Powered by Deep Web Technologies
Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Great Plains Coal Gasification Project:  

Science Conference Proceedings (OSTI)

This progress report on the Great Plains Coal Gasification Project discusses Lignite coal, natural gas, and by-products production as well as gas quality. A tabulation of raw material, product and energy consumption is provided for plant operations. Capital improvement projects and plant maintenance activities are detailed and summaries are provided for environmental, safety, medical, quality assurance, and qualtiy control activities.

Not Available

1988-01-29T23:59:59.000Z

2

Great Plains: status of the Great Plains coal gasification project  

SciTech Connect

Updated information is presented on the Great Plains coal gasification project in North Dakota following the default of a $1.54 billion federal loan by the project sponsors. This report includes updated information obtained through October 31, 1985, on the loan default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, Great Plains operations, and socioeconomic issues. The new information highlights changes in the gas pricing calculations; the Department's action to pay off the defaulted loan; legal action concerning gas purchase agreements; the project sponsors' proposed settlement; September revenue, expense, and production data; coal lease payments; capital improvement projects; plant by-products; and the final results of a North Dakota task force study of the potential socioeconomic impact if the plant closes.

Not Available

1985-11-01T23:59:59.000Z

3

The Great Plains coal gasification project status  

SciTech Connect

The Great Plains Gasification Project is the first commercial-sized plant to produce substitute natural gas from coal in the United States. The plant is designed to convert 14,000 tons/D of North Dakota lignite into 137.5 million standard cubic feet of gas per day. The plant construction has been successfully completed per original design, on schedule and on budget. The plant has also been successfully turned over from construction to operations, as per the original plan. With the completion of the capital projects being implemented at the plant, plans are to achieve 70 percent stream factor in the first year of production (1985). The DOE-Chicago Operations Office has been assigned the responsibility for monitoring the project's performance against baselines of cost, schedule, and technical criteria. During the startup phase of the project, significant technological advancements have been made and considerable knowledge has been gained, both by the operators and DOE (considering this to be a first of a kind plant built in the U.S.).

Bodnaruk, B.J.

1986-07-01T23:59:59.000Z

4

Financial status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Great Plains Gasification Associates and the Department of Energy (DOE) signed a loan guarantee agreement in January 1982 for up to $2.02 billion of the estimated $2.76 billion needed to construct a plant producing synthetic gas from coal. Faced with deteriorating financial projections in the wake of declining energy prices, Great Plains applied to the US Synthetic Fuels Corporation (SFC) for additional project assistance. In April 1984 SFC tentatively agreed to provide Great Plains up to $790 million in price guarantee assistance. In return, the Great Plains partners would contribute more equity and Great Plains would repay the DOE-guaranteed loan faster and share profits with SFC. According to GAO's assessment of SFC's proposed assistance, a lower amount of assistance could achieve the same results if Great Plains' partners could fully use certain tax credits and if energy prices and other assumptions remained the same as those SFC used in April 1984. Since April 1984, however, several changes have occurred, such as a continued decline in energy prices. An August 1984 SFC analysis indicated that the decline in energy price offset the effect of the increase tax credits. Other changes have also occurred, but SFC analyses subsequent to August 1984 showing the impact of these changes were not available to GAO. If all changes since April 1984 were incorporated into GAO's analyses, the results could be different.

Not Available

1985-02-21T23:59:59.000Z

5

ASPEN physical property evaluation for Great Plains simulation. Great Plains ASPEN model development. [Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

This report documents the steps taken to evaluate the pure component properties in the ASPEN data bank for those compounds required to simulate the Great Plains Coal Gasification Plant where the compounds are also available in the DIPPR (Design Institute for Physical Property Data) data bank. DIPPR is a cooperative effort of industry, institutes and federal agencies interested in the compilation, measurement and evaluation of physical property data for industrially important compounds. It has been found that the ASPEN data bank is for the most part reliable, its main problem being lack of documentation. In the few instances where values were found to be either missing or to be unacceptable, recommended constants or equation parameters are presented in this report along with associated literature citations. In the cases where temperature dependent data were regressed to obtain new equation parameters, the detailed methods employed are also presented.

Millman, M.C.

1983-08-04T23:59:59.000Z

6

Synthetic fuels: Status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

Not Available

1987-01-01T23:59:59.000Z

7

Update on the Great Plains Coal Gasification Project  

SciTech Connect

The Great Plains Gasification Plant is the US's first commercial synthetic fuels project based on coal conversion. The ANG Coal Gasification Company is the administer of the Great Plains Coal Gasification Project for the United States Department of Energy. The Project is designed to convert 14 M TPD of North Dakota of lignite into 137.5 MM SCFD of pipeline quality synthetic natural gas (SNG). Located in Mercer County, North Dakota, the gasification plant, and an SNG pipeline. Some 12 years passed from the time the project was conceived unit it became a reality by producing SNG into the Northern Border pipeline in 1984 for use by millions of residential, commercial, and industrial consumers. In this paper, the basic processes utilized in the plant are presented. This is followed by a discussion of the start-up activities and schedule. Finally, some of the more interesting start-up problems are described.

Imler, D.L.

1985-12-01T23:59:59.000Z

8

Status of the Great Plains coal gasification project - Summer 1983  

SciTech Connect

Construction of the Great Plains coal gasification plant in North Dakota was 3 weeks behind schedule as of May 31, 1983, but cumulative project costs were less than originally estimated. A March 1983 analysis by Great Plains raised questions about the project's economic viability, which is closely linked to future energy prices. The estimated gas prices used in the analysis were lower than those used in January 1982 to justify construction. As a result, the project's investors are concerned about possible losses during the early years of operations. GAO's review shows, however, that Great Plains did not consider substantial tax benefits which may be available to the parent companies of the project's investors. If these benefits are considered, the project's economic viability could be more positive. Should the investors end their participation, some tax benefits previously obtained would have to be repaid.

Not Available

1983-09-20T23:59:59.000Z

9

Status of the Great Plains coal gasification project  

SciTech Connect

Construction of the Great Plains coal gasification plant in North Dakota was 95 percent complete and only about 2 weeks behind schedule as of November 30, 1983. Cumulative project costs were less than originally estimated for this date. Due to a drop in forecasted energy prices, Great Plains, in September 1983, projected that plant operations could result in large after-tax losses and negative cash flows for the sponsors. Great Plains notified the Department of Energy that it was considering terminating its participation in the project in the absence of additional federal assistance. In this regard, additional assistance in the form of price guarantees for the project's synthetic natural gas are being considered by the US Synthetic Fuels Corporation.

Not Available

1984-03-22T23:59:59.000Z

10

Status of the Great Plains coal gasification project, August 1982  

SciTech Connect

Construction of the Great Plains coal gasification plant in Mercer County, North Dakota, is 4 to 6 weeks behind schedule, but no long-term impacts are anticipated. Cumulative project costs are lower than originally estimated. Overall, the management system established to oversee project construction appears comprehensive. However, some weaknesses exist in the computerized information system, which produces most project data. The Department of Energy complied with statutory requirements in awarding the Great Plains loan guarantee for an alternative fuel demonstration project and is actively working to fulfill its responsibilities as the project's overseer. However, the Department needs to audit the costs incurred by Great Plains to determine that funds are being used only for eligible project costs.

Not Available

1982-09-14T23:59:59.000Z

11

Economics of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

the Great Plains project will be the Nation's first commercial-scale plant producing synthetic gas from coal. The project's first annual economic report, released in March 1983, was much less optimistic than a similar analysis prepared in January 1982 to justify construction. GAO found that: the main reason for the changed economic outlook was that the assumed synthetic gas prices used in the March analysis were significantly lower than those used previously. Great Plains did not, nor was it required to, consider tax implications to the parent companies of the project's partners. If these implications are considered, the economics could be more optimistic than the March 1983 report indicates. Should the partners end their participation, some tax benefits would have to be repaid. Although the project is a potentially attractive investment, its financial viability is extremely sensitive to the future prices of synthetic gas. Even a small deviation in prices could significantly affect its economics.

Not Available

1983-08-24T23:59:59.000Z

12

Great Plains Coal Gasification Plant public design report. Volume I  

SciTech Connect

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume I contains: (1) introduction; (2) overview of project (plant and mine, plant facilities, Basin Electric Antelope Valley Station); and (3) plant process data (coal, oxygen and steam, gasification and gas processing). 53 refs., 80 figs., 36 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

13

Great Plains Coal Gasification Plant Public Design Report. Volume II  

Science Conference Proceedings (OSTI)

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume II contains: (1) plant process data (sulfur recovery, main flare - area 8300, liquid processing, ash handling and solids disposal, other systems); (2) plant startup procedure and schedule; (3) plant and employee safety; (4) GPGP cost data; and (5) references. 53 refs., 46 figs., 38 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

14

Financial situation of the Great Plains Coal Gasification Project  

Science Conference Proceedings (OSTI)

GAO reviewed drafts of DOE's National Energy Policy Plan IV, calculated synthetic gas prices using Great Plains methodology, converted those prices to current year dollars, and used DOE's computer model of the project's economics to analyze the cash flow forecast. GAO found both the model and the data produced to be reliable. (PSB)

Not Available

1983-10-17T23:59:59.000Z

15

Synthetic fuels. Status of the Great Plains Coal Gasification Project  

Science Conference Proceedings (OSTI)

This report includes updated information obtained through February 14, 1986, on the loan-default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, and Great Plains operations. The new information highlights changes in the gas pricing calculations; legal action concerning gas purchase agreements and mortgage foreclosure; the Department's determination of the project sponsors' outstanding liability; the Department's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues. Our November fact sheet included information on socioeconomic issues. We have not obtained any additional information on these issues and are, therefore, not repeating the socioeconomic information in this fact sheet.

Not Available

1986-02-01T23:59:59.000Z

16

Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains  

DOE Green Energy (OSTI)

Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

1987-04-01T23:59:59.000Z

17

Great Plains Coal Gasification Project. Technical quarterly report, 1st quarter, 1984. [Great Plains, Mercer County, North Dakota  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet the Great Plains Coal Gasification project's full gas production date. Detailed engineering is complete for the gasification plant. The remaining engineering tasks, which include field support activities and special projects, will be performed by the Contractors' Field Engineering Group. A substantial amount of construction progress was achieved during the first quarter. It is currently projected that construction will be complete at the end of September, 1984. Start-Up operations are continuing at a rapid pace. Commissioning activities are proceeding very well. The only remaining plant permit is the Permit to Operate, which will be issued in late 1985. Quality Assurance/Quality Control activities included the development of welding procedures for Operations personnel, safety relief valve testing, and equipment turnover inspections. Mine development activities remain on schedule. Initial coal deliveries to GPGA commenced this quarter.

Not Available

1984-05-01T23:59:59.000Z

18

Great plains coal gasification plant: Technical lessons learned report  

SciTech Connect

In a first of a kind, grass roots plant of the complexity of the Great Plains Gasification Plant the lessons learned are numerous and encompass a wide range of items. This report documents the lessons learned from all phases of the project from preliminary design through the most recent operation of the plant. Based on these lessons learned, suggestions are made for changes and/or process improvements to future synfuel plants. In addition, recommendations are made for research and development in selected areas. 46 refs., 31 figs., 33 tabs.

Delaney, R.C.; Mako, P.F.

1988-11-01T23:59:59.000Z

19

Status of the Great Plains coal gasification project  

SciTech Connect

ANG has extensive policies and procedures for overseeing the construction of the Great Plains project. Additional management comes from a computerized information system, various audit groups, and staff located at the project site. Neither we nor any other audit group identified significant deficiencies in ANG's computer system or the individual systems which feed into it. Overall, the system contains both automated and manual controls which ensure that the data generated from the system is reliable and accurate. The various audit and evaluation groups provide management continuous and significant information concerning major project components. Great Plains management recognized the usefulness of the information and acted on recommendations made which enhanced its overall effectiveness. ANG established and implemented comprehensive procedures to oversee the project's construction. These procedures appear adequate for managing and controlling all construction activities. For example, ANG's onsite managers have identified problems and suggested actions which ANG believes minimized the effect of these problems on the construction schedule. The Department of Energy has extensive procedures for monitoring this project. With few exceptions, the Department followed the procedures established. It has not, however, completed its audit of incurred costs to determine that loan guarantee funds are spent only for eligible project costs. Such an audit was underway and the Department expected to complete it in 1983.

Not Available

1983-04-08T23:59:59.000Z

20

Status of the Great Plains coal gasification project, May 31, 1984. [Mercer County, North Dakota  

SciTech Connect

The Great Plains coal gasification project in North Dakota was 99 percent complete and essentially on schedule on May 31, 1984. Cumulative project costs were $164 million less than originally estimated for this date, primarily due to reduced material, interest, and subcontractor costs. On the basis of reduced energy price forecasts, Great Plains in September 1983 projected large after-tax losses and negative cash flows from plant operations. To alleviate these losses, Great Plains applied to the US Synthetic Fuels Corporation for additional financial assistance. On April 26, 1984, the Corporation outlined its intentions to award Great Plains up to $790 million in assistance. As of August 10, 1984, the Corporation had not finalized the Great Plains assistance agreement.

Not Available

1984-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Status of the Great Plains Coal Gasification Project, December 31, 1984  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE)-sponsored construction of the Great Plains coal gasification project - designed to produce synthetic natural gas from coal in North Dakota - was completed in December 1984 on schedule. However, technical problems prevented Great Plains from meeting the inservice (commercial operation) target date of December 1, 1984. DOE believes the in-service date could occur in June 1985. Faced with deteriorating financial projections in the wake of declining energy prices, Great Plains applied to the US Synthetic Fuels Corporation (SFC) for additional assistance. In April 1984 SFC tentatively agreed to provide Great Plains up to $790 million in price guarantee assistance. In return, the Great Plains partners would contribute more equity, and Great Plains would repay the DOE-guaranteed loan faster and make profit-sharing payments to SFC. However, since SFC's tentative agreement for price guarantees, several events that could affect the project's financial outlook have occurred. For example, SFC and DOE have revised their energy price forecasts downward. In addition, Great Plains and SFC are negotiating a final agreement that could change some conditions of the tentative agreement.

Bowsher, C.A.

1985-05-28T23:59:59.000Z

22

Great Plains Coal Gasification Project: Quarterly technical progress report, third fiscal quarter 1987-1988, January-March 1988  

SciTech Connect

This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

Not Available

1988-05-31T23:59:59.000Z

23

Great Plains Coal Gasification Project: Quarterly technical progress report, April-June 1988 (Fourth fiscal quarter, 1987-1988)  

Science Conference Proceedings (OSTI)

This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

Not Available

1988-07-29T23:59:59.000Z

24

Impact of the Great Plains coal gasification decision on a coal gas industry  

SciTech Connect

In approving the special tariff and financing features of the Great Plains coal-gasification project, the Federal Energy Regulatory Commission took the first major federal action toward encouraging the construction of a commercial-sized synthetic-fuels facility, asserts the law firm of Morley, Caskin and Generelly. Owned by Great Plains Gasification Associates - a partnership of five pipeline companies - the commercial-sized plant qualifies for FERC approval under the commission's RD and D regulations. The special financing terms for the project will require customers of existing natural gas companies to bear the costs incurred by the project regardless of its success in operation or the amount of gas produced for the customer's utilization. This RD and D rate treatment serves to mitigate market forces and thus operates as an effective subsidy for the pipeline industry. If this or a similar regulatory subsidy is extended to other coal-gas projects, the pipeline industry could take the lead in the nation's synfuels program.

Zipp, J.F.

1980-05-08T23:59:59.000Z

25

Great Plains coal gasification project - historical overview and progress  

SciTech Connect

The first commercial scale coal gasification plant in the US is nearing completion in North Dakota. The plant shares the site and other facilities with the Basin Electric Power Station. The gasification plant will draw its power directly from the Basin substation and Basin will receive coal fines from the gasification plant. (Coal fines cannot be gasified in the Lurgi units.) Planning, loan guarantee commitments, scheduling of construction, labor relations, and current situation are all briefly discussed. A table of project statistics is included.

Deeths, W.R.

1984-01-01T23:59:59.000Z

26

Synthetic fuels. Status of the Great Plains Coal Gasification Project, August 1, 1985  

Science Conference Proceedings (OSTI)

In December 1984, the Great Plains Gasification Associates had essentially finished constructing the nation's first commercial-scale coal gasification plant. As of July 31, 1985, Great Plains had contributed about $537 million in equity to the project and had borrowed $1.54 billion against a federal load guarantee made available by the Department of Energy (DOE). Since 1984 the project has faced deteriorating financial projections in the wake of declining energy prices. This is GAO's eighth semiannual report on Great Plains and covers the project's progress from January through August 1, 1985. GAO's objectives were to report on (1) the status of Great Plains' attempt to obtain additional federal financial assistance and (2) the status of the project's operational startup activities as of August 1, 1985. The Department of Energy Act of 1978 requires GAO to report on the status of the loan guarantee. Even though the Synthetic Fuels Corporation approved price guarantees in principle for Great Plains, DOE announced, on July 30, 1985, that it would not agree to restructuring its guaranteed loan. DOE rejected the proposed agreement, saying that it would not assure long-term plant operation at a reasonable cost to the taxpayers. The Great Plains sponsors then terminated their participation in the project on August 1, 1985, and defaulted on the $1.54 billion DOE-guaranteed loan. DOE directed the project administrator, ANG Coal Gasification Company, to continue plant operations pending a DOE decision about the project's future. DOE is assessing options including operating, leasing, selling, shutting down, mothballing, and scrapping the plant.

Bowsher, C.A.

1985-12-01T23:59:59.000Z

27

Great Plains Coal Gasification project. Quarterly technical progress report, third quarter 1985  

Science Conference Proceedings (OSTI)

The operations of the Great Plains Gasification Plant are reported for the third quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1985-10-31T23:59:59.000Z

28

Great Plains Coal Gasification project. Quarterly technical progress report fourth quarter, 1985  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the fourth quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical service; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1986-01-31T23:59:59.000Z

29

Great Plains Coal Gasification Project. Quarterly technical progress report, second quarter 1986. [Lurgi process  

SciTech Connect

The operations of the Great Plains coal gasification plant are reported for the second quarter of 1986. The following areas are covered: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities. (AT)

Not Available

1986-07-31T23:59:59.000Z

30

Great Plains coal gasification project: Quarterly technical progress report, Third quarter 1986. [Lurgi process  

Science Conference Proceedings (OSTI)

Accomplishments for the third quarter of 1986 are presented for the Great Plains coal gasification plant. The following areas are discussed: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) onstream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-10-31T23:59:59.000Z

31

Sulfur emissions reduction at the Great Plains coal gasification facility: Technical and economic evaluations  

SciTech Connect

This report provides an in-depth technical and economic review of over 40 sulfur control technologies that were considered for use at the Great Plains coal gasification facility in Beulah, North Dakota. The review was based on the production of substitute natural gas at rates of 152.5 {times} 10{sup 6} and 160 {times} 10{sup 6} scf/d from lignite containing 1.7% sulfur. The factors considered in evaluating each technology included the reduction of SO{sub 2} emissions, capital and operating costs, incremental cost per unit of produced gas, cost-effectiveness, and probability of success. 21 figs., 37 tabs.

Doctor, R.D.; Wilzbach, K.E. (Argonne National Lab., IL (USA). Energy Systems Div.); Joseph, T.W. (USDOE Chicago Operations Office, Argonne, IL (USA))

1990-01-01T23:59:59.000Z

32

Estimates of the value of carbon dioxide from the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

This report develops a framework and methodology for estimating the value of carbon dioxide produced by the Great Plains Coal Gasification Plant. The petroleum industry could use this CO/sub 2/ as a solvent for enhanced oil recovery. The value of CO/sub 2/ is found to be a function of the geological characteristics of the petroleum reservoirs being flooded, the cost of transporting the CO/sub 2/, and the presence or absence of competitors selling CO/sub 2/. Carbon dioxide demand curves for oil fields in Montana and North Dakota are developed for various economic conditions, and sensitivity analyses are performed. 22 refs., 4 figs., 21 tabs.

Wolsky, A.M.; Nelson, S.H.; Jankowski, D.J.

1985-07-28T23:59:59.000Z

33

(Great Plains Coal Gasification Associates). Quarterly technical progress report. [Lurgi Process  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the first quarter of 1986. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-04-30T23:59:59.000Z

34

Coal development in the Northern Great Plains: the impact of revenues of state and local governments. Agricultural economic report (final)  

SciTech Connect

Development of Northern Great Plains coal resources will create new demands for state and local government services. This study reports detailed estimates of the state and local taxes that would be paid by three different sized coal mines and their employees in Montana, North Dakota, South Dakota, and Wyoming.

Stinson, T.F.; Voelker, S.W.

1978-01-01T23:59:59.000Z

35

Great Plains Coal Gasification Project will make 17. 5 tons/day of methanol  

SciTech Connect

The Great Plains Coal Gasification Project will make 17.5 tons/day of methanol in addition to 125 million cu ft/day of pipeline-quality substitute natural gas (SNG), making the facility the first commercial producer of methanol-from-coal in the United States, according to the consortium building the $1.5 billion facility in Beulah, North Dakota. As originally conceived, the plant would have used 17 tons/day of purchased methanol to clean the raw-gas product stream of impurities, primarily sulfur. But based on the cost of transporting methanol to the plant site and storing it for use, the consortium decided it was more economical to produce its own methanol from lignite. The construction started in July 1980, and the facility is to come on stream in 1984.

Not Available

1980-11-17T23:59:59.000Z

36

Analysis of pipe failure at the Great Plains Coal Gasification Plant  

SciTech Connect

The rupture of a carbon steel elbow in the methanation area of the Great Plains Coal Gasification Plant resulted in a fire and plant shutdown. Failure studies consisted of an on-site inspection and an extensive laboratory examination that included light metallography, X-ray fluorescence, X-ray diffraction, chemical analyses, and electron spectroscopy for chemical analysis. It was concluded that operation of a heat exchanger under off-specification conditions contributed to higher than design temperatures, lower than design pressures, and higher than design concentrations of carbon dioxide and water in the exit line from a condensate separator. Together, these conditions produced high levels of carbonic acid and higher than design velocities resulting in severe corrosion of the carbon steel.

Keiser, J.R.; Mayotte, J.R. (Oak Ridge National Lab., TN (United States)); Dias, O.C. (Amoco Oil Co., Texas City, TX (United States))

1994-09-01T23:59:59.000Z

37

Analysis of pipe failure for the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

The rupture of a carbon steel elbow in the methanation area of the Great Plains Coal Gasification Plant resulted in a fire and plant shutdown. The failure was investigated by personnel from Oak Ridge National Laboratory and ANG Associates, the plant operators. These studies consisted of an on-site inspection and extensive laboratory examination that included optical metallography, x-ray fluorescence, x-ray diffraction, chemical analyses, and electron spectroscopy for chemical analysis (ESCA). It was concluded that operation of a heat exchanger under off-specification conditions contributed to higher than design temperatures, lower than design pressures, and higher than design concentrations of carbon dioxide and water in the exit line from a condensate separator. Together, these conditions produced high levels of carbonic acid and higher than design velocities resulting in severe corrosion of the carbon steel. 9 refs., 7 figs., 2 tabs.

Keiser, J.R.; Mayotte, J.R. (Oak Ridge National Lab., TN (USA)); Dias, O.C. (Amoco Research Center, Naperville, IL (USA))

1990-01-01T23:59:59.000Z

38

Great Plains Gasification Associates. Quarterly technical and environmental report, Great Plains coal gasification project, Mercer County, North Dakota, second quarter, 1983  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet Great Plains Gasification Associate's start-up and coal delivery dates as well as the completion of the pipeline. Home Office engineering is essentially complete for the Plant. The remaining engineering tasks will involve field support activities and special projects. A substantial amount of construction progress was achieved during the second quarter. Although construction is still slightly behind schedule for the Plant, it is currently forecasted that construction will be back on schedule by the end of October, 1983. Start-up activities are continuing at a rapid pace. The current emphasis is on precommissioning planning and the development and implementation of the computer systems required to run the plant. Mine development activities remain on schedule. Almost all of the environmental permitting for the construction phase is complete. Engineering for the pipeline is complete. Construction started this quarter and should be completed by August 15, 1983.

Not Available

1983-01-01T23:59:59.000Z

39

Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesSouthern Great Plains govSitesSouthern Great Plains SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Southern Great Plains SGP Central Facility, Lamont, OK 36° 36' 18.0" N, 97° 29' 6.0" W Altitude: 320 meters The Southern Great Plains (SGP) site was the first field measurement site established by DOE's Atmospheric Radiation Measurement (ARM) Program. Scientists are using the information obtained from the SGP to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research.

40

Evaluation of cooling tower and wastewater treatment operations at the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

The objective of this study was to provide a technical assessment of the Great Plains Coal Gasification Plant Wastewater Treatment System. This Scope of Work consisted of five primary tasks described as follows: Task 1 - Determine the quantity of hydantoins in the stripped gas liquor (SGL), their precursors, and the kinetics of their formation in condensed liquor for the Great Plains Gasification Associates (GPGA) gasification facility. The University of North Dakota Energy Research Center (UNDERC) has measured a high concentration of hydantoins in the gas liquor from their slagging gasifier. UNDERC has tested the use of SGL in a pilot cooling tower and they witnessed some adverse effects in the cooling tower and heat exchanger systems. Task 2 - Investigate the adverse Department of Energy (DOE) findings at UNDERC with regard to corrosion, foaming, biological and organic fouling, chemical attack on concrete and organic emissions resulting from the use of SGL in a pilot plant cooling tower. Task 3 - Validate the heat load on the cooling tower for both summer and winter operation and determine the adequacy of the surge pond to store the maximum predicted amount of excess water accumulated during winter operation. Task 4 - Assess potential fouling, foaming and organic carry-over problems associated with operability of the multiple-effect evaporator and develop recommendations on possible alternate use of evaporator condensate to alleviate possible problems in disposing of excess wastewater. Task 5 - Provide DOE with recommendations on the wastewater treatment backup design and test program already committed to by GPGA. This paper presents Fluor's findings regarding the five primary tasks. 12 refs., 4 figs., 15 tabs.

Lang, R.A.

