles of government and the private sector in energy sustainability were brought into sharper focus by the pending American Recovery and Reinvestment Act of 2009, also known as the economic stimulus bill. There was cautious optimism that the bill was moving the nation in the right direction by way of focusing on greater energy efficiency, alternative forms of energy and improved infrastructure. Nevertheless, there was concern over Congress picking energy winners and losers. Instead, Congress should challenge industry to produce solutions that will create a clear path forward to energy sustainability that the American people can support.

  5. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Blog Energy Blog RSS July 11, 2013 Climate Change: Effects on Our Energy A new report shows how a changing climate has impacted and may continue to affect our energy...

  6. Sandia Energy - Enabling Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Energy Efficiency Home Energy Research EFRCs Solid-State Lighting Science EFRC Enabling Energy Efficiency Enabling Energy EfficiencyTara Camacho-Lopez2015-03-26T16:33:50+0...

  7. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Scottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies ­ Notes for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy · Solar energy · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation

  8. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied

  9. Sandia Energy - Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Home Climate & Earth

  10. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Hometdheinr Home About

  11. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive Committee

  12. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive CommitteeThe

  13. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive CommitteeTheCRF

  14. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive

  15. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executivegeochem Permalink

  16. Sandia Energy - Energy Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executivegeochem

  17. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council ExecutivegeochemStorage

  18. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbon Capture

  19. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbon

  20. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbonAssurance

  1. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems Department Awards

  2. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems Department

  3. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems DepartmentEC Permalink

  4. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems DepartmentEC

  5. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems

  6. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter for

  7. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter forComputational

  8. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter

  9. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North AmericanStudy Could

  10. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall T.Release

  11. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEventNotECWillie Luk

  12. Data:1d1d2b17-5bb6-4652-a4a7-44ecba2e9b0a | Open Energy Information

    Open Energy Info (EERE)

    electric service. Not available for customers with a maximum demand of 25 kW or greater. Energy Cost Adjustment: Bills subject to the adjustment provided for in Energy Cost...

  13. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

    1980-01-01T23:59:59.000Z

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  14. Gravitational energy

    E-Print Network [OSTI]

    Joseph Katz

    2005-10-20T23:59:59.000Z

    Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass+internal energies+kinetic energies+pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total "matter energy" for those observers. The total mass-energy minus the matter energy is the binding gravitational energy. Misner, Thorne and Wheeler evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetime for isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy-momentum tensor satisfies usual energy conditions.

  15. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  16. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    of $8- $10/gge for a 1,500 kg/day distributed natural gas and $10- $13/gge for a 1,500 kg: Addressing Energy Challenges US DOE 10/2010 #12;5 Technology Barriers* Economic& Institutional Barriers Fuel of fuel cells. Assisting the growth of early markets will help to overcome many barriers, including

  17. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Mountain States--without compromising interior space or performance #12;5 Fuel Cells -- Where are we today? Fuel Cells ­ $80/kW to be a "valid estimate": http://hydrogendoedev.nrel.gov/peer_reviews.html $43 $65 $34 $27

  18. Data:5f0609c8-3594-4925-ab0f-fffc78e65844 | Open Energy Information

    Open Energy Info (EERE)

    name: GSA Part 2 Sector: Industrial Description: 51-1,000kW or greater than 15,000kWh Rates are updated on monthly basis. Energy Rates Change Monthly due to the TVA Fuel Cost...

  19. Accelerate Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Energy Productivity 2030 Over the next year, the U.S. Department of Energy, the Council on Competitiveness and the Alliance to Save Energy will join forces to undertake...

  20. Fossil energy materials needs assessment

    SciTech Connect (OSTI)

    King, R.T.; Judkins, R.R. (comps.)

    1980-07-01T23:59:59.000Z

    An assessment of needs for materials of construction for fossil energy systems was prepared by ORNL staff members who conducted a literature search and interviewed various individuals and organizations that are active in the area of fossil energy technology. Critical materials problems associated with fossil energy systems are identified. Background information relative to the various technologies is given and materials research needed to enhance the viability and improve the economics of fossil energy processes is discussed. The assessment is presented on the basis of materials-related disciplines that impact fossil energy material development. These disciplines include the design-materials interface, materials fabrication technology, corrosion and materials compatibility, wear phenomena, ceramic materials, and nondestructive testing. The needs of these various disciplines are correlated with the emerging fossil energy technologies that require materials consideration. Greater emphasis is given to coal technology - particularly liquefaction, gasification, and fluidized bed combustion - than to oil and gas technologies because of the perceived inevitability of US dependence on coal conversion and utilization systems as a major part of our total energy production.

