Powered by Deep Web Technologies
Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Definition: Artesian Well | Open Energy Information  

Open Energy Info (EERE)

Well Well Jump to: navigation, search Dictionary.png Artesian Well An artesian well is a water well that doesn't require a pump to bring water to the surface; this occurs when there is enough pressure in the aquifer. The pressure causes hydrostatic equilibrium and if the pressure is high enough the water may even reach the ground surface in which case the well is called a flowing artesian well.[1] View on Wikipedia Wikipedia Definition See Great Artesian Basin for the water source in Australia. An artesian aquifer is a confined aquifer containing groundwater under positive pressure. This causes the water level in a well to rise to a point where hydrostatic equilibrium has been reached. This type of well is called an artesian well. Water may even reach the ground surface if the natural

2

Great Basin | Open Energy Information  

Open Energy Info (EERE)

Great Basin Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Basin Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.609920257001,"lon":-114.0380859375,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Geothermal fluid genesis in the Great Basin  

DOE Green Energy (OSTI)

Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

Flynn, T.; Buchanan, P.K.

1990-01-01T23:59:59.000Z

4

Geochemical characterization of geothermal systems in the Great Basin:  

Open Energy Info (EERE)

characterization of geothermal systems in the Great Basin: characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemical characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Details Activities (0) Areas (0) Regions (0) Abstract: The objective of this ongoing project is the development of a representative geochemical database for a comprehensive range of elemental and isotopic parameters (i.e., beyond the typical data suite) for a range of geothermal systems in the Great Basin. Development of this database is one of the first steps in understanding the nature of geothermal systems in the Great Basin. Of particular importance in the Great Basin is utilizing

5

Lithium In Tufas Of The Great Basin- Exploration Implications...  

Open Energy Info (EERE)

In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper:...

6

Targeting Of Potential Geothermal Resources In The Great Basin From  

Open Energy Info (EERE)

Targeting Of Potential Geothermal Resources In The Great Basin From Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Details Activities (9) Areas (3) Regions (0) Abstract: We apply a new method to target potential geothermal resources on the regional scale in the Great Basin by seeking relationships between geologic structures and GPS-geodetic observations of regional tectonic strain. First, we establish a theoretical basis for underst~dingh ow the rate of fracture opening can be related to the directional trend of faults

7

Accomplishments At The Great Basin Center For Geothermal Energy | Open  

Open Energy Info (EERE)

Accomplishments At The Great Basin Center For Geothermal Energy Accomplishments At The Great Basin Center For Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Accomplishments At The Great Basin Center For Geothermal Energy Details Activities (0) Areas (0) Regions (0) Abstract: The Great Basin Center for Geothermal Energy (GBCGE) has been funded by DOE since March 2002 to conduct geothermal resource exploration and assessment in the Great Basin. In that time, those efforts have led to significant advances in understanding the regional and local conditions necessary for the formation of geothermal systems. Accomplishments include the development of GPS-based crustal strain rate measurements as a geothermal exploration tool, development of new methods of detecting geothermal features with remotely sensed imagery, and the detection of

8

Relating Geothermal Resources To Great Basin Tectonics Using Gps | Open  

Open Energy Info (EERE)

Relating Geothermal Resources To Great Basin Tectonics Using Gps Relating Geothermal Resources To Great Basin Tectonics Using Gps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Relating Geothermal Resources To Great Basin Tectonics Using Gps Details Activities (8) Areas (4) Regions (0) Abstract: The Great Basin is characterized by non-magmatic geothermal fields, which we hypothesize are created, sustained, and controlled by active tectonics. In the Great Basin, GPS-measured rates of tectonic "transtensional" (shear plus dilatational) strain rate is correlated with geothermal well temperatures and the locations of known geothermal fields. This has led to a conceptual model in which non-magmatic geothermal systems are controlled by the style of strain, where shear (strike-slip faulting)

9

Geothermal resources of the Washakie and Great Divide basins, Wyoming  

DOE Green Energy (OSTI)

The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

Heasler, H.P.; Buelow, K.L.

1985-01-01T23:59:59.000Z

10

Why sequence thermophiles in Great Basin hot springs?  

NLE Websites -- All DOE Office Websites (Extended Search)

thermophiles in Great Basin hot springs? thermophiles in Great Basin hot springs? A thermophile is an organism that thrives in extremely hot temperature conditions. These conditions are found in the Great Basin hot springs, where the organisms have been exposed to unique conditions which guide their lifecycle. High temperature environments often support large and diverse populations of microorganisms, which appear to be hot spots of biological innovation of carbon fixation. Sequencing these microbes that make their home in deadly heat could provide various insights into understanding energy production and carbon cycling. Converting cellulosic biomass to ethanol is one of the most promising strategies to reduce petroleum consumption in the near future. This can only be achieved by enhancing recovery of fermentable sugars from complex

11

Lithium In Tufas Of The Great Basin- Exploration Implications For  

Open Energy Info (EERE)

In Tufas Of The Great Basin- Exploration Implications For In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Lithium In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Details Activities (8) Areas (4) Regions (0) Abstract: Lithium/magnesium, lithium/sodium, and to a lesser extent, potassium/magnesium ratios in calcium carbonate tufa columns provide a fingerprint for distinguishing tufa columns formed from thermal spring waters versus those formed from non-thermal spring waters. These ratios form the basis of the Mg/Li, Na/Li, and K/Mg fluid geothermometers commonly used in geothermal exploration, which are based on the fact that at elevated temperatures, due to mineral-fluid equilibria, lithium

12

INTRODUCTION The Great Basin Center for Geothermal Energy (GBCGE)  

E-Print Network (OSTI)

in part- nership with U.S. industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to energy supply in the western United States by (1) providing neededINTRODUCTION The Great Basin Center for Geothermal Energy (GBCGE) was established at the University

Arehart, Greg B.

13

Interactive Maps from the Great Basin Center for Geothermal Energy  

DOE Data Explorer (OSTI)

The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The interactive maps are built with layers of spatial data that are also available as direct file downloads (see DDE00299). The maps allow analysis of these many layers, with various data sets turned on or off, for determining potential areas that would be favorable for geothermal drilling or other activity. They provide information on current exploration projects and leases, Bureau of Land Management land status, and map presentation of each type of scientific spatial data: geothermal, geophysical, geologic, geodetic, groundwater, and geochemical.

14

Harper et al., eds.: Natural History of the Colorado Plateau and Great Basin  

E-Print Network (OSTI)

Natural History of the Colorado Plateau and Great Basin. K.University Press of Colorado, 1994, viii -I- 294 pp. , 41Natural History of the Colorado Plateau and Great Basin

Livingston, Stephanie

1995-01-01T23:59:59.000Z

15

Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)  

Energy.gov (U.S. Department of Energy (DOE))

This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

16

Mechanisms for Diurnal Boundary Layer Circulations in the Great Basin Desert  

Science Conference Proceedings (OSTI)

The purpose of this observation- and model-based study of the Great Basin Desert boundary layer is to illustrate the variety of locally forced circulations that can affect such an area during a diurnal cycle. The area of the Great Basin Desert (...

Daran L. Rife; Thomas T. Warner; Fei Chen; Elford G. Astling

2002-04-01T23:59:59.000Z

17

Active Geothermal Systems And Associated Gold Deposits In The Great Basin |  

Open Energy Info (EERE)

Geothermal Systems And Associated Gold Deposits In The Great Basin Geothermal Systems And Associated Gold Deposits In The Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Active Geothermal Systems And Associated Gold Deposits In The Great Basin Details Activities (0) Areas (0) Regions (0) Abstract: In western North America, a number of geothermal systems derive their heat from magmas or cooling intrusions. The interior of the Great Basin however, is characterized by widespread amagmatic geothermal activity that owes its existence to high crustal heat flow and active extensional tectonics. Both the magmatically heated and extensional fluid types in the Great Basin have recently, or are currently, depositing gold. Quaternary to Pliocene-aged gold deposits with adjacent high-temperature (≤ 150°C)

18

A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of  

Open Energy Info (EERE)

Of Geothermal Potential For The Great Basin, Usa- Recognition Of Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Details Activities (8) Areas (4) Regions (0) Abstract: A 1:1,000,000 scale geothermal favorability map of the Great Basin is currently being published through the Nevada Bureau of Mines and Geology (NBMG) and is now available at the web site (http://www.unr.edu/geothermal/geothermal_gis2. htm) of the Great Basin Center for Geothermal Energy (GBCGE). This map allows for separate assessment of the potential for magmatically heated and extensional-type geothermal systems. Added to the map are temperature gradient wells from

19

The Influence of Large-Scale Flow on Fall Precipitation Systems in the Great Lakes Basin  

Science Conference Proceedings (OSTI)

A synoptic climatology is presented of the precipitation mechanisms that affect the Great Lakes Basin. The focus is on fall because increasing precipitation in this season has contributed to record high lake levels since the 1960s and because the ...

Emily K. Grover; Peter J. Sousounis

2002-07-01T23:59:59.000Z

20

Artesian, South Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Artesian, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old  

Open Energy Info (EERE)

Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Details Activities (3) Areas (3) Regions (0) Abstract: Utilizing commercial mine blasts and local earthquakes, as well as a dense array of portable seismographs, we have achieved long-range crustal refraction profiles across northern Nevada and the Sierra Nevada Mountains. In our most recent refraction experiment, the Idaho-Nevada-California (INC) transect, we used a dense spacing of 411 portable seismographs and 4.5-Hz geophones. The instruments were able to record events ranging from large mine blasts to small local earthquakes.

22

Simulation of the Arid Climate of the Southern Great Basin Using a Regional Climate Model  

Science Conference Proceedings (OSTI)

As part of the development effort of a regional climate model (RCM)for the southern Great Basin, this paper present savalidation analysis of the climatology generated by a high-resolution RCM driven by observations. The RCM is aversion of the ...

Filippo Giorgi; Gary T. Bates; Steven J. Nieman

1992-11-01T23:59:59.000Z

23

Dynamical Downscaling over the Great Lakes Basin of North America Using the WRF Regional Climate Model: The Impact of the Great Lakes System on Regional Greenhouse Warming  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting model (WRF) is employed to dynamically downscale global warming projections produced using the Community Climate System Model (CCSM). The analyses are focused on the Great Lakes Basin of North America and the ...

Jonathan Gula; W. Richard Peltier

2012-11-01T23:59:59.000Z

24

File:EIA-Eastern-GreatBasin-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

Great Basin By 2001 Gas Reserve Class Great Basin By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 17.82 MB, MIME type: application/pdf) Description Eastern Great Basin By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Utah, Nevada File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:59, 20 December 2010 Thumbnail for version as of 17:59, 20 December 2010 5,100 × 6,600 (17.82 MB) MapBot (Talk | contribs) Automated bot upload

25

File:EIA-Eastern-GreatBasin-liquids.pdf | Open Energy Information  

Open Energy Info (EERE)

Great Basin By 2001 Liquids Reserve Class Great Basin By 2001 Liquids Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 17.82 MB, MIME type: application/pdf) Description Eastern Great Basin By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Utah, Nevada File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:59, 20 December 2010 Thumbnail for version as of 17:59, 20 December 2010 5,100 × 6,600 (17.82 MB) MapBot (Talk | contribs) Automated bot upload

26

File:EIA-Eastern-GreatBasin-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Eastern Great Basin By 2001 BOE Reserve Class Eastern Great Basin By 2001 BOE Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 17.82 MB, MIME type: application/pdf) Description Eastern Great Basin By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Utah, Nevada File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:58, 20 December 2010 Thumbnail for version as of 17:58, 20 December 2010 5,100 × 6,600 (17.82 MB) MapBot (Talk | contribs) Automated bot upload

27

Integrated measures of anthropogenic stress in the U.S. Great Lakes Basin  

Science Conference Proceedings (OSTI)

Using publicly available, pre-existing spatial datasets, we developed a geographic information system database of 86 variables related to five classes of anthropogenic stress in the U.S. Great Lakes basin: agriculture, atmospheric deposition, human population, land cover, and point source pollution. The original variables were quantified by a variety of data types over a broad range of spatial and classification resolutions. We summarized the original data for 762 watershed-based units that comprise the U.S. portion of the basin and then used principal components analysis to develop overall stress measures within each stress category. We developed a cumulative stress index by combining the first principal component from each of the five stress categories. Maps of the stress measures illustrate strong spatial patterns across the basin, with the greatest amount of stress occurring on the western shore of Lake Michigan, southwest Lake Erie, and southeastern Lake Ontario. We found strong relationships between the stress measures and characteristics of bird communities, fish communities, and water chemistry measurements from the coastal region. The stress measures are taken to represent the major threats to coastal ecosystems in the U.S. Great Lakes. Such regional-scale efforts are critical for understanding relationships between human disturbance and ecosystem response, and can be used to guide environmental decision-making at both regional and local scales.

Danz, Nicholas; Niemi, Gerald; Regal, Ronald (and others) [University of Minnesota Duluth, Duluth, MN (United States)

2007-05-15T23:59:59.000Z

28

Accelerated Geothermal Resource Development in the Great Basin Through Enhanced Public Awareness and Outreach to Shareholders.  

DOE Green Energy (OSTI)

The Great Basin Center for Geothermal Energy conducted work encompassing two main tasks. We (1) produced a web-based, stakeholder geothermal information system for Nevada geothermal data relevant to assessing and developing geothermal resources, and (2) we held informational stakeholder workshops (both as part of GeoPowering the West Initiative). The objective of this grant was to conduct workshops and fund database and web development activities. This grant funds salaries for web and database developers and part of the administrative assistant who helps to coordinate and organize workshops, and maintain selected databases.

Taranik, James V.; Oppliger, Gary; Sawatsky, Don

2002-04-10T23:59:59.000Z

29

Multidecadal Drought Cycles in the Great Basin Recorded by the Great Salt Lake: Modulation from a Transition-Phase Teleconnection  

Science Conference Proceedings (OSTI)

This study investigates the meteorological conditions associated with multidecadal drought cycles as revealed by lake level fluctuation of the Great Salt Lake (GSL). The analysis combined instrumental, proxy, and simulation datasets, including the ...

Shih-Yu Wang; Robert R. Gillies; Thomas Reichler

2012-03-01T23:59:59.000Z

30

Harper et al., eds.: Natural History of the Colorado Plateau and Great Basin  

E-Print Network (OSTI)

BASIN ANTHROPOLOGY master-apprentice language programs, thedescribes the six master-apprentice language teams that havemaster can in- struct the apprentice and, in doing so, pass

Livingston, Stephanie

1995-01-01T23:59:59.000Z

31

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

office. Participants included transportation and environmental professionals involved with stormwater managementEnvironmental Protection Agency (USEPA), Great Lakes National Program Office (GLNPO) Lake Michigan Lakewide ManagementEnvironmental Protection Agency (USEPA), Great Lakes National Program Office (GLNPO) Lake Michigan Lakewide Management

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

32

Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal Facility Facility Artesian Bathhouse and RV Park Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

33

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

8-9, 2004. Ann Arbor, Michigan. Great Lakes InformationKeystone, Colorado. Lake Michigan (MI) Lakewide ManagementOffice (GLNPO) Lake Michigan Lakewide Management Plan (LaMP)

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

34

BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE DOME  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class Gas Reserve Class 0 20 40 10 30 Miles ± The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information. The data and methods used in their creation are detailed in a report, "Scientific Inventory of Onshore Federal Lands' Oil and Gas Resources and Reserves and the Extent and Nature of Restrictions to Their Development", prepared by the US Departments of Interior, Agriculture and Energy. Unnamed fields and fields generically named "wildcat" were renamed to a concatenate of their basin and state of occurrence,

35

BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE DOME  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Reserve Class Liquids Reserve Class 0 20 40 10 30 Miles ± The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information. The data and methods used in their creation are detailed in a report, "Scientific Inventory of Onshore Federal Lands' Oil and Gas Resources and Reserves and the Extent and Nature of Restrictions to Their Development", prepared by the US Departments of Interior, Agriculture and Energy. Unnamed fields and fields generically named "wildcat" were renamed to a concatenate of their basin and state of occurrence,

36

BASIN VER DE GREAT ER ANETH BU G BAR KER DOME HOR SESH OE UTE DOME  

U.S. Energy Information Administration (EIA) Indexed Site

BOE Reserve Class BOE Reserve Class 0 20 40 10 30 Miles ± The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface structural information. The data and methods used in their creation are detailed in a report, "Scientific Inventory of Onshore Federal Lands' Oil and Gas Resources and Reserves and the Extent and Nature of Restrictions to Their Development", prepared by the US Departments of Interior, Agriculture and Energy. Unnamed fields and fields generically named "wildcat" were renamed to a concatenate of their basin and state of occurrence,

37

Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins. Final report, June 1989--June 1991  

Science Conference Proceedings (OSTI)

The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R&D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ``typical`` well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic.

Not Available

1993-08-01T23:59:59.000Z

38

The Role of Ice Cover in Heavy Lake-Effect Snowstorms over the Great Lakes Basin as Simulated by RegCM4  

Science Conference Proceedings (OSTI)

A 20-km regional climate model, the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 4 (ICTP RegCM4), is employed to investigate heavy lake-effect snowfall (HLES) over the Great Lakes Basin and the role of ...

Steve Vavrus; Michael Notaro; Azar Zarrin

2013-01-01T23:59:59.000Z

39

Hunter-gatherer adaptations and environmental change in the southern Great Basin: The evidence from Pahute and Rainier mesas  

Science Conference Proceedings (OSTI)

This paper reviews the evidence for fluctuations in past environments in the southern Great Basin and examines how these changes may have affected the strategies followed by past hunter and gatherers in their utilization of the resources available on a highland in this region. The evidence used to reconstruct past environments for the region include botanical remains from packrat middens, pollen spectra from lake and spring deposits, faunal remains recovered from archaeological and geologic contexts, tree-ring indices from trees located in sensitive (tree-line) environments, and eolian, alluvial and fluvial sediments deposited in a variety of contexts. Interpretations of past hunter and gatherer adaptive strategies are based on a sample of 1,311 archaeological sites recorded during preconstruction surveys on Pahute and Rainier mesas in advance of the US Department of Energy`s nuclear weapons testing program. Projectile point chronologies and available tree-ring, radiocarbon, thermoluminescence and obsidian hydration dates were used to assign these archaeological sites to specific periods of use.

Pippin, L.C.

1998-06-01T23:59:59.000Z

40

Investigation of MAGMA chambers in the Western Great Basin. Final report, 9 June 1982-31 October 1985  

DOE Green Energy (OSTI)

This report summarizes efforts made by the Seismological Laboratory toward the detection and delineation of shallow crustal zones in the western Great Basin, and toward the development of methods to accomplish such detection. The work centers around the recently-active volcanic center near Long Valley, California. The work effort is broken down into three tasks: (1) network operations, (2) data analysis and interpretation, and (3) the study of shallow crustal amomalies (magma bodies). Section (1) describes the efforts made to record thousand of earthquakes near the Long Valley caldera, and focusses on the results obtained for the November 1984 round Valley earthquake. Section (2) describes the major effort of this contract, which was to quantify the large volume of seismic data being recorded as it pertains to the goals of this contract. Efforts described herein include (1) analysis of earthquake focal mechanisms, and (2) the classification, categorization, and interpretation of unusual seismic phases in terms of reflections and refractions from shallow-crustal anomalous zones. Section (3) summarizes the status of our research to date on the locations of magma bodies, with particular emphasis on a location corresponding to the map location of the south end of Hilton Creek fault. Five lines of independent evidence suggest that magma might be associated with this spot. Finally, new evidence on the large magma bodies within the Long Valley caldera, of interest to the DOE deep drilling project, is presented.

Peppin, W.A.

1986-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrothermal Systems as Indicators of Paleoclimate: an Example from the Great Basin, Western North America G.B. Arehart  

E-Print Network (OSTI)

by other chemical tests and can be eliminated from any data set that relates to meteoric water Tonopah F 19.0 -90 -112 Rain A 20.0 -141 -141 Rain A 20.7 -125 -125 Wonder F 22.0 -139 -139 Preble A 23.H., Presser, T.S. and Evans, W.C. 1983. Geochemistry of active geothermal systems in northern Basin and Range

Arehart, Greg B.

42

Optimizing Industry Water Use: Evaluation of the Use of Water Stewardship Tools by Great Lakes Basin Industries  

Science Conference Proceedings (OSTI)

This document reports on a research study funded by Electric Power Research Institute (EPRI), the Great Lakes Protection Fund (GLPF), the National Council for Air and Stream Improvement (NCASI), and the Council of Great Lakes Industries (CGLI). The objective of the research was to understand and compare, with the assistance of case study applications, water resource stewardship assessment tools that have been proposed by different organizations. The report concludes that tools used to assess global water...

2012-06-13T23:59:59.000Z

43

Dendroclimatic Reconstruction at km-scale Grid Points: A Case Study from the Great Basin of North America  

Science Conference Proceedings (OSTI)

Preparing for future hydroclimatic variability greatly benefits from long (i.e., multi-century) records at seasonal to annual time steps that have been gridded at km-scale spatial intervals over a geographic region. Kriging is commonly used for ...

Franco Biondi

44

"1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900 "3. Milton R Young","Coal","Minnkota Power Coop, Inc",697 "4. Leland Olds","Coal","Basin Electric Power Coop",670 "5. Garrison","Hydroelectric","USCE-Missouri River District",508 "6. Coyote","Coal","Otter Tail Power Co",427 "7. Stanton","Coal","Great River Energy",202 "8. Tatanka Wind Power LLC","Other Renewables","Acciona Wind Energy USA LLC",180 "9. Langdon Wind LLC","Other Renewables","FPL Energy Langdon Wind LLC",159

45

Erosion Potential of a Burn Site in the Mojave-Great Basin Transition Zone: Interim Summary of One Year of Measurements  

Science Conference Proceedings (OSTI)

A historic return interval of 100 years for large fires in deserts in the Southwest U.S. is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. This increase in fires has implications for management of Soil Sub-Project Corrective Action Units (CAUs) for which the Department of Energy, National Nuclear Security Administration Nevada Site office (NNSA/NSO) has responsibility. A series of studies has been initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn over to understand technical and perceived risk they might pose to site workers and public receptors in communities around the NTS, TTR, and NTTR; and to develop recommendations for stabilization and restoration after a fire. The first of these studies was undertaken at the Jacob fire, a lightning-caused fire approximately 12 kilometers north of Hiko, Nevada, that burned approximately 200 ha between August 6-8, 2008, and is representative of a transition zone on the NTS between the Mojave and Great Basin Deserts, where the largest number of Soil Sub-Project CAUs/CASs are located.

V. Etyemezian, D. Shafer, J. Miller, I. Kavouras, S. Campbell, D. DuBois, J. King, G. Nikolich, and S. Zitzer

2010-05-18T23:59:59.000Z

46

Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains  

SciTech Connect

Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains.

Dunagan, J.F. Jr.; Kadish, K.A.

1977-11-01T23:59:59.000Z

47

Journal of the Geological Society, London, Vol. 163, 2006, pp. 671682. Printed in Great Britain. Structure and evolution of hydrothermal vent complexes in the Karoo Basin,  

E-Print Network (OSTI)

, formed at c. 183 Ma, is characterized by the presence of voluminous basaltic intrusive complexes within the Karoo Basin, extrusive lava sequences and hydrothermal vent complexes. These last are pipe

Svensen, Henrik

48

Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site  

SciTech Connect

A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were quantified through a series of rainfall/runoff simulation tests in which controlled amounts of water were delivered to the soil surface in a specified amount of time. Runoff data were collected from understory and interspace soils on burned ridge and drainage areas. Runoff volume and suspended sediment in the runoff were sampled; the particle size distribution of the sediment was determined by laboratory analysis. Several land surface and soil characteristics associated with runoff were integrated by the calculation of site-specific curve numbers. Several vegetation surveys were conducted to assess post-burn recovery. Data from plots in both burned and unburned areas included species identification, counts, and location. Characterization of fire-affected area included measures at both the landscape scale and at specific sites. Although wind erosion measurements indicate that there are seasonal influences on almost all parameters measured, several trends were observed. PI-SWERL measurements indicated the potential for PM10 windblown dust emissions was higher on areas that were burned compared to areas that were not. Among the burned areas, understory soils in drainage areas were the most emissive, and interspace soils along burned ridges were least emissive. By 34 months after the burn (MAB), at the end of the study, emissions from all burned soil sites were virtually indistinguishable from unburned levels. Like the amount of emissions, the chemical signature of the fire (indicated by the EC-Soil ratio) was elevated immediately after the fire and approached pre-burn levels by 24 MAB. Thus, the potential for wind erosion at the Jacob Fire site, as measured by the amount and type of emissions, increased significantly after the fire and returned to unburned levels by 24 MAB. The effect of fire on the potential for water erosion at the Jacob Fire site was more ambiguous. Runoff and sediment from ridge interspace soils and unburned interspace soils were similar throughout the study period. Seldom, if ever, did runoff and sediment occur in burned drainage area soils. Fo

Miller, Julianne [DRI] DRI; Etyemezian, Vic [DRI] DRI; Cablk, Mary E. [DRI] DRI; Shillito, Rose [DRI] DRI; Shafer, David [DOE Grand Junction, Colorado] DOE Grand Junction, Colorado

2013-06-01T23:59:59.000Z

49

Western Gas Sands Project Quarterly Basin Activities Report  

SciTech Connect

This quarterly basin activities report is a summation of three months drilling and testing activities in the Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. Detailed information is given for each study area for the first quarter of 1979.

Atkinson, C H

1979-04-30T23:59:59.000Z

50

Division of Water, Part 675: Great Lakes Water Withdrawal Registration Regulations (New York)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations set forth requirements for the registration of water withdrawals and reporting of water losses from the Great Lakes Basin. The regulations apply to water withdrawals from...

