Powered by Deep Web Technologies
Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lubrication from mixture of boric acid with oils and greases  

DOE Patents [OSTI]

Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

Erdemir, A.

1995-07-11T23:59:59.000Z

2

EECBG Success Story: Atlanta Suburb Greases the Path to Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Atlanta Suburb Greases the Path to Savings with Biodiesel EECBG Success Story: Atlanta Suburb Greases the Path to Savings with Biodiesel December 7, 2011 - 3:33pm Addthis Downtown...

3

Bio-based Greases: Environmental concerns  

E-Print Network [OSTI]

are causing a resurgence for these plant-based lubricants. 36 • MAY 2014 TRIBOLOGY & LUBRICATION TECHNOLOGY WWW.STLE.ORGAFTER A 150-YEAR HIATUS, lubricating greases made from agricultural products are making a comeback. For some 4,000 years, animal fats, olive oil and other biobased materials kept wheels and gears moving along smoothly. The shift toward petroleum-based lubricants came about only in the latter half of the 19th century. 1 Now uncertainties in petroleum prices and supply sources, coupled with an emerging awareness of environmental factors, are turning a small segment of the market back to lubricants made from renewable resources—mainly plants. Back to the Future Can bio-based lubricants compete in a world of high-capacity generators, jet aircraft engines and 18-wheel trucks? This question is particularly challenging when the lubricants are greases, which require thickeners and additives and must perform under heavy loads and in hostile environments. WHY BIO?

unknown authors

4

Author's Accepted Manuscript Aircraft Landing Gear Greased Slider Bearing  

E-Print Network [OSTI]

. Numerical results indicate fundamental differences in fluid flow behavior between greased and oil-lubricated in order to design high efficiency bearings. For more than 30 years, lubrication studies have been extended to include tem- perature effects [2]. Many of the thermo-elasto-hydrodynamic (TEHD) studies were steady

5

Hanford recycling  

SciTech Connect (OSTI)

This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall DOE recycling contract at the Hanford site and a central group to control the contract. 0 Using a BOA or MTS contract as a way to get proceeds from recycling back to site facilities to provide incentives for recycling. . Upgrading tracking mechanisms to track and recycle construction waste which is presently buried in onsite pits. . Establishing contract performance measures which hold each project accountable for specific waste reduction goals. * Recycling and reusing any material or equipment possible as buildings are dismantled.

Leonard, I.M.

1996-09-01T23:59:59.000Z

6

CULTURAL RATCHETING RESULTS PRIMARILY FROM SEMANTIC COMPRESSION  

E-Print Network [OSTI]

CULTURAL RATCHETING RESULTS PRIMARILY FROM SEMANTIC COMPRESSION JOANNA J. BRYSON Artificial Models that cultural ratcheting requires the communication of beliefs about #12;hypotheses. Clearly, cultural

Bryson, Joanna J.

7

The effects of surfactant concentration on grease removal by air flotation in municipal sewage treatment  

E-Print Network [OSTI]

systems, high grease loading contributes to the formation of scum blankets which reduce operating efficiency and may lead to expensive shut-down and clean-out operations. Normally, influent wastewater to biological treatment systems with oil and grease... are forcing engineers to take a closer look at specif1c aspects of wastewater treatment. One such aspect is that of remov1ng oil and grease from wastewater streams. The average ind1vidual is well aware of the effects of discharging oily substances...

Perry, Larry Eugene

1978-01-01T23:59:59.000Z

8

Extreme Recycling  

E-Print Network [OSTI]

Broadcast Transcript: Singing the recycling blues because you have to separate your chipboard from your newspaper, your steel from your aluminum, your #1 from your #2 plastic? Pantywaists! The residents of Kamikatsu, Japan ...

Hacker, Randi

2009-01-14T23:59:59.000Z

9

Boron-based Additives in Oil and Grease for Wind Turbine Applications  

E-Print Network [OSTI]

This research investigates the tribological performance of crystalline and amorphous powders of boron as additives in lubricants: grease and mineral oil for potential applications of wind turbine. This research is focused on the wear resistance...

Kim, Jun-Hyeok

2013-06-25T23:59:59.000Z

10

Study of Performance Characteristics of Diesel Engine Fuelled with Diesel, Yellow Grease Biodiesel and its Blends  

E-Print Network [OSTI]

Abstract — The feedstock used in our experiment for the production of biodiesel was Yellow Grease. The whole experiment was divided into two parts: Production and Testing. Production involves Transesterification of free fatty acids in yellow grease to form yellow grease alkyl esters. The process of testing involved calculation of the physio – chemical properties, acid value, density, kinematics viscosity and various performance characteristics. The properties obtained were similar to the standards of biodiesel set by ASTM D6751. The conclusions derived from the experiments conducted were that the break thermal efficiency with biodiesel blends was little lower than that of diesel. The break specific energy consumption for B20, B40, B60, B80 and B100 is slightly higher than neat diesel. At all loads, diesel was found to have the lowet exhaust tempearture and the temperature for the different blends showed the upward trend with increasing concentration of biodiesel in the blends.

Virender Singh; Shubham Saxena; Shibayan Ghosh; Ankit Agrawal

11

Recycling universe  

E-Print Network [OSTI]

If the effective cosmological constant is non-zero, our observable universe may enter a stage of exponential expansion. In such case, regions of it may tunnel back to the false vacuum of an inflaton scalar field, and inflation with a high expansion rate may resume in those regions. An ``ideal'' eternal observer would then witness an infinite succession of cycles from false vacuum to true, and back. Within each cycle, the entire history of a hot universe would be replayed. If there were several minima of the inflaton potential, our ideal observer would visit each one of these minima with a frequency which depends on the shape of the potential. We generalize the formalism of stochastic inflation to analyze the global structure of the universe when this `recycling' process is taken into account.

Jaume Garriga; Alexander Vilenkin

1997-07-26T23:59:59.000Z

12

PPPL-3157 -Preprint Date: March 1996, UC-421, 423, 426 Investigations of the Tritium Recycling  

E-Print Network [OSTI]

1 PPPL-3157 - Preprint Date: March 1996, UC-421, 423, 426 Investigations of the Tritium Recycling material to be ejected into the plasma. This recycling of plasma fuel, which occurs primarily on the inner influx from the edge. Despite its importance, a full understanding of the factors influencing recycling

13

PPPL3157 Preprint Date: March 1996, UC421, 423, 426 Investigations of the Tritium Recycling  

E-Print Network [OSTI]

1 PPPL­3157 ­ Preprint Date: March 1996, UC­421, 423, 426 Investigations of the Tritium Recycling material to be ejected into the plasma. This recycling of plasma fuel, which occurs primarily on the inner influx from the edge. Despite its importance, a full understanding of the factors influencing recycling

14

ParadigmParadigm Concrete RecyclingConcrete Recycling  

E-Print Network [OSTI]

ParadigmParadigm Concrete RecyclingConcrete Recycling #12;Recycled ConcreteRecycled Concrete ·· Whatever steel goes into PCC must comeWhatever steel goes into PCC must come out for recycleout for recycle ·· Aggregates have a big impact on the costAggregates have a big impact on the cost of recyclingof recycling

15

Plastic Recycling Toter -ORANGE  

E-Print Network [OSTI]

microfuge tubes - beakers - flasks - bottles - jars - Plastic disposable pipettes with cotton plugsPlastic Recycling Toter - ORANGE Glass Recycling Toter - TEAL Garbage Yellow sharps container Categories - All Plastic except Styrofoam - rinsed 3 times - may have contained Biohazard level 1 bacteria

Toronto, University of

16

Federal Recycling Program Printed on recycled paper.  

E-Print Network [OSTI]

#12;Federal Recycling Program Printed on recycled paper. The Forest Health Technology Enterprise of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 independence MALEZAS POR ENEMIGOS NATURALES R. G. VAN DRIESCHE University of Massachusetts Amherst, Massachusetts, USA

Hoddle, Mark S.

17

SciTech Connect: Brown Grease to Biodiesel Demonstration Project Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controllerAdditiveBetatron Radiation from aBrown Grease to

18

St Andrews Recycling Points Recycling Points are situated locally to  

E-Print Network [OSTI]

St Andrews Recycling Points Recycling Points are situated locally to allow you to recycle the following materials: To find your nearest Recycling Point please visit www.fifedirect.org.uk/wasteaware or call the Recycling Helpline on 08451 55 00 22. R&A GOLF CLUB OLD COURSE HOTEL UNIVERSITY NORTH HAUGH

St Andrews, University of

19

Benchmarking survey for recycling.  

SciTech Connect (OSTI)

This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

Marley, Margie Charlotte; Mizner, Jack Harry

2005-06-01T23:59:59.000Z

20

Announcing: All Recycling Reduce your  

E-Print Network [OSTI]

Announcing: All Recycling Go Green! Reduce your contribution to the landfill, by choosing to voluntarily recycle acceptable items in the green All Recycling toters and containers around campus. ONLY THE ITEMS BELOW ARE ACCEPTED FOR ALL RECYCLING Please do not contaminate the recycling containers with trash

Papautsky, Ian

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TRANSPARENCY RECYCLING PROGRAM PROCEDURES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transparencies to be recycled. 2.) SEPARATE the transparencies from ringed binders, plastic or paper folders, envelopes, andor files. 3.) PLACE the transparencies (only) into...

22

The Fermilab recycler ring  

SciTech Connect (OSTI)

The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

Martin Hu

2001-07-24T23:59:59.000Z

23

RESOURCE GUIDE RECYCLING ELECTRONICS  

E-Print Network [OSTI]

://www.thesoftlanding.com/ AVOIDING BISPHENOL-A Eden Organics Beans http://www.edenfoods.com/ CD and DVD recycling httpRESOURCE GUIDE RECYCLING ELECTRONICS Batteries and Accessories Office Depot Cell Phones Any Verizon Plastics Call your local Solid Waste Management Facility eCycling resource (EPA) http

Danforth, Bryan Nicholas

24

RecycleMania! Improving Waste Reduction and Recycling on  

E-Print Network [OSTI]

RecycleMania! Improving Waste Reduction and Recycling on Campus from Universities to Big Business #12;Contact Information Tracy Artley Recycling Coordinator University of Michigan Tel: 734-763-5539 Email: recycle@umich.edu #12;Agenda Waste Impacts of Large Institutions Unique Challenges Overcoming

Awtar, Shorya

25

Solvent recycle/recovery  

SciTech Connect (OSTI)

This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

1990-09-01T23:59:59.000Z

26

A Membrane Process for Recycling Die Lube from Wastewater Solutions  

SciTech Connect (OSTI)

An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20?25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

Peterson, E.S.; Trudeau, J.; Cleary, B.; Hackett, M.; Greene, W.A.

2003-04-30T23:59:59.000Z

27

RECYCLING RATE STUDY Prepared by  

E-Print Network [OSTI]

NATIONAL RECYCLING RATE STUDY Prepared by: Smith, Bucklin and Associates, Inc. Market Research and Statistics Division Chicago, Illinois July 2003 PRINTED ON RECYCLED PAPER #12;BCI RECYCLING RATE STUDY TABLE ....................................................................................................1 II. METHODOLOGY A. Total Pounds of Lead Recycled from Batteries

Laughlin, Robert B.

28

Authorization Recycling in RBAC Systems  

E-Print Network [OSTI]

Authorization Recycling in RBAC Systems 1Laboratory for Education and Research in Secure Systems ·motivation ·recycling approach recycling algorithms experimental evaluations summary & future work #12 issued before (precise recycling) #12;6 Laboratory for Education and Research in Secure Systems

29

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING  

E-Print Network [OSTI]

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

Howitt, Ivan

30

Fermilab recycler diagnostics  

SciTech Connect (OSTI)

The Fermilab Recycler Ring is a permanent magnet storage ring for the storage and cooling of antiprotons. The following note describes the diagnostic tools currently available for commissioning, as well as the improvements and upgrades planned for the near future.

Martin Hu

2001-07-24T23:59:59.000Z

31

Curbside recycling in the presence of alternatives  

E-Print Network [OSTI]

WITH MINOR REVISIONS). Curbside Recycling in the Presence ofConservation, Division of Recycling. The views expressed inThese historically high recycling rates have often been

Beatty, Timothy K.M.; Berck, Peter; Shimshack, Jay P

2007-01-01T23:59:59.000Z

32

Scrap tire recycling  

SciTech Connect (OSTI)

As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

Lula, J.W.; Bohnert, G.W.

1997-03-01T23:59:59.000Z

33

http://nevadarecycles.gov/main/recyclables.htm  

National Nuclear Security Administration (NNSA)

Residential Recycling Guide for Clark County TV Recycling in Nevada National Recycling Web Resources Earth911.com provides a listing of recycling resources to help you find a way...

34

Power recycling for an interferometric gravitational wave  

E-Print Network [OSTI]

THESIS Power recycling for an interferometric gravitational wave detector Masaki Ando Department . . . . . . . . . . . . . . 48 3.3 Power recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Principle of power recycling . . . . . . . . . . . . . . . . . 50 3.3.2 Recycling cavity

Ejiri, Shinji

35

CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING  

E-Print Network [OSTI]

1 2 3 CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING Jos´e F. Mart´inez1 , Jose Renau2 Michael C. Huang3 , Milos Prvulovic2 , and Josep Torrellas2 #12;Cherry: Checkpointed Early Resource Recycling efficient use by aggressive recycling Opportunity: Resources reserved until retirement § ¦ ¤ ¥ Solution

Torrellas, Josep

36

Metal melting for volume reduction and recycle  

SciTech Connect (OSTI)

This paper summarizes the experiences with melting contaminated steel materials for volume reduction and melting uranium-contaminated copper and aluminum for possible recycle. In the past there has not been an economic incentive to reduce the volume of low-level beta-gamma contaminated metallic scrap materials in the United States. With the rising cost of transportation and burial facility fees new interest in volume reduction is being generated. This new interest has been primarily focused at the Idaho National Engineering Laboratory (INEL) where the Waste Experimental Reduction Facility (WERF) was established to demonstrate both metal melting and incineration of combustible material for volume reduction. Other demonstration programs involving melting for volume reduction and recycle of aluminum and copper, as well as ferrous scrap, were related to the Cascade Improvement and Cascade Upgrade Programs (CIP/CUP) at the Paducah, Kentucky facility. While the melting demonstrations for the CIP/CUP material were not primarily based on economic incentives, several observations recorded during the programs are of interest with regard to melting of copper and aluminum. (4 refs., 8 tabs.)

Miller, R.L.

1987-03-27T23:59:59.000Z

37

Refrigerator recycling and CFCs  

SciTech Connect (OSTI)

Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

Shepard, M.; Hawthorne, W.; Wilson, A.