1984-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Zero-order trace element distribution model for the Great Plains Coal Gasification Plant: Topical report  

SciTech Connect

The Morgantown Energy Technology Center of the US DOE is developing a series for models of environmental systems. Both zero-order and detailed models are being developed. Detailed models are based on fundamental engineering principles and the use of detailed physical and chemical property data; reliance on empirical relationships and correlations is minimized. The key advantage of detailed models is their predictive capabilities and utility in performing valid comparative analyses. An important prerequisite to the development of detailed models in the availability of representative, long-term process and environmental data. These data are needed both to develop the models as well as to validate them. Zero-order models are less rigorous and have less predictive capability than detailed models since they are based on empirical estimates and simple correlations. However, they can be developed relatively quickly and are significantly less expensive to develop and use compared to detailed models. Zero-order models are useful in identifying potential environmental or control technology problems. As such, they can help direct future research and development efforts. They can provide useful information when comprehensive data are unavailable for detailed modeling, and can be used as a screening tool to identify process alternatives which appear to warrant more detailed modeling. This report describes a zero-order trace element distribution model for the Great Plains Coal Gasification Plant located near Beulah, North Dakota. The model estimates how trace elements entering the plant in the feed coal are distributed to the plant's process and waste streams. Elements that may be introduced to the plant's waste streams from sorbents and/or catalysts (e.g., Vanadium in makeup Stretford solution) are not considered in the model. 13 refs.

Thomas, W.C.; Page, G.C.; Magee, R.A.

1987-04-01T23:59:59.000Z

42

Evaluation of the Stretford Unit at the Great Plains Coal Gasification Plant  

SciTech Connect

This report gives the results of an evaluation of the design and operational characteristics of the Stretford Sulfur Recovery Unit installed in the Great Plains Gasification Project, Beulah, North Dakota. The report contains discussion of the H/sub 2/S removal capability of the unit, the potential of solids deposition and the expected solution losses. 11 refs., 7 figs., 2 tabs.

Lang, R.A.

1984-12-01T23:59:59.000Z

43

(Great Plains Coal Gasification project): Quarterly environmental, safety, medical, and industrial hygiene report, First quarter, 1987  

Science Conference Proceedings (OSTI)

ANG continued permitting activity during the reporting period. ANG conducted eight monitoring programs in the vicinity of the Great Plains facility. The RAMP network consists of five monitoring sites, and is designed to monitor meteorology and air quality in the vicinity of the Great Plains facility, and the Antelope Valley and Coyote electric generating stations. There were no exceedences of applicable state or federal standards for SO/sub 2/, NO/sub 2/, TSP, or ozone. ANG conducts ambient monitoring for H/sub 2/S at one site in the vicinity of the Great Plains facility. ANG conducts additional ambient monitoring for SO/sub 2/ at two sites in order to ensure that ambient air quality standards are not violated. ANG conducts groundwater monitoring programs associated with desulfurization waste disposal, deepwell injection, RCRA-compliance monitoring, gasifier ash disposal, and the surge ponds. Major activities on each program are summarized. ANG conducted six monitoring programs associated with process and effluent streams at the Great Plains facility to satisfy conditions in federal and state permits. The Continuous Emission Monitoring system is designed to provide for the continuous monitoring of emissions and fuel usage from all major fuel burning sources in the Great Plains facility. ANG conducts a comprehensive program to locate, characterize and eliminate objectionable odors. A total of thirty-three plant boundary surveys and sixty off-site surveys were conducted. Odors were detected at levels of two odor units or less approximately 81.7% of the time at distances up to 6 miles downwind during the off-site surveys. A total of nine odor complaints were received. To evaluate overall performance of pollution control systems, ANG examines selected process data and conducts periodic compliance and/or performance tests. 18 figs., 23 tabs.

Not Available

1987-04-01T23:59:59.000Z

44

(Great Plains Coal Gasification Project): Quarterly environmental, safety, and medical report, first quarter 1988  

Science Conference Proceedings (OSTI)

The following brief synopsis is provided of the status of Environmental, Safety and Medical Programs described in the First Quarter 1988 Report. Tabular summaries of environmental QA/QC results and planned next quarter activities are presented in Sections 2.0 and 3.0, respectively. ANG continued permitting activity during the reporting period. These activities include reviewing the revised RCRA Part B application; receiving approval to discharge high temperature, low pressure steam condensate to the stormwater system; receiving approval to expand the current gasifier ash pit; submitting the results of the EPA laboratory audit samples; finalizing the contract for the Deepwell No. 1 and No. 2 work to comply with UIC-101; monitoring the progress of the cooling tower surge pond B liner leaks; receiving approval to delete several parameters in the Interim Groundwater Monitoring Plan; responding to an EPA Hazardous Waste Questionnaire and a CERCLA site assessment for DOE; submitting the DOE-assigned section for the Modified Permit Application; and submitting the first annual chemical inventory report to comply with Section 312 of SARA. ANG conducted eight monitoring programs in the vicinity of the Great Plains facility. The RAMP network consists of five monitoring sites, and it is designed to monitor meteorology and air quality in the vicinity of the Great Plains facility and the Antelope Valley and Coyote electric generating stations. ANG conducts ambient monitoring for H/sub 2/S at one site in the vicinity of the Great Plains facility. 15 figs., 49 tabs.

Not Available

1988-05-01T23:59:59.000Z

45

A case history of a coal gasification wastewater cooling tower at the Great Plains coal gasification project  

SciTech Connect

This paper describes the conceptual process design of the Great Plains cooling water system, the fouling history of the cooling tower, and the results of the design modifications. In addition, general design guidelines for future wastewater reuse cooling towers are recommended. By following these guidelines, design engineers can minimize the risk of fouling that could impair a wastewater cooling tower's thermal performance.

Crocker, B.R.; Bromel, M.C.; Pontbriand, M.W.

1987-01-01T23:59:59.000Z

46

Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, fourth quarter, 1983. [Great Plains, Mercer County, North Dakota  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet Great Plains Gasification Associates' full gas production date. Gasification Plant: detailed engineering in the Contractors' home office was completed in the fourth quarter. The remaining engineering tasks, which include field support activities and special projects, will be performed by the Contractors' Field Engineering Group. A substantial amount of construction progress was achieved during the fourth quarter. Although the Plant's construction activities are still slightly behind schedule, it is currently forecasted that the construction schedule will be regained by the end of June 1984. Start-Up operations are continuing at a rapid pace. The current emphasis is on system turnover and commissioning activities. The environmental permitting for the construction phase is complete. Freedom Mine: mine development activities remain on schedule.

Not Available

1983-01-01T23:59:59.000Z

47

Great Plains makes 100 billion cubic feet  

SciTech Connect

The Great Plains coal gasification plant on January 18, 1987 produced its 100 billionth cubic foot of gas since start-up July 28, 1984. Owned by the Department of Energy and operated by ANG Coal Gasification Company, the plant uses the Lurgi process to produce about 50 billion cubic feet per year of gas from five million tons per year of lignite. The plant has been performing at well above design capacity.

Not Available

1987-03-01T23:59:59.000Z

48

Great Plains gasification project  

SciTech Connect

This paper describes organizational and research work on a coal gasification project which is based on North Dakota lignite. Many design changes have been incorporated into this plant, which is now being built after years of delay due to environmental, financial, and regulatory problems. Engineering and operational details are given for a project designed for conversion of 22,000 tons/day of liquid into fuel gas and several by products. Economic considerations are included.

Kuhn, A.K.

1982-04-01T23:59:59.000Z

49

Great Plains Coal Gasification Plant start-up and modification report. [Lurgi Process  

SciTech Connect

This report will help in designing future coal conversion plants by documenting the areas which need additional research to obtain more reliable process data, more careful planning and equipment selection. The scope of this report is to: describe the problem with the particular process or item of equipment; identify the modification that was implemented to correct the problem; evaluate the impacts of the modification; and document the cost of the modification. Contents include the following: (1) process modifications (coal, oxygen and steam, gasification and gas processing, sulfur recovery, flare system, liquid processing, ash handling and solids disposal, other systems); (2) start-up schedule; (3) SNG production; (4) environmental data; and (5) cost data.

Miller, W.R.; Honea, F.I.; Lang, R.A.; Berty, T.E.; Delaney, R.C.; Hospodarec, R.W.; Mako, P.F.

1986-03-01T23:59:59.000Z

50

Great Plains Gasification Project status report  

SciTech Connect

The Great Plains Gasification Project is the first commercial synthetic fuels project based on coal conversion in the US. The goal is to convert North Dakota lignite into pipeline quality synthetic natural gas (SNG). The project consists of an open pit coal mine, a gasification plant, and an SNG pipeline in Mercer County, North Dakota. The project took 12 years from its conception to the production in 1984 of SNG for users. The author describes the plant's basic processes, the start-up activities and schedule, and some of the more interesting start-up problems.

Pollock, D.C.

1985-08-01T23:59:59.000Z

51

Great Plains coal gasification project. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session, September 12, 1988  

Science Conference Proceedings (OSTI)

The hearing was called to review the announcement by the Department of Energy that it has selected Basin Electric Power Cooperative of Bismarck, North Dakota, as the preferred buyer for the Great Plains Coal Gasification Plant. The plant produces 142 billion standard cubic feet of synthetic natural gas per day from lignite coal plus several byproducts which are marketed. The hearing examines the bids of the finalists, the composition of the trust funds, the status of the siting permits, questions of air quality, employee retirement funds and employee benefits, and the ability of the successful bidder to pursue byproduct development and marketing. Testimony was heard from 7 witnesses.

Not Available

1989-01-01T23:59:59.000Z

52

Great Plains Gasification Associates quarterly technical and environmental report, Great Plains Coal-Gasification Project, Mercer County, North Dakota. First quarter, 1983. [Mercer County, ND  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet GPGA's start-up and coal delivery dates as well as the completion of the pipeline. Engineering is essentially on schedule and complete for the Plant. Most of the key engineering goals needed to support the construction phase were completed during the first quarter. A substantial amount of construction progress has been accomplished. Although overall construction is behind schedule, it is currently forecasted that construction will be back on schedule by the end of October, 1983. Start-Up Planning is progressing at a rapid pace. The current emphasis is on consolidating construction planning and completion in accordance with detailed start-up scheduling requirements. Work is also being directed to the development and finalization of plant operating manuals and a materials management system. Mine development activities remain on schedule. Most of the environmental permitting for the construction phase of the project has been completed. Engineering for the pipeline is complete. Construction should commence in early May and should be completed one month prior to the earliest need date.

Not Available

1983-01-01T23:59:59.000Z

53

Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, third quarter 1984  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet Great Plains Gasification Associates (GPGA's) full gas production date. Gasification Plant - Detailed engineering is complete. Construction is 99% complete. Start-up operations are proceeding well. SNG was delivered to the product pipeline this quarter. The only remaining plant permit is the Permit to Operate, which is expected to be issued in late 1985. Quality Assurance/Quality Control Activities included major equipment inspections, further development of welding procedures, and continuation of the corrosion control/materials evaluation program. Freedom mine development activities remain on schedule.

Not Available

1984-09-01T23:59:59.000Z

54

Great Plains gets a running start  

Science Conference Proceedings (OSTI)

The United States first commercial synthetic fuel plant has been geared up to deliver the $2 billion project by late 1984 in Beulah, North Dakota. The Great Plains coal gasification plant is rising quickly under a compressed 44 month schedule. Delivery of synthetic natural gas from the 125 million-cu-ft-a-day plant by 1984 is possible. Getting the $1.4 billion gasification plant, 22,000-ton-per-day coal mine and 365-mile, 20-in. dia pipeline connection completed on schedule and within budget is critical. The price of the product gas, which will be mixed with relatively cheap natural gas in the consortium's pipelines, has been set by the Federal Energy Regulatory Commission at $6.75 per thousand cubic feet. This project has been planned since 1972. (DP)

Not Available

1981-11-19T23:59:59.000Z

55

DOE receives title to Great Plains plant  

Science Conference Proceedings (OSTI)

On June 30, 1986 the Great Plains Coal Gasification Project was sold at a foreclosure sale at the Mercer County courthouse in North Dakota. The US Department of Energy was the only bidder at the sale. DOE's bid for the plant was $1 billion DOE-secured loan that the five sponsor companies defaulted on when they withdrew from the project in August 1985. DOE did not receive title to the plant until a lawsuit filed by American Natural Resources (ANR) was settled on July 14, 1986. DOE has vowed to keep the plant running as long as it does not cost the taxpayers any money. Eventually DOE wishes to dispose of the plant. Therefore, in February 1986 DOE requested that interested organizations submit expressions of interest in the Great Plains plant. This paper, after discussing the lawsuit, summarizes the nine responses received by DOE. Some companies were willing for it to remain a coal gasification facility; other submitted plans for modifications to produce methanol.

Not Available

1986-09-01T23:59:59.000Z

56

Great Plains Coal Gasification Project, Mercer County, North Dakota. Quarterly technical and environmental report, second quarter, 1984. [Mercer County, North Dakota  

SciTech Connect

Project activities remain on schedule to meet Great Plains Gasification Associates' full gas production date. Detailed engineering is complete for the gasification plant. The only remaining engineering tasks involve field support activities and special projects. Construction is nearly complete. The majority of the remaining tasks involve civil, painting and electrical work. Start-up operations are proceeding very well. Many significant achievements were accomplished during the quarter. Coal was successfully gasified with oxygen. All of the first train's seven gasifiers completed successful production test runs. The only remaining plant permit is the Permit to Operate, which is expected to be issued in late 1985. Quality assurance/quality control activities included major equipment inspections, development of welding procedures and equipment turnover inspections. Freedom Mine development activities remain on schedule.

Not Available

1984-01-01T23:59:59.000Z

57

Production of jet fuels from coal-derived liquids. Volume 6. Preliminary analysis of upgrading alternatives for the Great Plains liquid by-production streams. Interim report, March 1987-February 1988  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest have developed seven cases for upgrading by-product liquids from the Great Plains Coal Gasification plant to jet fuels, and in several of the cases, saleable chemicals in addition to jet fuels. The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However the phenolic and naptha streams do have the potential to significantly increase (on the order of $10-15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to 10% of the U.S. market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream.

Fleming, B.A.; Fox, J.D.; Furlong, M.W.; Masin, J.G.; Sault, L.P.

1988-09-01T23:59:59.000Z

58

Great Plains Gasification Project status report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Project is designed to convert North Dakota lignite into pipeline quality high Btu synthetic natural gas (SNG). Located in Mercer County, North Dakota, the project consists of a coal gasification plant, coal mine, and an SNG pipeline. Construction of the project started in the summer of 1981 and was essentially complete by the fourth quarter of 1984. The plant operating staff started initial start-up planning in early 1982 and moved to the plant site in late 1982. The first unit taken over from construction was the secondary water treating unit and initial operations began on August 19, 1983. The remainder of the plant was commissioned and started up in a planned sequence with initial production of SNG occurring on July 28, 1983. Both trains were in operation and the plant was producing at about 70 percent of design capacity by December 1984-a date that has been targeted for in a start-up schedule prepared some 4-5 years earlier.

Pollock, D.C.; Stockwell, R.E.

1985-01-01T23:59:59.000Z

59

About Upper Great Plains Regional Office  

NLE Websites -- All DOE Office Websites (Extended Search)

The Upper Great Plains Region carries out Western's mission in Montana, North Dakota, South Dakota, Nebraska, Iowa, and Minnesota. We sell more than 9 billion kilowatt-hours of...

60

Decision-analytic framework for portfolio selection: choosing among supplemental environmental research projects proposed for the Great Plains Coal Gasification Facility  

Science Conference Proceedings (OSTI)

This report describes the development and application of a hierarchical decision-analytic framework for selecting a portfolio of research and development projects. A US Department of Energy steering committee used the framework to develop a comprehensive and defensible $12 million Supplemental Environmental Program (SEP) for the Great Plains Coal Gasification Facility. This decision problem was characterized by: (1) five technical subcommittees that proposed detailed studies addressing different environmental and health issues; (2) many combinations of proposed studies that satisfied the $12 million budgetary constraint; (3) multiple objectives that required value tradeoffs at both the committee and subcommittee levels; and (4) uncertainties about research needs, data availability, and costs. The framework for determining funding (study) priorities used the principles of decision analysis to divide the overall SEP problem into a series of smaller subproblems tailored to the specific organizational structure of the steering committee and its five subcommittees. A dynamic optimization procedure was used to compare alternative funding strategies; the strategies were ranked on the basis of their expected utility, as calculated with a multiattribute utility function. Each subcommittee chairman was directly responsible for ranking the studies proposed by his subcommittee and, on the basis of that ranking, quantifying the degree to which the proposed research plan met objectives established for the entire SEP by the steering committee chairman. The approach is applicable to similar portfolio selection problems in both the public and private sectors.

Peerenboom, J.P.; Buehring, W.A.; Joseph, T.W.

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Great Plains coal-gasification project Mercer County, North Dakota quarterly technical and environmental report. Fourth quarter, 1982  

SciTech Connect

Engineering activity was essentially on schedule for the plant with no major reasonably forseeable problems which could impact the scheduled start up date for full production. Major engineering efforts currently in progresss at the end of the fourth qquarter include the completion of isometric piping drawings and the completion of the design and release of electrical instrumentation. Engineering support for the subcontracting program is also a high priority. Construction activities accomplished work on a wide range of work fronts considering the time of year. Although some deliveries of equipment are impacting some construction progress, increased expeditiing efforts should remedy this problem in the future. Start Up Planning is progressing at a steady pace. Interfacing between forces and operating personnel is now occurring on a regular basis. Overall, activities remain on schedule to meet start up and coal delivery dates as well as the completion of the pipeline.

Not Available

1982-01-01T23:59:59.000Z

62

Great Plains Project: at worst a $1. 7 billion squeeze  

SciTech Connect

On January 29, 1982, seeking a loan guarantee for its coal-to-gas synfuels project, Great Plains Gasification Associates told the Department of Energy that they expected to reap $1.2 billion in net income to the partnership during the first 10 years of the venture. On March 31, 1983, Great Plains treasurer Rodney Boulanger had a different projection: a horrific loss of $773 million in the first decade. The Great Plains project, with construction 50% complete, is being built near Beulah, ND. The project has a design capacity of 137.5 million cubic feet a day of SNG. Great Plains' analysis assumes that the plant will operate at 70% of design capacity in 1985, 77% in 1986, 84% in 1987 and 91% thereafter. The company projects the total project cost at $2.1 billion, consisting of plant costs of $1.9 billion and coal mine costs of $156 million. In originally projecting a cumulative net income of better than $1 billion, the partners anticipated running losses in only three of the first 10 years, and cash distributions from the project of $893 million during the first decade. Under the new projections, even in the best case, the first four years would show losses and there would be no distribution to the partners. In the worst case, the project would run in the red every year for the first 10 years.

Maize, K.

1983-04-11T23:59:59.000Z

63

DOE assists in meeting social impacts of Great Plains Plant  

Science Conference Proceedings (OSTI)

On August 15, 1986 Department of Energy Secretary John S. Herrington pledged that federal funds of $100,000 per month would be provided to the local governments and school districts of Mercer County, North Dakota. These funds are intended to assist the governments meet demands caused by the Great Plains Coal Gasification Plant. The community impact assistance will continue for as long as the government is the owner of the facility.

Not Available

1986-09-01T23:59:59.000Z

64

Great Plains Gasification Project process stream design data. Final report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Plant (GPGP) in the first commercial coal-to-SNG synthetic fuel plant constructed and operated in the United States. This process stream design data report provides non-proprietary information to the public on the major GPGP process streams. The report includes a simplified plant process block flow diagram, process input/output diagrams and stream design data sheets for 161 major GPGP process and effluent streams. This stream design data provides an important base for evaluation of plant and process performance and for verification of the DOE ASPEN computer simulation models of the GPGP processes. 8 refs.

Honea, F.I.

1985-09-01T23:59:59.000Z

65

Great Plains Institute | Open Energy Information  

Open Energy Info (EERE)

Plains Institute Plains Institute Jump to: navigation, search Name Great Plains Institute Place Minneapolis, Minnesota Zip 55407 Product Works with multiple stakeholders to produce and implement policies, technologies and practices in the areas of energy security and bio-based materials. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Great Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Great Plains Wind Farm Jump to: navigation, search Name Great Plains Wind Farm Facility Great Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Noble Environmental Developer Noble Environmental Location Hansford County TX Coordinates 36.285809°, -101.358662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.285809,"lon":-101.358662,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Naturener USA LLC formerly Great Plains Wind Energy | Open Energy  

Open Energy Info (EERE)

LLC formerly Great Plains Wind Energy LLC formerly Great Plains Wind Energy Jump to: navigation, search Name Naturener USA, LLC (formerly Great Plains Wind & Energy) Place San Francisco, California Zip 94111 Sector Wind energy Product Developer of a wind farm in Montana, has been sold to Naturener S.A. References Naturener USA, LLC (formerly Great Plains Wind & Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Naturener USA, LLC (formerly Great Plains Wind & Energy) is a company located in San Francisco, California . References ↑ "Naturener USA, LLC (formerly Great Plains Wind & Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Naturener_USA_LLC_formerly_Great_Plains_Wind_Energy&oldid=3491

68

Great Plains Gasification Project process stream design data. [Lurgi Process  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Plant (GPGP) is the first commercial coal-to-synthetic natural gas plant constructed and operated in the United States. This process stream design data report provides non-proprietary information to the public on the major GPGP process streams. The report includes a simplified plant process block flow diagram, process input/output diagrams, and stream design data sheets for 161 major GPGP process and effluent streams. This stream design data provides an important base for evaluation of plant and process performance and for verification of the Department of Energy's ASPEN (Advanced System for Process Engineering) computer simulation models of the GPGP processes. 8 refs., 22 figs., 2 tabs.

Honea, F.I.

1985-09-01T23:59:59.000Z

69

Instrumentation for Southem Great Plains D. L. Sisterson and...  

NLE Websites -- All DOE Office Websites (Extended Search)

counties are outlined. 318 Instrumentation for Southern Great Plains Table 1. Dates of installations of Instrumentation, side data system versions, and facilities at the SGP...

70

The Great Plains gasification project: Here today, for tomorrow  

SciTech Connect

Just a few years ago, there was a proliferation of synfuels projects. Pilot plants first proved their viability with long and successful test runs, then closed as market conditions shifted the focus away from synfuels. Plentiful oil, foreign and domestic, has put a serious damper on synfuels development. Due to the recent oil glut, Exxon cancelled its Colony Shale Oil Project, pulled up its stakes and left several ghost boom-towns in its wake. President Reagan-who originally wanted to eliminate the entire synfuels program-now wants to see the $13.5 billion budget of the Synthetic Fuels Corp. (SFC), a government agency, slashed by $10 billion. During the past several months, there has been some major news regarding synfuels projects. Two of the most familiar to those who follow the coal industry have just begun operating: The Cool Water Coal Gasification Project in Daggett, CA, (See Coal Mining, April, 1982, p. 126), and The Great Plains Coal Gasification Project near Beulah, ND which began operations in December toward producing 125,000,000 cu ft/day of high-Btu substitute natural gas (SNG) (the equivalent of 20,000 barrels of oil per day) from 14,000 tpd of lignite mined nearby. At a time when the government and private sector both seem to be putting the whammy on synfuels development, these plants are starting full operations.

Adam, B.O.

1985-01-01T23:59:59.000Z

71

Great Plains Wind Energy Transmission Development Project  

DOE Green Energy (OSTI)

In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

2012-06-09T23:59:59.000Z

72

Irrigation-Induced Rainfall and the Great Plains  

Science Conference Proceedings (OSTI)

The postWorld War II increase in irrigation in the Great Plains represents the largest human-induced hydrologic impact in North America. Drawn primarily from the High Plains aquifer, water applied as irrigation in the region amounts to billions ...

Nathan Moore; Stuart Rojstaczer

2001-08-01T23:59:59.000Z

73

Drought in the Great Plains: History of Societal Response  

Science Conference Proceedings (OSTI)

The Great Plains has a long history of drought episodes which have, in some years, significantly reducedexpected crop yields. The historic evidence suggests that such droughts will probably recur in the future.The drought of the 1930's stimulated ...

Alan D. Hecht

1983-01-01T23:59:59.000Z

74

Return Levels of Northern Great Plains Snow Water Equivalents  

Science Conference Proceedings (OSTI)

This paper estimates return levels of extreme snow water equivalents (SWE) in the northern Great Plains region, containing North and South Dakota, Iowa, Minnesota, and Nebraska. The return levels are estimated from extreme-value methods using a ...

Andrew J. Grundstein; Qi Qi Lu; Robert Lund

2006-07-01T23:59:59.000Z

75

A final report on the Great Plains Gasification Project's environmental, health, and safety information data system  

Science Conference Proceedings (OSTI)

This report describes Oak Ridge National Laboratory's (ORNLs) role in providing information to Department of Energy (DOE) on environmental data generated at the Great Plains Coal Gasification Project (GPCGP) in Beulah, North Dakota. An information system, the Fossil Energy (FE) Environmental, Health, and Safety Information System (EHSIS) was developed at ORNL to assist in tracking, analyzing, and making readily available significant environmental information derived from Great Plains. The Great Plains module with its numerous files (e.g., Gasification Bibliography, Gasification Tables, and Great Plains Gasification Project -- Permits, Standards, or Exceedences/Incidents) is a major technical area located within the information system. Over 1388 Great Plains documents have been reviewed, abstracted, and made available on-line in the information system. Also in the information system are 911 tables of selected environmental data including monitoring data from the following six subject areas: (1) air quality; (2) water quality; (3) solid wastes; (4) hazardous wastes; (5) industrial hygiene; and (6) surface mining. 14 refs., 4 figs.

Noghrei-Nikbakht, P.A.; Roseberry, L.M.

1989-12-01T23:59:59.000Z

76

Western Gas Sands Project: Northern Great Plains Province review  

SciTech Connect

The synopsis outlines the Upper Cretaceous low permeability natural (biogenic) gas formations of the Northern Great Plains Province (NGPP) of Montana, Wyoming, North and South Dakota. The main objectives are to present a general picture of that stratigraphy, significant structures, and natural gas potential.

Newman, III, H E [comp.