51

Western Gas Sands Project. Quarterly basin activities report  

SciTech Connect

A summation is presented of the coring program site identification, and drilling and testing activity in the four primary study areas of the Western Gas Sands Project (WGSP). Pertinent information for January, February, and March, 1978 is included for each study area. The areas are the Northern Great Plains Province, the Greater Green River Basin, the Piceance Basin, and the Uinta Basin.

1978-04-01T23:59:59.000Z

52

Energy and water in the Great Lakes.  

Science Conference Proceedings (OSTI)

The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

Tidwell, Vincent Carroll

2011-11-01T23:59:59.000Z

53

KE Basin Sludge Flocculant Testing  

SciTech Connect

In the revised path forward and schedule for the K Basins Sludge Retrieval and Disposal Project, the sludge in K East (KE) Basin will be moved from the floor and pits and transferred to large, free-standing containers located in the pits (so as to isolate the sludge from the basin). When the sludge is pumped into the containers, it must settle fast enough and clarify sufficiently that the overflow water returned to the basin pool will not cloud the water or significantly increase the radiological dose rate to the operations staff as a result of increased suspended radioactive material. The approach being evaluated to enhance sludge settling and speed the rate of clarification is to add a flocculant to the sludge while it is being transferred to the containers. In February 2004, seven commercial flocculants were tested with a specific K Basin sludge simulant to identify those agents that demonstrated good performance over a broad range of slurry solids concentrations. From this testing, a cationic polymer flocculant, Nalco Optimer 7194 Plus (7194+), was shown to exhibit superior performance. Related prior testing with K Basin sludge and simulant in 1994/1996 had also identified this agent as promising. In March 2004, four series of jar tests were conducted with 7194+ and actual KE Basin sludge (prepared by combining selected archived KE sludge samples). The results from these jar tests show that 7194+ greatly improves settling of the sludge slurries and clarification of the supernatant.

Schmidt, Andrew J.; Hallen, Richard T.; Muzatko, Danielle S.; Gano, Sue

2004-06-23T23:59:59.000Z

54

Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesSouthern Great Plains govSitesSouthern Great Plains SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Southern Great Plains SGP Central Facility, Lamont, OK 36° 36' 18.0" N, 97° 29' 6.0" W Altitude: 320 meters The Southern Great Plains (SGP) site was the first field measurement site established by DOE's Atmospheric Radiation Measurement (ARM) Program. Scientists are using the information obtained from the SGP to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research.

55

Challenges in Forecasting the 2011 Runoff Season in the Colorado Basin  

Science Conference Proceedings (OSTI)

Historically large snowpack across the upper Colorado basin and the Great Basin in 2011 presented the potential for widespread and severe flooding. While widespread flooding did occur, its impacts were largely moderated through a combination of ...

Kevin Werner; Kristen Yeager

2013-08-01T23:59:59.000Z

56

Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great  

Open Energy Info (EERE)

Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Basin Details Activities (4) Areas (2) Regions (0) Abstract: A close spatial relationship exists between Quaternary borate deposits and moderate to high temperature (>=150oC) geothermal systems in the western part of the Great Basin. Similarly, a strong correlation exists between high concentrations of boron in groundwater and geothermal activity in the Great Basin. These relationships hae special significance for geothermal exploraion becauase ina number of cases, Quaternary surface borates occur without associated springs, and thus the borates can, and

57

Fowler, ed.: Models and Great Basin Prehistory: A Symposium  

E-Print Network (OSTI)

A Sym- posium. Don D. Fowler, ed. Reno: Desert Researchhis introductory paper, Don Fowler argues that the study ofjustification. The merit of Fowler's comments is undeniable,

Bettinger, Robert L

1978-01-01T23:59:59.000Z

58

Implications of Snare Bundles in the Great Basin and Southwest  

E-Print Network (OSTI)

like C townsendii mollis) in Manitoba, where he guessed thewere made on a "colony" in Manitoba which stretched for a

Janetski, Joel C

1979-01-01T23:59:59.000Z

59

Association between Winter Precipitation and Water Level Fluctuations in the Great Lakes and Atmospheric Circulation Patterns  

Science Conference Proceedings (OSTI)

Atmospheric precipitation in the Great Lakes basin, as a major mediating variable between atmospheric circulation and lake levels, is analyzed relative to both. The effect of cumulative winter precipitation on lake levels varies from lake to lake ...

Sergei N. Rodionov

1994-11-01T23:59:59.000Z

60

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

62

Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits  

E-Print Network (OSTI)

Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits of sedimentary basins hosting unconformity-type uranium deposits. In addition, these techniques have great potential as a guide for exploration of uranium and other types of deposits in basins of any age. Isotope

Hiatt, Eric E.

63

Shale-Derived Dissolved Organic Matter as a Substrate for Subsurface Methanogenic Communities in the Antrim Shale, Michigan Basin, USA.  

E-Print Network (OSTI)

??The microbial origin of methane produced from sedimentary basins is a subject of great interest, with implications for the global cycling of carbon as well (more)

Huang, Roger

2008-01-01T23:59:59.000Z

64

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

65

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network (OSTI)

Chapter PQ COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA By G.D. Stricker Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

66

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network (OSTI)

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

67

COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA  

E-Print Network (OSTI)

Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

68

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

69

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

70

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

71

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

72

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

73

Nocturnal Low-Level Jet in a Mountain Basin Complex. Part I: Evolution and Effects on Local Flows  

Science Conference Proceedings (OSTI)

A Doppler lidar deployed to the center of the Great Salt Lake (GSL) basin during the Vertical Transport and Mixing (VTMX) field campaign in October 2000 found a diurnal cycle of the along-basin winds with northerly up-basin flow during the day ...

Robert M. Banta; Lisa S. Darby; Jerome D. Fast; James O. Pinto; C. David Whiteman; William J. Shaw; Brad W. Orr

2004-10-01T23:59:59.000Z

74

Recent Great Lakes Ice Trends  

Science Conference Proceedings (OSTI)

Analysis of ice observations made by cooperative observers from shoreline stations reveals significant changes in the ice season on the North American Great Lakes over the past 35years. Although the dataset is highly inhomogeneous and year-to-...

Howard P. Hanson; Claire S. Hanson; Brenda H. Yoo

1992-05-01T23:59:59.000Z

75

Fish of the Great Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation FISH OF THE GREAT LAKES As you stand at the top of one of the tallest buildings in downtown...

76

Great Plains: status of the Great Plains coal gasification project  

SciTech Connect

Updated information is presented on the Great Plains coal gasification project in North Dakota following the default of a $1.54 billion federal loan by the project sponsors. This report includes updated information obtained through October 31, 1985, on the loan default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, Great Plains operations, and socioeconomic issues. The new information highlights changes in the gas pricing calculations; the Department's action to pay off the defaulted loan; legal action concerning gas purchase agreements; the project sponsors' proposed settlement; September revenue, expense, and production data; coal lease payments; capital improvement projects; plant by-products; and the final results of a North Dakota task force study of the potential socioeconomic impact if the plant closes.

Not Available

1985-11-01T23:59:59.000Z

77

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

78

Geodetic Survey At Northern Basin & Range Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Geodetic Survey At Northern Basin & Range Region Geodetic Survey At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Targeting of Potential Geothermal Resources in the Great Basin from Regional to Basin-Scale Relationships Between Geodetic Strain and Geological Structures, Geoffrey Blewitt. The objectives of this project are to assess the use of inter-seismic crustal strain rates derived from GPS-stations as an exploration tool for non-magmatic high-temperature geothermal systems, and to use this technique to target potential geothermal resources in the Great Basin. Two potential target areas were identified in year one (FY03) by regional-scale studies: (1) the area

79

Geodetic Survey At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Geodetic Survey At Nw Basin & Range Region (Laney, Geodetic Survey At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Targeting of Potential Geothermal Resources in the Great Basin from Regional to Basin-Scale Relationships Between Geodetic Strain and Geological Structures, Geoffrey Blewitt. The objectives of this project are to assess the use of inter-seismic crustal strain rates derived from GPS-stations as an exploration tool for non-magmatic high-temperature geothermal systems, and to use this technique to target potential geothermal resources in the Great Basin. Two potential target areas were identified in year one (FY03) by regional-scale studies: (1) the area

80

Why Sequence Great Salt Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Salt Lake? Great Salt Lake? On average, the Great Salt Lake is four times saltier than the ocean and also has heavy metals, high concentrations of sulfur and petroleum seeps. In spite of all this, the lake is the saltiest body of water to support life. The lake hosts brine shrimp, algae and a diverse array of microbes, not to mention the roughly 5 million birds that migrate there annually. The secret to these microbes' ability to survive under such harsh conditions might be revealed in their genes. Researchers expect the genetic data will provide insight into how the microorganisms tolerate pollutants such as sulfur and detoxify pollutants such as sulfur and heavy metals like mercury. The information could then be used to develop bioremediation techniques. Researchers also expect that sequencing microorganisms sampled

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Great Gas Hydrate Escape  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Gas Great Gas Hydrate Escape The Great Gas Hydrate Escape Computer simulations revealing how methane and hydrogen pack into gas hydrates could enlighten alternative fuel production and carbon dioxide storage January 25, 2012 | Tags: Carver, Chemistry, Energy Technologies, Hopper, Materials Science PNNL Contact: Mary Beckman , +1 509 375-3688, mary.beckman@pnl.gov NERSC Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov The methane trapped in frozen water burns easily, creating ice on fire. For some time, researchers have explored flammable ice for low-carbon or alternative fuel or as a place to store carbon dioxide. Now, a computer analysis of the ice and gas compound, known as a gas hydrate, reveals key details of its structure. The results show that hydrates can hold hydrogen

82

The Oquirrh basin revisited  

SciTech Connect

The upper Paleozoic succession in the Oquirrh basin in unusually thick, up to 9300 m, and consists mainly of a Pennsylvanian-middle Permian miogeocline of northwestern Utah. Previous workers have suggested a tectonic origin for the Oquirrh basin that is incompatible with the basin location in both time and space. There is no evidence for Pennsylvanian and Lower Permian tectonism in the middle of the miogeocline. Thermal evidence from the Mississippian Mission Canyon shale does no support the implied deep burial of the crustal sag models of basin formation. Stratigraphic and facies evidence indicates a growth fault origin for the basin. Regional isopach maps and facies maps are powerful tools in interpreting depositional environments and in reconstructing fold-and-thrust belts. However, the location of measured sections relative to the location of the growth fault basin. The Charleston-Nebo thrust may have essentially reversed the movement on a growth fault. Thick Oquirrh basin sedimentary rocks may not be required to balance structural sections across this thrust fault. A thin-skinned, extensional growth fault origin for the Oquirrh basin implies that the Cordilleran miogeocline did not participate in the Pennsylvanian north-vergent uplifts of the Ancestral Rocky Mountains.

Erskine, M.C.

1997-04-01T23:59:59.000Z

83

A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN,  

E-Print Network (OSTI)

Chapter SB A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN, WYOMING assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U...........................................................................................................................SB-1 Coal Production History

84

Great Plains Coal Gasification Project:  

Science Conference Proceedings (OSTI)

This progress report on the Great Plains Coal Gasification Project discusses Lignite coal, natural gas, and by-products production as well as gas quality. A tabulation of raw material, product and energy consumption is provided for plant operations. Capital improvement projects and plant maintenance activities are detailed and summaries are provided for environmental, safety, medical, quality assurance, and qualtiy control activities.

Not Available

1988-01-29T23:59:59.000Z

85

K-Basins.pub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES COMPLETION OF K BASINS MILESTONES APRIL 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Completion of K Basins Milestones" BACKGROUND The Department of Energy (Department) has been storing 2,100 metric tons of spent nuclear fuel at the Hanford Site in southeastern Washington. The fuel, used in support of Hanford's former mission, is currently stored in canisters that are kept in two enclosed water-filled pools known as the K Basins. The K Basins represent a significant risk to the environment due to their deteriorating condition. In fact, the K East Basin, which is near the Columbia River, has

86

K Basin safety analysis  

DOE Green Energy (OSTI)

The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

Porten, D.R.; Crowe, R.D.

1994-12-16T23:59:59.000Z

87

Coherence between the Great Salt Lake Level and the Pacific Quasi-Decadal Oscillation  

Science Conference Proceedings (OSTI)

The lake level elevation of the Great Salt Lake (GSL), a large closed basin lake in the arid western United States, is characterized by a pronounced quasi-decadal oscillation (QDO). The variation of the GSL elevation is very coherent with the QDO ...

Shih-Yu Wang; Robert R. Gillies; Jiming Jin; Lawrence E. Hipps

2010-04-01T23:59:59.000Z

88

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

89

Great Lakes Bioenergy Research Center Technologies Available ...  

Great Lakes Bioenergy Research Center Technologies Available for Licensing Established by the Department of Energy (DOE) in 2007, the Great Lakes Bioenergy Research ...

90

Geographic Information System At Northern Basin & Range Region (Coolbaugh,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa-

91

Geographic Information System At Northern Basin & Range Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

92

K Basin Hazard Analysis  

Science Conference Proceedings (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

93

Why Sequencea Near-Shore Anoxic Basin?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Near-Shore Anoxic Basin? a Near-Shore Anoxic Basin? Oxygen minimum zones (OMZs; areas of low dissolved oxygen concentrations) play a major role in biogeochemical cycling within the world's oceans. They are major sinks for nitrogen and sources for the gases carbon dioxide and nitrous oxide. Microbially mediated biological activity associated with these systems affects the productivity of the deep blue sea and the balance of greenhouse gases in the atmosphere. Thus, studies aimed at evaluating the phylogenetic variation and metabolic capacity of microbial communities within these systems have great promise to enhance our understanding of the patterns and processes that drive global biogeochemical phenomena in both aquatic and atmospheric compartments of the biosphere. To this end, JGI and

94

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al.,  

Open Energy Info (EERE)

Biasi, Et Al., Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Nw_Basin_%26_Range_Region_(Biasi,_Et_Al.,_2009)&oldid=401461" Categories: Exploration Activities DOE Funded

95

Contemporary Strain Rates in the Northern Basin and Range Province from GPS  

Open Energy Info (EERE)

Contemporary Strain Rates in the Northern Basin and Range Province from GPS Contemporary Strain Rates in the Northern Basin and Range Province from GPS Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Contemporary Strain Rates in the Northern Basin and Range Province from GPS Data Abstract [1] We investigate the distribution of active deformation in the northern Basin and Range province using data from continuous GPS (CGPS) networks, supplemented by additional campaign data from the Death Valley, northern Basin and Range, and Sierra Nevada-Great Valley regions. To understand the contemporary strain rate field in the context of the greater Pacific (P)-North America (NA) plate boundary zone, we use GPS velocities to estimate the average relative motions of the Colorado Plateau (CP), the Sierra Nevada-Great Valley (SNGV) microplate, and a narrow north-south

96

DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL  

E-Print Network (OSTI)

Chapter PD DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL RESOURCES Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

97

A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter SW A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING By R.M. Flores of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

98

ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL  

E-Print Network (OSTI)

Chapter PA ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

99

SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES  

E-Print Network (OSTI)

Chapter PH SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES By M assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

100

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network (OSTI)

Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO  

E-Print Network (OSTI)

Chapter SR A SUMMARY OF TERTIARY COAL RESOURCES OF THE RATON BASIN, COLORADO AND NEW MEXICO By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

102

FORT UNION COAL IN THE WILLISTON BASIN, NORTH DAKOTA: A SYNTHESIS  

E-Print Network (OSTI)

Chapter WS FORT UNION COAL IN THE WILLISTON BASIN, NORTH DAKOTA: A SYNTHESIS By R.M. Flores and C coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

103

FERRIS AND HANNA COAL IN THE HANNA AND CARBON BASINS, WYOMING: A SYNTHESIS  

E-Print Network (OSTI)

Chapter HS FERRIS AND HANNA COAL IN THE HANNA AND CARBON BASINS, WYOMING: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

104

Great Britain | OpenEI  

Open Energy Info (EERE)

Britain Britain Dataset Summary Description The windspeed database provides estimates of mean annual wind speed throughout the UK, averaged over a 1-kilometer square area, at each of the following three heights above ground level (agl): 10 meters, 25 meters, and 45 meters. The windspeed database is available through the UK Department of Energy and Climate Change (DECC) website, and is provided for archive purposes only. The database is comprised of historic information, including results derived from mathematical models, so it should not be considered to be measured data, or up to date or accurate. Source UK Department of Energy and Climate Change (DECC) Date Released December 31st, 2000 (13 years ago) Date Updated Unknown Keywords archive Great Britain Northern Ireland

105

Field Mapping At Nw Basin & Range Region (Blewitt, Et Al., 2003) | Open  

Open Energy Info (EERE)

Nw Basin & Range Region (Blewitt, Et Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Nw_Basin_%26_Range_Region_(Blewitt,_Et_Al.,_2003)&oldid=510752" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages

106

Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et  

Open Energy Info (EERE)

Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Biasi,_Et_Al.,_2009)&oldid=40142

107

Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et  

Open Energy Info (EERE)

Nw Basin & Range Region (Coolbaugh, Et Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Nw_Basin_%26_Range_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401452

108

THE NATIONAL BASIN DELINEATION PROJECT  

Science Conference Proceedings (OSTI)

The National Basin Delineation Project (NBDP) was undertaken by the National Severe Storms Laboratory to define flash-flood-scale basin boundaries for the country in support of the National Weather Service (NWS) Flash Flood Monitoring and ...

Ami T. Arthur; Gina M. Cox; Nathan R. Kuhnert; David L. Slayter; Kenneth W. Howard

2005-10-01T23:59:59.000Z

109

The Great Louisiana Hurricane of August 1812  

Science Conference Proceedings (OSTI)

Major hurricanes are prominent meteorological hazards of the U.S. Atlantic and Gulf coasts. However, the official modern record of Atlantic basin tropical cyclones starts at 1851, and it does not provide a comprehensive measure of the frequency ...

Cary J. Mock; Michael Chenoweth; Isabel Altamirano; Matthew D. Rodgers; Ricardo Garca-Herrera

2010-12-01T23:59:59.000Z

110

Obama Administration Hosts Great Lakes Offshore Wind Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes...

111

Data Basin | Open Energy Information  

Open Energy Info (EERE)

Data Basin Data Basin Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Data Basin Agency/Company /Organization: Conservation Biology Institute Topics: GHG inventory Resource Type: Dataset, Maps Website: databasin.org/ Data Basin Screenshot References: Data Basin [1] Overview "Data Basin is an innovative, online system that connects users with spatial datasets, tools, and expertise. Individuals and organization can explore and download a vast library of datasets, upload their own data, create and publish projects, form working groups, and produce customized maps that can be easily shared. The building blocks of Data Basin are: Datasets: A dataset is a spatially explicit file, currently Arcshape and ArcGrid files. These can be biological, physical, socioeconomic, (and

112

Maximum Freezing Degree-Days as a Winter Severity Index for the Great Lakes, 18971977  

Science Conference Proceedings (OSTI)

General regional and temporal trends in maximum freezing degree-days (FDD's) are identified for the shore zone of the Great Lakes Basin for the 80 winter periods 18971977. The cumulative frequency distribution of FDD's at cub of 25 locations is ...

Raymond A. Assel

1980-09-01T23:59:59.000Z

113

Western Gas Sands Project. Quarterly basin activities report  

SciTech Connect

A summation of information is presented on geology and drilling activity in the four primary study areas of the Western Gas Sands Project. The areas of interest are the Greater Green River Basin, the Piceance Basin, the Uinta Basin, and the Northern Great Plains Province. Drilling activity is discussed for the months of October, November, and December, 1977, with the major emphasis on wells located in low permeability sandstone areas, having significant gas production and utilizing hydraulic fracturing treatments. The drilling information was obtained primarily from ''The Rocky Mountain Region Report'' published by Petroleum Information Corporation on a daily basis. Another source of information was the ''Montana Oil and Gas Journal'' which is released weekly.

1978-01-01T23:59:59.000Z

114

EA-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric...

115

EA-64-A Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A Basin Electric Power Cooperative EA-64-A Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64-A Basin...

116

Great Lakes | OpenEI  

Open Energy Info (EERE)

Lakes Lakes Dataset Summary Description This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. Source National Renewable Energy Laboratory (NREL) Date Released August 19th, 2010 (4 years ago) Date Updated August 23rd, 2010 (4 years ago) Keywords GIS Great Lakes NREL offshore wind shapefile U.S. wind windspeed Data application/zip icon Download Shapefile (zip, 11.8 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations. DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

117

Geodetic Survey At Northern Basin & Range Region (Blewitt Et Al, 2005) |  

Open Energy Info (EERE)

Geodetic Survey At Northern Basin & Range Region Geodetic Survey At Northern Basin & Range Region (Blewitt Et Al, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewitt, William C. Hammond, Corne Kreemer (2005) Relating Geothermal Resources To Great Basin Tectonics Using Gps Retrieved from "http://en.openei.org/w/index.php?title=Geodetic_Survey_At_Northern_Basin_%26_Range_Region_(Blewitt_Et_Al,_2005)&oldid=401408" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

118

Refraction Survey At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Nw Basin & Range Region (Laney, 2005) Nw Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Refraction Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and

119

Geodetic Survey At Northern Basin & Range Region (Blewitt, Et Al., 2003) |  

Open Energy Info (EERE)

Blewitt, Et Al., 2003) Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Geodetic_Survey_At_Northern_Basin_%26_Range_Region_(Blewitt,_Et_Al.,_2003)&oldid=401407"

120

Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geodetic Survey At Nw Basin & Range Region (Blewitt, Et Al., 2003) | Open  

Open Energy Info (EERE)

Blewitt, Et Al., 2003) Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Geodetic_Survey_At_Nw_Basin_%26_Range_Region_(Blewitt,_Et_Al.,_2003)&oldid=401448

122

Field Mapping At Northern Basin & Range Region (Blewitt, Et Al., 2003) |  

Open Energy Info (EERE)

Blewitt, Et Al., 2003) Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Northern_Basin_%26_Range_Region_(Blewitt,_Et_Al.,_2003)&oldid=510749"

123

2009 Great Places Awards -- Call for Submissions  

E-Print Network (OSTI)

2009 Great Places Awards Places, the Environmental Designannounce the twelfth annual awards program for Place Design,ipation of Metropolis, the awards program has a new name in

2008-01-01T23:59:59.000Z

124

Mutations of the GREAT gene cause cryptorchidism  

E-Print Network (OSTI)

DDBJ/EMBL/GenBank accession no. AF453828 In humans, failure of testicular descent (cryptorchidism) is one of the most frequent congenital malformations, affecting 13 % of newborn boys. The clinical consequences of this abnormality are infertility in adulthood and a significantly increased risk of testicular malignancy. Recently, we described a mouse transgene insertional mutation, crsp, causing high intraabdominal cryptorchidism in homozygous males. A candidate gene Great (G-protein-coupled receptor affecting testis descent), was identified within the transgene integration site. Great encodes a seven-transmembrane receptor with a close similarity to the glycoprotein hormone receptors. The Great gene is highly expressed in the gubernaculum, the ligament that controls testicular movement during development, and therefore may be responsible for mediating hormonal signals that affect testicular descent. Here we show that genetic targeting of the Great gene in mice causes infertile bilateral intraabdominal cryptorchidism. The mutant gubernaculae fail to differentiate, indicating that the Great gene controls their development. Mutation screening of the human GREAT gene was performed using DHPLC analysis of the genomic DNA from 60 cryptorchid patients. Nucleotide variations in GREAT cDNA were found in both the patient and the control populations. A unique missense mutation (T222P) in the ectodomain of the GREAT receptor was identified in one of the patients. This mutant receptor fails to respond to ligand stimulation, implicating the GREAT gene in the etiology in some cases of cryptorchidism in humans.

Ivan P. Gorlov; Aparna Kamat; Natalia V. Bogatcheva; Eric Jones; Dolores J. Lamb; Anne Truong; Colin E. Bishop; Ken Mcelreavey; Er I. Agoulnik

2002-01-01T23:59:59.000Z

125

great_lakes_90mwindspeed_off  

NLE Websites -- All DOE Office Websites (Extended Search)

GISDataTechnologySpecificUnitedStatesWindHighResolutionGreatLakes90mWindspeedOffshoreWindHighResolution.zip> Description: Abstract: Annual average offshore wind...

126

Hydrogeochemistry of the Antrim Shale (Devonian) in the Michigan Basin  

SciTech Connect

The Antrim shale has been the focus of active exploration and production in the Michigan Basin since 1987. The producing trend is presently located along the northern rim of the basin, but new ventures are expanding into the southern part of the basin and a predictive model for gas generation and production is greatly needed. The authors have undertaken a geochemical investigation of the waters co-produced with gases in the Antrim shale. There is unusual regional variability in the water chemistry. For example, salinity ranges from near potable water to nearly 10 times the salinity of ocean water within a distance of 80 km. Understanding the origin of solutes, waters and natural gas being produced from the Antrim Shale will aid in developing a model for natural gas generation and migration within the basin. The chemical and isotopic compositions of Antrim waters suggest that there are two sources of water and salinity within the reservoir: (1) saline, high-bromide basinal brine moving updip into the producing areas, and (2) ancient, dilute glacial melt water. Either of these waters can gain additional NaCl from dissolving Br-poor halite located within the updip pinch-out of the Detroit River Salt. When plotted geographically, variations in these components exhibit distinct regional patterns and may ultimately highlight major water and gas migration avenues. In addition to variable water salinity, the authors' preliminary results suggest that complexities in natural gas chemistry are reflected in the composition of coexisting waters.

