Powered by Deep Web Technologies
Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Great Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Great Plains Wind Farm Jump to: navigation, search Name Great Plains Wind Farm Facility Great Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Noble Environmental Developer Noble Environmental Location Hansford County TX Coordinates 36.285809°, -101.358662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.285809,"lon":-101.358662,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Naturener USA LLC formerly Great Plains Wind Energy | Open Energy  

Open Energy Info (EERE)

LLC formerly Great Plains Wind Energy LLC formerly Great Plains Wind Energy Jump to: navigation, search Name Naturener USA, LLC (formerly Great Plains Wind & Energy) Place San Francisco, California Zip 94111 Sector Wind energy Product Developer of a wind farm in Montana, has been sold to Naturener S.A. References Naturener USA, LLC (formerly Great Plains Wind & Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Naturener USA, LLC (formerly Great Plains Wind & Energy) is a company located in San Francisco, California . References ↑ "Naturener USA, LLC (formerly Great Plains Wind & Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Naturener_USA_LLC_formerly_Great_Plains_Wind_Energy&oldid=3491

3

Great Plains Wind Energy Transmission Development Project  

DOE Green Energy (OSTI)

In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

2012-06-09T23:59:59.000Z

4

EIS-0408: Upper Great Plains Programmatic Wind EIS  

Energy.gov (U.S. Department of Energy (DOE))

This EIS, being prepared jointly by DOE's Western Area Power Administration and the Department of the Interiors Fish and Wildlife Service, will evaluate the environmental impacts of wind energy development in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota Westerns Upper Great Plains customer service region. Western will use the EIS to implement a comprehensive regional program to manage interconnection requests for wind energy projects.

5

EIS-0408: Upper Great Plains Programmatic Wind EIS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Upper Great Plains Programmatic Wind EIS 8: Upper Great Plains Programmatic Wind EIS EIS-0408: Upper Great Plains Programmatic Wind EIS Summary This EIS, being prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Fish and Wildlife Service, will evaluate the environmental impacts of wind energy development in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota - Western's Upper Great Plains customer service region. Western will use the EIS to implement a comprehensive regional program to manage interconnection requests for wind energy projects. Public Comment Opportunities None available at this time. Documents Available for Download March 22, 2013 EIS-0408: Draft Programmatic Environmental Impact Statement Upper Great Plains Programmatic Wind EIS

6

A Climatology of the Warm Season Great Plains Low-Level Jet Using Wind Profiler Observations  

Science Conference Proceedings (OSTI)

Hourly observations from the Wind Profiler Demonstration Network during the warm season months of 1991 and 1992 were used to develop a climatology of the low-level jet (LLJ) over the Great Plains of the central United States. The maximum overall ...

Mark J. Mitchell; Raymond W. Arritt; Ken Labas

1995-09-01T23:59:59.000Z

7

Weather pattern climatology of the Great Plains and the related wind regime  

DOE Green Energy (OSTI)

The meteorology of the Great Plains can be described as a constant progression of air masses, fronts and cyclonic storm systems. Each of these meteorological conditions can be characterized by identifiable isobaric and related weather parameter patterns. Nine such patterns have been defined to type the weather patterns in the Great Plains. Time series of weather pattern types were produced for 62 stations on the Great Plains. Statistical analyses of these time series produced annual and seasonal frequencies of occurrence of the weather pattern types. Maps of the annual and seasonal frequency of occurrence of weather pattern type are presented for the Great Plains. Persistence and alternation frequencies match what is expected for traveling temperate latitude cyclones, anticyclones and fronts. The wind regime for stations at which the anemometer height and location was constant (and known) for a minimum of three consecutive years was stratified by weather pattern type. Statistical analyses were made to show the response of the wind to the large-scale distribution of air pressure associated with a weather pattern type. The response of the wind to the weather pattern is a site-specific result of the interaction of the large-scale meteorology with local terrain, surface roughness and atmospheric stability. Mean wind speed discriminates between pairs of weather pattern types with better than 75% confidence for more than two-thirds of the possible pairs of weather pattern types.

Barchet, W.R.

1982-11-01T23:59:59.000Z

8

Regional Community Wind Conferences, Great Plains Windustry Project  

DOE Green Energy (OSTI)

Windustry organized and produced five regional Community Wind Across America (CWAA) conferences in 2010 and 2011 and held two CWAA webinars in 2011 and 2012. The five conferences were offered in regions throughout the United States: Denver, Colorado ? October 2010 St. Paul, Minnesota ? November 2010 State College, Pennsylvania ? February 2011 Ludington, Michigan (co-located with the Michigan Energy Fair) June 2011 Albany, New York October 2011

Daniels, Lisa [Windustry

2013-02-28T23:59:59.000Z

9

Application of wind energy to Great Plains irrigation pumping. Final report  

DOE Green Energy (OSTI)

Wind energy systems without energy storage for irrigation in the Great Plains are studied. Major uses of irrigation energy were identified as pumping for surface distribution systems, which could be supplied by variable flow, and pumping for sprinkler systems using constant flow. A computer program was developed to simulate operation of wind-powered irrigation wells. Pumping by wind turbine systems was simulated for 2 variable and 2 constant flow operational modes in which auxiliary motors were used in 3 of the modes. Using the simulation program, the well yields and maximum pumping rates among the 4 modes as a function of drawdown in a typical well are compared.

Hagen, L.J.; Lyles, L.; Skidmore, E.L.

1979-10-01T23:59:59.000Z

10

Validation of regional wind resource predictions in the Northern Great Plains  

DOE Green Energy (OSTI)

The development and validation of computerized wind mapping tools for regional assessment purposes is an important step in accelerating wind energy deployment. This paper summarizes the results of a validation study of the automated wind resource mapping technique developed at the National Renewable Energy Laboratory (NREL). This technique uses Geographic Information System (GIS) software and produces high horizontal resolution (1 km) wind resource maps. The automated wind maps have been used to help plan wind measurement programs and to define potential areas for wind energy projects in countries such as Mexico, Chile, Indonesia, and China. The authors chose a US location for this project to test the accuracy of the automated mapping technique in a region where the wind resource distribution was already fairly well known. The Buffalo Ridge region of the Northern Great Plains served as the subject area. The study area covered northwestern Iowa, southwestern Minnesota, and adjacent parts of South Dakota and Nebraska. This area had several advantages for use in a validation study. First, this area has active wind energy development and the results would be of interest to the wind energy community. Second, a validation data set would be fairly easy to derive because recent wind measurements were taken in that region specifically for wind energy purposes. These data were publicly available and easily obtained. Finally, the relatively simple terrain in that region enabled this study to be completed in a timely manner.

Elliott, D.; Schwartz, M.

1998-08-01T23:59:59.000Z

11

Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesSouthern Great Plains govSitesSouthern Great Plains SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Southern Great Plains SGP Central Facility, Lamont, OK 36° 36' 18.0" N, 97° 29' 6.0" W Altitude: 320 meters The Southern Great Plains (SGP) site was the first field measurement site established by DOE's Atmospheric Radiation Measurement (ARM) Program. Scientists are using the information obtained from the SGP to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research.

12

Great Plains: status of the Great Plains coal gasification project  

SciTech Connect

Updated information is presented on the Great Plains coal gasification project in North Dakota following the default of a $1.54 billion federal loan by the project sponsors. This report includes updated information obtained through October 31, 1985, on the loan default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, Great Plains operations, and socioeconomic issues. The new information highlights changes in the gas pricing calculations; the Department's action to pay off the defaulted loan; legal action concerning gas purchase agreements; the project sponsors' proposed settlement; September revenue, expense, and production data; coal lease payments; capital improvement projects; plant by-products; and the final results of a North Dakota task force study of the potential socioeconomic impact if the plant closes.

Not Available

1985-11-01T23:59:59.000Z

13

Great Plains Coal Gasification Project:  

Science Conference Proceedings (OSTI)

This progress report on the Great Plains Coal Gasification Project discusses Lignite coal, natural gas, and by-products production as well as gas quality. A tabulation of raw material, product and energy consumption is provided for plant operations. Capital improvement projects and plant maintenance activities are detailed and summaries are provided for environmental, safety, medical, quality assurance, and qualtiy control activities.

Not Available

1988-01-29T23:59:59.000Z

14

About Upper Great Plains Regional Office  

NLE Websites -- All DOE Office Websites (Extended Search)

The Upper Great Plains Region carries out Western's mission in Montana, North Dakota, South Dakota, Nebraska, Iowa, and Minnesota. We sell more than 9 billion kilowatt-hours of...

15

A Habitat-based Wind-Wildlife Collision Model with Application to the Upper Great Plains Region  

DOE Green Energy (OSTI)

Most previous studies on collision impacts at wind facilities have taken place at the site-specific level and have only examined small-scale influences on mortality. In this study, we examine landscape-level influences using a hierarchical spatial model combined with existing datasets and life history knowledge for: Horned Lark, Red-eyed Vireo, Mallard, American Avocet, Golden Eagle, Whooping Crane, red bat, silver-haired bat, and hoary bat. These species were modeled in the central United States within Bird Conservation Regions 11, 17, 18, and 19. For the bird species, we modeled bird abundance from existing datasets as a function of habitat variables known to be preferred by each species to develop a relative abundance prediction for each species. For bats, there are no existing abundance datasets so we identified preferred habitat in the landscape for each species and assumed that greater amounts of preferred habitat would equate to greater abundance of bats. The abundance predictions for bird and bats were modeled with additional exposure factors known to influence collisions such as visibility, wind, temperature, precipitation, topography, and behavior to form a final mapped output of predicted collision risk within the study region. We reviewed published mortality studies from wind farms in our study region and collected data on reported mortality of our focal species to compare to our modeled predictions. We performed a sensitivity analysis evaluating model performance of 6 different scenarios where habitat and exposure factors were weighted differently. We compared the model performance in each scenario by evaluating observed data vs. our model predictions using spearmans rank correlations. Horned Lark collision risk was predicted to be highest in the northwestern and west-central portions of the study region with lower risk predicted elsewhere. Red-eyed Vireo collision risk was predicted to be the highest in the eastern portions of the study region and in the forested areas of the western portion; the lowest risk was predicted in the treeless portions of the northwest portion of the study area. Mallard collision risk was predicted to be highest in the eastern central portion of the prairie potholes and in Iowa which has a high density of pothole wetlands; lower risk was predicted in the more arid portions of the study area. Predicted collision risk for American Avocet was similar to Mallard and was highest in the prairie pothole region and lower elsewhere. Golden Eagle collision risk was predicted to be highest in the mountainous areas of the western portion of the study area and lowest in the eastern portion of the prairie potholes. Whooping Crane predicted collision risk was highest within the migration corridor that the birds follow through in the central portion of the study region; predicted collision risk was much lower elsewhere. Red bat collision risk was highly driven by large tracts of forest and river corridors which made up most of the areas of higher collision risk. Silver-haired bat and hoary bat predicted collision risk were nearly identical and driven largely by forest and river corridors as well as locations with warmer temperatures, and lower average wind speeds. Horned Lark collisions were mostly influenced by abundance and predictions showed a moderate correlation between observed and predicted mortality (r = 0.55). Red bat, silver-haired bat, and hoary bat predictions were much higher and shown a strong correlations with observed mortality with correlations of 0.85, 0.90, and 0.91 respectively. Red bat collisions were influenced primarily by habitat, while hoary bat and silver-haired bat collisions were influenced mainly by exposure variables. Stronger correlations between observed and predicted collision for bats than for Horned Larks can likely be attributed to stronger habitat associations and greater influences of weather on behavior for bats. Although the collision predictions cannot be compared among species, our model outputs provide a convenient and easy landscape-level tool to quick

Forcey, Greg, M.

2012-08-28T23:59:59.000Z

16

Great Plains Institute | Open Energy Information  

Open Energy Info (EERE)

Plains Institute Plains Institute Jump to: navigation, search Name Great Plains Institute Place Minneapolis, Minnesota Zip 55407 Product Works with multiple stakeholders to produce and implement policies, technologies and practices in the areas of energy security and bio-based materials. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

Great Plains makes 100 billion cubic feet  

SciTech Connect

The Great Plains coal gasification plant on January 18, 1987 produced its 100 billionth cubic foot of gas since start-up July 28, 1984. Owned by the Department of Energy and operated by ANG Coal Gasification Company, the plant uses the Lurgi process to produce about 50 billion cubic feet per year of gas from five million tons per year of lignite. The plant has been performing at well above design capacity.

Not Available

1987-03-01T23:59:59.000Z

18

Great Plains Gasification Project status report  

SciTech Connect

The Great Plains Gasification Project is the first commercial synthetic fuels project based on coal conversion in the US. The goal is to convert North Dakota lignite into pipeline quality synthetic natural gas (SNG). The project consists of an open pit coal mine, a gasification plant, and an SNG pipeline in Mercer County, North Dakota. The project took 12 years from its conception to the production in 1984 of SNG for users. The author describes the plant's basic processes, the start-up activities and schedule, and some of the more interesting start-up problems.

Pollock, D.C.

1985-08-01T23:59:59.000Z

19

DOE receives title to Great Plains plant  

Science Conference Proceedings (OSTI)

On June 30, 1986 the Great Plains Coal Gasification Project was sold at a foreclosure sale at the Mercer County courthouse in North Dakota. The US Department of Energy was the only bidder at the sale. DOE's bid for the plant was $1 billion DOE-secured loan that the five sponsor companies defaulted on when they withdrew from the project in August 1985. DOE did not receive title to the plant until a lawsuit filed by American Natural Resources (ANR) was settled on July 14, 1986. DOE has vowed to keep the plant running as long as it does not cost the taxpayers any money. Eventually DOE wishes to dispose of the plant. Therefore, in February 1986 DOE requested that interested organizations submit expressions of interest in the Great Plains plant. This paper, after discussing the lawsuit, summarizes the nine responses received by DOE. Some companies were willing for it to remain a coal gasification facility; other submitted plans for modifications to produce methanol.

Not Available

1986-09-01T23:59:59.000Z

20

ASPEN physical property evaluation for Great Plains simulation. Great Plains ASPEN model development. [Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

This report documents the steps taken to evaluate the pure component properties in the ASPEN data bank for those compounds required to simulate the Great Plains Coal Gasification Plant where the compounds are also available in the DIPPR (Design Institute for Physical Property Data) data bank. DIPPR is a cooperative effort of industry, institutes and federal agencies interested in the compilation, measurement and evaluation of physical property data for industrially important compounds. It has been found that the ASPEN data bank is for the most part reliable, its main problem being lack of documentation. In the few instances where values were found to be either missing or to be unacceptable, recommended constants or equation parameters are presented in this report along with associated literature citations. In the cases where temperature dependent data were regressed to obtain new equation parameters, the detailed methods employed are also presented.

Millman, M.C.

1983-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Great Plains gets a running start  

Science Conference Proceedings (OSTI)

The United States first commercial synthetic fuel plant has been geared up to deliver the $2 billion project by late 1984 in Beulah, North Dakota. The Great Plains coal gasification plant is rising quickly under a compressed 44 month schedule. Delivery of synthetic natural gas from the 125 million-cu-ft-a-day plant by 1984 is possible. Getting the $1.4 billion gasification plant, 22,000-ton-per-day coal mine and 365-mile, 20-in. dia pipeline connection completed on schedule and within budget is critical. The price of the product gas, which will be mixed with relatively cheap natural gas in the consortium's pipelines, has been set by the Federal Energy Regulatory Commission at $6.75 per thousand cubic feet. This project has been planned since 1972. (DP)

Not Available

1981-11-19T23:59:59.000Z

22

Instrumentation for Southem Great Plains D. L. Sisterson and...  

NLE Websites -- All DOE Office Websites (Extended Search)

counties are outlined. 318 Instrumentation for Southern Great Plains Table 1. Dates of installations of Instrumentation, side data system versions, and facilities at the SGP...

23

Central Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Plains Wind Farm Plains Wind Farm Jump to: navigation, search Name Central Plains Wind Farm Facility Central Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner RES Americas Developer RES Americas Energy Purchaser Westar Energy Location KS Coordinates 38.49695°, -101.128392° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.49695,"lon":-101.128392,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

High Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Plains Wind Farm Plains Wind Farm Jump to: navigation, search Name High Plains Wind Farm Facility High Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp Developer PacifiCorp Energy Purchaser PacifiCorp Location Southwest of Rock River WY Coordinates 41.665943°, -106.043487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.665943,"lon":-106.043487,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

The Great Plains coal gasification project status  

SciTech Connect

The Great Plains Gasification Project is the first commercial-sized plant to produce substitute natural gas from coal in the United States. The plant is designed to convert 14,000 tons/D of North Dakota lignite into 137.5 million standard cubic feet of gas per day. The plant construction has been successfully completed per original design, on schedule and on budget. The plant has also been successfully turned over from construction to operations, as per the original plan. With the completion of the capital projects being implemented at the plant, plans are to achieve 70 percent stream factor in the first year of production (1985). The DOE-Chicago Operations Office has been assigned the responsibility for monitoring the project's performance against baselines of cost, schedule, and technical criteria. During the startup phase of the project, significant technological advancements have been made and considerable knowledge has been gained, both by the operators and DOE (considering this to be a first of a kind plant built in the U.S.).

Bodnaruk, B.J.

1986-07-01T23:59:59.000Z

26

Great Plains Gasification Project status report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Project is designed to convert North Dakota lignite into pipeline quality high Btu synthetic natural gas (SNG). Located in Mercer County, North Dakota, the project consists of a coal gasification plant, coal mine, and an SNG pipeline. Construction of the project started in the summer of 1981 and was essentially complete by the fourth quarter of 1984. The plant operating staff started initial start-up planning in early 1982 and moved to the plant site in late 1982. The first unit taken over from construction was the secondary water treating unit and initial operations began on August 19, 1983. The remainder of the plant was commissioned and started up in a planned sequence with initial production of SNG occurring on July 28, 1983. Both trains were in operation and the plant was producing at about 70 percent of design capacity by December 1984-a date that has been targeted for in a start-up schedule prepared some 4-5 years earlier.

Pollock, D.C.; Stockwell, R.E.

1985-01-01T23:59:59.000Z

27

Irrigation-Induced Rainfall and the Great Plains  

Science Conference Proceedings (OSTI)

The postWorld War II increase in irrigation in the Great Plains represents the largest human-induced hydrologic impact in North America. Drawn primarily from the High Plains aquifer, water applied as irrigation in the region amounts to billions ...

Nathan Moore; Stuart Rojstaczer

2001-08-01T23:59:59.000Z

28

Drought in the Great Plains: History of Societal Response  

Science Conference Proceedings (OSTI)

The Great Plains has a long history of drought episodes which have, in some years, significantly reducedexpected crop yields. The historic evidence suggests that such droughts will probably recur in the future.The drought of the 1930's stimulated ...

Alan D. Hecht

1983-01-01T23:59:59.000Z

29

Return Levels of Northern Great Plains Snow Water Equivalents  

Science Conference Proceedings (OSTI)

This paper estimates return levels of extreme snow water equivalents (SWE) in the northern Great Plains region, containing North and South Dakota, Iowa, Minnesota, and Nebraska. The return levels are estimated from extreme-value methods using a ...

Andrew J. Grundstein; Qi Qi Lu; Robert Lund

2006-07-01T23:59:59.000Z

30

Financial status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Great Plains Gasification Associates and the Department of Energy (DOE) signed a loan guarantee agreement in January 1982 for up to $2.02 billion of the estimated $2.76 billion needed to construct a plant producing synthetic gas from coal. Faced with deteriorating financial projections in the wake of declining energy prices, Great Plains applied to the US Synthetic Fuels Corporation (SFC) for additional project assistance. In April 1984 SFC tentatively agreed to provide Great Plains up to $790 million in price guarantee assistance. In return, the Great Plains partners would contribute more equity and Great Plains would repay the DOE-guaranteed loan faster and share profits with SFC. According to GAO's assessment of SFC's proposed assistance, a lower amount of assistance could achieve the same results if Great Plains' partners could fully use certain tax credits and if energy prices and other assumptions remained the same as those SFC used in April 1984. Since April 1984, however, several changes have occurred, such as a continued decline in energy prices. An August 1984 SFC analysis indicated that the decline in energy price offset the effect of the increase tax credits. Other changes have also occurred, but SFC analyses subsequent to August 1984 showing the impact of these changes were not available to GAO. If all changes since April 1984 were incorporated into GAO's analyses, the results could be different.

Not Available

1985-02-21T23:59:59.000Z

31

The Great Plains Low-Level Jet during the Warm Season of 1993  

Science Conference Proceedings (OSTI)

Hourly wind profiler observations from the NOAA Profiler Network were used to develop a climatology of the low-level jet (LLJ) over the Great Plains of the central United States from April to September of 1993. The peak precipitation episode of ...

Raymond W. Arritt; Thomas D. Rink; Moti Segal; Dennis P. Todey; Craig A. Clark; Mark J. Mitchell; Kenneth M. Labas

1997-09-01T23:59:59.000Z

32

A Case Study of the Summertime Great Plains Low Level Jet  

Science Conference Proceedings (OSTI)

A case study of the kinematical and dynamical evolution of the summertime Great Plains low level jet (LLJ) is presented. Airborne radar altimetry was used to discern the x and y components of the geostrophic wind at three levels in the lower ...

Thomas R. Parish; Alfred R. Rodi; Richard D. Clark

1988-01-01T23:59:59.000Z

33

Status of the Great Plains coal gasification project - Summer 1983  

SciTech Connect

Construction of the Great Plains coal gasification plant in North Dakota was 3 weeks behind schedule as of May 31, 1983, but cumulative project costs were less than originally estimated. A March 1983 analysis by Great Plains raised questions about the project's economic viability, which is closely linked to future energy prices. The estimated gas prices used in the analysis were lower than those used in January 1982 to justify construction. As a result, the project's investors are concerned about possible losses during the early years of operations. GAO's review shows, however, that Great Plains did not consider substantial tax benefits which may be available to the parent companies of the project's investors. If these benefits are considered, the project's economic viability could be more positive. Should the investors end their participation, some tax benefits previously obtained would have to be repaid.

Not Available

1983-09-20T23:59:59.000Z

34

Status of the Great Plains coal gasification project  

SciTech Connect

Construction of the Great Plains coal gasification plant in North Dakota was 95 percent complete and only about 2 weeks behind schedule as of November 30, 1983. Cumulative project costs were less than originally estimated for this date. Due to a drop in forecasted energy prices, Great Plains, in September 1983, projected that plant operations could result in large after-tax losses and negative cash flows for the sponsors. Great Plains notified the Department of Energy that it was considering terminating its participation in the project in the absence of additional federal assistance. In this regard, additional assistance in the form of price guarantees for the project's synthetic natural gas are being considered by the US Synthetic Fuels Corporation.

Not Available

1984-03-22T23:59:59.000Z

35

Status of the Great Plains coal gasification project, August 1982  

SciTech Connect

Construction of the Great Plains coal gasification plant in Mercer County, North Dakota, is 4 to 6 weeks behind schedule, but no long-term impacts are anticipated. Cumulative project costs are lower than originally estimated. Overall, the management system established to oversee project construction appears comprehensive. However, some weaknesses exist in the computerized information system, which produces most project data. The Department of Energy complied with statutory requirements in awarding the Great Plains loan guarantee for an alternative fuel demonstration project and is actively working to fulfill its responsibilities as the project's overseer. However, the Department needs to audit the costs incurred by Great Plains to determine that funds are being used only for eligible project costs.

Not Available

1982-09-14T23:59:59.000Z

36

Synthetic fuels: Status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

Not Available

1987-01-01T23:59:59.000Z

37

Great Plains Project: at worst a $1. 7 billion squeeze  

SciTech Connect

On January 29, 1982, seeking a loan guarantee for its coal-to-gas synfuels project, Great Plains Gasification Associates told the Department of Energy that they expected to reap $1.2 billion in net income to the partnership during the first 10 years of the venture. On March 31, 1983, Great Plains treasurer Rodney Boulanger had a different projection: a horrific loss of $773 million in the first decade. The Great Plains project, with construction 50% complete, is being built near Beulah, ND. The project has a design capacity of 137.5 million cubic feet a day of SNG. Great Plains' analysis assumes that the plant will operate at 70% of design capacity in 1985, 77% in 1986, 84% in 1987 and 91% thereafter. The company projects the total project cost at $2.1 billion, consisting of plant costs of $1.9 billion and coal mine costs of $156 million. In originally projecting a cumulative net income of better than $1 billion, the partners anticipated running losses in only three of the first 10 years, and cash distributions from the project of $893 million during the first decade. Under the new projections, even in the best case, the first four years would show losses and there would be no distribution to the partners. In the worst case, the project would run in the red every year for the first 10 years.

Maize, K.

1983-04-11T23:59:59.000Z

38

Financial situation of the Great Plains Coal Gasification Project  

Science Conference Proceedings (OSTI)

GAO reviewed drafts of DOE's National Energy Policy Plan IV, calculated synthetic gas prices using Great Plains methodology, converted those prices to current year dollars, and used DOE's computer model of the project's economics to analyze the cash flow forecast. GAO found both the model and the data produced to be reliable. (PSB)

Not Available

1983-10-17T23:59:59.000Z

39

Western Gas Sands Project: Northern Great Plains Province review  

SciTech Connect

The synopsis outlines the Upper Cretaceous low permeability natural (biogenic) gas formations of the Northern Great Plains Province (NGPP) of Montana, Wyoming, North and South Dakota. The main objectives are to present a general picture of that stratigraphy, significant structures, and natural gas potential.

Newman, III, H E [comp.

1979-08-01T23:59:59.000Z

40

Obama Administration Hosts Great Lakes Offshore Wind Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes...

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Economics of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

the Great Plains project will be the Nation's first commercial-scale plant producing synthetic gas from coal. The project's first annual economic report, released in March 1983, was much less optimistic than a similar analysis prepared in January 1982 to justify construction. GAO found that: the main reason for the changed economic outlook was that the assumed synthetic gas prices used in the March analysis were significantly lower than those used previously. Great Plains did not, nor was it required to, consider tax implications to the parent companies of the project's partners. If these implications are considered, the economics could be more optimistic than the March 1983 report indicates. Should the partners end their participation, some tax benefits would have to be repaid. Although the project is a potentially attractive investment, its financial viability is extremely sensitive to the future prices of synthetic gas. Even a small deviation in prices could significantly affect its economics.

Not Available

1983-08-24T23:59:59.000Z

42

Synthetic fuels. Status of the Great Plains Coal Gasification Project  

Science Conference Proceedings (OSTI)

This report includes updated information obtained through February 14, 1986, on the loan-default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, and Great Plains operations. The new information highlights changes in the gas pricing calculations; legal action concerning gas purchase agreements and mortgage foreclosure; the Department's determination of the project sponsors' outstanding liability; the Department's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues. Our November fact sheet included information on socioeconomic issues. We have not obtained any additional information on these issues and are, therefore, not repeating the socioeconomic information in this fact sheet.