  1. ACCELERATE ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    will stimulate innovation, optimize domestic industry practices, support domestic energy production and bolster job creation. 1 Doubling energy productivity means powering more...

  2. Energy Conservation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for LANL. Meeting renewable energy goals Original investors in renewable energy Low flow turbine used for electricity generation Abiquiu Dam power station Inside the TA-03 Steam...

  3. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Residential and Small Commercial CHP $4.9M Specialty Vehicles $10.8M $2.4M $3.4M Portable Power Backup Power $20.4M Auxiliary Power Residential and Small Commercial CHP $4.9M Specialty Vehicles $10.8M $2.4M $3 CHP & backup power) Auxiliary & Portable Power Transportation Total Market Energy Use Potential Size

  4. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon

  5. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Scottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation in buildings

  6. HLT Energies 2006 Inc formerly HLT Energies Inc Heliotech Energies...

    Open Energy Info (EERE)

    HLT Energies 2006 Inc formerly HLT Energies Inc Heliotech Energies Inc Canada Inc Jump to: navigation, search Name: HLT Energies 2006 Inc (formerly HLT Energies Inc, Heliotech...

  7. Greater Rochester Nursing Home Quality Consortium

    E-Print Network [OSTI]

    Goldman, Steven A.

    Agenda 08:15 Registration; Continental Breakfast; Lean Six Sigma Teams' Posters 09:00 Welcome the Impact of Transforming Elder Care 10:15 Lean Six Sigma Team Project Presentations Melissa Allmaier, RN, Six Sigma Master Black Belt John Biuso, BSIE, Six Sigma Black Belt, CPIM Project Team leaders

  8. Training Reciprocity Achieves Greater Consistency, Saves Time...

    Office of Environmental Management (EM)

    the module includes training on the Idaho site commitment to safety and safety programs, quality assurance and environmental protection and the right to a safe and healthful...

  9. Ecology and Greater Prairie-Chicken

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    of Mortality and Competition _______________ 5 Wind Power Generation ___________________________ 5 Habitat

  10. Energy Efficiency and Renewable Energy Postdoctoral Research...

    Office of Environmental Management (EM)

    Postdoctoral Research Awards Energy Efficiency and Renewable Energy Postdoctoral Research Awards Contacts Energy Efficiency and Renewable Energy Postdoctoral Research Awards...

  11. National Renewable Energy Laboratory's Energy Systems Integration...

    Energy Savers [EERE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  12. Renewable Energy & Energy Efficiency Projects: Loan Guarantee...

    Energy Savers [EERE]

    Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Plenary III: Project Finance...

  13. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    what the U.S. energy economy might look like in 2040? EIA just released the Annual Energy Outlook Reference Case, containing projections about the growth of energy production...

  14. Energy Exchange | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchange Energy Exchange Energy Exchange August 11-13, 2015, Phoenix Convention Center The 2015 Energy Exchange in Phoenix, Arizona, is being launched to provide two-and-a-half...

  15. 2010 Texas Jurisdiction Energy Code Adoption Survey

    E-Print Network [OSTI]

    populations greater than 25,000. The results for Energy Code Adoption are as follows: City Code Year Abilene 2000 Addison 2006 Allen 2006 Amarillo 2006 Angleton None Arlington 2009 Austin 2009 Baytown 2006 Beaumont 2009 Bedford 2000 Big Spring... 2006 Borger 2000 Brownsville 2006 Bryan 2003 Burleson 2006 Carrollton 2006 Cedar Hill 2006 Cedar Park 2009 Cleburne 2003 College Station 2009 Conroe 2000 Coppell 2006 Copperas Cove 2000 Corpus Christi 2003 Corsicana 2009 Dallas 2006...

  16. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department's Energy 101 Course Framework is helping colleges and universities offer energy-related classes. August 19, 2013

  17. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    very hot temperatures. Here, the insulation is held over a flame. | Courtesy of Aspen Aerogels. Saving Energy and Money with Aerogel Insulation The Energy Department is investing...

  18. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Bush Administration. March 19, 2012 March Madness: Slam Dunk Energy Efficiency Keep in mind the importance of sparing the real madness by working toward a sustainable energy...