Martini, A.M.; Walter, L.M.; Richards, J.A.; Budai, J.M. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Geological Sciences)

1994-04-01T23:59:59.000Z

127

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

Nonpoint Source Pollution from Land Use Workshop. Novemberasked to investigate pollution from land use activities. Newland and water interactions and point and non-point sources of pollution

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

128

Consequences of wildfire on ecosystem CO2 and water vapour fluxes in the Great Basin  

E-Print Network (OSTI)

because biomass and plant density of invasive annual grass species may respond more strongly to elevated stocks from sagebrush eco- systems during incineration (up to 980 g biomass m?2 during prescribed fires, 1991), little baseline data on NEE and ET are available (e.g. Angell & Svejcar, 1999; Angell et al

DeLucia, Evan H.

129

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

as well as in water conservation might help to slow anyrecent years because water conservation efforts is expecteddemand management and water conservation and the use of

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

130

Invaders from the South? Archaeological Discontinuities in the Northwestern Great Basin  

E-Print Network (OSTI)

Number of Specimens Source Hanging Rock Shelter Last SupperSupper Hanging Rock Last Supper Source Cave Shelter ShelterSOURCE DETERMINATIONS FOR PROJECTILE POINTS FROM HANGING ROCK

Layton, Thomas N

1985-01-01T23:59:59.000Z

131

A Map Of Geothermal Potential For The Great Basin, Usa- Recognition...  

Open Energy Info (EERE)

for separate assessment of the potential for magmatically heated and extensional-type geothermal systems. Added to the map are temperature gradient wells from the Southern...

132

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

133

Abyssal Mixing in the Brazil Basin  

Science Conference Proceedings (OSTI)

One of the major objectives of the Deep Basin Experiment, a component of the World Ocean Circulation Experiment, was to quantify the intensity and spatial distribution of deep vertical mixing within the Brazil Basin. In this study, basin-averaged ...

Michele Y. Morris; Melinda M. Hall; Louis C. St. Laurent; Nelson G. Hogg

2001-11-01T23:59:59.000Z

134

An Investigation of the Thermal and Energy Balance Regimes of Great Slave and Great Bear Lakes  

Science Conference Proceedings (OSTI)

Great Slave Lake and Great Bear Lake have large surface areas, water volumes, and high latitudinal positions; are cold and deep; and are subject to short daylight periods in winter and long ones in summer. They are dissimilar hydrologically. ...

Wayne R. Rouse; Peter D. Blanken; Normand Bussires; Anne E. Walker; Claire J. Oswald; William M. Schertzer; Christopher Spence

2008-12-01T23:59:59.000Z

135

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

136

Feedback mechanisms between water availability and water use in a semi-arid river basin: A spatially explicit multi-agent simulation approach  

Science Conference Proceedings (OSTI)

Understanding the processes responsible for the distribution of water availability over space and time is of great importance to spatial planning in a semi-arid river basin. In this study the usefulness of a multi-agent simulation (MAS) approach for ... Keywords: Brazil, Irrigation, Multi-agent simulation, River basin, Semi-arid, Water availability

Pieter R. van Oel; Maarten S. Krol; Arjen Y. Hoekstra; Renzo R. Taddei

2010-04-01T23:59:59.000Z

137

USACE Campaign Plan Making USACE GREAT  

E-Print Network (OSTI)

.S. Army Corps of Engineers will, through execution of this Campaign Plan, become a GREAT organization briefings and outreach · Key Task: In-process field personnel at SPA HQ ­ SPA Action Item 1a2b: Recruit

US Army Corps of Engineers

138

About Upper Great Plains Regional Office  

NLE Websites -- All DOE Office Websites (Extended Search)

The Upper Great Plains Region carries out Western's mission in Montana, North Dakota, South Dakota, Nebraska, Iowa, and Minnesota. We sell more than 9 billion kilowatt-hours of...

139

RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN  

SciTech Connect

Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

Robert Caldwell

1998-04-01T23:59:59.000Z

140

K-Basins design guidelines  

Science Conference Proceedings (OSTI)

The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines.

Roe, N.R.; Mills, W.C.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Great Plains Coal Gasification Plant public design report. Volume I  

SciTech Connect

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume I contains: (1) introduction; (2) overview of project (plant and mine, plant facilities, Basin Electric Antelope Valley Station); and (3) plant process data (coal, oxygen and steam, gasification and gas processing). 53 refs., 80 figs., 36 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

142

Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes  

Science Conference Proceedings (OSTI)

In this paper the spectrum of barotropic basin modes of the Argentine Basin is shown to be connected to the classical Rossby basin modes of a flat-bottom (constant depth), rectangular basin. First, the spectrum of basin modes is calculated for ...

Wilbert Weijer; Frdric Vivier; Sarah T. Gille; Henk A. Dijkstra

2007-12-01T23:59:59.000Z

143

Integrating Green Hydropower Certification with Strategy Environment Assessment: Towards Sustainable River Basin Development in Yunnan, China  

Science Conference Proceedings (OSTI)

China currently put the development of its western region as one of the most important goals. This greatly stimulated the initiative of hydropower development in its ecological sensitive Yunnan Province. Yet the use of a single tool, like strategy environment ... Keywords: strategic environmental assessment (SEA), green hydropower certification, sustainable river basin development, Yunnan Province

Peng Shengjing; Sun Zhenhua; Ou Xiaokun

2012-07-01T23:59:59.000Z

144

Inventory Mistakes and the Great Moderation  

E-Print Network (OSTI)

Why did the volatility of U.S. real GDP decline by more than the volatility of final sales with the Great Moderation in the mid-1980s? One possible explanation is that firms shifted their inventory behaviour towards a greater emphasis on production smoothing. In this paper, we investigate the role of inventories in the Great Moderation by estimating an unobserved components model that identifies inventory and sales shocks and their propagation. We find only mixed evidence of increased production smoothing. Instead, it was a reduction in inventory mistakes that accounts for the excess volatility reduction in output relative to sales. The inventory mistakes are informational errors related to production that must be set in advance and their reduction also helps to explain the changed forecasting role of inventories since the mid-1980s. Our findings provide an optimistic prognosis for the continuation of the Great Moderation.

James Morley; Aarti Singh

2009-01-01T23:59:59.000Z

145

Great River Energy | Open Energy Information  

Open Energy Info (EERE)

Great River Energy Great River Energy Place Minnesota Utility Id 7570 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Great_River_Energy&oldid=410764"

146

GreatPoint Energy | Open Energy Information  

Open Energy Info (EERE)

GreatPoint Energy GreatPoint Energy Jump to: navigation, search Name GreatPoint Energy Address 222 Third Street Place Cambridge, Massachusetts Zip 02142 Sector Biomass Product Converts coal, petroleum coke and biomass into natural gas Website http://www.greatpointenergy.co Coordinates 42.3672873°, -71.0814466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3672873,"lon":-71.0814466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Rivanna River Basin Commission (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

148

Colorado River Basin Hydroclimatic Variability  

Science Conference Proceedings (OSTI)

An analysis of annual hydroclimatic variability in the Upper Colorado River basin (UCRB) for the period of 19062006 was performed to understand the dominant modes of multidecadal variability. First, wavelet-based spectral analysis was employed ...

Kenneth Nowak; Martin Hoerling; Balaji Rajagopalan; Edith Zagona

2012-06-01T23:59:59.000Z

149

Geographic Information System At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Geographic Information System At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

150

Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Geothermal Literature Review At Nw Basin & Range Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

151

GRR/Section 19-CO-h - Denver Basin and Designated Basin Permitting Process  

Open Energy Info (EERE)

9-CO-h - Denver Basin and Designated Basin Permitting Process 9-CO-h - Denver Basin and Designated Basin Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-h - Denver Basin and Designated Basin Permitting Process 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf Click to View Fullscreen Contact Agencies Colorado Ground Water Commission Colorado Division of Water Resources Regulations & Policies CRS 37-90-107 Application for Use of Ground Water 2 CCR 410-1 Rules and Regulations for the Management and Control of Designated Ground Water Triggers None specified Click "Edit With Form" above to add content 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf

152

A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparative Study of the A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin DOE/NETL-2011/1478 Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch. Photograph by Tom Mroz, USDOE, NETL, February 2010. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

153

PP-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Basin Electric Power Cooperative PP-64 Basin Electric Power Cooperative Presidential Permit Authorizing Basin Electric Power Cooperative to construct, operate, and maintain...

154

Great Lakes Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Great Lakes Biofuels LLC Great Lakes Biofuels LLC Place Madison, Wisconsin Zip 53704 Sector Services Product Biodiesel research, consulting, management distribution and services company. Coordinates 43.07295°, -89.386694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07295,"lon":-89.386694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Great Lakes fish and the greenhouse effect  

SciTech Connect

This short article discusses data presented at the Second North American Conference on Preparing for Climate Change, held in Washington, D.C. Magnuson and Regier predicted that Great Lakes fish productivity may increase as a result of the increased water temperatures caused by the greenhouse effect. However, they also predicted that other indirect alterations could do more harm than good; for example, the effects of warming on lake oxygen levels, or wind, which affects the mixing of warm, cool, and cold water.

Mlot, C.

1989-03-01T23:59:59.000Z

156

Great Plains makes 100 billion cubic feet  

SciTech Connect

The Great Plains coal gasification plant on January 18, 1987 produced its 100 billionth cubic foot of gas since start-up July 28, 1984. Owned by the Department of Energy and operated by ANG Coal Gasification Company, the plant uses the Lurgi process to produce about 50 billion cubic feet per year of gas from five million tons per year of lignite. The plant has been performing at well above design capacity.

Not Available

1987-03-01T23:59:59.000Z

157

Great Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Great Plains Wind Farm Jump to: navigation, search Name Great Plains Wind Farm Facility Great Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Noble Environmental Developer Noble Environmental Location Hansford County TX Coordinates 36.285809°, -101.358662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.285809,"lon":-101.358662,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Great Falls lineament, Idaho and Montana  

Science Conference Proceedings (OSTI)

The name Great Falls lineament is given to a northeast-trending zone of diverse geologic features that can be traced northeastward from the Idaho batholith in the cordilleran miogeocline of the United States, across thrust belt structures and basement rocks of west-central and southwestern Montana, through the cratonic rocks of central Montana, and into southwesternmost Saskatchewan, Canada. The zone is well represented in east-central Idaho and west-central Montana where geologic mapping has outlined northeast-trending, high-angle faults and shear zones that: (1) extend more than 150 km (93 mi) from near Salmon, Idaho, northeastward toward Anaconda, Montana; (2) define a nearly continuous zone of faulting that shows recurrent movement from middle Proterozoic to Holocene time; (3) controlled the intrusion and orientation of some Late Cretaceous to early Tertiary batholithic rocks and early Tertiary dike swarms; and (4) controlled the uplift and orientation of the Anaconda-Pintlar Range. The boundary is also characterized by: high-angle faults, shear zones, and topographic lineaments; pronounced linear gravity and magnetic anomalies; igneous intrusions; and fault controlled depositional patterns and mineralization. That the Great Falls lineament is controlled by a similar Precambrian boundary between the Archean Wyoming province of southwestern Montana and early Proterozoic terrane to the north is speculative; however, the geologic features found along the Great Falls lineament share many common characteristics with features present along the Archean-Proterozoic boundary in Canada.

O'Neil, J.M.; Lopez, D.A.

1983-08-01T23:59:59.000Z

159

Division of Water, Part 675: Great Lakes Water Withdrawal Registration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

75: Great Lakes Water Withdrawal Registration Regulations (New York) Division of Water, Part 675: Great Lakes Water Withdrawal Registration Regulations (New York) Eligibility...

160

Obama Administration and Great Lakes States Announce Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of...

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermally Driven Circulations in Small Oceanic Basins  

Science Conference Proceedings (OSTI)

A linear, steady model of the circulation of a small (f plane) oceanic basin driven by heating or cooling at the surface is considered in order to examine the partition of upwelling (heating) or downwelling (cooling) between the basin's interior ...

Joseph Pedlosky

2003-11-01T23:59:59.000Z

162

Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois  

Gasoline and Diesel Fuel Update (EIA)

San Juan Basin C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin Black Warrior Basin North Central Coal Region Arkoma Basin Denver Basin...

163

Energy directory of researchers in Great Plains/Great Basin area (Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, Wyoming)  

SciTech Connect

The directory lists in Part 1 names of researchers involved in energy R and D in Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, and Wyoming by category. Within each category each researcher is given with his phone number when known, his affiliation, the title of his research, and publication information. These categories are listed and defined in ERDA Energy Information Data Base: Subject Categories, TID-4584-R2 (May 1977). In Part 2 the principal investigators are arranged by the state (two-letter state abbreviation) in which the research is performed. Researchers are alphabetically listed by the first author. If research on a project is performed in more than one state, the abbreviations for all the states involved will appear with the names of the project's principal investigators listed below. Indexes included are an investigator index, a research institute index, and a location index.

Caton, G.M.; Michelson, D.C.; Danford, G.S.; Frogge, L.M. (comps.)

1977-10-01T23:59:59.000Z

164

Energy directory of organizations and researchers in Great Plains/Great Basin area (Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, Wyoming)  

SciTech Connect

The directory lists research institutes and researchers involved in energy R and D in Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, and Wyoming. The first section of this publication, Organizations and Researchers, lists the names of colleges and organizations which are involved in energy R and D in these ten western states. The name of the organization is arranged in alphabetical order and printed below each organization are the name(s) of the researchers in the organization, their phone numbers if known, and the titles of their research projects. Section 2, Research Organizations by State, lists the research organizations performing energy R and D within each of the ten states mentioned. The alphabetical arrangement is first by state and then by research organization.

Caton, G.M.; Michelson, D.C.; Danford, G.S.; Frogge, L.M. (comps.)

1977-10-01T23:59:59.000Z

165

Great Plains Gasification Project status report  

SciTech Connect

The Great Plains Gasification Project is the first commercial synthetic fuels project based on coal conversion in the US. The goal is to convert North Dakota lignite into pipeline quality synthetic natural gas (SNG). The project consists of an open pit coal mine, a gasification plant, and an SNG pipeline in Mercer County, North Dakota. The project took 12 years from its conception to the production in 1984 of SNG for users. The author describes the plant's basic processes, the start-up activities and schedule, and some of the more interesting start-up problems.

Pollock, D.C.

1985-08-01T23:59:59.000Z

166

DOE receives title to Great Plains plant  

Science Conference Proceedings (OSTI)

On June 30, 1986 the Great Plains Coal Gasification Project was sold at a foreclosure sale at the Mercer County courthouse in North Dakota. The US Department of Energy was the only bidder at the sale. DOE's bid for the plant was $1 billion DOE-secured loan that the five sponsor companies defaulted on when they withdrew from the project in August 1985. DOE did not receive title to the plant until a lawsuit filed by American Natural Resources (ANR) was settled on July 14, 1986. DOE has vowed to keep the plant running as long as it does not cost the taxpayers any money. Eventually DOE wishes to dispose of the plant. Therefore, in February 1986 DOE requested that interested organizations submit expressions of interest in the Great Plains plant. This paper, after discussing the lawsuit, summarizes the nine responses received by DOE. Some companies were willing for it to remain a coal gasification facility; other submitted plans for modifications to produce methanol.

Not Available

1986-09-01T23:59:59.000Z

167

ASPEN physical property evaluation for Great Plains simulation. Great Plains ASPEN model development. [Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

This report documents the steps taken to evaluate the pure component properties in the ASPEN data bank for those compounds required to simulate the Great Plains Coal Gasification Plant where the compounds are also available in the DIPPR (Design Institute for Physical Property Data) data bank. DIPPR is a cooperative effort of industry, institutes and federal agencies interested in the compilation, measurement and evaluation of physical property data for industrially important compounds. It has been found that the ASPEN data bank is for the most part reliable, its main problem being lack of documentation. In the few instances where values were found to be either missing or to be unacceptable, recommended constants or equation parameters are presented in this report along with associated literature citations. In the cases where temperature dependent data were regressed to obtain new equation parameters, the detailed methods employed are also presented.

Millman, M.C.

1983-08-04T23:59:59.000Z

168

Great Lakes Energy Coop | Open Energy Information  

Open Energy Info (EERE)

Energy Coop Energy Coop Jump to: navigation, search Name Great Lakes Energy Coop Place Michigan Utility Id 38084 Utility Location Yes Ownership C NERC Location MRO NERC RFC Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Alternative - Residential Residential Commercial and Industrial Loads Automated Power Monitoring Commercial Commercial and Industrial Loads Automated Power Monitoring - 200kW Commercial Commercial and industrial Loads Automated Power Monitoring Industrial Controlled Heating Commercial Controlled Water Heater - Opt 1 Commercial

169

Great Valley Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Valley Ethanol LLC Valley Ethanol LLC Jump to: navigation, search Name Great Valley Ethanol LLC Place Bakersfield, California Product Developing a 63m gallon ethanol plant in Hanford, CA Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

HUBZone, Great Opportunity for Small Businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

For Immediate Release HUBZone, Great Opportunity for Small Businesses CARLSBAD, N.M., March 25, 2003 - To help the region's small businesses attract federal and state work, Washington TRU Solutions LLC (WTS) will offer a Small Business Fair on May 2 in Carlsbad to introduce the U.S. Small Business Administration's (SBA) HUBZone concept and other socioeconomic programs. WTS is the prime contractor for the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). A HUBZone (Historically Underutilized Business Zone) is a geographic area designated by the SBA as economically depressed based on a ratio of population versus business volume in the area. What that means for regional businesses that qualify is an enhanced opportunity to participate in state and federal government contracts they might not ordinarily be

171

Great Plains Institute | Open Energy Information  

Open Energy Info (EERE)

Plains Institute Plains Institute Jump to: navigation, search Name Great Plains Institute Place Minneapolis, Minnesota Zip 55407 Product Works with multiple stakeholders to produce and implement policies, technologies and practices in the areas of energy security and bio-based materials. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Great Plains gets a running start  

Science Conference Proceedings (OSTI)

The United States first commercial synthetic fuel plant has been geared up to deliver the $2 billion project by late 1984 in Beulah, North Dakota. The Great Plains coal gasification plant is rising quickly under a compressed 44 month schedule. Delivery of synthetic natural gas from the 125 million-cu-ft-a-day plant by 1984 is possible. Getting the $1.4 billion gasification plant, 22,000-ton-per-day coal mine and 365-mile, 20-in. dia pipeline connection completed on schedule and within budget is critical. The price of the product gas, which will be mixed with relatively cheap natural gas in the consortium's pipelines, has been set by the Federal Energy Regulatory Commission at $6.75 per thousand cubic feet. This project has been planned since 1972. (DP)

Not Available

1981-11-19T23:59:59.000Z

173

Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN MAJOR U.S. SEDIMENTARY BASINS Colleen Porro and Chad Augustine April 24, 2012 National Renewable Energy Lab, Golden, CO NREL/PR-6A20-55017 NATIONAL RENEWABLE ENERGY LABORATORY Sedimentary Basin Geothermal WHAT IS SEDIMENTARY BASIN GEOTHERMAL? 2 Geothermal Energy from Sedimentary Rock - Using 'hot" geothermal fluids (>100 o C) produced from sedimentary basins to generate electricity - Advantages: * Reservoirs are porous, permeable, and well characterized * Known/proven temperature gradients from oil and gas well records * Drilling and reservoir fracturing techniques proven in sedimentary environment - Disadvantages: * Great depths required to encounter high temperatures * Emerging industry Photo by Warren Gretz, NREL/PIX 00450

174

Great Plains coal gasification project - historical overview and progress  

SciTech Connect

The first commercial scale coal gasification plant in the US is nearing completion in North Dakota. The plant shares the site and other facilities with the Basin Electric Power Station. The gasification plant will draw its power directly from the Basin substation and Basin will receive coal fines from the gasification plant. (Coal fines cannot be gasified in the Lurgi units.) Planning, loan guarantee commitments, scheduling of construction, labor relations, and current situation are all briefly discussed. A table of project statistics is included.

Deeths, W.R.

1984-01-01T23:59:59.000Z

175

Geochemistry of Delaware Basin groundwaters  

DOE Green Energy (OSTI)

Fluids from various formations were sampled and analyzed in order to characterize groundwaters in the Delaware Basin. Waters were analyzed for solute content and/or stable isotope ratios (D/H and /sup 18/O//sup 16/O). Three lines of geochemical arguments are summarized, in order to present the natures and probable origins of analyzed fluids: solute chemistry, thermodynamic modelling of low-temperature aqueous species, and stable isotope ratios. (JGB)

Lambert, S.J.

1977-04-25T23:59:59.000Z

176

Great River Energy (28 Member Cooperatives) - Commercial and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Great River Energy (28 Member Cooperatives) - Commercial and Great River Energy (28 Member Cooperatives) - Commercial and Industrial Efficiency Rebates Great River Energy (28 Member Cooperatives) - Commercial and Industrial Efficiency Rebates < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Program Info Funding Source Great River Energy State Minnesota Program Type Utility Rebate Program Rebate Amount Varies by measure and member cooperative offering. Provider Great River Energy Great River Energy, a generation and transmission cooperative which serves

177

Great Plains Wind Energy Transmission Development Project  

DOE Green Energy (OSTI)

In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

2012-06-09T23:59:59.000Z

178

Great Lakes WIND Network | Open Energy Information  

Open Energy Info (EERE)

WIND Network WIND Network Jump to: navigation, search Name Great Lakes WIND Network Address 4855 W 130th Place Cleveland, Ohio Zip 44135 Sector Wind energy Product Business and legal services;Consulting; Energy provider: energy transmission and distribution; Investment/finances;Maintenance and repair;Manufacturing; Research and development; Trainining and education Phone number 215-588-1440 Website http://www.glwn.org Coordinates 41.4228056°, -81.7801592° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4228056,"lon":-81.7801592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

The Great Plains coal gasification project status  

SciTech Connect

The Great Plains Gasification Project is the first commercial-sized plant to produce substitute natural gas from coal in the United States. The plant is designed to convert 14,000 tons/D of North Dakota lignite into 137.5 million standard cubic feet of gas per day. The plant construction has been successfully completed per original design, on schedule and on budget. The plant has also been successfully turned over from construction to operations, as per the original plan. With the completion of the capital projects being implemented at the plant, plans are to achieve 70 percent stream factor in the first year of production (1985). The DOE-Chicago Operations Office has been assigned the responsibility for monitoring the project's performance against baselines of cost, schedule, and technical criteria. During the startup phase of the project, significant technological advancements have been made and considerable knowledge has been gained, both by the operators and DOE (considering this to be a first of a kind plant built in the U.S.).

Bodnaruk, B.J.

1986-07-01T23:59:59.000Z

180

Great Plains Gasification Project status report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Project is designed to convert North Dakota lignite into pipeline quality high Btu synthetic natural gas (SNG). Located in Mercer County, North Dakota, the project consists of a coal gasification plant, coal mine, and an SNG pipeline. Construction of the project started in the summer of 1981 and was essentially complete by the fourth quarter of 1984. The plant operating staff started initial start-up planning in early 1982 and moved to the plant site in late 1982. The first unit taken over from construction was the secondary water treating unit and initial operations began on August 19, 1983. The remainder of the plant was commissioned and started up in a planned sequence with initial production of SNG occurring on July 28, 1983. Both trains were in operation and the plant was producing at about 70 percent of design capacity by December 1984-a date that has been targeted for in a start-up schedule prepared some 4-5 years earlier.

Pollock, D.C.; Stockwell, R.E.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. The two day workshop brought together wind developers, Federal and state regulators, environmental advocates, and other regional stakeholders to discuss methods for ensuring greater clarity, certainty and coordination of Federal and state decision-making for offshore wind development in the Great Lakes.

182

A Numerical Study of the Thermally Driven Plain-to-Basin Wind over Idealized Basin Topographies  

Science Conference Proceedings (OSTI)

Numerical experiments have been carried out with a two-dimensional nonhydrostatic mesoscale model to investigate the diurnal temperature range in a basin and the thermally driven plain-to-basin winds. Under clear-sky conditions, the diurnal ...

Stephan F. J. de Wekker; Shiyuan Zhong; Jerome D. Fast; C. David Whiteman

1998-06-01T23:59:59.000Z

183

Task 50 - deposition of lignites in the Fort Union Group and related strata of the northern Great Plains  

SciTech Connect

Late Cretaceous, Paleocene, and early Eocene geologic and paleontologic studies were undertaken in western North Dakota, eastern and south-central Montana, and northwestern and northeastern Wyoming. These study areas comprise the Williston, Bighorn, and Powder River Basins, all of which contain significant lignite resources. Research was undertaken in these basins because they have the best geologic sections and fossil record for the development of a chronostratigraphic (time-rock) framework for the correlation of lignite beds and other economic resources. A thorough understanding of the precise geologic age of the deposition of sediments permits a powerful means of interpreting the record of geologic events across the northern Great Plains. Such an understanding allows for rigorous interpretation of paleoenviromnents and estimates of resource potential and quality in this area of economically significant deposits. This work is part of ongoing research to document change in the composition of molluscan fossil faunas to provide a paleoenvironmentally sensitive independent means of interpreting time intervals of brief duration during the Late Cretaceous, Paleocene, and Eocene. This study focuses on the record of mollusks and, to a lesser extent, mammals in the (1) Hell Creek-Tullock Formations, which include the Cretaceous-Paleocene boundary, in the western portion of the Williston Basin, Montana; (2) uppermost Cretaceous, Paleocene, and lowermost Eocene strata in western North Dakota, which -includes the last interior seaway in North Dakota; (3) upper Paleocene and lowermost Eocene of the northern portion of the Bighorn Basin of south-central Montana and northwestern Wyoming; and (4) Powder River Basin of northeastern Wyoming and southeastern Montana. The geologic record provides different physical and paleontological information to aid in interpreting the geologic record through the study interval.