Not Available

1986-02-01T23:59:59.000Z

43

Update on the Great Plains Coal Gasification Project  

SciTech Connect

The Great Plains Gasification Plant is the US's first commercial synthetic fuels project based on coal conversion. The ANG Coal Gasification Company is the administer of the Great Plains Coal Gasification Project for the United States Department of Energy. The Project is designed to convert 14 M TPD of North Dakota of lignite into 137.5 MM SCFD of pipeline quality synthetic natural gas (SNG). Located in Mercer County, North Dakota, the gasification plant, and an SNG pipeline. Some 12 years passed from the time the project was conceived unit it became a reality by producing SNG into the Northern Border pipeline in 1984 for use by millions of residential, commercial, and industrial consumers. In this paper, the basic processes utilized in the plant are presented. This is followed by a discussion of the start-up activities and schedule. Finally, some of the more interesting start-up problems are described.

Imler, D.L.

1985-12-01T23:59:59.000Z

44

DOE assists in meeting social impacts of Great Plains Plant  

Science Conference Proceedings (OSTI)

On August 15, 1986 Department of Energy Secretary John S. Herrington pledged that federal funds of $100,000 per month would be provided to the local governments and school districts of Mercer County, North Dakota. These funds are intended to assist the governments meet demands caused by the Great Plains Coal Gasification Plant. The community impact assistance will continue for as long as the government is the owner of the facility.

Not Available

1986-09-01T23:59:59.000Z

45

Great Plaines installs directionally drilled crossings in Texas  

SciTech Connect

This paper reports on installing a five- line wide, one-line long products system for ARCO Pipe Line Co. (APLC) in a crowded utility right of way required Great Plains Pipeline Construction Co. to complete three directionally drilled crossings and over 50 conventional bored crossings in the Channelview, Texas area. The pipe line route closely parallels a 4-mi ROW section of Houston Power and Light Co. (HP and L) and about 4 mi of Union Pacific Railroad tracks. Due to overhead towers carrying high-voltage electric transmission lines, Great Plains bored under the existing towers in HP and L's easement to preserve the right of way for future tower expansion. Laney, Inc., subcontracted the conventional bores underneath towers and minor roads. Laney Directional Drilling Co. was the prime contractor for two horizontal directionally drilled crossings of the Houston Ship Channel and Carpenter's Bayou. Great Plains, with its own crew, completed three roadway crossings in high-traffic areas. Engineering and material procurement was handled by APLC.

Thiede, K.L.

1991-09-01T23:59:59.000Z

46

Wind Shear Characteristics at Central Plains Tall Towers: Preprint  

SciTech Connect

Conference paper for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing the wind shear characteristics at tall tower sites in the Central Plains of the United States.

Schwartz, M.; Elliott, D.

2006-06-01T23:59:59.000Z

47

Wind Shear Characteristics at Central Plains Tall Towers (presentation)  

SciTech Connect

The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

Schwartz, M.; Elliott, D.

2006-06-05T23:59:59.000Z

48

Great plains coal gasification plant: Technical lessons learned report  

SciTech Connect

In a first of a kind, grass roots plant of the complexity of the Great Plains Gasification Plant the lessons learned are numerous and encompass a wide range of items. This report documents the lessons learned from all phases of the project from preliminary design through the most recent operation of the plant. Based on these lessons learned, suggestions are made for changes and/or process improvements to future synfuel plants. In addition, recommendations are made for research and development in selected areas. 46 refs., 31 figs., 33 tabs.

Delaney, R.C.; Mako, P.F.

1988-11-01T23:59:59.000Z

49

Great Plains Gasification Project process stream design data. Final report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Plant (GPGP) in the first commercial coal-to-SNG synthetic fuel plant constructed and operated in the United States. This process stream design data report provides non-proprietary information to the public on the major GPGP process streams. The report includes a simplified plant process block flow diagram, process input/output diagrams and stream design data sheets for 161 major GPGP process and effluent streams. This stream design data provides an important base for evaluation of plant and process performance and for verification of the DOE ASPEN computer simulation models of the GPGP processes. 8 refs.

Honea, F.I.

1985-09-01T23:59:59.000Z

50

Status of the Great Plains coal gasification project  

SciTech Connect

ANG has extensive policies and procedures for overseeing the construction of the Great Plains project. Additional management comes from a computerized information system, various audit groups, and staff located at the project site. Neither we nor any other audit group identified significant deficiencies in ANG's computer system or the individual systems which feed into it. Overall, the system contains both automated and manual controls which ensure that the data generated from the system is reliable and accurate. The various audit and evaluation groups provide management continuous and significant information concerning major project components. Great Plains management recognized the usefulness of the information and acted on recommendations made which enhanced its overall effectiveness. ANG established and implemented comprehensive procedures to oversee the project's construction. These procedures appear adequate for managing and controlling all construction activities. For example, ANG's onsite managers have identified problems and suggested actions which ANG believes minimized the effect of these problems on the construction schedule. The Department of Energy has extensive procedures for monitoring this project. With few exceptions, the Department followed the procedures established. It has not, however, completed its audit of incurred costs to determine that loan guarantee funds are spent only for eligible project costs. Such an audit was underway and the Department expected to complete it in 1983.

Not Available

1983-04-08T23:59:59.000Z

51

Great Plains Gasification Project process stream design data. [Lurgi Process  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Plant (GPGP) is the first commercial coal-to-synthetic natural gas plant constructed and operated in the United States. This process stream design data report provides non-proprietary information to the public on the major GPGP process streams. The report includes a simplified plant process block flow diagram, process input/output diagrams, and stream design data sheets for 161 major GPGP process and effluent streams. This stream design data provides an important base for evaluation of plant and process performance and for verification of the Department of Energy's ASPEN (Advanced System for Process Engineering) computer simulation models of the GPGP processes. 8 refs., 22 figs., 2 tabs.

Honea, F.I.

1985-09-01T23:59:59.000Z

52

A Sustainable Biomass Industry for the North American Great Plains  

Science Conference Proceedings (OSTI)

The North American Great Plains (hereafter NAGP) region is economically distressed and prone to severe ecological disruptions such as soil erosion. Its water resources are over-used and subject to pollution from agricultural fertilizers and chemicals, issues common to agricultural lands globally. On the other hand, the region is well suited to the production of herbaceous biomass that can be combusted directly for power or converted to liquid transportation fuels. This paper reviews the geography, history and current condition of the NAGP and offers suggestions about how the agriculture, economy and environment of this and similar regions around the world can be made more sustainable and able to contribute to a reduction in CO2 emissions and consequent global warming.

Rosenberg, Norman J.; Smith, Steven J.

2009-12-01T23:59:59.000Z

53

Great Plains Coal Gasification Project. Technical quarterly report, 1st quarter, 1984. [Great Plains, Mercer County, North Dakota  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet the Great Plains Coal Gasification project's full gas production date. Detailed engineering is complete for the gasification plant. The remaining engineering tasks, which include field support activities and special projects, will be performed by the Contractors' Field Engineering Group. A substantial amount of construction progress was achieved during the first quarter. It is currently projected that construction will be complete at the end of September, 1984. Start-Up operations are continuing at a rapid pace. Commissioning activities are proceeding very well. The only remaining plant permit is the Permit to Operate, which will be issued in late 1985. Quality Assurance/Quality Control activities included the development of welding procedures for Operations personnel, safety relief valve testing, and equipment turnover inspections. Mine development activities remain on schedule. Initial coal deliveries to GPGA commenced this quarter.

Not Available

1984-05-01T23:59:59.000Z

54

Energy-related impacts on Great Plains agricultural productivity in the next quarter century, 1976--2000. Great plains agricultural council publication  

SciTech Connect

Contents: The food demand dimension; Agriculture's relationship to national energy goals; Assumptions relating to great plains agriculture; Agricultural energy usage in perspective; The emerging energy usage transition agenda; General energy related agricultural adjustment concepts; Operational and technological adjustments in energy intense components; Agribusiness impacts and adjustments; Forests and energy; Effects of great plains energy resource development on agriculture; Institutional and agency program demands.

1976-01-01T23:59:59.000Z

55

Great Plains Coal Gasification Plant public design report. Volume I  

SciTech Connect

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume I contains: (1) introduction; (2) overview of project (plant and mine, plant facilities, Basin Electric Antelope Valley Station); and (3) plant process data (coal, oxygen and steam, gasification and gas processing). 53 refs., 80 figs., 36 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

56

The Great Plains gasification project: Here today, for tomorrow  

SciTech Connect

Just a few years ago, there was a proliferation of synfuels projects. Pilot plants first proved their viability with long and successful test runs, then closed as market conditions shifted the focus away from synfuels. Plentiful oil, foreign and domestic, has put a serious damper on synfuels development. Due to the recent oil glut, Exxon cancelled its Colony Shale Oil Project, pulled up its stakes and left several ghost boom-towns in its wake. President Reagan-who originally wanted to eliminate the entire synfuels program-now wants to see the $13.5 billion budget of the Synthetic Fuels Corp. (SFC), a government agency, slashed by $10 billion. During the past several months, there has been some major news regarding synfuels projects. Two of the most familiar to those who follow the coal industry have just begun operating: The Cool Water Coal Gasification Project in Daggett, CA, (See Coal Mining, April, 1982, p. 126), and The Great Plains Coal Gasification Project near Beulah, ND which began operations in December toward producing 125,000,000 cu ft/day of high-Btu substitute natural gas (SNG) (the equivalent of 20,000 barrels of oil per day) from 14,000 tpd of lignite mined nearby. At a time when the government and private sector both seem to be putting the whammy on synfuels development, these plants are starting full operations.

Adam, B.O.

1985-01-01T23:59:59.000Z

57

Great Plains Coal Gasification Plant Public Design Report. Volume II  

Science Conference Proceedings (OSTI)

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume II contains: (1) plant process data (sulfur recovery, main flare - area 8300, liquid processing, ash handling and solids disposal, other systems); (2) plant startup procedure and schedule; (3) plant and employee safety; (4) GPGP cost data; and (5) references. 53 refs., 46 figs., 38 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

58

Status of the Great Plains coal gasification project, May 31, 1984. [Mercer County, North Dakota  

SciTech Connect

The Great Plains coal gasification project in North Dakota was 99 percent complete and essentially on schedule on May 31, 1984. Cumulative project costs were $164 million less than originally estimated for this date, primarily due to reduced material, interest, and subcontractor costs. On the basis of reduced energy price forecasts, Great Plains in September 1983 projected large after-tax losses and negative cash flows from plant operations. To alleviate these losses, Great Plains applied to the US Synthetic Fuels Corporation for additional financial assistance. On April 26, 1984, the Corporation outlined its intentions to award Great Plains up to $790 million in assistance. As of August 10, 1984, the Corporation had not finalized the Great Plains assistance agreement.

Not Available

1984-09-18T23:59:59.000Z

59

Plans and Project in the Upper Great Plains Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Projects Studies WindHydro Integration Feasibility Study Dakotas Wind Study Summary (144kb pdf) For more information, contact Dirk Shulund by email or by phone at...

60

Great Plains Turbulence Environment: Its Origins, Impact, and Simulation  

SciTech Connect

This paper summarizes the known impacts of nocturnal turbulence on wind turbine performance and operations.

Kelley, N. D.; Jonkman, B. J.; Scott, G. N.

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Status of the Great Plains Coal Gasification Project, December 31, 1984  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE)-sponsored construction of the Great Plains coal gasification project - designed to produce synthetic natural gas from coal in North Dakota - was completed in December 1984 on schedule. However, technical problems prevented Great Plains from meeting the inservice (commercial operation) target date of December 1, 1984. DOE believes the in-service date could occur in June 1985. Faced with deteriorating financial projections in the wake of declining energy prices, Great Plains applied to the US Synthetic Fuels Corporation (SFC) for additional assistance. In April 1984 SFC tentatively agreed to provide Great Plains up to $790 million in price guarantee assistance. In return, the Great Plains partners would contribute more equity, and Great Plains would repay the DOE-guaranteed loan faster and make profit-sharing payments to SFC. However, since SFC's tentative agreement for price guarantees, several events that could affect the project's financial outlook have occurred. For example, SFC and DOE have revised their energy price forecasts downward. In addition, Great Plains and SFC are negotiating a final agreement that could change some conditions of the tentative agreement.

Bowsher, C.A.

1985-05-28T23:59:59.000Z

62

Anatomy of Great Plains Protracted Heat Waves (especially the 1980 U.S. summer drought)  

Science Conference Proceedings (OSTI)

The protracted heat wave and drought of the Great Plains during summer 1980 was a manifestation of an abnormal form of the general circulation. An upper-level continental high developed rapidly over the Southern Plains in late May and persisted ...

Jerome Namias

1982-07-01T23:59:59.000Z

63

Hydrological and Dynamical Characteristics of Summertime Droughts over U.S. Great Plains  

Science Conference Proceedings (OSTI)

A drought pattern and its time evolution over the U.S. Great Plains are investigated from time series of climate divisional monthly mean surface air temperature and total precipitation anomalies. The spatial pattern consists of correlated ...

Fong-Chiau Chang; Eric A. Smith

2001-05-01T23:59:59.000Z

64

Research on Electrical Properties of Severe Thunderstorms in the Great Plains  

Science Conference Proceedings (OSTI)

In 1978 we began a coordinated effort to study the electrical behavior of large and severe thunderstorms that form over the Great Plains of the central United States. Methods of approach include the study of characteristics of individual ...

W. David Rust; William L. Taylor; Donald R. MacGorman; Roy T. Arnold

1981-09-01T23:59:59.000Z

65

Multiyear Summertime Observations of Daytime Fair-Weather Cumuli at the ARM Southern Great Plains Facility  

Science Conference Proceedings (OSTI)

A long data record (14 yr) of ground-based observations at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site is analyzed to document the macroscopic and dynamical properties of daytime fair-weather cumulus clouds ...

Arunchandra S. Chandra; Pavlos Kollias; Bruce A. Albrecht

2013-12-01T23:59:59.000Z

66

Drought Recurrence in the Great Plains as Reconstructedfrom Long-Term Tree-Ring Records  

Science Conference Proceedings (OSTI)

Recently collected tree-ring data were used to reconstruct drought from 1700 to the present in four regionsflanking the Great Plains. Regions were centered in Iowa, Oklahoma, eastern Montana and eastern Wyoming.Reconstructions derived by multiple ...

Charles W. Stockton; David M. Meko

1983-01-01T23:59:59.000Z

67

Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. The two day workshop brought together wind developers, Federal and state regulators, environmental advocates, and other regional stakeholders to discuss methods for ensuring greater clarity, certainty and coordination of Federal and state decision-making for offshore wind development in the Great Lakes.

68

Great Lakes WIND Network | Open Energy Information  

Open Energy Info (EERE)

WIND Network WIND Network Jump to: navigation, search Name Great Lakes WIND Network Address 4855 W 130th Place Cleveland, Ohio Zip 44135 Sector Wind energy Product Business and legal services;Consulting; Energy provider: energy transmission and distribution; Investment/finances;Maintenance and repair;Manufacturing; Research and development; Trainining and education Phone number 215-588-1440 Website http://www.glwn.org Coordinates 41.4228056°, -81.7801592° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4228056,"lon":-81.7801592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Computer and Internet Use by Great Plains Farmers  

E-Print Network (OSTI)

Marshall Frasier. 1999. Farm Computer Adoption in the GreatW.M. Frasier. 2002. Computers in Agriculture. Agronomy1263-1269. Baker, G. 1992. Computer Adoption and Use by New

Smith, Aaron; Morrison Paul, Catherine J.; Goe, W. Richard; Kenney, Martin

2004-01-01T23:59:59.000Z

70

Wind Shear Characteristics at Central Plains Tall Towers  

Science Conference Proceedings (OSTI)

The object of this study is to analyze wind shear characteristics at tall tower sites in the Central Plains of the United States. The hub heights of modern turbines used for wind farm projects are now 70 meters (m) to 100 m above ground and some advanced turbines under development for deployment during the second half of this decade are rated at 2-5 megawatts of energy generation with rotor diameters near 100 m and hub heights of 100-120 m. These advanced turbines will take advantage of the higher wind speeds aloft to generate more wind energy. Specific knowledge of important wind shear characteristics near and at turbine hub height is needed to optimize turbine design and wind farm layout. Unfortunately, wind speed shear measurements at heights of 80-120 m were virtually nonexistent a few years ago and are still quite uncommon today. The Central Plains is a prime wind energy development region and knowledge about the wind shear characteristics will reduce uncertainty about the resource and enhance wind farm design. Previous analyses of tall tower data (Schwartz and Elliott, 2005) concentrated on data from specific states. The wind energy community has recognized the need to fill the gap of direct wind speed measurements at levels 70 m and higher above the ground. Programs instituted during the last 5 years at the state level and supported by the U.S. Department of Energy's (DOE) State Energy Program initiative have placed anemometers and vanes at several levels on existing tall (70 m+) communication towers. The Central Plains has a fairly high concentration of tall tower sites. The distribution of tall tower sites varies among the states in the Central Plains, because the tall tower program is new and the available state and federal funding to establish tall towers is variable. Our wind resource assessment group at DOE's National Renewable Energy Laboratory (NREL) has obtained much of these necessary measurement data from both individual state sources and regional organizations. Most of the data are available to the public, though data from one tower in Colorado are proprietary. We have begun to analyze important wind climate parameters, including wind shear from the tall towers. A total of 13 tall towers were used for this study. Eleven of the towers had the highest anemometer level between 100 m and 113 m. Two towers had the highest measurement level between 70 m and 85 m above ground. The distribution of the towers among the states is: two sites in Texas and Oklahoma; six sites in Kansas; and one site each in Colorado, South Dakota, and North Dakota. Figure 1 shows the locations and names of the thirteen towers. The wind resource at these sites can be classified as ranging from good-to-excellent. Eight tall tower sites have Class 3 resource, four sites have Class 4 resource, and one has Class 5 resource at 50 m.

Schwartz, M.; Elliott, D.

2006-01-01T23:59:59.000Z

71

A final report on the Great Plains Gasification Project's environmental, health, and safety information data system  

Science Conference Proceedings (OSTI)

This report describes Oak Ridge National Laboratory's (ORNLs) role in providing information to Department of Energy (DOE) on environmental data generated at the Great Plains Coal Gasification Project (GPCGP) in Beulah, North Dakota. An information system, the Fossil Energy (FE) Environmental, Health, and Safety Information System (EHSIS) was developed at ORNL to assist in tracking, analyzing, and making readily available significant environmental information derived from Great Plains. The Great Plains module with its numerous files (e.g., Gasification Bibliography, Gasification Tables, and Great Plains Gasification Project -- Permits, Standards, or Exceedences/Incidents) is a major technical area located within the information system. Over 1388 Great Plains documents have been reviewed, abstracted, and made available on-line in the information system. Also in the information system are 911 tables of selected environmental data including monitoring data from the following six subject areas: (1) air quality; (2) water quality; (3) solid wastes; (4) hazardous wastes; (5) industrial hygiene; and (6) surface mining. 14 refs., 4 figs.

Noghrei-Nikbakht, P.A.; Roseberry, L.M.

1989-12-01T23:59:59.000Z

72

Synthetic fuels. Status of the Great Plains Coal Gasification Project, August 1, 1985  

Science Conference Proceedings (OSTI)

In December 1984, the Great Plains Gasification Associates had essentially finished constructing the nation's first commercial-scale coal gasification plant. As of July 31, 1985, Great Plains had contributed about $537 million in equity to the project and had borrowed $1.54 billion against a federal load guarantee made available by the Department of Energy (DOE). Since 1984 the project has faced deteriorating financial projections in the wake of declining energy prices. This is GAO's eighth semiannual report on Great Plains and covers the project's progress from January through August 1, 1985. GAO's objectives were to report on (1) the status of Great Plains' attempt to obtain additional federal financial assistance and (2) the status of the project's operational startup activities as of August 1, 1985. The Department of Energy Act of 1978 requires GAO to report on the status of the loan guarantee. Even though the Synthetic Fuels Corporation approved price guarantees in principle for Great Plains, DOE announced, on July 30, 1985, that it would not agree to restructuring its guaranteed loan. DOE rejected the proposed agreement, saying that it would not assure long-term plant operation at a reasonable cost to the taxpayers. The Great Plains sponsors then terminated their participation in the project on August 1, 1985, and defaulted on the $1.54 billion DOE-guaranteed loan. DOE directed the project administrator, ANG Coal Gasification Company, to continue plant operations pending a DOE decision about the project's future. DOE is assessing options including operating, leasing, selling, shutting down, mothballing, and scrapping the plant.

Bowsher, C.A.

1985-12-01T23:59:59.000Z

73

Great Plains Coal Gasification Project. Quarterly technical progress report  

Science Conference Proceedings (OSTI)

Overall, the GPGA facility has performed well, as shown by the production figures. Methanation, product gas compression, oxygen production, phenol recovery, ammonia recovery and the gasifiers are noteworthy examples of units which have been started up and operated with few problems. In other units, significant deficiencies have been uncovered which have required modification. Some of these items had a negative impact on SNG production. Additionally, GPGA undertook a program to improve reliability, safety and reduce odor emissions. Reliable high pressure steam generation is essential for maintaining acceptable plant on-stream factors. Consequently, several projects were undertaken which will improve the safety of operation and firefighting capabilities at the main boiler units. Also, a significant upgrade of the boiler instrumentation was started to ensure good control and operating flexibility. The cooling water system was designed to meet both plant cooling needs and provide treatment of wastewater streams. Plugging of tower packing and heat exchanger tubes, as well as odor emissions resulted from the heavy biological activity in this system. Fine mesh traveling screens, wind wall louvers, ceramic packing, mist eliminators, and exchanger chemical cleaning connections are the notable modifications begun during the period. Due to condensate problems and the greater than expected production of gas liquor, wastewater treatment systems were operated at near capacity. Additional pumping capability, a second deepwell, additional storage ponds, modifications to the evaporator distillate system and the vacuum deaerator are several projects undertaken to reduce loading on the system. The on-stream factor of ash handling has been low due to pluggage problems.

Not Available

1984-12-31T23:59:59.000Z

74

Great Plains Coal Gasification Project: Quarterly technical progress report, third fiscal quarter 1987-1988, January-March 1988  

SciTech Connect

This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

Not Available

1988-05-31T23:59:59.000Z

75

Great Plains Coal Gasification Project: Quarterly technical progress report, April-June 1988 (Fourth fiscal quarter, 1987-1988)  

Science Conference Proceedings (OSTI)

This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

Not Available

1988-07-29T23:59:59.000Z

76

Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains  

DOE Green Energy (OSTI)

Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

1987-04-01T23:59:59.000Z

77

Evaluation of the Stretford Unit at the Great Plains Coal Gasification Plant  

SciTech Connect

This report gives the results of an evaluation of the design and operational characteristics of the Stretford Sulfur Recovery Unit installed in the Great Plains Gasification Project, Beulah, North Dakota. The report contains discussion of the H/sub 2/S removal capability of the unit, the potential of solids deposition and the expected solution losses. 11 refs., 7 figs., 2 tabs.

Lang, R.A.

1984-12-01T23:59:59.000Z

78

Great Plains ASPEN model development: executive summary. Final topical report for Phase 1  

Science Conference Proceedings (OSTI)

The Scientific Design Company contracted with the United States Department of Energy through its Morgantown Energy Technology Center to develop a steady-state simulation model of the Great Plains Coal Gasification plant. This plant produces substitute natural gas from North Dakota lignite. The model was to be developed using the ASPEN (Advanced System for Process Engineering) simulation program. The project was divided into the following tasks: (1) Development of a simplified overall model of the process to be used for a sensitivity analysis to guide the development of more rigorous section models. (2) Review and evaluation of existing rigorous moving-bed gasifier models leading to a recommendation of one to be used to model the Great Plains gasifiers. Adaption and incorporation of this model into ASPEN. (3) Review of the accuracy and completeness of the physical properties data and models provided by ASPEN that are required to characterize the Great Plains plant. Rectification of inaccurate or incomplete data. (4) Development of rigorous ASPEN models for critical unit operations and sections of the plant. (5) Evaluation of the accuracy of the ASPEN Cost Estimation and Evaluation System and upgrading where feasible. Development of a preliminary cost estimate for the Great Plains plant. (6) Validation of the simulation models developed in the course of this project. Determination of model sensitivity to variations of technical and economic parameters. (7) Documentation of all work performed in the course of this project. Essentially all of these tasks were completed successfully. 34 figs.

Rinard, I.H.; Stern, S.S.; Millman, M.C.; Schwint, K.J.; Benjamin, B.W.; Kirman, J.J.; Dweck, J.S.; Mendelson, M.A.

1986-07-25T23:59:59.000Z

79

Price, Weather, and Acreage Abandonment in Western Great Plains Wheat Culture  

Science Conference Proceedings (OSTI)

Multivariate analyses of acreage abandonment patterns in the U.S. Great Plains winter wheat region indicate that the major mode of variation is an in-phase oscillation confined to the western half of the overall area, which is also the area with ...

Patrick J. Michaels

1983-07-01T23:59:59.000Z

80

Causes of Long-Term Drought in the U.S. Great Plains  

Science Conference Proceedings (OSTI)

The U.S. Great Plains experienced a number of multiyear droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of long-term (19302000) simulations ...

Siegfried D. Schubert; Max J. Suarez; Philip J. Pegion; Randal D. Koster; Julio T. Bacmeister

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Temporal and Spatial Variations in Hail in the Upper Great Plains and Midwest  

Science Conference Proceedings (OSTI)

The distribution of hail days during 196180 in the northern Great Plains-Midwest was evaluated on a temporal and spatial basis to help interpret crop-hail losses. Comparisons with earlier (190160) hail day data revealed the seven-state study ...

Stanley A. Changnon Jr.

1984-11-01T23:59:59.000Z

82

Albedo of the U.S. Great Plains as Determined from NOAA-9 AVHRR Data  

Science Conference Proceedings (OSTI)

The seasonal variation of surface albedo is derived from NOAA-9 AVHRR observations of the US. Great Plains during the snow-free months of 1986 and 1987. Monthly albedo maps are constructed using a simple model-independent technique which includes ...

G. Gutman; G. Ohring; D. Tarpley; R. Ambroziak

1989-06-01T23:59:59.000Z

83

(Great Plains Coal Gasification project): Quarterly environmental, safety, medical, and industrial hygiene report, First quarter, 1987  

Science Conference Proceedings (OSTI)

ANG continued permitting activity during the reporting period. ANG conducted eight monitoring programs in the vicinity of the Great Plains facility. The RAMP network consists of five monitoring sites, and is designed to monitor meteorology and air quality in the vicinity of the Great Plains facility, and the Antelope Valley and Coyote electric generating stations. There were no exceedences of applicable state or federal standards for SO/sub 2/, NO/sub 2/, TSP, or ozone. ANG conducts ambient monitoring for H/sub 2/S at one site in the vicinity of the Great Plains facility. ANG conducts additional ambient monitoring for SO/sub 2/ at two sites in order to ensure that ambient air quality standards are not violated. ANG conducts groundwater monitoring programs associated with desulfurization waste disposal, deepwell injection, RCRA-compliance monitoring, gasifier ash disposal, and the surge ponds. Major activities on each program are summarized. ANG conducted six monitoring programs associated with process and effluent streams at the Great Plains facility to satisfy conditions in federal and state permits. The Continuous Emission Monitoring system is designed to provide for the continuous monitoring of emissions and fuel usage from all major fuel burning sources in the Great Plains facility. ANG conducts a comprehensive program to locate, characterize and eliminate objectionable odors. A total of thirty-three plant boundary surveys and sixty off-site surveys were conducted. Odors were detected at levels of two odor units or less approximately 81.7% of the time at distances up to 6 miles downwind during the off-site surveys. A total of nine odor complaints were received. To evaluate overall performance of pollution control systems, ANG examines selected process data and conducts periodic compliance and/or performance tests. 18 figs., 23 tabs.