1979-08-01T23:59:59.000Z

77

Great Plains ASPEN model development: executive summary. Final topical report for Phase 1  

Science Conference Proceedings (OSTI)

The Scientific Design Company contracted with the United States Department of Energy through its Morgantown Energy Technology Center to develop a steady-state simulation model of the Great Plains Coal Gasification plant. This plant produces substitute natural gas from North Dakota lignite. The model was to be developed using the ASPEN (Advanced System for Process Engineering) simulation program. The project was divided into the following tasks: (1) Development of a simplified overall model of the process to be used for a sensitivity analysis to guide the development of more rigorous section models. (2) Review and evaluation of existing rigorous moving-bed gasifier models leading to a recommendation of one to be used to model the Great Plains gasifiers. Adaption and incorporation of this model into ASPEN. (3) Review of the accuracy and completeness of the physical properties data and models provided by ASPEN that are required to characterize the Great Plains plant. Rectification of inaccurate or incomplete data. (4) Development of rigorous ASPEN models for critical unit operations and sections of the plant. (5) Evaluation of the accuracy of the ASPEN Cost Estimation and Evaluation System and upgrading where feasible. Development of a preliminary cost estimate for the Great Plains plant. (6) Validation of the simulation models developed in the course of this project. Determination of model sensitivity to variations of technical and economic parameters. (7) Documentation of all work performed in the course of this project. Essentially all of these tasks were completed successfully. 34 figs.

Rinard, I.H.; Stern, S.S.; Millman, M.C.; Schwint, K.J.; Benjamin, B.W.; Kirman, J.J.; Dweck, J.S.; Mendelson, M.A.

1986-07-25T23:59:59.000Z

78

EIS-0408: Upper Great Plains Programmatic Wind EIS  

Energy.gov (U.S. Department of Energy (DOE))

This EIS, being prepared jointly by DOE's Western Area Power Administration and the Department of the Interiors Fish and Wildlife Service, will evaluate the environmental impacts of wind energy development in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota Westerns Upper Great Plains customer service region. Western will use the EIS to implement a comprehensive regional program to manage interconnection requests for wind energy projects.

79

Great Plaines installs directionally drilled crossings in Texas  

SciTech Connect

This paper reports on installing a five- line wide, one-line long products system for ARCO Pipe Line Co. (APLC) in a crowded utility right of way required Great Plains Pipeline Construction Co. to complete three directionally drilled crossings and over 50 conventional bored crossings in the Channelview, Texas area. The pipe line route closely parallels a 4-mi ROW section of Houston Power and Light Co. (HP and L) and about 4 mi of Union Pacific Railroad tracks. Due to overhead towers carrying high-voltage electric transmission lines, Great Plains bored under the existing towers in HP and L's easement to preserve the right of way for future tower expansion. Laney, Inc., subcontracted the conventional bores underneath towers and minor roads. Laney Directional Drilling Co. was the prime contractor for two horizontal directionally drilled crossings of the Houston Ship Channel and Carpenter's Bayou. Great Plains, with its own crew, completed three roadway crossings in high-traffic areas. Engineering and material procurement was handled by APLC.

Thiede, K.L.

1991-09-01T23:59:59.000Z

80

Regional topography, physiography, and geology of the Northern Great Plains. Open file report  

SciTech Connect

The report analyzes the topography, physiography and geology of a 63 county area in North Dakota, Montana, Wyoming, and South Dakota. Geologic maps are included. In addition 7 1/2 minute quadrangle slope maps are included for 5 selected sites that are representative of the areas that are likely to be impacted with accelerated coal development in the Northern Great Plains. These maps are provided as tools for planning transportation facilities, utility corridors, siting of mines and related facilities, controlling erosion, determining reclamation potential, and preparation of mining plans.

Keefer, W.R.

1974-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Production of jet fuels from coal-derived liquids. Volume 7. GPGP jet-fuels production program. Evaluation of technical uncertainties for producing jet fuels from liquid by-products of the Great Plains gasification plant. Interim report, 2 October 1987-30 September 1988  

Science Conference Proceedings (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding was provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to analyze GPGP operations and develop correlations for the liquid by-products and plant operating factors such as coal feed rate and coal characteristics.

Fraser, M.D.; Rossi, R.J.; Wan, E.I.

1989-01-01T23:59:59.000Z

82

A Sustainable Biomass Industry for the North American Great Plains  

Science Conference Proceedings (OSTI)

The North American Great Plains (hereafter NAGP) region is economically distressed and prone to severe ecological disruptions such as soil erosion. Its water resources are over-used and subject to pollution from agricultural fertilizers and chemicals, issues common to agricultural lands globally. On the other hand, the region is well suited to the production of herbaceous biomass that can be combusted directly for power or converted to liquid transportation fuels. This paper reviews the geography, history and current condition of the NAGP and offers suggestions about how the agriculture, economy and environment of this and similar regions around the world can be made more sustainable and able to contribute to a reduction in CO2 emissions and consequent global warming.

Rosenberg, Norman J.; Smith, Steven J.

2009-12-01T23:59:59.000Z

83

Energy-related impacts on Great Plains agricultural productivity in the next quarter century, 1976--2000. Great plains agricultural council publication  

SciTech Connect

Contents: The food demand dimension; Agriculture's relationship to national energy goals; Assumptions relating to great plains agriculture; Agricultural energy usage in perspective; The emerging energy usage transition agenda; General energy related agricultural adjustment concepts; Operational and technological adjustments in energy intense components; Agribusiness impacts and adjustments; Forests and energy; Effects of great plains energy resource development on agriculture; Institutional and agency program demands.

1976-01-01T23:59:59.000Z

84

EIS-0408: Upper Great Plains Programmatic Wind EIS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Upper Great Plains Programmatic Wind EIS 8: Upper Great Plains Programmatic Wind EIS EIS-0408: Upper Great Plains Programmatic Wind EIS Summary This EIS, being prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Fish and Wildlife Service, will evaluate the environmental impacts of wind energy development in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota - Western's Upper Great Plains customer service region. Western will use the EIS to implement a comprehensive regional program to manage interconnection requests for wind energy projects. Public Comment Opportunities None available at this time. Documents Available for Download March 22, 2013 EIS-0408: Draft Programmatic Environmental Impact Statement Upper Great Plains Programmatic Wind EIS

85

Great Plains ASPEN Model Development: ASPEN physical property evaluation. Final topical report  

Science Conference Proceedings (OSTI)

This report documents the steps taken to evaluate pure component properties in the ASPEN data bank for those compounds required to simulate the Great Plains Coal Gasification Plant where the compounds are also available in the DIPPR (Design Institute for Physical Property Data) data bank. DIPPR is a cooperative effort of industry, institutes, and federal agencies interested in the compilation, measurement, and evaluation of physical property data for industrially important compounds. It has been found that the ASPEN data bank is reliable, for the most part, the main problem being lack of documentation. In the few instances where values either were found to be missing or to be unacceptable, recommended constants or equation parameters are presented in this report, along with associated literature citations. In the cases where temperature dependent data were subjected to regression analysis to obtain new equation parameters, the detailed methods employed are presented also. 32 references.

Millman, M.C.

1985-01-01T23:59:59.000Z

86

Anatomy of Great Plains Protracted Heat Waves (especially the 1980 U.S. summer drought)  

Science Conference Proceedings (OSTI)

The protracted heat wave and drought of the Great Plains during summer 1980 was a manifestation of an abnormal form of the general circulation. An upper-level continental high developed rapidly over the Southern Plains in late May and persisted ...

Jerome Namias

1982-07-01T23:59:59.000Z

87

Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains  

Science Conference Proceedings (OSTI)

Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

2009-07-15T23:59:59.000Z

88

Hydrological and Dynamical Characteristics of Summertime Droughts over U.S. Great Plains  

Science Conference Proceedings (OSTI)

A drought pattern and its time evolution over the U.S. Great Plains are investigated from time series of climate divisional monthly mean surface air temperature and total precipitation anomalies. The spatial pattern consists of correlated ...

Fong-Chiau Chang; Eric A. Smith

2001-05-01T23:59:59.000Z

89

Research on Electrical Properties of Severe Thunderstorms in the Great Plains  

Science Conference Proceedings (OSTI)

In 1978 we began a coordinated effort to study the electrical behavior of large and severe thunderstorms that form over the Great Plains of the central United States. Methods of approach include the study of characteristics of individual ...

W. David Rust; William L. Taylor; Donald R. MacGorman; Roy T. Arnold

1981-09-01T23:59:59.000Z

90

Multiyear Summertime Observations of Daytime Fair-Weather Cumuli at the ARM Southern Great Plains Facility  

Science Conference Proceedings (OSTI)

A long data record (14 yr) of ground-based observations at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site is analyzed to document the macroscopic and dynamical properties of daytime fair-weather cumulus clouds ...

Arunchandra S. Chandra; Pavlos Kollias; Bruce A. Albrecht

2013-12-01T23:59:59.000Z

91

Drought Recurrence in the Great Plains as Reconstructedfrom Long-Term Tree-Ring Records  

Science Conference Proceedings (OSTI)

Recently collected tree-ring data were used to reconstruct drought from 1700 to the present in four regionsflanking the Great Plains. Regions were centered in Iowa, Oklahoma, eastern Montana and eastern Wyoming.Reconstructions derived by multiple ...

Charles W. Stockton; David M. Meko

1983-01-01T23:59:59.000Z

92

Computer and Internet Use by Great Plains Farmers  

E-Print Network (OSTI)

Marshall Frasier. 1999. Farm Computer Adoption in the GreatW.M. Frasier. 2002. Computers in Agriculture. Agronomy1263-1269. Baker, G. 1992. Computer Adoption and Use by New

Smith, Aaron; Morrison Paul, Catherine J.; Goe, W. Richard; Kenney, Martin

2004-01-01T23:59:59.000Z

93

Great Plains ASPEN model development: ASPEN sizing enhancements. Final topical report  

Science Conference Proceedings (OSTI)

In preparing cost estimates for the various sections of the Great Plains Coal Gasification Plant, the equipment sizing methods for the major equipment items were checked. The sizing results obtained from ASPEN were compared with the sizing results obtained by using the Halcon SD Group's (HSD) own sizing methods and in-house computer programs. Where there were significant differences between the ASPEN sizing results and our own results, the subroutine coding was checked to determine where the differences arose. Modifications were then made to the ASPEN routines where it was thought that HSD's methods would significantly enhance the quality of ASPEN. The following ASPEN sizing subroutines were modified: (1) STW01 - ASPEN tray tower sizing; (2) SVS11 - ASPEN vertical vessel sizing; (3) SVS01 - ASPEN horizontal vessel sizing; and (4) CPVVTH - ASPEN vertical vessel/tower shell thickness and weight determination. Modifications were made to sizing calculations contained in the following ASPEN COST subroutines: (1) CPC01 - ASPEN centrifugal pump costing; and (2) CPC02 - ASPEN centrifugal compressor costing. Modifications also were made to sizing calculations contained in the following ASPEN UOS subroutines: (1) UPC01 - ASPEN pump model; and (2) UPC02 - ASPEN compressor model. A new ASPEN COST subroutine that contains sizing calculations was developed, CPC04 - ASPEN reciprocating compressor costing. 4 references.

Schwint, K.J.

1985-02-01T23:59:59.000Z

94

The Great Plains Low-Level Jet during the Warm Season of 1993  

Science Conference Proceedings (OSTI)

Hourly wind profiler observations from the NOAA Profiler Network were used to develop a climatology of the low-level jet (LLJ) over the Great Plains of the central United States from April to September of 1993. The peak precipitation episode of ...

Raymond W. Arritt; Thomas D. Rink; Moti Segal; Dennis P. Todey; Craig A. Clark; Mark J. Mitchell; Kenneth M. Labas

1997-09-01T23:59:59.000Z

95

Price, Weather, and Acreage Abandonment in Western Great Plains Wheat Culture  

Science Conference Proceedings (OSTI)

Multivariate analyses of acreage abandonment patterns in the U.S. Great Plains winter wheat region indicate that the major mode of variation is an in-phase oscillation confined to the western half of the overall area, which is also the area with ...

Patrick J. Michaels

1983-07-01T23:59:59.000Z

96

A Climatology of the Warm Season Great Plains Low-Level Jet Using Wind Profiler Observations  

Science Conference Proceedings (OSTI)

Hourly observations from the Wind Profiler Demonstration Network during the warm season months of 1991 and 1992 were used to develop a climatology of the low-level jet (LLJ) over the Great Plains of the central United States. The maximum overall ...

Mark J. Mitchell; Raymond W. Arritt; Ken Labas

1995-09-01T23:59:59.000Z

97

A Case Study of the Summertime Great Plains Low Level Jet  

Science Conference Proceedings (OSTI)

A case study of the kinematical and dynamical evolution of the summertime Great Plains low level jet (LLJ) is presented. Airborne radar altimetry was used to discern the x and y components of the geostrophic wind at three levels in the lower ...

Thomas R. Parish; Alfred R. Rodi; Richard D. Clark

1988-01-01T23:59:59.000Z

98

Causes of Long-Term Drought in the U.S. Great Plains  

Science Conference Proceedings (OSTI)

The U.S. Great Plains experienced a number of multiyear droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of long-term (19302000) simulations ...

Siegfried D. Schubert; Max J. Suarez; Philip J. Pegion; Randal D. Koster; Julio T. Bacmeister

2004-02-01T23:59:59.000Z

99

Weather pattern climatology of the Great Plains and the related wind regime  

DOE Green Energy (OSTI)

The meteorology of the Great Plains can be described as a constant progression of air masses, fronts and cyclonic storm systems. Each of these meteorological conditions can be characterized by identifiable isobaric and related weather parameter patterns. Nine such patterns have been defined to type the weather patterns in the Great Plains. Time series of weather pattern types were produced for 62 stations on the Great Plains. Statistical analyses of these time series produced annual and seasonal frequencies of occurrence of the weather pattern types. Maps of the annual and seasonal frequency of occurrence of weather pattern type are presented for the Great Plains. Persistence and alternation frequencies match what is expected for traveling temperate latitude cyclones, anticyclones and fronts. The wind regime for stations at which the anemometer height and location was constant (and known) for a minimum of three consecutive years was stratified by weather pattern type. Statistical analyses were made to show the response of the wind to the large-scale distribution of air pressure associated with a weather pattern type. The response of the wind to the weather pattern is a site-specific result of the interaction of the large-scale meteorology with local terrain, surface roughness and atmospheric stability. Mean wind speed discriminates between pairs of weather pattern types with better than 75% confidence for more than two-thirds of the possible pairs of weather pattern types.

Barchet, W.R.

1982-11-01T23:59:59.000Z

100

Temporal and Spatial Variations in Hail in the Upper Great Plains and Midwest  

Science Conference Proceedings (OSTI)

The distribution of hail days during 196180 in the northern Great Plains-Midwest was evaluated on a temporal and spatial basis to help interpret crop-hail losses. Comparisons with earlier (190160) hail day data revealed the seven-state study ...

Stanley A. Changnon Jr.

1984-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Albedo of the U.S. Great Plains as Determined from NOAA-9 AVHRR Data  

Science Conference Proceedings (OSTI)

The seasonal variation of surface albedo is derived from NOAA-9 AVHRR observations of the US. Great Plains during the snow-free months of 1986 and 1987. Monthly albedo maps are constructed using a simple model-independent technique which includes ...

G. Gutman; G. Ohring; D. Tarpley; R. Ambroziak

1989-06-01T23:59:59.000Z

102

Great Plains ASPEN Model Development: binary interaction parameters and activity coefficient parameters. Final report  

Science Conference Proceedings (OSTI)

The simulation of the various sections of the Great Plains Coal Gasification Plant involves modelling vapor-liquid equilibria and liquid-liquid equilibria that are highly nonideal. The Peng-Robinson equation of state, modified for water, was used in the simulation of most of the process sections. Interaction parameters established by regression of literature data, using ASPEN's DRS system, along with interaction parameter values found in the literature, became the database for the simulation. In two of the sections, the Oxygen Plant and the TEG drying of the product SNG, activity coefficient models were used because they gave a better prediction of the phase equilibrium. For the Rectisol unit, which removes hydrogen sulfide from the gas, parameters available from a DOE sponsored contract, Tristate, were used, after verification, for the ASPEN modified version of the RKS. The phases that were predicted using these parameters were checked against literature data and, in most cases, the liquid mole fractions of carbon dioxide predicted by the correlation were within 10% of those reported. A model that would predict phase equilibrium, based on the ionization of Lewis acids and bases and salts, would have been an ideal choice for simulation of the Stretford and Phosam flowsheets. However, only limited temperature dependent liquid activity coefficients data are available in the literature for the ionic species found in the Stretford and Phosam solutions, from which correlation parameters could be obtained by regression. Also, only the flash model can handle this type of calculation; therefore, it was used only to a limited extent in the simulation of the Stretford Unit Absorber. 118 references.

Stern, S.S.; Millman, M.C.; Kirman, J.J.; Nwogu, D.

1984-12-01T23:59:59.000Z

103

Great Plains Coal Gasification Project. Quarterly technical progress report  

Science Conference Proceedings (OSTI)

Overall, the GPGA facility has performed well, as shown by the production figures. Methanation, product gas compression, oxygen production, phenol recovery, ammonia recovery and the gasifiers are noteworthy examples of units which have been started up and operated with few problems. In other units, significant deficiencies have been uncovered which have required modification. Some of these items had a negative impact on SNG production. Additionally, GPGA undertook a program to improve reliability, safety and reduce odor emissions. Reliable high pressure steam generation is essential for maintaining acceptable plant on-stream factors. Consequently, several projects were undertaken which will improve the safety of operation and firefighting capabilities at the main boiler units. Also, a significant upgrade of the boiler instrumentation was started to ensure good control and operating flexibility. The cooling water system was designed to meet both plant cooling needs and provide treatment of wastewater streams. Plugging of tower packing and heat exchanger tubes, as well as odor emissions resulted from the heavy biological activity in this system. Fine mesh traveling screens, wind wall louvers, ceramic packing, mist eliminators, and exchanger chemical cleaning connections are the notable modifications begun during the period. Due to condensate problems and the greater than expected production of gas liquor, wastewater treatment systems were operated at near capacity. Additional pumping capability, a second deepwell, additional storage ponds, modifications to the evaporator distillate system and the vacuum deaerator are several projects undertaken to reduce loading on the system. The on-stream factor of ash handling has been low due to pluggage problems.

Not Available

1984-12-31T23:59:59.000Z

104

Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface-Based Remote Sensing of the Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains G. Feingold and W. L. Eberhard National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. E. Vernon and M. Previdi Rutgers University New Brunswick, New Jersey Abstract We have demonstrated first measurements of the aerosol indirect effect using ground-based remote sensors at the Southern Great Plains (SGP) site. The response of non-precipitating, ice-free clouds to changes in aerosol loading is quantified in terms of a relative change in cloud-drop effective radius (r e ) for a relative change in aerosol extinction under conditions of equivalent cloud liquid water path (LWP). This is done in a single column of air at a temporal resolution of 20 s (spatial resolution of ~100 m).

105

Coal petrographic genetic units in deltaic-plain deposits of the Campanian Mesa Verde Group (New Mexico, USA)  

E-Print Network (OSTI)

Coal petrographic genetic units in deltaic-plain deposits of the Campanian Mesa Verde Group (New stratigraphy; Coal; Maceral analysis; Microlithotype Abstract The Campanian rocks of the Mesa Verde Group units, i.e. intermediate term cycles. The continental facies consist of coastal-plain deposits (coals

Paris-Sud XI, Université de

106

Synfuels Corporation considers $6. 8 billion in new aid to boost Great Plains and three other facilities  

Science Conference Proceedings (OSTI)

The US Synthetic Fuels Corporation (SFC) voted unanimously on December 1 to negotiate agreements with four companies for $6.8 billion in loan and price guarantees. One potential recipient, the Great Plains Coal Gasification Project, was turned down two months earlier. Other recipients would be the Union Oil Company of California, the Arkansas Power and Light Company, and Geokinetics Inc. Only the size of the potential awards, which provide a welcome boost to the synfuels industry, was a surprise. Analysts see the decisions as a possible new commitment by the Reagan Administration to synthetic fuels to ease the concerns of private sponsors threatening to kill the projects. The SFC has made only one award to date, but officials say they will ultimately award $13 billion in loan and price guarantees by the end of 1984 to cover about 12 projects. Of that amount, $1 billion will go for six tar sands and heavy-oil projects, $5 billion for three shale-oil projects, and $7 billion for three coal-related plants.

Doucette, D.B.

1983-12-12T23:59:59.000Z

107

Depiction of the Variations of Great Plains Precipitation and Its Relationship with Tropical Central-Eastern Pacific SST  

Science Conference Proceedings (OSTI)

Several advanced analysis tools are applied to depict the timefrequency characteristics of the variations of Great Plains (GP) precipitation and its relationship with tropical central-eastern Pacific Ocean sea surface temperature (SST). These ...

Song Yang; X. Ding; D. Zheng; Q. Li

2007-02-01T23:59:59.000Z

108

Potential Predictability of Long-Term Drought and Pluvial Conditions in the U.S. Great Plains  

Science Conference Proceedings (OSTI)

This study examines the predictability of seasonal mean Great Plains precipitation using an ensemble of century-long atmospheric general circulation model (AGCM) simulations forced with observed sea surface temperatures (SSTs). The results show ...

Siegfried D. Schubert; Max J. Suarez; Philip J. Pegion; Randal D. Koster; Julio T. Bacmeister

2008-02-01T23:59:59.000Z

109

Modeling the Atmospheric Response to Irrigation in the Great Plains. Part I: General Impacts on Precipitation and the Energy Budget  

Science Conference Proceedings (OSTI)

Since World War II, the expansion of irrigation throughout the Great Plains has resulted in a significant decline in the water table of the Ogallala Aquifer, threatening its long-term sustainability. The addition of near-surface water for ...

Keith J. Harding; Peter K. Snyder

2012-12-01T23:59:59.000Z

110

Relationship between Winter/Spring Snowfall and Summer Precipitation in the Northern Great Plains of North America  

Science Conference Proceedings (OSTI)

On the basis of snowfall observations from 1929 to 1999, positive (negative) snowfall anomalies are associated with wetter (drier) than normal conditions during the summer [JulyAugust (JJA)] in the northern Great Plains. The five driest summers ...

Steven M. Quiring; Daria B. Kluver

2009-10-01T23:59:59.000Z

111

Multi-year, Summertime Observations of Daytime Fair-Weather Cumuli at the ARM Southern Great Plains facility  

Science Conference Proceedings (OSTI)

A long data record (14-year) of ground-based observations at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site is analyzed to document the macroscopic and dynamical properties of daytime fair-weather cumulus ...

Arunchandra S. Chandra; P. Kollias; B. A. Albrecht

112

Interferential Impact of ENSO and PDO on Dry and Wet Conditions in the U.S. Great Plains  

Science Conference Proceedings (OSTI)

The influence of the El NioSouthern Oscillation (ENSO) and Pacific decadal oscillation (PDO) interference on the dry and wet conditions in the Great Plains of the United States has been examined using monthly observational datasets. It is shown ...

Zeng-Zhen Hu; Bohua Huang

2009-11-01T23:59:59.000Z

113

Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

Vertical Variability of Aerosols and Water Vapor Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. D. Turner Pacific Northwest National Laboratory Richland, Washington M. Clayton and V. Brackett Science Applications International Corporation National Aeronautics and Space Administration Langley Research Center Hampton, Virginia T. P. Tooman and J. E. M. Goldsmith Sandia National Laboratories Livermore, California J. A. Ogren National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory Boulder, Colorado E. Andrews Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado

114

Application of wind energy to Great Plains irrigation pumping. Final report  

DOE Green Energy (OSTI)

Wind energy systems without energy storage for irrigation in the Great Plains are studied. Major uses of irrigation energy were identified as pumping for surface distribution systems, which could be supplied by variable flow, and pumping for sprinkler systems using constant flow. A computer program was developed to simulate operation of wind-powered irrigation wells. Pumping by wind turbine systems was simulated for 2 variable and 2 constant flow operational modes in which auxiliary motors were used in 3 of the modes. Using the simulation program, the well yields and maximum pumping rates among the 4 modes as a function of drawdown in a typical well are compared.

Hagen, L.J.; Lyles, L.; Skidmore, E.L.

1979-10-01T23:59:59.000Z

115

Evaluation of herbacceous biomass crops in the northern Great Plains. Final report  

DOE Green Energy (OSTI)

Herbaceous lignocellulose crops are a potential renewable feedstock for biochemical conversion systems second in size to wood products. Several herbaceous crops are utilized as forage crops in the northern Great Plains, but forage quality considerations usually dictates a early harvest. Biomass cropping does not have this constraint; therefore, little information was available on herbaceous crops utilized as energy crops prior to this project. Our primary objectives were to evaluate the biomass yield and select chemical components of several herbaceous crops for energy crops in the northern Great Plains, compare the economic feasibility of energy crops with common competing crops, and evaluate biomass cropping on summer fallow lands. Three good, two marginal, and one irrigated sites were used during 1988 to 1992 for the first component. At least six perennial and four annual biomass species were included at all sites. Three to four nitrogen (N) levels and a crop-recrop comparison (annuals only) were management intensities included. Biomass cropping on idled lands was performed on dryland at Carrington and evaluated the effects of removing leguminous biomass on fallowed lands. This report summarizes results from the 5-year project.

Meyer, D.W.; Norby, W.E.; Erickson, D.O.; Johnson, R.G. [North Dakota State Univ., Fargo, ND (United States)

1994-08-01T23:59:59.000Z

116

DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL  

E-Print Network (OSTI)

Chapter PD DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL RESOURCES Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

117

Observed Surface Reflectance Distributions in the Southern Great Plains During ALIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Reflectance Distributions Surface Reflectance Distributions in the Southern Great Plains During ALIVE Kirk Knobelspiesse 1 , Brian Cairns 1 , Andrew Lacis 2 , Mikhail Alexandrov 2 , Barbara Carlson 2 and Beat Schmid 3 1 Department of Applied Physics and Applied Mathematics, Columbia University 2 NASA Goddard Institute for Space Studies 3 Pacific Northwest National Laboratory * Surface albedo can be measured from the ground with broadband instruments. * Albedo can be measured from space if the atmospheric effect is removed and many view geometries are available. The measured Bidirectional Reflectance Distribution Function (BRDF) is angularly integrated to compute the albedo. * Studies of the former (Yang, 2006) and the latter (Liang et al. 2005; Wang et al. 2006) do not always agree.