Hartman, J.H.; Roth, B.; Kihm, A.J.

1997-08-11T23:59:59.000Z

184

The Black Shale Basin of West Texas.  

E-Print Network (OSTI)

??The Black Shale Basin of West Texas covers an area in excess of 21,000 square miles and includes the region from Terrell and Pecos Counties (more)

Cole, Charles Taylor, 1913-

2012-01-01T23:59:59.000Z

185

Illinois coal production pushes Illinois Basin production ...  

U.S. Energy Information Administration (EIA)

Coal production in the Illinois Basin during the first half of 2012 (64.4 million short tons) was 13% higher than the same period in 2011. This ...

186

California - San Joaquin Basin Onshore Nonassociated Natural...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

187

,"California - San Joaquin Basin Onshore Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

188

,"California - Los Angeles Basin Onshore Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

189

Wetland loss dynamics in southwestern Barataria basin ...  

U.S. Energy Information Administration (EIA)

ABSTRACT We determined spatial associations of wetland loss rates in a 950-km2 study area in the southwestern Barataria basin of Louisiana's ...

190

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin,  

E-Print Network (OSTI)

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin, Nunavut18 O values near 0% (Vienna Standard Mean OceanWater). Uranium-rich apatite cement (P1) also formed during diagenetic stage1indicating that oxygenated, uranium- bearing pore water was present in the basin

Hiatt, Eric E.

191

Report of the workshop Great Lakes climate change impacts: Implications for environmental restoration. Held in Boulder, Colorado on April 28-29, 1992  

SciTech Connect

The broad objective of the one and a half day workshop was to provide a forum for interactive discussions and exchange of information among three distinct communities with a shared interest in the Great Lakes basin, but which have little occasion for direct communication. The three communities represented at the workshop were: (1) climate modeling researchers; (2) climate impacts researchers; and (3) individuals involved in the development of long-term environmental policy for the Great Lakes region-more specifically, those participating in the development of Remedial Action Plans (RAPs) for designated Areas of Concern (AOCs).

Mearns, L.O.; Rhodes, S.L.

1993-03-01T23:59:59.000Z

192

K Basins Field Verification Program  

SciTech Connect

The Field Verification Program establishes a uniform and systematic process to ensure that technical information depicted on selected engineering drawings accurately reflects the actual existing physical configuration. This document defines the Field Verification Program necessary to perform the field walkdown and inspection process that identifies the physical configuration of the systems required to support the mission objectives of K Basins. This program is intended to provide an accurate accounting of the actual field configuration by documenting the as-found information on a controlled drawing.

Booth, H.W.

1994-12-02T23:59:59.000Z

193

Naturener USA LLC formerly Great Plains Wind Energy | Open Energy  

Open Energy Info (EERE)

LLC formerly Great Plains Wind Energy LLC formerly Great Plains Wind Energy Jump to: navigation, search Name Naturener USA, LLC (formerly Great Plains Wind & Energy) Place San Francisco, California Zip 94111 Sector Wind energy Product Developer of a wind farm in Montana, has been sold to Naturener S.A. References Naturener USA, LLC (formerly Great Plains Wind & Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Naturener USA, LLC (formerly Great Plains Wind & Energy) is a company located in San Francisco, California . References ↑ "Naturener USA, LLC (formerly Great Plains Wind & Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Naturener_USA_LLC_formerly_Great_Plains_Wind_Energy&oldid=3491

194

Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins  

E-Print Network (OSTI)

To continue increasing the energy supply to meet global demand in the coming decades, the energy industry needs creative thinking that leads to the development of new energy sources. Unconventional gas resources, especially those in frontier basins, will play an important role in fulfilling future world energy needs. We must identify and quantify potential unconventional gas resources in basins around the world to plan for their development. Basin analog assessment is one technique that can be used to identify and quantify unconventional gas resources that is less expensive and less time consuming. We have developed a basin analog methodology that is useful for rapidly and consistently evaluating the unconventional hydrocarbon resource potential in exploratory basins. We developed software, Basin Analog System (BAS), to perform and accelerate the process of identifying analog basins. Also, we built a database that includes geologic and petroleum systems information of intensely studied North America basins that contain well characterized conventional and unconventional hydrocarbon resources. We have selected 25 basins in North America that have a history of producing unconventional gas resources. These are â??referenceâ? basins that are used to predict resources in frontier or exploratory basins. The software assists us in ranking reference basins that are most analogous to the target basin for the primary purpose of evaluating the potential unconventional resources in the target basin. The methodology allows us to numerically rank all the reference basins relative to the target basin. The accuracy of the results depends on the descriptions of geologic and petroleum systems. We validated the software to make sure it is functioning correctly and to test the validity of the process and the database. Finding a reference basin that is analogous to a frontier basin can provide insights into potential unconventional gas resources of the frontier basin. Our method will help industry predict the unconventional hydrocarbon resource potential of frontier basins, guide exploration strategy, infer reservoir characteristics, and make preliminary decisions concerning the best engineering practices as wells are drilled, completed, stimulated and produced.

Singh, Kalwant

2006-12-01T23:59:59.000Z

195

California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

196

California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

197

Designated Ground Water Basin Map | Open Energy Information  

Open Energy Info (EERE)

Designated Ground Water Basin Map Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Designated Ground Water Basin Map Details Activities (0) Areas...

198

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique...

199

CRAD, Emergency Management - Office of River Protection K Basin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section...

200

Rotating Hydraulics and Upstream Basin Circulation  

Science Conference Proceedings (OSTI)

The flow in a source-fed f-plane basin drained through a strait is explored using a single-layer (reduced gravity) shallow-water numerical model that resolves the hydraulic flow within the strait. The steady upstream basin circulation is found to ...

Karl R. Helfrich; Lawrence J. Pratt

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

African sedimentary basins - Tectonic controls on prospectivity  

Science Conference Proceedings (OSTI)

An important prerequisite for the evaluation of any sedimentary basin is the understanding of its regional tectonic setting. This is especially so in the underexplored regions of Africa. The majority of African sedimentary basins developed in an extensional setting although some have undergone subsequent compressional or transpressional deformation. The geometry and evolution of these basins is often influenced by basement structure. The extensional phase of basin development controls not only the distribution of syn-rift sediments but also the magnitude of post-rift regional subsidence and the preservation or removal of pre-rift sediments. This has important consequences for exploration models of syn-rift and pre-rift source rocks and reservoirs. Post-rift basin inversion and uplift provide crucial controls on the preservation of mature source rocks and quality of reservoirs. The distribution, nature, timing, and possible mechanisms of this uplift in Africa will be addressed. The hydrocarbon prospectivity of African basis appears to be highly variable although the limited exploration of some regions makes the exact extent of this variability unclear. Basins considered potentially prospective range from late Precambrian to Tertiary in age. The various tectonic controls outlined above, and criteria for the evaluation of underexplored areas, will be demonstrated by reference to basins studied by The Robertson Group. Examples described include basins from Bagon, Angola, Namibia, East Africa, Tertiary Rift and Karoo Rifts, and North Africa (Sudan, Egypt, Algeria, and Morocco).

Bunter, M.A.G.; Crossley, R.; Hammill, M.; Jones, P.W.; Morgan, R.K.; Needham, D.T.; Spaargaren, F.A. (Robertson Group plc, Gwynedd (England))

1991-03-01T23:59:59.000Z

202

Thermal regimes of Malaysian sedimentary basins  

Science Conference Proceedings (OSTI)

Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulation time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.

Abdul Halim, M.F. (Petronas Research and Scientific Services, Selangor (Malaysia))

1994-07-01T23:59:59.000Z

203

Contributions of Lake-Effect Periods to the Cool-Season Hydroclimate of the Great Salt Lake Basin  

Science Conference Proceedings (OSTI)

Although smaller lakes are known to produce lake-effect precipitation, their influence on the precipitation climatology of lake-effect regions remains poorly documented. This study examines the contribution of lake-effect periods (LEPs) to the ...

Kristen N. Yeager; W. James Steenburgh; Trevor I. Alcott

2013-02-01T23:59:59.000Z

204

Molecular organic geochemistry of the oil and source rocks in Railroad Valley, eastern Great Basin, Nevada, United States.  

E-Print Network (OSTI)

??A comprehensive geochemical study of oils from Railroad Valley, Nevada and two candidate source rock intervals from the nearby Egan Range, was conducted in order (more)

Ahdyar, LaOde

2011-01-01T23:59:59.000Z

205

GIS Regional Spatial Data from the Great Basin Center for Geothermal Energy: Geochemical, Geodesic, Geologic, Geophysical, Geothermal, and Groundwater Data  

DOE Data Explorer (OSTI)

\tFavorability and Evidence Data 7 WinRAR ZIP files and links to detailed metadata. Includes data from regression models, gravity and temperature gradients, dilational strain data, and weighted earthquake epicenter data.

206

Olivella Grooved Rectangle Beads from a Middle Holocene Site in the Fort Rock Valley, Northern Great Basin  

E-Print Network (OSTI)

Lake Fort Rock and other local sources. The primary culturalRock Valley currently receives no water from a perennial source.

Jenkins, Dennis L; Erlandson, Jon M

1996-01-01T23:59:59.000Z

207

Great Lakes Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Great Lakes Energy - Residential Energy Efficiency Rebate Program Great Lakes Energy - Residential Energy Efficiency Rebate Program Great Lakes Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: $250 Geothermal Heat Pumps: $500 Provider Great Lakes Energy Great Lakes Energy offers rebates to residential customers for the purchase of efficiency air-source heat pumps or geothermal heat pumps. A rebate of $250 is available for air-source heat pumps, and a $500 rebate is available for geothermal heat pumps. View the program website listed above to view program and efficiency specifics. A variety of rebates may also be available to Great Lake Energy residential

208

Instrumentation for Southem Great Plains D. L. Sisterson and...  

NLE Websites -- All DOE Office Websites (Extended Search)

counties are outlined. 318 Instrumentation for Southern Great Plains Table 1. Dates of installations of Instrumentation, side data system versions, and facilities at the SGP...

209

NETL: News Release - Great River Energy Unveils Prototype Module...  

NLE Websites -- All DOE Office Websites (Extended Search)

August 9, 2005 Great River Energy Unveils Prototype Module Coal Dryer Novel Technology Expected to Improve Marketability and Environmental Performance of High-Moisture Coal...

210

Regional Gravity Survey of the Northern Great Salt Lake Desert...  

Open Energy Info (EERE)

of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Regional Gravity...

211

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels)

212

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels)

213

California - San Joaquin Basin Onshore Crude Oil Estimated ...  

U.S. Energy Information Administration (EIA)

California - San Joaquin Basin Onshore Crude Oil Estimated Production from Reserves (Million Barrels)

214

The Potential Impacts of Climate Change on the Great Lakes  

Science Conference Proceedings (OSTI)

Global climate change could have a significant impact on the Great Lakes. A number of studies of the potential effects of climate change on the Great Lakes were commissioned by the U.S. Environmental Protection Agency, using common scenarios of ...

Joel B. Smith

1991-01-01T23:59:59.000Z

215

Big Windy (Great Escape Restaurant Turbine) | Open Energy Information  

Open Energy Info (EERE)

Big Windy (Great Escape Restaurant Turbine) Big Windy (Great Escape Restaurant Turbine) Jump to: navigation, search Name Big Windy (Great Escape Restaurant Turbine) Facility Big Windy (Great Escape Restaurant Turbine) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Great Escape Restaurant Location Schiller Park IL Coordinates 41.95547°, -87.865193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.95547,"lon":-87.865193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Thermal state of the Arkoma Basin and the Anadarko Basin, Oklahoma.  

E-Print Network (OSTI)

??Chapter three addresses heat flow and thermal history of the Anadarko Basin and the western Oklahoma Platform. We found no evidence for heat flow to (more)

Lee, Youngmin.

217

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

Hinsdale Wave Basin 1 Hinsdale Wave Basin 1 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 1 Overseeing Organization Oregon State University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 104.0 Beam(m) 3.7 Depth(m) 4.6 Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 1.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 12' by 12' concrete slabs anchored to flume walls

218

K Basins Sludge Treatment Project Phase 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basins Sludge Treatment Project Phase 1 K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report Herb G. Sutter Michael Poirier Art W. Etchells Gary Smith Kris Thomas Jim J. Davis Paul Macbeth November 16, 2009 Prepared by the U.S. Department of Energy Washington, D.C. K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report November 16, 2009 ii Herbert G. Sutter, Team Lead Date Michael Poirier, Team Member Date Arthur W. Etchells, Team Member Date Gary Smith, Team Member Date Kris Thomas, Team Member Date Jim J. Davis, Team Member Date Paul Macbeth, Team Member Date Signatures 11/09/2009 11/09/2009 11/09/2009 K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report November 16, 2009

219

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

220

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Sheets Wave Basin Sheets Wave Basin Jump to: navigation, search Basic Specifications Facility Name Sheets Wave Basin Overseeing Organization University of Rhode Island Hydrodynamic Testing Facility Type Wave Basin Length(m) 30.0 Beam(m) 3.6 Depth(m) 1.8 Cost(per day) $750(+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.0 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 10 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Pre-programmed for regular and irregular waves, but wavemaker is capable of any input motion. Wave Direction Uni-Directional

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

222

Cold Pools in the Columbia Basin  

Science Conference Proceedings (OSTI)

Persistent midwinter cold air pools produce multiday periods of cold, dreary weather in basins and valleys. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures ...

C. D. Whiteman; S. Zhong; W. J. Shaw; J. M. Hubbe; X. Bian; J. Mittelstadt

2001-08-01T23:59:59.000Z

223

Further FGGE Forecasts for Amazon Basin Rainfall  

Science Conference Proceedings (OSTI)

A series of experiments using real-data general circulation model integrations is performed to study the impact of remote tropical Pacific heating modifications upon the rainfall over the Amazon Basin. In one set of experiments, a heating term is ...

Julio Buchmann; Jan Paegle; Lawrence Buja; R. E. Dickinson

1989-05-01T23:59:59.000Z

224

The Uinta Basin Case Robert J. Bayer  

E-Print Network (OSTI)

Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

Utah, University of

225

Probabilistic Quantitative Precipitation Forecasts for River Basins  

Science Conference Proceedings (OSTI)

A methodology has been formulated to aid a field forecaster in preparing probabilistic quantitative precipitation forecasts (QPFs) for river basins. The format of probabilistic QPF is designed to meet three requirements: (i) it is compatible with ...

Roman Krzysztofowicz; William J. Drzal; Theresa Rossi Drake; James C. Weyman; Louis A. Giordano

1993-12-01T23:59:59.000Z

226

What Controls Evapotranspiration in the Amazon Basin?  

Science Conference Proceedings (OSTI)

Global climate models (GCMs) and regional climate models (RCMs) generally show a decrease in the dry season evapotranspiration (ET) rate over the entire Amazon basin. Based on anecdotal observations, it has been suggested that they probably ...

Natalia Hasler; Roni Avissar

2007-06-01T23:59:59.000Z

227

Prediction of August Atlantic Basin Hurricane Activity  

Science Conference Proceedings (OSTI)

Although skillful seasonal hurricane forecasts for the Atlantic basin are now a reality, large gaps remain in our understanding of observed variations in the distribution of activity within the hurricane season. The month of August roughly spans ...

Eric S. Blake; William M. Gray

2004-12-01T23:59:59.000Z

228

Flathead Basin Commission Act of 1983 (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

229

The basins on the Argentine continental margin  

Science Conference Proceedings (OSTI)

After the stabilization of the central Gondwana Craton, orogenic belts were accreted, as a result of convergence events and an extensive passive margin developed in southwestern Gondwana. Thermal subsidence in Parana, Karoo-Ventania basins and the Late Paleozoic-Early Mesozoic rifts, were modified by the Gondwana breakup and the South Atlantic opening. Early Paleozoic marine transgressions deposited the Table Mountain Group in Ventania. In southwestern Patagonia foreland clastics were deposited. Magmatic arcs and marine units indicate a tectonic trough was formed, alternating with continental sequences, over Late Paleozoic metamorphics and intrusives, resulting from plastered terrains along the Gondwana margin. In Patagonia, Permo-Carboniferous continental and glacio marine clastics infill the basins, while in Ventania, paralic sequences, grade from neritic to continental to the northeast, extending beneath the continental margin. The Triassic-Jurassic rift basins progressed onto regional widespread acid lavas and were infilled by lagoonal organic-rich sequences. Early drift phase built basins transverse to the margin, with fluvio-lacustrine sequences: Salado, Colorado, Valdes-Rawson, San Julian and North Malvinas intracratonic basins, which underwent transtensional faulting. Post-Oxfordian to Neocomian brackish sequences, onlapped the conjugate basins during the margin`s drift, with petroleum systems, as in Austral and Malvinas. In the Valanginian, basic extrusions commenced to form on the continental border, heralding the oceanic phase. Due to thermal subsidence, offlaping sediments prograded onto the remaining half-grabens. Several petroleum systems, proven and hypothetical, are identified in this region.

Urien, C.M. [Buenos Aires Technological Institute Petroleum School, Buenos Aires (Argentina)

1996-08-01T23:59:59.000Z

230

Snake River Basin environmental program  

DOE Green Energy (OSTI)

The Snake River Basin Environmental Program was designed to evaluate existing environmental data with respect to potential geothermal development in eight Known Geothermal Resource Areas (KGRAs) in Idaho. State and federal agencies, public interest groups, consulting groups, and universities participated in the DOE program. Final reports for the program are intended to be utilized as reference documents and planning tools for future environmental studies. Evaluation of the data indicated that the majority of the existing data base is adequate for small-scale direct-use developments. The potential impacts of development on water quality and water supply are the primary environmental concern. Preliminary data suggest that subsidence and induced seismicity may be a problem in several of the KGRAs. Sensitive animal species and habitats have been identified in each area; development in the Castle Creek KGRA may be restricted due to the Birds of Prey Natural Area. Two workshops provided public input on concerns and land use planning for geothermal development in Idaho. Based on the data evaluation and public input, a plan for supplementing the existing environmental data base was prepared.

Spencer, S.G.; Sullivan, J.F.

1979-09-01T23:59:59.000Z

231

Improved Basin Analog System to Characterize Unconventional Gas Resource  

E-Print Network (OSTI)

Unconventional resources will play an important role in filling the gap between supply and demand for future world energy. In North America, the impact of unconventional resources on energy supplies is growing continuously. However, around the world they have yet to serve as a major contributor to the energy supply, partly due to the scarcity of information about the exploration and development technologies required to produce them. Basin analogy can be used to estimate the undiscovered petroleum potential in a target basin by finding a geological analog that has been explored enough that its resource potential is fully understood. In 2006, Singh developed a basin analog system BASIN (Basin Analog Systems INvestigation) in detail that could rapidly and consistently identify analogous reference basins for a target basin. My research focused on continuing that work, comprehensively improving the basin analog system in four areas: the basin analog method; the database; the software functionality; and the validation methods. The updated system compares basins in terms of probability distributions of geological parameters. It compensates for data that are sparse or that do not represent basin-level geological parameters, and it expands the system's ability to compare widely varying quantitative parameters. Because the updated BASIN database contains more geologic and petroleum systems information on reference (existing) basins, it identifies analog basins more accurately and efficiently. The updated BASIN software was developed by using component-based design and data visualization techniques that help users better manage large volumes of information to understand various data objects and their complicated relationships among various data objects. Validation of the improved BASIN software confirms its accuracy: if a basin selected as the target basin appears in the reference basin list with other basins, the target basin is 100% analogous only to itself. Furthermore, when a target basin is analyzed by both BASIN and PRISE (Petroleum Resources Investigation and Summary Evaluation) software, results of the improved BASIN closely matched the PRISE results, which provides important support for using BASIN and PRISE together to quantitatively estimate the resource potential in frontier basins.

Wu, Wenyan 1983-

2012-12-01T23:59:59.000Z

232

Mineralogy and organic petrology of oil shales in the Sangkarewang formation, Ombilin Basin, West Sumatra, Indonesia.  

E-Print Network (OSTI)

??The Ombilin Basin, which lies in Sumatra Island, is one of the Tertiary basins in Indonesia. This basin contains a wide variety of rock units, (more)

Fatimah, Fatimah

2009-01-01T23:59:59.000Z

233

Basinfill of The Permian Tanqua depocentre, SW Karoo basin, South Africa.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: Basin subsidence analysis, employing the backstripping method, indicates that fundamentally two different basin-generating mechanisms controlled Tanqua depocentre development in SW Karoo Basin. The (more)

Alao, Abosede Olubukunola

2012-01-01T23:59:59.000Z

234

The Thermally Driven Cross-Basin Circulation in Idealized Basins under Varying Wind Conditions  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting model is used to perform large-eddy simulations of thermally driven cross-basin winds in idealized, closed basins. A spatially and temporally varying heat flux is prescribed at the surface as a function of ...

Manuela Lehner; C. David Whiteman

2012-06-01T23:59:59.000Z

235

Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan  

E-Print Network (OSTI)

are commonly found within intramontane basins that separate its constituent ranges. In order to explore of the Tien Shan, central Asia's largest mountain range, is driven by the distant collision between India found within basin interiors, 10­20 km distant from bedrock cored ranges [Avouac et al., 1993; Bullen et

Bookhagen, Bodo

236

Obama Administration and Great Lakes States Announce Agreement to Spur  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Great Lakes States Announce Agreement to and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects March 30, 2012 - 12:00pm Addthis Washington, D.C. - As part of President Obama's all of the above approach to energy, the Obama Administration today joined with the governors of Illinois, Michigan, Minnesota, New York and Pennsylvania to announce the signing of a Memorandum of Understanding (MOU) that will streamline the efficient and responsible development of offshore wind resources in the Great Lakes. This effort underscores the President's commitment to American made energy, increasing energy independence, and creating jobs. "President Obama is focused on leveraging American energy sources,

237

Influence of the Laurentian Great Lakes on Regional Climate  

Science Conference Proceedings (OSTI)

The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model, ...

Michael Notaro; Kathleen Holman; Azar Zarrin; Elody Fluck; Steve Vavrus; Val Bennington

2013-02-01T23:59:59.000Z

238

The Frequency and Intensity of Great Lake Cyclones  

Science Conference Proceedings (OSTI)

Cyclones are an important feature of the Great Lakes region that can have important impacts on shipping, lake temperature profiles, ice cover, and shoreline property damages. The objective of this research is to analyze the frequency and ...

James R. Angel; Scott A. Isard

1998-01-01T23:59:59.000Z

239

Drought in the Great Plains: History of Societal Response  

Science Conference Proceedings (OSTI)

The Great Plains has a long history of drought episodes which have, in some years, significantly reducedexpected crop yields. The historic evidence suggests that such droughts will probably recur in the future.The drought of the 1930's stimulated ...

Alan D. Hecht

1983-01-01T23:59:59.000Z

240

PPPL: Great story, Bright Future | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Great story, Bright Future By Kitta MacPherson May 12, 2011 Tweet Widget Facebook Like Google Plus One Stewart Prager Stewart Prager Stewart Prager Stewart Prager Stewart Prager...

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Improving 30-Day Great Lakes Ice Cover Outlooks  

Science Conference Proceedings (OSTI)

Prediction of Great Lakes ice cover is important for winter operations and planning activities. Current 30-day forecasts use accumulated freezing degree-days (AFDDs) to identify similar historical events and associated ice cover. The authors ...

Raymond Assel; Sheldon Drobot; Thomas E. Croley II

2004-08-01T23:59:59.000Z

242

Computer and Internet Use by Great Plains Farmers  

E-Print Network (OSTI)

Marshall Frasier. 1999. Farm Computer Adoption in the GreatW.M. Frasier. 2002. Computers in Agriculture. Agronomy1263-1269. Baker, G. 1992. Computer Adoption and Use by New

Smith, Aaron; Morrison Paul, Catherine J.; Goe, W. Richard; Kenney, Martin

2004-01-01T23:59:59.000Z

243

On Long-Term Net Flow over Great Bahama Bank  

Science Conference Proceedings (OSTI)

A 398-day time series of middepth current measurements is combined with available wind and bottom pressure measurements and historical salinity data to characterize long-term net flow patterns over Great Bahama Bank between the Tongue of the ...

Ned P. Smith

1995-04-01T23:59:59.000Z

244

Return Levels of Northern Great Plains Snow Water Equivalents  

Science Conference Proceedings (OSTI)

This paper estimates return levels of extreme snow water equivalents (SWE) in the northern Great Plains region, containing North and South Dakota, Iowa, Minnesota, and Nebraska. The return levels are estimated from extreme-value methods using a ...

Andrew J. Grundstein; Qi Qi Lu; Robert Lund

2006-07-01T23:59:59.000Z

245

Great Lakes Surface Environmental Analysis | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Lakes Surface Environmental Analysis Great Lakes Surface Environmental Analysis Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Great Lakes Surface Environmental Analysis Dataset Summary Description The Great Lakes Surface Environmental Analysis (GLSEA2) is a digital map of the Great Lakes surface water temperature and ice cover which is produced daily at the NOAA Great Lakes Environmental Research Laboratory (GLERL) in Ann Arbor, Michigan through the NOAA CoastWatch program. The GLSEA is stored as a 1024x1024 pixel map in PNG or ASCII format, suitable for viewing on PCs and workstations with readily available software. The lake surface temperatures are derived from NOAA polar-orbiting satellite imagery obtained through the Great Lakes CoastWatch program. The addition of ice cover information was implemented in early 1999, using data provided by the National Ice Center (NIC). Lake surface temperatures are updated daily with information from the cloud-free portions of the previous day's satellite imagery. If no imagery is available, a smoothing algorithm is applied to the previous day's map. Ice information will then be added, using the most recent Great Lakes Ice Analysis produced by NIC, currently daily during the ice season. GLERL is currently receiving a product suite of an average of 108 enhanced digital images including satellite-derived surface temperature (Fig. 1.1), visible and near-infrared reflectance, brightness temperatures, cloud masks, and satellite/solar zenith angle data from the NOAA/AVHRR (Advanced Very High Resolution Radiometer).