Not Available

1987-04-01T23:59:59.000Z

84

Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface-Based Remote Sensing of the Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains G. Feingold and W. L. Eberhard National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. E. Vernon and M. Previdi Rutgers University New Brunswick, New Jersey Abstract We have demonstrated first measurements of the aerosol indirect effect using ground-based remote sensors at the Southern Great Plains (SGP) site. The response of non-precipitating, ice-free clouds to changes in aerosol loading is quantified in terms of a relative change in cloud-drop effective radius (r e ) for a relative change in aerosol extinction under conditions of equivalent cloud liquid water path (LWP). This is done in a single column of air at a temporal resolution of 20 s (spatial resolution of ~100 m).

85

Great Plains Coal Gasification project. Quarterly technical progress report, third quarter 1985  

Science Conference Proceedings (OSTI)

The operations of the Great Plains Gasification Plant are reported for the third quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1985-10-31T23:59:59.000Z

86

Great Plains Coal Gasification project. Quarterly technical progress report fourth quarter, 1985  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the fourth quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical service; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1986-01-31T23:59:59.000Z

87

Draft Upper Great Plains Wind Energy Programmatic Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

UGP Region includes all or parts of Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota, encompassing some areas of the United States with the highest potential for...

88

(Great Plains Coal Gasification Project): Quarterly environmental, safety, and medical report, first quarter 1988  

Science Conference Proceedings (OSTI)

The following brief synopsis is provided of the status of Environmental, Safety and Medical Programs described in the First Quarter 1988 Report. Tabular summaries of environmental QA/QC results and planned next quarter activities are presented in Sections 2.0 and 3.0, respectively. ANG continued permitting activity during the reporting period. These activities include reviewing the revised RCRA Part B application; receiving approval to discharge high temperature, low pressure steam condensate to the stormwater system; receiving approval to expand the current gasifier ash pit; submitting the results of the EPA laboratory audit samples; finalizing the contract for the Deepwell No. 1 and No. 2 work to comply with UIC-101; monitoring the progress of the cooling tower surge pond B liner leaks; receiving approval to delete several parameters in the Interim Groundwater Monitoring Plan; responding to an EPA Hazardous Waste Questionnaire and a CERCLA site assessment for DOE; submitting the DOE-assigned section for the Modified Permit Application; and submitting the first annual chemical inventory report to comply with Section 312 of SARA. ANG conducted eight monitoring programs in the vicinity of the Great Plains facility. The RAMP network consists of five monitoring sites, and it is designed to monitor meteorology and air quality in the vicinity of the Great Plains facility and the Antelope Valley and Coyote electric generating stations. ANG conducts ambient monitoring for H/sub 2/S at one site in the vicinity of the Great Plains facility. 15 figs., 49 tabs.

Not Available

1988-05-01T23:59:59.000Z

89

Great Plains Gasification Associates. Quarterly technical and environmental report, Great Plains coal gasification project, Mercer County, North Dakota, second quarter, 1983  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet Great Plains Gasification Associate's start-up and coal delivery dates as well as the completion of the pipeline. Home Office engineering is essentially complete for the Plant. The remaining engineering tasks will involve field support activities and special projects. A substantial amount of construction progress was achieved during the second quarter. Although construction is still slightly behind schedule for the Plant, it is currently forecasted that construction will be back on schedule by the end of October, 1983. Start-up activities are continuing at a rapid pace. The current emphasis is on precommissioning planning and the development and implementation of the computer systems required to run the plant. Mine development activities remain on schedule. Almost all of the environmental permitting for the construction phase is complete. Engineering for the pipeline is complete. Construction started this quarter and should be completed by August 15, 1983.

Not Available

1983-01-01T23:59:59.000Z

90

Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, fourth quarter, 1983. [Great Plains, Mercer County, North Dakota  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet Great Plains Gasification Associates' full gas production date. Gasification Plant: detailed engineering in the Contractors' home office was completed in the fourth quarter. The remaining engineering tasks, which include field support activities and special projects, will be performed by the Contractors' Field Engineering Group. A substantial amount of construction progress was achieved during the fourth quarter. Although the Plant's construction activities are still slightly behind schedule, it is currently forecasted that the construction schedule will be regained by the end of June 1984. Start-Up operations are continuing at a rapid pace. The current emphasis is on system turnover and commissioning activities. The environmental permitting for the construction phase is complete. Freedom Mine: mine development activities remain on schedule.

Not Available

1983-01-01T23:59:59.000Z

91

JW Great Lakes Wind LLC | Open Energy Information  

Open Energy Info (EERE)

JW Great Lakes Wind LLC JW Great Lakes Wind LLC Jump to: navigation, search Name JW Great Lakes Wind LLC Place Cleveland, Ohio Zip 44114-4420 Sector Wind energy Product Ohio based subsidiary of Juwi International that develops wind projects. Coordinates 41.504365°, -81.690459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.504365,"lon":-81.690459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Wind energy resource atlas. Volume 3. Great Lakes Region  

DOE Green Energy (OSTI)

The Great Lakes Region atlas assimilates six collections of wind resource data, one for the region and one for each of the five states that compose the Great Lakes region: Illinois, Indiana, Michigan, Ohio, Wisconsin. At the state level, features of the climate, topography, and wind resource are discussed in greater detail than in the regional discussion and the data locations on which the assessment is based are mapped. Variations over several time scales in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and of hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Paton, D.L.; Bass, A.; Smith, D.G.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

93

Depiction of the Variations of Great Plains Precipitation and Its Relationship with Tropical Central-Eastern Pacific SST  

Science Conference Proceedings (OSTI)

Several advanced analysis tools are applied to depict the timefrequency characteristics of the variations of Great Plains (GP) precipitation and its relationship with tropical central-eastern Pacific Ocean sea surface temperature (SST). These ...

Song Yang; X. Ding; D. Zheng; Q. Li

2007-02-01T23:59:59.000Z

94

Potential Predictability of Long-Term Drought and Pluvial Conditions in the U.S. Great Plains  

Science Conference Proceedings (OSTI)

This study examines the predictability of seasonal mean Great Plains precipitation using an ensemble of century-long atmospheric general circulation model (AGCM) simulations forced with observed sea surface temperatures (SSTs). The results show ...

Siegfried D. Schubert; Max J. Suarez; Philip J. Pegion; Randal D. Koster; Julio T. Bacmeister

2008-02-01T23:59:59.000Z

95

Modeling the Atmospheric Response to Irrigation in the Great Plains. Part I: General Impacts on Precipitation and the Energy Budget  

Science Conference Proceedings (OSTI)

Since World War II, the expansion of irrigation throughout the Great Plains has resulted in a significant decline in the water table of the Ogallala Aquifer, threatening its long-term sustainability. The addition of near-surface water for ...

Keith J. Harding; Peter K. Snyder

2012-12-01T23:59:59.000Z

96

Relationship between Winter/Spring Snowfall and Summer Precipitation in the Northern Great Plains of North America  

Science Conference Proceedings (OSTI)

On the basis of snowfall observations from 1929 to 1999, positive (negative) snowfall anomalies are associated with wetter (drier) than normal conditions during the summer [JulyAugust (JJA)] in the northern Great Plains. The five driest summers ...

Steven M. Quiring; Daria B. Kluver

2009-10-01T23:59:59.000Z

97

Multi-year, Summertime Observations of Daytime Fair-Weather Cumuli at the ARM Southern Great Plains facility  

Science Conference Proceedings (OSTI)

A long data record (14-year) of ground-based observations at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site is analyzed to document the macroscopic and dynamical properties of daytime fair-weather cumulus ...

Arunchandra S. Chandra; P. Kollias; B. A. Albrecht

98

Interferential Impact of ENSO and PDO on Dry and Wet Conditions in the U.S. Great Plains  

Science Conference Proceedings (OSTI)

The influence of the El NioSouthern Oscillation (ENSO) and Pacific decadal oscillation (PDO) interference on the dry and wet conditions in the Great Plains of the United States has been examined using monthly observational datasets. It is shown ...

Zeng-Zhen Hu; Bohua Huang

2009-11-01T23:59:59.000Z

99

Forecasting the Impacts of Strong Wintertime Post-Cold Front Winds in the Northern Plains  

Science Conference Proceedings (OSTI)

Strong post-cold front wind events in the northern plains of the United States are a difficult problem for operational forecasters. The various atmospheric ingredients that lead to these events are examined from an operational point of view. ...

Anton F. Kapela; Preston W. Leftwich; Richard Van Ess

1995-06-01T23:59:59.000Z

100

A Numerical Study of the Thermally Driven Plain-to-Basin Wind over Idealized Basin Topographies  

Science Conference Proceedings (OSTI)

Numerical experiments have been carried out with a two-dimensional nonhydrostatic mesoscale model to investigate the diurnal temperature range in a basin and the thermally driven plain-to-basin winds. Under clear-sky conditions, the diurnal ...

Stephan F. J. de Wekker; Shiyuan Zhong; Jerome D. Fast; C. David Whiteman

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

Vertical Variability of Aerosols and Water Vapor Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. D. Turner Pacific Northwest National Laboratory Richland, Washington M. Clayton and V. Brackett Science Applications International Corporation National Aeronautics and Space Administration Langley Research Center Hampton, Virginia T. P. Tooman and J. E. M. Goldsmith Sandia National Laboratories Livermore, California J. A. Ogren National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory Boulder, Colorado E. Andrews Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado

102

Sulfur emissions reduction at the Great Plains coal gasification facility: Technical and economic evaluations  

SciTech Connect

This report provides an in-depth technical and economic review of over 40 sulfur control technologies that were considered for use at the Great Plains coal gasification facility in Beulah, North Dakota. The review was based on the production of substitute natural gas at rates of 152.5 {times} 10{sup 6} and 160 {times} 10{sup 6} scf/d from lignite containing 1.7% sulfur. The factors considered in evaluating each technology included the reduction of SO{sub 2} emissions, capital and operating costs, incremental cost per unit of produced gas, cost-effectiveness, and probability of success. 21 figs., 37 tabs.

Doctor, R.D.; Wilzbach, K.E. (Argonne National Lab., IL (USA). Energy Systems Div.); Joseph, T.W. (USDOE Chicago Operations Office, Argonne, IL (USA))

1990-01-01T23:59:59.000Z

103

Estimates of the value of carbon dioxide from the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

This report develops a framework and methodology for estimating the value of carbon dioxide produced by the Great Plains Coal Gasification Plant. The petroleum industry could use this CO/sub 2/ as a solvent for enhanced oil recovery. The value of CO/sub 2/ is found to be a function of the geological characteristics of the petroleum reservoirs being flooded, the cost of transporting the CO/sub 2/, and the presence or absence of competitors selling CO/sub 2/. Carbon dioxide demand curves for oil fields in Montana and North Dakota are developed for various economic conditions, and sensitivity analyses are performed. 22 refs., 4 figs., 21 tabs.

Wolsky, A.M.; Nelson, S.H.; Jankowski, D.J.

1985-07-28T23:59:59.000Z

104

Great Plains Coal Gasification Project. Quarterly technical progress report, second quarter 1986. [Lurgi process  

SciTech Connect

The operations of the Great Plains coal gasification plant are reported for the second quarter of 1986. The following areas are covered: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities. (AT)

Not Available

1986-07-31T23:59:59.000Z

105

(Great Plains Coal Gasification Associates). Quarterly technical progress report. [Lurgi Process  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the first quarter of 1986. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-04-30T23:59:59.000Z

106

Great Plains coal gasification project: Quarterly technical progress report, Third quarter 1986. [Lurgi process  

Science Conference Proceedings (OSTI)

Accomplishments for the third quarter of 1986 are presented for the Great Plains coal gasification plant. The following areas are discussed: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) onstream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-10-31T23:59:59.000Z

107

Regional topography, physiography, and geology of the Northern Great Plains. Open file report  

SciTech Connect

The report analyzes the topography, physiography and geology of a 63 county area in North Dakota, Montana, Wyoming, and South Dakota. Geologic maps are included. In addition 7 1/2 minute quadrangle slope maps are included for 5 selected sites that are representative of the areas that are likely to be impacted with accelerated coal development in the Northern Great Plains. These maps are provided as tools for planning transportation facilities, utility corridors, siting of mines and related facilities, controlling erosion, determining reclamation potential, and preparation of mining plans.

Keefer, W.R.

1974-01-01T23:59:59.000Z

108

Great Lakes Science Center Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Science Center Wind Farm Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Great Lakes Science Center Developer Great Lakes Science Center Energy Purchaser Great Lakes Science Center Location Cleveland OH Coordinates 41.506659°, -81.696816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.506659,"lon":-81.696816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Impact of the Great Plains coal gasification decision on a coal gas industry  

SciTech Connect

In approving the special tariff and financing features of the Great Plains coal-gasification project, the Federal Energy Regulatory Commission took the first major federal action toward encouraging the construction of a commercial-sized synthetic-fuels facility, asserts the law firm of Morley, Caskin and Generelly. Owned by Great Plains Gasification Associates - a partnership of five pipeline companies - the commercial-sized plant qualifies for FERC approval under the commission's RD and D regulations. The special financing terms for the project will require customers of existing natural gas companies to bear the costs incurred by the project regardless of its success in operation or the amount of gas produced for the customer's utilization. This RD and D rate treatment serves to mitigate market forces and thus operates as an effective subsidy for the pipeline industry. If this or a similar regulatory subsidy is extended to other coal-gas projects, the pipeline industry could take the lead in the nation's synfuels program.

Zipp, J.F.

1980-05-08T23:59:59.000Z

110

Evaluation of herbacceous biomass crops in the northern Great Plains. Final report  

DOE Green Energy (OSTI)

Herbaceous lignocellulose crops are a potential renewable feedstock for biochemical conversion systems second in size to wood products. Several herbaceous crops are utilized as forage crops in the northern Great Plains, but forage quality considerations usually dictates a early harvest. Biomass cropping does not have this constraint; therefore, little information was available on herbaceous crops utilized as energy crops prior to this project. Our primary objectives were to evaluate the biomass yield and select chemical components of several herbaceous crops for energy crops in the northern Great Plains, compare the economic feasibility of energy crops with common competing crops, and evaluate biomass cropping on summer fallow lands. Three good, two marginal, and one irrigated sites were used during 1988 to 1992 for the first component. At least six perennial and four annual biomass species were included at all sites. Three to four nitrogen (N) levels and a crop-recrop comparison (annuals only) were management intensities included. Biomass cropping on idled lands was performed on dryland at Carrington and evaluated the effects of removing leguminous biomass on fallowed lands. This report summarizes results from the 5-year project.

Meyer, D.W.; Norby, W.E.; Erickson, D.O.; Johnson, R.G. [North Dakota State Univ., Fargo, ND (United States)

1994-08-01T23:59:59.000Z

111

Thermally Induced Wind Passing from Plain to Basin over a Mountain Range  

Science Conference Proceedings (OSTI)

A new concept of a thermally induced local circulation is presented by numerical and observational studies. This wind system transports a low-level air mass from a plain to a basin, passing over a mountain ridge. The characteristics of the wind ...

Fujio Kimura; Tsuneo Kuwagata

1993-09-01T23:59:59.000Z

112

Observed Surface Reflectance Distributions in the Southern Great Plains During ALIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Reflectance Distributions Surface Reflectance Distributions in the Southern Great Plains During ALIVE Kirk Knobelspiesse 1 , Brian Cairns 1 , Andrew Lacis 2 , Mikhail Alexandrov 2 , Barbara Carlson 2 and Beat Schmid 3 1 Department of Applied Physics and Applied Mathematics, Columbia University 2 NASA Goddard Institute for Space Studies 3 Pacific Northwest National Laboratory * Surface albedo can be measured from the ground with broadband instruments. * Albedo can be measured from space if the atmospheric effect is removed and many view geometries are available. The measured Bidirectional Reflectance Distribution Function (BRDF) is angularly integrated to compute the albedo. * Studies of the former (Yang, 2006) and the latter (Liang et al. 2005; Wang et al. 2006) do not always agree.

113

GPS Water Vapor Projects Within the ARM Southern Great Plains Region  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS Water Vapor Projects Within the ARM GPS Water Vapor Projects Within the ARM Southern Great Plains Region J. Braun, T. Van Hove, S. Y. Ha, and C. Rocken GPS Science and Technology Program University Corporation for Atmospheric Research Boulder, Colorado Abstract The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program has a need for an improved capability to measure and characterize the four-dimensional distribution of water vapor within the atmosphere. Applications for this type of data include their use in radiation transfer studies, cloud-resolving and single-column models, and for the establishment of an extended time series of water vapor observations. The University Corporation for Atmospheric Research's (UCAR) GPS Science and Technology (GST) Program is working with ARM to leverage the substantial investment in

114

Cost-effective sulfur control strategies for the Great Plains gasification project  

SciTech Connect

The Great Plains gasification plant in Beulah, North Dakota, uses 14 Lurgi gasifiers to produce 152x10/sup 6/ scf/d (4.1x10/sup 6/ Nm/sup 3//d) of pipeline-quality gas from lignite. Since start-up in mid-1984, the plant has provided a serious challenge to the reliable operation of the Stretford sulfur recovery system. To address this challenge, over forty options for mitigating sulfur emissions were evaluated on an economic and technical basis, beginning at the emissions source (the stack) and working back through the plant. Although this study was directed toward providing a timely solution to the sulfur dioxide emissions problem, the status and opportunities for a number of emerging technologies were brought into focus. This evaluation is detailed here by the authors.

Doctor, R.D.; Wilzbach, K.E. (Argonne National Lab., IL (USA). Energy and Environmental Systems Div.)

1989-09-01T23:59:59.000Z

115

Analysis of pipe failure at the Great Plains Coal Gasification Plant  

SciTech Connect

The rupture of a carbon steel elbow in the methanation area of the Great Plains Coal Gasification Plant resulted in a fire and plant shutdown. Failure studies consisted of an on-site inspection and an extensive laboratory examination that included light metallography, X-ray fluorescence, X-ray diffraction, chemical analyses, and electron spectroscopy for chemical analysis. It was concluded that operation of a heat exchanger under off-specification conditions contributed to higher than design temperatures, lower than design pressures, and higher than design concentrations of carbon dioxide and water in the exit line from a condensate separator. Together, these conditions produced high levels of carbonic acid and higher than design velocities resulting in severe corrosion of the carbon steel.

Keiser, J.R.; Mayotte, J.R. (Oak Ridge National Lab., TN (United States)); Dias, O.C. (Amoco Oil Co., Texas City, TX (United States))

1994-09-01T23:59:59.000Z

116

Great Plains ASPEN Model Development: ASPEN physical property evaluation. Final topical report  

Science Conference Proceedings (OSTI)

This report documents the steps taken to evaluate pure component properties in the ASPEN data bank for those compounds required to simulate the Great Plains Coal Gasification Plant where the compounds are also available in the DIPPR (Design Institute for Physical Property Data) data bank. DIPPR is a cooperative effort of industry, institutes, and federal agencies interested in the compilation, measurement, and evaluation of physical property data for industrially important compounds. It has been found that the ASPEN data bank is reliable, for the most part, the main problem being lack of documentation. In the few instances where values either were found to be missing or to be unacceptable, recommended constants or equation parameters are presented in this report, along with associated literature citations. In the cases where temperature dependent data were subjected to regression analysis to obtain new equation parameters, the detailed methods employed are presented also. 32 references.

Millman, M.C.

1985-01-01T23:59:59.000Z

117

Great Plains Coal Gasification Project will make 17. 5 tons/day of methanol  

SciTech Connect

The Great Plains Coal Gasification Project will make 17.5 tons/day of methanol in addition to 125 million cu ft/day of pipeline-quality substitute natural gas (SNG), making the facility the first commercial producer of methanol-from-coal in the United States, according to the consortium building the $1.5 billion facility in Beulah, North Dakota. As originally conceived, the plant would have used 17 tons/day of purchased methanol to clean the raw-gas product stream of impurities, primarily sulfur. But based on the cost of transporting methanol to the plant site and storing it for use, the consortium decided it was more economical to produce its own methanol from lignite. The construction started in July 1980, and the facility is to come on stream in 1984.

Not Available

1980-11-17T23:59:59.000Z

118

Analysis of pipe failure for the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

The rupture of a carbon steel elbow in the methanation area of the Great Plains Coal Gasification Plant resulted in a fire and plant shutdown. The failure was investigated by personnel from Oak Ridge National Laboratory and ANG Associates, the plant operators. These studies consisted of an on-site inspection and extensive laboratory examination that included optical metallography, x-ray fluorescence, x-ray diffraction, chemical analyses, and electron spectroscopy for chemical analysis (ESCA). It was concluded that operation of a heat exchanger under off-specification conditions contributed to higher than design temperatures, lower than design pressures, and higher than design concentrations of carbon dioxide and water in the exit line from a condensate separator. Together, these conditions produced high levels of carbonic acid and higher than design velocities resulting in severe corrosion of the carbon steel. 9 refs., 7 figs., 2 tabs.

Keiser, J.R.; Mayotte, J.R. (Oak Ridge National Lab., TN (USA)); Dias, O.C. (Amoco Research Center, Naperville, IL (USA))

1990-01-01T23:59:59.000Z

119

Evaluation of cooling tower and wastewater treatment operations at the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

The objective of this study was to provide a technical assessment of the Great Plains Coal Gasification Plant Wastewater Treatment System. This Scope of Work consisted of five primary tasks described as follows: Task 1 - Determine the quantity of hydantoins in the stripped gas liquor (SGL), their precursors, and the kinetics of their formation in condensed liquor for the Great Plains Gasification Associates (GPGA) gasification facility. The University of North Dakota Energy Research Center (UNDERC) has measured a high concentration of hydantoins in the gas liquor from their slagging gasifier. UNDERC has tested the use of SGL in a pilot cooling tower and they witnessed some adverse effects in the cooling tower and heat exchanger systems. Task 2 - Investigate the adverse Department of Energy (DOE) findings at UNDERC with regard to corrosion, foaming, biological and organic fouling, chemical attack on concrete and organic emissions resulting from the use of SGL in a pilot plant cooling tower. Task 3 - Validate the heat load on the cooling tower for both summer and winter operation and determine the adequacy of the surge pond to store the maximum predicted amount of excess water accumulated during winter operation. Task 4 - Assess potential fouling, foaming and organic carry-over problems associated with operability of the multiple-effect evaporator and develop recommendations on possible alternate use of evaporator condensate to alleviate possible problems in disposing of excess wastewater. Task 5 - Provide DOE with recommendations on the wastewater treatment backup design and test program already committed to by GPGA. This paper presents Fluor's findings regarding the five primary tasks. 12 refs., 4 figs., 15 tabs.

Lang, R.A.

1984-12-01T23:59:59.000Z

120

Wind Fields over the Great Lakes Measured by the SeaWinds Scatterometer on the QuikSCAT Satellite  

E-Print Network (OSTI)

Wind Fields over the Great Lakes Measured by the SeaWinds Scatterometer on the QuikSCAT Satellite for wind retrieval over the Great Lakes on a daily basis. We use data acquired by the SeaWinds Scatterometer on the QuikSCAT (QSCAT) satellite launched in June 1999 to derive wind speeds and directions over

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A case history of a coal gasification wastewater cooling tower at the Great Plains coal gasification project  

SciTech Connect

This paper describes the conceptual process design of the Great Plains cooling water system, the fouling history of the cooling tower, and the results of the design modifications. In addition, general design guidelines for future wastewater reuse cooling towers are recommended. By following these guidelines, design engineers can minimize the risk of fouling that could impair a wastewater cooling tower's thermal performance.

Crocker, B.R.; Bromel, M.C.; Pontbriand, M.W.

1987-01-01T23:59:59.000Z

122

Coal development in the Northern Great Plains: the impact of revenues of state and local governments. Agricultural economic report (final)  

SciTech Connect

Development of Northern Great Plains coal resources will create new demands for state and local government services. This study reports detailed estimates of the state and local taxes that would be paid by three different sized coal mines and their employees in Montana, North Dakota, South Dakota, and Wyoming.

Stinson, T.F.; Voelker, S.W.

1978-01-01T23:59:59.000Z

123

Wind generating capacity is distributed unevenly across the United ...  

U.S. Energy Information Administration (EIA)

The highest concentration of wind turbines in the United States is in the Great Plains states, where the best conditions for onshore wind power generation exist.

124

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

SciTech Connect

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

125

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

Science Conference Proceedings (OSTI)

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

126

Great Plains ASPEN model development: ASPEN sizing enhancements. Final topical report  

Science Conference Proceedings (OSTI)

In preparing cost estimates for the various sections of the Great Plains Coal Gasification Plant, the equipment sizing methods for the major equipment items were checked. The sizing results obtained from ASPEN were compared with the sizing results obtained by using the Halcon SD Group's (HSD) own sizing methods and in-house computer programs. Where there were significant differences between the ASPEN sizing results and our own results, the subroutine coding was checked to determine where the differences arose. Modifications were then made to the ASPEN routines where it was thought that HSD's methods would significantly enhance the quality of ASPEN. The following ASPEN sizing subroutines were modified: (1) STW01 - ASPEN tray tower sizing; (2) SVS11 - ASPEN vertical vessel sizing; (3) SVS01 - ASPEN horizontal vessel sizing; and (4) CPVVTH - ASPEN vertical vessel/tower shell thickness and weight determination. Modifications were made to sizing calculations contained in the following ASPEN COST subroutines: (1) CPC01 - ASPEN centrifugal pump costing; and (2) CPC02 - ASPEN centrifugal compressor costing. Modifications also were made to sizing calculations contained in the following ASPEN UOS subroutines: (1) UPC01 - ASPEN pump model; and (2) UPC02 - ASPEN compressor model. A new ASPEN COST subroutine that contains sizing calculations was developed, CPC04 - ASPEN reciprocating compressor costing. 4 references.

Schwint, K.J.