118

GPS Water Vapor Projects Within the ARM Southern Great Plains Region  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS Water Vapor Projects Within the ARM GPS Water Vapor Projects Within the ARM Southern Great Plains Region J. Braun, T. Van Hove, S. Y. Ha, and C. Rocken GPS Science and Technology Program University Corporation for Atmospheric Research Boulder, Colorado Abstract The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program has a need for an improved capability to measure and characterize the four-dimensional distribution of water vapor within the atmosphere. Applications for this type of data include their use in radiation transfer studies, cloud-resolving and single-column models, and for the establishment of an extended time series of water vapor observations. The University Corporation for Atmospheric Research's (UCAR) GPS Science and Technology (GST) Program is working with ARM to leverage the substantial investment in

119

Cost-effective sulfur control strategies for the Great Plains gasification project  

SciTech Connect

The Great Plains gasification plant in Beulah, North Dakota, uses 14 Lurgi gasifiers to produce 152x10/sup 6/ scf/d (4.1x10/sup 6/ Nm/sup 3//d) of pipeline-quality gas from lignite. Since start-up in mid-1984, the plant has provided a serious challenge to the reliable operation of the Stretford sulfur recovery system. To address this challenge, over forty options for mitigating sulfur emissions were evaluated on an economic and technical basis, beginning at the emissions source (the stack) and working back through the plant. Although this study was directed toward providing a timely solution to the sulfur dioxide emissions problem, the status and opportunities for a number of emerging technologies were brought into focus. This evaluation is detailed here by the authors.

Doctor, R.D.; Wilzbach, K.E. (Argonne National Lab., IL (USA). Energy and Environmental Systems Div.)

1989-09-01T23:59:59.000Z

120

Gwembe Coal Formation, Karoo Supergroup, Mid-Zambezi valley, southern Zambia; a fluvial plain environment  

Science Conference Proceedings (OSTI)

The Gwembe Coal Formation of Permian age belongs to the Lower Karoo Group of the Karoo Supergroup (Permo-Carboniferous to early Jurassic), which crops out in the mid-Zambezi Valley, southern Zambia. The formation has a maximum thickness of 280 m. It was formed in a fluvial depositional environment in which sandstones, siltstones and mudstones were deposited in channels and flood plains. One sandstone body (A Sandstone) indicates a change in fluvial style from a proximal braided system to a high-sinuosity meandering stream system. The productive coals (Main Seam) with thicknesses from 5 to 12 m were deposited in shallow swampy areas of the flood plain. Peat deposition was interrupted by channel, crevasse channel and splay, levee and overbank deposition. Rootlets observed in basal sandstones indicate an insitu origin for the Main Seam.

Nyambe, I.A.; Dixon, O. (Univ. of Ottawa, Ontario (Canada))

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

SciTech Connect

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

122

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

Science Conference Proceedings (OSTI)

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

123

Validation of regional wind resource predictions in the Northern Great Plains  

DOE Green Energy (OSTI)

The development and validation of computerized wind mapping tools for regional assessment purposes is an important step in accelerating wind energy deployment. This paper summarizes the results of a validation study of the automated wind resource mapping technique developed at the National Renewable Energy Laboratory (NREL). This technique uses Geographic Information System (GIS) software and produces high horizontal resolution (1 km) wind resource maps. The automated wind maps have been used to help plan wind measurement programs and to define potential areas for wind energy projects in countries such as Mexico, Chile, Indonesia, and China. The authors chose a US location for this project to test the accuracy of the automated mapping technique in a region where the wind resource distribution was already fairly well known. The Buffalo Ridge region of the Northern Great Plains served as the subject area. The study area covered northwestern Iowa, southwestern Minnesota, and adjacent parts of South Dakota and Nebraska. This area had several advantages for use in a validation study. First, this area has active wind energy development and the results would be of interest to the wind energy community. Second, a validation data set would be fairly easy to derive because recent wind measurements were taken in that region specifically for wind energy purposes. These data were publicly available and easily obtained. Finally, the relatively simple terrain in that region enabled this study to be completed in a timely manner.

Elliott, D.; Schwartz, M.

1998-08-01T23:59:59.000Z

124

A 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

3-Year Climatology of Cloud and Radiative Properties 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains M. M. Khaiyer, A. D. Rapp, D. R. Doelling, and M. L. Nordeen Analytical Service and Materials, Inc. Hampton, Virginia P. Minnis, W. L. Smith, Jr., and L. Nguyen Atmospheric Sciences Division National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction While the various instruments maintained at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) Central Facility (CF) provide detailed cloud and radiation measurements for a small area, satellite cloud property retrievals provide a means of examining the large-scale properties of the surrounding region over an extended period of time. Seasonal and inter-annual

125

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

126

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network (OSTI)

Chapter PQ COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA By G.D. Stricker Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

127

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network (OSTI)

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

128

COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA  

E-Print Network (OSTI)

Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

129

EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS  

Science Conference Proceedings (OSTI)

This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join these various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern Great Plains, northern hemisphere, and elsewhere. Finally these data can be integrated into a history of climate change and predictive climate models. This is not a small undertaking. The goals of researchers and the methods used vary considerably. The primary task of this project was literature research to (1) evaluate existing methodologies used in geologic climate change studies and evidence for short-term cycles produced by these methodologies and (2) evaluate late Holocene climate patterns and their interpretations.

Joseph H. Hartman

1999-09-01T23:59:59.000Z

130

Predicting Spring Tornado Activity in the Central Great Plains By March 1st  

Science Conference Proceedings (OSTI)

The authors illustrate a statistical model for predicting tornado activity in the central Plains by March 1st. The model predicts the number of tornado reports during AprilJune using February sea-surface temperature (SST) data from the Gulf of ...

James B. Elsner; Holly M. Widen

131

Estimating Clear-Sky Regional Surface Fluxes in the Southern Great Plains Atmospheric Radiation Measurement Site with Ground Measurements and Satellite Observations  

Science Conference Proceedings (OSTI)

The authors compared methods for estimating surface fluxes under clear-sky conditions over a large heterogeneous area from a limited number of ground measurements and from satellite observations using data obtained from the southern Great Plains ...

W. Gao; R. L. Coulter; B. M. Lesht; J. Qiu; M. L. Wesely

1998-01-01T23:59:59.000Z

132

AtmosphereLand Surface Interactions over the Southern Great Plains: Characterization from Pentad Analysis of DOE ARM Field Observations and NARR  

Science Conference Proceedings (OSTI)

The Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site data are analyzed to provide insight into atmosphereland surface interactions generating summertime precipitation variability. Pentad-...

Alfredo Ruiz-Barradas; Sumant Nigam

2013-02-01T23:59:59.000Z

133

Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern Great Plains including for CLASIC (June 2007)  

Science Conference Proceedings (OSTI)

The atmospheric moisture budget and surface interactions for the southern Great Plains are evaluated for contrasting MayJune periods (1998, 2002, 2006, and 2007) as background for the Cloud and Land Surface Interaction Campaign (CLASIC) of (wet) ...

Peter J. Lamb; Diane H. Portis; Abraham Zangvil

2012-12-01T23:59:59.000Z

134

A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN,  

E-Print Network (OSTI)

Chapter SB A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN, WYOMING assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U...........................................................................................................................SB-1 Coal Production History

135

ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL  

E-Print Network (OSTI)

Chapter PA ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

136

SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES  

E-Print Network (OSTI)

Chapter PH SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES By M assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

137

US Synthetic Fuels Corporation's proposal to award the Great Plains project $820 million in additional Federal financial assistance. Hearing before a Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Ninth Congress, First Session, May 22, 1985  

Science Conference Proceedings (OSTI)

The Subcommittee on Environment, Energy, and Natural Resources reviewed the financial situation of the Great Plains coal gasification plant in North Dakota. The sponsors of the project are requesting an additional $820 million in Federal assistance because they cannot operate the plant and pay back the $1.46 billion already borrowed from the taxpayers with the current trend towards lower energy prices. The possibility of abandoning the project is discussed, but most speakers believe every effort should be made to continue the project with the least amount of Federal involvement.

Not Available

1986-01-01T23:59:59.000Z

138

FORT UNION COAL IN THE WILLISTON BASIN, NORTH DAKOTA: A SYNTHESIS  

E-Print Network (OSTI)

Chapter WS FORT UNION COAL IN THE WILLISTON BASIN, NORTH DAKOTA: A SYNTHESIS By R.M. Flores and C coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

139

(Great Plains Gasification Associates) quarterly technical progress report, 1st quarter 1985  

SciTech Connect

This quarterly report covers the following subjects: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) raw material and energy consumption for the mine; (8) plant modifications-1985 budget; (9) plant maintenance; (10) safety; (11) industrial hygiene; (12) medical services; and (13) quality assurance/quality control activities.

Not Available

1985-04-30T23:59:59.000Z

140

Sensitivity of the Great Plains Severe-Storm Environment to Soil-Moisture Distribution  

Science Conference Proceedings (OSTI)

This study examines the influence of differences in ground moisture over the southern Great Plairs and the Mexican plateau on the formation and evolution of the dryline, the elevated mixed layer, and the local planetary boundary layer. These ...

John M. Lanicci; Toby N. Carlson; Thomas T. Warner

1987-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Great Plains ASPEN model development: development of a model for the density of solutions of aqueous electrolytes. Final topical report. [Extension of Debye-Huckel limiting law  

SciTech Connect

A new physical property model for the calculation of the density of solutions of aqueous electrolytes has been developed for the ASPEN process simulator as part of the simulation of the Great Plains Coal Gasification Plant. The model developed recently by Jay S. Dweck, Consultant, Inc. is an extension of the Debye-Huckel limiting law. The Debye-Huckel limiting law allows the predictions of the density of dilute solutions of dissolved salts by providing a relationship for the molar volume of the salt as a function of ion strength. The relationship is linear in the square root of ionic strength, with the slope dependent only upon the charges of the ions which constitute the salt. When combined with data for the infinite dilution molar volume of the salts, solution density can be calculated. The new model preserves the linear relationship with the square root of ionic strength, but introduces ion dependent parameters for the determination of the slope. The solution density is calculated in terms of the molar volumes of the individual ions, instead of a mixture of pseudo salts. Preliminary tests of the model have shown it to be far more accurate than the original limiting law, and applicable to more concentrated solutions (greater than 10 molar).

Dweck, J.S.; Mendelson, M.A.; Blumenfeld, R.

1985-01-01T23:59:59.000Z

142

Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

1992-03-01T23:59:59.000Z

143

Springtime Intensification of the Great Plains Low-Level Jet and Midwest Precipitation in GCM Simulations of the Twenty-First Century  

Science Conference Proceedings (OSTI)

Simulations from 18 coupled atmosphereocean GCMs are analyzed to predict changes in the climatological Great Plains low-level jet (GPLLJ) and Midwest U.S. hydrology resulting from greenhouse gas increases during the twenty-first century. To ...

Kerry H. Cook; Edward K. Vizy; Zachary S. Launer; Christina M. Patricola

2008-12-01T23:59:59.000Z

144

Factors Controlling the Vertical Extent of Fair-Weather Shallow Cumulus Clouds over Land: Investigation of Diurnal-Cycle Observations Collected at the ARM Southern Great Plains Site  

Science Conference Proceedings (OSTI)

Summertime observations for 13 yr at the Atmospheric Radiation Measurement Southern Great Plains site are used to study fair-weather shallow cumuli (ShCu). To roughly separate forced from active ShCu, days are categorized into thin- or thick- ...

Yunyan Zhang; Stephen A. Klein

2013-04-01T23:59:59.000Z

145

Modeling the Atmospheric Response to Irrigation in the Great Plains. Part II: The Precipitation of Irrigated Water and Changes in Precipitation Recycling  

Science Conference Proceedings (OSTI)

The rapid expansion of irrigation in the Great Plains since World War II has resulted in significant water table declines, threatening the long-term sustainability of the Ogallala Aquifer. As discussed in Part I of this paper, the Weather Research ...

Keith J. Harding; Peter K. Snyder

2012-12-01T23:59:59.000Z

146

Comparison of Meteorological Measurements from Sparse and Dense Surface Observation Networks in the U.S. Southern Great Plains  

SciTech Connect

The primary objective of this study was to analyze the spatial variability of temperature and relative humidity across Kansas (KS) and Oklahoma (OK) for sparse and dense networks by comparing data from (1) the Surface Meteorological Observing System (SMOS) installations at the Atmospheric Radiation Measurement (ARM; Peppler et al. 2008) Programs Southern Great Plains site and (2) the Oklahoma Mesonet (OKM; McPherson et al. 2007). Given the wealth of observations available from these networks, this study provided the unique opportunity to determine, within a quantifiable statistical limit, an optimal distance between stations deployed for observation of the climatological values of temperature and relative humidity. Average distances between a given station and its closest neighboring station for the ARM SMOS (~ 70 km) and the OKM (~ 30 km; Brotzge and Richardson 2003) networks provided an excellent framework for comparisons of sparse and dense observations (Figure 1). This study further lays groundwork for a future investigation to determine the necessary spacing between observations for initialization of gridded numerical models.

JW Monroe; MT Ritsche; M Franklin; KE Kehoe

2008-02-28T23:59:59.000Z

147

Southern Great Plains Newsletter  

SciTech Connect

This months issue contains the following articles: (1) Scientists convene at SGP site for complex convective cloud experiment; (2) VORTEX2 spins down; (3) Sunphotometer supports SPARTICUS (a Sun and Aureole Measurement imaging sunphotometer) campaign and satellite validation studies; and (4) Ceilometer represents first deployment of new ground-based instruments from Recovery Act.

J. Prell L. R. Roeder

2010-09-01T23:59:59.000Z

148

ANG coal gasification project management control system report. [Great Plains project  

Science Conference Proceedings (OSTI)

Much time, money and effort has been spent in the forefront of this project for project controls. The work breakdown structure for the systems has been custom designed. The systems, both manual and computerized, have been well scrutinized and chosen by ANG to represent the most cost effective and efficient way of controlling a project the magnitude of $1.5 billion. These systems have been developed in a manner so that information can be gathered as detailed or as summarized as necessary, and in the most timely and expeditious ways.

Not Available

1981-01-01T23:59:59.000Z

149

(Great Plains Coal Gasification project): Quarterly environmental, safety, medical, and industrial hygiene report, fourth quarter 1986  

SciTech Connect

Contents of this quarterly report include: (1) environmental monitoring program; (2) supplemental environmental program; (3) quality assurance/quality control activities; (4) schedule of activities for next reporting period; (5) safety; (6) medical services; and (7) industrial hygiene. The environmental monitoring program covers: permitting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; environmental incident summary; and regulatory environmental inspections. Supplemental environmental program includes: performance survey; toxicity screening study; data base management system; epidemiology; and contingency program.

Not Available

1987-01-01T23:59:59.000Z

150

Planning and initiation of detailed engineering design for the Great Plains coal gasification project. Final report  

Science Conference Proceedings (OSTI)

During the course of detailed engineering it was expected that preliminary engineering documents would need to be modified. In a number of instances, however, especially for flow diagrams and specifications, the revised preliminary engineering documents became the final approved for construction (AFC) documents. P and ID's and plot plans were updated as a result of the detailed piping design. Equipment data sheets which initially contained basic process data were made mechanically complete and then further updated to reflect the equipment actually purchased. The initial issue of the preliminary engineering documents represent a necessary baseline for monitoring project design changes. Foundation work, equipment specifications and status of engineering in the various process operations are discussed.

Not Available

1980-01-01T23:59:59.000Z

151

Great Plains Coal Gasification project. Quarterly environmental report, third quarter, 1985  

Science Conference Proceedings (OSTI)

Environmental monitoring, supplemental environmental programs and quality assurance/quality control activities are covered in this quarterly report. Under the environmental monitoring program, the following topics are covered: permitting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; and environmental incident summary. The supplemental environmental program covers: performance survey; wastewater control and steam generation system; sulfur control; tar reinjection outage; gasifier effluent control systems; toxicity screening study; toxicant characterization; data base management system; workplace characterization; fugitive emissions; epidemiology; atmospheric program; effects of cooling tower effluents on terrestial ecosystems; and contingency program. 15 figs., 56 tabs.

Not Available

1985-10-01T23:59:59.000Z

152

Great Plains Coal Gasification Project. Quarterly environmental report, second quarter, 1986  

Science Conference Proceedings (OSTI)

Following the executive summary, this quarterly report includes environmental monitoring program, supplemental environmental program, and quality assurance/quality control activities. Under the environmental monitoring program, the following topics are covered: permiting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; environmental incident summary; and regulatory environmental inspections. The supplemental environmental program includes: performance survey; toxicity screening study; data base management system; epidemiology; and contingency program. (AT)

Not Available

1986-07-01T23:59:59.000Z

153

Great Plains coal gasification project. Quarterly technical progress report, first quarter 1986. [Lurgi Process  

SciTech Connect

Environmental monitoring, supplemental enviornmental programs, and quality assurance/quality control activities are covered in this quarterly report. Under the environmental monitoring program, the following topics are covered: permitting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; environmental incident summary; and regulatory environmental inspections. The supplemental environmental program covers: performance survey; wastewater control and steam generation system; sulfur control; tar reinjection outage; gasifier effluent control system; toxicity screening study; toxicant characterization; data base management system; workplace characterization; fugitive emissions; epidemiology; atmospheric program; effects of cooling tower effluents on terrestrial ecosystems; and contingency program.

Not Available

1986-04-01T23:59:59.000Z

154

Great Plains Coal Gasification Project. Quarterly environmental report, fourth quarter 1985  

Science Conference Proceedings (OSTI)

Environmental monitoring, supplemental environmental programs and quality assurance/quality control activities are covered in this quarterly report. Under the environmental monitoring program, the following topics are covered: permitting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; and environmental incident summary. The supplemental environmental program covers: performance survey; wastewater control and steam generation systems; sulfur control; tar reinjection outage; gasifier effluent control systems; toxicity screening study; toxicant characterization; data base management system; workplace characterization; fugitive emissions; epidemiology; atmospheric program; effects of cooling tower effluents on terrestial ecosystems and contingency program. 14 figs., 66 tabs.

Not Available

1986-01-01T23:59:59.000Z

155

(Great Plains coal gasification project): Quarterly environmental report, Third quarter 1986  

Science Conference Proceedings (OSTI)

Environmental monitoring, supplemental environmental programs and quality assurance/quality control activities are presented in this quarterly report. Under the environmental monitoring program, the following topics are covered: permitting activities; ambient monitoring; plant discharge monitoring; pollution control unit emissions; surface mining and reclamation; environmental incident summary; and regulatory environmental inspections. The supplemental environmental program covers: performance survey; toxicity screening study; data base management system; epidemiology; and contingency program. 16 figs., 53 tabs. (AT)

Not Available

1986-10-01T23:59:59.000Z

156

"1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900 "3. Milton R Young","Coal","Minnkota Power Coop, Inc",697 "4. Leland Olds","Coal","Basin Electric Power Coop",670 "5. Garrison","Hydroelectric","USCE-Missouri River District",508 "6. Coyote","Coal","Otter Tail Power Co",427 "7. Stanton","Coal","Great River Energy",202 "8. Tatanka Wind Power LLC","Other Renewables","Acciona Wind Energy USA LLC",180 "9. Langdon Wind LLC","Other Renewables","FPL Energy Langdon Wind LLC",159

157

A SUMMARY OF COAL IN THE COALMONT FORMATION (TERTIARY),  

E-Print Network (OSTI)

Chapter SN A SUMMARY OF COAL IN THE COALMONT FORMATION (TERTIARY), NORTH PARK BASIN, COLORADO By S assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

158

Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains  

Science Conference Proceedings (OSTI)

In the southern Great Plains (USA), encroachment of grassland ecosystems by Prosopis glandulosa (honey mesquite) is widespread. Mesquite encroachment alters net primary productivity, enhances stores of C and N in plants and soil, and leads to increased levels of soil microbial biomass and activity. While mesquite's impact on the biogeochemistry of the region is well established, it effects on soil microbial diversity and function are unknown. In this study, soils associated with four plant types (C{sub 3} perennial grasses, C{sub 4} midgrasses, C{sub 4} shortgrasses, and mesquite) from a mesquite-encroached mixed grass prairie were surveyed to in an attempt to characterize the structure, diversity, and functional capacity of their soil microbial communities. rRNA gene cloning and sequencing were used in conjunction with the GeoChip functional gene array to evaluate these potential differences. Mesquite soil supported increased bacterial and fungal diversity and harbored a distinct fungal community relative to other plant types. Despite differences in composition and diversity, few significant differences were detected with respect to the potential functional capacity of the soil microbial communities. These results may suggest that a high level of functional redundancy exists within the bacterial portion of the soil communities; however, given the bias of the GeoChip toward bacterial functional genes, potential functional differences among soil fungi could not be addressed. The results of this study illustrate the linkages shared between above- and belowground communities and demonstrate that soil microbial communities, and in particular soil fungi, may be altered by the process of woody plant encroachment.

Hollister, Emily B [ORNL; Schadt, Christopher Warren [ORNL; Palumbo, Anthony Vito [ORNL; Ansley, R J [Texas A& M University; Boutton, Thomas W [Texas A& M University

2010-01-01T23:59:59.000Z

159

Task 50 - deposition of lignites in the Fort Union Group and related strata of the northern Great Plains  

SciTech Connect

Late Cretaceous, Paleocene, and early Eocene geologic and paleontologic studies were undertaken in western North Dakota, eastern and south-central Montana, and northwestern and northeastern Wyoming. These study areas comprise the Williston, Bighorn, and Powder River Basins, all of which contain significant lignite resources. Research was undertaken in these basins because they have the best geologic sections and fossil record for the development of a chronostratigraphic (time-rock) framework for the correlation of lignite beds and other economic resources. A thorough understanding of the precise geologic age of the deposition of sediments permits a powerful means of interpreting the record of geologic events across the northern Great Plains. Such an understanding allows for rigorous interpretation of paleoenviromnents and estimates of resource potential and quality in this area of economically significant deposits. This work is part of ongoing research to document change in the composition of molluscan fossil faunas to provide a paleoenvironmentally sensitive independent means of interpreting time intervals of brief duration during the Late Cretaceous, Paleocene, and Eocene. This study focuses on the record of mollusks and, to a lesser extent, mammals in the (1) Hell Creek-Tullock Formations, which include the Cretaceous-Paleocene boundary, in the western portion of the Williston Basin, Montana; (2) uppermost Cretaceous, Paleocene, and lowermost Eocene strata in western North Dakota, which -includes the last interior seaway in North Dakota; (3) upper Paleocene and lowermost Eocene of the northern portion of the Bighorn Basin of south-central Montana and northwestern Wyoming; and (4) Powder River Basin of northeastern Wyoming and southeastern Montana. The geologic record provides different physical and paleontological information to aid in interpreting the geologic record through the study interval.

Hartman, J.H.; Roth, B.; Kihm, A.J.

1997-08-11T23:59:59.000Z

160

Comparison of meteorological measurements from sparse and dense surface observational networks in the U.S. southern Great Plains.  

SciTech Connect

The primary objective of this study was to analyze the spatial variability of temperature and relative humidity across Kansas (KS) and Oklahoma (OK) for sparse and dense networks by comparing data from (1) the Surface Meteorological Observing System (SMOS) installations at the Atmospheric Radiation Measurement (ARM; Peppler et al. 2007) Program's Southern Great Plains site and (2) the Oklahoma Mesonet (OKM; McPherson et al. 2007). Given the wealth of observations available from these networks, this study provided the unique opportunity to determine, within a quantifiable statistical limit, an optimal distance between stations deployed for observation of the climatological values of temperature and relative humidity. Average distances between a given station and its closest neighboring station for the ARM SMOS ({approx} 70 km) and the OKM ({approx} 30 km; Brotzge and Richardson 2003) networks provided an excellent framework for comparisons of sparse and dense observations (Figure 1). This study further lays groundwork for a future investigation to determine the necessary spacing between observations for initialization of gridded numerical models. The spatial variability of temperature and relative humidity was examined over KS and OK by comparing observations between station pairs located in three primary domains: (1) a sparse domain in KS, consisting only of ARM SMOS stations; (2) a dense domain centered in northern OK, consisting of both ARM SMOS and OKM stations; and (3) a dense domain centered in central OK, also consisting of both ARM SMOS and OKM stations (Figure 2). In addition, the ARM SMOS stations in OK were utilized to create two secondary sparse domains. Before the observations were compared, quality control (QC) beyond the standard ARM range test was added through implementation of tighter range tests specified by data quality objectives (DQOs). Furthermore, instances of poor-quality data were removed from the data set on the basis of ARM data quality reports (DQRs). Finally, to account for spatial differences in terrain, temperature observations were corrected to mean sea level by using a standard lapse rate of 6.5 C km{sup -1} and the elevation of each observing station. For the comparison, a central station was chosen in each domain. Observations during the time period 2004-2006 from each of the other stations within a respective domain were compared to those from this central station. The Pearson correlation coefficient ({rho}) and root-mean-square difference (RMSD) were the statistics used to quantify the relationship between station pairs. For each domain, the {rho} and RMSD values were plotted against the distance separating each station pair, and a least-squares (LS) regression line was fitted to the values. The regression slopes and intercepts were compared between the various domains. The results of this analysis demonstrated positive correlations between all individual station pairs for both temperature and relative humidity. In addition, the {rho} and RMSD values for both temperature and relative humidity exhibited, in general, a linear relationship with distance from a central station. The calculated slope and intercept values were comparable across most domains, and spatial differences in temperature were smaller than those for relative humidity. The findings suggest that although the sparse networks studied might provide an accurate spatial representation for climatological values of temperature and relative humidity over the specific distances between stations, the relative importance of the temperature and relative humidity observations is a critical consideration in network design.