1994-12-31T23:59:59.000Z

38

FINANCING ELECTRONIC WASTE RECYCLING - Californian Households’ Willingness to Pay Advanced Recycling Fees  

E-Print Network [OSTI]

to pay for curbside recycling; A comparison of payment carefees needed to sustain recycling of covered electronicsbehavior: waste recycling in Hong Kong. Journal of

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

39

Waste Toolkit A-Z Battery recycling  

E-Print Network [OSTI]

Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must in normal waste bins or recycling boxes. To recycle batteries, select either option 1 or 2 below: Option 1

Melham, Tom

40

Recycling Best Practices Report August 2011  

E-Print Network [OSTI]

Recycling Best Practices Report August 2011 Elizabeth Fox, Recycling Best Practices Intern Office of Waste Reduction and Recycling University of Michigan Plant Building and Grounds Services #12;Recycling Best Practices Report Office of Waste Reduction and Recycling 1 Executive Summary Due to the high

Kirschner, Denise

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Environmental Management Waste and Recycling Policy  

E-Print Network [OSTI]

Environmental Management Waste and Recycling Policy October 2006 The University is committed and promoting recycling and the use of recycled materials. We will actively encourage the recycling of office reduction techniques · Provide facilities for recycling on campus · Give guidance and information to staff

Haase, Markus

42

Recycling Bin Guide Locations and prices  

E-Print Network [OSTI]

Recycling Bin Guide Locations and prices Metal Bins Deskside Bins with Side Saddle Rubbermaid Bins.58 for auxiliaries. And Non-Public Areas Public Offices Non-Public Recyclables Recyclables RecyclablesTrash Trash Trash #12;New Recycling Bin Guidelines Frequently Asked Questions (as of December 2008) · Why

Kirschner, Denise

43

Recycling Programs | Department of Energy  

Office of Environmental Management (EM)

Germantown Paperclips Supply Stores. Batteries accepted for recycling are: Alkaline, Lithium Ion, Nickel Cadmium (Ni-Cd), Nickel-Iron, and Nickel Metal Hydride (NiMH). Toner...

44

Emulsified industrial oils recycling  

SciTech Connect (OSTI)

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

45

Recycler barrier RF buckets  

SciTech Connect (OSTI)

The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

Bhat, C.M.; /Fermilab

2011-03-01T23:59:59.000Z

46

Recycling Magnets | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 Revision 3 +DepartmentPolicyRecycling

47

Single Stream Recycling Say Goodbye to Sorting  

E-Print Network [OSTI]

Single Stream Recycling Say Goodbye to Sorting Paper Please email recycle@umich.edu for more Containers Cardboard Please flatten all cardboard before placing into bin! Visit us at www.recycle

Awtar, Shorya

48

RECYCLING: SUPPLY, ECONOMICS, ENVIRONMENT, AND TECHNOLOGY  

E-Print Network [OSTI]

RECYCLING: SUPPLY, ECONOMICS, ENVIRONMENT, AND TECHNOLOGY Panel Discussion Roundtable Moderator: S, although higher market values for recyclable will certainly stimulate increased interest in collection in recycling and deinking technologies and process design among North American, European, and Pacific Rim

Abubakr, Said

49

The Economic Benefits of Recycling in Virginia  

E-Print Network [OSTI]

The Economic Benefits of Recycling in Virginia Alexander P. Miller Hang T. Nguyen Samantha D, and the recycling contacts from the participating Solid Waste Planning Units discussed in this study. #12;3 Table Determinants of Recycling_______________________________ 12 State Reports

Lewis, Robert Michael

50

Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov  

E-Print Network [OSTI]

Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov Laboratory for Education delivery channels with speculatively pre- computed authorizations and actively recycling them on a just Security Keywords authorization recycling, authorization flooding, access con- trol, authorization, publish

51

RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE  

E-Print Network [OSTI]

RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University recycling and waste management facilities in Swansea university To ensure that Waste Management Objectives

Harman, Neal.A.

52

PITT RECYCLES! *Please empty cans!  

E-Print Network [OSTI]

PITT RECYCLES! Steel Aluminum Tin cans *Please empty cans! *Please empty containers! *Plastic bags can be recycled at Giant Eagle and Trader Joe's. Look on the bottom or the side of the container for one of these numbers! Clear glass Green glass Brown glass Blue glass *Please empty containers! Other

Sibille, Etienne

53

Recommendation 221: Recommendation Regarding Recycling of Metals...  

Office of Environmental Management (EM)

221: Recommendation Regarding Recycling of Metals and Materials Recommendation 221: Recommendation Regarding Recycling of Metals and Materials In addition to the DOE making a final...

54

Combustion Byproducts Recycling Consortium  

SciTech Connect (OSTI)

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

55

Combustion Byproducts Recycling Consortium  

SciTech Connect (OSTI)

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

2008-08-31T23:59:59.000Z

56

Coal liquefaction with preasphaltene recycle  

DOE Patents [OSTI]

A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

1986-01-01T23:59:59.000Z

57

Zero Waste Program 2011 Recycling Benefits  

E-Print Network [OSTI]

natural resources, and emits less CO2 because less energy is required in the manufacture of products made saved energy and reduced Greenhouse Gases through recycling. Recycling uses less energy, preserves) of GHG (Greenhouse Gas) Emissions: We Recycled: 477 tons of mixed or office paper The recycling

Delgado, Mauricio

58

Recycled Materials Resource Jeffrey S. Melton  

E-Print Network [OSTI]

Recycled Materials Resource Center Jeffrey S. Melton Outreach Director Recycled Materials Resource Center NCC Meeting, April 9th, 2008 #12;Recycled Materials Resource Center Partner laboratory of FHWA Founded in 1998, renewed in 2007 Dedicated to the appropriate use of recycled materials in the highway

59

The College Student's Guide to Recycling,  

E-Print Network [OSTI]

The College Student's Guide to Recycling, Reduction, and Reuse UNIVERSITY AT ALBANY Phone Albany, NY 12222 Top 7 Recycling and Reuse TipsTop 7 Recycling and Reuse Tips University at Albany Office of Environmental Sustainability 1. Set up separate bins for recyclable materials such as plastics and papers. 2

Kidd, William S. F.

60

Ink and Toner Recycling Rewards Program Overview  

E-Print Network [OSTI]

Ink and Toner Recycling Rewards Program Overview www.MyBusinessRecycles.com April 2013 #12;Program Overview · All BSD contract customers can participate in the MyBusinessRecycles program · Customers located in AK, HI or PR are not currently eligible. ­ Education sector customers should join the Recycling Rules

Meyers, Steven D.

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED  

E-Print Network [OSTI]

RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

Miami, University of

62

WasteTraining Booklet Waste & Recycling Impacts  

E-Print Network [OSTI]

WasteTraining Booklet #12;Waste & Recycling Impacts Environment: The majority of our municipal jobs while recycling 10,000 tons of waste creates 36 jobs. Environment: Recycling conserves resources. It takes 95% less energy to make aluminum from recycled aluminum than from virgin materials, 60% less

Saldin, Dilano

63

The Environment Team to Waste & Recycling  

E-Print Network [OSTI]

The Environment Team A-Z Guide to Waste & Recycling www.le.ac.uk/environment #12;Welcome ...to the University of Leicester's `A-Z Guide to Waste and Recycling'. Over the last 3 years, the Environment Team has introduced an award- winning recycling scheme across the campus that allows us to recycle paper, plastics

St Andrews, University of

64

Welcome new and returning residents! Help us make USC greener by recycling! Your Room Recycling Bin  

E-Print Network [OSTI]

Welcome new and returning residents! Help us make USC greener by recycling! Your Room Recycling Bin Every room is provided with a recycling bin to make it easy for you to recycle while living in University Housing. Use this bin to collect mixed recyclables in your room and take them to your nearest

Almor, Amit

65

Renewable and Recycled Energy Objective  

Broader source: Energy.gov [DOE]

In March 2007, the North Dakota enacted legislation (H.B. 1506) establishing an ''objective'' that 10% of all retail electricity sold in the state be obtained from renewable energy and recycled...

66

Framework for Building Design Recyclability  

E-Print Network [OSTI]

and reusing it as compacted base or drain material; 2. hauling it to a recycling facility Regardless of which recovery strategy is used, the physical processing of the material is the same: the concrete shards are fed into an impact crusher, followed... to Recycling Facilities 17 side discharge conveyor, screening plant, and a return conveyor from the screen to the crusher inlet for reprocessing oversize materials. Compact, self-contained mini- crushers are also available that can handle up to 150 tons per...

Zhang, Fan

2008-01-01T23:59:59.000Z

67

Key recycling in authentication  

E-Print Network [OSTI]

In their seminal work on authentication, Wegman and Carter propose that to authenticate multiple messages, it is sufficient to reuse the same hash function as long as each tag is encrypted with a one-time pad. They argue that because the one-time pad is perfectly hiding, the hash function used remains completely unknown to the adversary. Since their proof is not composable, we revisit it using a composable security framework. It turns out that the above argument is insufficient: if the adversary learns whether a corrupted message was accepted or rejected, information about the hash function is leaked, and after a bounded finite amount of rounds it is completely known. We show however that this leak is very small: Wegman and Carter's protocol is still $\\epsilon$-secure, if $\\epsilon$-almost strongly universal$_2$ hash functions are used. This implies that the secret key corresponding to the choice of hash function can be reused in the next round of authentication without any additional error than this $\\epsilon$. We also show that if the players have a mild form of synchronization, namely that the receiver knows when a message should be received, the key can be recycled for any arbitrary task, not only new rounds of authentication.

Christopher Portmann

2014-09-29T23:59:59.000Z

68

RDS and Recycling Waste Diversion in Food Prep  

E-Print Network [OSTI]

RDS and Recycling Waste Diversion in Food Prep Setting #12;Why Recycle? Recycling saves resources Recycling one ton of paper saves 17 trees! Recycling saves energy Recycling one aluminum can saves enough energy to power a television for 3 hours! Recycling is easy There are 4 waste categories here at UM

Awtar, Shorya

69

Influence of recycled fine aggregates on the resistance of mortars to magnesium sulfate attack  

SciTech Connect (OSTI)

The influence of recycled fine aggregates, which had been reclaimed from field-demolished concretes, on the resistance of mortar specimens to magnesium sulfate attack was investigated. Mortar specimens were prepared with recycled fine aggregates at different replacement levels (0%, 25%, 50%, 75% and 100% of natural fine aggregate by mass). The mortar specimens were exposed to 4.24% magnesium sulfate solution for about 1 year at ambient temperature, and regularly monitored for visual appearance, compressive strength loss and expansion. Additionally, in order to identify products of magnesium sulfate attack, mortar samples incorporating 0%, 25% and 100% replacement levels of the recycled fine aggregates were examined by X-ray diffraction (XRD) technique. Experimental results confirmed that the use of recycled fine aggregates up to a maximum 50% replacement level is effective under severe magnesium sulfate environment, irrespective of type of recycled fine aggregates. However, the worse performance was observed in mortar specimens incorporating 100% replacement level. It was found that the water absorption of recycled fine aggregates affected deterioration of mortar specimens, especially at a higher replacement level. XRD results indicated that the main cause of deterioration of the mortar specimens was primarily due to the formation of gypsum and thaumasite by magnesium sulfate attack. In addition, it appeared that the conversion of C-S-H into M-S-H by the attack probably influenced mechanical deterioration of mortar specimens with recycled fine aggregates.

Lee, Seung-Tae [Department of Civil Engineering, Kunsan National University, 68 Miryong-dong, Kunsan, Jeonbuk 573-701 (Korea, Republic of)], E-mail: stlee@kunsan.ac.kr

2009-08-15T23:59:59.000Z

70

Combustion Byproducts Recycling Consortium  

SciTech Connect (OSTI)

The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F-fly ash. Some developed technologies have similar potential in the longer term. (3) Laboratory studies have been completed that indicate that much higher amounts of fly ash could be added in cement-concrete applications under some circumstances. This could significantly increase use of fly ash in cement-concrete applications. (4) A study of the long-term environmental effects of structural fills in a surface mine in Indiana was completed. This study has provided much sought after data for permitting large-volume management options in both beneficial as well as non-beneficial use settings. (5) The impact of CBRC on CCBs utilization trends is difficult to quantify. However it is fair to say that the CBRC program had a significant positive impact on increased utilization of CCBs in every region of the USA. Today, the overall utilization of CCBs is over 43%. (6) CBRC-developed knowledge base led to a large number of other projects completed with support from other sources of funding. (7) CBRC research has also had a large impact on CCBs management across the globe. Information transfer activities and visitors from leading coal producing countries such as South Africa, Australia, England, India, China, Poland, Czech Republic and Japan are truly noteworthy. (8) Overall, the CBRC has been a truly successful, cooperative research program. It has brought together researchers, industry, government, and regulators to deal with a major problem facing the USA and other coal producing countries in the world.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

71

The economics of cell phone reuse and recycling  

E-Print Network [OSTI]

documents. Else Refining & Recycling Ltd. , Shefford 54.and the potential for recycling other small electrical andon material recovery and recycling of end-of-life mobile

Geyer, Roland; Doctori Blass, Vered

2010-01-01T23:59:59.000Z

72

DWPF Recycle Evaporator Simulant Tests  

SciTech Connect (OSTI)

Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to aluminum oxide during the evaporation process. The following recommendations were made: Recycle from the DWTT should be metered in slowly to the ''typical'' recycle streams to avoid spikes in solids content to allow consistent processing and avoid process upsets. Additional studies should be conducted to determine acceptable volume ratios for the HEME dissolution and decontamination solutions in the evaporator feed. Dow Corning 2210 antifoam should be evaluated for use to control foaming. Additional tests are required to determine the concentration of antifoam required to prevent foaming during startup, the frequency of antifoam additions required to control foaming during steady state processing, and the ability of the antifoam to control foam over a range of potential feed compositions. This evaluation should also include evaluation of the degradation of the antifoam and impact on the silicon and TOC content of the condensate. The caustic HEME dissolution recycle stream should be neutralized to at least pH of 7 prior to blending with the acidic recycle streams. Dow Corning 2210 should be used during the evaporation testing using the radioactive recycle samples received from DWPF. Evaluation of additional antifoam candidates should be conducted as a backup for Dow Corning 2210. A camera and/or foam detection instrument should be included in the evaporator design to allow monitoring of the foaming behavior during operation. The potential for foam formation and high solids content should be considered during the design of the evaporator vessel.

Stone, M

2005-04-05T23:59:59.000Z

73

Process to recycle shredder residue  

DOE Patents [OSTI]

A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

Jody, Bassam J. (Chicago, IL); Daniels, Edward J. (Oak Lawn, IL); Bonsignore, Patrick V. (Channahon, IL)

2001-01-01T23:59:59.000Z

74

Recycling of used perfluorosulfonic acid membranes  

DOE Patents [OSTI]

A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

Grot, Stephen (Middletown, DE); Grot, Walther (Chadds Ford, PA)

2007-08-14T23:59:59.000Z

75

Automobile Recycling Policy: Findings and Recommendations  

E-Print Network [OSTI]

This report focuses on recycling. As an objective neutral party, MIT has compiled a knowledge base that examines the many complex issues relating to re-cycling. Although this report was prepared at the request of the ...

Field, Frank

76

Compositional evaluation of asphalt binder recycling agents  

E-Print Network [OSTI]

Several experiments were performed to determine how recycling agent composition affects the high, intermediate, and low temperature properties as well as long term oxidative aging characteristics of recycled asphalt blends. Specifically, several...

Madrid, Richard Charles

1997-01-01T23:59:59.000Z

77

Residential Refrigerator Recycling Ninth Year Retention Study  

E-Print Network [OSTI]

Residential Refrigerator Recycling Ninth Year Retention Study Study ID Nos. 546B, 563 Prepared RECYCLING PROGRAMS Study ID Nos. 546B and 563 Prepared for Southern California Edison Rosemead, California

78

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL Fall 2012 What Plastic Do We Recycle?  

E-Print Network [OSTI]

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL ­ Fall 2012 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling #1 PET and #2 HDPE plastics by placing a yellow TTUAB Plastic Recycling bin on each. Technically, we are only responsible for aforementioned plastics and aluminum. However, any trash or other

Rock, Chris

79

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL 2013 What Plastic Do We Recycle?  