  19. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    means strengthening the economy while protecting the environment. This activity book for all ages promotes energy awareness, with facts on different types of energy and a...

  20. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    construction methods, and innovative technologies that drastically reduce energy consumption-while at the same time saving on energy bills. August 17, 2009 Please Stand By:...

  1. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    courtesy of Dennis Schroeder, NREL Living Comfortably: A Consumer's Guide to Home Energy Upgrades A four-step guide to making your home more comfortable, energy efficient and...

  2. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    taking advanced battery technologies from the lab to the marketplace. February 14, 2011 Home-energy display mobile phone application that shows how much energy an appliance is...

  3. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Rob Guglielmetti helped leverage daylighting (i.e. sun and sunlight) to help the National Renewable Energy Laboratory's (NREL) Research Support Facility meet its energy efficiency...

  4. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in the Rio Grande Valley on energy efficiency ideas for the home, recycling, energy production and consumption, wind and solar power and groundwater runoff. Texas...

  5. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    University (NAU), the top recruiter of Native American engineering students in their area. November 18, 2011 Energy Matters: Industrial Energy Efficiency On Wednesday,...

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Resilient Communities The Energy Department continues to take actions to protect our energy infrastructure, adapt to climate change and build partnerships to make communities...

  7. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    October 17, 2012 Utilities demonstrating the latest Green Button features at the Energy Datapalooza on October 1st. | Photo by Sarah Gerrity Green Button Energy Data Access...

  8. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A Livestream with our Latest Nobel Prize Winner Dr. Perlmutter presents, "Supernovae, Dark Energy and the Accelerating Universe: How the Energy Department Helped to Win (yet...

  9. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-DimensionalTransmission

  10. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWater Power PersonnelH2FIRSTWind

  11. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:UNM:Education

  12. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:UNM:EducationAssurance

  13. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration PermalinkClimate ChangeLicense

  14. Energy Sources: Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | DepartmentSource |  Why Hydrogen? * Fossil

  15. Analysis of the Energy-Saving Potential of a Three-Rotary Wheel Fresh Air-Handling Unit

    E-Print Network [OSTI]

    Hao, X.; Zhang, G.; Zou, S.; Liu, H.

    2006-01-01T23:59:59.000Z

    , TRWFAHU can save 10.2% of primary energy and greatly decrease the energy consumption of chiller. If waste heat is available for regenerating the desiccant, the system can achieve greater energy savings. It is feasible to improve indoor air quality (IAQ...

  16. 1. We can hear around corners, but we cannot see around corners. The reason is that a) Sound waves carry more energy than do light waves

    E-Print Network [OSTI]

    Coleman, Piers

    1. We can hear around corners, but we cannot see around corners. The reason is that a) Sound waves carry more energy than do light waves b) The frequency of sound is much greater than that of light c) The wavelength of sound is much greater than that of light d) Sound waves are longitudinal, while light waves

  17. Energy Star

    E-Print Network [OSTI]

    Reihl, K.; Tullos, A.

    2012-01-01T23:59:59.000Z

    is a joint program of: ? U.S. Environmental Protection Agency (EPA) ? U.S. Department of Energy (DOE) ? Mission: ? ?Help us all save money and protect the environment through energy efficient products and practices.? ? History: ? 1992 ? Energy... Star Label introduced for energy-efficient products ? Expanded to include technical information & tools ? Website: www.energystar.gov ESL-KT-12-10-08 CATEE 2012: Clean Air Through Energy Efficiency Conference, Galveston, TX, October 9-11, 2012...

  18. The potential of renewable energy

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  19. Washington State energy use profile 1960 to 1980

    SciTech Connect (OSTI)

    Hinman G.; Alguire, F.; Devlin, T.; Hanson, J.; Horton, D.; Olsen, D.