1985-02-01T23:59:59.000Z

127

Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains  

Science Conference Proceedings (OSTI)

Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

2009-07-15T23:59:59.000Z

128

Zero-order trace element distribution model for the Great Plains Coal Gasification Plant: Topical report  

SciTech Connect

The Morgantown Energy Technology Center of the US DOE is developing a series for models of environmental systems. Both zero-order and detailed models are being developed. Detailed models are based on fundamental engineering principles and the use of detailed physical and chemical property data; reliance on empirical relationships and correlations is minimized. The key advantage of detailed models is their predictive capabilities and utility in performing valid comparative analyses. An important prerequisite to the development of detailed models in the availability of representative, long-term process and environmental data. These data are needed both to develop the models as well as to validate them. Zero-order models are less rigorous and have less predictive capability than detailed models since they are based on empirical estimates and simple correlations. However, they can be developed relatively quickly and are significantly less expensive to develop and use compared to detailed models. Zero-order models are useful in identifying potential environmental or control technology problems. As such, they can help direct future research and development efforts. They can provide useful information when comprehensive data are unavailable for detailed modeling, and can be used as a screening tool to identify process alternatives which appear to warrant more detailed modeling. This report describes a zero-order trace element distribution model for the Great Plains Coal Gasification Plant located near Beulah, North Dakota. The model estimates how trace elements entering the plant in the feed coal are distributed to the plant's process and waste streams. Elements that may be introduced to the plant's waste streams from sorbents and/or catalysts (e.g., Vanadium in makeup Stretford solution) are not considered in the model. 13 refs.

Thomas, W.C.; Page, G.C.; Magee, R.A.

1987-04-01T23:59:59.000Z

129

Great Plains ASPEN Model Development: binary interaction parameters and activity coefficient parameters. Final report  

Science Conference Proceedings (OSTI)

The simulation of the various sections of the Great Plains Coal Gasification Plant involves modelling vapor-liquid equilibria and liquid-liquid equilibria that are highly nonideal. The Peng-Robinson equation of state, modified for water, was used in the simulation of most of the process sections. Interaction parameters established by regression of literature data, using ASPEN's DRS system, along with interaction parameter values found in the literature, became the database for the simulation. In two of the sections, the Oxygen Plant and the TEG drying of the product SNG, activity coefficient models were used because they gave a better prediction of the phase equilibrium. For the Rectisol unit, which removes hydrogen sulfide from the gas, parameters available from a DOE sponsored contract, Tristate, were used, after verification, for the ASPEN modified version of the RKS. The phases that were predicted using these parameters were checked against literature data and, in most cases, the liquid mole fractions of carbon dioxide predicted by the correlation were within 10% of those reported. A model that would predict phase equilibrium, based on the ionization of Lewis acids and bases and salts, would have been an ideal choice for simulation of the Stretford and Phosam flowsheets. However, only limited temperature dependent liquid activity coefficients data are available in the literature for the ionic species found in the Stretford and Phosam solutions, from which correlation parameters could be obtained by regression. Also, only the flash model can handle this type of calculation; therefore, it was used only to a limited extent in the simulation of the Stretford Unit Absorber. 118 references.

Stern, S.S.; Millman, M.C.; Kirman, J.J.; Nwogu, D.

1984-12-01T23:59:59.000Z

130

A 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

3-Year Climatology of Cloud and Radiative Properties 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains M. M. Khaiyer, A. D. Rapp, D. R. Doelling, and M. L. Nordeen Analytical Service and Materials, Inc. Hampton, Virginia P. Minnis, W. L. Smith, Jr., and L. Nguyen Atmospheric Sciences Division National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction While the various instruments maintained at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) Central Facility (CF) provide detailed cloud and radiation measurements for a small area, satellite cloud property retrievals provide a means of examining the large-scale properties of the surrounding region over an extended period of time. Seasonal and inter-annual

131

EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS  

Science Conference Proceedings (OSTI)

This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join these various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern Great Plains, northern hemisphere, and elsewhere. Finally these data can be integrated into a history of climate change and predictive climate models. This is not a small undertaking. The goals of researchers and the methods used vary considerably. The primary task of this project was literature research to (1) evaluate existing methodologies used in geologic climate change studies and evidence for short-term cycles produced by these methodologies and (2) evaluate late Holocene climate patterns and their interpretations.

Joseph H. Hartman

1999-09-01T23:59:59.000Z

132

Predicting Spring Tornado Activity in the Central Great Plains By March 1st  

Science Conference Proceedings (OSTI)

The authors illustrate a statistical model for predicting tornado activity in the central Plains by March 1st. The model predicts the number of tornado reports during AprilJune using February sea-surface temperature (SST) data from the Gulf of ...

James B. Elsner; Holly M. Widen

133

Estimating Clear-Sky Regional Surface Fluxes in the Southern Great Plains Atmospheric Radiation Measurement Site with Ground Measurements and Satellite Observations  

Science Conference Proceedings (OSTI)

The authors compared methods for estimating surface fluxes under clear-sky conditions over a large heterogeneous area from a limited number of ground measurements and from satellite observations using data obtained from the southern Great Plains ...

W. Gao; R. L. Coulter; B. M. Lesht; J. Qiu; M. L. Wesely

1998-01-01T23:59:59.000Z

134

AtmosphereLand Surface Interactions over the Southern Great Plains: Characterization from Pentad Analysis of DOE ARM Field Observations and NARR  

Science Conference Proceedings (OSTI)

The Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site data are analyzed to provide insight into atmosphereland surface interactions generating summertime precipitation variability. Pentad-...

Alfredo Ruiz-Barradas; Sumant Nigam

2013-02-01T23:59:59.000Z

135

Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern Great Plains including for CLASIC (June 2007)  

Science Conference Proceedings (OSTI)

The atmospheric moisture budget and surface interactions for the southern Great Plains are evaluated for contrasting MayJune periods (1998, 2002, 2006, and 2007) as background for the Cloud and Land Surface Interaction Campaign (CLASIC) of (wet) ...

Peter J. Lamb; Diane H. Portis; Abraham Zangvil

2012-12-01T23:59:59.000Z

136

Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, third quarter 1984  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet Great Plains Gasification Associates (GPGA's) full gas production date. Gasification Plant - Detailed engineering is complete. Construction is 99% complete. Start-up operations are proceeding well. SNG was delivered to the product pipeline this quarter. The only remaining plant permit is the Permit to Operate, which is expected to be issued in late 1985. Quality Assurance/Quality Control Activities included major equipment inspections, further development of welding procedures, and continuation of the corrosion control/materials evaluation program. Freedom mine development activities remain on schedule.

Not Available

1984-09-01T23:59:59.000Z

137

Wind Shear and Turbulence Profiles at Elevated Heights: Great Lakes and Midwest Sites (Poster)  

DOE Green Energy (OSTI)

Analyzed wind resource characteristics at elevated heights (50 m-200+m) incuding shear and turbulence profiles for some areas of the Great Lakes and M idwest sites.

Elliott, D.; Schwartz, M.; Scott, G.

2009-05-01T23:59:59.000Z

138

Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee  

Science Conference Proceedings (OSTI)

This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds flowed on-axis only 40% of the time. The Great Smoky Mountains helped create down-valley pressure-driven winds, downslope mountain breezes, and divergent air flow. The Cumberland Mountains and Plateau were associated with wind speed reductions in the Central Great Valley, Emory Gap Flow, weak thermally-driven winds, and northwesterly down sloping. Ridge-and-valley terrain enhanced wind direction reversals, pressure-driven winds, as well as locally and regionally produced thermally-driven flow.

Birdwell, Kevin R [ORNL

2011-05-01T23:59:59.000Z

139

Sensitivity of the Great Plains Severe-Storm Environment to Soil-Moisture Distribution  

Science Conference Proceedings (OSTI)

This study examines the influence of differences in ground moisture over the southern Great Plairs and the Mexican plateau on the formation and evolution of the dryline, the elevated mixed layer, and the local planetary boundary layer. These ...

John M. Lanicci; Toby N. Carlson; Thomas T. Warner

1987-11-01T23:59:59.000Z

140

On the study of wind energy at great heights using remote sensing techniques  

E-Print Network (OSTI)

On the study of wind energy at great heights using remote sensing techniques Alfredo Pe~na1 by the wind energy industry due to the high sensitivity that the wind characteristics have on the performance Dong energy, Dong Energy, Kraftværksvej 53, DK-7000, Fredericia, Denmark e-mail: alfredo

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

1992-03-01T23:59:59.000Z

142

A Climatology of Cold-Season Nonconvective Wind Events in the Great Lakes Region  

Science Conference Proceedings (OSTI)

A 44-yr climatology of nonconvective wind events (NCWEs) for the Great Lakes region has been created using hourly wind data for 38 first-order weather stations during the months of November through April. The data were analyzed in terms of the ...

Matthew C. Lacke; John A. Knox; John D. Frye; Alan E. Stewart; Joshua D. Durkee; Christopher M. Fuhrmann; Sarah M. Dillingham

2007-12-01T23:59:59.000Z

143

Springtime Intensification of the Great Plains Low-Level Jet and Midwest Precipitation in GCM Simulations of the Twenty-First Century  

Science Conference Proceedings (OSTI)

Simulations from 18 coupled atmosphereocean GCMs are analyzed to predict changes in the climatological Great Plains low-level jet (GPLLJ) and Midwest U.S. hydrology resulting from greenhouse gas increases during the twenty-first century. To ...

Kerry H. Cook; Edward K. Vizy; Zachary S. Launer; Christina M. Patricola

2008-12-01T23:59:59.000Z

144

Factors Controlling the Vertical Extent of Fair-Weather Shallow Cumulus Clouds over Land: Investigation of Diurnal-Cycle Observations Collected at the ARM Southern Great Plains Site  

Science Conference Proceedings (OSTI)

Summertime observations for 13 yr at the Atmospheric Radiation Measurement Southern Great Plains site are used to study fair-weather shallow cumuli (ShCu). To roughly separate forced from active ShCu, days are categorized into thin- or thick- ...

Yunyan Zhang; Stephen A. Klein

2013-04-01T23:59:59.000Z

145

Modeling the Atmospheric Response to Irrigation in the Great Plains. Part II: The Precipitation of Irrigated Water and Changes in Precipitation Recycling  

Science Conference Proceedings (OSTI)

The rapid expansion of irrigation in the Great Plains since World War II has resulted in significant water table declines, threatening the long-term sustainability of the Ogallala Aquifer. As discussed in Part I of this paper, the Weather Research ...

Keith J. Harding; Peter K. Snyder

2012-12-01T23:59:59.000Z

146

Synfuels Corporation considers $6. 8 billion in new aid to boost Great Plains and three other facilities  

Science Conference Proceedings (OSTI)

The US Synthetic Fuels Corporation (SFC) voted unanimously on December 1 to negotiate agreements with four companies for $6.8 billion in loan and price guarantees. One potential recipient, the Great Plains Coal Gasification Project, was turned down two months earlier. Other recipients would be the Union Oil Company of California, the Arkansas Power and Light Company, and Geokinetics Inc. Only the size of the potential awards, which provide a welcome boost to the synfuels industry, was a surprise. Analysts see the decisions as a possible new commitment by the Reagan Administration to synthetic fuels to ease the concerns of private sponsors threatening to kill the projects. The SFC has made only one award to date, but officials say they will ultimately award $13 billion in loan and price guarantees by the end of 1984 to cover about 12 projects. Of that amount, $1 billion will go for six tar sands and heavy-oil projects, $5 billion for three shale-oil projects, and $7 billion for three coal-related plants.

Doucette, D.B.

1983-12-12T23:59:59.000Z

147

Comparison of Meteorological Measurements from Sparse and Dense Surface Observation Networks in the U.S. Southern Great Plains  

SciTech Connect

The primary objective of this study was to analyze the spatial variability of temperature and relative humidity across Kansas (KS) and Oklahoma (OK) for sparse and dense networks by comparing data from (1) the Surface Meteorological Observing System (SMOS) installations at the Atmospheric Radiation Measurement (ARM; Peppler et al. 2008) Programs Southern Great Plains site and (2) the Oklahoma Mesonet (OKM; McPherson et al. 2007). Given the wealth of observations available from these networks, this study provided the unique opportunity to determine, within a quantifiable statistical limit, an optimal distance between stations deployed for observation of the climatological values of temperature and relative humidity. Average distances between a given station and its closest neighboring station for the ARM SMOS (~ 70 km) and the OKM (~ 30 km; Brotzge and Richardson 2003) networks provided an excellent framework for comparisons of sparse and dense observations (Figure 1). This study further lays groundwork for a future investigation to determine the necessary spacing between observations for initialization of gridded numerical models.

JW Monroe; MT Ritsche; M Franklin; KE Kehoe

2008-02-28T23:59:59.000Z

148

Southern Great Plains Newsletter  

SciTech Connect

This months issue contains the following articles: (1) Scientists convene at SGP site for complex convective cloud experiment; (2) VORTEX2 spins down; (3) Sunphotometer supports SPARTICUS (a Sun and Aureole Measurement imaging sunphotometer) campaign and satellite validation studies; and (4) Ceilometer represents first deployment of new ground-based instruments from Recovery Act.

J. Prell L. R. Roeder

2010-09-01T23:59:59.000Z

149

Great Plains gasification project  

SciTech Connect

This paper describes organizational and research work on a coal gasification project which is based on North Dakota lignite. Many design changes have been incorporated into this plant, which is now being built after years of delay due to environmental, financial, and regulatory problems. Engineering and operational details are given for a project designed for conversion of 22,000 tons/day of liquid into fuel gas and several by products. Economic considerations are included.

Kuhn, A.K.

1982-04-01T23:59:59.000Z

150

Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains  

Science Conference Proceedings (OSTI)

In the southern Great Plains (USA), encroachment of grassland ecosystems by Prosopis glandulosa (honey mesquite) is widespread. Mesquite encroachment alters net primary productivity, enhances stores of C and N in plants and soil, and leads to increased levels of soil microbial biomass and activity. While mesquite's impact on the biogeochemistry of the region is well established, it effects on soil microbial diversity and function are unknown. In this study, soils associated with four plant types (C{sub 3} perennial grasses, C{sub 4} midgrasses, C{sub 4} shortgrasses, and mesquite) from a mesquite-encroached mixed grass prairie were surveyed to in an attempt to characterize the structure, diversity, and functional capacity of their soil microbial communities. rRNA gene cloning and sequencing were used in conjunction with the GeoChip functional gene array to evaluate these potential differences. Mesquite soil supported increased bacterial and fungal diversity and harbored a distinct fungal community relative to other plant types. Despite differences in composition and diversity, few significant differences were detected with respect to the potential functional capacity of the soil microbial communities. These results may suggest that a high level of functional redundancy exists within the bacterial portion of the soil communities; however, given the bias of the GeoChip toward bacterial functional genes, potential functional differences among soil fungi could not be addressed. The results of this study illustrate the linkages shared between above- and belowground communities and demonstrate that soil microbial communities, and in particular soil fungi, may be altered by the process of woody plant encroachment.

Hollister, Emily B [ORNL; Schadt, Christopher Warren [ORNL; Palumbo, Anthony Vito [ORNL; Ansley, R J [Texas A& M University; Boutton, Thomas W [Texas A& M University

2010-01-01T23:59:59.000Z

151

Task 50 - deposition of lignites in the Fort Union Group and related strata of the northern Great Plains  

SciTech Connect

Late Cretaceous, Paleocene, and early Eocene geologic and paleontologic studies were undertaken in western North Dakota, eastern and south-central Montana, and northwestern and northeastern Wyoming. These study areas comprise the Williston, Bighorn, and Powder River Basins, all of which contain significant lignite resources. Research was undertaken in these basins because they have the best geologic sections and fossil record for the development of a chronostratigraphic (time-rock) framework for the correlation of lignite beds and other economic resources. A thorough understanding of the precise geologic age of the deposition of sediments permits a powerful means of interpreting the record of geologic events across the northern Great Plains. Such an understanding allows for rigorous interpretation of paleoenviromnents and estimates of resource potential and quality in this area of economically significant deposits. This work is part of ongoing research to document change in the composition of molluscan fossil faunas to provide a paleoenvironmentally sensitive independent means of interpreting time intervals of brief duration during the Late Cretaceous, Paleocene, and Eocene. This study focuses on the record of mollusks and, to a lesser extent, mammals in the (1) Hell Creek-Tullock Formations, which include the Cretaceous-Paleocene boundary, in the western portion of the Williston Basin, Montana; (2) uppermost Cretaceous, Paleocene, and lowermost Eocene strata in western North Dakota, which -includes the last interior seaway in North Dakota; (3) upper Paleocene and lowermost Eocene of the northern portion of the Bighorn Basin of south-central Montana and northwestern Wyoming; and (4) Powder River Basin of northeastern Wyoming and southeastern Montana. The geologic record provides different physical and paleontological information to aid in interpreting the geologic record through the study interval.

Hartman, J.H.; Roth, B.; Kihm, A.J.

1997-08-11T23:59:59.000Z

152

Break-Even Investment in a Wind Energy Conversion System for an Irrigated Farm on the Texas High Plains  

E-Print Network (OSTI)

The purpose of this study was to quantify the benefits of using a wind energy system for irrigation. The value of wind energy was estimated on both a static basis (where the annual value of wind power was assumed to be constant over the life of the machine) and on a temporal basis (where the annual value of wind power was estimated recursively). The model for static analysis contained two components which were applied consecutively. The first was a linear programming (LP) model for the High Plains region. Production activities were included which allowed both optimal and non-optimal timing of post-plant irrigations, giving the producer added flexibility in the employment of limiting water resources. The optimal irrigation schedule determined by the LP solution was used as input to the second component. A simulation model matched stochastically generated estimates of wind power availability with irrigation fuel requirements (derived from the profit maximizing irrigation schedule) by three-hour time periods throughout a year. For the temporal analysis, a Fortran subroutine was added to the LP model to operate the model recursively over the life of the wind system and to account for the annual decline of the aquifer. Both fixed and variable costs were included. The basic LP model was applied to develop the benchmark case (i.e., without wind power). The farm operation with wind power was analyzed by applying the LP model with the monthly expectations of wind-generated electricity added. Two wind machines were analyzed, with rate outputs of 40 to 60 kilowatts (KW). Each was applied to the Northern and Southern Texas High Plains over a range of land and water resource situations. Breakeven investment was estimated at discount rates of three, five and ten percent. Cropping patterns on the Southern High Plains were dominated by irrigated cotton and were insensitive to changes in crop or electricity prices. On the Northern High Plains, irrigated corn and grain sorghum were the major crops, with acreage reverting to dryland wheat at the higher electricity prices. The cropping patterns in this area were impacted heavily by labor restrictions. Consideration of wind power had little effect in determining optimal cropping patterns. When wind power was applied to an irrigated farm on a static basis, the set of crop prices applied had little effect on the annual value of a wind system. Value of wind power was increased, but by smaller proportions than associated increases in the price of electricity. Each machine size had a greater value when operated on the larger of the two applicable land units (100 acres for the 40 KW machine and 144 acres for the 60 KW system). The 60 KW system was also tested on the 100 acre unit but returned less per KW than the 40 KW system. Available wind power in the temporal analysis was less than in the static analysis, thus temporal estimates of wind system value should be regarded as conservative. On the Southern High Plains, break-even investment was decreased slightly from the static analysis. However, in some situations on the Northern High Plains, break-even investment increased. This indicates that the value of wind power could increase as the aquifer declines in some situations. Break-even investment increased by up to 80 percent when the price of electricity was increased by $.005 per KWH per year. The most significant effect of wind power was that it allowed the maintenance of irrigation levels which, without wind power, had been made uneconomical. These results indicate that, at least in the future when wind system costs decrease and stabilize, wind-assisted irrigation could be an economically viable alternative for Texas High Plains producers. The results are limited by the need for future research regarding the effect of irrigation timing on crop yield as well as some of the long-term characteristics of wind system operation, such as durability and the requirements and costs for system repairs and maintenance.

Hardin, D. C.; Lacewell, R. D.

1981-01-01T23:59:59.000Z

153

Best Practices for Wind Energy Development in the Great Lakes Region  

DOE Green Energy (OSTI)

This report offers a menu of 18 different, yet complementary, preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. Each best practice describes the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, academia, and federal, state and local government regulators. The practices were identified through a year-long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors. Optimally, a suite of these best practices would be applied in an appropriate combination to fit the conditions of a particular wind project or a set of wind projects within a given locality or region.

Pebbles, Victoria; Hummer, John; Haven, Celia

2011-07-19T23:59:59.000Z

154

Best Practices for Sustainable WInd Energy Development in the Great Lakes Region and Beyond  

DOE Green Energy (OSTI)

This document offers a menu of 18 different, yet complimentary preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. The practices include those that have been previously tested and proven effective, as well as new practices that were identified by experts in the field as needed for future wind developments. Each best practice includes information about the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, and federal, state and local government regulators. They were identified through a year long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors.

Great Lakes Commission; Victoria Pebbles; John Hummer; Celia Haven

2011-07-19T23:59:59.000Z

155

Prefrontal Wind-Shift Lines in the Plains of the United States  

Science Conference Proceedings (OSTI)

In the central United States, cold fronts are sometimes preceded by a surface wind shift by several hours. These wind shifts are examined to determine their origins and characteristics. A climatology and a case study of an autumn prefrontal wind ...

Todd A. Hutchinson; Howard B. Bluestein

1998-01-01T23:59:59.000Z

156

Comparison of meteorological measurements from sparse and dense surface observational networks in the U.S. southern Great Plains.  

SciTech Connect

The primary objective of this study was to analyze the spatial variability of temperature and relative humidity across Kansas (KS) and Oklahoma (OK) for sparse and dense networks by comparing data from (1) the Surface Meteorological Observing System (SMOS) installations at the Atmospheric Radiation Measurement (ARM; Peppler et al. 2007) Program's Southern Great Plains site and (2) the Oklahoma Mesonet (OKM; McPherson et al. 2007). Given the wealth of observations available from these networks, this study provided the unique opportunity to determine, within a quantifiable statistical limit, an optimal distance between stations deployed for observation of the climatological values of temperature and relative humidity. Average distances between a given station and its closest neighboring station for the ARM SMOS ({approx} 70 km) and the OKM ({approx} 30 km; Brotzge and Richardson 2003) networks provided an excellent framework for comparisons of sparse and dense observations (Figure 1). This study further lays groundwork for a future investigation to determine the necessary spacing between observations for initialization of gridded numerical models. The spatial variability of temperature and relative humidity was examined over KS and OK by comparing observations between station pairs located in three primary domains: (1) a sparse domain in KS, consisting only of ARM SMOS stations; (2) a dense domain centered in northern OK, consisting of both ARM SMOS and OKM stations; and (3) a dense domain centered in central OK, also consisting of both ARM SMOS and OKM stations (Figure 2). In addition, the ARM SMOS stations in OK were utilized to create two secondary sparse domains. Before the observations were compared, quality control (QC) beyond the standard ARM range test was added through implementation of tighter range tests specified by data quality objectives (DQOs). Furthermore, instances of poor-quality data were removed from the data set on the basis of ARM data quality reports (DQRs). Finally, to account for spatial differences in terrain, temperature observations were corrected to mean sea level by using a standard lapse rate of 6.5 C km{sup -1} and the elevation of each observing station. For the comparison, a central station was chosen in each domain. Observations during the time period 2004-2006 from each of the other stations within a respective domain were compared to those from this central station. The Pearson correlation coefficient ({rho}) and root-mean-square difference (RMSD) were the statistics used to quantify the relationship between station pairs. For each domain, the {rho} and RMSD values were plotted against the distance separating each station pair, and a least-squares (LS) regression line was fitted to the values. The regression slopes and intercepts were compared between the various domains. The results of this analysis demonstrated positive correlations between all individual station pairs for both temperature and relative humidity. In addition, the {rho} and RMSD values for both temperature and relative humidity exhibited, in general, a linear relationship with distance from a central station. The calculated slope and intercept values were comparable across most domains, and spatial differences in temperature were smaller than those for relative humidity. The findings suggest that although the sparse networks studied might provide an accurate spatial representation for climatological values of temperature and relative humidity over the specific distances between stations, the relative importance of the temperature and relative humidity observations is a critical consideration in network design.

Monroe, J. W.; Ritsche, M. T.; Franklin, M.; Kehoe, K. E.; Environmental Science Division; Univ.of Oklahoma

2008-08-13T23:59:59.000Z

157

Production of jet fuels from coal-derived liquids. Volume 6. Preliminary analysis of upgrading alternatives for the Great Plains liquid by-production streams. Interim report, March 1987-February 1988  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest have developed seven cases for upgrading by-product liquids from the Great Plains Coal Gasification plant to jet fuels, and in several of the cases, saleable chemicals in addition to jet fuels. The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However the phenolic and naptha streams do have the potential to significantly increase (on the order of $10-15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to 10% of the U.S. market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream.

Fleming, B.A.; Fox, J.D.; Furlong, M.W.; Masin, J.G.; Sault, L.P.

1988-09-01T23:59:59.000Z

158

Great Plains coal gasification project. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session, September 12, 1988  

Science Conference Proceedings (OSTI)

The hearing was called to review the announcement by the Department of Energy that it has selected Basin Electric Power Cooperative of Bismarck, North Dakota, as the preferred buyer for the Great Plains Coal Gasification Plant. The plant produces 142 billion standard cubic feet of synthetic natural gas per day from lignite coal plus several byproducts which are marketed. The hearing examines the bids of the finalists, the composition of the trust funds, the status of the siting permits, questions of air quality, employee retirement funds and employee benefits, and the ability of the successful bidder to pursue byproduct development and marketing. Testimony was heard from 7 witnesses.

Not Available

1989-01-01T23:59:59.000Z

159

Climatology of the Low-Level Jet at the Southern Great Plains Atmospheric Boundary Layer Experiments Site  

Science Conference Proceedings (OSTI)

A unique dataset obtained with combinations of minisodars and 915-MHz wind profilers at the Atmospheric Boundary Layer Experiments (ABLE) facility in Kansas was used to examine the detailed characteristics of the nocturnal low-level jet (LLJ). In ...

Jie Song; Ke Liao; Richard L. Coulter; Barry M. Lesht

2005-10-01T23:59:59.000Z

160

ARM Southern Great Plains Site Observations of the Smoke Pall Associated with the 1998 Central American Fires  

Science Conference Proceedings (OSTI)

Drought-stricken areas of Central America and Mexico were victimized in 1998 by forest and brush fires that burned out of control during much of the first half of the year. Wind currents at various times during the episode helped transport smoke ...

R. A. Peppler; C. P. Bahrmann; J. C. Barnard; N. S. Laulainen; D. D. Turner; J. R. Campbell; D. L. Hlavka; M-D. Cheng; R. A. Ferrare; R. N. Halthore; L. A. Heilman; C-J. Lin; J. A. Ogren; M. R. Poellot; L. A. Remer; J. D. Spinhirne; K. Sassen; M. E. Splitt

2000-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site  

SciTech Connect

There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

1997-12-31T23:59:59.000Z

162

Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, second quarter, 1984. [Mercer County, North Dakota  

SciTech Connect

Project activities remain on schedule to meet Great Plains Gasification Associates' full gas production date. Detailed engineering is complete for the gasification plant. The only remaining engineering tasks involve field support activities and special projects. Construction is nearly complete. The majority of the remaining tasks involve civil, painting and electrical work. Start-up operations are proceeding very well. Many significant achievements were accomplished during the quarter. Coal was successfully gasified with oxygen. All of the first train's seven gasifiers completed successful production test runs. The only remaining plant permit is the Permit to Operate, which is expected to be issued in late 1985. Quality assurance/quality control activities included major equipment inspections, development of welding procedures and equipment turnover inspections. Freedom Mine development activities remain on schedule.