Monroe, J. W.; Ritsche, M. T.; Franklin, M.; Kehoe, K. E.; Environmental Science Division; Univ.of Oklahoma

2008-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter SW A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING By R.M. Flores of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

162

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network (OSTI)

Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

163

A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO  

E-Print Network (OSTI)

Chapter SR A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

164

FERRIS AND HANNA COAL IN THE HANNA AND CARBON BASINS, WYOMING: A SYNTHESIS  

E-Print Network (OSTI)

Chapter HS FERRIS AND HANNA COAL IN THE HANNA AND CARBON BASINS, WYOMING: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

165

Plains CO  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Partnership Fourth Annual Conference on Carbon Capture & Sequestration Alexandria, Virginia May 2-5, 2005 By Edward N. Steadman Plains CO Plains CO 2 2 Reduction Partnership Reduction Partnership Eagle Operating Inc. Fischer Oil and Gas, Inc. PCOR Partnership Region Nine states and three provinces 1,362,089 square miles Montana North Dakota South Dakota Minnesota Iowa Missouri Nebraska Saskatchewan Alberta Manitoba Wyoming Wisconsin Sedimentary Basins 440,828 square miles 32% of region Coal Fields 292,006 square miles 21% of region Evaluated the Wyodak- Anderson, Ardley, and Fort Union coals CO 2 sequestration capacity estimated to date: >8 billion tons PCOR Partnership Region Geological CO 2 sequestration capacity estimated thus far: >8 billion tons Saline Aquifers

166

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site  

SciTech Connect

There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

1997-12-31T23:59:59.000Z

167

Effects of experimental warming and clipping on metabolic change of microbial community in a US Great Plains tallgrass prairie  

Science Conference Proceedings (OSTI)

While more and more studies are being conducted on the effects of global warming, little is known regarding the response of metabolic change of whole soil microbial communities to this phenomenon. In this study, functional gene changes at the mRNA level were analyzed by our new developed GeoChip 3.0. Soil samples were taken from a long-term climate warming experiment site, which has been conducted for ~;;8 years at the Kessler Farm Field Laboratory, a 137.6-ha farm located in the Central Redbed Plains, in McClain County, Oklahoma. The experiment uses a paired factorial design with warming as the primary factor nested with clipping as a secondary factor. An infrared heater was used to simulate global warming, and clipping was used to mimic mowing hay. Twelve 2m x 2m plots were divided into six pairs of warmed and control plots. The heater generates a constant output of ~;;100 Watts m-2 to approximately 2 oC increase in soil temperature above the ambient plots, which is at the low range of the projected climate warming by IPCC. Soil whole microbial communities? mRNA was extracted, amplified, labeled and hybridized with our GeoChip 3.0, a functional gene array covering genes involved in N, C, P, and S cycling, metal resistance and contaminant degradation, to examine expressed genes. The results showed that a greater number and higher diversity of genes were expressed under warmed plots compared to control. Detrended correspondence analysis (DCA) of all detected genes showed that the soil microbial communities were clearly altered by warming, with or without clipping. The dissimilarity of the communities based on functional genes was tested and results showed that warming and control communities were significantly different (P<0.05), with or without clipping. Most genes involved in C, N, P and S cycling were expressed at higher levels in warming samples compared to control samples. All of the results demonstrated that the whole microbial communities increase functional gene expression under warming with or without clipping in order to adapt the changed out environment. More detail analysis is underway.

Xie, Jianping; Liu, Xinxing; Liu, Xueduan; Nostrand, Joy D. Van; Deng, Ye; Wu, Liyou; He, Zhili; Qiu, Guanzhou; Zhou, Jizhong

2010-05-17T23:59:59.000Z

168

Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains  

SciTech Connect

Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains.

Dunagan, J.F. Jr.; Kadish, K.A.

1977-11-01T23:59:59.000Z

169

Low-rank coal research  

DOE Green Energy (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-01-01T23:59:59.000Z

170

Upper Great Plains Rates information  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and Repayment Services Rates and Repayment Services Rates 2010 Firm Power Rate (effective January 1, 2010) Rate Adjustments 2010 Firm Power Rate Adjustment 2009 Firm Power Rate Adjustment IS Rate Adjustments Rate Adjustment Process Rate Orders Signed, December 23, 2009 (16kb pdf) Announcements Firm Electric Service Customer Letter - Preliminary Review of Drought Adder Component, June 27, 2013 (74kb pdf) Customer Letter - Final Notice of Drought Adder Component, October 2, 2013 (68kb pdf) Integrated System (IS) Rates 2014 IS Rates Customer Information Meeting Presentation, October 15, 2013 (611kb pdf) Customer Letter - Notification of 2014 Rates, September 13, 2013 (160kb pdf) 2014 Transmission and Ancillary Services Rate Calculation and 2012 Rate True-up Calculation (4.9mb pdf) 2013 IS Rates

171

Groundwater in the Great Plains  

E-Print Network (OSTI)

Groundwater lies hidden beneath the soil, out of sight and largely out of mind. As a result, its poorly understood by most who depend on it for drinking water and other uses. Misconceptions about groundwater are common. In 1904, a Texas judge ruled that the existence, origin and movement of (ground) water...is so secret, occult and concealed...(that) any attempt to administer any set of legal rules in respect to it would be involved in hopeless uncertainty. In spite of increasing scientific knowledge, groundwater is still perceived in much the same way by the public today. Despite the lack of understanding, groundwater is the most significant water resource for most Americans. Roughly 75% of U.S. cities depend on groundwater for all or part of their water supplies. More than half of all Americans and 95% of all persons in rural areas rely on groundwater as their primary source of drinking water. Throughout the United States and the world, vital aquifers supply irrigation and drinking water for many regions More than 97% of the worlds usable freshwater supply an estimated 9 trillion acre feet is groundwater. Despite the seeming abundance of groundwater, there are concerns about how long its supplies will last, especially in areas where water use is high, and whether its quality is being threatened by natural and man-made contaminants.

Jensen, R.

2003-01-01T23:59:59.000Z

172

Rocky Great Mountains Southwest Plains  

E-Print Network (OSTI)

of snags and cavities for wildlife can utilize the existing tree species composition, which varied. Study Area The study was conducted on a 160-ha area, in the eastern portion of Hotel Creek Watershed

173

Upper Great Plains Home page  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration. UGP sells power in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota to wholesale customers such as towns; rural electric cooperatives; public...

174

Seasonal and inter-annual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains  

Science Conference Proceedings (OSTI)

The {delta}{sup 13}C signature of terrestrial carbon fluxes ({delta}{sub bio}) provides an important constraint for inverse models of CO{sub 2} sources and sinks, insight into vegetation physiology, C{sub 3} and C{sub 4} vegetation productivity, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO{sub 2} concentration and {delta}{sup 13}C-CO{sub 2} at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed {delta}{sub bio} weekly. This region has a fine-scale mix of crops (primarily C{sub 3} winter wheat) and C{sub 4} pasture grasses. {delta}{sub bio} had a large and consistent seasonal cycle of 6-8{per_thousand}. Ensemble monthly mean {delta}{sub bio} ranged from -25.8 {+-} 0.4{per_thousand} ({+-}SE) in March to -20.1 {+-} 0.4{per_thousand} in July. Thus, C{sub 3} vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil {delta}{sub 13}C values were about -15{per_thousand}, indicating that historically the region was dominated by C{sub 4} vegetation and had more positive {delta}{sub bio} values. Based on a land-surface model, isofluxes ({delta}{sub bio} x NEE) in this region have large seasonal amplitude because {delta}{sub bio} and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in {delta}{sub bio} and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved {sup 13}CO{sub 2} and CO{sub 2} fluxes.

Torn, M.S.; Biraud, S.; Still, C.J.; Riley, W.J.; Berry, J.A.

2010-09-22T23:59:59.000Z

175

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated April 28, 2004) Spot coal prices in the East rose steadily since Labor Day 2003, with rapid escalations ...

176

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated September 26) The average spot prices for reported coal purchases rose once again ...

177

Production of jet fuels from coal derived liquids  

SciTech Connect

Amoco and Lummus Crest have developed seven cases for upgrading by-product liquids from the Great Plains Coal Gasification Plant to jet fuels, and in several of the cases, saleable chemicals in addition to jet fuels. The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However, the phenolic and naphtha streams do have the potential to significantly increase (on the order of $10--15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to 10 percent of the US market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream. 9 refs., 24 figs., 14 tabs.

Fleming, B.A.; Fox, J.D.; Furlong, M.W.; Masin, J.G.; Sault, L.P.; Tatterson, D.F. (Amoco Oil Co., Naperville, IL (USA). Research and Development Dept.); Fornoff, L.L.; Link, M.A.; Stahlnecker, E.; Torster, K. (Lummus Crest, Inc., Bloomfield, NJ (USA))

1988-09-01T23:59:59.000Z

178

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated August 12) According to Platts Coal Outlooks Weekly Price Survey (August 11), the ...

179

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated September 2) The average spot prices for coal traded last week were relatively ...

180

THE PLAINS CO  

NLE Websites -- All DOE Office Websites (Extended Search)

THE PLAINS CO 2 REDUCTION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE The Plains CO 2 Reduction Partnership The Plains CO 2 Reduction (PCOR) Partnership, comprising state agencies; coal, oil and gas, and other private companies; electric utilities; universities; and nonprofit organizations, covers an area of more than 1.4 million square miles in the central interior of North America and includes all or part of nine U.S. states and four Canadian provinces. The PCOR Partnership region has stable geologic basins that are ideal storage targets for CCUS. These basins have been well characterized because of commercial oil and gas activities and have significant CO 2 storage resource. The region's energy industry is evaluating carbon

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated July 7, 2004) In the trading week ended July 2, the average spot coal prices tracked by EIA were mixed.

182

Shortwave, Clear-sky Diffuse Irradiance in the 350 to 1050 nm Range: Comparison of Models with RSS Measurements at the Southern Great Plains ARM Site in September/October 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

Shortwave, Clear-Sky Diffuse Irradiance in the Shortwave, Clear-Sky Diffuse Irradiance in the 350 to 1050 nm Range: Comparison of Models with RSS Measurements at the Southern Great Plains ARM Site in September/October 2001 J. J. Michalsky, P. W. Kiedron, Q.-L. Min, and L. C. Harrison Atmospheric Sciences Research Center State University of New York Albany, New York J. J. Michalsky Surface Radiation Research Branch Air Resources Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado Abstract A rotating shadowband spectroradiometer (RSS) operating in the spectral range between 350 to 1050 nm obtained measurements of direct and diffuse components of spectral irradiance during the first diffuse irradiance IOP in the autumn of 2001. Independent measurements of the primary inputs to spectral

183

An Engineering and Economic Assessment of Post-Combustion CO2 Capture Applied to Great River Energy's Coal-Fired Coal Creek Station  

Science Conference Proceedings (OSTI)

EPRI is currently examining the feasibility of retrofitting post-combustion CO2 capture (PCC) to existing pulverized coal (PC) and/or circulating fluidized-bed power plants for five "host" participants. Knowledge gained from previous CoalFleet ultra-supercritical (USC) PCC design studies is being applied to specific site conditions, plant design, and operating data provided by each host utility participant. This project highlights the technical and economic issues associated with retrofitting existing PC...

2012-01-20T23:59:59.000Z

184

Low-rank coal research. Quarterly report, January--March 1990  

SciTech Connect

This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

Not Available

1990-08-01T23:59:59.000Z

185

Fact book: synthetic pipeline gas from coal. 1982 update  

SciTech Connect

This book illustrates the major advantages of synthetic pipeline gas from coal. Progress on many of the coal gasification projects envisioned over the past decade has been thwarted by regulatory, permitting, and financing delays. The rationale for developing a synthetic pipeline gas industry remains as strong as ever from the nation's viewpoint, and the pioneer US commercial scale high-Btu coal gasification plant is now under construction-the Great Plains coal gasification plant in North Dakota. Also, the US Synthetic Fuels Corporation is now operational and can move forward to provide the guarantees which are necessary to overcome the financial barriers to a commercial synfuels capability in the United States. Compared to other principal means of utilizing America's vast coal reserves, coal gasification uses coal and land more efficiently, uses less water, emits less air pollutants, requires less capital and results in a lower cost of energy to consumers. (DP)

Not Available

1982-01-01T23:59:59.000Z

186

DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiates CO2 Injection in Lignite Coal Initiates CO2 Injection in Lignite Coal Seam DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam March 10, 2009 - 1:00pm Addthis Washington, DC -- A U.S. Department of Energy/National Energy Technology Laboratory (NETL) team of regional partners has begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to demonstrate the economic and environmental viability of geologic CO2 storage in the U.S. Great Plains region. Ultimately, geologic carbon sequestration is expected to play an important role in mitigating greenhouse gas emissions and combating climate change. The Lignite Field Validation Test is being conducted by the Plains CO2 Reduction (PCOR) Partnership, one of seven regional partnerships under DOE's Regional Carbon Sequestration Partnership Program. The seven

187

Land use and land cover change: the effects of woody plant encroachment and prescribed fire on biodiversity and ecosystem carbon dynamics in a southern great plains mixed grass savanna  

E-Print Network (OSTI)

In the southern Great Plains, the encroachment of grassland ecosystems by mesquite (Prosopis glandulosa), is widespread, and prescribed fire is commonly used in its control. Despite this, substantial quantitative information concerning their influences on the community composition, functional dynamics, and soil organic carbon (SOC) storage potential of grassland ecosystems is lacking. The objectives of this study were to: a) quantify the effects of seasonal prescribed fire treatments and mesquite encroachment on aboveground net primary productivity (ANPP) and herbaceous community composition; b) characterize SOC pool sizes, turnover, and storage potential relative to vegetation type and fire treatment; c) evaluate the structure and diversity of soil microbial communities relative to vegetation type; and d) characterize the functional diversity of these same microbes using the GeoChip functional gene microarray. Repeated winter and summer fires led to increased ANPP rates (average, 434 and 313 g m-2 y-1, respectively), relative to unburned controls (average, 238 g m-2 y-1), altered herbaceous community composition, and increased the storage of resistant forms of SOC, but did not affect overall SOC storage. Herbaceous ANPP rates did not differ significantly as a result of mesquite encroachment, but herbaceous community composition and SOC storage did. Mesquite soils contained significantly more total, slow-turnover, and resistant forms of SOC than those that occurred beneath C3 or C4 grasses. Similarity among the soil bacterial and fungal communities associated with the major vegetation types in this system was low to moderate. Significant differences were detected among soil fungi, with the mesquite-associated fungi harboring significant differences in community structure relative to the fungal communities associated with each of the other vegetation types examined. Despite this result, few significant differences were detected with respect to the functional diversity of these communities, suggesting either a high degree of functional redundancy, or that the functional differences harbored by these communities are beyond the scope of the GeoChip. The results of this study demonstrate that both fire and mesquite encroachment have the potential to alter ecosystem components and processes significantly, providing new insight regarding the effects of these widespread land use and land cover changes on ecosystem structure and function.

Hollister, Emily Brooke

2008-05-01T23:59:59.000Z

188

Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989  

DOE Green Energy (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-12-31T23:59:59.000Z

189

Thirteenth biennial lignite symposium: technology and utilization of low-rank coals proceedings. Volume 2  

Science Conference Proceedings (OSTI)

These proceedings are the collected manuscripts from the 1985 Lignite Symposium held at Bismarck, North Dakota on May 21-23, 1985. Sponsorship of the thirteenth biennial meeting was by the United States Department of Energy, the University of North Dakota Energy Research Center, and the Texas University Coal Research Consortium. Seven technical sessions plus two luncheons and a banquet were held during the two and a half day meeting. The final half day included tours of the Great Plains Gasification Plant; Basin Electric's Antelope Valley Power Station; and the Freedom Mine. Sessions covered diverse topics related to the technology and use of low-rank coals including coal development and public policy, combustion, gasification, environmental systems for low-rank coal utilization, liquefaction, beneficiation and coal mining and coal inorganics. All the papers have been entered individually into EDB and ERA.

Jones, M.L. (ed.)

1986-02-01T23:59:59.000Z

190

NETL: News Release - Great River Energy Unveils Prototype Module...  

NLE Websites -- All DOE Office Websites (Extended Search)

August 9, 2005 Great River Energy Unveils Prototype Module Coal Dryer Novel Technology Expected to Improve Marketability and Environmental Performance of High-Moisture Coal...

191

Production of jet fuel from coal-derived liquids  

DOE Green Energy (OSTI)

Amoco and Lummus Crest are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each, and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high density (JP-8X) jet fuels from the by-product liquids. In addition to the maximum jet fuel schemes, conceptual designs have also been formulated for maximizing profits from refining of the Great Plains by-products. Conceptual processing schemes for profitable production of JP-4, JP-8, and JP-8X have been developed, as has a maximum profit'' case. All four of these additional cases have now been transferred to Lummus for design and integration studies. Development of these schemes required the use of linear programming technology. This technology includes not only conventional refining processes which have been adapted for use with coal-derived liquids (e.g. hydrotreating, hydrocracking), but also processes which may be uniquely suited to the Great Plains by-products such as cresylic acid extraction, hydordealkylation, and needle coking. 6 figs., 3 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1987-01-01T23:59:59.000Z

192

NETL: News Release - Coal Gasification Plant Returns $79 Million to DOE in  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2006 2, 2006 Coal Gasification Plant Returns $79 Million to DOE in Revenue-Sharing Gas Sales Plant Currently Supplies Carbon Dioxide for DOE Sequestration Project Washington, DC -A coal gasification plant purchased from the U.S. Department of Energy (DOE) in 1988 recently paid millions of dollars to DOE as part of a revenue sharing agreement and continues to be an integral part of a Department project to sequester millions of tons of carbon dioxide while doubling an oil field's recovery rate. MORE INFO Learn more about the Great Plains Synfuels Plant The Dakota Gasification Company (DGC), which purchased the Great Plains Synfuels Plant near Beulah, N.D., recently announced the payment of more than $79 million to DOE as part of a revenue-sharing agreement signed in

193

The Owl Horn Radar Signature in Developing Southern Plains Supercells  

Science Conference Proceedings (OSTI)

During spring 2001 in the Southern Plains, a recurring, hitherto undocumented reflectivity signature that the authors have called the Owl Horn signature (because the radar reflectivity pattern resembles the profile of the Great Horned Owl) was ...

Matthew R. Kramar; Howard B. Bluestein; Andrew L. Pazmany; John D. Tuttle

2005-09-01T23:59:59.000Z

194

Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992  

SciTech Connect

This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

1993-02-01T23:59:59.000Z

195

Using rotating biological contactors for the treatment of coal gasification wastewaters  

Science Conference Proceedings (OSTI)

The objective of this research was to determine the treatability of University of North Dakota Energy Research Centers (UNDERC's) and Great Plains' coal gasification wastewaters using a bench scale four stage rotating biological contactor (RBC). The treatability testing included an evaluation of organic removal rates in the first stage and the overall rates in the last three stages using the Stover-Kincannon model. Nitrification was evaluated at various loading rates. Stage 1 accounted for most of the removal of alcohols, fatty acids, phenol, and thiocyanate from both UNDERC stripped gas liquor (SGL) and for alcohols and fatty acid removal from the Great Plains (GP) SGL. The 2, 3 and 4 stages accomplished very little additional organic removal in either system. Biodegradable organic removals remained high in the first stage of the GP SGL test run despite anaerobic conditions in the first stage. 5 refs., 12 figs., 6 tabs.

Turner, C.D.; Wernberg, K.

1986-01-01T23:59:59.000Z

196

Coal distribution, January-June 1985. [USA; January-June; 1981 to 1985; producing district; destination; transport means  

SciTech Connect

This Energy Information Administration (EIA) report continues the quarterly series on coal distribution started in 1957 by the Bureau of Mines, Department of the Interior, as a Mineral Industry Survey, Distribution of Bituminous Coal and Lignite Shipments. The publication provides volume data on coal distribution by coal-producing district of origin, consumer use, method of transportation, and State of destination necessary for EIA to fulfill its data colletion functions as authorized by the Federal Energy Administration Act of 1974. All data for 1985 in this report are preliminary. Data for 1981-1984 are final. Coal shipments from mines in Appalachia were 10.2% lower, while shipments from western mines were up by 13.7%, reaching a record 6-month high. Export shipments moved ahead of their 1984 pace by 9.2% despite a 27.0% decline in shipments to Canada. Texas expanded its lead as the Nation's top State to receive coal, and North Dakota experienced an upsurge in coal receipts due to the startup of the Great Plains coal gasification project. Coal production and purchases totaled 438.4 million short tons, 2.2% below last year's level. 6 figs., 33 tabs.

McNair, M.B.

1985-09-26T23:59:59.000Z

197

PLAINS CO2 REDUCTION PARTNERSHIP  

Science Conference Proceedings (OSTI)

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2005-01-01T23:59:59.000Z

198

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains Co{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) activities have focused on developing information on deployment issues to support Task 5 activities by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) activities have focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) has included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman

2004-07-01T23:59:59.000Z

199

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O' Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2004-10-01T23:59:59.000Z

200

Coal distribution, January-March 1985. [By district; 1981 to 1985  

Science Conference Proceedings (OSTI)

US coal distribution to domestic and foreign markets totaled 210.8 million short tons in the first quarter of 1985. This was 5.1% below coal shipments in the first quarter of 1984, but 10.7% above the depressed levels of the comparable period in 1983. Coal shipments to various regions of the United States and abroad showed mixed trends during the first 3 months of 1985. This is attributable primarily to large inventory buildups by eastern and midwestern consumers during the first 9 months of 1984 in preparation for a possible strike by the United Mine Workers of America in October of last year. Coal inventories at producers and distributors rose by 3.1% during the first quarter of 1985, reaching 35.2 million short tons on March 31, 1985, compared to 34.1 million short tons on December 31, 1984. Compared with the first quarter of 1984: Coal shipments from mines in Appalachia were 12.6% lower, while shipments from western mines were up by 9.7%, reaching another record first-quarter high. Export shipments moved ahead of their 1984 pace by 9.9% despite a 30.0% decline in shipments to Canada. Major markets in the West continued to enlarge their coal requirements as eastern markets curtailed shipments while working off excess stocks. Texas expanded its lead as the Nation's top state to receive coal, and North Dakota experienced an upsurge in coal receipts due to the startup of the Great Plains coal gasification project. Coal production and purchases were 211.5 million short tons, 5.0% below last year's level. The reduction in shipments reflected a substantial decline in coal originating in the Appalachian Region, notably District 8, and to a lesser extent in the Interior Region. In contrast, shipments of coal from the Western Region reached another first-quarter high. 5 figs., 33 tabs.

McNair, M.B.

1985-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Production of jet fuels from coal-derived liquids  

Science Conference Proceedings (OSTI)

Samples of jet fuel (JP-4, JP-8, JP-8X) produced from the liquid by-products of the gasification of lignite coal from the Great Plains Gasification Plant were analyzed to determine the quantity and type of organo-oxygen compounds present. Results were compared to similar fuel samples produced from petroleum. Large quantities of oxygen compounds were found in the coal-derived liquids and were removed in the refining process. Trace quantities of organo-oxygenate compounds were suspected to be present in the refined fuels. Compounds were identified and quantified as part of an effort to determine the effect of these compounds in fuel instability. Results of the analysis showed trace levels of phenols, naphthols, benzofurans, hexanol, and hydrogenated naphthols were present in levels below 100 ppM. 9 figs., 3 tabs.

Knudson, C.L.

1990-06-01T23:59:59.000Z

202

Plans and Project in the Upper Great Plains Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Projects Studies WindHydro Integration Feasibility Study Dakotas Wind Study Summary (144kb pdf) For more information, contact Dirk Shulund by email or by phone at...

203

Broadband Albedo Observations in the Southern Great Plains  

Science Conference Proceedings (OSTI)

Time series of daily broadband surface albedo for 1998 and 1999 have been analyzed from six locations in the network of 22 Atmospheric Radiation Measurement Program SolarInfrared Radiation Stations distributed from central Kansas to central ...

Claude E. Duchon; Kenneth G. Hamm

2006-01-01T23:59:59.000Z

204

The Southern Great Plains Site: A Climate Observatory in Oklahoma  

NLE Websites -- All DOE Office Websites (Extended Search)

other facilities throughout the SGP site. The 60-ft meteorological tower rises from a canola field at the SGP central facility in June 2011. The 60-ft meteorological tower rises...

205

Regional Community Wind Conferences, Great Plains Windustry Project  

DOE Green Energy (OSTI)

Windustry organized and produced five regional Community Wind Across America (CWAA) conferences in 2010 and 2011 and held two CWAA webinars in 2011 and 2012. The five conferences were offered in regions throughout the United States: Denver, Colorado ? October 2010 St. Paul, Minnesota ? November 2010 State College, Pennsylvania ? February 2011 Ludington, Michigan (co-located with the Michigan Energy Fair) June 2011 Albany, New York October 2011

Daniels, Lisa [Windustry

2013-02-28T23:59:59.000Z

206

Computer and Internet Use by Great Plains Farmers  

E-Print Network (OSTI)

agricultural commodity market information enhances farmersand financial market information, weather and agriculturalexample, information on commodity markets and input prices

Smith, Aaron; Morrison Paul, Catherine J.; Goe, W. Richard; Kenney, Martin

2004-01-01T23:59:59.000Z

207

Great Plains Turbulence Environment: Its Origins, Impact, and Simulation  

SciTech Connect

This paper summarizes the known impacts of nocturnal turbulence on wind turbine performance and operations.

Kelley, N. D.; Jonkman, B. J.; Scott, G. N.

2006-12-01T23:59:59.000Z

208

Heavy Rainfall: Contrasting Two Concurrent Great Plains Thunderstorms  

Science Conference Proceedings (OSTI)

Measurement and forecasting of heavy rainfall requires interpretation of the small differences in the storm environment that distinguish a major flood-producing rainfall event from a relatively harmless storm system. This case study will examine ...

Bettina Bauer-Messmer; James A. Smith; Mary Lynn Baeck; Wenjie Zhao

1997-12-01T23:59:59.000Z

209

Great Plains Drought in Simulations of the Twentieth Century  

Science Conference Proceedings (OSTI)

Coupled global circulation models (CGCMs) have been widely used to explore potential future climate change. Before these climate projections can be trusted, the ability of the models to simulate present-day climate must be assessed. This study ...

Rachel R. McCrary; David A. Randall

2010-04-01T23:59:59.000Z

210

A Cloud Climatology of the Southern Great Plains ARM CART  

Science Conference Proceedings (OSTI)

Cloud amount statistics from three different sources were processed and compared. Surface observations from a National Centers for Environmental Prediction dataset were used. The data (Edited Cloud Report; ECR) consist of synoptic weather reports ...

Steven M. Lazarus; Steven K. Krueger; Gerald G. Mace

2000-05-01T23:59:59.000Z

211

Draft Upper Great Plains Wind Energy Programmatic Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

UGP Region includes all or parts of Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota, encompassing some areas of the United States with the highest potential for...