E-Print Network [OSTI]

TTUAB PLASTIC & ALUMINUM RECYCLING PROTOCOL 2013 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling ALL plastics (#1 through #7) by placing a yellow TTUAB Plastic Recycling bin on each and in LH100. Technically, we are only responsible for aforementioned plastics and aluminum. However, any

Rock, Chris

80

TTUAB PLASTIC RECYCLING PROTOCOL Fall 2011 What Plastic Do We Recycle?  

E-Print Network [OSTI]

TTUAB PLASTIC RECYCLING PROTOCOL ­ Fall 2011 What Plastic Do We Recycle? TTUAB has taken on the responsibility of recycling #1 PET and #2 HDPE plastics by placing a yellow TTUAB Plastic Recycling bin on each floor. Technically, we are only responsible for aforementioned plastics. However, any trash or other

Rock, Chris

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Where can I recycle it year-round? Item Local Recycling Locations  

E-Print Network [OSTI]

Where can I recycle it year-round? Item Local Recycling Locations Styrofoam First Alternative Co-op Recycling Center, 1007 SE 3rd St., 541-753-3115 (small fee) Packing Peanuts OSU Surplus, 644 SW 13 th St., 541-737-7347 Commercial shipping stores Film Plastics First Alternative Co-op Recycling Center, 1007

Escher, Christine

82

Waste Management and Recycling in Lab Batteries can be recycled in the VWR stockroom  

E-Print Network [OSTI]

Waste Management and Recycling in Lab · Batteries can be recycled in the VWR stockroom · Electronic material can be recycled for free by MIT facilities (via SAP web) · Bulk equipment can be disposed be placed in recycling bin ­ Cardboard ­ Please break down and flatten boxes ­ Containers (aluminum, metal

Cohen, Robert E.

83

Research Report Recycling gone bad: When the option to recycle increases  

E-Print Network [OSTI]

Research Report Recycling gone bad: When the option to recycle increases resource consumption Jesse Abstract In this study, we propose that the ability to recycle may lead to increased resource usage compared to when a recycling option is not available. Supporting this hypothesis, our first experiment

Loudon, Catherine

84

Proceedings of the waste recycling workshop  

SciTech Connect (OSTI)

Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)] [eds.; Ohio State Univ., Columbus, OH (United States)

1993-12-31T23:59:59.000Z

85

Los Alamos National Laboratory completes demolition, recycling...  

National Nuclear Security Administration (NNSA)

completes demolition, recycling of former Administration Building | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

86

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

87

EXPENDITURE OBJECT CODES Foundation FOUNDATION EXPENDITURE OBJECT CODES are used primarily by Accounting Services for Foundation  

E-Print Network [OSTI]

EXPENDITURE OBJECT CODES ­ Foundation 2-J page 1 FOUNDATION EXPENDITURE OBJECT CODES are used primarily by Accounting Services for Foundation transactions. 3080 Foundation Service Fee: Allocation of administrative costs to Foundation beneficiary departmental accounts. 3120 LSU Magazine Costs - Foundation

Harms, Kyle E.

88

Ames Lab 101: Rare-Earth Recycling  

SciTech Connect (OSTI)

Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

Ryan Ott

2012-09-05T23:59:59.000Z

89

Ames Lab 101: Rare-Earth Recycling  

ScienceCinema (OSTI)

Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

Ryan Ott

2013-06-05T23:59:59.000Z

90

Recycling at Mooov-In 2011  

E-Print Network [OSTI]

Cardboard Recycling at Mooov-In 2011 For the second year in a row, Division of Housing and Food Service (DHFS) and Recycling & Sustainability teamed up to divert as much cardboard as possible from area landfills. In addition to the paper, cardboard, aluminum and plastic recycling available in all residence

Julien, Christine

91

Energy and Environmental Considerations in Recycling  

E-Print Network [OSTI]

Energy and Environmental Considerations in Recycling Griffin Hosseinzadeh 11 April 2012 Physics H materials from recyclables · Carbon emissions & water pollution from production of virgin materials vs. recycling · Methane from decomposing materials in landfill · Depletion of natural resources (trees, minerals

Budker, Dmitry

92

Nottingham Trent University Plastic Recycling  

E-Print Network [OSTI]

5015/03/08 Nottingham Trent University Plastic Recycling Water and fizzy drinks bottles Contaminated plastic (food, fluids, etc.) Oil containers Toxic chemical containers Metal strips or fasteners Carrier bags and bin liners Margarine tubs, wall coverings Yoghurt pots, egg cartons, plastic packaging

Evans, Paul

93

Rural recycling in southeast Colorado  

SciTech Connect (OSTI)

This article describes a recycling effort developed for rural southeast Colorado. The program was inspired and manned by local volunteers and based on a drop-off method used in Europe. The topics of the article include getting started, funding, problems encountered, level of participation, and estimated savings in waste collection and landfilling fees.

Lariviere, R. (Prowers County Development, Inc., Lamar, CO (United States))

1993-05-01T23:59:59.000Z

94

Recycling of Waste Oxides in Steelmaking - Final Report  

SciTech Connect (OSTI)

This research primarily examined the use of waste oxide briquettes (WOB), prepared from blast furnace and basic oxygen furnace (BOF) dusts and mill scale, in BOFs and in particular, the reasons for the methods to reduce slopping in BOF when WOBs are used. Also, the recycling of EAF and stainless steelmaking dusts were examined. It is found that at a critical FeO content in the slag, metal drops emulsify increasing the reaction area and rate drastically, promoting slopping. Recommendations were made to delay the build-up of FeO in the slag to this critical value, thus reducing slopping. Although recycling of EAF dusts in the EAF increased energy use and decreased productivity, it provides Fe units, reduces dust disposal by 25-40%, and increases the Zn content of the dust to acceptable levels for the use by Zn-producers. Stainless steelmaking dusts can also be recycled as WOBs adding Cr to the melt and generating CO gas resulting in good slag foaming.

Fruehan, R. J.

2001-03-31T23:59:59.000Z

95

In situ recycling of contaminated soil uses bioremediation  

SciTech Connect (OSTI)

OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties.

Shevlin, P.J.; Reel, D.A.

1996-04-01T23:59:59.000Z

96

End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.  

SciTech Connect (OSTI)

Each year, more than 50 million vehicles reach the end of their service life throughout the world. More than 95% of these vehicles enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, about 75% of automotive materials are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobiles, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials (about 25% of the weight of the vehicle)--commonly called shredder residue--is disposed of in landfills. Over the past 10 to 15 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles (ELVs), including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has focused on developing technology to recover materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lighter-weight materials--primarily polymers and polymer composites--will be used in manufacturing these vehicles. These materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems at end-of-life. Argonne National Laboratory (Argonne), in cooperation with the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC), is working to develop technology for recycling materials from shredder residue. Several other organizations worldwide are also working on developing technology for recycling shredder residue. Without a commercially viable shredder industry, our nation may face greater environmental challenges and a decreased supply of quality scrap and be forced to turn to primary ores for the production of finished metals. This document presents a review of the state of the art in shredder residue recycling. Available technologies and emerging technologies for the recycling of materials from shredder residue are discussed.

Jody, B. J.; Daniels, E. J.; Energy Systems

2007-03-21T23:59:59.000Z

97

Cost effectiveness of recycling: A systems model  

SciTech Connect (OSTI)

Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.

Tonjes, David J., E-mail: david.tonjes@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States); Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044 (United States); Mallikarjun, Sreekanth, E-mail: sreekanth.mallikarjun@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States)

2013-11-15T23:59:59.000Z

98

Recycling Guide: Reduce, Reuse, Recycle Recycling Information Call 301-496-7990 or visit the NEMS Website at http://www.nems.nih.gov  

E-Print Network [OSTI]

Recycling Guide: Reduce, Reuse, Recycle Recycling Information ­ Call 301-496-7990 or visit the NEMS in COMMINGLED bin Rinse food/beverage containers before recycling No Pyrex or Styrofoam Printer and Copier Toner Cartridges in TONER CARTRIDGE bin Recycle packaging material in appropriate bin NIH charities

Baker, Chris I.

99

Economic Feasibility of Electrochemical Caustic Recycling at the Hanford Site  

SciTech Connect (OSTI)

This report contains a review of potential cost benefits of NaSICON Ceramic membranes for the separation of sodium from Hanford tank waste. The primary application is for caustic recycle to the Waste Treatment and Immobilization Plant (WTP) pretreatment leaching operation. The report includes a description of the waste, the benefits and costs for a caustic-recycle facility, and Monte Carlo results obtained from a model of these costs and benefits. The use of existing cost information has been limited to publicly available sources. This study is intended to be an initial evaluation of the economic feasibility of a caustic recycle facility based on NaSICON technology. The current pretreatment flowsheet indicates that approximately 6,500 metric tons (MT) of Na will be added to the tank waste, primarily for removing Al from the high-level waste (HLW) sludge (Kirkbride et al. 2007). An assessment (Alexander et al. 2004) of the pretreatment flowsheet, equilibrium chemistry, and laboratory results indicates that the quantity of Na required for sludge leaching will increase by 6,000 to 12,000 MT in order to dissolve sufficient Al from the tank-waste sludge material to maintain the number of HLW canisters produced at 9,400 canisters as defined in the Office of River Protection (ORP) System Plan (Certa 2003). This additional Na will significantly increase the volume of LAW glass and extend the processing time of the Waste Treatment and Immobilization Plant (WTP). Future estimates on sodium requirements for caustic leaching are expected to significantly exceed the 12,000-MT value and approach 40,000-MT of total sodium addition for leaching (Gilbert, 2007). The cost benefit for caustic recycling is assumed to consist of four major contributions: 1) the cost savings realized by not producing additional immobilized low-activity waste (ILAW) glass, 2) caustic recycle capital investment, 3) caustic recycle operating and maintenance costs, and 4) research and technology costs needed to deploy the technology. In estimating costs for each of these components, several parameters are used as inputs. Due to uncertainty in assuming a singular value for each of these parameters, a range of possible values is assumed. A Monte Carlo simulation is then performed where the range of these parameters is exercised, and the resulting range of cost benefits is determined.

Poloski, Adam P.; Kurath, Dean E.; Holton, Langdon K.; Sevigny, Gary J.; Fountain, Matthew S.

2009-03-01T23:59:59.000Z

100

Recycling Programs | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartment ofManagementManagement RecordsRecycling

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Implementation of EU Waste Recycling Regulation in Macedonia: The Challenges of Policy Integration and Normative Change  

E-Print Network [OSTI]

No. 34. USAID Plastic Recycling Project. Accessed March Recycling Regulation in Macedoniathe Macedonian waste and recycling regulatory framework with

Ilievska Kremer, Jannika Sjostrand

2013-01-01T23:59:59.000Z

102

Weather encapsulates the state of the atmosphere, primarily involving the component which affects  

E-Print Network [OSTI]

1 #12;2 Weather encapsulates the state of the atmosphere, primarily involving the component which and Telegraph readers tend to use oF #12;5 The human body has an energy balance just like the Earth (solar range in larger on still, clear days, when solar heating is strong at the surface and is not offset

Allan, Richard P.

103

INEEL Lead Recycling in a Moratorium Environment  

SciTech Connect (OSTI)

Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

2003-02-26T23:59:59.000Z

104

INEEL Lead Recycling in a Moratorium Environment  

SciTech Connect (OSTI)

Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

Kooda, Kevin Evan; Mc Cray, Casey William; Aitken, Darren William; Galloway, Kelly

2003-02-01T23:59:59.000Z

105

Recycling production designs : the value of coordination and flexibility in aluminum recycling operations  

E-Print Network [OSTI]

The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an ...

Brommer, Tracey H. (Tracey Helenius)

2013-01-01T23:59:59.000Z

106

USF Physical Plant Recycling Program Updated November 2013  

E-Print Network [OSTI]

USF Physical Plant Recycling Program Updated November 2013 #12;Beginnings · Program initiated · Continuously expanding recycling efforts #12;Paper Recycling · Currently recycling mixed paper Office paper, newspaper, magazines, cardboard, paperbacks · PPD has distributed about 2,400 office-size recycling

Meyers, Steven D.

107

Recycling Campaign Award Prizes for best project proposal to improve  

E-Print Network [OSTI]

Recycling Campaign Award Prizes for best project proposal to improve waste recycling. Recycling bins contain inappropriate waste that cannot be recycled and thus are not picked up. THE REASON for picking up the waste. 60% of the waste budget. Your task: - To develop a new project to improve recycling

van der Torre, Leon

108

Recycling Realities: ASU's Quest for Zero Solid Waste  

E-Print Network [OSTI]

Recycling Realities: ASU's Quest for Zero Solid Waste Dawn RatcliffePast Recycling Coordinator in the sustainability and animal-advocacy fields. She has organized several Earth Day events, recycling events and recycling. She has run recycling and solid waste programs for The University of Arizona, MIT in Cambridge

Zhang, Junshan

109

Request for Information on Photovoltaic Module Recycling  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

110

Super recycled water: quenching computers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »Lab (NewportSuccess Stories T E CSuper recycled

111

THE QUEEN'S COLLEGE RECYCLING SCHEME Under the new recycling scheme commencing at the beginning of Hilary Term the following  

E-Print Network [OSTI]

THE QUEEN'S COLLEGE RECYCLING SCHEME Under the new recycling scheme commencing at the beginning in all student rooms and offices o one for normal waste o one for co-mingled recycling1 Bins these bins. If any recycling is contaminated it will be `waste' not recycling and it would need to go

Capdeboscq, Yves

112

Recycling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SREL

113

The economics of cell phone reuse and recycling  

E-Print Network [OSTI]

Sullivan DE (2006) Recycled cell phones—a treasure trove ofsheet: recycle your cell phone—it’s an easy call, EPA530-F-ARTICLE The economics of cell phone reuse and recycling

Geyer, Roland; Doctori Blass, Vered

2010-01-01T23:59:59.000Z

114

Bituminous pavement recycling Aravind K. and Animesh Das  

E-Print Network [OSTI]

Bituminous pavement recycling Aravind K. and Animesh Das Department of Civil Engineering IIT Kanpur Introduction The bituminous pavement rehabilitation alternatives are mainly overlaying, recycling and reconstruction. In the recycling process the material from deteriorated pavement, known as reclaimed asphalt

Das, Animesh

115

Integrated Recycling Test Fuel Fabrication  

SciTech Connect (OSTI)

The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

2013-03-01T23:59:59.000Z

116

Argonne National Laboratory's Recycling Pilot Plant  

ScienceCinema (OSTI)

Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

Spangenberger, Jeff; Jody, Sam;

2013-04-19T23:59:59.000Z

117

PCC Mix Designs Using Recycled Concrete  

E-Print Network [OSTI]

PCC Mix Designs Using Recycled Concrete Pavements Mary E. Vancura, Derek Tompkins, & Lev Khazanovich 21st Annual Transportation Research Conference #12;·! Reassessment of recycled concrete aggregate (RCA) use in rigid pavements ·! History of RCA use ·! Characteristics of RCA concrete ·! RCA production

Minnesota, University of

118

Preconceptual Design Description for Caustic Recycle Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

2008-04-12T23:59:59.000Z

119

North Dakota: EERE-Funded Project Recycles Energy, Generates...  

Office of Environmental Management (EM)

North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity June 17, 2014 - 2:58pm Addthis...