246

Financial status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Great Plains Gasification Associates and the Department of Energy (DOE) signed a loan guarantee agreement in January 1982 for up to $2.02 billion of the estimated $2.76 billion needed to construct a plant producing synthetic gas from coal. Faced with deteriorating financial projections in the wake of declining energy prices, Great Plains applied to the US Synthetic Fuels Corporation (SFC) for additional project assistance. In April 1984 SFC tentatively agreed to provide Great Plains up to $790 million in price guarantee assistance. In return, the Great Plains partners would contribute more equity and Great Plains would repay the DOE-guaranteed loan faster and share profits with SFC. According to GAO's assessment of SFC's proposed assistance, a lower amount of assistance could achieve the same results if Great Plains' partners could fully use certain tax credits and if energy prices and other assumptions remained the same as those SFC used in April 1984. Since April 1984, however, several changes have occurred, such as a continued decline in energy prices. An August 1984 SFC analysis indicated that the decline in energy price offset the effect of the increase tax credits. Other changes have also occurred, but SFC analyses subsequent to August 1984 showing the impact of these changes were not available to GAO. If all changes since April 1984 were incorporated into GAO's analyses, the results could be different.

Not Available

1985-02-21T23:59:59.000Z

247

Devonian Marcellus Shale, Appalachian Basin  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

Devonian Marcellus Shale; R. Bruner; Richard Smosna

2011-01-01T23:59:59.000Z

248

Erosion potential from Missoula floods in the Pasco Basin, Washington  

Science Conference Proceedings (OSTI)

Localities within the Pasco Basin preserve evidence of Missoula floods. Deposits are 46% sand-sized, 36% gravel-sized, and 18% finer than sand-sized. Mean thickness is 39 meters. High water marks at Wallula Gap require a discharge of approximately 12.5 Mcms. At Sentinel Gap, the slope-area method shows that the high water marks require a discharge of 34.6 Mcms. Since this discharge greatly exceeds any estimated for Missoula floods, there must have been backwater ponding from Wallula Gap. Projecting the slope of the water surface at the upper end of Wallula Gap to the downstream cross section at Gable Mountain leads to a discharge of 9.5 Mcms at Sentinel Gap. The HEC-6 steady state code and four sediment transport equations were applied. Assuming sand-sized particles, DuBoys function estimated 4 to 9 meters of scour. Yang's equation estimated 3 to 4 meters of scour. These are a minimum. A hydrograph synthesized for the boundaries of the Pasco Basin shows the maxima of the flood would occur after 90 h at Sentinel Gap, and at 114 h at Wallula Gap. The 200 areas will remain inundated for four days and six hours. With a quasi-dynamic sediment transport computation, HEC-6 scour estimates range from 0.61 meters to 0.915 meters. This is a minimum amount and erosion is highly variable suggesting reworking of sediment. The Meyer-Peter Meuller equations show less than 1 meter of net scour in the 200 areas. More extensive erosion was achieved during particular time steps of this analysis suggesting that sediment re-working would occur.

Craig, R.G.; Hanson, J.P.

1985-12-01T23:59:59.000Z

249

Corrosion in ICPP fuel storage basins  

SciTech Connect

The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970`s, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate.

Dirk, W.J.

1993-09-01T23:59:59.000Z

250

Petroleum geochemistry of the Zala basin, Hungary  

Science Conference Proceedings (OSTI)

The Zala basin is a subbasin within the Pannonian basis on Hungary. Oil and smaller amounts of gas are produced from Upper Triassic through Miocene reservoirs. Our geochemical study of oils and rocks in the basin indicate that two, and possibly three, genetic oil types are present in the basin. Miocene source rocks, previously believed by explorationists to be the predominant source rock, have expelled minor amounts of hydrocarbons. The main source rock is the Upper Triassic (Rhaetian) Koessen Marl Formation or its stratigraphic equivalent. Oils derived from the Triassic source rock are recognizable by their isotopic and biological marker composition, and high content of metals. In other areas of Europe, Upper Triassic source rocks have been correlated with large oil accumulations (e.g., Molassa and Villafortuna fields, Po basin, and other fields in Italy) or are postulated to be good potential source rocks (e.g., Bristol channel Trough). Knowledge of the geochemical characteristics of oils derived from these Upper Triassic source rocks and understanding of the source rock distribution and maturation history are important for recognizing Triassic oil-source bed relationships and for further exploration in other basins in Hungary and other parts of Europe where Triassic source rocks are present.

Clayton, J.L. (Geological Survey, Denver, CO (United States)); Koncz, I. (Hungarian Oil and Gas Corp., Nagykanizsa (Hungary))

1994-01-01T23:59:59.000Z

251

Sediment Basin Flume | Open Energy Information  

Open Energy Info (EERE)

Sediment Basin Flume Sediment Basin Flume Jump to: navigation, search Basic Specifications Facility Name Sediment Basin Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Flume Length(m) 22.7 Beam(m) 5.1 Depth(m) 1.2 Cost(per day) Contact POC Special Physical Features Two pumps provide up to 18 cfs of flow capacity Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None Available Sensors Acoustics, Flow, Thermal, Turbulence, Velocity Data Generation Capability Real-Time Yes Test Services Test Services Yes On-Site fabrication capability/equipment Machine shop, carpenter shop, welding shop, instrumentation and electronics shop

252

Dan Klempel Basin Electric Power Cooperative DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dan Dan Klempel Basin Electric Power Cooperative DOE 2009 Congestion Study Workshop Oklahoma City, Oklahoma June 18, 2008 Page 1 of 5 Basin Electric Power Cooperative would like to thank the Department of Energy for this opportunity to share some of our thoughts on transmission congestion issues. Basin Electric is a wholesale power supplier to rural electric cooperatives located in the mid-west and in both the east and west interconnections. Naturally, our generation and transmission facilities also reside in both interconnections so we use asynchronous back-to-back DC facilities to balance loads with resources. With headquarters in Bismarck, North Dakota; we find ourselves in the heart of some of the nations most desirable wind patterns for potential renewable energy development as well as electric energy production from more traditional sources. Lignite coal has been a reliable

253

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

254

SWP.SanJuanBasin.factsheet0919  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Investigator Reid Grigg/Brian McPherson NMT reid@prrc.nmt.edu / brian@nmt.edu Field Test Information: Field Test Name San Juan Basin, New Mexico: Enhanced Coalbed Methane-Sequestration Test Test Location Near Navajo City, New Mexico Amount and Source of CO 2 Tons Source 20,000 - 35,000 tons; CO2 sourced from McElmo Dome, CO ConocoPhillips KinderMorgan CO 2 Company, L.P. Field Test Partners (Primary Sponsors) Summary of Field Test Site and Operations General Geology and Target Reservoirs: The San Juan basin (SJB) is one of the top ranked basins in the world for CO 2 coalbed sequestration because it has: 1) advantageous geology and high methane content; 2) abundant anthropogenic CO

255

Configuration Management Plan for K Basins  

SciTech Connect

This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, {open_quotes}Guide for Operational Configuration Management Program{close_quotes}.

Weir, W.R.; Laney, T.

1995-01-27T23:59:59.000Z

256

Southern Colombia's Putumayo basin deserves renewed attention  

Science Conference Proceedings (OSTI)

The Putumayo basin lies in southern Colombia between the Eastern Cordillera of the Andes and the Guyana-Brazilian shield. It covers about 50,000 sq km between 0--3[degree]N. Lat. and 74--77[degree]W. Long. and extends southward into Ecuador and Peru as the productive Oriente basin. About 3,500 sq km of acreage in the basin is being offered for licensing in the first licensing round by competitive tender. A recent review of the available data from this area by Intera and Ecopetrol suggests that low risk prospects and leads remain to be tested. The paper describes the tectonic setting, stratigraphy, structure, hydrocarbon geology, reservoirs, and trap types.

Matthews, A.J. (Intera Information Technologies Ltd., Henley (United Kingdom)); Portilla, O. (Ecopetrol, Bogota (Colombia))

1994-05-23T23:59:59.000Z

257

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Florida W $38.51 W $140.84 27.3% 134 W 100.0% Florida W $38.51 W $140.84 27.3% 134 W 100.0% Northern Appalachian Basin Georgia - W - W W W - W Northern Appalachian Basin Indiana W $16.14 W $63.35 25.5% 1,681 W 88.5% Northern Appalachian Basin Maryland $20.69 $19.60 -5.3% $74.23 26.4% 4,845 31.9% 97.7% Northern Appalachian Basin Michigan $13.74 $16.13 17.4% $99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W $40.18 W $94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W $32.44 W $89.13 36.4% 1,064 W 47.6% Northern Appalachian Basin New York $21.87 $18.86 -13.8% $59.40 31.7% 2,373 49.3% 91.9%

258

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Northern Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W $20.35 W $64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland $19.73 $19.64 -0.4% $81.15 24.2% 4,650 24.8% 99.3% Northern Appalachian Basin Michigan W $14.02 W $76.22 18.4% 713 W 100.0% Northern Appalachian Basin New Hampshire W $43.43 W $90.90 47.8% 499 W 89.6% Northern Appalachian Basin New Jersey W $27.19 W $74.81 36.3% 1,864 W 44.1% Northern Appalachian Basin New York $20.08 $15.26 -24.0% $53.68 28.4% 3,726 39.2% 79.1%

259

Great Lakes Science Center Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Science Center Wind Farm Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Great Lakes Science Center Developer Great Lakes Science Center Energy Purchaser Great Lakes Science Center Location Cleveland OH Coordinates 41.506659°, -81.696816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.506659,"lon":-81.696816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Southern Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Basin and Range Geothermal Region Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Basin and Range Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} North-south-striking and west-dipping Basin and Range province normal faults form the western edge of the Sierra Madre Occidental plateau in northeastern Sonora. These faults and associated half-grabens extend over a distance of more than 300 km between the San Bernardino basin in the north and the Sahuaripa basin in the south. Active Tectonics of Northeastern Sonora, Mexico (Southern Basin and Range Province) and the 3 May 1887 Mw 7.4 Earthquake [1] References ↑ "Active Tectonics of Northeastern Sonora, Mexico (Southern Basin and Range Province) and the 3 May 1887 Mw 7.4 Earthquake"

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Transmission of Rossby Waves through Basin Barriers  

Science Conference Proceedings (OSTI)

The response of a basin with a topographic barrier to spatially localized and time periodic forcing is considered. The barrier, which almost completely divides the full basin into two adjacent subbasins, is offered as a model of either a ...

Joseph Pedlosky

2000-03-01T23:59:59.000Z

262

Climatic Aspects of the 1993 Upper Mississippi River Basin Flood  

Science Conference Proceedings (OSTI)

The 1993 record-breaking summer flood in the Upper Mississippi River Basin resulted from an unprecedentedly persistent heavy rain pattern. Rainfall totals for the Upper Mississippi River Basin were, by a large margin, the largest of this century ...

Kenneth E. Kunkel; Stanley A. Changnon; James R. Angel

1994-05-01T23:59:59.000Z

263

Hydraulically Drained Flows in Rotating Basins. Part II: Steady Flow  

Science Conference Proceedings (OSTI)

The slow, horizontal circulation in a deep, hydraulically drained basin is discussed within the context of reduced-gravity dynamics. The basin may have large topographic variations and is fed from above or from the sides by mass sources. ...

Lawrence J. Pratt

1997-12-01T23:59:59.000Z

264

Criticality safety evaluation for K Area Disassembly Basin cleanup  

SciTech Connect

Preparations are currently being made to remove sludge from the Disassembly Basin in all reactor areas. Because this sludge contains fissile isotopes, it is necessary to perform a criticality safety evaluation for the planned activities. A previous evaluation examined the criticality safety aspects of the sludge removal process for L Area. This document addresses the criticality safety aspects of the K Area Disassembly Basin cleanup work. The K Area Disassembly Basin cleanup will involve, as a first step, pumping the basin sludge into the Monitor Basin portion of the Disassembly Basin. From the Monitor Basin, the sludge will be pumped into tanks or containers for permanent disposition. The criticality safety evaluation discussed in this document covers the transfer of the sludge to the Monitor Basin.

Rosser, M.A.

1994-02-01T23:59:59.000Z

265

YAKIMA BASIN JOINT BOARD A Partnership of Public Entities Promoting  

E-Print Network (OSTI)

YAKIMA BASIN JOINT BOARD A Partnership of Public Entities Promoting the Multiple Uses of the Yakima for the opportunity to comment. Sincerely, Jim Trull, President Yakima Basin Joint Board #12;

266

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

267

Two Days, One Great Mashup | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Days, One Great Mashup Two Days, One Great Mashup Developer Data Web Services Source Code Challenges Semantic Web Blogs Let's Talk Developers You are here Data.gov » Communities » Developers Two Days, One Great Mashup Submitted by Data.gov Administrator on Tue, 12/18/2012 - 6:21pm Mashups are intriguing because you can create new stories from data that is accessible yet completely independent - multiple datasets merging in a way that was not expected," said Ryan McKeel, Digital Assets Applications Developer at the National Renewable Energy Laboratory in Golden, Colorado, whose Open Energy Initiative (OpenEI.org) team helped build the Energy Data Mashup. "For instance, if you combine U.S. Census data with crime and voting records, you start painting a unique story that none of the data

268

JW Great Lakes Wind LLC | Open Energy Information  

Open Energy Info (EERE)

JW Great Lakes Wind LLC JW Great Lakes Wind LLC Jump to: navigation, search Name JW Great Lakes Wind LLC Place Cleveland, Ohio Zip 44114-4420 Sector Wind energy Product Ohio based subsidiary of Juwi International that develops wind projects. Coordinates 41.504365°, -81.690459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.504365,"lon":-81.690459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Injection in Kansas Oilfield Could Greatly Increase Production, CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

270

CO2 Injection in Kansas Oilfield Could Greatly Increase Production,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Kansas Oilfield Could Greatly Increase Production, in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says August 31, 2011 - 1:00pm Addthis Washington, DC - The feasibility of using carbon dioxide (CO2) injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy (DOE). The University of Kansas Center for Research studied the possibility of near-miscible CO2 flooding for extending the life of mature oilfields in the Arbuckle Formation while simultaneously providing permanent geologic storage of carbon dioxide, a major greenhouse gas.

271

National Parks Move Transportation Forward in America's Great Outdoors |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parks Move Transportation Forward in America's Great Parks Move Transportation Forward in America's Great Outdoors National Parks Move Transportation Forward in America's Great Outdoors March 28, 2013 - 3:00pm Addthis Together, the five newest National Parks Initiative projects will save the equivalent of nearly 10,000 gallons of gasoline and 71 tons of greenhouse gas emissions per year. | Infographic by Sarah Gerrity, Energy Department. Together, the five newest National Parks Initiative projects will save the equivalent of nearly 10,000 gallons of gasoline and 71 tons of greenhouse gas emissions per year. | Infographic by Sarah Gerrity, Energy Department. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? The five new National Parks Initiative projects will save the

272

Saluting a Great American Scientist-Founder This Thanksgiving | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saluting a Great American Scientist-Founder This Thanksgiving Saluting a Great American Scientist-Founder This Thanksgiving Saluting a Great American Scientist-Founder This Thanksgiving November 24, 2010 - 11:32am Addthis Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science Tomorrow, we at the Department of Energy join with all of you, our fellow citizens, in giving thanks. We're thankful for the little things; for the fair gatherings of food and family and friends; for the tryptophan comas that will kick in amid the fowl football kick-offs. (The Lions are playing...followed by Cowboys and then the Bengals, teams with a combined record of seven wins and 23 losses.) We're even more thankful for the big things; for our nation; for our proud past and daring future; for the undaunted courage and iconoclastic

273

Status of the Great Plains coal gasification project - Summer 1983  

SciTech Connect

Construction of the Great Plains coal gasification plant in North Dakota was 3 weeks behind schedule as of May 31, 1983, but cumulative project costs were less than originally estimated. A March 1983 analysis by Great Plains raised questions about the project's economic viability, which is closely linked to future energy prices. The estimated gas prices used in the analysis were lower than those used in January 1982 to justify construction. As a result, the project's investors are concerned about possible losses during the early years of operations. GAO's review shows, however, that Great Plains did not consider substantial tax benefits which may be available to the parent companies of the project's investors. If these benefits are considered, the project's economic viability could be more positive. Should the investors end their participation, some tax benefits previously obtained would have to be repaid.

Not Available

1983-09-20T23:59:59.000Z

274

Status of the Great Plains coal gasification project  

SciTech Connect

Construction of the Great Plains coal gasification plant in North Dakota was 95 percent complete and only about 2 weeks behind schedule as of November 30, 1983. Cumulative project costs were less than originally estimated for this date. Due to a drop in forecasted energy prices, Great Plains, in September 1983, projected that plant operations could result in large after-tax losses and negative cash flows for the sponsors. Great Plains notified the Department of Energy that it was considering terminating its participation in the project in the absence of additional federal assistance. In this regard, additional assistance in the form of price guarantees for the project's synthetic natural gas are being considered by the US Synthetic Fuels Corporation.

Not Available

1984-03-22T23:59:59.000Z

275

Status of the Great Plains coal gasification project, August 1982  

SciTech Connect

Construction of the Great Plains coal gasification plant in Mercer County, North Dakota, is 4 to 6 weeks behind schedule, but no long-term impacts are anticipated. Cumulative project costs are lower than originally estimated. Overall, the management system established to oversee project construction appears comprehensive. However, some weaknesses exist in the computerized information system, which produces most project data. The Department of Energy complied with statutory requirements in awarding the Great Plains loan guarantee for an alternative fuel demonstration project and is actively working to fulfill its responsibilities as the project's overseer. However, the Department needs to audit the costs incurred by Great Plains to determine that funds are being used only for eligible project costs.

Not Available

1982-09-14T23:59:59.000Z

276

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

277

K West basin isolation barrier leak rate test  

SciTech Connect

This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.

Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

1994-10-31T23:59:59.000Z

278

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration...

279

Geographic Information System At Nw Basin & Range Region (Nash...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Exploration Activity...

280

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Nash & Johnson, 2003) Exploration Activity...

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Synthetic fuels: Status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

Not Available

1987-01-01T23:59:59.000Z

282

Great Plains coal gasification project. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session, September 12, 1988  

Science Conference Proceedings (OSTI)

The hearing was called to review the announcement by the Department of Energy that it has selected Basin Electric Power Cooperative of Bismarck, North Dakota, as the preferred buyer for the Great Plains Coal Gasification Plant. The plant produces 142 billion standard cubic feet of synthetic natural gas per day from lignite coal plus several byproducts which are marketed. The hearing examines the bids of the finalists, the composition of the trust funds, the status of the siting permits, questions of air quality, employee retirement funds and employee benefits, and the ability of the successful bidder to pursue byproduct development and marketing. Testimony was heard from 7 witnesses.

Not Available

1989-01-01T23:59:59.000Z

283

Hanford K-Basin Sludge Characterization Overview February 2005  

E-Print Network (OSTI)

Hanford K-Basin Sludge Characterization Overview February 2005 1 Hanford K-Basin Sludge Characterization Overview February 2005 1. Summary The Hanford K-East and K-West Basins were used to store of the irradiated fuel reprocessing facility at Hanford (the PUREX facility) the N-Reactor irradiated fuel remained

284

Permian {open_quotes}Wolfcamp{close_quotes} limestone reservoirs: Powell Ranch field, Eastern Midland Basin  

SciTech Connect

Deep-water carbonate channel reservoirs form important oil reservoirs along the toe of the Eastern Shelf of the Permian basin in west Texas. In northwestern Glasscock County, these `Wolfcamp` reservoirs are Leonardian (Early Permian) in age and define high-energy channels incised into surrounding carbonate detritus and basinal shale. Porous grain-flow material filling these channels, along with encasing detritus, was derived from the shallow shelf located six miles to the east. Reservoirs are in packstone and grainstone facies and have significant interparticle and moldic porosity. Relevant exploration began in the 1960s, but expanded slowly thereafter due to lack of success caused by complex patterns of channel occurrence. Results of a three-dimensional (3-D) seismic survey conducted in 1990 have greatly enhanced the identification and mapping of productive channels in the Powell Ranch field complex. Wells in this complex are capable of flowing 400-1200 bbl of oil per day, and have reserves ranging from 0.2 to 1.3 MBO. The new 3-D data have improved the relevant geologic model and dramatically increased rates of drilling success. Application of such data to this setting offers a potential model for other parts of the Permian basin.

Montgomery, S.L. [Petroleum Consultant, Seattle, WA (United States)

1996-09-01T23:59:59.000Z

285

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini; Donald A. Goddard

2005-08-01T23:59:59.000Z

286

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

287

Summary - K Basins Sludge Treatment Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basin K Basin DOE is Proces the va at Han subsys oxidati objecti of-fact maturi Eleme Techn The as which seven * M * M * Pr * Pr * As The Ele Site: H roject: K P Report Date: A ited States Why DOE ns Sludge Treatme s constructing ss (STP) for re rious sludge st nford. The STP stems: sludge ion, assay, pac ive of the asse t" appraisal of t ty by first ident ents (CTEs) of t ology Readine What th ssessment team was further div CTEs and the Material Mobiliza Material Transfe rocess Chemis rocess Instrum ssay (TRL=2) To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP K Basins Slud Process/STP August 2007 Departmen K Bas E-EM Did This ent Process Flow D a K Basins Slu trieving, treatin treams stored i P is comprised containerizatio ckaging, and dr ssment was to the project's ov

288

Active oil shale operations: Eastern Uinta Basin  

SciTech Connect

A Utah Geological and Mineral survey Map of the Eastern Uinta Basin is presented. Isopach lines for the Mahogany oil shale are given, along with the locations of active oil shale operations and the land ownership (i.e. federal, state, or private).

Ritzma, H.R.

1980-01-01T23:59:59.000Z

289

KE Basin underwater visual fuel survey  

SciTech Connect

Results of an underwater video fuel survey in KE Basin using a high resolution camera system are presented. Quantitative and qualitative information on fuel degradation are given, and estimates of the total fraction of ruptured fuel elements are provided. Representative photographic illustrations showing the range of fuel conditions observed in the survey are included.

Pitner, A.L.

1995-02-01T23:59:59.000Z

290

Jupiter's Great Red Spot as a Shallow Water System  

Science Conference Proceedings (OSTI)

Most current models of Jupiter's Great Red Spot (GRS) are cast in terms of a two-layer model, where a thin upper weather layer, which contains the vortex, overlies a much deeper layer, which is meant to represent the neutrally stratified deep ...

Timothy E. Dowling; Andrew P. Ingersoll

1989-11-01T23:59:59.000Z

291

Great Plains Project: at worst a $1. 7 billion squeeze  

SciTech Connect

On January 29, 1982, seeking a loan guarantee for its coal-to-gas synfuels project, Great Plains Gasification Associates told the Department of Energy that they expected to reap $1.2 billion in net income to the partnership during the first 10 years of the venture. On March 31, 1983, Great Plains treasurer Rodney Boulanger had a different projection: a horrific loss of $773 million in the first decade. The Great Plains project, with construction 50% complete, is being built near Beulah, ND. The project has a design capacity of 137.5 million cubic feet a day of SNG. Great Plains' analysis assumes that the plant will operate at 70% of design capacity in 1985, 77% in 1986, 84% in 1987 and 91% thereafter. The company projects the total project cost at $2.1 billion, consisting of plant costs of $1.9 billion and coal mine costs of $156 million. In originally projecting a cumulative net income of better than $1 billion, the partners anticipated running losses in only three of the first 10 years, and cash distributions from the project of $893 million during the first decade. Under the new projections, even in the best case, the first four years would show losses and there would be no distribution to the partners. In the worst case, the project would run in the red every year for the first 10 years.

Maize, K.

1983-04-11T23:59:59.000Z

292

Financial situation of the Great Plains Coal Gasification Project  

Science Conference Proceedings (OSTI)

GAO reviewed drafts of DOE's National Energy Policy Plan IV, calculated synthetic gas prices using Great Plains methodology, converted those prices to current year dollars, and used DOE's computer model of the project's economics to analyze the cash flow forecast. GAO found both the model and the data produced to be reliable. (PSB)

Not Available

1983-10-17T23:59:59.000Z

293

August 2012 Brazil is one of the great success stories  

E-Print Network (OSTI)

August 2012 Brazil is one of the great success stories of the last several decades ­ and today has become a vibrant democracy and an economic powerhouse. Brazil's international profile has never been and staff. Our study of Brazil is strong and our engagement with Brazil is growing. Today, work

Oxford, University of

294

Lake-Effect Thunderstorms in the Lower Great Lakes  

Science Conference Proceedings (OSTI)

Cloud-to-ground (CG) lightning, radar, and radiosonde data were examined to determine how frequently lake-effect storms (rain/snow) with lightning occurred over and near the lower Great Lakes region (Lakes Erie and Ontario) from September 1995 ...