Not Available

1984-01-01T23:59:59.000Z

163

Effects of experimental warming and clipping on metabolic change of microbial community in a US Great Plains tallgrass prairie  

Science Conference Proceedings (OSTI)

While more and more studies are being conducted on the effects of global warming, little is known regarding the response of metabolic change of whole soil microbial communities to this phenomenon. In this study, functional gene changes at the mRNA level were analyzed by our new developed GeoChip 3.0. Soil samples were taken from a long-term climate warming experiment site, which has been conducted for ~;;8 years at the Kessler Farm Field Laboratory, a 137.6-ha farm located in the Central Redbed Plains, in McClain County, Oklahoma. The experiment uses a paired factorial design with warming as the primary factor nested with clipping as a secondary factor. An infrared heater was used to simulate global warming, and clipping was used to mimic mowing hay. Twelve 2m x 2m plots were divided into six pairs of warmed and control plots. The heater generates a constant output of ~;;100 Watts m-2 to approximately 2 oC increase in soil temperature above the ambient plots, which is at the low range of the projected climate warming by IPCC. Soil whole microbial communities? mRNA was extracted, amplified, labeled and hybridized with our GeoChip 3.0, a functional gene array covering genes involved in N, C, P, and S cycling, metal resistance and contaminant degradation, to examine expressed genes. The results showed that a greater number and higher diversity of genes were expressed under warmed plots compared to control. Detrended correspondence analysis (DCA) of all detected genes showed that the soil microbial communities were clearly altered by warming, with or without clipping. The dissimilarity of the communities based on functional genes was tested and results showed that warming and control communities were significantly different (P<0.05), with or without clipping. Most genes involved in C, N, P and S cycling were expressed at higher levels in warming samples compared to control samples. All of the results demonstrated that the whole microbial communities increase functional gene expression under warming with or without clipping in order to adapt the changed out environment. More detail analysis is underway.

Xie, Jianping; Liu, Xinxing; Liu, Xueduan; Nostrand, Joy D. Van; Deng, Ye; Wu, Liyou; He, Zhili; Qiu, Guanzhou; Zhou, Jizhong

2010-05-17T23:59:59.000Z

164

Sampling Wind Data for Mean Wind Speed Estimation  

Science Conference Proceedings (OSTI)

Two sampling techniques are applied to wind data at 3 h intervals for six stations in the Great Plains region in the United States in order to investigate the reduction in the number of data needed to estimate the mean wind speed. One-in-k ...

Mark Jong; Gary Thomann

1981-03-01T23:59:59.000Z

165

NREL: Wind Research - Site Wind Resource Characteristics  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

166

Great Plains ASPEN model development: development of a model for the density of solutions of aqueous electrolytes. Final topical report. [Extension of Debye-Huckel limiting law  

SciTech Connect

A new physical property model for the calculation of the density of solutions of aqueous electrolytes has been developed for the ASPEN process simulator as part of the simulation of the Great Plains Coal Gasification Plant. The model developed recently by Jay S. Dweck, Consultant, Inc. is an extension of the Debye-Huckel limiting law. The Debye-Huckel limiting law allows the predictions of the density of dilute solutions of dissolved salts by providing a relationship for the molar volume of the salt as a function of ion strength. The relationship is linear in the square root of ionic strength, with the slope dependent only upon the charges of the ions which constitute the salt. When combined with data for the infinite dilution molar volume of the salts, solution density can be calculated. The new model preserves the linear relationship with the square root of ionic strength, but introduces ion dependent parameters for the determination of the slope. The solution density is calculated in terms of the molar volumes of the individual ions, instead of a mixture of pseudo salts. Preliminary tests of the model have shown it to be far more accurate than the original limiting law, and applicable to more concentrated solutions (greater than 10 molar).

Dweck, J.S.; Mendelson, M.A.; Blumenfeld, R.

1985-01-01T23:59:59.000Z

167

Decision-analytic framework for portfolio selection: choosing among supplemental environmental research projects proposed for the Great Plains Coal Gasification Facility  

Science Conference Proceedings (OSTI)

This report describes the development and application of a hierarchical decision-analytic framework for selecting a portfolio of research and development projects. A US Department of Energy steering committee used the framework to develop a comprehensive and defensible $12 million Supplemental Environmental Program (SEP) for the Great Plains Coal Gasification Facility. This decision problem was characterized by: (1) five technical subcommittees that proposed detailed studies addressing different environmental and health issues; (2) many combinations of proposed studies that satisfied the $12 million budgetary constraint; (3) multiple objectives that required value tradeoffs at both the committee and subcommittee levels; and (4) uncertainties about research needs, data availability, and costs. The framework for determining funding (study) priorities used the principles of decision analysis to divide the overall SEP problem into a series of smaller subproblems tailored to the specific organizational structure of the steering committee and its five subcommittees. A dynamic optimization procedure was used to compare alternative funding strategies; the strategies were ranked on the basis of their expected utility, as calculated with a multiattribute utility function. Each subcommittee chairman was directly responsible for ranking the studies proposed by his subcommittee and, on the basis of that ranking, quantifying the degree to which the proposed research plan met objectives established for the entire SEP by the steering committee chairman. The approach is applicable to similar portfolio selection problems in both the public and private sectors.

Peerenboom, J.P.; Buehring, W.A.; Joseph, T.W.

1984-09-01T23:59:59.000Z

168

Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains  

SciTech Connect

Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains.

Dunagan, J.F. Jr.; Kadish, K.A.

1977-11-01T23:59:59.000Z

169

Upper Great Plains Rates information  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and Repayment Services Rates and Repayment Services Rates 2010 Firm Power Rate (effective January 1, 2010) Rate Adjustments 2010 Firm Power Rate Adjustment 2009 Firm Power Rate Adjustment IS Rate Adjustments Rate Adjustment Process Rate Orders Signed, December 23, 2009 (16kb pdf) Announcements Firm Electric Service Customer Letter - Preliminary Review of Drought Adder Component, June 27, 2013 (74kb pdf) Customer Letter - Final Notice of Drought Adder Component, October 2, 2013 (68kb pdf) Integrated System (IS) Rates 2014 IS Rates Customer Information Meeting Presentation, October 15, 2013 (611kb pdf) Customer Letter - Notification of 2014 Rates, September 13, 2013 (160kb pdf) 2014 Transmission and Ancillary Services Rate Calculation and 2012 Rate True-up Calculation (4.9mb pdf) 2013 IS Rates

170

Groundwater in the Great Plains  

E-Print Network (OSTI)

Groundwater lies hidden beneath the soil, out of sight and largely out of mind. As a result, its poorly understood by most who depend on it for drinking water and other uses. Misconceptions about groundwater are common. In 1904, a Texas judge ruled that the existence, origin and movement of (ground) water...is so secret, occult and concealed...(that) any attempt to administer any set of legal rules in respect to it would be involved in hopeless uncertainty. In spite of increasing scientific knowledge, groundwater is still perceived in much the same way by the public today. Despite the lack of understanding, groundwater is the most significant water resource for most Americans. Roughly 75% of U.S. cities depend on groundwater for all or part of their water supplies. More than half of all Americans and 95% of all persons in rural areas rely on groundwater as their primary source of drinking water. Throughout the United States and the world, vital aquifers supply irrigation and drinking water for many regions More than 97% of the worlds usable freshwater supply an estimated 9 trillion acre feet is groundwater. Despite the seeming abundance of groundwater, there are concerns about how long its supplies will last, especially in areas where water use is high, and whether its quality is being threatened by natural and man-made contaminants.

Jensen, R.

2003-01-01T23:59:59.000Z

171

Rocky Great Mountains Southwest Plains  

E-Print Network (OSTI)

of snags and cavities for wildlife can utilize the existing tree species composition, which varied. Study Area The study was conducted on a 160-ha area, in the eastern portion of Hotel Creek Watershed

172

Upper Great Plains Home page  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration. UGP sells power in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota to wholesale customers such as towns; rural electric cooperatives; public...

173

Low Wind Speed Technology Phase II: Developing Techniques to Evaluate the Designs and Operating Environments of Offshore Wind Turbines in the Mid-Atlantic and Lower Great Lakes Region; AWS Truewind, LLC  

DOE Green Energy (OSTI)

This fact sheet describes a subcontract with AWS Truewind, LLC to study offshore wind and wave environments of the Atlantic and lower Great Lakes regions by estimating available wind power resource.

Not Available

2006-03-01T23:59:59.000Z

174

Seasonal and inter-annual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains  

Science Conference Proceedings (OSTI)

The {delta}{sup 13}C signature of terrestrial carbon fluxes ({delta}{sub bio}) provides an important constraint for inverse models of CO{sub 2} sources and sinks, insight into vegetation physiology, C{sub 3} and C{sub 4} vegetation productivity, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO{sub 2} concentration and {delta}{sup 13}C-CO{sub 2} at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed {delta}{sub bio} weekly. This region has a fine-scale mix of crops (primarily C{sub 3} winter wheat) and C{sub 4} pasture grasses. {delta}{sub bio} had a large and consistent seasonal cycle of 6-8{per_thousand}. Ensemble monthly mean {delta}{sub bio} ranged from -25.8 {+-} 0.4{per_thousand} ({+-}SE) in March to -20.1 {+-} 0.4{per_thousand} in July. Thus, C{sub 3} vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil {delta}{sub 13}C values were about -15{per_thousand}, indicating that historically the region was dominated by C{sub 4} vegetation and had more positive {delta}{sub bio} values. Based on a land-surface model, isofluxes ({delta}{sub bio} x NEE) in this region have large seasonal amplitude because {delta}{sub bio} and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in {delta}{sub bio} and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved {sup 13}CO{sub 2} and CO{sub 2} fluxes.

Torn, M.S.; Biraud, S.; Still, C.J.; Riley, W.J.; Berry, J.A.

2010-09-22T23:59:59.000Z

175

New England Wind Forum: Determining Factors Influencing Wind Economics in  

Wind Powering America (EERE)

Determining Factors Influencing Wind Economics in New England Determining Factors Influencing Wind Economics in New England Figure 1: Installed Wind Project Costs by Region: 2003 through 2006 Projects Only New England's high land values, smaller land parcels, varied terrain, and more moderate wind speeds make for projects of smaller scale and higher unit cost than those likely to be built in Texas or the Great Plains states. Click on the graph to view a larger version. New England's high land values, smaller land parcels, varied terrain, and more moderate wind speeds make for projects of smaller scale and higher unit cost than those likely to be built in Texas or the Great Plains states. View a larger version of the graph. Figure 2: 2006 Project Capacity Factors by Region: 2002 through 2005 Projects Only The chart depicts project capacity factor by region. Click on the graph to view a larger version.

176

US Synthetic Fuels Corporation's proposal to award the Great Plains project $820 million in additional Federal financial assistance. Hearing before a Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Ninth Congress, First Session, May 22, 1985  

Science Conference Proceedings (OSTI)

The Subcommittee on Environment, Energy, and Natural Resources reviewed the financial situation of the Great Plains coal gasification plant in North Dakota. The sponsors of the project are requesting an additional $820 million in Federal assistance because they cannot operate the plant and pay back the $1.46 billion already borrowed from the taxpayers with the current trend towards lower energy prices. The possibility of abandoning the project is discussed, but most speakers believe every effort should be made to continue the project with the least amount of Federal involvement.

Not Available

1986-01-01T23:59:59.000Z

177

Shortwave, Clear-sky Diffuse Irradiance in the 350 to 1050 nm Range: Comparison of Models with RSS Measurements at the Southern Great Plains ARM Site in September/October 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

Shortwave, Clear-Sky Diffuse Irradiance in the Shortwave, Clear-Sky Diffuse Irradiance in the 350 to 1050 nm Range: Comparison of Models with RSS Measurements at the Southern Great Plains ARM Site in September/October 2001 J. J. Michalsky, P. W. Kiedron, Q.-L. Min, and L. C. Harrison Atmospheric Sciences Research Center State University of New York Albany, New York J. J. Michalsky Surface Radiation Research Branch Air Resources Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado Abstract A rotating shadowband spectroradiometer (RSS) operating in the spectral range between 350 to 1050 nm obtained measurements of direct and diffuse components of spectral irradiance during the first diffuse irradiance IOP in the autumn of 2001. Independent measurements of the primary inputs to spectral

178

A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter SW A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING By R.M. Flores of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

179

great_lakes_90mwindspeed_off  

NLE Websites -- All DOE Office Websites (Extended Search)

GISDataTechnologySpecificUnitedStatesWindHighResolutionGreatLakes90mWindspeedOffshoreWindHighResolution.zip> Description: Abstract: Annual average offshore wind...

180

Plains CO  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Partnership Fourth Annual Conference on Carbon Capture & Sequestration Alexandria, Virginia May 2-5, 2005 By Edward N. Steadman Plains CO Plains CO 2 2 Reduction Partnership Reduction Partnership Eagle Operating Inc. Fischer Oil and Gas, Inc. PCOR Partnership Region Nine states and three provinces 1,362,089 square miles Montana North Dakota South Dakota Minnesota Iowa Missouri Nebraska Saskatchewan Alberta Manitoba Wyoming Wisconsin Sedimentary Basins 440,828 square miles 32% of region Coal Fields 292,006 square miles 21% of region Evaluated the Wyodak- Anderson, Ardley, and Fort Union coals CO 2 sequestration capacity estimated to date: >8 billion tons PCOR Partnership Region Geological CO 2 sequestration capacity estimated thus far: >8 billion tons Saline Aquifers

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Landowners and Wind Energy Development | Open Energy Information  

Open Energy Info (EERE)

Landowners and Wind Energy Development Landowners and Wind Energy Development Jump to: navigation, search Photo from Cielo Wind Power Corporation, NREL 10558 Many people will benefit from the clean air and economic growth brought about by wind power development, but farmers and other rural landowners may benefit the most. The best wind resources tend to be located in rural areas and on farmland in the Great Plains states. Wind power can provide a new cash crop for farmers and ranchers. Large wind turbines use only about one quarter-acre of land, including access roads, so farmers can continue to plant crops and graze livestock right up to the base of the turbines. One of the easiest and most attractive ways for farmers and other landowners to benefit from wind power is to allow wind developers to

182

EA-1903: Kansas State University Zond Wind Energy Project, Manhattan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region. PUBLIC COMMENT OPPORTUNITIES...

183

EA-1903: Kansas State University Zond Wind Energy Project, Manhattan,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Kansas State University Zond Wind Energy Project, 3: Kansas State University Zond Wind Energy Project, Manhattan, Kansas EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas SUMMARY This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 21, 2013 EA-1903: Notice of Extension Kansas State University Zond Wind Energy Project, Manhattan, Kansas September 11, 2013 EA-1903: Draft Environmental Assessment Kansas State University Zond Wind Energy Project, Manhattan, Kansas September 11, 2013

184

Land use and land cover change: the effects of woody plant encroachment and prescribed fire on biodiversity and ecosystem carbon dynamics in a southern great plains mixed grass savanna  

E-Print Network (OSTI)

In the southern Great Plains, the encroachment of grassland ecosystems by mesquite (Prosopis glandulosa), is widespread, and prescribed fire is commonly used in its control. Despite this, substantial quantitative information concerning their influences on the community composition, functional dynamics, and soil organic carbon (SOC) storage potential of grassland ecosystems is lacking. The objectives of this study were to: a) quantify the effects of seasonal prescribed fire treatments and mesquite encroachment on aboveground net primary productivity (ANPP) and herbaceous community composition; b) characterize SOC pool sizes, turnover, and storage potential relative to vegetation type and fire treatment; c) evaluate the structure and diversity of soil microbial communities relative to vegetation type; and d) characterize the functional diversity of these same microbes using the GeoChip functional gene microarray. Repeated winter and summer fires led to increased ANPP rates (average, 434 and 313 g m-2 y-1, respectively), relative to unburned controls (average, 238 g m-2 y-1), altered herbaceous community composition, and increased the storage of resistant forms of SOC, but did not affect overall SOC storage. Herbaceous ANPP rates did not differ significantly as a result of mesquite encroachment, but herbaceous community composition and SOC storage did. Mesquite soils contained significantly more total, slow-turnover, and resistant forms of SOC than those that occurred beneath C3 or C4 grasses. Similarity among the soil bacterial and fungal communities associated with the major vegetation types in this system was low to moderate. Significant differences were detected among soil fungi, with the mesquite-associated fungi harboring significant differences in community structure relative to the fungal communities associated with each of the other vegetation types examined. Despite this result, few significant differences were detected with respect to the functional diversity of these communities, suggesting either a high degree of functional redundancy, or that the functional differences harbored by these communities are beyond the scope of the GeoChip. The results of this study demonstrate that both fire and mesquite encroachment have the potential to alter ecosystem components and processes significantly, providing new insight regarding the effects of these widespread land use and land cover changes on ecosystem structure and function.

Hollister, Emily Brooke

2008-05-01T23:59:59.000Z

185

High Plains Tech Center | Open Energy Information  

Open Energy Info (EERE)

Tech Center Tech Center Jump to: navigation, search Name High Plains Tech Center Facility High Plains Tech Center Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner High Plains Tech Center Energy Purchaser High Plains Tech Center Location Woodward OK Coordinates 36.40645133°, -99.4282195° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.40645133,"lon":-99.4282195,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Wind Energy (Revision). Federal Energy Management Program: Renewable Energy Technologies for Federal Facilities (Fact sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From Coast to Coast, Wind Turbines Are Generating Electricity From Coast to Coast, Wind Turbines Are Generating Electricity Wind is caused by the earth's r o t a h and by air-pressure differences from uneven heating of the earth's surface. The energy of the wind is widely dis- tributed geographically and relatively concentrated, and it has a long history o f use as an energy source. In general, wind-energy resources are best along coastlines, at elevated sites in hilly ter- rain, and in the Great Plains, although usable wind resources are available in every state. The U.S. Department of Energy W E ) has compiled anatlas contain- ing wind-resource maps for the entire world. These reports--available through the National Renewable Energy Laboratory-pre vide wind data that help to predict the performance of wind turbines at virtually

187

Indian Mesa Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Mesa Wind Farm II Mesa Wind Farm II Jump to: navigation, search Name Indian Mesa Wind Farm II Facility Indian Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Vestas Developer Great Plains Windpower Location Hansford County TX Coordinates 36.278°, -101.345° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.278,"lon":-101.345,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

Wind Powering America: Goals, Approach, Perspectives, and Prospects; Preprint  

DOE Green Energy (OSTI)

While wind development activity in the United States has dramatically increased over the last 3 years, it has been mainly driven by policy mandates in the investor owned utility community. Also, while significant wind development has and is now occurring in the Northwest, the Great Plains, the Rocky Mountains, Texas, and several eastern states, there remain a number of states that have excellent resources that are essentially undeveloped. Additionally, the U.S. federal agencies represent the largest institutional load in the world, and thus are a potential large market for green (wind) energy. Rural America is economically stressed and traditional agricultural incomes are seriously threatened; wind development in these windy regions offers one of the most promising''crops'' of the 21st century. Public power serves these communities, and local development of wind with low-cost financing appears to be competitive with new conventional fossil energy sources.

Flowers, L. T.; Dougherty, P. J.

2002-03-01T23:59:59.000Z

189

Production of jet fuels from coal-derived liquids. Volume 7. GPGP jet-fuels production program. Evaluation of technical uncertainties for producing jet fuels from liquid by-products of the Great Plains gasification plant. Interim report, 2 October 1987-30 September 1988  

Science Conference Proceedings (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding was provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to analyze GPGP operations and develop correlations for the liquid by-products and plant operating factors such as coal feed rate and coal characteristics.

Fraser, M.D.; Rossi, R.J.; Wan, E.I.

1989-01-01T23:59:59.000Z

190

The Owl Horn Radar Signature in Developing Southern Plains Supercells  

Science Conference Proceedings (OSTI)

During spring 2001 in the Southern Plains, a recurring, hitherto undocumented reflectivity signature that the authors have called the Owl Horn signature (because the radar reflectivity pattern resembles the profile of the Great Horned Owl) was ...

Matthew R. Kramar; Howard B. Bluestein; Andrew L. Pazmany; John D. Tuttle

2005-09-01T23:59:59.000Z

191

Temperature, Humidity, Wind and Pressure Sensors (THWAPS) Handbook  

SciTech Connect

The temperature, humidity, wind, and pressure system (THWAPS) provide surface reference values of these measurements for balloon-borne sounding system (SONDE) launches. The THWAPS is located adjacent to the SONDE launch site at the Southern Great Plains (SGP) Central Facility. The THWAPS system is a combination of calibration-quality instruments intended to provide accurate measurements of meteorological conditions near the surface. Although the primary use of the system is to provide accurate surface reference values of temperature, pressure, relative humidity (RH), and wind velocity for comparison with radiosonde readings, the system includes a data logger to record time series of the measured variables.

Ritsche, MT

2011-01-17T23:59:59.000Z

193

Wind Power for America: Rural Electric Utilities Harvest a New Crop  

Wind Powering America (EERE)

Independent Power Independent Power Producer Financing Co-op Financing Cost of Energy (cents /kWh) 8.0 7.0 6.0 5.0 4.0 3.0 Installed Wind Turbine Capacity 2 MW 10 MW 50 MW 50 MW Without Federal incentives (current $) With Federal incentives (current $) WIND ECONOMICS AT A GLANCE Wind power is one of mankind's oldest energy sources. In 1700, the most powerful machines in Europe were Dutch windmills. During the 1930s, half a million windmills pumped water on the Great Plains. Today's wind turbine is a far cry from the old water pumpers. By using state-of-the-art engineering, wind turbine manufacturers have produced sleek, highly efficient machines that produce inexpensive electricity, and lots of it. Depending on their size and location, wind farms can produce electricity for 4-6 cents per kilowatt-hour (kWh).

194

Flood Plain and Floodway Management Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flood Plain and Floodway Management Act (Montana) Flood Plain and Floodway Management Act (Montana) Flood Plain and Floodway Management Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation

195

Obama Administration and Great Lakes States Announce Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of...

196

PLAINS CO2 REDUCTION PARTNERSHIP  

Science Conference Proceedings (OSTI)

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2005-01-01T23:59:59.000Z

197

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains Co{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) activities have focused on developing information on deployment issues to support Task 5 activities by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) activities have focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) has included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman

2004-07-01T23:59:59.000Z

198

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O' Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2004-10-01T23:59:59.000Z

199

THE PLAINS CO  

NLE Websites -- All DOE Office Websites (Extended Search)

THE PLAINS CO 2 REDUCTION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE The Plains CO 2 Reduction Partnership The Plains CO 2 Reduction (PCOR) Partnership, comprising state agencies; coal, oil and gas, and other private companies; electric utilities; universities; and nonprofit organizations, covers an area of more than 1.4 million square miles in the central interior of North America and includes all or part of nine U.S. states and four Canadian provinces. The PCOR Partnership region has stable geologic basins that are ideal storage targets for CCUS. These basins have been well characterized because of commercial oil and gas activities and have significant CO 2 storage resource. The region's energy industry is evaluating carbon

200

Great Plains coal gasification project - historical overview and progress  

SciTech Connect

The first commercial scale coal gasification plant in the US is nearing completion in North Dakota. The plant shares the site and other facilities with the Basin Electric Power Station. The gasification plant will draw its power directly from the Basin substation and Basin will receive coal fines from the gasification plant. (Coal fines cannot be gasified in the Lurgi units.) Planning, loan guarantee commitments, scheduling of construction, labor relations, and current situation are all briefly discussed. A table of project statistics is included.

Deeths, W.R.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Broadband Albedo Observations in the Southern Great Plains  

Science Conference Proceedings (OSTI)

Time series of daily broadband surface albedo for 1998 and 1999 have been analyzed from six locations in the network of 22 Atmospheric Radiation Measurement Program SolarInfrared Radiation Stations distributed from central Kansas to central ...

Claude E. Duchon; Kenneth G. Hamm

2006-01-01T23:59:59.000Z

202

The Southern Great Plains Site: A Climate Observatory in Oklahoma  

NLE Websites -- All DOE Office Websites (Extended Search)

other facilities throughout the SGP site. The 60-ft meteorological tower rises from a canola field at the SGP central facility in June 2011. The 60-ft meteorological tower rises...

203

Computer and Internet Use by Great Plains Farmers  

E-Print Network (OSTI)

agricultural commodity market information enhances farmersand financial market information, weather and agriculturalexample, information on commodity markets and input prices

Smith, Aaron; Morrison Paul, Catherine J.; Goe, W. Richard; Kenney, Martin

2004-01-01T23:59:59.000Z

204

Heavy Rainfall: Contrasting Two Concurrent Great Plains Thunderstorms  

Science Conference Proceedings (OSTI)

Measurement and forecasting of heavy rainfall requires interpretation of the small differences in the storm environment that distinguish a major flood-producing rainfall event from a relatively harmless storm system. This case study will examine ...

Bettina Bauer-Messmer; James A. Smith; Mary Lynn Baeck; Wenjie Zhao

1997-12-01T23:59:59.000Z

205

Great Plains Drought in Simulations of the Twentieth Century  

Science Conference Proceedings (OSTI)

Coupled global circulation models (CGCMs) have been widely used to explore potential future climate change. Before these climate projections can be trusted, the ability of the models to simulate present-day climate must be assessed. This study ...

Rachel R. McCrary; David A. Randall

2010-04-01T23:59:59.000Z

206

A Cloud Climatology of the Southern Great Plains ARM CART  

Science Conference Proceedings (OSTI)

Cloud amount statistics from three different sources were processed and compared. Surface observations from a National Centers for Environmental Prediction dataset were used. The data (Edited Cloud Report; ECR) consist of synoptic weather reports ...

Steven M. Lazarus; Steven K. Krueger; Gerald G. Mace

2000-05-01T23:59:59.000Z

207

NREL: Wind Research - Wind Powering America Hosts 12th Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Powering America Hosts 12th Annual All-States Summit: A Wind Powering America Success Story May 21, 2013 In 2012, the wind energy industry saw great expansion in capacity as...

208

An assessment of the available windy land area and wind energy potential in the contiguous United States  

DOE Green Energy (OSTI)

Estimates of land areas with various levels of wind energy resource and resultant wind energy potential have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some windy lands as a result of environmental and land-use considerations. Despite these exclusions, the amount of wind resource estimated over the contiguous United States is surprisingly large and has the potential to supply a substantial fraction of the nation's energy needs, even with the use of today's wind turbine technology. Although this study shows that, after exclusions, only about 0.6% of the land area in the contiguous United States is characterized by high wind resource (comparable to that found in windy areas of California where wind energy is being cost-effectively developed), the wind electric potential that could be extracted with today's technology from these areas across the United States is equivalent to about 20% of the current US electric consumption. Future advances in wind turbine technology will further enhance the potential of wind energy. As advances in turbine technology allow areas of moderate wind resource to be developed, more than a tenfold increase in the wind energy potential is possible. These areas, which cover large sections of the Great Plains and are widely distributed throughout many other sections of the country, have the potential of producing more than three times the nation's current electric consumption. 9 refs., 12 figs., 13 tabs.