120

Issues in recycling galvanized scrap  

SciTech Connect (OSTI)

The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

Koros, P.J. [LTV Steel Co., Inc., Cleveland, OH (United States); Hellickson, D.A. [General Motors Corp., Detroit, MI (United States); Dudek, F.J. [Argonne National Lab., IL (United States)

1995-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heterogeneous Recycling in Fast Reactors  

SciTech Connect (OSTI)

Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

Dr. Benoit Forget; Michael Pope; Piet, Steven J.; Michael Driscoll

2012-07-30T23:59:59.000Z

122

RECYCLING COORDINATOR GRADUATE ASSISTANTSHIP University of Nebraska--Lincoln Landscape Services  

E-Print Network [OSTI]

RECYCLING COORDINATOR GRADUATE ASSISTANTSHIP University of Nebraska--Lincoln Landscape Services, implementing and maintaining recycling on campus. Assist in annual recycler's survey; tracking of recycling drop- off program; assist in market research for selected recycled materials; assist in developing

Farritor, Shane

123

Updated 9/23/2010 HOW TO RECYCLE  

E-Print Network [OSTI]

/Copiers · Garbage · Gas Cylinders · Glass Bottles & Jars · Grease · Halogen Bulbs · Hardbound Books · Hazardous Waste · Helium Tanks · Imaging Units for Printers/Copiers · Incandescent Bulbs · Ink Jet Printer · Newspapers & Newsprint #12;Updated 9/23/2010 · Office Supplies · Oil · Packing Peanuts · Paint · Pallets

Clark, John

124

Recycling asphalt overview of more than 25 years of use  

E-Print Network [OSTI]

1 Recycling asphalt overview of more than 25 years of use in France Y. Brosseaud ­ LCPC hal with ring for recycling ­ Average rate with high proportion : 30 to 50% ­ Used of rejuvenators (soft oil,version1-20May2011 #12;4 Hot recycling asphalt on mixing plant Recycling in place in hot or cold

Paris-Sud XI, Université de

125

Evaluating Water Recycling in California Sachi De Souza  

E-Print Network [OSTI]

i Evaluating Water Recycling in California By Sachi De Souza B.Sc.Hon (Queen's University) 2005 Recycling in California ii ABSTRACT This document describes how to complete an economic analysis, financial analysis, and cost allocation for a water recycling project. Water recycling is gaining importance

Lund, Jay R.

126

Cellubrevin-targeted Fluorescence Uncovers Heterogeneity in the Recycling Endosomes*  

E-Print Network [OSTI]

Cellubrevin-targeted Fluorescence Uncovers Heterogeneity in the Recycling Endosomes* (Received, University of California, Berkeley, California 94720-3200 The pH and trafficking of recycling endosomes have-enriched recycling endosomes (pHCb) and FITC-transferrin to measure the pH of transferrin- enriched recycling

Machen, Terry E.

127

End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.  

SciTech Connect (OSTI)

Each year, more than 25 million vehicles reach the end of their service life throughout the world, and this number is rising rapidly because the number of vehicles on the roads is rapidly increasing. In the United States, more than 95% of the 10-15 million scrapped vehicles annually enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, over 75% of automotive materials, primarily the metals, are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobile hulks, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials - commonly called shredder residue - constitutes about 25% of the weight of the vehicle, and it is disposed of in landfills. This practice is not environmentally friendly, wastes valuable resources, and may become uneconomical. Therefore, it is not sustainable. Over the past 15-20 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles, including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has been focused on developing technology to separate and recover non-metallic materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lightweighting materials - primarily polymers, polymer composites, high-strength steels, and aluminum - will be used in manufacturing these vehicles. Many of these materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals that are recovered. In addition, the number of hybrid vehicles and electric vehicles on the road is rapidly increasing. This trend will also introduce new materials for disposal at the end of their useful lives, including batteries. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems. Argonne National Laboratory (Argonne), the Vehicle Recycling Partnership, LLC. (VRP) of the United States Council for Automotive Research, LLC. (USCAR), and the American Chemistry Council-Plastics Division (ACC-PD) are working to develop technology for recovering materials from end-of-life vehicles, including separating and recovering polymers and residual metals from shredder residue. Several other organizations worldwide are also working on developing technology for recycling materials from shredder residue. Without a commercially viable shredder industry, our nation and the world will most likely face greater environmental challenges and a decreased supply of quality scrap, and thereby be forced to turn to primary ores for the production of finished metals. This will result in increased energy consumption and increased damage to the environment, including increased greenhouse gas emissions. The recycling of polymers, other organics, and residual metals in shredder residue saves the equivalent of over 23 million barrels of oil annually. This results in a 12-million-ton reduction in greenhouse gas emissions. This document presents a review of the state-of-the-art in the recycling of automotive materials.

Jody, B. J.; Daniels, E. J.; Duranceau, C. M.; Pomykala, J. A.; Spangenberger, J. S. (Energy Systems)

2011-02-22T23:59:59.000Z

128

FINANCING ELECTRONIC WASTE RECYCLING - Californian Households’ Willingness to Pay Advanced Recycling Fees  

E-Print Network [OSTI]

DC: Office of Solid Waste and Emergency Response.J. , 1999. Reducing solid waste: Linking recycling to135. EPA, 2005. Municipal Solid Waste in the United States:

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

129

FINANCING ELECTRONIC WASTE RECYCLING - Californian Households’ Willingness to Pay Advanced Recycling Fees  

E-Print Network [OSTI]

led to a patchwork of programs and higher costs, particularly for collection, which is a major expense for e-waste recycling (

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

130

Length sensing and control of a Michelson interferometer with Power Recycling and Twin Signal Recycling cavities  

E-Print Network [OSTI]

The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled. In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michelson interferometer with twin signal recycling. We were able to lock the interferometer in all relevant longitudinal degrees of freedom, enabling the long-term stable operation of the experiment. We thus laid the foundation for further investigations of this interferometer topology to evaluate its viability for the application in gravitational wave detectors.

Christian Gräf; André Thüring; Henning Vahlbruch; Karsten Danzmann; Roman Schnabel

2012-11-29T23:59:59.000Z

131

BWR Assembly Optimization for Minor Actinide Recycling  

SciTech Connect (OSTI)

The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

2010-03-22T23:59:59.000Z

132

Loveland Water and Power- Refrigerator Recycling Program  

Broader source: Energy.gov [DOE]

Loveland Water and Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old refrigerator...

133

Absorptive Recycle of Distillation Waste Heat  

E-Print Network [OSTI]

condenser operates above ambient temperature, the rejected heat also contains unused availability. By incorporating an absorption heat pump (AHP) into the distillation process, these sources of unused availability can be tapped so as to recycle (and hence...

Erickson, D. C.; Lutz, E. J., Jr.

1982-01-01T23:59:59.000Z

134

printed on recycled paper INDUSTRIAL ASSESSMENT CENTER  

E-Print Network [OSTI]

printed on recycled paper INDUSTRIAL ASSESSMENT CENTER ENERGY EFFICIENCY, POLLUTION PREVENTION ASSESSMENT REPORT FOR ENERGY EFFICIENCY, POLLUTION PREVENTION, AND PRODUCTIVITY IMPROVEMENT No. CO0999 ASSESSMENT DATE: February 29, 2000 LOCATION: ______, Colorado PRINCIPAL PRODUCTS: Injection molded plastic

135

Evaluation of radioactive scrap metal recycling  

SciTech Connect (OSTI)

This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1995-12-01T23:59:59.000Z

136

Solid Waste Reduction, Recovery, and Recycling  

Broader source: Energy.gov [DOE]

This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource...

137

Renewable, Recycled and Conserved Energy Objective  

Broader source: Energy.gov [DOE]

In February 2008, South Dakota enacted legislation (HB 1123) establishing an objective that 10% of all retail electricity sales in the state be obtained from renewable and recycled energy by 2015....

138

Printed on recycled paper. 2013 Cornell Waste  

E-Print Network [OSTI]

management by focusing University resources and capabilities on this pressing economic, environmental of waste generation and composition, waste reduction, risk management, environmental equity and publicPrinted on recycled paper. 2013 Cornell Waste Management Institute CWMI is a program

Chen, Tsuhan

139

Th/U-233 multi-recycle in pressurized water reactors : feasibility study of multiple homogeneous and heterogeneous assembly designs.  

SciTech Connect (OSTI)

The use of thorium in current or advanced light water reactors (LWRs) has been of interest in recent years. These interests have been associated with the need to increase nuclear fuel resources and the perceived non-proliferation advantages of the utilization of thorium in the fuel cycle. Various options have been considered for the use of thorium in the LWR fuel cycle. The possibility for thorium utilization in a multi-recycle system has also been considered in past literature, primarily because of the potential for near breeders with Th/U-233 in the thermal energy range. The objective of this study is to evaluate the potential of Th/U-233 fuel multi-recycle in current LWRs, focusing on pressurized water reactors (PWRs). Approaches for sustainable multi-recycle without the need for external fissile material makeup have been investigated. The intent is to obtain a design that allows existing PWRs to be used with minimal modifications.

Yun, D.; Taiwo, T. A.; Kim, T. K.; Mohamed, A.; Nuclear Engineering Division

2010-10-01T23:59:59.000Z

140

EMPTY CHEMICAL BOTTLES RECYCLING PROGRAM Empty Chemical Bottles Recycling includes all glass, plastic and metal bottles and containers that previously  

E-Print Network [OSTI]

EMPTY CHEMICAL BOTTLES RECYCLING PROGRAM Empty Chemical Bottles Recycling includes all glass Disposal Guide. Do not place empty chemical bottles in commingled recycling bins on hallways, trash cans and with a 20 gallons capacity. It is made of high-density polyethylene (HDPE) with 100% post-consumer recycled

Baker, Chris I.

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Waste tire recycling by pyrolysis  

SciTech Connect (OSTI)

This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

142

Generalized teleportation and entanglement recycling  

E-Print Network [OSTI]

We introduce new teleportation protocols which are generalizations of the original teleportation protocols that use the Pauli group [Bennett, et al. Physical Review Letters, 70(13) 1895-1899] and the port-based teleportation protocols, introduced by Hiroshima and Ishizaka [Physical Review Letters, 101(24) 240501], that use the symmetric permutation group. We derive sufficient condition for a set of operations, which in general need not form a group, to give rise to a teleportation protocol and provide examples of such schemes. This generalization leads to protocols with novel properties and is needed to push forward new schemes of computation based on them. Port-based teleportation protocols and our generalizations use a large resource state consisting of N singlets to teleport only a single qubit state reliably. We provide two distinct protocols which recycle the resource state to teleport multiple states with error linearly increasing with their number. The first protocol consists of sequentially teleporting qubit states, and the second teleports them in a bulk.

Sergii Strelchuk; Micha? Horodecki; Jonathan Oppenheim

2012-12-13T23:59:59.000Z

143

DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)  

SciTech Connect (OSTI)

The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.

Stone, M

2005-04-30T23:59:59.000Z

144

Identification of a novel CoA synthase isoform, which is primarily expressed in Brain  

SciTech Connect (OSTI)

CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.

Nemazanyy, Ivan [Department of Structure and Function of Nucleic Acids, Institute of Molecular Biology and Genetics, 150 Zabolotnogo St, Kyiv 03680 (Ukraine)]. E-mail: nemazanyy@imbg.org.ua; Panasyuk, Ganna [Department of Structure and Function of Nucleic Acids, Institute of Molecular Biology and Genetics, 150 Zabolotnogo St, Kyiv 03680 (Ukraine); Breus, Oksana [Department of Structure and Function of Nucleic Acids, Institute of Molecular Biology and Genetics, 150 Zabolotnogo St, Kyiv 03680 (Ukraine); Zhyvoloup, Alexander [Department of Structure and Function of Nucleic Acids, Institute of Molecular Biology and Genetics, 150 Zabolotnogo St, Kyiv 03680 (Ukraine); Filonenko, Valeriy [Department of Structure and Function of Nucleic Acids, Institute of Molecular Biology and Genetics, 150 Zabolotnogo St, Kyiv 03680 (Ukraine); Gout, Ivan T. [Department of Structure and Function of Nucleic Acids, Institute of Molecular Biology and Genetics, 150 Zabolotnogo St, Kyiv 03680 (Ukraine) and Department of Biochemistry and Molecular Biology, Royal Free and University College Medical School, Gower Street, London WC1E 6BT (United Kingdom)]. E-mail: i.gout@ucl.ac.uk

2006-03-24T23:59:59.000Z

145

Electroless nickel recycling via electrodialysis  

SciTech Connect (OSTI)

Electroless nickel is widely used in the metal finishing industry as a coating. It plates evenly on a variety of surfaces and replicates or enhances the surface finish. It has high hardness and good corrosion resistance and machinability. However, its bath life is limited and it has a tendency to spontaneously plate out on the tank and associated equipment. These problems add to the cost per unit component plated. Also, expensive waste treatment is required before users can dispose of the spent solution. Electroless nickel`s limited bath life is inherent in its chemical make-up. Using hypophosphite as the reducing agent for the nickel ion generates by-products of nickel metal and orthophosphite. When the level of orthophosphite in the solution reaches a high concentration, the reaction slows and finally stops. The bath must be disposed of, and its treatment and replacement costs are high. Metal salts have a tendency to plate out because of the dissolved solids present, and this also makes it necessary to discard the bath. Lawrence Livermore National Laboratory (LLNL) has conducted a study of an electrodialysis process that can reduce both chemical purchases and disposal costs. Electrodialysis employs a membrane, deionized water, and an electromotive potential to separate the orthophosphite and other dissolved solids from the nickel ions. With the aid of the electromotive potential, the dissolved solids migrate across the membrane from the process solution into the water in the recycling unit`s holding cell. This migration lowers the total dissolved solids (TDS) in the process solution and improves plating performance. The dialysis process makes it possible to reuse the bath many times without disposal.

Steffani, C.; Meltzer, M.

1995-04-01T23:59:59.000Z

146

Waste tire recycling by pyrolysis  

SciTech Connect (OSTI)

This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

147

Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood  

E-Print Network [OSTI]

Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood.2 million cubic meters) of lumber treated with CCA are produced annually in the United States (Micklewright 1998). ·In 1997, for example, some 581.4 million cu. ft. was treated with waterborne preservatives

148

Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel  

E-Print Network [OSTI]

metal hydride and lithium ion batteries. The use of these batteries is increasing as a green, nickel metal hydride and lithium ion batteries. Please contact EHS if you need an accumulation containerRecycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid

149

Implementation of EU Waste Recycling Regulation in Macedonia: The Challenges of Policy Integration and Normative Change  

E-Print Network [OSTI]

a specific focus on the recycling of PET plastic bottles andprocess I chose recycling of PET plastic bottles andinformal recycling in Skopje. They collect mainly PET and

Ilievska Kremer, Jannika Sjostrand

2013-01-01T23:59:59.000Z

150

The use of NTA and EDTA for lead phytoextraction from soil from a battery recycling site  

E-Print Network [OSTI]

are lead mining, lead smelting and battery recycling.Areas near Pb recycling facilities may be enriched bysoil with lead. A battery recycling site is a location where

Freitas, Eriberto; Nascimento, Clistenes; Silva, Airon

2009-01-01T23:59:59.000Z

151

The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling  

E-Print Network [OSTI]

nitrogen mobilization and recycling in trees. Photosynthesisloci mapping for nitrogen recycling in rice. Journal ofNitrogen Assimilation and Recycling Stéphanie M. Bernard 1

Bernard, S.M.