Scott M. Steiger; Robert Hamilton; Jason Keeler; Richard E. Orville

2009-05-01T23:59:59.000Z

295

Irrigation-Induced Rainfall and the Great Plains  

Science Conference Proceedings (OSTI)

The postWorld War II increase in irrigation in the Great Plains represents the largest human-induced hydrologic impact in North America. Drawn primarily from the High Plains aquifer, water applied as irrigation in the region amounts to billions ...

Nathan Moore; Stuart Rojstaczer

2001-08-01T23:59:59.000Z

296

Western Gas Sands Project: Northern Great Plains Province review  

SciTech Connect

The synopsis outlines the Upper Cretaceous low permeability natural (biogenic) gas formations of the Northern Great Plains Province (NGPP) of Montana, Wyoming, North and South Dakota. The main objectives are to present a general picture of that stratigraphy, significant structures, and natural gas potential.

Newman, III, H E [comp.

1979-08-01T23:59:59.000Z

297

Okanogan Basin Spring Spawner Report for 2007.  

DOE Green Energy (OSTI)

The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

Colville Tribes, Department of Fish & Wildlife

2007-09-01T23:59:59.000Z

298

Delaware River Basin Commission (Multiple States) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Systems Integrator Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1961 State Delaware Program Type Environmental Regulations Siting and Permitting Provider Project Review Section The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states (Pennsylvania, New York, New

299

Rappahannock River Basin Commission (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rappahannock River Basin Commission (Virginia) Rappahannock River Basin Commission (Virginia) Rappahannock River Basin Commission (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Rappahannock River Basin Commission The Rappahannock River Basin Commission is an independent local entity

300

Interstate Commission on the Potomac River Basin (Multiple States) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State District of Columbia Program Type Environmental Regulations Siting and Permitting Provider Interstate Commission on the Potomac River Basin The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through regional and interstate

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Ambient Monitoring - Great Smoky Mountains National Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Smoky Mountains Project (GSMP) Great Smoky Mountains Project (GSMP) Background Fine particle annual mass concentrations in the Tennessee Valley range from 14 to20 micrograms per cubic meter. All seven urban/suburban sites exceeded the annual PM2.5 standard; only the rural Lawrence County TN site remained below the 15 µg/m3 annual standard. None of the stations exceeded the 65 µg/m3 level of the 24-hour PM2.5 standard. Summer high-winter low seasonality is evident. The current FRM PM2.5 mass measurements under-estimate the contribution of volatile/semi-volatile nitrates and organic carbon species. The semi-volatile organic fraction is both highly variable and significant, and assessments of semi-volatile and non-volatile organic carbon fractions are needed when particle composition measurements are made, especially at urban sites.

302

Wind energy resource atlas. Volume 3. Great Lakes Region  

DOE Green Energy (OSTI)

The Great Lakes Region atlas assimilates six collections of wind resource data, one for the region and one for each of the five states that compose the Great Lakes region: Illinois, Indiana, Michigan, Ohio, Wisconsin. At the state level, features of the climate, topography, and wind resource are discussed in greater detail than in the regional discussion and the data locations on which the assessment is based are mapped. Variations over several time scales in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and of hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Paton, D.L.; Bass, A.; Smith, D.G.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

303

Economics of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

the Great Plains project will be the Nation's first commercial-scale plant producing synthetic gas from coal. The project's first annual economic report, released in March 1983, was much less optimistic than a similar analysis prepared in January 1982 to justify construction. GAO found that: the main reason for the changed economic outlook was that the assumed synthetic gas prices used in the March analysis were significantly lower than those used previously. Great Plains did not, nor was it required to, consider tax implications to the parent companies of the project's partners. If these implications are considered, the economics could be more optimistic than the March 1983 report indicates. Should the partners end their participation, some tax benefits would have to be repaid. Although the project is a potentially attractive investment, its financial viability is extremely sensitive to the future prices of synthetic gas. Even a small deviation in prices could significantly affect its economics.

Not Available

1983-08-24T23:59:59.000Z

304

Synthetic fuels. Status of the Great Plains Coal Gasification Project  

Science Conference Proceedings (OSTI)

This report includes updated information obtained through February 14, 1986, on the loan-default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, and Great Plains operations. The new information highlights changes in the gas pricing calculations; legal action concerning gas purchase agreements and mortgage foreclosure; the Department's determination of the project sponsors' outstanding liability; the Department's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues. Our November fact sheet included information on socioeconomic issues. We have not obtained any additional information on these issues and are, therefore, not repeating the socioeconomic information in this fact sheet.

Not Available

1986-02-01T23:59:59.000Z

305

Update on the Great Plains Coal Gasification Project  

SciTech Connect

The Great Plains Gasification Plant is the US's first commercial synthetic fuels project based on coal conversion. The ANG Coal Gasification Company is the administer of the Great Plains Coal Gasification Project for the United States Department of Energy. The Project is designed to convert 14 M TPD of North Dakota of lignite into 137.5 MM SCFD of pipeline quality synthetic natural gas (SNG). Located in Mercer County, North Dakota, the gasification plant, and an SNG pipeline. Some 12 years passed from the time the project was conceived unit it became a reality by producing SNG into the Northern Border pipeline in 1984 for use by millions of residential, commercial, and industrial consumers. In this paper, the basic processes utilized in the plant are presented. This is followed by a discussion of the start-up activities and schedule. Finally, some of the more interesting start-up problems are described.

Imler, D.L.

1985-12-01T23:59:59.000Z

306

EIS-0408: Upper Great Plains Programmatic Wind EIS  

Energy.gov (U.S. Department of Energy (DOE))

This EIS, being prepared jointly by DOE's Western Area Power Administration and the Department of the Interiors Fish and Wildlife Service, will evaluate the environmental impacts of wind energy development in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota Westerns Upper Great Plains customer service region. Western will use the EIS to implement a comprehensive regional program to manage interconnection requests for wind energy projects.

307

DOE assists in meeting social impacts of Great Plains Plant  

Science Conference Proceedings (OSTI)

On August 15, 1986 Department of Energy Secretary John S. Herrington pledged that federal funds of $100,000 per month would be provided to the local governments and school districts of Mercer County, North Dakota. These funds are intended to assist the governments meet demands caused by the Great Plains Coal Gasification Plant. The community impact assistance will continue for as long as the government is the owner of the facility.

Not Available

1986-09-01T23:59:59.000Z

308

Ultrabroad-Band, Greatly Enhanced Light Absorption by Monolayer Graphene  

E-Print Network (OSTI)

We demonstrate greatly enhanced light absorption by monolayer graphene over a broad spectral range, from visible to near infrared, based on the attenuated total reflection. In the experiment, graphene is sandwiched between two dielectric media referred as superstrate and substrate. Based on numerical calculation and experimental results, the closer the refractive indices of the superstrate and the substrate, the higher the absorption of graphene will be. The light absorption of monolayer graphene up to 42.7% is experimentally achieved.

Zhao, Wangshi; Lu, Zhaolin

2013-01-01T23:59:59.000Z

309

Great Western Malting Company geothermal project, Pocatello, Idaho. Final report  

DOE Green Energy (OSTI)

The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

1981-12-23T23:59:59.000Z

310

Great Plaines installs directionally drilled crossings in Texas  

SciTech Connect

This paper reports on installing a five- line wide, one-line long products system for ARCO Pipe Line Co. (APLC) in a crowded utility right of way required Great Plains Pipeline Construction Co. to complete three directionally drilled crossings and over 50 conventional bored crossings in the Channelview, Texas area. The pipe line route closely parallels a 4-mi ROW section of Houston Power and Light Co. (HP and L) and about 4 mi of Union Pacific Railroad tracks. Due to overhead towers carrying high-voltage electric transmission lines, Great Plains bored under the existing towers in HP and L's easement to preserve the right of way for future tower expansion. Laney, Inc., subcontracted the conventional bores underneath towers and minor roads. Laney Directional Drilling Co. was the prime contractor for two horizontal directionally drilled crossings of the Houston Ship Channel and Carpenter's Bayou. Great Plains, with its own crew, completed three roadway crossings in high-traffic areas. Engineering and material procurement was handled by APLC.

Thiede, K.L.

1991-09-01T23:59:59.000Z

311

Serial Echocardiographic Evaluation of 22 Closely Related Great Danes  

E-Print Network (OSTI)

Objectives: The purpose of this study was to investigate a family of Great Danes with known dilated cardiomyopathy (DCM) using serial echocardiographic evaluation. Animals, Materials, and Methods: Twenty-two dogs were included in this study. They were split into two groups, clinically normal and those with DCM. The dogs were scanned using 2D and M-mode echocardiography every thirty to sixty days beginning at approximately14-20 days of age. Data were collected and analyzed using generalized additive mixed regression, linear regression, and non-linear regression. Results: All dogs demonstrated progressive echocardiographic changes. The Great Danes with DCM showed several echocardiographic differences when compared to the normal dogs. They included differences in left ventricular diameter, left atrial diameter, interventricular septal thickness, ejection fraction, and fractional shortening. Conclusions: The present study shows that progressive echocardiographic changes occur in both clinically normal Great Danes and those with DCM as they mature. Additionally, the two groups differed with regards to left ventricular diameter, left atrial diameter, interventricular septal thickness, ejection fraction, and fractional shortening.

Farmer, Michael R.

2009-05-01T23:59:59.000Z

312

Loss of Cherished Places -- Place Character and Climate Change along Australia's Great Ocean Road  

E-Print Network (OSTI)

Change along Australias Great Ocean Road Ray Green The paceStudies along the Great Ocean Road The research discussedplace along Australias Great Ocean Road. 5 The road, in the

Green, Ray

2008-01-01T23:59:59.000Z

313

Concealed evaporite basin drilled in Arizona  

SciTech Connect

The White Mountains of Arizona are a high forested plateau underlain by volcanic rocks of Late Pliocene and Quaternary age on the south margin of the Colorado plateau province. Elevations range from 6,000--11,590 ft, with winter snow and summer rain but ideal conditions for much of the year. There was no evidence of a Permian evaporite basin concealed beneath the White Mountain volcanic field until 1993, when the Tonto 1 Alpine-Federal, a geothermal test well, was drilled. This test did not encounter thermal waters, but it did encounter a surprisingly thick and unexpected sequence of anhydrite, dolomite, and petroliferous limestone assigned to the Supai (Yeso) formation of Permian age. The Tonto test was continuously cored through the Permian section, providing invaluable information that is now stored at the Arizona Geological Survey in Tucson. The paper describes the area geology and the concealed basin.

Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

1996-10-21T23:59:59.000Z

314

K Basin spent nuclear fuel characterization  

SciTech Connect

The results of the characterization efforts completed for the N Reactor fuel stored in the Hanford K Basins were Collected and summarized in this single referencable document. This summary provides a ''road map'' for what was done and the results obtained for the fuel characterization program initiated in 1994 and scheduled for completion in 1999 with the fuel oxidation rate measurement under moist inert atmospheres.

LAWRENCE, L.A.

1999-02-10T23:59:59.000Z

315

Ohio River Basin Trading Project Listening Workshops  

Science Conference Proceedings (OSTI)

In March 2010, American Farmland Trust held two listening workshops in the Wabash River Watershed to provide information and collect feedback on the Ohio River Basin Trading Project. Each session began with a basic primer on water quality trading given by Jim Klang of Kieser Associates. The presentations were followed by facilitated discussions. Participants were prompted with several questions, developed from earlier listening sessions, addressing issues that producers will likely face in water quality ...

2010-09-15T23:59:59.000Z

316

Neptunium-239 in disassembly basin water  

SciTech Connect

Since the presence of neptunium-239 in disassembly basin water had been suggested, analysis of the water was undertaken. The occurrence of Np-239 was thought to be due to its diffusion through the slugs. Samples of water from the D and E Canals in K and R-Areas were analyzed to determine the presence of Np-239. Samples from and K and R Areas both showed Np-239 to be present in quantities greater than 50% of the initial total activity.

Carlton, W.H.; Boni, A.L.

1956-08-13T23:59:59.000Z

317

Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea  

E-Print Network (OSTI)

The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected to spatially and temporally variable, complex inversion events during Miocene time. Fault orientations on inversion structures in the West Natuna Basin and the Western NCSB closely parallel the western side of the Natuna Arch, which may have served as a regional "buttress" where stress was concentrated and strain was deflected from Early to Late Miocene time. Early to Middle Miocene basin inversion across the Western NCSB was coincident with the most intense phase of basin inversion in the West Natuna and Malay basins. Contraction in the Western NCS, West Natuna, and Malay basins was accommodated through reactivation of major basin-bounding fault systems that resulted in asymmetric fault-bend folding of syn- and early post-rift strata. Inversion of western Sunda Shelf basins progressed from the West Natuna and Western Nam Con Son basins into the southern Malay Basin from Early to Middle Miocene time. The most intense inversion was recorded in the West Natuna Basin during Early Miocene time with regional uplift of the southern Malay and West Natuna basins during Middle Miocene time. Whereas both the Eastern and Western NCS sub-basins experienced fault reactivation during Miocene time, the timing and styles of inversion are different. Unlike the Western NCSB, the Eastern NCSB experienced only mild positive reactivation of pre-existing synthetic and antithetic hanging-wall faults, causing simple amplification of pre-existing rollover in the hanging-wall fill during Middle Miocene time. Basin inversion of the West Natuna, Western Nam Con Son, and Malay basins is attributed to collision-induced clockwise rotation of Borneo and the attached, rigid Natuna Arch and Natuna Basement Ridge, beginning during Early Miocene time. This accounts for: 1) the south to north progression of inversion from Early to Late Miocene time, 2) magnitudes of inversion documented within each basin, 3) the suggested NW-SE orientation of []?,4) the approximately N-S azimuth of compression that caused observed styles of inversion to form.

Olson, Christopher Charles

2001-01-01T23:59:59.000Z

318

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

319

Northwest Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Northwest Basin and Range Geothermal Region Northwest Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (48) Power Plants (8) Projects (15) Techniques (33) The Basin and Range Province in northwestern Nevada and northeastern California is characterized by late Cretaceous - early Cenozoic regional erosion, Oligocene - Miocene volcanism, and subsequent late Miocene extension. Extensional faulting in northwestern Nevada began everywhere at 12 Ma and has continued up to the present. Faulting in the Warner Range in northeastern California can only be constrained to have begun between 14 and 3 Ma, but may represent westward migration of Basin and Range extension during the Pliocene. Compared to the many parts of the Basin and Range in

320

CRAD, Emergency Management - Office of River Protection K Basin Sludge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Emergency Management program at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Engineering - Office of River Protection K Basin Sludge Waste System

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Household Energy Expenditure and Income Groups: Evidence from Great Britain  

E-Print Network (OSTI)

and 0.024 for districtheatingHowever,asincomeisnotobserveditseffectcannotbeanalysed. Wuetal.(2004)examinethedemandforspaceheatinginArmenia,Moldova,and Kyrgyz Republic using household survey data. In these countries... andinsomeregionsincomesarenotsufficientto affordspaceheatingfromdistrictheatingsystemsmakingthesesystemsunviable. We analyse electricity, gas and overall energy spending for a large sample of households in Great Britain. We discern inflection points and discuss...

Jamasb, Tooraj; Meier, H

322

Great plains coal gasification plant: Technical lessons learned report  

SciTech Connect

In a first of a kind, grass roots plant of the complexity of the Great Plains Gasification Plant the lessons learned are numerous and encompass a wide range of items. This report documents the lessons learned from all phases of the project from preliminary design through the most recent operation of the plant. Based on these lessons learned, suggestions are made for changes and/or process improvements to future synfuel plants. In addition, recommendations are made for research and development in selected areas. 46 refs., 31 figs., 33 tabs.

Delaney, R.C.; Mako, P.F.

1988-11-01T23:59:59.000Z

323

Great Plains Gasification Project process stream design data. Final report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Plant (GPGP) in the first commercial coal-to-SNG synthetic fuel plant constructed and operated in the United States. This process stream design data report provides non-proprietary information to the public on the major GPGP process streams. The report includes a simplified plant process block flow diagram, process input/output diagrams and stream design data sheets for 161 major GPGP process and effluent streams. This stream design data provides an important base for evaluation of plant and process performance and for verification of the DOE ASPEN computer simulation models of the GPGP processes. 8 refs.

Honea, F.I.

1985-09-01T23:59:59.000Z

324

Geothermal Reservoir Assessment Case Study, Northern Basin and...  

Open Energy Info (EERE)

GLO2386 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range...

325

Geothermal Resource Analysis and Structure of Basin and Range...  

Open Energy Info (EERE)

Energy, 2003 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems,...

326

Exploration and Development Techniques for Basin and Range Geothermal...  

Open Energy Info (EERE)

Council, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal...

327

Geologic And Geophysical Evidence For Intra-Basin And Footwall...  

Open Energy Info (EERE)

the TertiaryQuaternary basin-fill sediments. Correlation with seismic reflection and gravity surveys shows that some faults recognized by minor displacements at the surface...

328

Oil and Gas Resources of the Fergana Basin (Uzbekistan ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-0575(94) Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan) December 1994 Energy Information Administration

329

California - Los Angeles Basin Onshore Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

330

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies The USGS published a USGS Professional Paper in 2010 entitled

331

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies Dataset Summary...

332

Haynesville-Bossier Shale Play, Texas-Louisiana Salt Basin  

U.S. Energy Information Administration (EIA)

Haynesville-Bossier Shale Play, Texas-Louisiana Salt Basin Source: Energy Information Administration based on data from HPDI, TX Railroad Commission, ...

333

,"California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million...

334

California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0...

335

California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0...

336

,"California - Los Angeles Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

337

,"California - San Joaquin Basin Onshore Associated-Dissolved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease...

338

,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

339

,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million...

340

,"California - San Joaquin Basin Onshore Dry Natural Gas Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"California - San Joaquin Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

342

,"California - Los Angeles Basin Onshore Dry Natural Gas Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

343

,"California - Los Angeles Basin Onshore Associated-Dissolved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease...

344

,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

345

Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

onsh Shale Proved Reserves (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion Cubic Feet) No Data Available For This Series - No Data Reported; --...

346

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Blackwell, Et Al., 2003) Exploration...

347

Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search...

348

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

349

Data Acquisition-Manipulation At Northern Basin & Range Region...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Data Acquisition-Manipulation At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2)...

350

Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump...

351

Micro-Earthquake At Northwest Basin and Range Geothermal Region...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Northwest Basin and Range Geothermal Region (1976) Exploration Activity Details...

352

Dissolution of Uranium Metal from Hanford K Basin Sludge Simulant ...  

Dissolution of Uranium Metal from Hanford K Basin Sludge Simulant, Without Producing Hydrogen Stephanie Bruffey and Paul Taylor Background About 2100 metric tons of ...

353

Microearthquake surveys of Snake River plain and Northwest Basin...  

Open Energy Info (EERE)

(2) Areas (2) Regions (0) Abstract: applications; Basin and Range Province; Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture...

354

Preparing T Plant to Store K-Basin Sludge  

SciTech Connect

This paper will explain the history and status of the modification of the Hanford T Plant facility for storage of K Basin sludge.

MCKENNEY, D.E.

2003-01-01T23:59:59.000Z

355

Geographic Information System At Nw Basin & Range Region (Coolbaugh...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration...

356

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to:...

357

Geographic Information System At Nw Basin & Range Region (Blewitt...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity...

358

River Basins Advisory Commissions (South Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Basins Advisory Commissions (South Carolina) River Basins Advisory Commissions (South Carolina) River Basins Advisory Commissions (South Carolina) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Environmental Regulations Provider Catawba Wateree River Basin Advisory Commission

359

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia 29 Appendix A Petroleum Geology The petroleum geology discussion is copied ...

360

GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY  

SciTech Connect

From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

Millings, M.; Denham, M.; Looney, B.

2012-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lighting the Great Outdoors: LEDs in Exterior Applications  

SciTech Connect

Recent progress in the development of white light LEDs promises great impact by opening up the huge potential for LED illumination in new areas. One such area is general illumination for exterior applications. For example, there are an estimated combined 60.5 million roadway and parking installations in the U.S. These lights account for an estimated 53.3 TWh of electricity usage annually -- nearly 7% of all lighting. If LEDs could provide the same light performance with just 25% greater efficiency, savings of over 13 TWh could be achieved. In 2007, the authors assessed emerging LED lighting technologies in a parking garage and on a city street. The purpose of these tests was to enable a utility to determine whether energy efficiency programs promoting white light LED products might be justified. The results have supported the great promise of LEDs in exterior applications, while also highlighting the barriers that continue to hinder their widespread adoption. Such barriers include 1) inconsistent product quality across manufacturers; 2) lack of key metrics for comparing LEDs to conventional sources; and 3) high upfront cost of LED luminaires compared to conventional luminaires. This paper examines these barriers, ways in which energy-efficiency programs could help to overcome them, and the potential for energy and financial savings from LED lighting in these two exterior applications.

Cook, Tyson D. S.; Bryan, Mary M.; Kinzey, Bruce R.; Myer, Michael

2008-08-17T23:59:59.000Z

362

Great Lakes Biomass State and Regional Partnership (GLBSRP)  

DOE Green Energy (OSTI)

The Council of Great Lakes Governors administered the Great Lakes Biomass State and Regional Partnership (GLBSRP) under contract with the U. S. Department of Energy (DOE). This Partnership grew out of the existing Regional Biomass Energy Program which the Council had administered since 1983. The GLBSRP includes the States of Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio and Wisconsin. The GLBSRP??s overall goal is to facilitate the increased production and use of bioenergy and biobased products throughout the region. The GLBSRP has traditionally addressed its goals and objectives through a three-pronged approach: providing grants to the States; undertaking region-wide education, outreach and technology transfer projects; and, providing in-house management, support and information dissemination. At the direction of US Department of Energy, the primary emphasis of the GLBSRP in recent years has been education and outreach. Therefore, most activities have centered on developing educational materials, hosting workshops and conferences, and providing technical assistance. This report summarizes a selection of activities that were accomplished under this cooperative agreement.

Frederic Kuzel

2009-09-01T23:59:59.000Z

363

Status of the Great Plains coal gasification project  

SciTech Connect

ANG has extensive policies and procedures for overseeing the construction of the Great Plains project. Additional management comes from a computerized information system, various audit groups, and staff located at the project site. Neither we nor any other audit group identified significant deficiencies in ANG's computer system or the individual systems which feed into it. Overall, the system contains both automated and manual controls which ensure that the data generated from the system is reliable and accurate. The various audit and evaluation groups provide management continuous and significant information concerning major project components. Great Plains management recognized the usefulness of the information and acted on recommendations made which enhanced its overall effectiveness. ANG established and implemented comprehensive procedures to oversee the project's construction. These procedures appear adequate for managing and controlling all construction activities. For example, ANG's onsite managers have identified problems and suggested actions which ANG believes minimized the effect of these problems on the construction schedule. The Department of Energy has extensive procedures for monitoring this project. With few exceptions, the Department followed the procedures established. It has not, however, completed its audit of incurred costs to determine that loan guarantee funds are spent only for eligible project costs. Such an audit was underway and the Department expected to complete it in 1983.

Not Available

1983-04-08T23:59:59.000Z

364

Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin  

Science Conference Proceedings (OSTI)

Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

Eric P. Robertson

2010-06-01T23:59:59.000Z

365

Sedimentation of shelf sandstones in Queen Formation, McFarland and Means fields, central basin platform of Permian basin  

SciTech Connect

The Queen Formation is a sequence of carbonates, evaporites, and sandstones of Permian (Guadalupian) age that is found across the subsurface of the Central Basin platform of the Permian basin. The formation is a major hydrocarbon reservoir in this region, and its primary reservoir facies are porous shelf sandstones and dolomites. Cores and well logs from McFarland and Means fields (on the northwest margin of the Central Basin platform) were examined to determine the sedimentary history of the shelf sandstones.

Malicse, A.; Mazzullo, J.; Holley, C.; Mazzullo, S.J.

1988-01-01T23:59:59.000Z

366

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-02-28T23:59:59.000Z

367

Devonian shale gas resource assessment, Illinois basin  

Science Conference Proceedings (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

368

HANFORD K BASINS SLUDGE RETREIVAL & TREATMENT  

SciTech Connect

This paper shows how Fluor Hanford and BNG America have combined nuclear plant skills from the US and the UK to devise methods to retrieve and treat the sludge that has accumulated in K Basins at the Hanford site over many years. Retrieving the sludge is the final stage in removing fuel and sludge from the basins to allow them to be decontaminated and decommissioned, thus removing the threat of contamination of the Columbia River. A description is given of sludge retrieval using vacuum lances and specially developed nozzles and pumps into Consolidation Containers within the basins. The special attention that had to be paid to the heat generation and potential criticality issues with the irradiated uranium-containing sludge is described. The processes developed to re-mobilize the sludge from the Consolidation Containers and pump it through flexible and transportable hose-in-hose piping to the treatment facility are explained with particular note made of dealing with the abrasive nature of the sludge. The treatment facility, housed in an existing Hanford building is described, and the uranium-corrosion and grout encapsulation processes explained. The uranium corrosion process is a robust, tempered process very suitable for dealing with a range of differing sludge compositions. The grout process to produce the final waste form is backed by BNG America's 20 years experience of grouting radioactive waste at Sellafield and elsewhere. The use of transportable and re-usable equipment is emphasized and its role noted in avoiding new plant build that itself will require cleanup. The processes and techniques described in the paper are shown to have wide applicability to nuclear cleanup worldwide.

VASQUEZ, D.A.

2005-07-05T23:59:59.000Z

369

Supai salt karst features: Holbrook Basin, Arizona  

SciTech Connect

More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

Neal, J.T.