Elliott, D.L.; Wendell, L.L.; Gower, G.L.

1991-08-01T23:59:59.000Z

209

Wind powering America: Iowa  

DOE Green Energy (OSTI)

Wind resources in the state of Iowa show great potential for wind energy development. This fact sheet provides a brief description of the state's wind resources and the financial incentives available for the development of wind energy systems. It also provides a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

210

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

Great expectations: The cost of offshore wind in UK waters Monitoring Techniques for Offshore Wind Farms. Journal of

Wiser, Ryan

2013-01-01T23:59:59.000Z

211

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) and provided information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 2 efforts also included preparation of a draft topical report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region'', which is nearing completion. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. The video will be completed and aired on Prairie Public Television in the next quarter. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. The addition of the Canadian province of Alberta to the PCOR Partnership region expanded the decision support system (DSS) geographic information system database. Task 5 screened and qualitatively assessed sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2005-04-01T23:59:59.000Z

212

Management of Specific Flood Plain Areas (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management of Specific Flood Plain Areas (Iowa) Management of Specific Flood Plain Areas (Iowa) Management of Specific Flood Plain Areas (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources Floodplain management orders by the Iowa Department of Natural Resources as

213

Plain Language Compliance Report (2012)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy sees the implementation of the Plain Writing Act as an important initiative that helps the Department share relevant information in a way that is clear, concise, and...

214

Plain Language Training Class 01  

Energy.gov (U.S. Department of Energy (DOE))

Registration link: CHRIS https://mis.doe.gov/ess/index.cfm 002357/0017 and https://powerpedia.energy.gov/wiki/Plain_Writing_Training_Class_October_...Course Type: ClassroomCourse Location:...

215

PLAIN LANGUAGE COMPLIANCE REPORT (2013)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy sees the implementation of the Plain Writing Act as an important initiative that helps the Department share relevant information in a way that is clear, concise, and informative.

216

Wind powering America: Vermont  

DOE Green Energy (OSTI)

Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

217

Wind powering America: Kansas  

DOE Green Energy (OSTI)

Wind resources in the state of Kansas show great potential for wind energy development according to the wind resource assessment conducted by the Kansas Electric Utilities Research Program, UWIG, and DOE. This fact sheet provides a brief description of the resource assessment and description of the state's new educational wind kiosk as well as its green power program and financial incentives available for the development of renewable energy technologies. A list of contacts for more information is also included.

NREL

2000-04-11T23:59:59.000Z

218

Wind characteristics for agricultural wind energy applications  

SciTech Connect

Wind energy utilization in agriculture can provide a potentially significant savings in fuel oil consumption and ultimately a cost savings to the farmer. A knowledge of the wind characteristics within a region and at a location can contribute greatly to a more efficient and cost-effective use of this resource. Current research indicates that the important wind characteristics include mean annual wind speed and the frequency distribution of the wind, seasonal and diurnal variations in wind speed and direction, and the turbulent and gustiness characteristics of the wind. Further research is underway to provide a better definition of the total wind resource available, improved methods for siting WECS and an improved understanding of the environment to which the WECS respond.

Renne, D. S.

1979-01-01T23:59:59.000Z

219

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as you can get, those old windmills are the predecessors for new, modern wind turbines that generat electricity. The video pans through shots of large windmills and wind farms of different sizes, situated on cultivated plains and hills. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert. A hot desert, next to tall mountains. An ideal place for a lot of wind.

220

The Des Plaines River -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

One One Nature Bulletin No. 606 May 28, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist THE DES PLAINES RIVER -- PART ONE: DESCRIPTION Chicago was incorporated as a village in 1833 and in less than 100 years it had become one of the world's great cities. Four unique natural features have contributed to its phenomenal growth. The first is Lake Michigan. Chicago is strategically located at the south end of it, deep in the heart of the continent and the vast central lowland -- bread-basket of our nation. The lake provides an inexhaustible supply of fresh water and a highway for water-borne commerce. Since the completion of the St. Lawrence Seaway, Chicago has also become a port for ocean going ships.

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

222

Analysis of CASES-99 Lidar and Turbulence Data in Support of Wind Turbine Effects: April 1, 2001 to Januay 31, 2003  

DOE Green Energy (OSTI)

The nocturnal low-level jet (LLJ) of the Great Plains of the central United States has been identified as a promising source of high-momentum wind flow for wind energy. The acceleration of the winds after sunset above the surface produces a jet profile in the wind velocity, with maximum speeds that often exceed 10 m s-1 or more at heights near 100 m or more. These high wind speeds are advantageous for wind energy generation. The high speeds aloft, however, also produce a region of high shear between the LLJ and the earth's surface, where the nocturnal flow is often calm or nearly so. This shear zone below the LLJ generates atmospheric waves and turbulence that can cause strong vibration in the turbine rotors. It has been suggested that these vibrations contribute to premature failures in large wind turbines, which, of course, would be a considerable disadvantage for wind energy applications. In October 1999, a field project called the Cooperative Atmosphere-Surface Exchange Study 1999 campaign, or CASES-99, was conducted in southeastern Kansas to study the nocturnal stable boundary layer. One of the instruments deployed during CASES-99 was the High-Resolution Doppler Lidar, a new scanning, remote-sensing, wind-mapping instrument.

Banta, R. M.

2003-06-01T23:59:59.000Z

223

Modeling and analysis of wind farm impacts on power systems.  

E-Print Network (OSTI)

??The wind energy industry has undergone a dramatic transformation during the last decade. The total operating wind power capacity in the world has increased greatly. (more)

Zhou, Fengquan, 1969-

2005-01-01T23:59:59.000Z

224

The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning  

E-Print Network (OSTI)

The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning J. Badger, N.G. Mortensen, J.C. Hansen Wind Energy Department Risø National Laboratory Great Wall World Renewable Energy Forum Beijing, 23-27 October 2006 #12;Wind Farm Planning National Wind Atlas Environmental Atlases Maps

225

Flood Plain or Floodway Development (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or Floodway Development (Iowa) or Floodway Development (Iowa) Flood Plain or Floodway Development (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department Natural Resources This section describes situations when a permit is needed for the

226

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

Carbon Trust. 2008. Offshore wind power: big challenge, bigGreat Expectations: The cost of offshore wind in UK waters Bruce Valpy. 2011. Offshore Wind: Forecasts of future costs

Bolinger, Mark

2012-01-01T23:59:59.000Z

227

On Long-Term Net Flow over Great Bahama Bank  

Science Conference Proceedings (OSTI)

A 398-day time series of middepth current measurements is combined with available wind and bottom pressure measurements and historical salinity data to characterize long-term net flow patterns over Great Bahama Bank between the Tongue of the ...

Ned P. Smith

1995-04-01T23:59:59.000Z

228

Bottom Currents near a Small Hill on the Maderia Abyssal Plain  

Science Conference Proceedings (OSTI)

Near-bottom currents at depths in exceeds of 5000 m have been measured in the Great Meteor East study area (near 3130?N, 25W) over a 3 year period. The sites selected were on top of a small abyssal hill, on its flank, and on the abyssal plain ...

Peter M. Saunders

1988-06-01T23:59:59.000Z

229

Great Plains Gasification Associates quarterly technical and environmental report, Great Plains Coal-Gasification Project, Mercer County, North Dakota. First quarter, 1983. [Mercer County, ND  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet GPGA's start-up and coal delivery dates as well as the completion of the pipeline. Engineering is essentially on schedule and complete for the Plant. Most of the key engineering goals needed to support the construction phase were completed during the first quarter. A substantial amount of construction progress has been accomplished. Although overall construction is behind schedule, it is currently forecasted that construction will be back on schedule by the end of October, 1983. Start-Up Planning is progressing at a rapid pace. The current emphasis is on consolidating construction planning and completion in accordance with detailed start-up scheduling requirements. Work is also being directed to the development and finalization of plant operating manuals and a materials management system. Mine development activities remain on schedule. Most of the environmental permitting for the construction phase of the project has been completed. Engineering for the pipeline is complete. Construction should commence in early May and should be completed one month prior to the earliest need date.

Not Available

1983-01-01T23:59:59.000Z

230

Great Britain | OpenEI  

Open Energy Info (EERE)

Britain Britain Dataset Summary Description The windspeed database provides estimates of mean annual wind speed throughout the UK, averaged over a 1-kilometer square area, at each of the following three heights above ground level (agl): 10 meters, 25 meters, and 45 meters. The windspeed database is available through the UK Department of Energy and Climate Change (DECC) website, and is provided for archive purposes only. The database is comprised of historic information, including results derived from mathematical models, so it should not be considered to be measured data, or up to date or accurate. Source UK Department of Energy and Climate Change (DECC) Date Released December 31st, 2000 (13 years ago) Date Updated Unknown Keywords archive Great Britain Northern Ireland

231

Plains & Eastern Clean Line Project Proposal for New or Upgraded...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains & Eastern Clean Line Project...

232

Refraction Survey At Snake River Plain Region (DOE GTP) | Open...  

Open Energy Info (EERE)

Refraction Survey At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Snake River Plain...

233

Ground Gravity Survey At Snake River Plain Region (DOE GTP) ...  

Open Energy Info (EERE)

Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Snake River Plain Region (DOE GTP)...

234

Great Lakes fish and the greenhouse effect  

SciTech Connect

This short article discusses data presented at the Second North American Conference on Preparing for Climate Change, held in Washington, D.C. Magnuson and Regier predicted that Great Lakes fish productivity may increase as a result of the increased water temperatures caused by the greenhouse effect. However, they also predicted that other indirect alterations could do more harm than good; for example, the effects of warming on lake oxygen levels, or wind, which affects the mixing of warm, cool, and cold water.

Mlot, C.

1989-03-01T23:59:59.000Z

235

A Climatological Study of Thermally Driven Wind Systems of the U.S. Intermountain West  

Science Conference Proceedings (OSTI)

This paper investigates the diurnal evolution of thermally driven plain-mountain winds, up- and down-valley winds, up- and downslope winds, and land-lake breezes for summer fair weather conditions in four regions of the Intermountain West where ...

Jebb Q. Stewart; C. David Whiteman; W. James Steenburgh; Xindi Bian

2002-05-01T23:59:59.000Z

236

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. The Engineering ... section. I. Extreme Winds: ... II. Wind Effects on Buildings. Database ...

2013-01-17T23:59:59.000Z

237

National Wind | Open Energy Information  

Open Energy Info (EERE)

National Wind National Wind Place Minneapolis, Minnesota Zip 55402 Sector Wind energy Product Wind project developer in the upper Midwest and Plains states. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Obama Administration and Great Lakes States Announce Agreement to Spur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Great Lakes States Announce Agreement to and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects March 30, 2012 - 12:00pm Addthis Washington, D.C. - As part of President Obama's all of the above approach to energy, the Obama Administration today joined with the governors of Illinois, Michigan, Minnesota, New York and Pennsylvania to announce the signing of a Memorandum of Understanding (MOU) that will streamline the efficient and responsible development of offshore wind resources in the Great Lakes. This effort underscores the President's commitment to American made energy, increasing energy independence, and creating jobs. "President Obama is focused on leveraging American energy sources,

239

A Summary of Convective Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma  

Science Conference Proceedings (OSTI)

This study presents a summary of deep convective updraft and downdraft core properties over the central plains of the United States, accomplished using a novel and now-standard ARM scanning mode for a commercial wind profiler system. A unique ...

Scott E. Giangrande; Scott Collis; Jerry Straka; Alain Protat; Christopher Williams; Steven Krueger

240

Intercomparison of Mesoscale Model Simulations of the Daytime Valley Wind System  

Science Conference Proceedings (OSTI)

Three-dimensional simulations of the daytime thermally induced valley wind system for an idealized valleyplain configuration, obtained from nine nonhydrostatic mesoscale models, are compared with special emphasis on the evolution of the along-...

Juerg Schmidli; Brian Billings; Fotini K. Chow; Stephan F. J. de Wekker; James Doyle; Vanda Grubii?; Teddy Holt; Qiangfang Jiang; Katherine A. Lundquist; Peter Sheridan; Simon Vosper; C. David Whiteman; Andrzej A. Wyszogrodzki; Gnther Zngl

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

2005-07-01T23:59:59.000Z

242

The Des Plaines River -- Part Two  

NLE Websites -- All DOE Office Websites (Extended Search)

a canal through the Chicago Portage, down the Des Plaines valley, and thence to LaSalle-Peru where the Illinois River became navigable in all seasons. The Northwest Territory...

243

Big Windy (Great Escape Restaurant Turbine) | Open Energy Information  

Open Energy Info (EERE)

Big Windy (Great Escape Restaurant Turbine) Big Windy (Great Escape Restaurant Turbine) Jump to: navigation, search Name Big Windy (Great Escape Restaurant Turbine) Facility Big Windy (Great Escape Restaurant Turbine) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Great Escape Restaurant Location Schiller Park IL Coordinates 41.95547°, -87.865193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.95547,"lon":-87.865193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Winds over Japan  

Science Conference Proceedings (OSTI)

Before World War II, weather forecasters had little knowledge of upper-air wind patterns above 20000 feet. Data were seldom avai able at these heights, and the need was not great because commercial aircraft seldom flew at these altitudes. The war ...

William J. Plumley

1994-01-01T23:59:59.000Z

245

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

246

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

247

Phase changes of ambient particles in the Southern Great Plains of Scot T. Martin,1  

E-Print Network (OSTI)

October 2008; published 18 November 2008. [1] A new instrument, a 1 ? 3 tandem differential mobility, and Riverside, California. Using a hygroscopic-growth tandem differential mobility analyzer (HTDMA), Pitchford deployed previously, and such an instrument could be expected to provide more sensitivity, new statistics

248

ANG coal gasification project management control system report. [Great Plains project  

Science Conference Proceedings (OSTI)

Much time, money and effort has been spent in the forefront of this project for project controls. The work breakdown structure for the systems has been custom designed. The systems, both manual and computerized, have been well scrutinized and chosen by ANG to represent the most cost effective and efficient way of controlling a project the magnitude of $1.5 billion. These systems have been developed in a manner so that information can be gathered as detailed or as summarized as necessary, and in the most timely and expeditious ways.

Not Available

1981-01-01T23:59:59.000Z

249

Duration and Movement of Mesocyclones Associated with Southern Great Plains Thunderstorms  

Science Conference Proceedings (OSTI)

Examination of 320 mesocyclones recorded by the National Severe Storms Laboratory's Doppler radars over Oklahoma and adjacent portions of Texas during 20 spring tornado seasons of 197190 shows that tornado-producing mesocyclones in this region ...

Vincent T. Wood; Rodger A. Brown; Donald W. Burgess

1996-01-01T23:59:59.000Z

250

A Three-Dimensional Numerical Simulation of a Great Plains Dryline  

Science Conference Proceedings (OSTI)

A three-dimensional, nonhydrostatic, nested grid version of the Colorado State University Regional Atmospheric Modeling System (RAMS) was used to perform simulations of an actual dryline that was observed as part of the COPS-91 field experiment ...

B. L. Shaw; R. A. Pielke; C. L. Ziegler

1997-07-01T23:59:59.000Z

251

The Suppression of Deep Moist Convection near the Southern Great Plains Dryline  

Science Conference Proceedings (OSTI)

Deep moist convection failed to initiate over the Texas Panhandle on 6 May 1995 despite expectations to the contrary by the forecasters for the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX). The National Centers for ...

Harald Richter; Lance F. Bosart

2002-07-01T23:59:59.000Z

252

Surface Mesoscale Features as Potential Storm Predictors in the Northern Great PlainsTwo Case Studies  

Science Conference Proceedings (OSTI)

Two mesoscale case studies in the semi-arid climate of southeastern Montana were carried out on 1 May and 3 June 1980. I May was an unstable, rainy day with two rain periods over the mesonet area, and 3 June was a potentially unstable day, with a ...

AndrA. Doneaud; James R. Miller Jr.; David L. Priegnitz; Lakshmana Viswanath

1983-02-01T23:59:59.000Z

253

Great Plains Coal Gasification Plant start-up and modification report. [Lurgi Process  

SciTech Connect

This report will help in designing future coal conversion plants by documenting the areas which need additional research to obtain more reliable process data, more careful planning and equipment selection. The scope of this report is to: describe the problem with the particular process or item of equipment; identify the modification that was implemented to correct the problem; evaluate the impacts of the modification; and document the cost of the modification. Contents include the following: (1) process modifications (coal, oxygen and steam, gasification and gas processing, sulfur recovery, flare system, liquid processing, ash handling and solids disposal, other systems); (2) start-up schedule; (3) SNG production; (4) environmental data; and (5) cost data.

Miller, W.R.; Honea, F.I.; Lang, R.A.; Berty, T.E.; Delaney, R.C.; Hospodarec, R.W.; Mako, P.F.

1986-03-01T23:59:59.000Z

254

(Great Plains Coal Gasification project): Quarterly environmental, safety, medical, and industrial hygiene report, fourth quarter 1986  

SciTech Connect

Contents of this quarterly report include: (1) environmental monitoring program; (2) supplemental environmental program; (3) quality assurance/quality control activities; (4) schedule of activities for next reporting period; (5) safety; (6) medical services; and (7) industrial hygiene. The environmental monitoring program covers: permitting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; environmental incident summary; and regulatory environmental inspections. Supplemental environmental program includes: performance survey; toxicity screening study; data base management system; epidemiology; and contingency program.

Not Available

1987-01-01T23:59:59.000Z

255

Planning and initiation of detailed engineering design for the Great Plains coal gasification project. Final report  

Science Conference Proceedings (OSTI)

During the course of detailed engineering it was expected that preliminary engineering documents would need to be modified. In a number of instances, however, especially for flow diagrams and specifications, the revised preliminary engineering documents became the final approved for construction (AFC) documents. P and ID's and plot plans were updated as a result of the detailed piping design. Equipment data sheets which initially contained basic process data were made mechanically complete and then further updated to reflect the equipment actually purchased. The initial issue of the preliminary engineering documents represent a necessary baseline for monitoring project design changes. Foundation work, equipment specifications and status of engineering in the various process operations are discussed.

Not Available

1980-01-01T23:59:59.000Z

256

Great Plains Coal Gasification project. Quarterly environmental report, third quarter, 1985  

Science Conference Proceedings (OSTI)

Environmental monitoring, supplemental environmental programs and quality assurance/quality control activities are covered in this quarterly report. Under the environmental monitoring program, the following topics are covered: permitting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; and environmental incident summary. The supplemental environmental program covers: performance survey; wastewater control and steam generation system; sulfur control; tar reinjection outage; gasifier effluent control systems; toxicity screening study; toxicant characterization; data base management system; workplace characterization; fugitive emissions; epidemiology; atmospheric program; effects of cooling tower effluents on terrestial ecosystems; and contingency program. 15 figs., 56 tabs.

Not Available

1985-10-01T23:59:59.000Z

257

Great Plains Coal Gasification Project. Quarterly environmental report, second quarter, 1986  

Science Conference Proceedings (OSTI)

Following the executive summary, this quarterly report includes environmental monitoring program, supplemental environmental program, and quality assurance/quality control activities. Under the environmental monitoring program, the following topics are covered: permiting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; environmental incident summary; and regulatory environmental inspections. The supplemental environmental program includes: performance survey; toxicity screening study; data base management system; epidemiology; and contingency program. (AT)

Not Available

1986-07-01T23:59:59.000Z

258

Great Plains coal gasification project. Quarterly technical progress report, first quarter 1986. [Lurgi Process  

SciTech Connect

Environmental monitoring, supplemental enviornmental programs, and quality assurance/quality control activities are covered in this quarterly report. Under the environmental monitoring program, the following topics are covered: permitting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; environmental incident summary; and regulatory environmental inspections. The supplemental environmental program covers: performance survey; wastewater control and steam generation system; sulfur control; tar reinjection outage; gasifier effluent control system; toxicity screening study; toxicant characterization; data base management system; workplace characterization; fugitive emissions; epidemiology; atmospheric program; effects of cooling tower effluents on terrestrial ecosystems; and contingency program.

Not Available

1986-04-01T23:59:59.000Z

259

Great Plains Coal Gasification Project. Quarterly environmental report, fourth quarter 1985  

Science Conference Proceedings (OSTI)

Environmental monitoring, supplemental environmental programs and quality assurance/quality control activities are covered in this quarterly report. Under the environmental monitoring program, the following topics are covered: permitting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; and environmental incident summary. The supplemental environmental program covers: performance survey; wastewater control and steam generation systems; sulfur control; tar reinjection outage; gasifier effluent control systems; toxicity screening study; toxicant characterization; data base management system; workplace characterization; fugitive emissions; epidemiology; atmospheric program; effects of cooling tower effluents on terrestial ecosystems and contingency program. 14 figs., 66 tabs.

Not Available

1986-01-01T23:59:59.000Z

260

(Great Plains coal gasification project): Quarterly environmental report, Third quarter 1986  

Science Conference Proceedings (OSTI)

Environmental monitoring, supplemental environmental programs and quality assurance/quality control activities are presented in this quarterly report. Under the environmental monitoring program, the following topics are covered: permitting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; environmental incident summary; and regulatory environmental inspections. The supplemental environmental program covers: performance survey; toxicity screening study; data base management system; epidemiology; and contingency program. 16 figs., 53 tabs. (AT)

Not Available

1986-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site  

DOE Data Explorer (OSTI)

The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory. (Specialized Interface) (Registration Required)

262

(Great Plains Gasification Associates) quarterly technical progress report, 1st quarter 1985  

SciTech Connect

This quarterly report covers the following subjects: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) raw material and energy consumption for the mine; (8) plant modifications-1985 budget; (9) plant maintenance; (10) safety; (11) industrial hygiene; (12) medical services; and (13) quality assurance/quality control activities.

Not Available

1985-04-30T23:59:59.000Z

263

Convection Initiation along Soil Moisture Boundaries in the Southern Great Plains  

Science Conference Proceedings (OSTI)

Boundaries between two dissimilar air masses have been shown to be the focus region for convection initiation. One feature that has been shown to create these boundaries, as well as mesoscale circulation patterns conducive for convection, is soil ...

John D. Frye; Thomas L. Mote

2010-04-01T23:59:59.000Z

264

The Effect of Irrigation on Warm Season Precipitation in the Southern Great Plains  

Science Conference Proceedings (OSTI)

The synoptic and subsynoptic atmospheric processes that accompany statistically determined periods of irrigation-induced rainfall increases during the warm season in the Texas Panhandle are examined. Major results are as follows.

Anthony G. Barnston; Paul T. Schickedanz

1984-06-01T23:59:59.000Z

265

The ARM Southern Great Plains Central Facility Best Estimate Radiative Flux CD  

Science Conference Proceedings (OSTI)

The BEFlux VAP directly compares data from the three Normal Incidence Perheliometers, shaded pyranometers, and shaded pyrgeometers at the SGP CF. Extensive analysis with several years of data has produced limits of typical ranges of agreement when these instruments are performing as expected. These limits are used to screen the data, and then the average is taken of the two that agree best, given that at least two instruments agree to within the established limits. This is done for the downwelling direct normal and diffuse shortwave, and the downwelling longwave. The total (global) downwelling shortwave is then the sum of the direct and diffuse components.

Long, CN

2002-04-01T23:59:59.000Z

266

Simulation of Surface-Moisture Effects on the Great Plains Low-Level Jet  

Science Conference Proceedings (OSTI)

Convective precipitation and severe weather episodes in the central United States commonly have diurnal oscillations with maximum amplitudes at night. Observations suggest that the timing of some convective events may be driven by diurnal changes ...

Michael D. Mccorcle

1988-09-01T23:59:59.000Z

267

Discriminating Environmental Conditions for Significant Warm Sector and Boundary Tornadoes in Parts of the Great Plains  

Science Conference Proceedings (OSTI)

Using system-relative composites, based on a dataset of significant tornadoes and null supercell events, environmental conditions associated with occurrences of significant tornadoes near discernible surface boundaries were compared to non-...

Joshua M. Boustead; Barbara E. Mayes; William Gargan; Jared Leighton; George Phillips; Philip N. Schumacher

268

Meteorological Conditions during Heat Waves and Droughts in the United States Great Plains  

Science Conference Proceedings (OSTI)

Summertime droughts and/or heat waves in the Kansas City area and their associated large-scale circulation patterns and land-surface moisture conditions are investigates, using climatological monthly mean surface data, rawinsonde data. Palmer ...

Fong-Chiau Chang; John M. Wallace

1987-07-01T23:59:59.000Z

269

Southern Great Plains Dairy Consortium Teaching (http://sgpdct.tamu.edu/)  

E-Print Network (OSTI)

through expanded cooperative programs of the various universities, state agencies and federal agencies at Land Grant Universities. Participating Universities at this point are: New Mexico State, Texas A&M, West Texas A&M, Texas Tech, Abilene Christian, University of Arizona, Colorado State, Oklahoma State

Smirnov, Sergei N.

270

Formation and Development of Nocturnal Boundary Layer Clouds over the Southern Great Plains  

Science Conference Proceedings (OSTI)

The formation and evolution of nocturnal boundary layer clouds over land are studied using a simple well-mixed boundary layer theory. By analyzing the deepening rate of the mixed layer depth based on the turbulent kinetic energy budget of the ...

Ping Zhu; Bruce Albrecht; Jon Gottschalck

2001-06-01T23:59:59.000Z

271

The Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains  

Science Conference Proceedings (OSTI)

Satellite observations of low-level clouds have challenged the idea that increasing liquid water content with temperature combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. The ...

Anthony D. Del Genio; Audrey B. Wolf

2000-10-01T23:59:59.000Z

272

Government Response to Drought in the United States:With Particular Reference to the Great Plains  

Science Conference Proceedings (OSTI)

Drought relief has become an expected response of the federal government to periods of widespreaddrought in the United States. A wide range of emergency, short-term and long-term drought programs wereformulated to deal with the extreme drought of ...

Donald A. Wilhite

1983-01-01T23:59:59.000Z

273

The Impact of Ethanol Plants on Cropland Values in the Great Plains By  

E-Print Network (OSTI)

ABSTRACT: Corn ethanol plants consume large amounts of corn and their location has the potential to alter local crop prices and surrounding agricultural land values. The relationship between ethanol plant location and agricultural land prices is examined using data obtained from the Agricultural Credit Survey administered by the Federal Reserve Bank of Kansas City. The findings indicate that the portion of land price changes attributable to location is consistent with previous estimates of basis changes associated with ethanol plant location. As a result, the land markets appear to be rationally adjusting to the location of ethanol plants.