212

Science and Technology Gaps in Underground Coal Gasification  

DOE Green Energy (OSTI)

Underground coal gasification (UCG) is an appropriate technology to economically access the energy resources in deep and/or unmineable coal seams and potentially to extract these reserves through production of synthetic gas (syngas) for power generation, production of synthetic liquid fuels, natural gas, or chemicals. India is a potentially good area for underground coal gasification. India has an estimated amount of about 467 billion British tons (bt) of possible reserves, nearly 66% of which is potential candidate for UCG, located at deep to intermediate depths and are low grade. Furthermore, the coal available in India is of poor quality, with very high ash content and low calorific value. Use of coal gasification has the potential to eliminate the environmental hazards associated with ash, with open pit mining and with greenhouse gas emissions if UCG is combined with re-injection of the CO{sub 2} fraction of the produced gas. With respect to carbon emissions, India's dependence on coal and its projected rapid rise in electricity demand will make it one of the world's largest CO{sub 2} producers in the near future. Underground coal gasification, with separation and reinjection of the CO{sub 2} produced by the process, is one strategy that can decouple rising electricity demand from rising greenhouse gas contributions. UCG is well suited to India's current and emerging energy demands. The syngas produced by UCG can be used to generate electricity through combined cycle. It can also be shifted chemically to produce synthetic natural gas (e.g., Great Plains Gasification Plant in North Dakota). It may also serve as a feedstock for methanol, gasoline, or diesel fuel production and even as a hydrogen supply. Currently, this technology could be deployed in both eastern and western India in highly populated areas, thus reducing overall energy demand. Most importantly, the reduced capital costs and need for better surface facilities provide a platform for rapid acceleration of coal-gas-fired electric power and other high value products. In summary, UCG has several important economic and environmental benefits relevant to India's energy goals: (1) It requires no purchase of surface gasifiers, reducing capital expense substantially. (2) It requires no ash management, since ash remains in the subsurface. (3) It reduces the cost of pollution management and emits few black-carbon particulates. (4) It greatly reduces the cost of CO2 separation for greenhouse gas management, creating the potential for carbon crediting through the Kyoto Clean Development Mechanism. (5) It greatly reduces the need to mine and transport coal, since coal is used in-situ.

Upadhye, R; Burton, E; Friedmann, J

2006-06-27T23:59:59.000Z

213

Coal combustion products: trash or treasure?  

Science Conference Proceedings (OSTI)

Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

Hansen, T.

2006-07-15T23:59:59.000Z

214

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

215

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) and provided information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 2 efforts also included preparation of a draft topical report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region'', which is nearing completion. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. The video will be completed and aired on Prairie Public Television in the next quarter. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. The addition of the Canadian province of Alberta to the PCOR Partnership region expanded the decision support system (DSS) geographic information system database. Task 5 screened and qualitatively assessed sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2005-04-01T23:59:59.000Z

216

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 have also been produced and shipped to the US Air Force for further testing. Lummus-Crest Inc. is now completing a preliminary process design for the profitable production of JP-8 and has made recommendations for a production run to produce larger quantities of JP-8. 2 figs., 3 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1989-01-01T23:59:59.000Z

217

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 are nearly completed. Specification of a design basis for profitable production of JP-8 is under way. 5 figs., 4 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1988-01-01T23:59:59.000Z

218

Production of jet fuel from coal-derived liquids  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Task 1 of the work, in which processes to produce each of the three jet fuels, JP-4, JP-8, and JP-8X, were designed, has been completed. The formal Task 1 report should issue next quarter. Task 2 work was initiated this quarter. In Task 2, process conditions for producing jet fuel from the Great Plains tar oil stream will be verified and samples of each of the three jet fuels will be produced. Experimental work shows that the hydrotreating conditions specified in Task 1 will not convert sufficient aromatics in the tar oil to produce jet fuel. Alternative schemes have been proposed and are being tested in the laboratories at Amoco Research Center. The simplest of these schemes, in which the heavy ends from the hydrotreater are recycled to extinction, was tested and proved infeasible. A second stage, fixed bed hydrotreater will be added to the process along with the expanded bed, first-stage hydrotreater and the hydrocracker specified in the Task 1 design. Future work will include additional experiments to specify the best process configuration and production of samples of each of the three grades of jet fuel. 6 figs., 7 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1988-01-01T23:59:59.000Z

219

Plain Language Compliance Report (2012)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy sees the implementation of the Plain Writing Act as an important initiative that helps the Department share relevant information in a way that is clear, concise, and...

220

Plain Language Training Class 01  

Energy.gov (U.S. Department of Energy (DOE))

Registration link: CHRIS https://mis.doe.gov/ess/index.cfm 002357/0017 and https://powerpedia.energy.gov/wiki/Plain_Writing_Training_Class_October_...Course Type: ClassroomCourse Location:...

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

PLAIN LANGUAGE COMPLIANCE REPORT (2013)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy sees the implementation of the Plain Writing Act as an important initiative that helps the Department share relevant information in a way that is clear, concise, and informative.

222

Coal sector profile  

SciTech Connect

Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

1990-06-05T23:59:59.000Z

223

The Des Plaines River -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

One One Nature Bulletin No. 606 May 28, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist THE DES PLAINES RIVER -- PART ONE: DESCRIPTION Chicago was incorporated as a village in 1833 and in less than 100 years it had become one of the world's great cities. Four unique natural features have contributed to its phenomenal growth. The first is Lake Michigan. Chicago is strategically located at the south end of it, deep in the heart of the continent and the vast central lowland -- bread-basket of our nation. The lake provides an inexhaustible supply of fresh water and a highway for water-borne commerce. Since the completion of the St. Lawrence Seaway, Chicago has also become a port for ocean going ships.

224

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

225

Process modeling and analysis of CO? purification for oxy-coal combustion  

E-Print Network (OSTI)

Oxy-coal combustion technology has great potential as one of the major CO2 capture technologies for power generation from coal. The distinguishing feature of oxy-coal combustion is that the oxygen source is a high concentration ...

Iloeje, Chukwunwike Ogbonnia

2011-01-01T23:59:59.000Z

226

Coal Transportation Issues (released in AEO2007)  

Reports and Publications (EIA)

Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64 percent of total domestic coal shipments in 2004. Trucks transported approximately 12 percent of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12 percent) and water transport on inland waterways, the Great Lakes, and tidewater areas (9 percent).

Information Center

2007-02-22T23:59:59.000Z

227

Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis  

SciTech Connect

This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

Fournier, W.M.; Hasson, V.

1980-10-10T23:59:59.000Z

228

Bottom Currents near a Small Hill on the Maderia Abyssal Plain  

Science Conference Proceedings (OSTI)

Near-bottom currents at depths in exceeds of 5000 m have been measured in the Great Meteor East study area (near 3130?N, 25W) over a 3 year period. The sites selected were on top of a small abyssal hill, on its flank, and on the abyssal plain ...

Peter M. Saunders

1988-06-01T23:59:59.000Z

229

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal 101 Lesson 1: Cleaning Up Coal Clean Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still...

230

American coal imports 2015  

SciTech Connect

As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

Frank Kolojeski [TransGlobal Ventures Corp. (United States)

2007-09-15T23:59:59.000Z

231

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

232

NETL: News Release - DOE Receives $57.2 Million in Revenue Sharing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plains plant Learn more about DOE's Regional Carbon Sequestration Partnerships The Great Plains Synfuels Plant is the only commercial-scale coal-to-natural gas gasification plant...

233

DERAILMENT IN WYOMING (2005) http://www.bigcountry.coop/coal.html  

E-Print Network (OSTI)

plants were already at low levels because the high price of natural gas had coal-fired power plants on the arid plain. Several big coal companies, along with natural gas and methane gas drillers, have crowded-powered electricity fell from favor: nuclear power due to environmental concerns and natural gas because of price

Tesfatsion, Leigh

234

EIA - Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal...

235

GreatPoint Energy | Open Energy Information  

Open Energy Info (EERE)

GreatPoint Energy GreatPoint Energy Jump to: navigation, search Name GreatPoint Energy Address 222 Third Street Place Cambridge, Massachusetts Zip 02142 Sector Biomass Product Converts coal, petroleum coke and biomass into natural gas Website http://www.greatpointenergy.co Coordinates 42.3672873°, -71.0814466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3672873,"lon":-71.0814466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Plains & Eastern Clean Line Project Proposal for New or Upgraded...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains & Eastern Clean Line Project...

237

Refraction Survey At Snake River Plain Region (DOE GTP) | Open...  

Open Energy Info (EERE)

Refraction Survey At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Snake River Plain...

238

Ground Gravity Survey At Snake River Plain Region (DOE GTP) ...  

Open Energy Info (EERE)

Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Snake River Plain Region (DOE GTP)...

239

A generic study of strip mining impacts on groundwater resources  

E-Print Network (OSTI)

This report evaluates the influence of strip mining features, commonly found in the Northern Great Plains Coal Region, on ground

Hamilton, David Andrew

1977-01-01T23:59:59.000Z

240

The Economics of CO2 Storage  

E-Print Network (OSTI)

in the southern Permian basin and the Great Plains coal gasification plant at Beulah, North Dakota (IEAGHG, 2001

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Drought has significant effect on corn crop condition, projected ...  

U.S. Energy Information Administration (EIA)

Coal. Reserves, production, ... electric power plant emissions. ... is currently reporting that large areas of the Midwest and Great Plains regions, ...

242

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanest Coal Technology Clean Coal 101 Lesson 5: The Cleanest Coal Technology-A Real Gas Don't think of coal as a solid black rock. Think of it as a mass of atoms. Most of the...

243

Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide: WHAT IS COAL? Coal looks like a shiny black rock. Coal has lots of energy in it. When it is burned, coal makes heat and light energy. Th e cave men used coal for...

244

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

2005-07-01T23:59:59.000Z

245

Central Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Plains Wind Farm Plains Wind Farm Jump to: navigation, search Name Central Plains Wind Farm Facility Central Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner RES Americas Developer RES Americas Energy Purchaser Westar Energy Location KS Coordinates 38.49695°, -101.128392° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.49695,"lon":-101.128392,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

High Plains Tech Center | Open Energy Information  

Open Energy Info (EERE)

Tech Center Tech Center Jump to: navigation, search Name High Plains Tech Center Facility High Plains Tech Center Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner High Plains Tech Center Energy Purchaser High Plains Tech Center Location Woodward OK Coordinates 36.40645133°, -99.4282195° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.40645133,"lon":-99.4282195,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

High Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Plains Wind Farm Plains Wind Farm Jump to: navigation, search Name High Plains Wind Farm Facility High Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp Developer PacifiCorp Energy Purchaser PacifiCorp Location Southwest of Rock River WY Coordinates 41.665943°, -106.043487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.665943,"lon":-106.043487,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

The Des Plaines River -- Part Two  

NLE Websites -- All DOE Office Websites (Extended Search)

a canal through the Chicago Portage, down the Des Plaines valley, and thence to LaSalle-Peru where the Illinois River became navigable in all seasons. The Northwest Territory...

249

Clean Coal Technology and the Clean Coal Power Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy...

250

A coal export simulation model  

SciTech Connect

Uncertainty of future energy supplies has forced industrial nations to diversify both their energy mix and their energy sources of supply. As a result, U.S. coal exports have grown substantially during the past several years. Projected long-term worldwide economic growth suggests that a well-established trend has been set for increased foreign demand for U.S. coal. As export volumes increase the need for careful planning to prevent bottlenecks and to provide for the uninterrupted flow of coal increases. It also will place increased emphasis on identifying the most economic transportation alternatives. These planning and evaluation functions are greatly facilitated if a systematic method is available for modeling the complex interactions of a coal export system. One such model, developed by the Anaconda Minerals Company, is the Coal Export model. This model simulates the movement of coal by transportation equipment (trains, ships, barges, etc.) from an originating mine site to a destination port via an intermediate port facility. Stockpile sizing and the selection of transportation equipment can be optimized with the aid of this model. Also, the impact of various operating policies for ship and train scheduling and for administering stockpiles can be predicted. Evaluating these issues can help to determine the most economic way to move a desired amount of coal from the originating mine site to the destination port.

Bydlon, T.J.; Tyber, H.B.

1982-09-01T23:59:59.000Z

251

Production of jet fuel from coal-derived liquids  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels, for maximizing profits, and for profitable production of each of the three jet fuels from the by-product liquids have been developed. Economic analyses of the designs show that jet fuel can be produced from the by-products, but not economically. However, jet fuel production could be subsidized profitably by processing the phenolic and naphtha streams to cresols, phenols, BTX, and other valuable chemical by-products. Uncertainties in the studies are marketability of the chemical by-products, replacement fuel costs, and viable schemes to process the phenol stream, among others. 8 figs., 2 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1990-01-01T23:59:59.000Z

252

Production of jet fuels from coal derived liquids  

Science Conference Proceedings (OSTI)

Amoco Oil Company has conducted bench- and pilot plant-scale experiments to produce jet fuels from the tar oil from the Great Plains Coal Gasification Plant in Beulah, North Dakota. Experiments show that the hydroprocessing conditions recommended in Task 1 are not severe enough to saturate the aromatics in the tar oil to meet jet fuel specifications. Alternatives were investigated. Jet fuel specifications can be achieved when the tar oil is: hydrotreated in an expanded-bed hydrotreater to lower aromatics and heteroatom content; the effluent is then hydrotreated in a second, fixed bed hydrotreater; and, finally, the 550{degree}F boiling fraction from the two hydrotreaters is hydrocracked to extinction. The process was verified by pilot-plant production of 2 barrels of JP-8 turbine fuel, which met all but the flash point specification for JP-8. In addition, small samples of JP-4, JP-8, and high-density fuel were produced as a part of Task 2. 13 figs., 21 tabs.

Furlong, M.; Fox, J.; Masin, J.

1989-06-01T23:59:59.000Z

253

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each, and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Experimental work to date has shown that the tar oil stream requires substantially more severe processing than the preliminary design estimates indicated. A new design basis is now being tested and samples of JP-4, JP-8, and JP-8X are in production, based on that new, more severe processing scheme. Six barrels of tar oil have been hydrotreated according to the first step of the processing scheme and will be used to produce barrel quantities of JP-8. 2 refs., 2 figs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1988-01-01T23:59:59.000Z

254

A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation  

SciTech Connect

Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

Jiang, C.

1993-12-31T23:59:59.000Z

255

Phase changes of ambient particles in the Southern Great Plains of Scot T. Martin,1  

E-Print Network (OSTI)

October 2008; published 18 November 2008. [1] A new instrument, a 1 ? 3 tandem differential mobility, and Riverside, California. Using a hygroscopic-growth tandem differential mobility analyzer (HTDMA), Pitchford deployed previously, and such an instrument could be expected to provide more sensitivity, new statistics

256

Duration and Movement of Mesocyclones Associated with Southern Great Plains Thunderstorms  

Science Conference Proceedings (OSTI)

Examination of 320 mesocyclones recorded by the National Severe Storms Laboratory's Doppler radars over Oklahoma and adjacent portions of Texas during 20 spring tornado seasons of 197190 shows that tornado-producing mesocyclones in this region ...

Vincent T. Wood; Rodger A. Brown; Donald W. Burgess

1996-01-01T23:59:59.000Z

257

A Three-Dimensional Numerical Simulation of a Great Plains Dryline  

Science Conference Proceedings (OSTI)

A three-dimensional, nonhydrostatic, nested grid version of the Colorado State University Regional Atmospheric Modeling System (RAMS) was used to perform simulations of an actual dryline that was observed as part of the COPS-91 field experiment ...

B. L. Shaw; R. A. Pielke; C. L. Ziegler

1997-07-01T23:59:59.000Z

258

The Suppression of Deep Moist Convection near the Southern Great Plains Dryline  

Science Conference Proceedings (OSTI)

Deep moist convection failed to initiate over the Texas Panhandle on 6 May 1995 despite expectations to the contrary by the forecasters for the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX). The National Centers for ...

Harald Richter; Lance F. Bosart

2002-07-01T23:59:59.000Z

259

Surface Mesoscale Features as Potential Storm Predictors in the Northern Great PlainsTwo Case Studies  

Science Conference Proceedings (OSTI)

Two mesoscale case studies in the semi-arid climate of southeastern Montana were carried out on 1 May and 3 June 1980. I May was an unstable, rainy day with two rain periods over the mesonet area, and 3 June was a potentially unstable day, with a ...

AndrA. Doneaud; James R. Miller Jr.; David L. Priegnitz; Lakshmana Viswanath

1983-02-01T23:59:59.000Z

260

Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site  

DOE Data Explorer (OSTI)

The Office of Biological and Environmental Research in DOE's Office of Science is responsible for the ARM Program. The ARM Archive physically resides at the Oak Ridge National Laboratory. (Specialized Interface) (Registration Required)

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Convection Initiation along Soil Moisture Boundaries in the Southern Great Plains  

Science Conference Proceedings (OSTI)

Boundaries between two dissimilar air masses have been shown to be the focus region for convection initiation. One feature that has been shown to create these boundaries, as well as mesoscale circulation patterns conducive for convection, is soil ...

John D. Frye; Thomas L. Mote

2010-04-01T23:59:59.000Z

262

The Effect of Irrigation on Warm Season Precipitation in the Southern Great Plains  

Science Conference Proceedings (OSTI)

The synoptic and subsynoptic atmospheric processes that accompany statistically determined periods of irrigation-induced rainfall increases during the warm season in the Texas Panhandle are examined. Major results are as follows.

Anthony G. Barnston; Paul T. Schickedanz

1984-06-01T23:59:59.000Z

263

The ARM Southern Great Plains Central Facility Best Estimate Radiative Flux CD  

Science Conference Proceedings (OSTI)

The BEFlux VAP directly compares data from the three Normal Incidence Perheliometers, shaded pyranometers, and shaded pyrgeometers at the SGP CF. Extensive analysis with several years of data has produced limits of typical ranges of agreement when these instruments are performing as expected. These limits are used to screen the data, and then the average is taken of the two that agree best, given that at least two instruments agree to within the established limits. This is done for the downwelling direct normal and diffuse shortwave, and the downwelling longwave. The total (global) downwelling shortwave is then the sum of the direct and diffuse components.

Long, CN

2002-04-01T23:59:59.000Z

264

Simulation of Surface-Moisture Effects on the Great Plains Low-Level Jet  

Science Conference Proceedings (OSTI)

Convective precipitation and severe weather episodes in the central United States commonly have diurnal oscillations with maximum amplitudes at night. Observations suggest that the timing of some convective events may be driven by diurnal changes ...

Michael D. Mccorcle

1988-09-01T23:59:59.000Z

265

Discriminating Environmental Conditions for Significant Warm Sector and Boundary Tornadoes in Parts of the Great Plains  

Science Conference Proceedings (OSTI)

Using system-relative composites, based on a dataset of significant tornadoes and null supercell events, environmental conditions associated with occurrences of significant tornadoes near discernible surface boundaries were compared to non-...

Joshua M. Boustead; Barbara E. Mayes; William Gargan; Jared Leighton; George Phillips; Philip N. Schumacher

266

Meteorological Conditions during Heat Waves and Droughts in the United States Great Plains  

Science Conference Proceedings (OSTI)

Summertime droughts and/or heat waves in the Kansas City area and their associated large-scale circulation patterns and land-surface moisture conditions are investigates, using climatological monthly mean surface data, rawinsonde data. Palmer ...

Fong-Chiau Chang; John M. Wallace

1987-07-01T23:59:59.000Z

267

Southern Great Plains Dairy Consortium Teaching (http://sgpdct.tamu.edu/)  

E-Print Network (OSTI)

through expanded cooperative programs of the various universities, state agencies and federal agencies at Land Grant Universities. Participating Universities at this point are: New Mexico State, Texas A&M, West Texas A&M, Texas Tech, Abilene Christian, University of Arizona, Colorado State, Oklahoma State

Smirnov, Sergei N.

268

Formation and Development of Nocturnal Boundary Layer Clouds over the Southern Great Plains  

Science Conference Proceedings (OSTI)

The formation and evolution of nocturnal boundary layer clouds over land are studied using a simple well-mixed boundary layer theory. By analyzing the deepening rate of the mixed layer depth based on the turbulent kinetic energy budget of the ...

Ping Zhu; Bruce Albrecht; Jon Gottschalck

2001-06-01T23:59:59.000Z

269

The Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains  

Science Conference Proceedings (OSTI)

Satellite observations of low-level clouds have challenged the idea that increasing liquid water content with temperature combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. The ...

Anthony D. Del Genio; Audrey B. Wolf

2000-10-01T23:59:59.000Z

270

Government Response to Drought in the United States:With Particular Reference to the Great Plains  

Science Conference Proceedings (OSTI)

Drought relief has become an expected response of the federal government to periods of widespreaddrought in the United States. A wide range of emergency, short-term and long-term drought programs wereformulated to deal with the extreme drought of ...

Donald A. Wilhite

1983-01-01T23:59:59.000Z

271

The Impact of Ethanol Plants on Cropland Values in the Great Plains By  

E-Print Network (OSTI)

ABSTRACT: Corn ethanol plants consume large amounts of corn and their location has the potential to alter local crop prices and surrounding agricultural land values. The relationship between ethanol plant location and agricultural land prices is examined using data obtained from the Agricultural Credit Survey administered by the Federal Reserve Bank of Kansas City. The findings indicate that the portion of land price changes attributable to location is consistent with previous estimates of basis changes associated with ethanol plant location. As a result, the land markets appear to be rationally adjusting to the location of ethanol plants.

Jason Henderson; Brent A. Gloy; Jason Henderson

2008-01-01T23:59:59.000Z

272

Simulation of Aerosol-Cloud Interactions in the WRF Model at the Southern Great Plains Site  

E-Print Network (OSTI)

The aerosol direct and indirect effects were investigated for three specific cases during the March 2000 Cloud IOP at the SGP site by using a modified WRF model. The WRF model was previously altered to include a two-moment bulk microphysical scheme for the aerosol indirect effect and a modified Goddard shortwave radiation scheme for the aerosol direct effect. The three cases studied include a developing low pressure system, a low precipitation event of mainly cirrus clouds, and a cold frontal passage. Three different aerosol profiles were used with surface concentrations ranging from 210 cm-3 to 12,000 cm-3. In addition, each case and each aerosol profile was run both with and without the aerosol direct effect. Regardless of the case, increasing the aerosol concentration generally increased cloud water and droplet values while decreasing rain water and droplet values. Increased aerosols also decreased the surface shortwave radiative flux for every case; which was greatest when the aerosol direct effect was included. For convective periods during polluted model runs, the aerosol direct effect lowered the surface temperature and reduced convection leading to a lower cloud fraction. During most convective periods, the changes to cloud, rain, and ice water mixing ratios and number concentrations produced a nonlinear precipitation trend. A balance between these values was achieved for moderate aerosol profiles, which produced the highest convective precipitation rates. In non-convective cases, due to the presence of ice particles, aerosol concentration and precipitation amounts were positively correlated. The aerosol threshold between precipitation enhancement and suppression should be further studied for specific cloud types as well as for specific synoptic weather patterns to determine its precise values.

Vogel, Jonathan 1988-

2012-12-01T23:59:59.000Z

273

A Satellite Perspective of the 3 May 1999 Great Plains Tornado Outbreak within Oklahoma  

Science Conference Proceedings (OSTI)

Geostationary Operational Environmental Satellite (GOES) imagery from 3 May 1999 is examined. Synoptic-scale water vapor imagery shows a deepening low-amplitude upper-level trough over the western United States on 3 May, which develops a negative ...

Dan Bikos; John Weaver; Brian Motta

2002-06-01T23:59:59.000Z

274

EIA Energy Kids - Coal  

U.S. Energy Information Administration (EIA)

Sometimes, coal-fired electric power plants are built near coal mines to lower ... industries and businesses with their own power plants use coal to generate ...

275

Coal industry annual 1994  

SciTech Connect

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

276

Advance Funding and Development Agreement: Plains & Eastern Clean Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Funding and Development Agreement: Plains & Eastern Clean Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) More Documents & Publications Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Letter from Deputy Secretary Poneman to Clean Line Energy Regarding the Plains & Eastern Clean Line Project Under Section 1222 of EPAct 2005 (April 5, 2012) 2013 Annual Planning Summary for the Southwestern Area Power Administration

277

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

278

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

279

The coal-wind connection  

Science Conference Proceedings (OSTI)

The USA now has more than 10,000 MW of wind capacity and more wind farms are expected to be built. However transmissions constraints are great, especially in the Northwest and upper Midwest, where abundant wind resources span sparsely populated regions. These areas also hold major deposits of coal. Partnerships are being developed to share transmission to accommodate both new wind and new coal-fired capacity. Wyoming may well be the epicentre of the issue. Another idea, in wind-prone Texas, is to further integrate wind with baseload fossil power resources by creation of competitive renewable energy zones (CREZs). New transmission corridors will be set up linking the renewable energy zones to power markets in ERCOT, the Electric Reliability Council of Texas. There are problems of co-developing coal and wind capacity with common transmission. If coal gasification technology emerges on a commercial scale there would be a good opportunity for integrated gasification combined cycle which can cycle to firm up variable wind generation. Several coal companies in Wyoming are considering gasifying coal and putting it into the pipeline. 2 photos.

Blankinship, S.

2007-01-15T23:59:59.000Z

280

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Knocking the NOx Out of Coal Clean Coal 101 Lesson 3: Knocking the NOx Out of Coal How NOx Forms NOx Formation Air is mostly nitrogen molecules (green in the above diagram) and...

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Coal and bituminous reserves  

SciTech Connect

Chapter 5 of this book contains sections entitled: other coal processes; underground processing of coal; and other important energy sources.

NONE

2008-02-15T23:59:59.000Z

282

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre...

283

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Snake River Plain Geothermal Region Snake River Plain Geothermal Region (Redirected from Snake River Plain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high

284

OXY-COAL COMBUSTION: SUBMICROMETER PARTICLE FORMATION, MERCURY SPECIATION, AND THEIR CAPTURE.  

E-Print Network (OSTI)

??Energy is the issue of great importance at the present. Coal, the cheapest and the most abundant reserve fossil fuel, is currently one of the (more)

Suriyawong, Achariya

2009-01-01T23:59:59.000Z

285

PLAINS CO2 REDUCTION PARTNERSHIP  

Science Conference Proceedings (OSTI)

The PCOR Partnership continues to make great progress. Task 2 (Deployment Issues) activities have focused on utilizing Dakota Gasification Company (DGC) experience and data with respect to DGC participation in the enhanced oil recovery project at Weyburn, Saskatchewan. A solid line of communication has been developed with the Interstate Oil & Gas Compact Commission (IOGCC) for the mutual benefit of the PCOR Partnership and IOGCC's complementary efforts. Task 3 (Public Education and Outreach) activities have focused on developing a foundation of background materials in order to avoid a duplication of efforts and provide the best outreach and educational materials possible. Progress in Task 4 (Characterization and Evaluation) has included the development of a database format, the preliminary collection of data regarding CO{sub 2} sources and sinks, and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have resulted in a conceptual model for screening and qualitatively assessing sequestration options. Task 5 activities have also been useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Thomas A. Erickson

2004-04-01T23:59:59.000Z

286

The estimation of the number of underground coal miners and the annual dose to coal miners in China  

Science Conference Proceedings (OSTI)

This paper introduces an estimation method for the number of underground coal miners and the annual dose to coal miners in China. It shows that there are about 6 million underground miners at present and the proportion is about 1, 1 and 4 million for national key coal mines, state-owned local coal mines, and township and private-ownership coal mines, respectively. The collective dose is about 1.65 X 10{sup 4} person-Sv y{sup -1}, of which township and private-ownership coal mines contribute about 91%. This paper also points out that the 2000 UNSCEAR report gives the number of miners of coal production and their collective dose, which are underestimated greatly because the report only includes the number of underground miners in national key coal mines, which only accounts for 1/6 of the workers all working under the best ventilation conditions in China.