2009-01-01T23:59:59.000Z

152

White goods recycling in the United States: Economic and technical issues in recovering, reclaiming, and reusing nonmetallic materials  

SciTech Connect (OSTI)

Obsolete white goods (appliances such as refrigerators, freezers, washers, dryers, ranges, dishwashers, water heaters, dehumidifiers, and air conditioners) contain significant quantities of recyclable materials, but because of economic and environmental concerns, only limited quantities of these scrap materials are currently being recycled. Appliances are manufactured from a mix of materials, such as metals, polymers, foam, and fiberglass; metals represent more than 75% of the total weight. Appliance recycling is driven primarily by the value of the steel in the appliances. Over the last 15 years, however, the use of polymers in appliance manufacturing has increased substantially at the expense of metals. The shift in the materials composition of appliances may threaten the economics of the use of obsolete appliances as a source for scrap metals. To increase the recycling of white goods, cost-effective and environmentally acceptable technologies must be developed to separate, recover, reclaim, and reuse polymers from discarded appliances. Argonne National Laboratory is currently conducting research, with industry support, to develop cost-effective processes and methods for recovering and reclaiming acrylonitrile butadiene-styrene and High-density polystyrene from discarded appliances. This collaborative research focuses on developing a combination of mechanical/physical and chemical separation methods for recovering and reusing these high-value plastics. In addition, cost-effective methods for improving the performance characteristics of the recovered plastics are being investigated with the goal of recycling these plastics to their original application. In this paper, we examine the technical and economic issues that affect the recycling of white goods and present results of Argonne`s white goods recycling research and development activities.

Karvelas, D.E.; Jody, B.J.; Daniels, E.J.

1995-02-01T23:59:59.000Z

153

Recycling of electric-arc-furnace dust  

SciTech Connect (OSTI)

Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

Sresty, G.C.

1990-05-01T23:59:59.000Z

154

Energy implications of glass-container recycling  

SciTech Connect (OSTI)

This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

Gaines, L.L.; Mintz, M.M. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

1994-03-01T23:59:59.000Z

155

Scrap uranium recycling via electron beam melting  

SciTech Connect (OSTI)

A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

McKoon, R.

1993-11-01T23:59:59.000Z

156

Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium  

SciTech Connect (OSTI)

Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and exposure to the public as the result of normal operations and accidents that occurred at the INEEL. As a result of these studies, the maximum effective dose equivalent from site activities did not exceed seventeen percent of the natural background in Eastern Idaho. There was no year in which the radiation dose to the public exceeded the applicable limits for that year. Worker exposure to recycled uranium was minimized by engineering features that reduced the possibility of direct exposure.

L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

2000-09-01T23:59:59.000Z

157

Self-protection in dry recycle technologies  

SciTech Connect (OSTI)

In response to the INFCE conclusions, the U.S. undertook development of a new dry fuel cycle. Dry recycle processes have been demonstrated to be feasible. Safeguarding such fuel cycles will be dramatically simpler than the PUREX fuel cycle. At every step of the processes, the materials meet the {open_quotes}spent-fuel standard.{close_quotes} The scale is compatible with collocation of power reactors and their recycle facility, eliminating off-site transportation and storage of plutonium-bearing materials. Material diverted either covertly or overtly would be difficult (relative to material available by other means) to process into weapons feedstock.

Hannum, W.H.; Wade, D.; Stanford, G.

1995-12-01T23:59:59.000Z

158

The value of recycling on water conservation.  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

Ludi-Herrera, Katlyn D.

2013-07-01T23:59:59.000Z

159

Business plan for the Solar Recycle-o-Sort  

E-Print Network [OSTI]

There exists much room for growth in recycling participation with almost 1 in every 4 Americans still not recycling at all. In many communities this fraction is significantly higher, with low awareness of the benefits of ...

Kalk, David O. (David Oliver)

2008-01-01T23:59:59.000Z

160

A comparison of public policies for lead recycling  

E-Print Network [OSTI]

Policies that encourage recycling may be used to reduce environmental costs from waste disposal when direct restrictions on disposal are difficult to enforce. Four recycling policies have been advanced: (i) taxes on the ...

Sigman, Hilary

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

actinide multi recycling: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Robert B. 38 DOI: 10.1002adem.201400414 Self-Assembled Recyclable Hierarchical Bucky Aerogels** Physics Websites Summary: DOI: 10.1002adem.201400414 Self-Assembled Recyclable...

162

Waste Toolkit A-Z Can I recycle paper cups?  

E-Print Network [OSTI]

in the Grundon recycling boxes. Do not leave dregs of drink in them, as this will contaminate the recycling box) www.pefc.co.uk FSC Forest Stewardship Council www.fsc.org Contact University Environmental

Melham, Tom

163

Breakout Session: Getting in the Loop: PV Hardware Recycling...  

Broader source: Energy.gov (indexed) [DOE]

Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT...

164

advanced recycle filter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 185 The Randomness Recycler Approach to Perfect James Allen Fill...

165

areva nc recycling: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 329 The Randomness Recycler Approach to Perfect James Allen Fill...

166

avoids recycling endosomal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 214 The Randomness Recycler Approach to Perfect James Allen Fill...

167

as recycling process: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 347 The Randomness Recycler Approach to Perfect James Allen Fill...

168

Re:Cycle - a Generative Ambient Video Engine  

E-Print Network [OSTI]

Our current ambient video engine is in the early stages ofa Generative Ambient Video Engine Jim Bizzocchi Assistantis complete. 2.1 The Re:Cycle Engine Re:Cycle incorporates a

Bizzocchi, Jim; Ben Youssef, Belgacem; Quan, Brian; Suzuki, Wakiko; Bagheri, Majid; Riecke, Bernhard E.

2009-01-01T23:59:59.000Z

169

The economics of cell phone reuse and recycling  

E-Print Network [OSTI]

from obsolete handsets without batteries and accessories.recycling agents remove the batteries, which have their own

Geyer, Roland; Doctori Blass, Vered

2010-01-01T23:59:59.000Z

170

Progress in Recycling of Retired Cadmium-Telluride Photovoltaic Modules  

E-Print Network [OSTI]

Progress in Recycling of Retired Cadmium- Telluride Photovoltaic Modules Postdoctoral: Wenming Wang-Talk Program July 21, 2005 #12;Recycling Retired Photovoltaic Modules to Valuable Products, Where Are We.M., Feasibility of Recycling of Cadmium-Telluride Photovoltaics, Presented at 134th TMS Annual Meeting &Exhibition

171

"Maximum recycling of Material and Energy, Minimum of Landfilling"  

E-Print Network [OSTI]

in "Recycling". "Waste-to-Energy" is now defined as Recycling, when energy efficiency is > 0,65 Prevention Reuse Recycling and Waste-to Energy? #12;6 European Policies on Landfill Ban The EU Landfill Directive The amount Ban decided upon in 2000, in force in 2005. A very strong effect, with a strong increase of Waste-to-Energy

Columbia University

172

Recycling Computed Answers in Rewrite Systems for Abduction Fangzhen Lin #  

E-Print Network [OSTI]

Recycling Computed Answers in Rewrite Systems for Abduction Fangzhen Lin # http computed answers can be recycled arises. A yes answer could result in sub­ stantial savings of repeated tends to be­ lieve that the answer should be no, since recycling is a form of adding information

Wu, Dekai

173

2014 International and Western States In-Place Recycling Conference  

E-Print Network [OSTI]

2014 International and Western States In-Place Recycling Conference August 5­7, 2014 Denver and the road to revitalizing in-place recycling technologies. · Join this prestigious forum especially designed/research agencies to discuss the status of in-place recycling. · Experience what we know today for each form of in

174

Production and recycling of oceanic crust in the early Earth  

E-Print Network [OSTI]

Chapter 6 Production and recycling of oceanic crust in the early Earth Abstract Because in the production and recycling of oceanic crust: (1) Small scale (x · 100km) convection involving the lower crust have been different from those in the present-day Earth. Crustal recycling must however have taken

van Thienen, Peter

175

Pesticide Container Recycling "It's Just The Right Thing To Do!"  

E-Print Network [OSTI]

Pesticide Container Recycling "It's Just The Right Thing To Do!" Some of you may recall that when I Container Recycling Programs in counties around the state. Highlands County was one of the first counties to establish a Pesticide Container Recycling Collection Center (which is still in operation). I set up twenty

Jawitz, James W.

176

Development/Plasticity/Repair Identification of Nicotinic Acetylcholine Receptor Recycling  

E-Print Network [OSTI]

Development/Plasticity/Repair Identification of Nicotinic Acetylcholine Receptor Recycling and Its, University of Michigan, Ann Arbor, Michigan 48109 In the CNS, receptor recycling is critical for synaptic plasticity; however, the recycling of receptors has never been observed at peripheral synapses. Using a novel

Alford, Simon

177

Locating a Recycling Center: The General Density Case Jannett Highfill  

E-Print Network [OSTI]

Locating a Recycling Center: The General Density Case Jannett Highfill Department of Economics) 677-3374. #12;2 Locating a Recycling Center: The General Density Case Abstract: The present paper considers a municipality that has a landfill (fixed in location) and plans to optimally locate a "recycling

Mou, Libin

178

Using OWL Ontologies Selective Waste Sorting and Recycling  

E-Print Network [OSTI]

Using OWL Ontologies for Selective Waste Sorting and Recycling Arnab Sinha and Paul Couderc INRIA for better recycling of materials. Our motive for using ontologies is for representing and rea- soning, recyclable materials, N-ary relations 1 Introduction Today Pervasive computing is gradually entering people

Paris-Sud XI, Université de

179

Archetypes: Durer's Rhino and the Recycling of Images  

E-Print Network [OSTI]

Chapter 17 Archetypes: D¨urer's Rhino and the Recycling of Images 17.1 Introduction: Aref's Rule Rule-of-Thumb 5 (Aref's Rule) Never publish the same graph more than once. As we shall below, recycling illustrate when recycling of previously published images is good, and also when and how it can go

Boyd, John P.

180

PLACEMENT OF OUTDOOR RECYCLING CONTAINERS AROUND UBC CAMPUS  

E-Print Network [OSTI]

PLACEMENT OF OUTDOOR RECYCLING CONTAINERS AROUND UBC CAMPUS UBC SEEDS Project by Iong, Sin I (Jace RECYCLING CONTAINERS ON UBC CAMPUS by Jace Iong 24 April, 2009 INTRODUCTION This SEEDS (Social, Ecological recycling containers on UBC-Vancouver campus. Initiated by David Smith, the associate director of municipal

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Preparation and Properties of Recycled HDPE/Clay Hybrids  

E-Print Network [OSTI]

on recycled high density poly- ethylene (RHDPE) and organic clay were made by melt com- pounding; recycling INTRODUCTION Plastics account for an increasing fraction of municipal solid waste around the worldPreparation and Properties of Recycled HDPE/Clay Hybrids Yong Lei,1 Qinglin Wu,1 Craig M. Clemons2

182

Why Become a Master By encouraging Connecticut residents to recycle  

E-Print Network [OSTI]

Why Become a Master Composter? By encouraging Connecticut residents to recycle organic waste % of a typical household's waste can be recycled right in our own backyards. This significantly reduces Service Matt Freund, Freund's Farm Bob Jacquier, Laurelbrook Farm Connecticut Recycling Coalition

Holsinger, Kent

183

Why Become a Master By encouraging Connecticut residents to recycle  

E-Print Network [OSTI]

Why Become a Master Composter? By encouraging Connecticut residents to recycle organic waste % of a typical household's waste can be recycled right in our own backyards. This significantly reduces Service Ken Longo, Manchester Recycling Center Matt Freund, Freund's Farm Bob Jacquier, Laurelbrook Farm

Alpay, S. Pamir

184

WINCO Metal Recycle annual report, FY 1993  

SciTech Connect (OSTI)

This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

Bechtold, T.E. [ed.

1993-12-01T23:59:59.000Z

185

Plastic bottles > Remove lids (not recyclable)  

E-Print Network [OSTI]

Plastic bottles Please: > Remove lids (not recyclable) > Empty bottles > Rinse milk bottles, & other bottles if possible > Squash bottles www.st-andrews.ac.uk/estates/environment All types of plastic bottle accepted Clear, opaque and coloured bottles Labels can remain on X No plastic bags X No plastics

Brierley, Andrew

186

Transverse instability at the recycler ring  

SciTech Connect (OSTI)

Sporadic transverse instabilities have been observed at the Fermilab Recycler Ring leading to increase in transverse emittances and beam loss. The driving source of these instabilities has been attributed to the resistive-wall impedance with space-charge playing an important role in suppressing Landau damping. Growth rates of the instabilities are computed. Remaining problems are discussed.

Ng, K.Y.; /Fermilab

2004-10-01T23:59:59.000Z

187

PET-Recycling Schweiz Naglerwiesenstrasse 4  

E-Print Network [OSTI]

PET-Recycling Schweiz Naglerwiesenstrasse 4 8049 Zurigo Telefono: 044 344 10 80 Fax: 044 344 10 99 E-mail: info@prs.ch www.petrecycling.ch #12;Il PET è un materiale riciclabile. Riciclare PET utilizzato il PET. Riconsegna le bottiglie PET, se no mancano altrove! #12;PET ­ più di un semplice materiale

Krause, Rolf

188

Correction magnets for the Fermilab Recycler Ring  

SciTech Connect (OSTI)

In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

James T Volk et al.

2003-05-27T23:59:59.000Z

189

Selective purge for hydrogenation reactor recycle loop  

SciTech Connect (OSTI)

Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

2001-01-01T23:59:59.000Z

190

8. Has recycled ber been used appropriately?  

E-Print Network [OSTI]

,788,008North and Central America 33,246,500 45,945,000 47,806,928 38%** 2,417,000South America 2,665,000 4. Recovery rate is 62.6% if including European recovered paper recycled in third countries. ** North America

191

ENVIRONMENTAL PROTECTION FOR THE AUTOMOBILE RECYCLING INDUSTRY  

E-Print Network [OSTI]

- Best Management Practices Volume 2- Technical Pollution Prevention Guide Volume 3- Code of Practice DOE 224 West Esplanade North Vancouver, B.C. Vm3H7 #12;BEST MANAGEMENT PRACTICES FOR THE AUTO RECYCLING volumes, including the Best Management Practices, Technical Pollution Prevention Guide, and Code

192

Waste Toolkit A-Z Food waste (recycling on-site)  

E-Print Network [OSTI]

Waste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling to be recycled. While this is better than sending waste to landfill, there is a more sustainable way to recycle and parks. See examples of Tidy Planet's customers recycling on-site: www.tidyplanet.co.uk/our-news Short

Melham, Tom

193

Model institutional infrastructures for recycling of photovoltaic modules  

SciTech Connect (OSTI)

How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

1996-01-01T23:59:59.000Z

194

Evaluation of engine coolant recycling processes: Part 2  

SciTech Connect (OSTI)

Engine coolant recycling continues to provide solutions to both economic and environmental challenges often faced with the disposal of used engine coolant. General Motors` Service Technology Group (STG), in a continuing effort to validate the general practice of recycling engine coolants, has conducted an in-depth study on the capabilities of recycled coolants. Various recycling processes ranging from complex forms of fractional distillation to simple filtration were evaluated in this study to best represent the current state of coolant recycling technology. This study incorporates both lab and (limited) fleet testing to determine the performance capabilities of the recycled coolants tested. While the results suggest the need for additional studies in this area, they reveal the true capabilities of all types of engine coolant recycling technologies.