Jason Henderson; Brent A. Gloy; Jason Henderson

2008-01-01T23:59:59.000Z

274

Simulation of Aerosol-Cloud Interactions in the WRF Model at the Southern Great Plains Site  

E-Print Network (OSTI)

The aerosol direct and indirect effects were investigated for three specific cases during the March 2000 Cloud IOP at the SGP site by using a modified WRF model. The WRF model was previously altered to include a two-moment bulk microphysical scheme for the aerosol indirect effect and a modified Goddard shortwave radiation scheme for the aerosol direct effect. The three cases studied include a developing low pressure system, a low precipitation event of mainly cirrus clouds, and a cold frontal passage. Three different aerosol profiles were used with surface concentrations ranging from 210 cm-3 to 12,000 cm-3. In addition, each case and each aerosol profile was run both with and without the aerosol direct effect. Regardless of the case, increasing the aerosol concentration generally increased cloud water and droplet values while decreasing rain water and droplet values. Increased aerosols also decreased the surface shortwave radiative flux for every case; which was greatest when the aerosol direct effect was included. For convective periods during polluted model runs, the aerosol direct effect lowered the surface temperature and reduced convection leading to a lower cloud fraction. During most convective periods, the changes to cloud, rain, and ice water mixing ratios and number concentrations produced a nonlinear precipitation trend. A balance between these values was achieved for moderate aerosol profiles, which produced the highest convective precipitation rates. In non-convective cases, due to the presence of ice particles, aerosol concentration and precipitation amounts were positively correlated. The aerosol threshold between precipitation enhancement and suppression should be further studied for specific cloud types as well as for specific synoptic weather patterns to determine its precise values.

Vogel, Jonathan 1988-

2012-12-01T23:59:59.000Z

275

A Satellite Perspective of the 3 May 1999 Great Plains Tornado Outbreak within Oklahoma  

Science Conference Proceedings (OSTI)

Geostationary Operational Environmental Satellite (GOES) imagery from 3 May 1999 is examined. Synoptic-scale water vapor imagery shows a deepening low-amplitude upper-level trough over the western United States on 3 May, which develops a negative ...

Dan Bikos; John Weaver; Brian Motta

2002-06-01T23:59:59.000Z

276

NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group; Summer 2004  

Wind Powering America (EERE)

Blackfeet Wind Projects Provide Foundation Blackfeet Wind Projects Provide Foundation for Future Development The winds that blow across the Blackfeet Reservation in Montana are so powerful, they may be able to provide energy to more than 1 million homes. That's the conclusion of scientists, economists, and gov- ernment officials who have measured and evaluated the wind flow from the Rocky Mountains to the plains of the

277

Advance Funding and Development Agreement: Plains & Eastern Clean Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Funding and Development Agreement: Plains & Eastern Clean Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) More Documents & Publications Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Letter from Deputy Secretary Poneman to Clean Line Energy Regarding the Plains & Eastern Clean Line Project Under Section 1222 of EPAct 2005 (April 5, 2012) 2013 Annual Planning Summary for the Southwestern Area Power Administration

278

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

279

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

280

European Wind Atlas: France | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: France European Wind Atlas: France Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: France Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: 130.226.17.201/extra/web_docs/windmaps/france.jpg Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-france,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource map shows resources at 50 meters above ground level for four different topographic conditions, including sheltered terrain, open plain, coastal and hills and ridges. The greatest resources appear to be near the Mediterranean Sea coast, and the second greatest resources are near the English Channel and northern Atlantic coast.

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Estimators for the Standard Deviation of Horizontal Wind Direction  

Science Conference Proceedings (OSTI)

The standard deviation of horizontal wind direction is a central quantity in the description of atmospheric turbulence and of great practical use in dispersion models. As horizontal wind direction is a circular variable, its standard deviation ...

Rudolf O. Weber

1997-10-01T23:59:59.000Z

282

A simulation-based planning system for wind turbine construction  

Science Conference Proceedings (OSTI)

Wind turbine construction is a challenging undertaking due to the need to lift heavy loads to high locations in conditions of high and variable wind speeds. These conditions create great risks to contractors during the turbine assembly process. This ...

Dina Atef; Hesham Osman; Moheeb Ibrahim; Khaled Nassar

2010-12-01T23:59:59.000Z

283

Sliding mode control strategy for variable speed wind turbine  

Science Conference Proceedings (OSTI)

The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, a robust control for variable speed wind power generation that incorporates a doubly feed induction generator is described. ...

Oscar Barambones; Jose Maria Gonzalez De Durana

2009-09-01T23:59:59.000Z

284

Bird Migration and Bias of WSR-88D Wind Estimates  

Science Conference Proceedings (OSTI)

Migrating birds can greatly influence base velocity, velocity azimuth display (VAD), and VAD wind profile products of the WSR-88D. This is documented by comparing estimates of wind velocity and direction from these products with corresponding ...

Sidney A. Gauthreaux Jr.; David S. Mizrahi; Carroll G. Belser

1998-06-01T23:59:59.000Z

285

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

286

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre...

287

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Snake River Plain Geothermal Region Snake River Plain Geothermal Region (Redirected from Snake River Plain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high

288

PLAINS CO2 REDUCTION PARTNERSHIP  

Science Conference Proceedings (OSTI)

The PCOR Partnership continues to make great progress. Task 2 (Deployment Issues) activities have focused on utilizing Dakota Gasification Company (DGC) experience and data with respect to DGC participation in the enhanced oil recovery project at Weyburn, Saskatchewan. A solid line of communication has been developed with the Interstate Oil & Gas Compact Commission (IOGCC) for the mutual benefit of the PCOR Partnership and IOGCC's complementary efforts. Task 3 (Public Education and Outreach) activities have focused on developing a foundation of background materials in order to avoid a duplication of efforts and provide the best outreach and educational materials possible. Progress in Task 4 (Characterization and Evaluation) has included the development of a database format, the preliminary collection of data regarding CO{sub 2} sources and sinks, and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have resulted in a conceptual model for screening and qualitatively assessing sequestration options. Task 5 activities have also been useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Thomas A. Erickson

2004-04-01T23:59:59.000Z

289

EIA: Wind  

U.S. Energy Information Administration (EIA)

Technical information and data on the wind energy industry from the U.S. Energy Information Administration (EIA).

290

Distributed Wind Energy in Idaho  

SciTech Connect

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. â?¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. â?¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. â?¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windâ??s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

291

EA-1955: Campbell County Wind Project, Pollock, South Dakota  

Energy.gov (U.S. Department of Energy (DOE))

DOEs Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Westerns existing transmission line at that location.

292

Cleveland Bay Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cleveland Bay Wind Farm Cleveland Bay Wind Farm Jump to: navigation, search Name Cleveland Bay Wind Farm Facility Cleveland Bay Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Lake Erie Energy Development Corporation / Great Lakes Ohio Wind / Great Lakes Energy Wind LLC / Freshwater Wind LLC / Cavallo Great Lakes Ohio Wind LLC Location Cleveland Bay OH Coordinates 41.608°, -81.809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.608,"lon":-81.809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

High Plains Power Inc | Open Energy Information  

Open Energy Info (EERE)

High Plains Power Inc High Plains Power Inc Place Wyoming Utility Id 8566 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png IRRIGATION Industrial LARGE POWER 500kW OR GREATER TIME OF USE Industrial LARGE POWER DISTRIBUTION SUBSTATION GREATER THAN 500kW LEVEL SERVICE Industrial LARGE POWER DISTRIBUTION SUBSTATION LESS THAN 500kW LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE V2 Industrial

294

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

295

Coriolis Wind | Open Energy Information  

Open Energy Info (EERE)

Coriolis Wind Coriolis Wind Jump to: navigation, search Logo: Coriolis Wind Name Coriolis Wind Place Great Falls, Virginia Zip 22066 Product Mid-Scale Wind Turbine Year founded 2007 Website http://www.corioliswind.com/ Coordinates 38.9981652°, -77.2883157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9981652,"lon":-77.2883157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Geothermal resources of the Alberta Plains  

Science Conference Proceedings (OSTI)

Formation waters of the Alberta Plains are inventoried in a new report prepared for the Renewable Energy Branch, Energy, Mines, and Resources, Canada. Water temperatures, salinities, depths, and the reservoir capacities of the enclosing rocks are included. From geological information and preexisting temperature and gradient data, 21 maps were drawn often rock units and the enclosed fluids. Although some previous site-specific inventories of the geothermal resources of the Alberta Plains have been made, the study is the first comprehensive survey. Capital costs to install geothermal energy recovery operations from scratch are prohibitively high on Canada's Alberta Plains. The geothermal resources there are about 1.5 kilometers deep, and drilling wells to reach them is expensive. For a geothermal recovery operation to be economically feasible, drilling cots must be avoided. One way is through a joint-venture operation with the petroleum industry. A joint venture may be possible because oil extraction often involves the production of large volumes of hot water, a geothermal resource. Typically, after the hot water is brought to the surface with oil, it is injected underground and the heat is never used. Ways to obtain and use this heat follow.

Loveseth, G.E.; Pfeffer, B.J.

1988-12-01T23:59:59.000Z

297

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

298

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

299

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

300

Variability of wind power near Oklahoma City and implications for siting of wind turbines  

SciTech Connect

Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.

Kessler, E.; Eyster, R.

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

302

Advance Funding and Development Agreement: Plains & Eastern Clean Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Funding and Development Agreement: Plains & Eastern Clean Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) More Documents & Publications Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Letter from Deputy Secretary Poneman to Clean Line Energy Regarding the Plains & Eastern Clean Line Project Under Section 1222 of EPAct 2005 (April 5, 2012) EIS-0486: Notice of Intent and Notice of Potential Floodplain and Wetland

303

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high angle to the central and eastern Snake River Plains. Its morphology is

304

The coal-wind connection  

Science Conference Proceedings (OSTI)

The USA now has more than 10,000 MW of wind capacity and more wind farms are expected to be built. However transmissions constraints are great, especially in the Northwest and upper Midwest, where abundant wind resources span sparsely populated regions. These areas also hold major deposits of coal. Partnerships are being developed to share transmission to accommodate both new wind and new coal-fired capacity. Wyoming may well be the epicentre of the issue. Another idea, in wind-prone Texas, is to further integrate wind with baseload fossil power resources by creation of competitive renewable energy zones (CREZs). New transmission corridors will be set up linking the renewable energy zones to power markets in ERCOT, the Electric Reliability Council of Texas. There are problems of co-developing coal and wind capacity with common transmission. If coal gasification technology emerges on a commercial scale there would be a good opportunity for integrated gasification combined cycle which can cycle to firm up variable wind generation. Several coal companies in Wyoming are considering gasifying coal and putting it into the pipeline. 2 photos.

Blankinship, S.

2007-01-15T23:59:59.000Z

305

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

306

Great Lakes | OpenEI  

Open Energy Info (EERE)

Lakes Lakes Dataset Summary Description This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. Source National Renewable Energy Laboratory (NREL) Date Released August 19th, 2010 (4 years ago) Date Updated August 23rd, 2010 (4 years ago) Keywords GIS Great Lakes NREL offshore wind shapefile U.S. wind windspeed Data application/zip icon Download Shapefile (zip, 11.8 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations. DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

307

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Survey (USGS) resource assessments. This report contains EIA projections of future daily production rates using recent USGS resource estimates. The Coastal Plain study area...

308

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil and gas resources of ANWR Coastal Plain (The Oil and Gas Resource Potential of the Arctic...

309

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS:...

310

Potential Oil Production from the Coastal Plain of the Arctic...  

Annual Energy Outlook 2012 (EIA)

Setting Geology 2. Analysis Discussion Resource Assessment Method of Analysis ANWR Coastal Plain Assessment 3. Summary Glossary References Access the PDF version of the...

311

Micro-Earthquake At Snake River Plain Geothermal Region (1976...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Micro-Earthquake At Snake River Plain Geothermal Region (1976) Jump to: navigation, search GEOTHERMAL...

312

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. Description/Summary: The Building and Fire Research Laboratory has an ...

2010-10-04T23:59:59.000Z

313

Fish of the Great Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation FISH OF THE GREAT LAKES As you stand at the top of one of the tallest buildings in downtown...

314

Recent Great Lakes Ice Trends  

Science Conference Proceedings (OSTI)

Analysis of ice observations made by cooperative observers from shoreline stations reveals significant changes in the ice season on the North American Great Lakes over the past 35years. Although the dataset is highly inhomogeneous and year-to-...

Howard P. Hanson; Claire S. Hanson; Brenda H. Yoo

1992-05-01T23:59:59.000Z

315

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

316

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

317

Mid-Atlantic Wind - Overcoming the Challenges  

SciTech Connect

This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

2012-05-31T23:59:59.000Z

318

Mid-Atlantic Wind - Overcoming the Challenges  

SciTech Connect

This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

2012-06-29T23:59:59.000Z

319

NREL GIS Data: U.S. Great Lakes Offshore Windspeed 90m Height High  

Open Energy Info (EERE)

Great Lakes Offshore Windspeed 90m Height High Great Lakes Offshore Windspeed 90m Height High Resolution Dataset Summary Description This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. The data provide an estimate of annual average wind speed at 90 meter height above surface for specific offshore regions of the United States. To learn more, please see the Assessment of Offshore Wind Energy Resources for the United States. These data were produced in cooperation with U.S. Department of Energy, and have been validated by NREL. To download state wind resource maps, visit Wind Powering America. In order to ensure the downloadable shapefile is current, please compare the date updated on this page to the last updated date on the NREL GIS Wind Data webpage.

320

Reduced Loss in Precipitation Measurements Using a New Wind Shield for Raingages  

Science Conference Proceedings (OSTI)

A problem of great concern in precipitation measurements is the wind loss. This paper presents a new wind shield that reduces this loss. Tests of the new shield were made in a wind tunnel and in the field. The wind shield consisted of a flange ...

Anders Lindroth

1991-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Plains CO2 Reduction Partnership PCOR | Open Energy Information  

Open Energy Info (EERE)

CO2 Reduction Partnership PCOR CO2 Reduction Partnership PCOR Jump to: navigation, search Name Plains CO2 Reduction Partnership (PCOR) Place Grand Forks, North Dakota Zip 58202-9018 Product North Dakota-based consortium researching CO2 storage options. PCOR is busy with the ECBM in the Unminable Lignite Research Project. References Plains CO2 Reduction Partnership (PCOR)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Plains CO2 Reduction Partnership (PCOR) is a company located in Grand Forks, North Dakota . References ↑ "Plains CO2 Reduction Partnership (PCOR)" Retrieved from "http://en.openei.org/w/index.php?title=Plains_CO2_Reduction_Partnership_PCOR&oldid=349772"

323

Proposed Project: Plains & Eastern Clean Line | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Section 1222 of the Energy Policy Act 2005 » Proposed Project: Plains & Section 1222 of the Energy Policy Act 2005 » Proposed Project: Plains & Eastern Clean Line Proposed Project: Plains & Eastern Clean Line On June 10, 2010, the Department of Energy published in the Federal Register a Request for Proposals (RFP) for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act (EPAct) of 2005. In response, Clean Line Energy Partners, LLC submitted an application for its Plains & Eastern Clean Line project. DOE has concluded that Clean Line's proposal was responsive to the RFP, and it is currently under consideration. The proposed Plains & Eastern Clean Line project (the proposed project) would include an overhead +/- 600 kV direct current electric transmission system and associated facilities with the capacity to deliver approximately

324

Wind News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

325

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains,...

326

Northern Plains Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Coop Coop Jump to: navigation, search Name Northern Plains Electric Coop Place North Dakota Utility Id 13196 Utility Location Yes Ownership C NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CONTROLLED IRRIGATION SERVICE Commercial CONTROLLED OFF-PEAK SERVICE - DUAL HEAT / STORAGE HEAT (Under LPS) Industrial CONTROLLED OFF-PEAK SERVICE DUAL -HEAT / STORAGE HEAT (Under General Service ) Residential General Service - Rural and Seasonal Residential General Service - Urban Single Phase Residential

327

Flow Test At Snake River Plain Region (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Flow Test At Snake River Plain Region (DOE GTP) Exploration Activity Details Location Snake River Plain Geothermal Region Exploration Technique Flow Test Activity Date Usefulness...

328

Slim Holes At Snake River Plain Region (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Snake River Plain Region (DOE GTP) Exploration...

329

Great Basin | Open Energy Information  

Open Energy Info (EERE)

Great Basin Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Basin Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.609920257001,"lon":-114.0380859375,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

The Great Gas Hydrate Escape  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Gas Great Gas Hydrate Escape The Great Gas Hydrate Escape Computer simulations revealing how methane and hydrogen pack into gas hydrates could enlighten alternative fuel production and carbon dioxide storage January 25, 2012 | Tags: Carver, Chemistry, Energy Technologies, Hopper, Materials Science PNNL Contact: Mary Beckman , +1 509 375-3688, mary.beckman@pnl.gov NERSC Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov The methane trapped in frozen water burns easily, creating ice on fire. For some time, researchers have explored flammable ice for low-carbon or alternative fuel or as a place to store carbon dioxide. Now, a computer analysis of the ice and gas compound, known as a gas hydrate, reveals key details of its structure. The results show that hydrates can hold hydrogen

331

Why Sequence Great Salt Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Salt Lake? Great Salt Lake? On average, the Great Salt Lake is four times saltier than the ocean and also has heavy metals, high concentrations of sulfur and petroleum seeps. In spite of all this, the lake is the saltiest body of water to support life. The lake hosts brine shrimp, algae and a diverse array of microbes, not to mention the roughly 5 million birds that migrate there annually. The secret to these microbes' ability to survive under such harsh conditions might be revealed in their genes. Researchers expect the genetic data will provide insight into how the microorganisms tolerate pollutants such as sulfur and detoxify pollutants such as sulfur and heavy metals like mercury. The information could then be used to develop bioremediation techniques. Researchers also expect that sequencing microorganisms sampled

332

Trimont Area Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Trimont Area Wind Farm Trimont Area Wind Farm Jump to: navigation, search Name Trimont Area Wind Farm Facility Trimont Area Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PPM Energy Inc Developer PPM Energy Inc Energy Purchaser Great River Energy Location Southwest MN MN Coordinates 43.779594°, -94.852874° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.779594,"lon":-94.852874,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Chandler Hills Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Chandler Hills Wind Farm Chandler Hills Wind Farm Jump to: navigation, search Name Chandler Hills Wind Farm Facility Chandler Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terra-Gen Power Energy Purchaser Great River Energy Location Chandler Murray County MN Coordinates 43.916988°, -95.953898° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.916988,"lon":-95.953898,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

335

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

336

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

337

Wind-Stress Coefficients at Light Winds  

Science Conference Proceedings (OSTI)

The increase of the wind-stress coefficient with wind velocity was found to start with winds as light as 3 m s?1, below which, following the formula for aerodynamically smooth flows, the wind-stress coefficient decreases as the wind velocity ...

Jin Wu

1988-12-01T23:59:59.000Z

338

Wind Course in Utah Takes Off | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Course in Utah Takes Off Wind Course in Utah Takes Off Wind Course in Utah Takes Off April 15, 2010 - 6:19pm Addthis Two women inspired by a school assignment that blossomed into a 200-megawatt wind farm in Milford, Utah, have developed a training program to help people launch wind projects. After hearing how shop teacher Andy Swapp and his eighth-grade students attracted the attention of a wind energy company with the wind potential data they collected from Andy's farm, Sara Baldwin and Bonnie Christiansen started to wonder. If everyday people like Andy and his students can facilitate the development of a wind park with 97 turbines, maybe other people in Utah could too. "We realized that we have great folks working on wind energy," says Sara, a senior policy and regulatory associate of Utah Clean Energy, a

339

Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint  

DOE Green Energy (OSTI)

Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

Allen, A.; Zhang, Y. C.; Hodge, B. M.

2013-09-01T23:59:59.000Z

340

Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers  

DOE Green Energy (OSTI)

This paper assesses the potential for U.S. offshore wind to meet the energy needs of many coastal and Great Lakes states.

Musial, W.; Ram, B.

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

342

Energy directory of researchers in Great Plains/Great Basin area (Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, Wyoming)  

SciTech Connect

The directory lists in Part 1 names of researchers involved in energy R and D in Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, and Wyoming by category. Within each category each researcher is given with his phone number when known, his affiliation, the title of his research, and publication information. These categories are listed and defined in ERDA Energy Information Data Base: Subject Categories, TID-4584-R2 (May 1977). In Part 2 the principal investigators are arranged by the state (two-letter state abbreviation) in which the research is performed. Researchers are alphabetically listed by the first author. If research on a project is performed in more than one state, the abbreviations for all the states involved will appear with the names of the project's principal investigators listed below. Indexes included are an investigator index, a research institute index, and a location index.

Caton, G.M.; Michelson, D.C.; Danford, G.S.; Frogge, L.M. (comps.)

1977-10-01T23:59:59.000Z

343

Energy directory of organizations and researchers in Great Plains/Great Basin area (Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, Wyoming)  

SciTech Connect

The directory lists research institutes and researchers involved in energy R and D in Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, and Wyoming. The first section of this publication, Organizations and Researchers, lists the names of colleges and organizations which are involved in energy R and D in these ten western states. The name of the organization is arranged in alphabetical order and printed below each organization are the name(s) of the researchers in the organization, their phone numbers if known, and the titles of their research projects. Section 2, Research Organizations by State, lists the research organizations performing energy R and D within each of the ten states mentioned. The alphabetical arrangement is first by state and then by research organization.

Caton, G.M.; Michelson, D.C.; Danford, G.S.; Frogge, L.M. (comps.)

1977-10-01T23:59:59.000Z

344

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

345

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

346

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the...

347

NREL: Wind Research - Wind Project Development Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Project Development Updates A 2.3 megawatt Siemens wind turbine nacelle on route to the Record Hill Wind project in Roxbury, Maine. January 14, 2013 As a result of the...

348

Topic: Wind Engineering  

Science Conference Proceedings (OSTI)

Topic: Wind Engineering. Forty-Fourth Meeting of the UJNR Panel on Wind and Seismic Effects. NIST researchers collected ...

2011-08-31T23:59:59.000Z

349

Extreme Wind Speeds: Publications  

Science Conference Proceedings (OSTI)

... "Algorithms for Generating Large Sets of Synthetic Directional Wind Speed Data for Hurricane, Thunderstorm, and Synoptic Winds," NIST Technical ...

2013-08-19T23:59:59.000Z

350

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Site Map Printable Version Offshore Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data...

351

Reliant Coastal Plains Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Coastal Plains Biomass Facility Coastal Plains Biomass Facility Jump to: navigation, search Name Reliant Coastal Plains Biomass Facility Facility Reliant Coastal Plains Sector Biomass Facility Type Landfill Gas Location Galveston County, Texas Coordinates 29.3763499°, -94.8520636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.3763499,"lon":-94.8520636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Northern Plains EC- Residential and Commercial Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Northern Plains Electric Cooperative is a member-owned electric cooperative that serves customers in east-central North Dakota. This EMC offers a low-interest loan program residential and...

353

Synoptic-Scale Environments Associated with High Plains Severe Thunderstorms  

Science Conference Proceedings (OSTI)

Typical synoptic-scale features are described for summertime severe thunderstorms on the High Plains. Severe weather generally occurs on several days in succession, under conditions that are relatively benign in terms of conventional severe ...

Charles A. Doswell

1980-11-01T23:59:59.000Z

354

Doppler Radar Analysis of a Snake River Plain Convergence Event  

Science Conference Proceedings (OSTI)

A convergence zone periodically forms in the Snake River plain (SRP) of eastern Idaho as a result of terrain-induced boundary layer flow under synoptic northwesterly flow at low and midlevels. Complex terrain in central and eastern Idaho is ...

Thomas A. Andretta; Dean S. Hazen

1998-06-01T23:59:59.000Z

355

California Wind Energy Forecasting System Development and Testing, Phase 1: Initial Testing  

Science Conference Proceedings (OSTI)

Wind energy forecasting uses sophisticated numerical weather forecasting and wind plant power generation models to predict the hourly energy generation of a wind power plant up to 48 hours in advance. As a result, it has great potential to address the needs of the California Independent System Operator (ISO) and the wind plant operators, as well as power marketers and buyers and utility system dispatch personnel. This report gives the results of 28 days of testing of wind energy forecasting at a Californ...

2003-01-31T23:59:59.000Z

356

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

357

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

358

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

359

Great Lakes Bioenergy Research Center Technologies Available ...  

Great Lakes Bioenergy Research Center Technologies Available for Licensing Established by the Department of Energy (DOE) in 2007, the Great Lakes Bioenergy Research ...

360

Diurnal Winds in the Himalayan Kali Gandaki Valley. Part I: Observations  

Science Conference Proceedings (OSTI)

The diurnal wind system of the Kali Gandaki Valley in Nepal was explored in September and October 1998 in a field campaign using pilot balloons as the main observational tool. This valley connects the Plateau of Tibet with the Indian plains. The ...

Joseph Egger; Sapta Bajrachaya; Ute Egger; Richard Heinrich; Joachim Reuder; Pancha Shayka; Hilbert Wendt; Volkmar Wirth

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2  

DOE Green Energy (OSTI)

Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

Lantz, E.; Wiser, R.; Hand, M.

2012-05-01T23:59:59.000Z

362

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

363

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

364

Wind Energy 101 | Open Energy Information  

Open Energy Info (EERE)

Energy 101 Energy 101 Jump to: navigation, search The 63-MW Dry Lake Wind Power Project in Arizona is the first utility-scale power project. The Salt River Project is purchasing 100% of the power from the Phase I of this project for the next 20 years. Photo from Iberdrola Renewables, NREL 16692 Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.[1] The following links provide more information about wind energy basics.

365

Westridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Westridge Wind Farm Westridge Wind Farm Jump to: navigation, search Name Westridge Wind Farm Facility Westridge Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Farmers' cooperatives with Dan Juhl Energy Purchaser Xcel Energy/Great River Energy Location Various MN Coordinates 44.115854°, -96.115186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.115854,"lon":-96.115186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Horseshoe Bend Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Horseshoe Bend Wind Farm Horseshoe Bend Wind Farm Jump to: navigation, search Name Horseshoe Bend Wind Farm Facility Horseshoe Bend Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner United Materials Developer Exergy Development Group Energy Purchaser Idaho Power Location West of Great Falls MT Coordinates 47.497516°, -111.432567° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.497516,"lon":-111.432567,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Elm Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Elm Creek Wind Farm Elm Creek Wind Farm Jump to: navigation, search Name Elm Creek Wind Farm Facility Elm Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Great River Energy Location MN Coordinates 43.780285°, -94.845586° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.780285,"lon":-94.845586,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Farmer's Cooperatives Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farmer's Cooperatives Wind Farm Farmer's Cooperatives Wind Farm Jump to: navigation, search Name Farmer's Cooperatives Wind Farm Facility Farmer's Cooperatives Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer DanMar & Associates Energy Purchaser Xcel/ Great River Energy Location Jackson County MN Coordinates 43.612366°, -95.142403° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.612366,"lon":-95.142403,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

A Modeling Study of Irrigation Effects on Surface Fluxes and LandAirCloud Interactions in the Southern Great Plains  

Science Conference Proceedings (OSTI)

In this study, the authors incorporate an operational-like irrigation scheme into the Noah land surface model as part of the Weather Research and Forecasting Model (WRF). A series of simulations, with and without irrigation, is conducted over the ...