Liu, F.D.; Pan, Z.Q.; Liu, S.L.; Chen, L.; Ma, J.Z.; Yang, M.L.; Wang, N.P. [China Institute of Atomic Energy, Beijing (China)

2007-08-15T23:59:59.000Z

287

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

288

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction  

SciTech Connect

Improved coal liquefaction was reinvestigated for the current two-stage process on the basis of the associated molecular nature of coal. Since a significant portion of coal molecules are physically associated as pointed in our recent paper, physical dissolution should be considered. The step-wise, high-temperature soaking is a simple and effective method for coal dissolution. Larger dissolution makes liquefaction severity lower. Broad molecular mass distribution in the associated coal was another important factor. The selective reaction of fractions with high molecular weight isolated after the high-temperature soaking makes gas yield lower. Tests using an autoclave by the concept shown in Figure 5 enabled to more oil and 15-20% less gas yields. It is expected that the procedure will result in great cost reduction in coal liquefaction.

1993-01-01T23:59:59.000Z

289

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Clean Coal Crosscutting Research University Coal Research University Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal...

290

O A L Section 2. Coal  

U.S. Energy Information Administration (EIA)

Section 2. Coal Coal prices are developed for the following three categories: coking coal; steam coal (all noncoking coal); and coal coke imports and exports.

291

Coal gasification  

Science Conference Proceedings (OSTI)

A standard series of two staged gas generators (GG) has been developed in the United States for producing gas with a combustion heat from 4,700 to 7,600 kilojoules per cubic meter from coal (U). The diameter of the gas generators is from 1.4 to 3.65 meters and the thermal capacity based on purified cold gas is from 12.5 to 89 million kilojoules per hour. Certain standard sized gas generators have undergone experimental industrial tests which showed that it is most expedient to feed the coal into the gas generators pneumatically. This reduces the dimensions of the charging device, makes it possible to use more common grades of structural steels and reduces the cost of the gas. A double valve reliably prevents ejections of the gasification product and promotes the best distribution of the coal in the gas generator. The gas generators may successfully operate on high moisture (up to 36 percent) brown coal. Blasting with oxygen enriched to 38 percent made it possible to produce a gas with a combustion heat of 9,350 kilojoules per cubic meter. This supports a combustion temperature of 1,700C.

Rainey, D.L.

1983-01-01T23:59:59.000Z

292

High Plains Power Inc | Open Energy Information  

Open Energy Info (EERE)

High Plains Power Inc High Plains Power Inc Place Wyoming Utility Id 8566 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png IRRIGATION Industrial LARGE POWER 500kW OR GREATER TIME OF USE Industrial LARGE POWER DISTRIBUTION SUBSTATION GREATER THAN 500kW LEVEL SERVICE Industrial LARGE POWER DISTRIBUTION SUBSTATION LESS THAN 500kW LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE V2 Industrial

293

Geothermal resources of the Alberta Plains  

Science Conference Proceedings (OSTI)

Formation waters of the Alberta Plains are inventoried in a new report prepared for the Renewable Energy Branch, Energy, Mines, and Resources, Canada. Water temperatures, salinities, depths, and the reservoir capacities of the enclosing rocks are included. From geological information and preexisting temperature and gradient data, 21 maps were drawn often rock units and the enclosed fluids. Although some previous site-specific inventories of the geothermal resources of the Alberta Plains have been made, the study is the first comprehensive survey. Capital costs to install geothermal energy recovery operations from scratch are prohibitively high on Canada's Alberta Plains. The geothermal resources there are about 1.5 kilometers deep, and drilling wells to reach them is expensive. For a geothermal recovery operation to be economically feasible, drilling cots must be avoided. One way is through a joint-venture operation with the petroleum industry. A joint venture may be possible because oil extraction often involves the production of large volumes of hot water, a geothermal resource. Typically, after the hot water is brought to the surface with oil, it is injected underground and the heat is never used. Ways to obtain and use this heat follow.

Loveseth, G.E.; Pfeffer, B.J.

1988-12-01T23:59:59.000Z

294

Coal industry annual 1997  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

295

Coal industry annual 1996  

Science Conference Proceedings (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

296

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

1996-10-01T23:59:59.000Z

297

Coal Mine Safety on Environmental Sustainability Based on Behavior Science  

Science Conference Proceedings (OSTI)

Safety is one of the key problems people concern about most not only at present but also in the future. Currently there are many hidden troubles threatening safety. Particularly, the safety problems in coal mines are very serious and in great need of ... Keywords: coal mine safety, environmental sustainability, Behavior Science, positive behavior, negative behavior, incentive system

Xinjuan Li

2009-07-01T23:59:59.000Z

298

Microbial solubilization of coal  

DOE Patents (OSTI)

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

299

Coal liquefaction and hydrogenation  

DOE Patents (OSTI)

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

300

Coal industry annual 1993  

Science Conference Proceedings (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: News Release - Unique DOE-Funded Coal Dryers Meet Goal of Increased  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2007 6, 2007 Unique DOE-Funded Coal Dryers Meet Goal of Increased Efficiency, Reduced Emissions North Dakota Power Station to Expand Use of "Very Successful" Coal-Drying Technology WASHINGTON, DC - A prototype coal dryer demonstrated at Great River Energy's Coal Creek Station has proven so successful that the power company intends not only to install full-size dryers on the station's 546-megawatt Unit 2 as part of the second phase of its cost-shared project with the U.S. Department of Energy, but also to install the award-winning technology on the 546-megawatt Unit 1 - at its own expense. Coal Creek Power Station Aerial view of the Coal Creek Station, Underwood, ND. DOE-funded coal-drying technology installed at the power plant cuts emissions by reducing the amount of coal needed to produce electricity. (Photo courtesy of Great River Energy)

302

Advance Funding and Development Agreement: Plains & Eastern Clean Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Funding and Development Agreement: Plains & Eastern Clean Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) More Documents & Publications Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Letter from Deputy Secretary Poneman to Clean Line Energy Regarding the Plains & Eastern Clean Line Project Under Section 1222 of EPAct 2005 (April 5, 2012) EIS-0486: Notice of Intent and Notice of Potential Floodplain and Wetland

303

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high angle to the central and eastern Snake River Plains. Its morphology is

304

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

305

2014 Coal Form Proposals  

U.S. Energy Information Administration (EIA)

Coal Survey Form Changes Proposed for 2014. The U.S. Energy Information Administration (EIA) has begun the process of re-clearing the coal survey ...

306

Coal Mining (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

307

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Coal Prices (updated December 27, 2006) This report summarizes spot coal prices for the business weeks ended December 1, 8, and 15.

308

Annual Coal Report 2001  

U.S. Energy Information Administration (EIA)

DOE/EIA-0584 (2001) Annual Coal Report 2001 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy

309

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Metallurgical coal markets became volatile when the thriving Chinese steel industry in late 2003 and 2004 made outsized demands for coking coal and met coke, ...

310

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution...

311

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Destination State, Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by Method of Transportation Electricity Generation Coke Plants Industrial Plants (Except Coke) Residential and Commercial Total Alabama 7,212 375 6,032 3 13,622 Railroad 2,613 170 4,607 - 7,390 River 3,867 - - - 3,867 Truck 732 205 1,424 3 2,365 Illinois 1,458 - - * 1,458 Railroad 167 - - - 167 River 1,291 - - - 1,291 Truck - - - * * Kentucky Total 2,277 - 262 - 2,539 Railroad 1,928 - 165 - 2,093 River 349 - 83 - 432 Truck - - 14 - 14 Eastern 843 - 262 - 1,105 Railroad 843 - 165 - 1,008 River - - 83 - 83 Truck - - 14 - 14 Western 1,435 - - - 1,435 Railroad 1,086 - - - 1,086 River 349 - - - 349 Pennsylvania Total 242 - 62 - 304 Great Lakes - - 60 - 60 Railroad - - * - * River 242 - -

312

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Survey (USGS) resource assessments. This report contains EIA projections of future daily production rates using recent USGS resource estimates. The Coastal Plain study area...

313

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil and gas resources of ANWR Coastal Plain (The Oil and Gas Resource Potential of the Arctic...

314

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS:...

315

Potential Oil Production from the Coastal Plain of the Arctic...  

Annual Energy Outlook 2012 (EIA)

Setting Geology 2. Analysis Discussion Resource Assessment Method of Analysis ANWR Coastal Plain Assessment 3. Summary Glossary References Access the PDF version of the...

316

Micro-Earthquake At Snake River Plain Geothermal Region (1976...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Micro-Earthquake At Snake River Plain Geothermal Region (1976) Jump to: navigation, search GEOTHERMAL...

317

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

318

NETL: Coal & Coal Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Biomass to Liquids Hydrogen-from-Coal RD&D ENERGY ANALYSIS About Us Search Products Contacts SMART GRID ANALYSIS BASELINE STUDIES QUALITY GUIDELINES NETL-RUA About NETL-RUA...

319

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

320

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Clean Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Research Clean Coal Research Clean Coal Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and...

322

Coal liquefaction  

DOE Patents (OSTI)

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

323

Commercializing the H-Coal Process  

E-Print Network (OSTI)

The H-Coal Process is being demonstrated in commercial equipment at the Catlettsburg, Kentucky plant. A program is being developed for further operations including several tests for specific commercial projects and a long-term test. Over the last year, technical feasibility has been clearly demonstrated, but the economic matrix has been greatly altered. However, because of this alteration and because many countries outside the United States are more concerned about security of supply, Hydrocarbon Research, Inc. (HRI) has observed a decided swing in interest in commercial coal liquefaction. Project owners can select one of two paths for commercial coal liquefaction using H-Coal technology. The quantum strategy involves the construction of a large, independent facility and requires a very high initial capital investment. The incremental approach deals with stepwise additions of coal to a hydrogenation unit, may involve association with an existing facility, and will result in a substantially smaller initial investment. HRI's unique and commercially proven Liquid Phase Hydrogenation systems permit the owner to select the strategy most suited to his needs. The ultimate goals of commercial coal liquefaction can be reached by either route. The H-Coal program supports this goal.

DeVaux, G. R.; Dutkiewicz, B.

1982-01-01T23:59:59.000Z

324

Fish of the Great Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation FISH OF THE GREAT LAKES As you stand at the top of one of the tallest buildings in downtown...

325

Recent Great Lakes Ice Trends  

Science Conference Proceedings (OSTI)

Analysis of ice observations made by cooperative observers from shoreline stations reveals significant changes in the ice season on the North American Great Lakes over the past 35years. Although the dataset is highly inhomogeneous and year-to-...

Howard P. Hanson; Claire S. Hanson; Brenda H. Yoo

1992-05-01T23:59:59.000Z

326

Coal Tar and Bedrock  

Science Conference Proceedings (OSTI)

The characterization of bedrock groundwater and coal tar impacts is one of the most complicated tasks associated with managing manufactured gas plant (MGP) sites. This report provides an overview of the fate and transport of coal tar in bedrock and the methods available to investigate coal tar at particular sites and discusses how to develop a decision-making framework for coal tar investigations.

2007-02-22T23:59:59.000Z

327

POLLUTION-CONTROL TECHNOLOGIES IN COAL-FIRED POWER PLANTS AND THEIR IMPACT ON AEROSOL NUCLEATION AND GROWTH IN EMISSIONS PLUMES.  

E-Print Network (OSTI)

??Nucleation and growth of particles in coal-fired power-plant plumes can greatly contribute to particle concentrations near source regions. Pollution-control technologies have been added to coal-fired (more)

Lonsdale, Chantelle

2012-01-01T23:59:59.000Z

328

Subbituminous and bituminous coal dominate U.S. coal ...  

U.S. Energy Information Administration (EIA)

While almost all coal consumed in the United States is used to generate electricity (90% in 2010), coal is not entirely homogeneous. Coal is ...

329

NETL: Coal & Coal Biomass to Liquids - Alternate Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal and CoalBiomass to Liquids Alternate Hydrogen Production In the Alternate Production technology pathway, clean syngas from coal is converted to high-hydrogen-content liquid...

330

The Effect of Circulating Coal Slurry Water Hardness on Coal ...  

Science Conference Proceedings (OSTI)

In order to investigate the effect of gypsum on flotation and coal slurry settling during coal slurry recirculation, the water hardness and proton conductivity of coal...

331

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

332

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

333

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

334

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

335

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Plains CO2 Reduction Partnership PCOR | Open Energy Information  

Open Energy Info (EERE)

CO2 Reduction Partnership PCOR CO2 Reduction Partnership PCOR Jump to: navigation, search Name Plains CO2 Reduction Partnership (PCOR) Place Grand Forks, North Dakota Zip 58202-9018 Product North Dakota-based consortium researching CO2 storage options. PCOR is busy with the ECBM in the Unminable Lignite Research Project. References Plains CO2 Reduction Partnership (PCOR)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Plains CO2 Reduction Partnership (PCOR) is a company located in Grand Forks, North Dakota . References ↑ "Plains CO2 Reduction Partnership (PCOR)" Retrieved from "http://en.openei.org/w/index.php?title=Plains_CO2_Reduction_Partnership_PCOR&oldid=349772"

337

Proposed Project: Plains & Eastern Clean Line | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Section 1222 of the Energy Policy Act 2005 » Proposed Project: Plains & Section 1222 of the Energy Policy Act 2005 » Proposed Project: Plains & Eastern Clean Line Proposed Project: Plains & Eastern Clean Line On June 10, 2010, the Department of Energy published in the Federal Register a Request for Proposals (RFP) for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act (EPAct) of 2005. In response, Clean Line Energy Partners, LLC submitted an application for its Plains & Eastern Clean Line project. DOE has concluded that Clean Line's proposal was responsive to the RFP, and it is currently under consideration. The proposed Plains & Eastern Clean Line project (the proposed project) would include an overhead +/- 600 kV direct current electric transmission system and associated facilities with the capacity to deliver approximately

338

Prebaked Anode from Coal Extract  

Science Conference Proceedings (OSTI)

We previously reported that the coal extract prepared from non-hydrogenative extraction of thermal coals using two-ring-aromatic solvent (Hyper-coal) is suitable...

339

Coal desulfurization with sodium hypochlorite.  

E-Print Network (OSTI)

??Wet desulfurization of Pittsburgh No. 8 coal and Illinois No. 6 coal were conducted with sodium hypochlorite in the laboratory. Pittsburgh No. 8 coal was (more)

Li, Wei, M.S.

2004-01-01T23:59:59.000Z

340

Coal data: A reference  

SciTech Connect

This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

Not Available

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Survey and evaluation of current and potential coal beneficiation processes  

SciTech Connect

Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluations are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.

Singh, S. P.N.; Peterson, G. R.

1979-03-01T23:59:59.000Z

342

Northern Plains Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Coop Coop Jump to: navigation, search Name Northern Plains Electric Coop Place North Dakota Utility Id 13196 Utility Location Yes Ownership C NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CONTROLLED IRRIGATION SERVICE Commercial CONTROLLED OFF-PEAK SERVICE - DUAL HEAT / STORAGE HEAT (Under LPS) Industrial CONTROLLED OFF-PEAK SERVICE DUAL -HEAT / STORAGE HEAT (Under General Service ) Residential General Service - Rural and Seasonal Residential General Service - Urban Single Phase Residential

343

Flow Test At Snake River Plain Region (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Flow Test At Snake River Plain Region (DOE GTP) Exploration Activity Details Location Snake River Plain Geothermal Region Exploration Technique Flow Test Activity Date Usefulness...

344

Slim Holes At Snake River Plain Region (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Snake River Plain Region (DOE GTP) Exploration...

345

Great Basin | Open Energy Information  

Open Energy Info (EERE)

Great Basin Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Basin Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.609920257001,"lon":-114.0380859375,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

The Great Gas Hydrate Escape  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Gas Great Gas Hydrate Escape The Great Gas Hydrate Escape Computer simulations revealing how methane and hydrogen pack into gas hydrates could enlighten alternative fuel production and carbon dioxide storage January 25, 2012 | Tags: Carver, Chemistry, Energy Technologies, Hopper, Materials Science PNNL Contact: Mary Beckman , +1 509 375-3688, mary.beckman@pnl.gov NERSC Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov The methane trapped in frozen water burns easily, creating ice on fire. For some time, researchers have explored flammable ice for low-carbon or alternative fuel or as a place to store carbon dioxide. Now, a computer analysis of the ice and gas compound, known as a gas hydrate, reveals key details of its structure. The results show that hydrates can hold hydrogen

347

Why Sequence Great Salt Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Salt Lake? Great Salt Lake? On average, the Great Salt Lake is four times saltier than the ocean and also has heavy metals, high concentrations of sulfur and petroleum seeps. In spite of all this, the lake is the saltiest body of water to support life. The lake hosts brine shrimp, algae and a diverse array of microbes, not to mention the roughly 5 million birds that migrate there annually. The secret to these microbes' ability to survive under such harsh conditions might be revealed in their genes. Researchers expect the genetic data will provide insight into how the microorganisms tolerate pollutants such as sulfur and detoxify pollutants such as sulfur and heavy metals like mercury. The information could then be used to develop bioremediation techniques. Researchers also expect that sequencing microorganisms sampled

348

NETL: Coal & Power Systems - Brief History of Coal Use  

NLE Websites -- All DOE Office Websites (Extended Search)

History of Coal Coal & Power Systems Brief History of Coal Use Steam Locomotive In the 1800s, one of the primary uses of coal was to fuel steam engines used to power locomotives....

349

NETL: Coal & Coal Biomass to Liquids - Closely Aligned Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > C&CBTL > Closely Aligned Programs Coal and CoalBiomass to Liquids Closely Aligned Programs The Department of Energy's (DOE) Coal & CoalBiomass to Liquids...

350

Investigations into coal coprocessing and coal liquefaction  

DOE Green Energy (OSTI)

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

351

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

352

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

353

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

354

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

commercial (point sources) Coal Oil Other Area sourcesSource Stationary fuel combugtion Electric utilities Coal Oil

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

355

Fuel Industry Response to Power Industry Environmental Pressures: An Analysis of Risk and Investment in the Coal Supply Chain and Na tural Gas Industry  

Science Conference Proceedings (OSTI)

This report examines the question of how mounting environmental pressures on coal-fired generation will impact investment in fuel supply and transportation. If destined for demise, are coal companies cutting back investments or exiting the business? Alternatively, are natural gas companies gearing up for a financial boom? The study specifically investigates a "clean coal" case of greatly tightened NOx and SO2 limits as well as a "low coal" case of much reduced coal use to meet CO2 control objectives.

1999-07-02T23:59:59.000Z

356

Coal Severance Tax (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

357

Coal char fragmentation during pulverized coal combustion  

Science Conference Proceedings (OSTI)

A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

Baxter, L.L.

1995-07-01T23:59:59.000Z

358

Upgraded Coal Interest Group  

Science Conference Proceedings (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

359

Coal feed lock  

DOE Patents (OSTI)

A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

Pinkel, I. Irving (Fairview Park, OH)

1978-01-01T23:59:59.000Z

360

Flood Plain and Floodway Management Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flood Plain and Floodway Management Act (Montana) Flood Plain and Floodway Management Act (Montana) Flood Plain and Floodway Management Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Pelletization of fine coals  

SciTech Connect

The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

Sastry, K.V.S.

1991-09-01T23:59:59.000Z

362

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

363

International perspectives on coal preparation  

SciTech Connect

The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

1997-12-31T23:59:59.000Z

364

Energy directory of researchers in Great Plains/Great Basin area (Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, Wyoming)  

SciTech Connect

The directory lists in Part 1 names of researchers involved in energy R and D in Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, and Wyoming by category. Within each category each researcher is given with his phone number when known, his affiliation, the title of his research, and publication information. These categories are listed and defined in ERDA Energy Information Data Base: Subject Categories, TID-4584-R2 (May 1977). In Part 2 the principal investigators are arranged by the state (two-letter state abbreviation) in which the research is performed. Researchers are alphabetically listed by the first author. If research on a project is performed in more than one state, the abbreviations for all the states involved will appear with the names of the project's principal investigators listed below. Indexes included are an investigator index, a research institute index, and a location index.

Caton, G.M.; Michelson, D.C.; Danford, G.S.; Frogge, L.M. (comps.)

1977-10-01T23:59:59.000Z

365

Energy directory of organizations and researchers in Great Plains/Great Basin area (Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, Wyoming)  

SciTech Connect

The directory lists research institutes and researchers involved in energy R and D in Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, and Wyoming. The first section of this publication, Organizations and Researchers, lists the names of colleges and organizations which are involved in energy R and D in these ten western states. The name of the organization is arranged in alphabetical order and printed below each organization are the name(s) of the researchers in the organization, their phone numbers if known, and the titles of their research projects. Section 2, Research Organizations by State, lists the research organizations performing energy R and D within each of the ten states mentioned. The alphabetical arrangement is first by state and then by research organization.

Caton, G.M.; Michelson, D.C.; Danford, G.S.; Frogge, L.M. (comps.)

1977-10-01T23:59:59.000Z

366

The First Coal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

367

Indonesian coal mining  

Science Conference Proceedings (OSTI)

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

368

Stacker speeds coal recovery  

SciTech Connect

The Spring Creek Coal Co., near Decker, Montana, features the only stacker/reclaimer in the U.S. to stockpile and reclaim coal produced by a dragline/truck-shovel operation.

Jackson, D.

1981-08-01T23:59:59.000Z

369

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

March 2011 DOEEIA-0121 (201004Q) Revised: July 2012 Quarterly Coal Report October - December 2010 March 2011 U.S. Energy Information Administration Office of Oil, Gas, and Coal...

370

Coal Market Module  

Annual Energy Outlook 2012 (EIA)

6, DOEEIA-M060(2006) (Washington, DC, 2006). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for...

371

Microbial solubilization of coal  

DOE Patents (OSTI)

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

372

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

1993-10-29T23:59:59.000Z

373

Chemicals from coal  

Science Conference Proceedings (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

374

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Over the past month and a half, NAP spot coal prices have been flat or declining (graph above). ... (the walls of coal left in place to support the roof), ...

375

NETL: Coal-Fired Power Plants (CFPPs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Sources Coal-Fired Power Plants (CFPPs) Where is the coal in the United States? Coal Across the U.S. The U.S. contains coal resources in various places. The coal occurs...

376

Coal gasification apparatus  

DOE Patents (OSTI)

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

377

Method for fluorinating coal  

DOE Patents (OSTI)

Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

Huston, John L. (Skokie, IL); Scott, Robert G. (Westmont, IL); Studier, Martin H. (Downers Grove, IL)

1978-01-01T23:59:59.000Z

378

Ore components in coal  

Science Conference Proceedings (OSTI)

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

379

Coal Industry Annual, 1996  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1998-04-01T23:59:59.000Z

380

Coal Industry Annual, 1997  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1998-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Coal Industry Annual, 1995  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1996-11-17T23:59:59.000Z

382

Coal Industry Annual, 1998  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

2000-07-07T23:59:59.000Z

383

Coal Industry Annual, 1994  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Fred Freme

1996-04-18T23:59:59.000Z

384

Coal Industry Annual, 1999  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Information Center

385

Coal Industry Annual, 2000  

Reports and Publications (EIA)

Provides comprehensive information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves.

Information Center

386

Coal News and Markets  

U.S. Energy Information Administration (EIA)

... (Energy Publishing, Coal & Energy Price Report, Bulletin, ... Although, the soaring demands of the Chinese steel industry are still with us, ...

387

Reliant Coastal Plains Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Coastal Plains Biomass Facility Coastal Plains Biomass Facility Jump to: navigation, search Name Reliant Coastal Plains Biomass Facility Facility Reliant Coastal Plains Sector Biomass Facility Type Landfill Gas Location Galveston County, Texas Coordinates 29.3763499°, -94.8520636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.3763499,"lon":-94.8520636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Northern Plains EC- Residential and Commercial Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Northern Plains Electric Cooperative is a member-owned electric cooperative that serves customers in east-central North Dakota. This EMC offers a low-interest loan program residential and...

389

Synoptic-Scale Environments Associated with High Plains Severe Thunderstorms  

Science Conference Proceedings (OSTI)

Typical synoptic-scale features are described for summertime severe thunderstorms on the High Plains. Severe weather generally occurs on several days in succession, under conditions that are relatively benign in terms of conventional severe ...

Charles A. Doswell

1980-11-01T23:59:59.000Z

390

Wind Shear Characteristics at Central Plains Tall Towers: Preprint  

SciTech Connect

Conference paper for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing the wind shear characteristics at tall tower sites in the Central Plains of the United States.

Schwartz, M.; Elliott, D.

2006-06-01T23:59:59.000Z

391

Doppler Radar Analysis of a Snake River Plain Convergence Event  

Science Conference Proceedings (OSTI)

A convergence zone periodically forms in the Snake River plain (SRP) of eastern Idaho as a result of terrain-induced boundary layer flow under synoptic northwesterly flow at low and midlevels. Complex terrain in central and eastern Idaho is ...

Thomas A. Andretta; Dean S. Hazen

1998-06-01T23:59:59.000Z

392

NETL: Coal Utilization By-Products (CUB)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Coal Utilization Byproducts Innovations for Existing Plants Solid Waste (Coal Utilization...

393

Flash hydrogenation of coal  

DOE Patents (OSTI)

A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

Manowitz, Bernard (Brightwaters, NY); Steinberg, Meyer (Huntington Station, NY); Sheehan, Thomas V. (Hampton Bays, NY); Winsche, Warren E. (Bellport, NY); Raseman, Chad J. (Setauket, NY)

1976-01-01T23:59:59.000Z

394

Proceedings: Coal Combustion Workshop  

Science Conference Proceedings (OSTI)

The primary objective of the 2007 Coal Combustion workshop was to present a holistic view of the various combustion processes required for minimal emissions, peak performance, and maximum reliability in a coal-fired power plant. The workshop also defined needs for future RD in coal combustion technology.