Bradley, W.H. [General Motors, Warren, MI (United States). Service Technology Group

1999-08-01T23:59:59.000Z

195

Argonne explains nuclear recycling in 4 minutes  

ScienceCinema (OSTI)

Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

None

2013-04-19T23:59:59.000Z

196

Argonne explains nuclear recycling in 4 minutes  

SciTech Connect (OSTI)

Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

None

2012-01-01T23:59:59.000Z

197

Recycled Energy Development | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRaus PowerLouisiana:CampbellOpenHomeRecycled Energy

198

Recycling Technology Validation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office of EnvironmentalRecycling

199

Bayshore Recycling Solar Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JV Jump to: navigation, search Name:Recycling

200

Prognostic Cell Biological Markers in Cervical Cancer Patients Primarily Treated With (Chemo)radiation: A Systematic Review  

SciTech Connect (OSTI)

The aim of this study was to systematically review the prognostic and predictive significance of cell biological markers in cervical cancer patients primarily treated with (chemo)radiation. A PubMed, Embase, and Cochrane literature search was performed. Studies describing a relation between a cell biological marker and survival in {>=}50 cervical cancer patients primarily treated with (chemo)radiation were selected. Study quality was assessed, and studies with a quality score of 4 or lower were excluded. Cell biological markers were clustered on biological function, and the prognostic and predictive significance of these markers was described. In total, 42 studies concerning 82 cell biological markers were included in this systematic review. In addition to cyclooxygenase-2 (COX-2) and serum squamous cell carcinoma antigen (SCC-ag) levels, markers associated with poor prognosis were involved in epidermal growth factor receptor (EGFR) signaling (EGFR and C-erbB-2) and in angiogenesis and hypoxia (carbonic anhydrase 9 and hypoxia-inducible factor-1{alpha}). Epidermal growth factor receptor and C-erbB-2 were also associated with poor response to (chemo)radiation. In conclusion, EGFR signaling is associated with poor prognosis and response to therapy in cervical cancer patients primarily treated with (chemo)radiation, whereas markers involved in angiogenesis and hypoxia, COX-2, and serum SCC-ag levels are associated with a poor prognosis. Therefore, targeting these pathways in combination with chemoradiation may improve survival in advanced-stage cervical cancer patients.

Noordhuis, Maartje G.; Eijsink, Jasper J.H.; Roossink, Frank; Graeff, Pauline de [Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Pras, Elisabeth [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Schuuring, Ed [Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Wisman, G. Bea A. [Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Bock, Geertruida H. de [Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Zee, Ate G.J. van der, E-mail: a.g.j.van.der.zee@og.umcg.n [Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands)

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

at the Weizmann Institute We are launching a new cardboard recycling e ort  

E-Print Network [OSTI]

Cardboard Recycling at the Weizmann Institute We are launching a new cardboard recycling e ort and brought to the Weizmann warehouse for reuse. Damaged boxes will be compressed and recycled by the by the recycling company (Kamam). Why do it? Re-using and recycling saves garbage burial space and frees space

Shapiro, Ehud

202

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network [OSTI]

Water Task Force, “Water Recycling 2030: Recommendation’s of2007. Water Funding Recycling Program Strategic Plan. Web.grants_loans/water_recycling/docs/strategicplan2007.pdf

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

203

Developing Criteria and Metrics for Assessing Recycled Water Program Effectiveness.  

E-Print Network [OSTI]

?? Many U.S. states are currently experiencing or expect to experience water shortages in the next ten years. Recycling water is one strategy states are… (more)

Arias, Michelle

2011-01-01T23:59:59.000Z

204

Decentralized Decision-making and Protocol Design for Recycled ...  

E-Print Network [OSTI]

Decentralized Decision-making and Protocol. Design for Recycled Material Flows. Reverse logistics networks often consist of several tiers with independent

ihong

2006-07-24T23:59:59.000Z

205

New CMI process recycles valuable rare earth metals from old...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New CMI process recycles valuable rare earth metals from old electronics Contacts: For release: Feb. 26, 2015 Ryan Ott, Critical Materials Institute, 515-294-3616 Laura Millsaps,...

206

Chapter 7, Refrigerator Recycling Evaluation Protocol: The Uniform...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

environmentally harmful refrigerants and foam and enables the recycling of the plastic, metal, and wiring components. 1 Secondary refrigerators are units not located in the...

207

Refrigerator Recycling Evaluation Protocol Doug Bruchs, The Cadmus Group, Inc.  

E-Print Network [OSTI]

recycling programs have become a staple of residential demand-side management portfolios. 1 Measure coincidence factor (demand savings), incremental cost, or measure life. #12;3 PART

208

Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program  

Broader source: Energy.gov [DOE]

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

209

1. Recycle all bottles and cans 2. Recycle all personal electronics  

E-Print Network [OSTI]

as possible ENERGY CONSERVATION 6. Turn off the lights when not in use 7. Turn off your computer when. They provide air filters 24. Use energy efficient light bulbs 25. Buy supplies locally 26. Select efficient reusable grocery bags when shopping 4. Buy things with recycled material in them 5. Reduce waste as much

Howitt, Ivan

210

Progress toward uranium scrap recycling via EBCHR  

SciTech Connect (OSTI)

A 250 kW electron beam cold hearth refining (EBCHR) melt furnace at Lawrence Livermore National Laboratory (LLNL) has been in operation for over a year producing 5.5 in.-diameter ingots of various uranium alloys. Production of in-specification uranium-6%-niobium (U-6Nb) alloy ingots has been demonstrated using virgin feedstock. A vibratory scrap feeder has been installed on the system and the ability to recycle chopped U-6Nb scrap has been established. A preliminary comparison of vacuum arc remelted (VAR) and electron beam (EB) melted product is presented.

McKoon, R.H.

1994-11-01T23:59:59.000Z

211

How to recycle asbestos containing materials (ACM)  

SciTech Connect (OSTI)

The current disposal of asbestos containing materials (ACM) in the private sector consists of sealing asbestos wetted with water in plastic for safe transportation and burial in regulated land fills. This disposal methodology requires large disposal volumes especially for asbestos covered pipe and asbestos/fiberglass adhering to metal framework, e.g. filters. This wrap and bury technology precludes recycle of the asbestos, the pipe and/or the metal frameworks. Safe disposal of ACM at U.S. Department of Energy (DOE) sites, likewise, requires large disposal volumes in landfills for non-radioactive ACM and large disposal volumes in radioactive burial grounds for radioactive and suspect contaminated ACM. The availability of regulated disposal sites is rapidly diminishing causing recycle to be a more attractive option. Asbestos adhering to metal (e.g., pipes) can be recycled by safely removing the asbestos from the metal in a patented hot caustic bath which prevents airborne contamination /inhalation of asbestos fibers. The dissolution residue (caustic and asbestos) can be wet slurry fed to a melter and vitrified into a glass or glass-ceramic. Palex glasses, which are commercially manufactured, are shown to be preferred over conventional borosilicate glasses. The Palex glasses are alkali magnesium silicate glasses derived by substituting MgO for B{sub 2}O{sub 3} in borosilicate type glasses. Palex glasses are very tolerant of the high MgO and high CaO content of the fillers used in forming asbestos coverings for pipes and found in boiler lashing, e.g., hydromagnesite (3MgCO{sub 3} Mg(OH){sub 2} 3H{sub 2}O) and plaster of paris, gypsum (CaSO{sub 4}). The high temperate of the vitrification process destroys the asbestos fibers and renders the asbestos non-hazardous, e.g., a glass or glass-ceramic. In this manner the glass or glass-ceramic produced can be recycled, e.g., glassphalt or glasscrete, as can the clean metal pipe or metal framework.

Jantzen, C.M.

2000-04-11T23:59:59.000Z

212

Chemical Recycling | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical LabelChemical Recycling

213

Texas facility treats, recycles refinery, petrochemical wastes  

SciTech Connect (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

214

NREL Materials Recycling Procedure Purpose To promote environmental sustainability and stewardship, NREL provides the  

E-Print Network [OSTI]

NREL Materials Recycling Procedure Purpose To promote environmental sustainability and stewardship, NREL provides the infrastructure for workers to incorporate materials recycling in daily operations. This procedure identifies appropriate materials, collection locations, and rules and processes for recycling

215

Analysis of the cost of recycling compliance for the automobile industry  

E-Print Network [OSTI]

Cars are one of the most recycled commercial products. Currently, approximately 75% of the total vehicle weight is recycled. The EU directives on End-of-life vehicles try to push the recycling process further: it fixed the ...

Dantec, Delphine

2005-01-01T23:59:59.000Z

216

Expanding Research Horizons: USDA Forest Service Initiative for Developing Recycled Paper Technology  

E-Print Network [OSTI]

Forest Service research on recycling is being led by scientists at the Forest Products Laboratory (FPLExpanding Research Horizons: USDA Forest Service Initiative for Developing Recycled Paper Technology Theodore L. Laufenberg, Program Manager Forest Products Conservation and Recycling Said Abubakr

Abubakr, Said

217

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132  

E-Print Network [OSTI]

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132 adjustments. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from

218

A recycling process for dezincing steel scrap  

SciTech Connect (OSTI)

In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

Dudek, F.J.; Daniels, E.J. (Argonne National Lab., IL (United States)); Morgan, W.A.; Kellner, A.W.; Harrison, J. (Metal Recovery Industries, Inc., Hamilton, ON (Canada))

1992-01-01T23:59:59.000Z

219

A recycling process for dezincing steel scrap  

SciTech Connect (OSTI)

In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A.; Kellner, A.W.; Harrison, J. [Metal Recovery Industries, Inc., Hamilton, ON (Canada)

1992-08-01T23:59:59.000Z

220

Recycling Krylov subspaces for CFD applications  

E-Print Network [OSTI]

The most popular iterative linear solvers in Computational Fluid Dynamics (CFD) calculations are restarted GMRES and BiCGStab. At the beginning of most incompressible flow calculations, the computation time and the number of iterations to converge for the pressure Poisson equation are quite high. In this case, the BiCGStab algorithm, with relatively cheap but non-optimal iterations, may fail to converge for stiff problems. Thus, a more robust algorithm like GMRES, which guarantees monotonic convergence, is preferred. To reduce the large storage requirements of GMRES, a restarted version - GMRES(m) or its variants - is used in CFD applications. However, GMRES(m) can suffer from stagnation or very slow convergence. For this reason, we use the rGCROT method. rGCROT is an algorithm that improves restarted GMRES by recycling a selected subspace of the search space from one restart of GMRES(m) to the next as well as building and recycling this outer vector space from one problem to the next (subsequent time steps i...

Amritkar, Amit; ?wirydowicz, Katarzyna; Tafti, Danesh; Ahuja, Kapil

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Taiwan`s experience with municipal waste recycling  

SciTech Connect (OSTI)

Currently, each person on the average produces 1.15 kg of the municipal waste per day and a total of 9 million metric tons were generated annually in Taiwan. The disposal of such a huge amount of waste presents tremendous challenge for the island due to the scarcity of landfills and incineration facilities available locally. EPA of Taiwan, R.O.C. thus takes an active role in promoting waste recycling to reduce the garbage produced in municipalities. In order to efficiently utilize the government`s human and financial resources used in recycling, started from January 31, 1989, EPA has mandated the producer responsibility recycling program for several designated post-consumer products such as PET, PVC bottles, scrap tires, scrap motor vehicles, etc. Producer responsibility recycling program specifies that the manufacturers, importers and sellers of these designated products have the responsibility to retrieve their products and recycle them properly. Several negative effects have been encountered while the implementation of this producer responsibility recycling program in Taiwan which resulted in a modification of this recycling program recently. This paper presents the encountered experiences on the implementation of municipal waste recycling program in Taiwan.

Lee, C.H. [Da-Yeh Univ., Chang-Hwa (Taiwan, Province of China)

1998-12-31T23:59:59.000Z

222

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents [OSTI]

A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

1986-01-01T23:59:59.000Z

223

Recent trends in automobile recycling: An energy and economic assessment  

SciTech Connect (OSTI)

Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

1994-03-01T23:59:59.000Z

224

Control structure selection for Reactor, Separator and Recycle Process  

E-Print Network [OSTI]

Control structure selection for Reactor, Separator and Recycle Process T. Larsson M.S. Govatsmark S to control", for a simple plant with a liquid phase reactor, a distillation column and recycle of unreacted study that reactor level should be kept at its maximum, which rules out many of control structures

Skogestad, Sigurd

225

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents [OSTI]

A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

Garg, D.; Givens, E.N.; Schweighardt, F.K.

1986-12-09T23:59:59.000Z

226

AN EXAMINATION OF WOOD RECYCLING PROVISIONS IN NORTH AMERICAN GREEN  

E-Print Network [OSTI]

-use and recycling. About 90 green building standards were examined. Current green building programs were determined (ASHRAE) come closest to universally describing the differences between these terms: Recovered Material Building Standards To understand how wood recycling is addressed in green building standards, about 90

227

T. Larsson, S. Skogestad, C.C. Yu Control of reactor, separator with recycle. Control of reactor, separator with recycle.  

E-Print Network [OSTI]

T. Larsson, S. Skogestad, C.C. Yu Control of reactor, separator with recycle. Control of reactor, Taiwan AIChE annual meeting / 11.3.1999 1 NTNU #12; T. Larsson, S. Skogestad, C.C. Yu Control of reactor / 11.3.1999 2 NTNU #12; T. Larsson, S. Skogestad, C.C. Yu Control of reactor, separator with recycle

Skogestad, Sigurd

228

T. Larsson, S. Skogestad, C.C. Yu Control of reactor, separator with recycle. Control of reactor, separator with recycle.  

E-Print Network [OSTI]

T. Larsson, S. Skogestad, C.C. Yu Control of reactor, separator with recycle. Control of reactor, Taiwan AIChE annual meeting / 11.3.1999 1 NTNU #12;T. Larsson, S. Skogestad, C.C. Yu Control of reactor. Skogestad, C.C. Yu Control of reactor, separator with recycle. Related work A lot has been on the control

Skogestad, Sigurd

229

Recycling technologies and market opportunities: Proceedings  

SciTech Connect (OSTI)

These proceedings are the result of our collective effort to meet that challenge. They reflect the dedication and commitment of many people in government, academia, the private sector and national laboratories to finding practical solutions to one of the most pressing problems of our time -- how to deal effectively with the growing waste s that is the product of our affluent industrial society. The Conference was successful in providing a clear picture of the scope of the problem and of the great potential that recycling holds for enhancing economic development while at the same time, having a significant positive impact on the waste management problem. That success was due in large measure to the enthusiastic response of our panelists to our invitation to participate and share their expertise with us.

Goland, A.N.; Petrakis, L. [eds.