    1980-12-01T23:59:59.000Z

    A comprehensive energy data base for the state of Washington is presented to provide energy suppliers, consumers, and policy makers with the most current energy data and information possible so that energy planning and policy decisions may be made on an informed basis. The first section provides an overview of demographic and economic factors, energy use, energy resources, and prices. The second section provides greater detail on the uses, supplies, and prices of the principal energy resources used in the state. The third section focuses on electricity and describes uses, supplies, and prices for this intermediate energy form. The fourth section disaggregates energy consumption by users and provides additional detail on use in the residential, commercial, industrial, agricultural, and transportation sectors. The fifth section shows some comparisons of actual figures with those appearing in some recent forecasts. (MCW)

  20. GreenCharge: Managing Renewable Energy in Smart Buildings

    E-Print Network [OSTI]

    Kurose, Jim

    GreenCharge: Managing Renewable Energy in Smart Buildings Aditya Mishra, David Irwin, Prashant of buildings is challenging. In this paper, we explore an alternative approach that combines market show that GreenCharge's savings for a typical home today are near 20%, which are greater than

  1. Strategic Energy Planning | Department of Energy

    Office of Environmental Management (EM)

    Resources Energy Resource Library Strategic Energy Planning Strategic Energy Planning Below are resources for Tribes on strategic energy planning. Alaska Strategic Energy...

  2. Tribal Renewable Energy Foundational Course: Strategic Energy...

    Office of Environmental Management (EM)

    Strategic Energy Planning Tribal Renewable Energy Foundational Course: Strategic Energy Planning Watch the U.S. Department of Energy Office of Indian Energy foundational course...

  3. Tribal Renewable Energy Foundational Course: Assessing Energy...

    Office of Environmental Management (EM)

    Assessing Energy Needs and Resources Tribal Renewable Energy Foundational Course: Assessing Energy Needs and Resources Watch the U.S. Department of Energy Office of Indian Energy...

  4. CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

  5. Case studies of energy-efficient office technologies: Measured savings and user response

    SciTech Connect (OSTI)

    Piette, M.A.

    1995-12-01T23:59:59.000Z

    The primary objectives of this project are to document the energy savings and user satisfaction with new, energy-efficient office technologies and products, plus disseminate measured results to help motivate greater energy savings with proper use of these technologies and products. Secondary objectives include providing useful feedback on products, policies, and programs to industry and government energy planners and managers. In addition, there will be the exploration of low-cost methods for obtaining office technology performance data.

  6. Multilateral, regional and bilateral energy trade governance

    SciTech Connect (OSTI)

    Leal-Arcas, Rafael; Grasso, Costantino; Rios, Juan Alemany (Queen Mary Univ. of London (United Kingdom))

    2014-12-01T23:59:59.000Z

    The current international energy trade governance system is fragmented and multi-layered. Streamlining it for greater legal cohesiveness and international political and economic cooperation would promote global energy security. The current article explores three levels of energy trade governance: multilateral, regional and bilateral. Most energy-rich countries are part of the multilateral trading system, which is institutionalized by the World Trade Organization (WTO). The article analyzes the multilateral energy trade governance system by focusing on the WTO and energy transportation issues. Regionally, the article focuses on five major regional agreements and their energy-related aspects and examines the various causes that explain the proliferation of regional trade agreements, their compatibility with WTO law, and then provides several examples of regional energy trade governance throughout the world. When it comes to bilateral energy trade governance, this article only addresses the European Union’s (EU) bilateral energy trade relations. The article explores ways in which gaps could be filled and overlaps eliminated whilst remaining true to the high-level normative framework, concentrating on those measures that would enhance EU energy security.

  7. Greenergy International Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder Jump to:Greenburgh,1347943°,London, Greater

  8. Energy Strategic Planning & Sufficiency Project

    SciTech Connect (OSTI)

    Retziaff, Greg

    2005-03-30T23:59:59.000Z

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  9. Advice Provision for Energy Saving in Automobile Climate Control Systems Amos Azaria1

    E-Print Network [OSTI]

    Kraus, Sarit

    energy becomes even greater when consid- ering an electric car, since heavy use of the climate control. In addition to long term reasons, saving energy while driving electrical cars has an additional short-term benefit--it extends the range of travel. This is desirable since electric cars often have a shorter

  10. Department of Energy Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan for the

    E-Print Network [OSTI]

    .hydrogen.energy.gov Released September 2011 (second printing April 2012) #12;Department of Energy Hydrogen and Fuel Cells: · Improved ICE [internal combustion engine] vehicles coupled with greater use of biofuels, · A shifting manufacturing industry in the United States ... Developing and deploying the next generation of fuel cells

  11. Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems: A Review

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems: A Review Y. Amirat, M for the reduction of operational and maintenance costs of Wind Energy Conversion Systems (WECS). The most efficient they are situated on extremely high towers, which are normally 20 m or greater in height. There are also plans

  12. Collaboration and Consensus Building in States to Support Energy Efficiency as a Resource

    Broader source: Energy.gov [DOE]

    Today’s webcast is part of a 7-part series that was initially created for five states. You can see them here who have a cooperative agreement and funding with DOE under the State Energy Program. These states are all developing policy and program frameworks to support a greater investment in cost-effective energy efficiency over the long term.