2008-01-09T23:59:59.000Z

395

Coal production 1989  

SciTech Connect

Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

1990-11-29T23:59:59.000Z

396

Coal Market Module  

Reports and Publications (EIA)

Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2013 (AEO2013). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

Michael Mellish

2013-07-17T23:59:59.000Z

397

Revisions to Monthly Natural Gas Data  

U.S. Energy Information Administration (EIA)

gasification obtained from the Great Plains coal gasifi-cation plant. When annual data become final, the monthly supplemental gaseous fuels data are adjusted

398

CO2 Workshop Final Report  

Science Conference Proceedings (OSTI)

... o Great Plains Coal Gasification Plant (ND) fueled with North Dakota lignite (2.7 million ... Most of these plants are located in China and South Africa ...

2010-08-12T23:59:59.000Z

399

Great Lakes Bioenergy Research Center Technologies Available ...  

Great Lakes Bioenergy Research Center Technologies Available for Licensing Established by the Department of Energy (DOE) in 2007, the Great Lakes Bioenergy Research ...

400

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

402

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Prices in 2007 real $ Coal Prices Coal prices have been farprices. Factors like coal prices and EOR revenues affect theCoal Prices..

Phadke, Amol

2008-01-01T23:59:59.000Z

403

Quarterly Coal Distribution Report - Energy Information ...  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

404

Innovative Drying Technology Extracts More Energy from High Moisture Coal |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Drying Technology Extracts More Energy from High Innovative Drying Technology Extracts More Energy from High Moisture Coal Innovative Drying Technology Extracts More Energy from High Moisture Coal March 11, 2010 - 12:00pm Addthis Washington, DC - An innovative coal-drying technology that will extract more energy from high moisture coal at less cost and simultaneously reduce potentially harmful emissions is ready for commercial use after successful testing at a Minnesota electric utility. The DryFining(TM) technology was developed with funding from the first round of the U.S. Department of Energy's Clean Coal Power Initiative (CCPI). Great River Energy of Maple Grove, Minn., has selected the WorleyParsons Group to exclusively distribute licenses for the technology, which essentially uses waste heat from a power plant to reduce moisture content

405

Coal recovery process  

DOE Patents (OSTI)

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

406

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

407

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

408

Coal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

409

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

410

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

411

Coal: the new black  

SciTech Connect

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

412

A Modeling Study of Irrigation Effects on Surface Fluxes and LandAirCloud Interactions in the Southern Great Plains  

Science Conference Proceedings (OSTI)

In this study, the authors incorporate an operational-like irrigation scheme into the Noah land surface model as part of the Weather Research and Forecasting Model (WRF). A series of simulations, with and without irrigation, is conducted over the ...

Yun Qian; Maoyi Huang; Ben Yang; Larry K. Berg

2013-06-01T23:59:59.000Z

413

Water vapor from sunradiometry in comparison wit microwave and balloon-sonde measurements at the Southern Great Plains ARM site  

SciTech Connect

Water vapor plays an important role in weather in climate; it is the most important greenhouse gas and the most variable in space and time. The DOE Atmospheric Radiation Measurement (ARM) program is studying the column abundance and distribution of water vapor with altitude. Although the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is mainly for measurements of spectral short-wave radiation and spectral extinction by aerosol, it can also measure total column water vapor. This paper reports a preliminary investigation of MFRSR`s capabilities for total column water vapor under cloudless conditions.

Michalsky, J.J.; Harrison, L.C. [State Univ. of New York, Albany, NY (United States); Liljegren, J.C. [Pacific Northwest Lab., Richland, WA (United States)

1994-12-31T23:59:59.000Z

414

Surface Soil Moisture Retrieval and Mapping Using High-Frequency Microwave Satellite Observations in the Southern Great Plains  

Science Conference Proceedings (OSTI)

Studies have shown the advantages of low-frequency (<5 GHz) microwave sensors for soil moisture estimation. Although higher frequencies have limited soil moisture retrieval capabilities, there is a vast quantity of systematic global high-...

Thomas J. Jackson; Ann Y. Hsu; Peggy E. O'Neill

2002-12-01T23:59:59.000Z

415

ARM Southern Great Plains Site Observations of the Smoke Pall Associated with the 1998 Central American Fires  

Science Conference Proceedings (OSTI)

Drought-stricken areas of Central America and Mexico were victimized in 1998 by forest and brush fires that burned out of control during much of the first half of the year. Wind currents at various times during the episode helped transport smoke ...

R. A. Peppler; C. P. Bahrmann; J. C. Barnard; N. S. Laulainen; D. D. Turner; J. R. Campbell; D. L. Hlavka; M-D. Cheng; R. A. Ferrare; R. N. Halthore; L. A. Heilman; C-J. Lin; J. A. Ogren; M. R. Poellot; L. A. Remer; J. D. Spinhirne; K. Sassen; M. E. Splitt

2000-11-01T23:59:59.000Z

416

A Method for Estimating Planetary Boundary Layer Heights and Its Application over the ARM Southern Great Plains Site  

Science Conference Proceedings (OSTI)

A new objective method to determine the height of the planetary boundary layer (PBL) is presented here. PBL heights are computed using the statistical variance and kurtosis of dewpoint and virtual potential temperature differences measured from ...

Paul Schmid; Dev Niyogi

2012-03-01T23:59:59.000Z

417

Estimating Monthly Mean Water and Energy Budgets over the Central U.S. Great Plains. Part I: Evapoclimatonomy Model Formulation  

Science Conference Proceedings (OSTI)

A modified form of Lettau's evapoclimatonomy model is used to calculate the model response functions for runoff, soil moisture, change of soil moisture with time, and evapotranspiration. The model is implemented for the state of Kansas with ...

R. T. Pinker; L. A. Corio

1987-06-01T23:59:59.000Z

418

Estimating Monthly Mean Water and Energy Budgets over the Central U.S. Great Plains. Part II: Evapoclimatonomy Experiments  

Science Conference Proceedings (OSTI)

The evapoclimatonomy model of Lettau (as implemented in Part I by Pinker and Corio) was designed to be applied on climatic time scales. The validity of the model on shorter time scales could extend its usefulness beyond what it was intended for. ...

L. A. Corio; R. T. Pinker

1987-06-01T23:59:59.000Z

419

Temporal Variations of Land Surface Microwave Emissivities over the Atmospheric Radiation Measurement Program Southern Great Plains Site  

Science Conference Proceedings (OSTI)

Land surface microwave emissivities are important geophysical parameters for atmospheric, hydrological, and biospheric studies. This study estimates land surface microwave emissivity using an atmospheric microwave radiative transfer model and a ...

Bing Lin; Patrick Minnis

2000-07-01T23:59:59.000Z

420

Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling  

E-Print Network (OSTI)

a mixed forest from tall tower mixing ratio measurements,vapor measurements from a tall tower, Journal of Geophysical

Riley, W. J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Long-Term Trends in Downwelling Spectral Infrared Radiance over the U.S. Southern Great Plains  

Science Conference Proceedings (OSTI)

A trend analysis was applied to a 14-yr time series of downwelling spectral infrared radiance observations from the Atmospheric Emitted Radiance Interferometer (AERI) located at the Atmospheric Radiation Measurement Program (ARM) site in the U.S. ...

P. Jonathan Gero; David D. Turner

2011-09-01T23:59:59.000Z

422

Analysis of Ground-Measured and Passive-Microwave-Derived Snow Depth Variations in Midwinter across the Northern Great Plains  

Science Conference Proceedings (OSTI)

Accurate estimation of snow mass is important for the characterization of the hydrological cycle at different space and time scales. For effective water resources management, accurate estimation of snow storage is needed. Conventionally, snow ...

A. T. C. Chang; J. L. Foster; R. E. J. Kelly; E. G. Josberger; R. L. Armstrong; N. M. Mognard

2005-02-01T23:59:59.000Z

423

Wide-Angle Imaging Lidar Deployment at the ARM Southern Great Plains Site: Intercomparison of Cloud Property Retrievals  

Science Conference Proceedings (OSTI)

The Wide-Angle Imaging Lidar (WAIL), a new instrument that measures cloud optical and geometrical properties by means of off-beam lidar returns, was deployed as part of a multi-instrument campaign to probe a cloud field at the Atmospheric ...

Igor N. Polonsky; Steven P. Love; Anthony B. Davis

2005-06-01T23:59:59.000Z

424

HOME GLOBAL NATIONAL POLITICS BUSINESS LIVING OPINION YOUR ICT NORTHEAST SOUTHEAST GREAT LAKES MIDWEST PLAINS SOUTHWEST NORTHWEST ALASKA/HAWAII  

E-Print Network (OSTI)

, Blackfeet Tribe of Montana and Canada, director of the Rocky Mountain Indian Chamber of Commerce; Donna

Neff, Jason

425

Climatology of the Low-Level Jet at the Southern Great Plains Atmospheric Boundary Layer Experiments Site  

Science Conference Proceedings (OSTI)

A unique dataset obtained with combinations of minisodars and 915-MHz wind profilers at the Atmospheric Boundary Layer Experiments (ABLE) facility in Kansas was used to examine the detailed characteristics of the nocturnal low-level jet (LLJ). In ...

Jie Song; Ke Liao; Richard L. Coulter; Barry M. Lesht

2005-10-01T23:59:59.000Z

426

Estimating above-ground net primary productivity of the tallgrass prairie ecosystem of the Central Great Plains using AVHRR NDVI  

Science Conference Proceedings (OSTI)

Above-ground net primary productivity ANPP is indicative of an ecosystem's ability to capture solar energy and convert it to organic carbon or biomass, which may be used by consumers or decomposers, or stored in the form of living and nonliving organic ...

Nan An, KevinP. Price, JohnM. Blair

2013-06-01T23:59:59.000Z

427

Water vapor from sunradiometry in comparison with microwave and balloon-sonde measurements at the Southern Great Plains ARM Site  

SciTech Connect

Water vapor plays a fundamental role in weather and climate. It is the most important greenhouse gas and the most variable in space and time. The DOE Atmospheric Radiation Measurement program is devoting a large fraction of its resources for the accurate characterization of the column abundance and the distribution of water vapor with altitude. Balloon sondes, microwave radiometers, and Raman lidars are the major instruments either currently in use or under consideration for these tasks. Although the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is primarily intended for use in accurate measurements of spectral short-wave radiation and in the measurement of spectral extinction by aerosol, it has the potential to measure total column water vapor as well. In this paper the authors report on a preliminary investigation of the MFRSR`s capabilities with regard to accurate measurements of total column water vapor at times when there is a clear path to the sun, i.e., cloudless conditions.

Michalsky, J.J.; Harrison, L.C. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center; Liljegren, J.C. [Pacific Northwest Lab., Richland, WA (United States)

1994-01-01T23:59:59.000Z

428

A Habitat-based Wind-Wildlife Collision Model with Application to the Upper Great Plains Region  

DOE Green Energy (OSTI)

Most previous studies on collision impacts at wind facilities have taken place at the site-specific level and have only examined small-scale influences on mortality. In this study, we examine landscape-level influences using a hierarchical spatial model combined with existing datasets and life history knowledge for: Horned Lark, Red-eyed Vireo, Mallard, American Avocet, Golden Eagle, Whooping Crane, red bat, silver-haired bat, and hoary bat. These species were modeled in the central United States within Bird Conservation Regions 11, 17, 18, and 19. For the bird species, we modeled bird abundance from existing datasets as a function of habitat variables known to be preferred by each species to develop a relative abundance prediction for each species. For bats, there are no existing abundance datasets so we identified preferred habitat in the landscape for each species and assumed that greater amounts of preferred habitat would equate to greater abundance of bats. The abundance predictions for bird and bats were modeled with additional exposure factors known to influence collisions such as visibility, wind, temperature, precipitation, topography, and behavior to form a final mapped output of predicted collision risk within the study region. We reviewed published mortality studies from wind farms in our study region and collected data on reported mortality of our focal species to compare to our modeled predictions. We performed a sensitivity analysis evaluating model performance of 6 different scenarios where habitat and exposure factors were weighted differently. We compared the model performance in each scenario by evaluating observed data vs. our model predictions using spearmans rank correlations. Horned Lark collision risk was predicted to be highest in the northwestern and west-central portions of the study region with lower risk predicted elsewhere. Red-eyed Vireo collision risk was predicted to be the highest in the eastern portions of the study region and in the forested areas of the western portion; the lowest risk was predicted in the treeless portions of the northwest portion of the study area. Mallard collision risk was predicted to be highest in the eastern central portion of the prairie potholes and in Iowa which has a high density of pothole wetlands; lower risk was predicted in the more arid portions of the study area. Predicted collision risk for American Avocet was similar to Mallard and was highest in the prairie pothole region and lower elsewhere. Golden Eagle collision risk was predicted to be highest in the mountainous areas of the western portion of the study area and lowest in the eastern portion of the prairie potholes. Whooping Crane predicted collision risk was highest within the migration corridor that the birds follow through in the central portion of the study region; predicted collision risk was much lower elsewhere. Red bat collision risk was highly driven by large tracts of forest and river corridors which made up most of the areas of higher collision risk. Silver-haired bat and hoary bat predicted collision risk were nearly identical and driven largely by forest and river corridors as well as locations with warmer temperatures, and lower average wind speeds. Horned Lark collisions were mostly influenced by abundance and predictions showed a moderate correlation between observed and predicted mortality (r = 0.55). Red bat, silver-haired bat, and hoary bat predictions were much higher and shown a strong correlations with observed mortality with correlations of 0.85, 0.90, and 0.91 respectively. Red bat collisions were influenced primarily by habitat, while hoary bat and silver-haired bat collisions were influenced mainly by exposure variables. Stronger correlations between observed and predicted collision for bats than for Horned Larks can likely be attributed to stronger habitat associations and greater influences of weather on behavior for bats. Although the collision predictions cannot be compared among species, our model outputs provide a convenient and easy landscape-level tool to quick

Forcey, Greg, M.

2012-08-28T23:59:59.000Z

429

Process for hydrogenating coal and coal solvents  

SciTech Connect

A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

Tarrer, Arthur R. (Auburn, AL); Shridharani, Ketan G. (Auburn, AL)

1983-01-01T23:59:59.000Z

430

Development of Risk Assessment System for Coal-Bed Methane Underbalanced Drilling  

Science Conference Proceedings (OSTI)

As there are a lot of factors with complexity and uncertainty, the process of coal-bed methane under balanced drilling has great risk. In order to overcome the one-sidedness and limitation caused by single evaluation method, the combined evaluation model ... Keywords: coal-bed methane, underbalanced drilling, combined evaluation model, risk assessment system

Xiujuan Yang; Qingyang Wen; Xiangzhen Yan; Yan Xia

2010-12-01T23:59:59.000Z

431

Great Britain | OpenEI  

Open Energy Info (EERE)

Britain Britain Dataset Summary Description The windspeed database provides estimates of mean annual wind speed throughout the UK, averaged over a 1-kilometer square area, at each of the following three heights above ground level (agl): 10 meters, 25 meters, and 45 meters. The windspeed database is available through the UK Department of Energy and Climate Change (DECC) website, and is provided for archive purposes only. The database is comprised of historic information, including results derived from mathematical models, so it should not be considered to be measured data, or up to date or accurate. Source UK Department of Energy and Climate Change (DECC) Date Released December 31st, 2000 (13 years ago) Date Updated Unknown Keywords archive Great Britain Northern Ireland

432

Case Studies in Sustainable Development in the Coal Industry | Open Energy  

Open Energy Info (EERE)

Studies in Sustainable Development in the Coal Industry Studies in Sustainable Development in the Coal Industry Jump to: navigation, search Name Case Studies in Sustainable Development in the Coal Industry Agency/Company /Organization International Energy Agency Sector Energy Focus Area Conventional Energy Topics Implementation Resource Type Guide/manual, Lessons learned/best practices Website http://www.iea.org/papers/2006 Program Start 2006 References Case Studies in Sustainable Development in the Coal Industry[1] Summary "Widely held attitudes to coal's use have evolved greatly in the past five years - from those that largely dismissed a role for coal in sustainable development to a wider appreciation of coal's continuing role in providing a foundation for energy security and in meeting growing world energy

433

Prestigious Coal-Fired Project of the Year Award Goes to Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prestigious Coal-Fired Project of the Year Award Goes to Plant Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology December 16, 2010 - 12:00pm Addthis Washington, DC - An innovative project demonstrating DryFining™ technology, a more cost-effective way to control coal-based power plant emissions while improving fuel quality, has been named the 2010 Coal-Fired Project of the Year by the editors of Power Engineering magazine. The project, managed by the Office of Fossil Energy's National Energy Technology Laboratory, was developed with funding from the Department of Energy's Clean Coal Power Initiative and was originally implemented at Great River Energy's Coal Creek Station in Underwood, ND, in 2009. The

434

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

435

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired Power Plants with In-Situ CO 2 Capture Background Pulverized coal (PC)-fired power plants provide nearly 50% of...

436

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

the costs have on the price of coal delivered by railroadsindicate that the price of coal delivered by railroads ismake up the delivered price of coal that electric plants are

McCollum, David L

2007-01-01T23:59:59.000Z

437

Contaminants in coals and coal residues. [10 refs  

SciTech Connect

Most of the major enviromental pollutants from coals originate as impurities in the coal structure. These include various organic compounds, minerals, and trace elements that are released into the air and water when coal is mined, processed and utilized. The use of coal preparation to produce cleaner burning fuels involves an environmental compromise, wherein reduced emissions and solid wastes from coal burning sources are achieved at the expense of greater environmental degradation from coal cleaning wastes.

Wewerka, E.M.; Williams, J.M.; Vanderborgh, N.E.

1976-01-01T23:59:59.000Z

438

Great Western Malting Company geothermal project, Pocatello, Idaho. Final report  

DOE Green Energy (OSTI)

The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

1981-12-23T23:59:59.000Z

439

PressurePressure Indiana Coal Characteristics  

E-Print Network (OSTI)

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

Fernández-Juricic, Esteban

440

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

442

NETL: Coal & Coal Biomass to Liquids - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Coal and CoalBiomass to Liquids Reference Shelf Documents Papers Presentations DOCUMENTS 2012 Technology Readiness Assessment-Analysis of Active Research Portfolio...

443

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network (OSTI)

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

444

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

445

Annul Coal Consumption by Country (1980 -2009) Total annual coal  

Open Energy Info (EERE)

Annul Coal Consumption by Country (1980 -2009) Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration...

446

NETL: Coal & Coal Biomass to Liquids - Project Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information CoalBiomass Feed and Gasification Development of Biomass-Infused Coal Briquettes for Co-Gasification FE0005293 Development of Kinetics and Mathematical...

447

Illinois Coal Revival Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

448

Coal Mining Tax Credit (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

449

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network (OSTI)

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

450

Des Plaines, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Des Plaines, Illinois: Energy Resources Des Plaines, Illinois: Energy Resources (Redirected from Des Plaines, IL) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0333623°, -87.8833991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0333623,"lon":-87.8833991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Management of Specific Flood Plain Areas (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management of Specific Flood Plain Areas (Iowa) Management of Specific Flood Plain Areas (Iowa) Management of Specific Flood Plain Areas (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources Floodplain management orders by the Iowa Department of Natural Resources as

452

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

453

Integrated coal liquefaction process  

DOE Patents (OSTI)

In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

Effron, Edward (Springfield, NJ)

1978-01-01T23:59:59.000Z

454

Gasification of Lignite Coal  

Science Conference Proceedings (OSTI)

This report on the gasification of lignite coal is presented in two parts. The first includes research into technology options for preparing low-rank fuels for gasification, gasifiers for converting the coal into synthesis gas, and technologies that may be used to convert synthesis gas into valuable chemical products. The second part focuses on performance and cost screening analyses for either Greenfield or retrofit gasification options fueled by low-rank lignite coal. The work was funded through Tailor...

2009-01-23T23:59:59.000Z

455

Coal liquefaction quenching process  

DOE Patents (OSTI)

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

456

Quarterly Coal Report  

Annual Energy Outlook 2012 (EIA)

December 2010 DOEEIA-0121 (201003Q) Revised: July 2012 Quarterly Coal Report July - September 2010 December 2010 U.S. Energy Information Administration Office of Oil, Gas, and...

457

Coal Combustion Products: Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Products: Challenges and Opportunities American Coal Ash Association Conference St. Petersburg, FL January 27-30, 2003 Carl O. Bauer National Energy Technology Laboratory...

458

Initiators of coal hydrogenation  

Science Conference Proceedings (OSTI)

The results are given of an investigation of the influence of additions of certain organosilicon compounds of cyclic and linear nature on the coal hydrogenation process.

Krichko, A.A.; Dembovskaya, E.A.; Gorlov, E.G.

1983-01-01T23:59:59.000Z

459

Clean Coal Projects (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

460

Coal Development (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Direct Coal Liquefaction  

NLE Websites -- All DOE Office Websites (Extended Search)

solvent. * The coal fragments are further hydrocracked to produce a synthetic crude oil. * This synthetic crude must then undergo refinery upgrading and hydrotreating to...

462

Weekly NYMEX Coal Futures  

Reports and Publications (EIA)

The New York Mercantile Exchange (NYMEX) Report provides settlement price data for Central Appalachian (CAPP), Western Powder River Basin (PRB), and Eastern CSX Transportation (CSX) coal futures.

Information Center

463

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA)

figure data Figure 7 shows the percent change in average real rates for those state-to-state ... Estimated transportation rates for coal delivered to electric ...

464

Coal News and Markets  

U.S. Energy Information Administration (EIA)

Speaking about Consol Energys 1Q05 earnings, J. Brett Harvey, president and CEO, noted that the pricing environment for our coal is excellent, ...

465

Handbook of coal analysis  

SciTech Connect

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

466

Back Issues of the Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

coal > Quarterly Coal Report > Quarterly Coal Report Back Issues Quarterly Coal Report Back Issues of the Quarterly Coal Report Year 4thquarter 3rdquarter 2ndquarter 1stquarter QCR...

467

Fuel blending with PRB coal  

Science Conference Proceedings (OSTI)

Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

2009-03-15T23:59:59.000Z

468

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

469

Clean coal technologies market potential  

SciTech Connect

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

470

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

471

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

472

Plain Language: A Commitment to Writing You Can Understand | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plain Language: A Commitment to Writing You Can Understand Plain Language: A Commitment to Writing You Can Understand Plain Language: A Commitment to Writing You Can Understand The Plain Writing Act of 2010 requires federal agencies to write "clear Government communication that the public can understand and use." President Obama also emphasized the importance of establishing "a system of transparency, public participation, and collaboration" in his January 21, 2009, Memorandum on Transparency and Open Government. We here at the Department of Energy are committed to writing new documents in plain language by October 2011, using the Federal Plain Language Guidelines. We have assigned staff to oversee our plain language efforts: Michael Coogan, Plain Language Contact We're training our employees and have strengthened our oversight process.

473

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

474

HS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

475

Coal liquefaction process  

DOE Patents (OSTI)

A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

1983-01-01T23:59:59.000Z

476

Dry piston coal feeder  

SciTech Connect

This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

Hathaway, Thomas J. (Belle Meade, NJ); Bell, Jr., Harold S. (Madison, NJ)

1979-01-01T23:59:59.000Z

477

Method for coal liquefaction  

SciTech Connect

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

1994-01-01T23:59:59.000Z

478

Mechanochemical hydrogenation of coal  

DOE Patents (OSTI)

Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

1981-01-01T23:59:59.000Z

479

State coal profiles, January 1994  

SciTech Connect

The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

1994-02-02T23:59:59.000Z

480

Potential of the heat pipe in coal gasification processes  

SciTech Connect

The declining production of natural gas in the United States has provided great impetus to the development of economcal methods of producing methane from coal. Coal gasification systems share in common a need for highly efficient heat transfer and energy recovery methods in order to maximize the coal-methane conversion efficiency. Characteristics of heat pipe heat transfer units that offer potential for increasing conversion efficiency and/or reducing production costs include: (1) complete physical separation of process streams, (2) capability of handling more than two process streams in a single unit, (3) heat removal at near-constant temperature, (4) high heat recovery efficiency, (5) low operating cost-with no requirement for auxiliary power, and (6) relative ease of cleaning. Design concepts incorporating heat pipes into indirect coal gasification units, methanators, and energy recovery units are presented and technological impediments that must be surmounted in the successful development of these units are discussed.

Ranken, W.A.

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "great plains coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Safety at coal mines: what role does methane play?  

SciTech Connect

The recent Sago Mine disaster in West Virginia and other widely publicized coal mine accidents around the world have received a great deal of attention and have generated some confusion about the link between methane drainage and safety. In response, this article provides an overview of safety concerns faced by coal mines and how they do or do not relate to methane. The first section explains the variety of safety issues a coal mine must take into consideration, including methane build-up. The second section summarizes the recent coal mines accident at Sago Mine in West Virginia. The final section describes the regulatory and legislative responses in the US. 2 refs., 2 figs.

NONE

2006-04-01T23:59:59.000Z

482

Benthic Observations on the Madeira Abyssal Plain: Currents and Dispersion  

Science Conference Proceedings (OSTI)

An experiment to measure near-bottom currents on the Madeira Abyssal Plain is described. The moorings placed near 33N, 22W were separated by 540 km with instruments at 10, 100 and 600 m above the bottom (depth 5300 m). Rotor stalling occurred ...

Peter M. Saunders

1983-08-01T23:59:59.000Z

483

High Plains Severe WeatherTen Years After  

Science Conference Proceedings (OSTI)

More than a decade ago, a study was published that identified a short list of precursor conditions for severe thunderstorms on the High Plains of the United States. The present study utilizes data from the summer months of ten convective seasons ...

John F. Weaver; Nolan J. Doesken

1991-09-01T23:59:59.000Z

484

Benthic Observations on the Madeira Abyssal Plain: Fronts  

Science Conference Proceedings (OSTI)

Analysis of data from a mooring with five vector-averaging current meters between 10 and 70 m above the bed of the Madeira Abyssal Plain reveals the existence of narrow regions with relatively large gradients of potential temperature, or fronts....

S. A. Thorpe

1983-08-01T23:59:59.000Z

485

Wind Shear Characteristics at Central Plains Tall Towers (presentation)  

SciTech Connect

The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

Schwartz, M.; Elliott, D.

2006-06-05T23:59:59.000Z

486

Obama Administration Hosts Great Lakes Offshore Wind Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes...

487

Apparatus and method for feeding coal into a coal gasifier  

DOE Patents (OSTI)

This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

Bissett, Larry A. (Morgantown, WV); Friggens, Gary R. (Morgantown, WV); McGee, James P. (Morgantown, WV)

1979-01-01T23:59:59.000Z

488

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

489

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by