1993-09-20T23:59:59.000Z

230

Energy Return on Investment - Fuel Recycle  

SciTech Connect (OSTI)

This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

Halsey, W; Simon, A J; Fratoni, M; Smith, C; Schwab, P; Murray, P

2012-06-06T23:59:59.000Z

231

GLOBAL STABILITY IN CHEMOSTAT-TYPE COMPETITION MODELS WITH NUTRIENT RECYCLING  

E-Print Network [OSTI]

GLOBAL STABILITY IN CHEMOSTAT-TYPE COMPETITION MODELS WITH NUTRIENT RECYCLING SHIGUI RUAN AND XUE- type competition models with nutrient recycling. In the first model the recycling is instantaneous, whereas in the second, the recycling is delayed. They carried out the equilibrium analysis and obtained

Ruan, Shigui

232

Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide  

E-Print Network [OSTI]

Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide Non-contaminated, clean lab plastic containers and conical tubes may be recycled. To be accepted, containers must be clean, triple. Recycling bin located: PSB Loading Dock Alcohol cans and metal shipping containers may be recycled

California at Santa Cruz, University of

233

Recycling Evaluation of Newly Developed Environmentally Benign Pressure Sensitive Adhesive for Postage Applications  

E-Print Network [OSTI]

Recycling Evaluation of Newly Developed Environmentally Benign Pressure Sensitive Adhesive stamp products that can be successfully recycled into fine paper products in a typical recycling additional burden on plants that are using recycled fiber. As a result of an initiative by the USPS, a team

Abubakr, Said

234

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132  

E-Print Network [OSTI]

Nonparametric Bootstrap Recycling Val'erie Ventura, Department of Statistics, Baker Hall 132. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from a recycling distribution G

235

Neutronic analysis of a proposed plutonium recycle assembly  

E-Print Network [OSTI]

A method for the neutronic analysis of plutonium recycle assemblies has been developed with emphasis on relative power distribution prediction in the boundary area of vastly different spectral regions. Such regions are ...

Solan, George Michael

1975-01-01T23:59:59.000Z

236

Superharmonic Injection Locked Quadrature LC VCO Using Current Recycling Architecture  

E-Print Network [OSTI]

. This thesis investigates a coupling mechanism to implement a quadrature voltage controlled oscillator using indirect injection method. The coupling network in this QVCO couples the two LC cores with their super-harmonic and it recycles its bias current back...

Kalusalingam, Shriram

2011-02-22T23:59:59.000Z

237

ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES  

E-Print Network [OSTI]

ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

Gerdes, J. Christian

238

Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity  

Broader source: Energy.gov [DOE]

Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and...

239

Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling  

Broader source: Energy.gov [DOE]

Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

240

Considerations in the recycling of urban parking garages  

E-Print Network [OSTI]

Because of the decreasing use of private automobiles in city centers and because of usual development pressures, some urban parking garages will become available for replacement or recycling. The choice between replacement ...

Paul, Michael Johannes

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermodynamic Database for Rare Earth Elements Recycling Process...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermodynamic Database for Rare Earth Elements Recycling Process: Energetics of the REE-X Systems (XA;, Mg, Zn, Si, Sn, Mn, Pb, Fe, Co, Ni) Apr 17 2015 11:00 AM - 12:00 PM In-Ho...

242

A critical analysis of bulk precipitation recycling models  

E-Print Network [OSTI]

Precipitation recycling is the contribution of local land evaporation to the precipitation of a region. The significant local evaporative contribution to rainfall in many continental regions highlights the potential ...

Fitzmaurice, Jean Anne

2007-01-01T23:59:59.000Z

243

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network [OSTI]

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

244

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network [OSTI]

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

245

Charlotte Green Supply Chain: Reduce, Reuse, Recycle | Department...  

Broader source: Energy.gov (indexed) [DOE]

Oare Former New Media Strategist, Office of Public Affairs Three years ago at Sacred Heart grade school in Norfolk, Neb., efforts to recycle were grim. "When I got here, we had...

246

HOUSEHOLD WILLINGNESS TO RECYCLE ELECTRONIC WASTE - An Application to California  

E-Print Network [OSTI]

00-007). Washington, DC: Solid Waste and Emergency Response.DC: Office of Solid Waste and Emergency Response. Weiss,R. , & Schwer, R. (1998). Solid-waste recycling behavior and

Saphores, Jean-Daniel M; Nixon, Hilary; Ogunseitan, Oladele A; Shapiro, Andrew A

2006-01-01T23:59:59.000Z

247

Applications of industrial ecology : manufacturing, recycling, and efficiency  

E-Print Network [OSTI]

This work applies concepts from industrial ecology to analyses of manufacturing, recycling, and efficiency. The first part focuses on an environmental analysis of machining, with a specific emphasis on energy consumption. ...

Dahmus, Jeffrey B. (Jeffrey Brian), 1974-

2007-01-01T23:59:59.000Z

248

Quantitative assessment of disassembly difficulty in product recycling  

E-Print Network [OSTI]

the difficulty encountered in disassembling products for recycling is presented. The original version of the method relies on the evaluator's subjective judgments of disassembly task difficulty. The primary objective of the research is to reduce the subjectivity...

Hanft, Thomas Albert

1995-01-01T23:59:59.000Z

249

Strategies for aluminum recycling : insights from material system optimization  

E-Print Network [OSTI]

The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

Li, Preston Pui-Chuen

2005-01-01T23:59:59.000Z

250

International investigation of electronic waste recycling plant design  

E-Print Network [OSTI]

This thesis investigates the industry of electronic waste recycling industry in three countries: Germany, the United States, and Chile. Despite differences in the legal structure surrounding the industry, there are many ...

Theurer, Jean E

2010-01-01T23:59:59.000Z

251

Heavy-duty fleet test evaluation of recycled engine coolant  

SciTech Connect (OSTI)

A 240,000 mile (386,232 km) fleet test was conducted to evaluate recycled engine coolant against factory fill coolant. The fleet consisted of 12 new Navistar International Model 9600 trucks equipped with Detroit Diesel Series 60 engines. Six of the trucks were drained and filled with the recycled engine coolant that had been recycled by a chemical treatment/filtration/reinhibited process. The other six test trucks contained the factory filled coolant. All the trucks followed the same maintenance practices which included the use of supplemental coolant additives. The trucks were equipped with metal specimen bundles. Metal specimen bundles and coolant samples were periodically removed to monitor the cooling system chemistry. A comparison of the solution chemistry and metal coupon corrosion patterns for the recycled and factory filled coolants is presented and discussed.

Woyciesjes, P.M.; Frost, R.A. [Prestone Products Corp., Danbury, CT (United States). Coolant Group

1999-08-01T23:59:59.000Z

252

Recycling asphaltic concrete with sulphur as a supplemental binder  

E-Print Network [OSTI]

RECYCLING ASPHALTIC CONCRETE WITH SULPHUR AS A SUPPLEMENTAL BINDER A Thesis by ROBERT WILLIAM BARNETT Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1976 Major Subject: Civil Engineering RECYCLING ASPHALTIC CONCRETE WITH SULPHUR AS A SUPPLEMENTAL BINDER A Thesis by ROBERT WILLIAM BARNETT Approved as to style and content by: :) (Chairm o I ommit tee) (M ber) Mem er) August 1976...

Barnett, Robert William

1976-01-01T23:59:59.000Z

253

Design and analysis of recycled content sign blanks  

E-Print Network [OSTI]

. In response, industries have developed composite materials made of recycled plastic, fiber-reinforced plastics, and alloys made of recycled aluminum. Two predoininantly reclaimed inaterials have been investigated for use as sign substrates. The first... in avoiding costs from tort actions. Aluminuin and wood are the substrates most frequently used for traffic signs. Grades 6061 (heat beatable) and 5052 (non-heat treatable) aluminum alloys are widely used. Currently, grade 3000 aluminum alloys, which...

Harrison, Ben Frank

1996-01-01T23:59:59.000Z

254

Technical specifications for mechanical recycling of agricultural plastic waste  

SciTech Connect (OSTI)

Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.

Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.

2013-06-15T23:59:59.000Z

255

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect (OSTI)

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

256

Optics of electron beam in the Recycler  

SciTech Connect (OSTI)

Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of {approx}0.2 A or higher DC electron beam have to be parallel in the cooling section, within {approx}0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as {approx}0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analyzed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved.

Burov, Alexey V.; Kazakevich, G.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Tiunov, M.; Warner, A.; /Fermilab

2005-11-01T23:59:59.000Z

257

Duality and Recycling Computing in Quantum Computers  

E-Print Network [OSTI]

Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving quantum computer passing through a double-slit. A duality computer offers the capability to perform separate operations on the sub-waves coming out of the different slits, in the so-called duality parallelism. Here we show that an $n$-dubit duality computer can be modeled by an $(n+1)$-qubit quantum computer. In a duality mode, computing operations are not necessarily unitary. A $n$-qubit quantum computer can be used as an $n$-bit reversible classical computer and is energy efficient. Our result further enables a $(n+1)$-qubit quantum computer to run classical algorithms in a $O(2^n)$-bit classical computer. The duality mode provides a natural link between classical computing and quantum computing. Here we also propose a recycling computing mode in which a quantum computer will continue to compute until the result is obtained. These two modes provide new tool for algorithm design. A search algorithm for the unsorted database search problem is designed.

Gui Lu Long; Yang Liu

2007-08-15T23:59:59.000Z

258

FSC-Watch: FSC undermines paper recycling, contributes to global warming FSC undermines paper recycling, contributes to global  

E-Print Network [OSTI]

the May/June 2008 Eco-Journal of the Manitoba Eco-Network, Canada, which we are happy to reproduce pile of collected paper, which can either be burned or landfilled, or shipped to more distant recycling

259

Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle  

SciTech Connect (OSTI)

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

260

Global recycling services for short and long term risk reduction  

SciTech Connect (OSTI)

New schemes are being developed by AREVA in order to provide global solutions for safe and non-proliferating management of used fuels, thereby significantly contributing to overall risks reduction and sustainable nuclear development. Utilities are thereby provided with a service through which they will be able to send their used fuels and only get returned vitrified and compacted waste, the only waste remaining after reprocessing. This waste is stable, standard and has demonstrated capability for very long term interim storage. They are provided as well with associated facilities and all necessary services for storage in a demonstrated safely manner. Recycled fuels, in particular MOX, would be used either in existing LWRs or in a very limited number of full MOX reactors (like the EPR reactor), located in selected countries, that will recycle MOX so as to downgrade the isotopic quality of the Pu inventories in a significant manner. Reprocessed uranium also can be recycled. These schemes, on top of offering demonstrated operational advantages and a responsible approach, result into optimized economics for all shareholders of the scheme, as part of reactor financing (under Opex or Capex form) will be secured thanks to the value of the recycled flows. It also increases fuel cost predictability as recycled fuel is not subject to market fluctuations as much and allows, in a limited span of time, for clear risk mitigation. (authors)

Arslan, M.; Grygiel, J.M.; Drevon, C.; Lelievre, F.; Lesage, M.; Vincent, O. [AREVA, 33 rue Lafayette, F-75009 Paris (France)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 7, JULY 2008 1 Cooperative Secondary Authorization Recycling  

E-Print Network [OSTI]

Secondary Authorization Recycling Qiang Wei, Matei Ripeanu, Member, IEEE, and Konstantin Beznosov, Member recycles previously received authorizations and shares them with other application servers to mask authorization recycling system and its evaluation using simulation and prototype implementation. The results

262

SNX17 regulates Notch pathway and pancreas development through the retromer-dependent recycling of Jag1  

E-Print Network [OSTI]

the retromer-dependent recycling of Jag1. Cell RegenerationWnt secretion by recycling Yin et al. Cell Regenerationthe retromer-dependent recycling of Jag1 Wenguang Yin 1 ,

2012-01-01T23:59:59.000Z

263

Auto shredder residue recycling: Mechanical separation and pyrolysis  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

Santini, Alessandro [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Vassura, Ivano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Serrano, David; Dufour, Javier [Department of Chemical and Energy Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Instituto IMDEA Energy, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Morselli, Luciano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy)

2012-05-15T23:59:59.000Z

264

Recycling tires. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-12-01T23:59:59.000Z

265

Recycling tires. (Latest citations from Pollution Abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the technology and economic advantages of scrap tire recycling. The application of crumb rubber in the production of asphalt paving, floor-coverings, high performance composites, and other products is described. The production of fuels from scrap tires is also discussed. Legislation which promotes recycling, and the roles of government and the private sector in developing new markets and expanding existing markets are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-11-01T23:59:59.000Z

266

Energy Return on Investment from Recycling Nuclear Fuel  

SciTech Connect (OSTI)

This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

None

2011-08-17T23:59:59.000Z

267

Dynamic Systems Analysis Report for Nuclear Fuel Recycle  

SciTech Connect (OSTI)

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

2008-12-01T23:59:59.000Z

268

Contemporary evolution, allelic recycling, and adaptive radiation of the threespine stickleback  

E-Print Network [OSTI]

Contemporary evolution, allelic recycling, and adaptive radiation of the threespine stickleback within ten generations. Rare freshwater-adapted alleles have been recycled from freshwater to oceanic evolve very slowly led him to study artificial selection, natural selection's component mechanisms (e

Aguirre, Windsor E.

269

The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China  

SciTech Connect (OSTI)

Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

Chen Xudong, E-mail: chen.xudong@nies.go.jp [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan); Xi Fengming [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Geng Yong, E-mail: gengyong@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Fujita, Tsuyoshi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan)

2011-01-15T23:59:59.000Z

270

Development of asphalts and pavements using recycled tire rubber. Phase 1: technical feasibility. Final report  

SciTech Connect (OSTI)

This report documents the technical progress made on the development of asphalts and pavements using recycled tire rubber.

Bullin, J.A.; Davison, R.R.; Glover, C.J. [and others

1998-01-01T23:59:59.000Z

271

A Research Needs Assessment for waste plastics recycling: Volume 2, Project report. Final report  

SciTech Connect (OSTI)

This second volume contains detailed information on a number of specific topics relevant to the recovery/recycling of plastics.

NONE

1994-12-01T23:59:59.000Z

272

Solid waste reclamation and recycling: Tires. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the development, management, economic analysis, and environmental impacts of reclamation and recycling of scrap tires. The design and evaluation of recycling processes are examined. Recycled products for use in construction materials, embankment fills, fuel supplements, and material substitutions are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-08-01T23:59:59.000Z

273

Solid waste reclamation and recycling: Tires. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the development, management, economic analysis, and environmental impacts of reclamation and recycling of scrap tires. The design and evaluation of recycling processes are examined. Recycled products for use in construction materials, embankment fills, fuel supplements, and material substitutions are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-09-01T23:59:59.000Z

274

Weathering Effects on Mechanical Properties of Recycled HDPE Based Plastic Lumber  

E-Print Network [OSTI]

Weathering Effects on Mechanical Properties of Recycled HDPE Based Plastic Lumber Jennifer K. Lynch recycled plastic lumber (RPL) decking was exposed to the environment for eleven years. The weathering in the construction of the deck were a commingled recycled plastic material referred to as curbside tailings, NJCT

275

Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors  

E-Print Network [OSTI]

Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors£ Jos´e F. Mart of Rochester michael.huang@ece.rochester.edu ABSTRACT This paper presents CHeckpointed Early Resource RecYcling (Cherry), a hybrid mode of execution based on ROB and checkpoint- ing that decouples resource recycling

Renau, Jose

276

Cherry-MP: Correctly Integrating Checkpointed Early Resource Recycling in Chip Multiprocessors  

E-Print Network [OSTI]

Cherry-MP: Correctly Integrating Checkpointed Early Resource Recycling in Chip Multiprocessors 14853 USA http://m3.csl.cornell.edu/ ABSTRACT Checkpointed Early Resource Recycling (Cherry by performing aggres- sive resource recycling decoupled from instruction retire- ment, using a checkpoint

Martínez, José F.