  13. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

    1996-02-01T23:59:59.000Z

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  14. Hubble Energy

    E-Print Network [OSTI]

    Alasdair Macleod

    2004-03-25T23:59:59.000Z

    Light received from a cosmological source is redshifted with an apparent loss of energy, a problem first pointed out by Edwin Hubble in 1936. A new type of energy called Hubble Energy is introduced to restore the principle of energy conservation. The energy has no inertial or gravitational effect but retards radial motion in a manner consistent with the anomalous acceleration experienced by the Pioneer probes leaving the solar system. The energy is predicted to have important effects on the scale of galaxies, and some of these effects are qualitatively examined: for example, with Hubble Energy, flat rotation curves are found to be an inevitable consequence of spiral galaxy formation. The Hubble Energy is incorporated into the Friedmann Equation and shown to add a term similar to the cosmological term, with a magnitude of order 10^-35 s^-2.

  15. Energy deskbook

    SciTech Connect (OSTI)

    Glasstone, S.

    1983-01-01T23:59:59.000Z

    This book explains recent energy-related terms and principles. It defines and outlines over 400 topics. The subjects covered include: alcohol and diesel fuels; atomic, biomass, and fusion energy; desulfurization; electric vehicles; geothermal resources development; laser fusion; ocean thermal energy conversion; steam generation; wind energy conversion. Scientists, engineers, administrators, government officials, and conservationists will want this authoritative reference close at hand for the invaluable assistance it can provide in their work.

  16. Dark Energy

    E-Print Network [OSTI]

    Norbert Straumann

    2003-11-26T23:59:59.000Z

    After some remarks about the history and the mystery of the vacuum energy I shall review the current evidence for a cosmologically significant nearly homogeneous exotic energy density with negative pressure (`Dark Energy'). Special emphasis will be put on the recent polarization measurements by WMAP and their implications. I shall conclude by addressing the question: Do the current observations really imply the existence of a dominant dark energy component?

  17. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  18. Energy Efficiency and Energy Policy 

    E-Print Network [OSTI]

    Claridge, D.

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Energy Policy David E. Claridge, Director Energy Systems Laboratory November 19, 2014 ESL-KT-14-11-17 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 50 Years of Automobile Improvements ? 1960s...: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Impact of Auto/Truck Efficiency Increases ? Autos/light trucks used energy = Energy Imports in 2012 ? AUTO/TRUCK EFFICIENCY IMPROVEMENTS have CUT U.S. ENERGY IMPORTS IN HALF ESL...

  19. Energy Efficiency and Energy Policy

    E-Print Network [OSTI]

    Claridge, D.

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Energy Policy David E. Claridge, Director Energy Systems Laboratory November 19, 2014 ESL-KT-14-11-17 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 50 Years of Automobile Improvements ? 1960s...: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Impact of Auto/Truck Efficiency Increases ? Autos/light trucks used energy = Energy Imports in 2012 ? AUTO/TRUCK EFFICIENCY IMPROVEMENTS have CUT U.S. ENERGY IMPORTS IN HALF ESL...

  20. Nacel Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOcean Energy ThermalEnergy,Nacel Energy Jump to:

  1. Energy Matters: Our Energy Independence | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Matters: Our Energy Independence Energy Matters: Our Energy Independence Addthis Description In this installment of the livechat series "Energy Matters," Dr. Arun Majumdar takes...

  2. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01T23:59:59.000Z

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  3. Energy Policy ] (

    E-Print Network [OSTI]

    Jacobson, Arne

    of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity Arne of California, Berkeley, USA Abstract Energy services are fundamental determinants of the quality of life, however, to explore changes in individual, household, and national levels of energy consumption

  4. You have the power. 1997 Federal Energy Management Program report

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    From 1985 to 1996, the Federal investment in energy efficiency totaled $2 billion. This investment achieved a cumulative savings of $6.3 billion in the nation`s energy bill when calculated from a 1985 baseline. The Energy Policy Act of 1992 and Executive Order 12902 require a rate of even greater energy savings than the pace already set. FEMP`s leadership and accomplishments for FY 1997 have helped Federal agencies meet their challenges and attain their goals by: increasing partnerships with the private sector; providing cost effective quality services and tools; integrating energy efficiency into procurement; increasing Federal employee energy awareness; influencing outcomes by promoting good energy habits; and increasing the number and scope of energy efficiency projects.