1994-12-31T23:59:59.000Z

370

Pacific basin biofuel workshop report: November 1984  

SciTech Connect

The Hawaii Natural Energy Institute (HNEI), in cooperation with the State Department of Planning and Economic Development, and industry, sponsored the Pacific Basin Biofuel Workshop on November 1 and 2, 1984. The purpose of the workshop was to identify issues or problems that should be addressed, to prioritize plant species that grow rapidly in the local climate, and to formulate a plan of action for the development of Hawaii's biomass resources, for possible Pacific-wide implementation. The workshop discussions are summarized and conclusions and recommendations are presented.

1984-01-01T23:59:59.000Z

371

Great Plains Gasification Project process stream design data. [Lurgi Process  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Plant (GPGP) is the first commercial coal-to-synthetic natural gas plant constructed and operated in the United States. This process stream design data report provides non-proprietary information to the public on the major GPGP process streams. The report includes a simplified plant process block flow diagram, process input/output diagrams, and stream design data sheets for 161 major GPGP process and effluent streams. This stream design data provides an important base for evaluation of plant and process performance and for verification of the Department of Energy's ASPEN (Advanced System for Process Engineering) computer simulation models of the GPGP processes. 8 refs., 22 figs., 2 tabs.

Honea, F.I.

1985-09-01T23:59:59.000Z

372

A Sustainable Biomass Industry for the North American Great Plains  

Science Conference Proceedings (OSTI)

The North American Great Plains (hereafter NAGP) region is economically distressed and prone to severe ecological disruptions such as soil erosion. Its water resources are over-used and subject to pollution from agricultural fertilizers and chemicals, issues common to agricultural lands globally. On the other hand, the region is well suited to the production of herbaceous biomass that can be combusted directly for power or converted to liquid transportation fuels. This paper reviews the geography, history and current condition of the NAGP and offers suggestions about how the agriculture, economy and environment of this and similar regions around the world can be made more sustainable and able to contribute to a reduction in CO2 emissions and consequent global warming.

Rosenberg, Norman J.; Smith, Steven J.

2009-12-01T23:59:59.000Z

373

Screening model optimization for Panay River Basin planning in the Philippines.  

E-Print Network (OSTI)

??The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity, (more)

Millspaugh, John Henry

2010-01-01T23:59:59.000Z

374

Sequence stratigraphy of the lower Pierre Shale in southern Powder River Basin, Wyoming, USA.  

E-Print Network (OSTI)

??Powder River Basin is one of the biggest interior sedimentary basins in the Rocky Mountain region. The Upper Cretaceous section of the southern Powder River (more)

Kaykun, Armagan

2013-01-01T23:59:59.000Z

375

Late Mississippian (Chesterian) Through Early Pennsylvanian (Atokan) Strata, Michigan Basin, U.S.A.  

E-Print Network (OSTI)

?? Over 2,000 linear feet of core material was analyzed to evaluate the stratigraphy and basin evolution of Carboniferous strata in the Michigan basin. Rock (more)

Towne, Shannon M

2013-01-01T23:59:59.000Z

376

ADCP-Referenced Geostrophic Circulation in the Bering Sea Basin  

Science Conference Proceedings (OSTI)

A month-long circumnavigation of the Bering Sea basin in August 1991 was designed to study the basin-scale circulation. For the first time in this region vessel-mounted acoustic Doppler current profiler (ADCP) measurements provided an absolute ...

E. D. Cokelet; M. L. Schall; D. M. Dougherty

1996-07-01T23:59:59.000Z

377

Thermally Driven Gap Winds into the Mexico City Basin  

Science Conference Proceedings (OSTI)

A southeasterly flow in the form of a low-level jet that enters the Mexico City basin through a mountain gap in the southeast corner of the basin developed consistently in the afternoons or early evenings during a four-week 1997 winter field ...

J. C. Doran; S. Zhong

2000-08-01T23:59:59.000Z

378

On the Low-Frequency Motions in the Cilician Basin  

Science Conference Proceedings (OSTI)

The presence of low-frequency motions in the Cilician Basin (the northeastern Mediterranean Sea) is investigated. An f-plane, barotropic, wind-driven model is utilized by taking advantage of the channel-like geometry of the basin. An asymptotic ...

mit nlata

1982-02-01T23:59:59.000Z

379

Potential Vorticity Constraint on the Flow between Two Basins  

Science Conference Proceedings (OSTI)

This paper examines the role of potential vorticity (PV) balance in source- and sink-driven flows between two basins. As shown in previous studies, PV advection into a basin, say a positive PV advection, requires a negative frictional torque to ...

Jiayan Yang; James F. Price

2007-09-01T23:59:59.000Z

380

Study of the geothermal production potential in the Williston Basin, North Dakota  

SciTech Connect

Preliminary studies of geothermal production potential for the North Dakota portion of the Williston Basin have been carried out. Reservoir data such as formation depth, subsurface temperatures, and water quality were reviewed for geothermal brine production predictions. This study, in addition, provides important information about net pay thickness, porosity, volume of geothermal water available, and productivity index for future geothermal direct-use development. Preliminary results show that the Inyan Kara Formation of the Dakota Group is the most favorable geothermal resource in terms of water quality and productivity. The Madison, Duperow, and Red River Formations are deeper formations but because of their low permeability and great depth, the potential flow rates from these three formations are considerably less than those of the Inyan Kara Formation. Also, poor water quality and low porosity will make those formations less favorable for geothermal direct-use development.

Chu, Min H.

1991-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate the potential benefits of applying multiseam [well] completion (MSC) technology to the massive stack of low-rank coals in the Powder River Basin. As part of this, the study objectives are: Estimate how much additional CBM resource would become accessible and technically recoverable--compared to the current practice of drilling one well to drain a single coal seam; Determine whether there are economic benefits associated with MSC technology utilization (assuming its widespread, successful application) and if so, quantify the gains; Briefly examine why past attempts by Powder River Basin CBM operators to use MSC technology have been relatively unsuccessful; Provide the underpinnings to a decision whether a MSC technology development and/or demonstration effort is warranted by DOE. To a great extent, this assessment builds on the previously published study (DOE, 2002), which contains many of the key references that underlie this analysis. It is available on the U.S. Department of Energy, National Energy technology Laboratory, Strategic Center for Natural Gas website (www.netl.doe.gov/scng). It is suggested that readers obtain a copy of the original study to complement the current report.

Office of Fossil Energy; National Energy Technology Laboratory

2003-09-01T23:59:59.000Z

382

Shale Gas Development in the Susquehanna River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Water Resource Challenges Water Resource Challenges From Energy Production Major Types of Power Generation in SRB - Total 15,300 Megawatts - 37.5% 4.0% 12.0% 15.5% 31.0% Nuclear Coal Natural Gas Hydroelectric Other Marcellus Shale Gas Development in the Susquehanna River Basin The Basin: * 27,510-square-mile watershed * Comprises 43 percent of the Chesapeake Bay watershed * 4.2 million population * 60 percent forested * 32,000+ miles of waterways The Susquehanna River: * 444 miles, largest tributary to the Chesapeake Bay * Supplies 18 million gallons a minute to the Bay Susquehanna River Basin Geographic Location of Marcellus Shale within Susq. River Basin 72% of Basin (20,000 Sq. Miles) Underlain by Marcellus Shale Approximate Amount of Natural Gas in Marcellus Shale * U.S. currently produces approx. 30 trillion

383

Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basin and Cold Vacuum K Basin and Cold Vacuum Drying Facility - August 2012 Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility - August 2012 August 2012 Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS) was to observe the operations associated with processing a Multi-Canister Overpack (MCO) of "found fuel" (small quantities of spent fuel discovered during cleanup of the reactor burial grounds) at the Cold Vacuum Drying Facility (CVDF). The found fuel MCO was transported from the K West Basin on the Hanford

384

Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford K Basin and Cold Vacuum Hanford K Basin and Cold Vacuum Drying Facility - August 2012 Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility - August 2012 August 2012 Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS) was to observe the operations associated with processing a Multi-Canister Overpack (MCO) of "found fuel" (small quantities of spent fuel discovered during cleanup of the reactor burial grounds) at the Cold Vacuum Drying Facility (CVDF). The found fuel MCO was transported from the K West Basin on the Hanford

385

Numerical Modeling of Transient Basin and Range Extensional Geothermal  

Open Energy Info (EERE)

Transient Basin and Range Extensional Geothermal Transient Basin and Range Extensional Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Numerical Modeling of Transient Basin and Range Extensional Geothermal Systems Abstract A suite of models utilizing a range of bulkrock permeabilities were developed to analyze thetransient behavior of basin and range extensionalgeothermal systems, and particularly, the evolution ofthe system temperature with time. Each modelconsists of two mountain ranges (~1 km relief fromthe valley floor) separated by a thick sequence (about4 km) of clastic sediments derived from the adjacentranges, and a relatively permeable, high angle faultthat functions as a conduit for subsurface fluids. Thisgeometry is typical of Basin and Range extensionalsystems.We

386

EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Grande Ronde Basin Endemic Spring Chinook Salmon 3: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy Bonneville Power Administration's proposal to fund a program designed to prevent the extinction and begin the recovery of spring Chinook salmon stocks in the Grande Ronde River Basin in the Upper Grande Ronde River, Lostine River, and Catherine Creek in Northeastern Oregon. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 18, 2003 EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program

387

Geothermal Reservoir Assessment Case Study, Northern Basin and Range  

Open Energy Info (EERE)

Reservoir Assessment Case Study, Northern Basin and Range Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Abstract N/A Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy, 1980 Report Number GLO2386 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Citation Elaine J. Bell,Lawrence T. Larson,Russell W. Juncal. 1980. Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province,

388

Great Plains Coal Gasification Project. Technical quarterly report, 1st quarter, 1984. [Great Plains, Mercer County, North Dakota  

Science Conference Proceedings (OSTI)

Activities remain on schedule to meet the Great Plains Coal Gasification project's full gas production date. Detailed engineering is complete for the gasification plant. The remaining engineering tasks, which include field support activities and special projects, will be performed by the Contractors' Field Engineering Group. A substantial amount of construction progress was achieved during the first quarter. It is currently projected that construction will be complete at the end of September, 1984. Start-Up operations are continuing at a rapid pace. Commissioning activities are proceeding very well. The only remaining plant permit is the Permit to Operate, which will be issued in late 1985. Quality Assurance/Quality Control activities included the development of welding procedures for Operations personnel, safety relief valve testing, and equipment turnover inspections. Mine development activities remain on schedule. Initial coal deliveries to GPGA commenced this quarter.

Not Available

1984-05-01T23:59:59.000Z

389

Great Sitkin Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sitkin Island Geothermal Area Sitkin Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Sitkin Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.06666667,"lon":-176.0833333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

The Great Plains gasification project: Here today, for tomorrow  

SciTech Connect

Just a few years ago, there was a proliferation of synfuels projects. Pilot plants first proved their viability with long and successful test runs, then closed as market conditions shifted the focus away from synfuels. Plentiful oil, foreign and domestic, has put a serious damper on synfuels development. Due to the recent oil glut, Exxon cancelled its Colony Shale Oil Project, pulled up its stakes and left several ghost boom-towns in its wake. President Reagan-who originally wanted to eliminate the entire synfuels program-now wants to see the $13.5 billion budget of the Synthetic Fuels Corp. (SFC), a government agency, slashed by $10 billion. During the past several months, there has been some major news regarding synfuels projects. Two of the most familiar to those who follow the coal industry have just begun operating: The Cool Water Coal Gasification Project in Daggett, CA, (See Coal Mining, April, 1982, p. 126), and The Great Plains Coal Gasification Project near Beulah, ND which began operations in December toward producing 125,000,000 cu ft/day of high-Btu substitute natural gas (SNG) (the equivalent of 20,000 barrels of oil per day) from 14,000 tpd of lignite mined nearby. At a time when the government and private sector both seem to be putting the whammy on synfuels development, these plants are starting full operations.

Adam, B.O.

1985-01-01T23:59:59.000Z

391

Great Plains Coal Gasification Plant Public Design Report. Volume II  

Science Conference Proceedings (OSTI)

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume II contains: (1) plant process data (sulfur recovery, main flare - area 8300, liquid processing, ash handling and solids disposal, other systems); (2) plant startup procedure and schedule; (3) plant and employee safety; (4) GPGP cost data; and (5) references. 53 refs., 46 figs., 38 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

392

Great Boiling Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Boiling Springs Geothermal Area Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.66166667,"lon":-119.3616667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Basin-centered gas accumulation in the Timan-Pechora Basin, Russia  

SciTech Connect

As a consequence of the USAID-funded program between the USGS and ROSCOMNEDRA, a very large basin-centered gas accumulation has been identified in Permian orogenic flysch and molasse rocks in the pre-Ural (Kosyu-Rogov) depression of the Timan-Pechora Basin, Russia. In the Timan-Pechora Basin the Artinskian, Kungurian, and Ufimian (Leonardian-Guadalupian) gas-bearing sequence is as thick as 2,000 in and is composed of interbedded sandstone, siltstone, shale, and coal. Sandstone porosity ranges from 3 to 15% and permeability is commonly less than 0.1 md. Drill-stem and production tests indicate that these rocks are gas saturated with little or no producible water. Pore pressures are abnormally high with gradients of about 0.50 to 0.60 psi/ft. The source of the gas is most likely the interbedded coals and other carbonaceous lithologies. The organic carbon content of these rocks, exclusive of coal, ranges from <0.2 to 4.0 weight percent, averaging 1.5%. The top of the gas accumulation is interpreted to cut across structural and stratigraphic boundaries similar to basin-centered gas accumulations in North America. However, south of the Kosyu-Rogov depression, coal-bearing Kungurian rocks have undergone a facies change into evaporates, forming a regional seal that extends southward into the Volga-Ural Province. The southern extent of the gas accumulation below the evaporate seal is unknown, but it may extend far to the south, making it one of the largest gas accumulations in the world.

Law. B.E. (Geological Survey, Denver, CO (United States)); Bogatsky, V.; Danileksky, S.; Galkina, L. (TPO, VNIGRI, Ukhta (Russian Federation)) (and other)

1996-01-01T23:59:59.000Z

394

square-mile Black Warrior Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

will inject CO will inject CO 2 into a coalbed methane (CBM) well in Tuscaloosa County, Alabama, to assess the capability of mature CBM reservoirs to receive and adsorb large volumes of CO 2 . Injection began at the test site on June 15; the site was selected because it is representative of the 23,000- square-mile Black Warrior Basin located in northwestern Alabama and northeastern Mississippi. It is estimated that this area has the potential to store in the range of 1.1 to 2.3 Gigatons of CO 2 , which is approximately the amount that Alabama's coal-fired power plants emit in two decades. The targeted coal seams range from 940 to 1,800 feet deep and are one to six feet thick. Approximately 240 tons of CO 2 will be injected over a 45- to 60-day period. More information

395

Rocky Mountain Basins Produced Water Database  

DOE Data Explorer (OSTI)

Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

396

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1996-09-01T23:59:59.000Z

397

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

1997-03-01T23:59:59.000Z

398

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Larry A. Carrell

1997-12-31T23:59:59.000Z

399

Improved Recovery Demonstration for Williston Basin Carbonates.  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

1997-12-31T23:59:59.000Z

400

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determination of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in- place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Water Supplies to the Great LakesReconstructed from Tree-Rings  

Science Conference Proceedings (OSTI)

Correlations between the water supplies to each of the Great Lakes and prewhitened tree-ring chronologies from 16 sites around the Great Lakes suggested some strong associations for the summer months, particularly June and July. Some of these ...

W. A. R. Brinkmann

1987-04-01T23:59:59.000Z

402

Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Great Smoky Mountains Great Smoky Mountains National Park Turns to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on AddThis.com...

403

Carderock Maneuvering & Seakeeping Basin | Open Energy Information  

Open Energy Info (EERE)

Maneuvering & Seakeeping Basin Maneuvering & Seakeeping Basin Jump to: navigation, search Basic Specifications Facility Name Carderock Maneuvering & Seakeeping Basin Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Wave Basin Length(m) 109.7 Beam(m) 73.2 Depth(m) 6.1 Water Type Freshwater Cost(per day) Contact POC Special Physical Features 10.7m deep x 15.2m wide trench along length of tank; the Maneuvering & Seakeeping Basin is spanned lengthwise by a 114.6m bridge supported on a rail system that permits the bridge to traverse one-half the width of the basin and to rotate through angles up to 45 degrees from the longitudinal centerline of the basin, ship models can be towed in head or following seas at any angle from 0 to 90 degrees, tracks attached to the bottom of the bridge support the towing carriage, bridge width is constant 6.1m.

404

Closure of the R Reactor Disassembly Basin at the SRS  

Science Conference Proceedings (OSTI)

The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at R-Reactor Disassembly Basin and will continue with the P and C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-active solution to close the basins in-place and prevent a release to the groundwater. In-situ ion exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds or to prevent ground water impact. The closure will be accomplished under CERCLA.

Austin, W.E.

2001-01-09T23:59:59.000Z

405

BASIN-CENTERED GAS SYSTEMS OF THE U.S.  

SciTech Connect

The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

2000-11-01T23:59:59.000Z

406

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect

The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-05-26T23:59:59.000Z

407

Socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin, West Texas  

E-Print Network (OSTI)

This investigative study presents results on the socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin. The amount of incremental oil and gas production from infill drilling in 37 carbonate reservoir units is established using decline curve analysis. The increase in incremental recovery is used to compute the amount of increased revenue and taxes (local, state and federal). A job market analysis is performed to determine the impact of these increased revenues on primary jobs in the oil industry and secondary jobs in the community. Secondary jobs are generated by oil industry workers spending money in the community. The appropriation of the estimated taxes is analyzed to determine which government agencies benefit most from the infill drilling. The observations from this research are that most of the San Andres and Clearfork carbonate reservoir units in the Permian Basin are potentially profitable to infill drill. The incremental oil and gas production from infill drilling could maintain or create many primary jobs within the local oil industry and also secondary jobs in the community. The incremental production could generate taxes which would greatly benefit certain local, state, and federal government agencies. This research proposal presents a methodology to calculate the amount of incremental oil and gas production from infill drilling, calculate the amount of revenue and taxes generated from the incremental production, determine how the increased reserves affects the job market in the communities and how the increased taxes help government agencies. These results could be helpful in bolstering the oil industries image in local town meetings, in government permitting processes, and in lobbying state and federal congresses to acquire investment aid or tax breaks for oil field investment projects. The technical contributions of this research proposal are as follows: (1) presents a methodology including the parameters used in determining profitable infill drilling projects in the San Andres and Clearfork units of the Permian Basin, (2) develops a correlation local town meetings, in lobbying state and aid or tax breaks for oil between the increased revenues of infill drilling and between the increased revenues of infill drilling and the creation of jobs in the Permian basin communities, and (3) develops a correlation between the increased tax revenues of infill drilling recovery and the benefits to local, state, and federal agencies.

Jagoe, Bryan Keith

1994-01-01T23:59:59.000Z

408

Geochemistry of oils from the Junggar basin, northwest China  

SciTech Connect

The Junggar basin of northwestern China is a structural basin containing a thick sequence of Paleozoic-Pleistocene rocks with estimated oil reserves of as much as 5 billion bbl. Analyses of 19 oil samples from nine producing fields and two oil-stained cores in the Junggar basin revealed the presence of at least five genetic oil types. The geo-chemistry of the oils indicates source organic matter deposited in fresh to brackish lake and marine environments, including coaly organic matter sources. The volumetrically most important oil type discovered to date is produced from Late Carboniferous-Middle Triassic reservoirs in the giant Karamay field and nearby fields located along the northwestern margin of the Junggar basin. Oil produced from the Mahu field, located downdip in a depression east of the Karamay field, is from a different source than Karamay oils. Unique oil types are also produced from an upper Permian reservoir at Jimusar field in the southeastern part of the basin, and from Tertiary (Oligocene) rocks at Dushanzi field and Lower Jurassic rocks at Qigu field, both located along the southern margin of the basin. Previous studies have demonstrated the presence of Upper Permian source rocks, and the possibility of Mesozoic or Tertiary sources has been proposed, but not tested by geochemical analysis, although analyses of some possible Jurassic coal source rocks have been reported. Our findings indicate that several effective source rocks are present in the basin, including local sources of Mesozoic or younger age for oil accumulations along the southern and southeastern margins of the basin. Future exploration or assessment of petroleum potential of the basin can be improved by considering the geological relationships among oil types, possible oil source rocks, and reservoirs.

Clayton, J.L.; King, J.D.; Lillis, P.G. [Geological Survey, Denver, CO (United States)] [and others

1997-11-01T23:59:59.000Z

409

Simulation of Heavy Lake-Effect Snowstorms across the Great Lakes Basin by RegCM4: Synoptic Climatology and Variability  

Science Conference Proceedings (OSTI)

A historical simulation (19762002) of the Abdus Salam International Centre for Theoretical Physics Regional Climate Model, version 4 (ICTP RegCM4), coupled to a one-dimensional lake model, is validated against observed lake ice cover and snowfall ...

Michael Notaro; Azar Zarrin; Steve Vavrus; Val Bennington

2013-06-01T23:59:59.000Z

410

Tavichaimpimu: To Catch the Sun: Large Scale Solar Energy Development in the Great Basin and the Cultural Implications for Numic-Speaking Peoples.  

E-Print Network (OSTI)

??The United States government is considering areas in the five states for the large-scale solar energy development. These solar energy zones (SEZs) contain important Native (more)

Van Vlack, Kathleen A.

2013-01-01T23:59:59.000Z

411

Climatological Basin-Scale Amazonian Evapotranspiration Estimated through a Water Budget Analysis  

Science Conference Proceedings (OSTI)

Spatially averaged evapotranspiration [ET] over the Amazon Basin is computed as the residual of the basins atmospheric water balance equation, at the monthly time scale and for the period 19882001. Basin-averaged rainfall [P] is obtained from ...

Hanan N. Karam; Rafael L. Bras

2008-10-01T23:59:59.000Z

412

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini

2004-02-05T23:59:59.000Z

413

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

2005-05-10T23:59:59.000Z

414

Permian evolution of sandstone composition in a complex back-arc extensional to foreland basin: The Bowen Basin, eastern Australia  

SciTech Connect

The Bowen Basin is a Permo-Triassic, back-arc extensional to foreland basin that developed landward of an intermittently active continental volcanic arc associated with the eastern Australian convergent plate margin. The basin has a complex, polyphase tectonic history that began with limited back-arc crustal extension during the Early Permian. This created a series of north-trending grabens and half grabens which, in the west, accommodated quartz-rich sediment derived locally from surrounding, uplifted continental basement. In the east, coeval calc-alkaline, volcanolithic-rich, and volcaniclastic sediment was derived from the active volcanic arc. This early extensional episode was followed by a phase of passive thermal subsidence accompanied by episodic compression during the late Early Permian to early Late Permian, with little contemporaneous volcanism. In the west, quartzose sediment was shed from stable, polymictic, continental basement immediately to the west and south of the basin, whereas volcanolithic-rich sediment that entered the eastern side of the basin during this time was presumably derived from the inactive, and possibly partly submerged volcanic arc. During the late Late Permian, flexural loading and increased compression occurred along the eastern margin of the Bowen Basin, and renewed volcanism took place in the arc system to the east. Reactivation of this arc led to westward and southward spread of volcanolithic-rich sediment over the entire basin. Accordingly, areas in the west that were earlier receiving quartzose, craton-derived sediment from the west and south were overwhelmed by volcanolithic-rich, arc-derived sediment from the east and north. This transition from quartz-rich, craton-derived sediments to volcanolithic-rich, arc-derived sediments is consistent with the interpreted back-arc extensional to foreland basin origin for the Bowen Basin.

Baker, J.C. (Univ. of Queensland, (Australia). Centre for Microscopy and Microanalysis); Fielding, C.R. (Univ. of Queensland, (Australia). Dept. of Earth Sciences); Caritat, P de (Australian National Univ., Canberra (Australia). Dept. of Geology); Wilkinson, M.M. (Santos Petroleum, Queensland (Australia))

1993-09-01T23:59:59.000Z

415

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 2 of the project is the determination of the burial and thermal maturation histories and basin modeling and petroleum system identification of the North Louisiana Salt Basin. In the first six (6) to nine (9) months of Year 2, the research focus is on the determination of the burial and thermal maturation histories and the remainder of the year the emphasis is on basin modeling and petroleum system identification. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini

2004-11-05T23:59:59.000Z

416

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

The principal research effort for Year 2 of the project is the determination of the burial and thermal maturation histories and basin modeling and petroleum system identification of the North Louisiana Salt Basin. In the first six (6) to nine (9) months of Year 2, the research focus is on the determination of the burial and thermal maturation histories and the remainder of the year the emphasis is on basin modeling and petroleum system identification. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini

2005-03-31T23:59:59.000Z

417

Flowing fluid electric conductivity logging for a deep artesian well in fractured rock with regional flow  

E-Print Network (OSTI)

Report P-07-94, Swedish Nuclear Fuel and Waste Management08-92 (Table 4.1), Swedish Nuclear Fuel and Waste ManagementRep. TR-94- 74, Swedish Nuclear Fuel and Waste Management

Doughty, C.