Yun Qian; Maoyi Huang; Ben Yang; Larry K. Berg

2013-06-01T23:59:59.000Z

370

Water vapor from sunradiometry in comparison wit microwave and balloon-sonde measurements at the Southern Great Plains ARM site  

SciTech Connect

Water vapor plays an important role in weather in climate; it is the most important greenhouse gas and the most variable in space and time. The DOE Atmospheric Radiation Measurement (ARM) program is studying the column abundance and distribution of water vapor with altitude. Although the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is mainly for measurements of spectral short-wave radiation and spectral extinction by aerosol, it can also measure total column water vapor. This paper reports a preliminary investigation of MFRSR`s capabilities for total column water vapor under cloudless conditions.

Michalsky, J.J.; Harrison, L.C. [State Univ. of New York, Albany, NY (United States); Liljegren, J.C. [Pacific Northwest Lab., Richland, WA (United States)

1994-12-31T23:59:59.000Z

371

Surface Soil Moisture Retrieval and Mapping Using High-Frequency Microwave Satellite Observations in the Southern Great Plains  

Science Conference Proceedings (OSTI)

Studies have shown the advantages of low-frequency (<5 GHz) microwave sensors for soil moisture estimation. Although higher frequencies have limited soil moisture retrieval capabilities, there is a vast quantity of systematic global high-...

Thomas J. Jackson; Ann Y. Hsu; Peggy E. O'Neill

2002-12-01T23:59:59.000Z

372

A Method for Estimating Planetary Boundary Layer Heights and Its Application over the ARM Southern Great Plains Site  

Science Conference Proceedings (OSTI)

A new objective method to determine the height of the planetary boundary layer (PBL) is presented here. PBL heights are computed using the statistical variance and kurtosis of dewpoint and virtual potential temperature differences measured from ...

Paul Schmid; Dev Niyogi

2012-03-01T23:59:59.000Z

373

Great Plains coal-gasification project Mercer County, North Dakota quarterly technical and environmental report. Fourth quarter, 1982  

SciTech Connect

Engineering activity was essentially on schedule for the plant with no major reasonably forseeable problems which could impact the scheduled start up date for full production. Major engineering efforts currently in progresss at the end of the fourth qquarter include the completion of isometric piping drawings and the completion of the design and release of electrical instrumentation. Engineering support for the subcontracting program is also a high priority. Construction activities accomplished work on a wide range of work fronts considering the time of year. Although some deliveries of equipment are impacting some construction progress, increased expeditiing efforts should remedy this problem in the future. Start Up Planning is progressing at a steady pace. Interfacing between forces and operating personnel is now occurring on a regular basis. Overall, activities remain on schedule to meet start up and coal delivery dates as well as the completion of the pipeline.

Not Available

1982-01-01T23:59:59.000Z

374

Estimating Monthly Mean Water and Energy Budgets over the Central U.S. Great Plains. Part I: Evapoclimatonomy Model Formulation  

Science Conference Proceedings (OSTI)

A modified form of Lettau's evapoclimatonomy model is used to calculate the model response functions for runoff, soil moisture, change of soil moisture with time, and evapotranspiration. The model is implemented for the state of Kansas with ...

R. T. Pinker; L. A. Corio

1987-06-01T23:59:59.000Z

375

Estimating Monthly Mean Water and Energy Budgets over the Central U.S. Great Plains. Part II: Evapoclimatonomy Experiments  

Science Conference Proceedings (OSTI)

The evapoclimatonomy model of Lettau (as implemented in Part I by Pinker and Corio) was designed to be applied on climatic time scales. The validity of the model on shorter time scales could extend its usefulness beyond what it was intended for. ...

L. A. Corio; R. T. Pinker

1987-06-01T23:59:59.000Z

376

Temporal Variations of Land Surface Microwave Emissivities over the Atmospheric Radiation Measurement Program Southern Great Plains Site  

Science Conference Proceedings (OSTI)

Land surface microwave emissivities are important geophysical parameters for atmospheric, hydrological, and biospheric studies. This study estimates land surface microwave emissivity using an atmospheric microwave radiative transfer model and a ...

Bing Lin; Patrick Minnis

2000-07-01T23:59:59.000Z

377

Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling  

E-Print Network (OSTI)

a mixed forest from tall tower mixing ratio measurements,vapor measurements from a tall tower, Journal of Geophysical

Riley, W. J.

2010-01-01T23:59:59.000Z

378

Long-Term Trends in Downwelling Spectral Infrared Radiance over the U.S. Southern Great Plains  

Science Conference Proceedings (OSTI)

A trend analysis was applied to a 14-yr time series of downwelling spectral infrared radiance observations from the Atmospheric Emitted Radiance Interferometer (AERI) located at the Atmospheric Radiation Measurement Program (ARM) site in the U.S. ...

P. Jonathan Gero; David D. Turner

2011-09-01T23:59:59.000Z

379

Analysis of Ground-Measured and Passive-Microwave-Derived Snow Depth Variations in Midwinter across the Northern Great Plains  

Science Conference Proceedings (OSTI)

Accurate estimation of snow mass is important for the characterization of the hydrological cycle at different space and time scales. For effective water resources management, accurate estimation of snow storage is needed. Conventionally, snow ...

A. T. C. Chang; J. L. Foster; R. E. J. Kelly; E. G. Josberger; R. L. Armstrong; N. M. Mognard

2005-02-01T23:59:59.000Z

380

Wide-Angle Imaging Lidar Deployment at the ARM Southern Great Plains Site: Intercomparison of Cloud Property Retrievals  

Science Conference Proceedings (OSTI)

The Wide-Angle Imaging Lidar (WAIL), a new instrument that measures cloud optical and geometrical properties by means of off-beam lidar returns, was deployed as part of a multi-instrument campaign to probe a cloud field at the Atmospheric ...

Igor N. Polonsky; Steven P. Love; Anthony B. Davis

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

HOME GLOBAL NATIONAL POLITICS BUSINESS LIVING OPINION YOUR ICT NORTHEAST SOUTHEAST GREAT LAKES MIDWEST PLAINS SOUTHWEST NORTHWEST ALASKA/HAWAII  

E-Print Network (OSTI)

, Blackfeet Tribe of Montana and Canada, director of the Rocky Mountain Indian Chamber of Commerce; Donna

Neff, Jason

382

Estimating above-ground net primary productivity of the tallgrass prairie ecosystem of the Central Great Plains using AVHRR NDVI  

Science Conference Proceedings (OSTI)

Above-ground net primary productivity ANPP is indicative of an ecosystem's ability to capture solar energy and convert it to organic carbon or biomass, which may be used by consumers or decomposers, or stored in the form of living and nonliving organic ...

Nan An, KevinP. Price, JohnM. Blair

2013-06-01T23:59:59.000Z

383

Water vapor from sunradiometry in comparison with microwave and balloon-sonde measurements at the Southern Great Plains ARM Site  

SciTech Connect

Water vapor plays a fundamental role in weather and climate. It is the most important greenhouse gas and the most variable in space and time. The DOE Atmospheric Radiation Measurement program is devoting a large fraction of its resources for the accurate characterization of the column abundance and the distribution of water vapor with altitude. Balloon sondes, microwave radiometers, and Raman lidars are the major instruments either currently in use or under consideration for these tasks. Although the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is primarily intended for use in accurate measurements of spectral short-wave radiation and in the measurement of spectral extinction by aerosol, it has the potential to measure total column water vapor as well. In this paper the authors report on a preliminary investigation of the MFRSR`s capabilities with regard to accurate measurements of total column water vapor at times when there is a clear path to the sun, i.e., cloudless conditions.

Michalsky, J.J.; Harrison, L.C. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center; Liljegren, J.C. [Pacific Northwest Lab., Richland, WA (United States)

1994-01-01T23:59:59.000Z

384

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

385

Horizon Wind  

E-Print Network (OSTI)

The Washington Department of Fish and Wildlife (WDFW) does not have regulatory authority specific to wind power development at this time. WDFW is an agency with environmental expertise as provided for through the Washington Administrative Code (WAC) 197-11-920. Comments related to environmental impacts are provided to regulatory authorities through the State Environmental Policy Act (SEPA) Revised Code of Washington (RCW) 43.21C review process.

Cover Photo; Nina Carter; Heath Packard; Lisa Paribello; Craig Dublanko; Dana Peck; Nicole Hughes; Bill Robinson; Robert Kruse; Arlo Corwin; Joe Buchanan; Ted Clausing; Eric Cummins; Travis Nelson; Eric Pentico; Mike Ritter; Jeff Tayer; James Watson; William Weiler; David Mcclure

2009-01-01T23:59:59.000Z

386

Utility Wind Integration Group Distributed Wind/Solar Interconnection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Wind Integration Group Distributed WindSolar Interconnection Workshop Utility Wind Integration Group Distributed WindSolar Interconnection Workshop May 21, 2013 8:00AM...

387

The Wind Energy Outlook Scenarios 1 India Wind Energy  

E-Print Network (OSTI)

1 ?Status of wind energy in India ????????????????????6 Wind energy in India????????????????????????????????????????????????????????????????????????????????????7 Wind power resource assessment?????????????????????????????????????????????????????????6 Wind power installations by state?????????????????????????????????????????????????????????8

unknown authors

2012-01-01T23:59:59.000Z

388

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

389

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

390

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

391

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating...

392

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Jump to: navigation, search Name Solar Wind Place Krasnodar, Romania Zip 350000 Sector Solar, Wind energy Product Russia-based PV product manufacturer. Solar Wind manufactures...

393

EERE: Wind Program Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

wind projects and offshore wind resource potential. Offshore Wind R&D DOE makes strategic research & deployment investments to launch domestic offshore wind industry....

394

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

A. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.D.C. : American Wind Energy Association. American Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

395

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

396

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

399

North Dakota Company Wins Praise for Wind Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects March 12, 2010 - 4:48pm Addthis Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing hundreds of megawatts of power to the grid and putting hundreds of people to work. Take two of Basin Electric Power Cooperative's PraireWinds projects, for example. The 80 wind turbines scattered across the plains in Minot, N.D., are generating enough energy to power about 35,000 homes a year.

400

North Dakota Company Wins Praise for Wind Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects March 12, 2010 - 4:48pm Addthis Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing hundreds of megawatts of power to the grid and putting hundreds of people to work. Take two of Basin Electric Power Cooperative's PraireWinds projects, for example. The 80 wind turbines scattered across the plains in Minot, N.D., are generating enough energy to power about 35,000 homes a year.

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL: Wind Research - Information and Outreach  

NLE Websites -- All DOE Office Websites (Extended Search)

small wind systems. Printable Version Wind Research Home Capabilities Projects Offshore Wind Research Large Wind Turbine Research Midsize Wind Turbine Research Small Wind Turbine...

402

Des Plaines, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Des Plaines, Illinois: Energy Resources Des Plaines, Illinois: Energy Resources (Redirected from Des Plaines, IL) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0333623°, -87.8833991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0333623,"lon":-87.8833991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Measurement of Infrasound Emissions from Wind Turbines Dave Pepyne, Michael Zink and Jamyang Tenzin  

E-Print Network (OSTI)

Measurement of Infrasound Emissions from Wind Turbines Dave Pepyne, Michael Zink and Jamyang Tenzin energy has made wind turbine technology a suitable candidate for pollution-free energy. With its great that received many complaints from the residents living near the large wind turbine poles. Many scientists

Mountziaris, T. J.

404

Adaptive variable structure control law for a variable speed wind turbine  

Science Conference Proceedings (OSTI)

The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, an adaptive robust control for a doubly feed induction generator drive for variable speed wind power generation is described. ... Keywords: modeling and simulation, variable structure control, wind turbine control

Oscar Barambones; Jose Maria Gonzalez De Durana; Patxi Alkorta; Jose Antonio Ramos; Manuel De La Sen

2011-05-01T23:59:59.000Z

405

Planning maritime logistics concepts for offshore wind farms: a newly developed decision support system  

Science Conference Proceedings (OSTI)

The wind industry is facing new, great challenges due to the planned construction of thousands of offshore wind turbines in the North and Baltic Sea. With increasing distances from the coast and rising sizes of the plants the industry has to face the ... Keywords: assembly, installation, installation vessel, logistics concepts, logistics strategies, maritime supply chain, offshore wind, production, simulation

Kerstin Lange; Andr Rinne; Hans-Dietrich Haasis

2012-09-01T23:59:59.000Z

406

Wind flow modeling and simulation over the Giza Plateau cultural heritage site in Egypt  

Science Conference Proceedings (OSTI)

In this article, the wind flow over one of the most important Egyptian historical heritage sites, the Giza Plateau, was investigated using the Computational Fluid Dynamics (CFD) state-of-the-art techniques. The present study addresses the influences ... Keywords: Cultural heritage, Giza Plateau, Great Sphinx, computational fluid dynamics, wind modeling and simulation, wind over heritage sites

Ashraf S. Hussein; Hisham El-Shishiny

2009-11-01T23:59:59.000Z

407

The Santa Ana Winds of California  

Science Conference Proceedings (OSTI)

A 33-yr, numerical dataset of the occurrence of Santa Ana winds for the period 19682000 has been created and validated. Daily Weather Maps were examined to identify the days when a surface high pressure system existed over the Great Basin ...

M. N. Raphael

2003-08-01T23:59:59.000Z

408

The driving forces behind community and corporate ownership of wind energy in Europe, with implications for New Zealand.  

E-Print Network (OSTI)

??This research assesses the mechanisms that have affected community and corporate ownership of wind power in Europe. Community ownership has proven to be a great (more)

Campbell, Sarah

409

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

2006-05-01T23:59:59.000Z

410

Wind Power Today  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

411

Wind energy manual  

E-Print Network (OSTI)

Objectives: The course introduces principles of wind power production, design of wind turbines, location and design of wind farms, control of turbines and wind farms, predictive modeling, diagnostics, operations and maintenance, condition monitoring, health monitoring and of turbine components and systems, wind farm performance optimization, and integration of wind power with a grid. The modeling and analysis aspect of the topics discussed in the class will be illustrated with examples and case studies. Textbook: References:

A. Vieira; Da Rosa; Fundamentals Renewable; Energy Processes; San Diego; Jacob Kirpes; Small Wind

2013-01-01T23:59:59.000Z

412

NREL: Wind Research - Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A...

413

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment and Characterization Defining, measuring, and forecasting land-based and offshore wind resources Environmental Impacts and Siting of Wind Projects Avoiding,...

414

Wind/Hydro Study  

NLE Websites -- All DOE Office Websites (Extended Search)

WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

415

Wind Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain.

416

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

417

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

418

Wind energy bibliography  

DOE Green Energy (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

419

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

422

Commonwealth Wind Incentive Program Micro Wind Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Through the Commonwealth Wind Incentive Program Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

423

Wind Power Today: Federal Wind Program Highlights  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

Not Available

2005-04-01T23:59:59.000Z

424

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

Bolinger, Mark

2010-01-01T23:59:59.000Z

425

Plain Language: A Commitment to Writing You Can Understand | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plain Language: A Commitment to Writing You Can Understand Plain Language: A Commitment to Writing You Can Understand Plain Language: A Commitment to Writing You Can Understand The Plain Writing Act of 2010 requires federal agencies to write "clear Government communication that the public can understand and use." President Obama also emphasized the importance of establishing "a system of transparency, public participation, and collaboration" in his January 21, 2009, Memorandum on Transparency and Open Government. We here at the Department of Energy are committed to writing new documents in plain language by October 2011, using the Federal Plain Language Guidelines. We have assigned staff to oversee our plain language efforts: Michael Coogan, Plain Language Contact We're training our employees and have strengthened our oversight process.

426

Benthic Observations on the Madeira Abyssal Plain: Currents and Dispersion  

Science Conference Proceedings (OSTI)

An experiment to measure near-bottom currents on the Madeira Abyssal Plain is described. The moorings placed near 33N, 22W were separated by 540 km with instruments at 10, 100 and 600 m above the bottom (depth 5300 m). Rotor stalling occurred ...

Peter M. Saunders

1983-08-01T23:59:59.000Z

427

High Plains Severe WeatherTen Years After  

Science Conference Proceedings (OSTI)

More than a decade ago, a study was published that identified a short list of precursor conditions for severe thunderstorms on the High Plains of the United States. The present study utilizes data from the summer months of ten convective seasons ...

John F. Weaver; Nolan J. Doesken

1991-09-01T23:59:59.000Z

428

Benthic Observations on the Madeira Abyssal Plain: Fronts  

Science Conference Proceedings (OSTI)

Analysis of data from a mooring with five vector-averaging current meters between 10 and 70 m above the bed of the Madeira Abyssal Plain reveals the existence of narrow regions with relatively large gradients of potential temperature, or fronts....

S. A. Thorpe

1983-08-01T23:59:59.000Z

429

Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain  

E-Print Network (OSTI)

Plain Aquifer Sediments at the Idaho National Laboratory, Idaho Scientific Investigations Report 2008 Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho By Kim S. Perkins saturated hydraulic conductivity of Snake River Plain aquifer sediments at the Idaho National Laboratory

430

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Applications: Operational wind turbines  

E-Print Network (OSTI)

Capability Applications: Operational wind turbines Benefits: Optimize wind turbine performance Summary: Researchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic

432

NREL: Wind Research - Small Wind Site Assessment: Wind Powering...  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental impacts have increased the demand for small wind energy systems for homeowners, schools, businesses, and local governments. Over the past decade, the knowledge,...

433

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

434

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

435

Wind energy, offers considerable promise: the wind itself is free,  

E-Print Network (OSTI)

Wind energy, offers considerable promise: the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise: the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

436

Wind Power Outlook 2004  

DOE Green Energy (OSTI)

The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

anon.

2004-01-01T23:59:59.000Z

437

Wind Resource Maps (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

438

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

439

NREL: Wind Research - Wind Applications Center Valuable Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs,...

440

Wind Powering America Webinar: Wind Power Economics: Past, Present...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind...

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Wind Research - Small Wind Turbine Independent Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Small Wind Turbine Independent Testing One of the barriers for the small wind market has been the lack...

442

Discussion of Ultimate Wind Load Design Gust Wind Speeds ...  

Science Conference Proceedings (OSTI)

... Ind. Aerodyn., 97(34), 120131. Peterka, JA (2001). Database of peak gust wind speeds, Texas Tech/ CSU. Extreme winds and wind effects on ...

2013-08-19T23:59:59.000Z

443

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network (OSTI)

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

444

2009 Great Places Awards -- Call for Submissions  

E-Print Network (OSTI)

2009 Great Places Awards Places, the Environmental Designannounce the twelfth annual awards program for Place Design,ipation of Metropolis, the awards program has a new name in

2008-01-01T23:59:59.000Z

445

Mutations of the GREAT gene cause cryptorchidism  

E-Print Network (OSTI)

DDBJ/EMBL/GenBank accession no. AF453828 In humans, failure of testicular descent (cryptorchidism) is one of the most frequent congenital malformations, affecting 13 % of newborn boys. The clinical consequences of this abnormality are infertility in adulthood and a significantly increased risk of testicular malignancy. Recently, we described a mouse transgene insertional mutation, crsp, causing high intraabdominal cryptorchidism in homozygous males. A candidate gene Great (G-protein-coupled receptor affecting testis descent), was identified within the transgene integration site. Great encodes a seven-transmembrane receptor with a close similarity to the glycoprotein hormone receptors. The Great gene is highly expressed in the gubernaculum, the ligament that controls testicular movement during development, and therefore may be responsible for mediating hormonal signals that affect testicular descent. Here we show that genetic targeting of the Great gene in mice causes infertile bilateral intraabdominal cryptorchidism. The mutant gubernaculae fail to differentiate, indicating that the Great gene controls their development. Mutation screening of the human GREAT gene was performed using DHPLC analysis of the genomic DNA from 60 cryptorchid patients. Nucleotide variations in GREAT cDNA were found in both the patient and the control populations. A unique missense mutation (T222P) in the ectodomain of the GREAT receptor was identified in one of the patients. This mutant receptor fails to respond to ligand stimulation, implicating the GREAT gene in the etiology in some cases of cryptorchidism in humans.

Ivan P. Gorlov; Aparna Kamat; Natalia V. Bogatcheva; Eric Jones; Dolores J. Lamb; Anne Truong; Colin E. Bishop; Ken Mcelreavey; Er I. Agoulnik

2002-01-01T23:59:59.000Z

446

Blowing in the Wind ...Offshore | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore February 10, 2011 - 9:28am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What will this project do? The new offshore wind strategy lays out a path to potentially have 54 gigawatts of offshore wind capacity by 2030, enough to power more than 15 million homes with clean, renewable energy. Have you ever flown a kite at the beach? If you have, you know how breezy it can be. A few miles offshore, you'll find that the wind is even stronger and steadier. And it's like that all around the country. Along the eastern seaboard and west coast, in the Great Lakes and Gulf of Mexico, and even around Hawaii we have a massive clean energy resource waiting to

447

Prairie Star (07) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Prairie Star (07) Wind Farm Prairie Star (07) Wind Farm Facility Prairie Star (07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Energy Purchaser Great River Energy Location Mower County MN Coordinates 43.685955°, -92.626777° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.685955,"lon":-92.626777,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

NREL: Wind Research - WindPACT  

NLE Websites -- All DOE Office Websites (Extended Search)

WindPACT WindPACT The Wind Partnerships for Advanced Component Technology (WindPACT) studies were conducted to assist industry by testing innovative components, such as advanced blades and drivetrains, to lower the cost of energy. Specific goals included: Foster technological advancements to reduce the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are necessary to achieve objectives of cost and size for future turbines Identify and solve technological hurdles that may block industry from taking advantage of promising technology Design, fabricate, and test selected advanced components to prove their viability Support wind industry through transfer of technology from

449

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

450

2009 Wind Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM 2 Presentation Overview * Introduction to 2009 edition of U.S. wind energy market report * Wind installation trends * Wind industry trends * Price, cost, and...

451

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.Corp. 2010. Eastern Wind Integration and Transmission Study.

Bolinger, Mark

2013-01-01T23:59:59.000Z

452

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.2010. SPP WITF Wind Integration Study. Little Rock,

Wiser, Ryan

2010-01-01T23:59:59.000Z

453

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

The wind energy integration, transmission, and policy2012, however, federal policy towards wind energy remainsin federal policy towards wind energy after 2012 places such

Wiser, Ryan

2012-01-01T23:59:59.000Z

454

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

The wind energy integration, transmission, and policyPTC. Moreover, federal policy towards wind energy remainsand policy announcements demonstrate accelerated activity in the offshore wind energy

Wiser, Ryan

2010-01-01T23:59:59.000Z

455

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

performance, and price of wind energy, policy uncertainty The wind energy integration, transmission, and policyand absent supportive policies for wind energy. That said,

Bolinger, Mark

2013-01-01T23:59:59.000Z

456

WIND DATA REPORT Presque Isle  

E-Print Network (OSTI)

WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

457

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

458

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

Massachusetts at Amherst, University of

459

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

460

WIND DATA REPORT FALMOUTH, MA  

E-Print Network (OSTI)

WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

462

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

463

WIND DATA REPORT Presque Isle  

E-Print Network (OSTI)

WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

464

WIND DATA REPORT Presque Isle  

E-Print Network (OSTI)

WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

465

WIND DATA REPORT Presque Isle  

E-Print Network (OSTI)

WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

466

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

467

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

turbine prices. Installed project costs are found to exhibitpressure on total project costs and wind power prices. Windinstalled wind power project costs, wind turbine transaction

Wiser, Ryan

2012-01-01T23:59:59.000Z

468

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

downward pressure on project costs and wind power prices.installed wind power project costs, wind turbine transactionand uncertain offshore project costs, and public acceptance

Wiser, Ryan

2010-01-01T23:59:59.000Z

469

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

Wiser, Ryan

2010-01-01T23:59:59.000Z

470

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

Bolinger, Mark

2010-01-01T23:59:59.000Z

471

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

and Minnesota (12%). Offshore Wind Power Project and Policythe emergence of an offshore wind power market still facesexists in developing offshore wind energy in several parts

Wiser, Ryan

2012-01-01T23:59:59.000Z

472

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

11 advanced-stage offshore wind project proposals totalingcontinued in 2008 (see Offshore Wind Development Activities,Market Report Offshore Wind Development Activities In

Bolinger, Mark

2010-01-01T23:59:59.000Z

473

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty cost, performance, and price of wind energy, some of these

Bolinger, Mark

2013-01-01T23:59:59.000Z

474

RI_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionRhodeIslandWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Rhode...

475

CT_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionConnecticutWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of...

476

MA_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionMassachusettsWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of...

477

VT_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

DataTechnologySpecificUnitedStatesWindHighResolutionVermontWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Vermont...

478

NH_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionNewHampshireWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of New...

479

IA_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

ISDataTechnologySpecificUnitedStatesWindHighResolutionIowaWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Iowa at...

480

ME_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

SDataTechnologySpecificUnitedStatesWindHighResolutionMaineWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Maine...

Note: This page contains sample records for the topic "great plains wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ga_50m_wind  

NLE Websites -- All DOE Office Websites (Extended Search)

DataTechnologySpecificUnitedStatesWindHighResolutionGeorgiaWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Georgia...

482

ny_50m_wind  

NLE Websites -- All DOE Office Websites (Extended Search)

ataTechnologySpecificUnitedStatesWindHighResolutionNewYorkWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for New York at a 50...

483

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

federal and state incentives for wind energy deployment. Thefederal and state incentives for wind energy deployment.federal and state incentives for wind energy deployment in

Wiser, Ryan

2012-01-01T23:59:59.000Z

484

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

continued state and federal incentives for wind energy,continued state and federal incentives for wind energy,continued state and federal incentives for wind energy,

Bolinger, Mark

2013-01-01T23:59:59.000Z

485

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA). 2009b. AWEA SmallWashington, DC: American Wind Energy Association. Bolinger,

Bolinger, Mark

2010-01-01T23:59:59.000Z

486

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. International Wind Energy Development: World MarketUniversity. American Wind Energy Association (AWEA). 2010a.Washington, DC: American Wind Energy Association. American

Wiser, Ryan

2010-01-01T23:59:59.000Z

487

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. Status of Centralized Wind Power Forecasting in NorthInterconnection Policies and Wind Power: A Discussion ofs first utility-scale wind power project. Credit: Klaus

Wiser, Ryan

2010-01-01T23:59:59.000Z

488

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

The Effects of Integrating Wind Power on Transmission SystemInterconnection Policies and Wind Power: A Discussion ofof their database of wind power projects, and for providing

Bolinger, Mark

2010-01-01T23:59:59.000Z

489

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

Power Testing and Data in General Wind and Turbine Dynamics Wind Stresses Control, the Power Grid, and the Grids Economics Environmental Effects Energy101: Wind Turbines...

490