  5. Data:892c429f-0315-4d44-a85f-14b16701d365 | Open Energy Information

    Open Energy Info (EERE)

    5 kW and no greater than 5 MW, for the production of electricity through the use of 100% renewable resources or fuels, which shall include "Renewable energy resources" as that...

  6. Data:1549c384-97ff-424f-a94d-6a70b2eac6d9 | Open Energy Information

    Open Energy Info (EERE)

    5 kW and no greater than 5 MW, for the production of electricity through the use of 100% renewable resources or fuels, which shall include "Renewable energy resources" as that...

  7. Data:92590a92-aa39-417c-a4eb-d813a077f781 | Open Energy Information

    Open Energy Info (EERE)

    Parallel Generation (20 kW or less)-Net Energy Billing or Customer- Owned Generation Systems (Greater than 20 kW) For more information see "Source". Source or reference: http:...

  8. Data:D2b48c0a-ff6f-4667-922b-f097069579d6 | Open Energy Information

    Open Energy Info (EERE)

    Parallel Generation (20 kW or less)-Net Energy Billing or Customer- Owned Generation Systems (Greater than 20 kW) For more information see "Source". Source or reference: http:...

  9. Data:471ef322-a641-4dc7-8f0c-5816d179f020 | Open Energy Information

    Open Energy Info (EERE)

    Generation (20 kW or less)- Net Energy Billing as well as Customer- Owned Generation Systems (Greater than 20 kW) Billing is available to this rate. Source or reference: http:...

  10. Data:85fd1063-be7f-4592-9f51-6d8ac55f9620 | Open Energy Information

    Open Energy Info (EERE)

    Parallel Generation (20 kW or less)-Net Energy Billing or Customer- Owned Generation Systems (Greater than 20 kW) For more information see "Source". Source or reference: http:...

  11. Data:A17516aa-e3d1-4026-8c59-cf59a353c467 | Open Energy Information

    Open Energy Info (EERE)

    Parallel Generation (20 kW or less)- Net Energy Billing Customer-Owned Generation Systems (Greater than 20 kW) Source or reference: http:psc.wi.govapps40tariffs...

  12. Data:56ff1ae9-6d02-4493-b28f-30db52388f92 | Open Energy Information

    Open Energy Info (EERE)

    Parallel Generation (20 kW or less)- Net Energy Billing Customer-Owned Generation Systems (Greater than 20 kW) Source or reference: http:psc.wi.govapps40tariffs...

  13. Data:6d6c822b-888c-423f-b8dc-11514e922c4d | Open Energy Information

    Open Energy Info (EERE)

    Parallel Generation (20 kW or less)- Net Energy Billing Customer-Owned Generation Systems (Greater than 20 kW) Source or reference: http:psc.wi.govapps40tariffs...

  14. Data:74f4e54a-2a52-4264-b9d1-69e04f710e54 | Open Energy Information

    Open Energy Info (EERE)

    Parallel Generation (20 kW or less)-Net Energy Billing or Customer- Owned Generation Systems (Greater than 20 kW) For more information see "Source". Source or reference: http:...

  15. Data:2780d9d8-2e9d-4f10-8d5c-00abbdcb8ee0 | Open Energy Information

    Open Energy Info (EERE)

    Parallel Generation (20 kW or less)- Net Energy Billing Customer-Owned Generation Systems (Greater than 20 kW) Source or reference: http:psc.wi.govapps40tariffs...

  16. Data:Fd686f49-a3fd-4d41-ad90-be67e16d3d32 | Open Energy Information

    Open Energy Info (EERE)

    at one location meets the following requirements. 1. Service is measured by one meter. 2. Electricity is the primary (greater than 50%) source of energy for space heating. 3. The...

  17. Data:1fa7f892-5c65-43f1-bed7-74e9828209eb | Open Energy Information

    Open Energy Info (EERE)

    at one location meets the following requirements. 1. Service is measured by one meter. 2. Electricity is the primary (greater than 50%) source of energy for space heating. 3. The...

  18. Data:6f5f3d50-bb76-4519-bf3b-bb79b07e2984 | Open Energy Information

    Open Energy Info (EERE)

    must be less than or equal to 100 KW as defined in the billing demand section of this tariff. 2.Average monthly energy consumption shall be greater than or equal to 3,000KWH's...