2013-01-01T23:59:59.000Z

418

DeFrees Small Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Small Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 15.0 Beam(m) 0.8 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 30 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 1:10 sloping glass with dissipative horsehair covering if needed

419

Exploration and Development Techniques for Basin and Range Geothermal  

Open Energy Info (EERE)

Techniques for Basin and Range Geothermal Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV; 2002/09/22 Published Geothermal Resources Council, 2002 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Citation David D. Blackwell,Mark Leidig,Richard P. Smith,Stuart D. Johnson,Kenneth

420

Contemporary Tectonic Deformation of the Basin and Range Province, Western  

Open Energy Info (EERE)

Contemporary Tectonic Deformation of the Basin and Range Province, Western Contemporary Tectonic Deformation of the Basin and Range Province, Western United States: 10 Years of Observation with the Global Positioning System Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Contemporary Tectonic Deformation of the Basin and Range Province, Western United States: 10 Years of Observation with the Global Positioning System Abstract [1] We have estimated patterns and rates of crustal movement across 800 km of the Basin and Range at ∼39° north latitude with Global Positioning System surveys in 1992, 1996, 1998, and 2002. The total rate of motion tangent to the small circle around the Pacific-North America pole of rotation is 10.4 ± 1.0 mm/yr, and motion normal to this small circle is 3.9 ± 0.9 mm/yr compared to the east end of our network. On the Colorado

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Atlantic Basin Refining Dynamics from U.S. Perspective  

Gasoline and Diesel Fuel Update (EIA)

This presentation focuses on the current refining situation in the Atlantic Basin, This presentation focuses on the current refining situation in the Atlantic Basin, Page 1 including some discussion on how we got here, and on drivers that will influence the next 5 years. I will focus on three topics today that are critical to the petroleum product dynamics of Page 2 the Atlantic Basin over the next several years. The first is product demand growth - something that has been affected both by the recession and legislation. Next I will cover the supply situation for gasoline and distillates in the Atlantic Basin, since Europe and the U.S. are closely entwined in these markets. Last, we will visit the outlook for those drivers affecting profitability - an area of large uncertainty. I will begin today with a short discussion of important underlying long-term trends in U.S.

422

Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Magnetotellurics At Northern Basin & Range Region Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

423

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

424

Characteristics of Basin and Range Geothermal Systems with Fluid  

Open Energy Info (EERE)

Characteristics of Basin and Range Geothermal Systems with Fluid Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Abstract Six geothermal reservoirs with fluid temperatures over 200°C and ten geothermal systems with measured fluid temperatures of 150-200°C have been discovered in the northern Basin and Range Province of the USA. A comparison of these high and moderate temperature systems shows considerable overlap in geographical distribution, geology, and physical properties. Our ability to distinguish between moderate and high temperature systems using fluid chemistry has been limited by often

425

File:Denver Basin.pdf | Open Energy Information  

Open Energy Info (EERE)

Basin.pdf Basin.pdf Jump to: navigation, search File File history File usage File:Denver Basin.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 625 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:00, 4 March 2013 Thumbnail for version as of 11:00, 4 March 2013 1,275 × 1,650 (625 KB) Alevine (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file. Retrieved from "http://en.openei.org/w/index.php?title=File:Denver_Basin.pdf&oldid=5897

426

L-Shaped Flume Wave Basin | Open Energy Information  

Open Energy Info (EERE)

L-Shaped Flume Wave Basin L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 76.2 Beam(m) 15.2 Depth(m) 1.8 Water Type Freshwater Special Physical Features Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control sys

427

Geothermal Resource Analysis and Structure of Basin and Range Systems,  

Open Energy Info (EERE)

Analysis and Structure of Basin and Range Systems, Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Authors David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published U.S. Department of Energy, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Citation David D. Blackwell,Kenneth W. Wisian,Maria C. Richards,Mark Leidig,Richard Smith,Jason McKenna. 2003. Geothermal Resource Analysis and Structure of

428

Coal Pile Basin Project (4595), 5/31/2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Pile Basin Project (4595) Coal Pile Basin Project (4595) Program or Field Office: Y-12 Site Office Location(s) (City/County/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is provide demolish and deactivate the coal pile basin to grade where practical and backfill below grade portion of basin; the remaining underground portion of the stock out conveyor structure, both entrances and backfill pit; and remove universal waste, conveyor belt, asbestos; and, miscellaneous shed type structure at the south entrance to the coal pile. Categorical Exclusion(s) Applied: 81.29- Disposal facilities for construction and demolition waste For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each

429

DeFrees Large Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Large Wave Basin Large Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Large Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 32.0 Beam(m) 0.6 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 64 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be generated; arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes

430

EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program;  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

495: Walla Walla Basin Spring Chinook Hatchery Program; 495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington SUMMARY Bonneville Power Administration (BPA) is preparing an EIS to analyze the potential environmental impacts of funding a proposal by the Confederated Tribes of the Umatilla Indian Reservation to construct and operate a hatchery for spring Chinook salmon in the Walla Walla River basin. Additional information is available at the project website: http://efw.bpa.gov/environmental_services/Document_Library/WallaWallaHatchery/. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILALE FOR DOWNLOAD March 28, 2013 EIS-0495: Notice of Intent to Prepare an Environmental Impact Statement

431

Inversion Breakup in Small Rocky Mountain and Alpine Basins  

Science Conference Proceedings (OSTI)

Comparisons are made between the postsunrise breakup of temperature inversions in two similar closed basins in very different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes ...

C. David Whiteman; Bernhard Pospichal; Stefan Eisenbach; Philipp Weihs; Craig B. Clements; Reinhold Steinacker; Erich Mursch-Radlgruber; Manfred Dorninger

2004-08-01T23:59:59.000Z

432

The Water Budget of the Kuparuk River Basin, Alaska  

Science Conference Proceedings (OSTI)

A water budget study that considers precipitation, river runoff, evapotranspiration, and soil moisture for the Kuparuk River basin on the North Slope of Alaska is presented. Numerical simulations of hydrologic processes using the NASA Catchment-...

Stephen J. Dry; Marc Stieglitz; sa K. Rennermalm; Eric F. Wood

2005-10-01T23:59:59.000Z

433

Basin Electric Power Coop (South Dakota) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Basin Electric Power Coop Place South Dakota Utility Id 1307 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

434

Improving Seasonal Hurricane Predictions for the Atlantic Basin  

Science Conference Proceedings (OSTI)

This paper demonstrates that improved forecasts of the annual number of hurricanes in the Atlantic tropical basin are possible by separating tropical-only hurricanes from hurricanes influenced by extratropical factors. It is revealed that ...

J. C. Hess; J. B. Elsner; N. E. LaSeur

1995-06-01T23:59:59.000Z

435

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...  

Annual Energy Outlook 2012 (EIA)

with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

436

Negotiating nature : expertise and environment in the Klamath River Basin  

E-Print Network (OSTI)

"Negotiating Nature" explores resource management in action and the intertwined roles of law and science in environmental conflicts in the Upper Klamath River Basin in southern Oregon. I follow disputes over the management ...

Buchanan, Nicholas Seong Chul

2010-01-01T23:59:59.000Z

437

Predicting Atlantic Basin Seasonal Tropical Cyclone Activity by 1 August  

Science Conference Proceedings (OSTI)

More than 90% of all seasonal Atlantic tropical cyclone activity typically occurs after 1 August. A strong predictive potential exists that allows seasonal forecasts of Atlantic basin tropical cyclone activity to be issued by 1 August, prior to ...

William M. Gray; Christopher W. Landsea; Paul W. Mielke Jr.; Kenneth J. Berry

1993-03-01T23:59:59.000Z

438

Roanoke River Basin Bi-State Commission (Multiple States)  

Energy.gov (U.S. Department of Energy (DOE))

The Roanoke River Basin Bi-State Commission was established as a bi-state commission composed of members from the Commonwealth of Virginia and the State of North Carolina.The purpose of the...

439

California - San Joaquin Basin Onshore Dry Natural Gas Proved...  

Annual Energy Outlook 2012 (EIA)

Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

440

California - San Joaquin Basin Onshore Crude Oil Proved Reserves ...  

U.S. Energy Information Administration (EIA)

California - San Joaquin Basin Onshore Crude Oil Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's:

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Streamflow Characteristics and Changes in Kolyma Basin in Siberia  

Science Conference Proceedings (OSTI)

This study documents major changes in streamflow hydrology over the Kolyma watershed due to climatic variations and human impacts. Streamflow seasonal cycles over the basin are characteristic of the northern region, with the lowest runoff in ...

Ipshita Majhi; Daqing Yang

2008-04-01T23:59:59.000Z

442

Three-Dimensional Tidal Flow in an Elongated, Rotating Basin  

Science Conference Proceedings (OSTI)

The three-dimensional tidal circulation in an elongated basin of arbitrary depth is described with a linear, constant-density model on the f plane. Rotation fundamentally alters the lateral flow, introducing a lateral recirculation comparable in ...

Clinton D. Winant

2007-09-01T23:59:59.000Z

443

Pemex plans large program to expand Burgos basin gas output  

Science Conference Proceedings (OSTI)

Although Burgos basin fields have been in production since 1945--maximum production rate to date was in 1970 with just over 600 MMcfd--Pemex officials are optimistic the basin has sufficient reserves to warrant further exploration. Rather than just explore for new fields and pools, Pemex aims to use 3D seismic technology to get a better picture of existing reservoirs and use new drilling techniques and hydraulic fracturing to boost production levels Because gas reservoirs in the Burgos basin and in the Rio Grande basin of Texas tend to be compact, it is unlikely any cross-border production issues--such as those still to be settled between the two countries in the Gulf of Mexico--will arise. The paper discusses Burgos development, domestic versus US gas, the geologic framework, and Mexico`s infrastructure needs.

NONE

1997-11-10T23:59:59.000Z

444

Predicting Atlantic Basin Seasonal Tropical Cyclone Activity by 1 June  

Science Conference Proceedings (OSTI)

This is the third in a series of papers describing the potential for the seasonal forecasting of Atlantic basin tropical cyclone activity. Earlier papers by the authors describe seasonal prediction from 1 December of the previous year and from 1 ...

William M. Gray; Christopher W. Landsea; Paul W. Mielke Jr.; Kenneth J. Berry

1994-03-01T23:59:59.000Z

445

Conflicting Signals of Climatic Change in the Upper Indus Basin  

Science Conference Proceedings (OSTI)

Temperature data for seven instrumental records in the Karakoram and Hindu Kush Mountains of the Upper Indus Basin (UIB) have been analyzed for seasonal and annual trends over the period 19612000 and compared with neighboring mountain regions ...

H. J. Fowler; D. R. Archer

2006-09-01T23:59:59.000Z

446

Winter Circulation and Convection in the Antalya Basin (Eastern Mediterranean)  

Science Conference Proceedings (OSTI)

From an oceanographic survey of the Antalya Basin in February 1997 the following horizontal circulation pattern was found: the Asia Minor Current (AMC) was detached from the Turkish coast flowing to the southwest. The Cilician Current was present ...

Reiner Onken; Hseyin Yce

2000-05-01T23:59:59.000Z

447

Baroclinic Modes in a Two-Layer Basin  

Science Conference Proceedings (OSTI)

The objective of this study is to investigate the time-dependent circulation in a closed basin where the steady circulation is included and long Rossby wave speeds are consistent with observations. Specifically, the large-scale baroclinic ...

Matthew Spydell; Paola Cessi

2003-03-01T23:59:59.000Z

448

Slow Instabilities in Tropical Ocean BasinGlobal Atmosphere Models  

Science Conference Proceedings (OSTI)

The effect of ocean boundaries on instability in coupled ocean-natmosphere models is determined. Eigenvalues and eigenvectors are calculated for coupled systems featuring an ocean basin bounded zonally by a flat continent. The atmosphere is ...

Anthony C. Hirst

1988-03-01T23:59:59.000Z

449

The Hydrometeorology of a Deforested Region of the Amazon Basin  

Science Conference Proceedings (OSTI)

A series of numerical simulations were performed to evaluate the capability of the Regional Atmospheric Modeling System (RAMS) to simulate the evolution of convection in a partly deforested region of the Amazon basin during the rainy season, and ...

Renato Ramos da Silva; Roni Avissar

2006-10-01T23:59:59.000Z

450

Pacific Decadal Variability: Paced by Rossby Basin Modes?  

Science Conference Proceedings (OSTI)

A systematic study is presented of decadal climate variability in the North Pacific. In particular, the hypothesis is addressed that oceanic Rossby basin modes are responsible for enhanced energy at decadal and bidecadal time scales. To this end, ...

Wilbert Weijer; Ernesto Muoz; Niklas Schneider; Franois Primeau

2013-02-01T23:59:59.000Z

451

Modal Decay in the AustraliaAntarctic Basin  

Science Conference Proceedings (OSTI)

The barotropic intraseasonal variability in the AustraliaAntarctic Basin (AAB) is studied in terms of the excitation and decay of topographically trapped barotropic modes. The main objective is to reconcile two widely differing estimates of the ...

Wilbert Weijer; Sarah T. Gille; Frdric Vivier

2009-11-01T23:59:59.000Z

452

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism  

Open Energy Info (EERE)

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Abstract Some of the earliest volcanic rocks attributed to the Yellowstone hotspot erupted from the McDermitt caldera and related volcanic centers in northwestern Nevada at 17-15 Ma. At that time, extensional faulting was ongoing to the south in central Nevada, leading some to suggest that the nascent hotspot caused or facilitated middle Miocene Basin and Range extension. Regional geologic relationships indicate that the total magnitude of extension in northwestern Nevada is low compared to the amount

453

Oil and gas resources in the West Siberian Basin, Russia  

Science Conference Proceedings (OSTI)

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

454

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia 139 Appendix D Field Summaries Tables 1D and 2D lists the fields of the West

455

On the Horizontal Extent of the Canada Basin Thermohaline Steps  

Science Conference Proceedings (OSTI)

Microstructure profiles of temperatures through the diffusive thermohaline staircase above the Atlantic layer core in the Canada Basin of the Arctic Ocean are used to investigate the horizontal scales of layers. Daily profiles during two periods, ...

Laurie Padman; Thomas M. Dillon

1988-10-01T23:59:59.000Z

456

Intensification of Geostrophic Currents in the Canada Basin, Arctic Ocean  

Science Conference Proceedings (OSTI)

Continuous sampling of upper-ocean hydrographic data in the Canada Basin from various sources spanning from 2003 through 2011 provides an unprecedented opportunity to observe changes occurring in a major feature of the Arctic Ocean. In a 112-km-...

Miles G. McPhee

2013-05-01T23:59:59.000Z

457

INTER-MOUNTAIN BASINS SHALE BADLAND extent exaggerated for display  

E-Print Network (OSTI)

INTER-MOUNTAIN BASINS SHALE BADLAND R.Rondeau extent exaggerated for display ACHNATHERUM HYMENOIDES HERBACEOUS ALLIANCE Achnatherum hymenoides Shale Barren Herbaceous Vegetation ARTEMISIA BIGELOVII SHRUBLAND ALLIANCE Leymus salinus Shale Sparse Vegetation Overview: This widespread ecological system

458

Basin-Scale Opportunity Assessment Initiative Background Literature Review  

SciTech Connect

As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended to promote that understanding. The literature review begins with a discussion in Section 2.0 of the Federal regulatory processes and mission areas pertaining to hydropower siting and licensing at the basin scale. This discussion of regulatory processes and mission areas sets the context for the next topic in Section 3.0, past and ongoing basin-scale hydropower planning and assessment activities. The final sections of the literature review provide some conclusions about past and ongoing basin-scale activities and their relevance to the current basin-scale opportunity assessment (Section 4.0), and a bibliography of existing planning and assessment documents (Section 5.0).

Saulsbury, Bo [ORNL; Geerlofs, Simon H. [Pacific Northwest National Laboratory (PNNL); Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-10-01T23:59:59.000Z

459

SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING  

SciTech Connect

The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

2009-12-03T23:59:59.000Z

460

Basin-Scale Opportunity Assessment Initiative Background Literature Review  

DOE Green Energy (OSTI)

As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended to promote that understanding. The literature review begins with a discussion in Section 2.0 of the Federal regulatory processes and mission areas pertaining to hydropower siting and licensing at the basin scale. This discussion of regulatory processes and mission areas sets the context for the next topic in Section 3.0, past and ongoing basin-scale hydropower planning and assessment activities. The final sections of the literature review provide some conclusions about past and ongoing basin-scale activities and their relevance to the current basin-scale opportunity assessment (Section 4.0), and a bibliography of existing planning and assessment documents (Section 5.0).

Saulsbury, Bo [ORNL; Geerlofs, Simon H. [Pacific Northwest National Laboratory (PNNL); Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Test Plan for K Basin floor sludge consolidated sampling equipment  

SciTech Connect

The purpose of this document is to provide the test procedure for the function and acceptance testing of the K Basin Floor Sludge Consolidated Sampling Equipment. This equipment will be used to transfer K Basin floor sludge to a sludge sampling container for subsequent shipment to an analysis or testing facility. This equipment will provide sampling consistent with data quality objectives and sampling plans currently being developed.

OLIVER, J.W.

1998-10-30T23:59:59.000Z

462

Repository site definition in basalt: Pasco Basin, Washington  

SciTech Connect

Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

1982-03-01T23:59:59.000Z

463

Evolutionary sequences and hydrocarbon potential of Kenya sedimentary basins  

Science Conference Proceedings (OSTI)

Kenya basins have evolved primarily through extension related to episodic continental rifting. In eastern Kenya, thick accumulations of sediments formed within grabens during the prerift phase (Precambrian to Carboniferous) of the Gondwana breakup. Synrift sedimentation (Late Carboniferous to Middle Jurassic) occurred within a north-south rift system, which included the Mandera basin, South Anza basin, and Lamu embayment. During the Early Jurassic, a marine transgression invaded the margins of the eastern Kenya rift basins, resulting in the deposition of platform carbonates and shales. A Callovian-aged salt basin formed in the offshore regions of the Lamu embayment. Intermittent tectonic activity and eustatic sea-level changes controlled sedimentation, which produced marine shales, carbonates or evaporites, and fluvio-deltaic to lacustrine sandstones. From the Early Cretaceous to recent, continental sediments were deposited within the North Anza and Turkana basins. These fluvial-lacustrine sediments are similar to the Lower Cretaceous sequences that have produced oil in the Mesozoic Sudanese Abu Gabra rift. Although exploration activities began in the early 1950s, significant occurrences of potential reservoir, source, and seal lithologies as well as trapping configurations remain in many areas. Favorable structures and sequences of reservoir sandstones and carbonates overlain by potentially sealing lacustrine or marine shales, evaporites, or volcanics have been noted. Potential source beds are believed to be present within shales of the lacustrine or marine depositional environments.

Cregg, A.K. (Western Atlas International, Inc., Carrollton, TX (United States))

1991-03-01T23:59:59.000Z

464

The ecology of Barataria Basin, Louisiana: An estuarine profile  

SciTech Connect

The Barataria Basin lies entirely in Louisiana between the natural levees of the active Mississippi River and the abandoned Bayou Lafourche distributary. It is characterized by a network of interconnecting water bodies which allows transport of water, materials, and migrating organisms throughout the basin. Natural and artificial levees and barrier islands are the only high, well-drained ground in the basin, which is otherwise characterized by extensive swamp forests and fresh, brackish, and salt marshes. These wetlands and water bodies are extremely productive biologically and provide valuable nursery habitat for a number of commercial and recreational fish and shellfish, as well as habitat for wintering waterfowl and furbearers. The basin is a dynamic system undergoing constant change because of geologic and human processes. The network of bays, lakes, and bayous has gradually enlarged over time due to natural subsidence and erosion. Superimposed on these natural processes has been the construction of levees for flood control and network of canals constructed for oil and gas exploration and extraction. These human activities have altered natural hydrologic patterns in the basin and may directly or indirectly contribute to wetland losses. Controlling wetland deterioration in the basin is a major management concern.

Conner, W.H.; Day, J.W. Jr. (eds.)

1987-07-01T23:59:59.000Z

465

Yakima Basin Fish Passage Project, Phase 2  

DOE Green Energy (OSTI)

Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs.

Not Available

1991-08-01T23:59:59.000Z

466

Selecting major Appalachian basin gas plays  

SciTech Connect

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-01-01T23:59:59.000Z

467

Selecting major Appalachian basin gas plays  

Science Conference Proceedings (OSTI)

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-06-01T23:59:59.000Z

468

Understanding Long-Term Solute Transport in Sedimentary Basins: Simulating Brine Migration in the Alberta Basin. Final Report  

Science Conference Proceedings (OSTI)

Mass transport in deep sedimentary basins places important controls on ore formation, petroleum migration, CO2 sequestration, and geochemical reactions that affect petroleum reservoir quality, but large-scale transport in this type of setting remains poorly understood. This lack of knowledge is highlighted in the resource-rich Alberta Basin, where geochemical and hydrogeologic studies have suggested residence times ranging from hundreds of millions of years to less than 5 My, respectively. Here we developed new hydrogeologic models that were constrained by geochemical observations to reconcile these two very different estimates. The models account for variable-density fluid flow, heat transport, solute transport, sediment deposition and erosion, sediment compressibility, and dissolution of salt deposits, including Cl/Br systematics. Prior interpretations of Cl/Br ratios in the Alberta Basin concluded that the brines were derived from evaporatively-concentrated brines that were subsequently diluted by seawater and freshwater; models presented here show that halite dissolution must have contributed strongly as well, which implies significantly greater rates of mass transport. This result confirms that Cl/Br ratios are subject to significant non-uniqueness and thus do not provide good independent indicators of the origin of brines. Salinity and Cl/Br ratios provided valuable new constraints for basin-scale models, however. Sensitivity studies revealed that permeabilities obtained from core- and field-scale tests were appropriate for basin-scale models, despite the differences in scale between the tests and the models. Simulations of groundwater age show that the residence time of porefluids in much of the basin is less than 100 My. Groundwater age increases with depth and approaches 200 My in the deepest part of the basin, but brines are significantly younger than their host rocks throughout the basin.

Alicia M. Wilson

2009-11-30T23:59:59.000Z

469

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini

2003-09-11T23:59:59.000Z

470

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

Science Conference Proceedings (OSTI)

The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini

2003-11-11T23:59:59.000Z

471

Energy-related impacts on Great Plains agricultural productivity in the next quarter century, 1976--2000. Great plains agricultural council publication  

SciTech Connect

Contents: The food demand dimension; Agriculture's relationship to national energy goals; Assumptions relating to great plains agriculture; Agricultural energy usage in perspective; The emerging energy usage transition agenda; General energy related agricultural adjustment concepts; Operational and technological adjustments in energy intense components; Agribusiness impacts and adjustments; Forests and energy; Effects of great plains energy resource development on agriculture; Institutional and agency program demands.

1976-01-01T23:59:59.000Z

472

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa |  

Open Energy Info (EERE)

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Details Activities (2) Areas (1) Regions (0) Abstract: The San Luis basin is the largest and deepest basin in the Neogene Rio Grande rift, and has many similarities to the basins of the US Basin and Range Province. It is asymmetric with a displacement of as much as 9 km on its eastern margin, and approximately 6.4 km of sedimentary rocks of late Oligocene or younger age in the deepest portion of the basin. Temperature measurements in shallow wells in the northern basin have an average geothermal gradient of 59.0 ± 11.8°C km-1 (± standard

473

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

BOE Reserve Class BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1- 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

474

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Reserve Class Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1- 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

475

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1- 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

476

Fortescue field, Gippsland basin: Flank potential realized  

SciTech Connect

Fortescue field was the last major oil field to be discovered in the offshore Gippsland basin, southeastern Australia. The discovery well, 1 West Halibut, was drilled in 1978 on the basis of a 1-km seismic grid as a follow up to the dry 1 Fortescue wildcat. Data from this well were interpreted to indicate that there was a high probability of a stratigraphic trap occurring on the western flank of the giant Halibut-Cobia structure. The 2, 3, and 4 Fortescue wells were drilled by early 1979 to determine the limits of the field, delineate the stratigraphy, and define the hydrocarbon contacts. Cobia A had the dual purpose of developing the Cobia field and the southern extent of the Fortescue reservoirs that were inaccessible to the Fortescue A plat-form. At the conclusion of development drilling in early 1986, eight Cobia A wells and 20 Fortescue A wells were capable of producing from Fortescue reservoirs. The Fortescue reservoirs are Eocene sandstones that were deposited in coastal plain, upper shoreface, and lower shoreface environments. Integration of well log correlations, stratigraphic interpretations, reservoir pressure data, and seismic data indicates that these Fortescue reservoirs are stratigraphically younger than, and are hydraulically separated from, the underlying Halibut-Cobia fields. Pressure data acquired during development drilling and while monitoring subsequent production performance have conclusively demonstrated that there are at least three separate hydraulic systems active within the Fortescue field. Fortescue field dimensions are approximately 11 km x 4 km with a maximum relief of 100 m above the original oil-water contact. Reserves are estimated at 280,000 STB, based on original oil in place estimates of 415,000 STB and recovery factors in the 65-70% range. Production rate peaked in 1984 at 100 K BOPD from the combined development facilities and was sustained until late 1986. More than two-thirds of the reserves have been produced to date.

Hendrich, J.H.; Schwebel, D.A.; Palmer, I.D. (Esso Asustralia Ltd., Sydney, New South Wales (Australia))

1990-09-01T23:59:59.000Z

477

Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.  

DOE Green Energy (OSTI)

This document contains summary reports of stream habitat surveys, conducted in the Yakima River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

1996-01-01T23:59:59.000Z

478

Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.  

DOE Green Energy (OSTI)

This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the basis to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

1995-01-01T23:59:59.000Z

479

Large-scale solar projects in the United States have made great...  

NLE Websites -- All DOE Office Websites (Extended Search)

the United States have made great progress in delivering competitively priced renewable electricity September 2013 The price at which electricity from large-scale solar power...

480

Orange County Great Park Welcomes U.S. Department of Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACT: MARCUS GINNATY 949-724-6574 Orange County Great Park Welcomes U.S. Department of Energy Solar Decathlon 2013 Collegiate Teams * Representatives from 20 collegiate teams...

Note: This page contains sample records for the topic "great artesian basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.