  19. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Climate and Energy Secretary Moniz tells White House group that addressing the risks of climate change is the reason he returned to the Energy Department. May 24, 2013 The...

  20. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Blog Energy Blog RSS November 20, 2013 Electrical transmission lines cross a snow-covered field in Dallas Dam, Oregon. | Photo courtesy of the Energy Department Flickr page. The...

  1. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    page. August 28, 2012 Sinking a Pet's Teeth into Energy Saving Ernie's musings about pet ownership and its effects on a healthy and energy-efficient lifestyle. August 28, 2012...

  2. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to consumers is now home to Danville, Virg.'s first renewable energy project - a 154-panel solar energy system. November 3, 2010 Harnessing Sun, Wind and Lava for Islands'...

  3. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    May 30, 2012 Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Estimating the Cost and Energy Efficiency of a Solar Water Heater Could...

  4. Energy Blog | Department of Energy

    Office of Environmental Management (EM)

    see how many you can name in 60 seconds. July 6, 2015 Energy Department-supported "Azura" wave energy converter is installed at a U.S. Navy test site in Hawaii. | Photo courtesy of...

  5. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    even end up on energy.gov January 17, 2013 MBC Ventures' new product line provides daylight to building interiors and generates thermal energy that can be used to heat the...

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    engines in a vehicle can be better than one. November 29, 2012 The 2011 Renewable Energy Data book contains facts and figures on the U.S. and global renewable energy industry....

  7. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    an Energy Efficiency Tax Credit? Share with us home improvements you have made for an energy efficiency tax credit? December 1, 2010 In Case You Missed It: Tuesday Talk with...

  8. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Schaefer recently had an energy audit done on his 80-year-old home and is saving money on energy bills by putting some of the auditor's recommendations to work. May 28, 2010...

  9. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2010 E-Shelters to Teach a Valuable Lesson on Energy Recovery Act funding is providing solar energy systems for more than 90 emergency shelters at Florida public schools. March...

  10. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 29, 2010 The EnergySmart Jobs program is a three-pronged approach to creating "green jobs" for Californians while also increasing energy efficiency at businesses around...

  11. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pump Need to heat your pool? Save energy and money with a smaller, more efficient pool pump that you operate less. May 29, 2012 Managing Swimming Pool Temperature for Energy...

  12. Energy 101: Home Energy Assessment

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    A home energy checkup helps owners determine where their house is losing energy and money - and how such problems can be corrected to make the home more energy efficient. A professional technician - often called an energy auditor - can give your home a checkup. You can also do some of the steps yourself. Items shown here include checking for leaks, examining insulation, inspecting the furnace and ductwork, performing a blower door test and using an infrared camera.

  13. Sandia Energy - Highlights - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPowerHighlights - Energy Research

  14. EnergySavers: Tips on Saving Money & Energy at Home (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01T23:59:59.000Z

    The U.S. Department of Energy's consumer guide to saving money and energy at home and on the road. It consists of the following articles: (1) Save Money and Energy Today - Get started with things you can do now, and use the whole-house approach to ensure that your investments are wisely made to save you money and energy; (2) Your Home's Energy Use - Find out how your home uses energy, and where it's losing the most energy so you can develop a plan to save in the short and long term; (3) Air Leaks and Insulation - Seal air leaks and insulate your home properly so your energy dollars don't seep through the cracks; (4) Heating and Cooling - Use efficient systems to heat and cool your home, and save money and increase comfort by properly maintaining and upgrading equipment; (5) Water Heating - Use the right water heater for your home, insulate it and lower its temperature, and use less water to avoid paying too much; (6) Windows - Enjoy light and views while saving money by installing energy-efficient windows, and use strategies to keep your current windows from losing energy; (7) Lighting - Choose today's energy-efficient lighting for some of the easiest and cheapest ways to reduce your electric bill; (8) Appliances - Use efficient appliances through-out your home, and get greater performance with lower energy bills; (9) Home Office and Electronics - Find out how much energy your electronics use, reduce their out-put when you're not using them, and choose efficient electronics to save money; (10) Renewable Energy - Use renewable energy at home such as solar and wind to save energy dollars while reducing environmental impact; (11) Transportation - Choose efficient transportation options and drive more efficiently to save at the gas pump; and (12) References - Use our reference list to learn more about energy efficiency and renewable energy.

  15. Energy Education BASS CONNECTIONS in ENERGY

    E-Print Network [OSTI]

    Ferrari, Silvia

    Energy Education BASS CONNECTIONS in ENERGY Leader: Prof. Richard Newell Duke University Energy Initiative Energy education at Duke capitalizes on the University's broader Energy Initiative, a university-wide interdisciplinary collaboration addressing today's pressing energy challenges related to the economy

  16. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01T23:59:59.000Z

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  17. Renewable Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Renewable Energy Technologies Renewable Energy Technologies State, local, and tribal governments can harness renewable energy technologies from natural sources-...

  18. Government Energy Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Project Funding Grants for Efficiency and Conservation Projects Incentives for Renewable Energy and Energy Efficient Improvements Renewable Energy Production Incentive...

  19. Inventing an Energy Internet: Concepts, Architectures and Protocols for Smart Energy Utilization

    ScienceCinema (OSTI)

    Lefteri Tsoukalas

    2010-01-08T23:59:59.000Z

    In recent years, the Internet is revolutionizing information availability much like the Power Grid revolutionized energy availability a century earlier. We will explore the differences and similarities of these two critical infrastructures and identify ways for convergence which may lead to an energy internet. Pricing signals, nodal forecasting, and short-term elasticities are key concepts in smart energy flows respecting the delicate equilibrium involved in generation-demand and aiming at higher efficiencies. We will discuss how intelligent forecasting approaches operating at multiple levels (including device or nodal levels) can ameliorate the challenges of power storage. In addition to higher efficiencies, an energy internet may achieve significant reliability and security improvements and offer greater flexibility and transparency in the overall energy-environmental relation.

  20. Energy Northwest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:Emminol Jump to:EnergEnergy 21EnergyEnergy

  1. Refex Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energy Product:AnatoliaRefex Energy Jump to:

  2. Renovalia Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energyInformationRenovalia Energy Jump

  3. AGL Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergySulfonate asAEEOpenOpen EnergyAGL Energy Jump to:

  4. IPE Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9MoatEnergyElectricityUSINGIPE Energy Jump

  5. Positive Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,Posey County, Indiana: EnergyPositive Energy

  6. Energy Spectrum | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:EconCompaniesMainEnergyEnergy

  7. Energy Star | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:EconCompaniesMainEnergyEnergyPublicStar

  8. Entero Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis JumpESLEnergyEnphase Energy IncEntero Energy

  9. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    6 6. Renewable Energy132 5. Renewable EnergyUnited States National Renewable Energy Laboratory, http://

  10. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    E-Print Network [OSTI]

    Worrell, Ernst

    2010-01-01T23:59:59.000Z

    energy-efficiency measures Energy Management Programs and Systems Energy management programs Energy teams Energy monitoring

  11. Energy Efficient Mortgages | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Financing Financing Structures Energy Efficient Mortgages Energy Efficient Mortgages Energy efficient mortgages (EEMs) encourage energy efficiency by giving buyers a better...

  12. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  13. Rural Development Energy Audit & Renewable Energy Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rural Development Energy Audit & Renewable Energy Development Assistance Webinar Rural Development Energy Audit & Renewable Energy Development Assistance Webinar January 21, 2015...

  14. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project...

  15. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

  16. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Systems Analysis Home Transportation Energy Predictive Simulation of Engines Transportation Energy Systems Analysis Transportation Energy Systems AnalysisTara...

  17. Indian Energy News Archive | Department of Energy

    Office of Environmental Management (EM)

    1, 2015 Energy Department to Lead Workshop on Tribal Renewable Energy Development in Oklahoma Oklahoma tribal energy leaders have an opportunity to explore the tribal energy...

  18. Colorado: Energy Modeling Products Support Energy Efficiency...

    Energy Savers [EERE]

    Colorado: Energy Modeling Products Support Energy Efficiency Projects Colorado: Energy Modeling Products Support Energy Efficiency Projects May 1, 2014 - 11:04am Addthis Xcel...

  19. Tribal Energy Program | Department of Energy

    Office of Environmental Management (EM)

    Tribal Energy Program Tribal Energy Program The Tribal Energy Photo of a turbine installed at the Rosebud Sioux Reservation in South Dakota. Program promotes tribal energy...

  20. District Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technologies District Energy Technologies District energy systems produce steam, hot water, or chilled water at a central plant. Then they pipe the energy to...