277

Resources, Conservation and Recycling 54 (2010) 242249 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

Resources, Conservation and Recycling 54 (2010) 242­249 Contents lists available at ScienceDirect Resources, Conservation and Recycling journal homepage: www.elsevier.com/locate/resconrec Factors influencing the rate of recycling: An analysis of Minnesota counties Shaufique F. Sidiquea, , Satish V. Joshib

Lupi, Frank

278

Resources, Conservation and Recycling 54 (2010) 878892 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

Resources, Conservation and Recycling 54 (2010) 878­892 Contents lists available at ScienceDirect Resources, Conservation and Recycling journal homepage: www.elsevier.com/locate/resconrec Stabilization of recycled base materials with high carbon fly ash Bora Cetina , Ahmet H. Aydilekb, , Yucel Guneyc a Deptment

Aydilek, Ahmet

279

ENG 4793: Composite Materials and Processes 1 Glass Mat Reinforced Recycled  

E-Print Network [OSTI]

of nylon, PP and PET · Need to recycle! ENG 4793: Composite Materials and Processes 4 Mixed Thermoplastics1 ENG 4793: Composite Materials and Processes 1 Glass Mat Reinforced Recycled Thermoplastics ver 1 ENG 4793: Composite Materials and Processes 2 Outline · Motivation · Recycling issues · Why reinforce

Colton, Jonathan S.

280

JABSOM EHSO E-WASTE Recycling Program Created: May 13, 2010 Revised: January 6, 2013  

E-Print Network [OSTI]

JABSOM EHSO ­ E-WASTE Recycling Program Created: May 13, 2010 ­ Revised: January 6, 2013 Page 1 of 2 UH eWaste Recycling Program at JABSOM Kaka'ako The University of Hawaii has established a long-term, free-of-charge quarterly recycling program of UH electronic waste (eWaste), compliments of APPLE

Olsen, Stephen L.

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Non-parametric Bootstrap Recycling Val erie Ventura, Department of Statistics, Baker Hall 132  

E-Print Network [OSTI]

Non-parametric Bootstrap Recycling Val#19;erie Ventura, Department of Statistics, Baker Hall 132 adjustments. The amount of computation involved is usually considerable, and recycling provides a less computer intensive alternative. Recycling consists of using repeatedly the same samples drawn from

282

Control of Delayed Recycling Systems with Unstable First Order Forward Loop  

E-Print Network [OSTI]

Control of Delayed Recycling Systems with Unstable First Order Forward Loop J. F. M Abstract Unstable time-delay systems and recycling systems are challenging problems for control analysis and design. When an unstable time-delay system has a recycle, its control problem becomes even more difficult

Boyer, Edmond

283

Nutrient-plankton models with nutrient recycling S. R.-J. Jang1  

E-Print Network [OSTI]

Nutrient-plankton models with nutrient recycling S. R.-J. Jang1 and J. Baglama2 1. Department with general uptake functions in which nutrient recycling is either instantaneous or de- layed is considered in both the instantaneous and the delayed nutrient recycling models. However, the delayed nutrient

Baglama, James

284

Automation of waste recycling using hyperspectral image analysis Artzai Picon1  

E-Print Network [OSTI]

Automation of waste recycling using hyperspectral image analysis Artzai Picon1 Ovidiu Ghita2 Pedro. In this paper we present a novel methodology to automate the recycling process of non-ferrous metal Waste from that the proposed solution can be used to replace the manual procedure that is currently used in WEEE recycling

Whelan, Paul F.

285

Material Recycling at Product End-of-Life Jeffrey B. Dahmus and Timothy G. Gutowski  

E-Print Network [OSTI]

Material Recycling at Product End-of-Life Jeffrey B. Dahmus and Timothy G. Gutowski Department, Massachusetts, USA Abstract--This work focuses on developing a compact representation of the material recycling different ores, the work here provides insight into the relative attractiveness of recycling different

Gutowski, Timothy

286

Plasma wall interaction induced oscillations and their effects on the global recycling  

E-Print Network [OSTI]

1 Plasma wall interaction induced oscillations and their effects on the global recycling from Devices 2007.05.20-22 NIFS #12;2 contents 1. MOTIVATION (ULFE & termination) 2. dynamics of recycling 3 in signals on heat loads, particle recycling, and impurity influx and contents. Frequency ~ 1-2Â¥10-3 Hz

Princeton Plasma Physics Laboratory

287

ENVIRONMENTALLY BENIGN LINERLESS SELF-ADHESIVE COIL STAMPS: R&D AND RECYCLING STUDIES  

E-Print Network [OSTI]

ENVIRONMENTALLY BENIGN LINERLESS SELF-ADHESIVE COIL STAMPS: R&D AND RECYCLING STUDIES Kim K been easy and quick to use, and have offered consistent adhesion. For recyclers, however, these adhesive stamps have caused concern for their paper recycling processes. In addition, there is the issue

Abubakr, Said

288

Control of Delayed Recycling Systems with an Unstable Pole at Forward Path  

E-Print Network [OSTI]

Control of Delayed Recycling Systems with an Unstable Pole at Forward Path J. F. Marquez Rubio, B. del Muro Cu´ellar and Olivier Sename Abstract-- Unstable time delay system and recycling system pose a challenge problem in their own. When unstable time delay system have recycle the control problem becomes

Paris-Sud XI, Université de

289

Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits  

E-Print Network [OSTI]

Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits Luca P, CA 94720-1772 Abstract Recycling was recently proposed as a system-level design tech- nique to facilitate the building of complex System-on-Chips (SOC) by assembling pre-designed components. Recycling

Carloni, Luca

290

84 Yun et al. Ribosome recycling factor Acta Cryst. (2000). D56, 8485 crystallization papers  

E-Print Network [OSTI]

84 Yun et al. Ribosome recycling factor Acta Cryst. (2000). D56, 84±85 crystallization papers Acta crystallographic studies of ribosome recycling factor from Escherichia coli Jungmin Yun,a Wookhyun Kim,a Sung Chul rights reserved Ribosome recycling factor (RRF) catalyzes the disassembly of a termination complex during

Suh, Se Won

291

The Covered Device Recycling (Act 108) of 2010 (CDRA) A General Overview  

E-Print Network [OSTI]

The Covered Device Recycling (Act 108) of 2010 (CDRA) A General Overview Electronic products address the manufacture, sales, and end-of-life collection, management and recycling of covered devices to their covered devices. o Must establish and conduct ongoing recycling programs that offer covered device

Bushman, Frederic

292

Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and  

E-Print Network [OSTI]

REPORT Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species in recycling nutrients, thus providing a mechanism for how animal species identity mediates ecosystem processes) recycled nitrogen (N) and phosphorus (P) in a tropical stream supports stoichiometry theory. Mass

Flecker, Alex

293

The Low-Recycling Lithium Boundary and Implications for Plasma Transport  

E-Print Network [OSTI]

The Low-Recycling Lithium Boundary and Implications for Plasma Transport Erik Michael Granstedt transport mechanism in high-temperature low-recycling fusion experiments, and in the absence of stabilizing hydrogen and impurity emission in LTX in order to determine the lower bound on recycling that can

Hammett, Greg

294

Aggregation methods in food chains with nutrient recycling B.W. Kooi a,  

E-Print Network [OSTI]

to the stability of ecosystems (DeAngelis, 1992). With nutrient recycling, waste-products and dead organisms fromAggregation methods in food chains with nutrient recycling B.W. Kooi a, *, J.C. Poggiale b , P recycling is taken into account. The food chain is formed by a nutrient and two populations, prey

Poggiale, Jean-Christophe

295

Recycling practices of spent MgO-C refractories  

SciTech Connect (OSTI)

The recycling options of spent MgO-C refractories from an electrical arc furnace (EAF) have been evaluated. The economic, quality of spent refractories and products made from it, the ease of implementation of a recycling practice and the interest of steel melt shops were considered. It was decided that the best option of most EAF shops would be to recycle spent MgO-C refractory as a foaming slag conditioner because of their MgO content. Crushed MgO-C spent refractories can be reused directly back into an EAF without complex and costly beneficiation. Even though this practice is simple, it is critical to know the optimum amount of MgO in the slag to achieve the best foaming quality. A computer model was designed to find the optimum MgO amount. This modeling also helps the melt shop extend refractory service life, increase the energy efficiency, increase productivity, and decrease the amount of slag. Issues related to the refractory recycling will be discussed.

Kwong, Kyei-Sing; Bennett, James P.

2002-10-01T23:59:59.000Z

296

Process for gasifying carbonaceous material from a recycled condensate slurry  

DOE Patents [OSTI]

Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

297

Bacteriorhodopsin production by cell recycle culture of Halobacterium  

E-Print Network [OSTI]

complex carbon/nitrogen sources and amino acids for the growth of H. halobium R1 (Um et al., 1997a). Yeast extract as the carbon and nitrogen source supported best cell growth and bacteriorhodopsin production in the fermenter and 0.1 l in the recycling loop. Cell broth was circulated at 1.2 l/min by diaphragm pump

298

Hydrogen recycling with multistep and resonance line absorption effects  

SciTech Connect (OSTI)

Recycling of hydrogen at a neutralizer plate in a tokamak divertor is considered, with particular emphasis on the effects of multistep atomic processes and photoexcitation by the resonant Lyman {alpha} line. These effects are shown to be significant for parameters relevant to International Thermonuclear Experimental Reactor (ITER) (S. A. Cohen {ital et} {ital al}., J. Nucl. Mater. {bold 176} {bold 177}, 909 (1990)).

Marchand, R.; Lauzon, J. (INRS-Energie, C. P. 1020, Varennes, Quebec J3X 1S2 (Canada))

1992-04-01T23:59:59.000Z

299

Recycling Water: one step to making algal biofuels a reality  

E-Print Network [OSTI]

Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

Fay, Noah

300

Recycling Energy to Restore Impaired Ankle Function during Human Walking  

E-Print Network [OSTI]

Recycling Energy to Restore Impaired Ankle Function during Human Walking Steven H. Collins1 walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy

Collins, Steven H.

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

please recycle. Creating Leaders of Consequence for a Sustainable Future  

E-Print Network [OSTI]

on the other. In short: We need environmental managers who know business, law, public policy and/or engineeringplease recycle. Creating Leaders of Consequence for a Sustainable Future Hybrid Environmental Professional Program Providing financial aid for dual degree students Today's environmental leaders need a foot

Reif, John H.

302

Recycling Campaign Prizes for best project proposal to  

E-Print Network [OSTI]

coffee cups into the paper bin; which makes us come to the conclusion that communication around, but prevention and raising awareness is better. There are new posters being utilized, what other ways can that is described below. Register Each coordinator is asked to send an e-mail (subject: Recycling Campaign Award

van der Torre, Leon

303

Morphology and properties of recycled polypropylene/bamboo fibers composites  

SciTech Connect (OSTI)

Polypropylene (PP) is among the most widely used thermoplastics in many industrial fields. However, like other recycled polymers, its properties usually decrease after recycling process and sometimes are degraded to poor properties level for direct re-employment. The recycled products, in general, need to be reinforced to have competitive properties. Short bamboo fibers (BF) have been added in a recycled PP (RPP) with and without compatibilizer type maleic anhydride polypropylene (MAPP). Several properties of composite materials, such as helium gas permeability and mechanical properties before and after ageing in water, were examined. The effects of bamboo fiber content and fiber chemical treatment have been also investigated. We showed that the helium permeability increases if fiber content is higher than 30% because of a poor adhesion between untreated bamboo fiber and polymer matrix. The composites reinforced by acetylated bamboo fibers show better helium permeability due to grafting of acetyl groups onto cellulose fibers surface and thus improves compatibility between bamboo fibers and matrix, which has been shown by microscopic observations. Besides, mechanical properties of composite decrease with ageing in water but the effect is less pronounced with low bamboo fiber content.

Phuong, Nguyen Tri; Guinault, Alain; Sollogoub, Cyrille [Laboratoire des Materiaux Industriels Polymeres, CNAM, Paris (France); Chuong, Bui [Polymer Center, Hanoi University of Technology (Viet Nam)

2011-05-04T23:59:59.000Z

304

Impact of increased electric vehicle use on battery recycling infrastructure  

SciTech Connect (OSTI)

State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

Vimmerstedt, L.; Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Jungst, R. [Sandia National Labs., Albuquerque, NM (United States)

1996-12-01T23:59:59.000Z

305

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas  

Broader source: Energy.gov [DOE]

This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

306

FEASIBILITY OF TARGET MATERIAL RECYCLING AS WASTE MANAGEMENT ALTERNATIVE  

E-Print Network [OSTI]

FEASIBILITY OF TARGET MATERIAL RECYCLING AS WASTE MANAGEMENT ALTERNATIVE L. EL-GUEBALY,* P. WILSON for Publication February 3, 2004 The issue of waste management has been studied simultaneously along with the development of the ARIES heavy-ion-driven inertial fusion energy (IFE) concept. Options for waste management

California at San Diego, University of

307

Fermilab Recycler Ring: Technical design report. Revision 1.1  

SciTech Connect (OSTI)

This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab`s ongoing High Energy Physics program and the Main Injector construction project.

Jackson, G. [ed.

1996-07-01T23:59:59.000Z

308

Your company may be looking to transition existing datacenter infrastructure (primarily physical and virtualized environments) to deliver a private cloud to your business. While  

E-Print Network [OSTI]

Your company may be looking to transition existing datacenter infrastructure (primarily physical datacenter investments and skill sets to deliver a private cloud today. Pooling and dynamic allocation of datacenter resources. With Virtual Machine Manager, you can pool and virtualize your compute, network

Chaudhuri, Surajit

309

UCLA PHYSICAL CHEMISTRY CONCENTRATION 2012-2013 CHEMISTRY MAJOR (B.S.), PHYSICAL CHEMISTRY CONCENTRATION: This concentration is designed primarily for  

E-Print Network [OSTI]

UCLA PHYSICAL CHEMISTRY CONCENTRATION 2012-2013 CHEMISTRY MAJOR (B.S.), PHYSICAL CHEMISTRY CONCENTRATION: This concentration is designed primarily for Chemistry majors who are interested in attending graduate school in Physical Chemistry/Physics or related areas. It may also satisfy some of the needs

Levine, Alex J.

310

UCLA CHEMISTRY MAJOR 2012-2013 CHEMISTRY MAJOR (B.S.): This major is designed primarily for students who are interested in attending  

E-Print Network [OSTI]

UCLA CHEMISTRY MAJOR 2012-2013 CHEMISTRY MAJOR (B.S.): This major is designed primarily for students who are interested in attending graduate school in Chemistry or related areas. It also satisfies this major and others offered in the Department of Chemistry and Biochemistry, consult the Undergraduate

Levine, Alex J.

311

For decades, traffic safety improvements have relied primarily upon engineering and enforcement solutions. If we are limited to those options, further  

E-Print Network [OSTI]

Traffic Safety Culture For decades, traffic safety improvements have relied primarily upon about driving ­ changing our traffic safety culture. A survey by the Center for Transportation Safety on the roads than drivers nationwide, as measured in the 2010 Traffic Safety Culture Index published by the AAA

312

Cold bond agglomeration of waste oxides for recycling  

SciTech Connect (OSTI)

Recycling of waste oxides has been an on-going challenge for integrated steel plants. The majority of these waste oxides are collected from the cleaning systems of ironmaking and steelmaking processes, and are usually in the form of fine particulates and slurries. In most cases, these waste materials are contaminated by oils and heavy metals and often require treatment at a considerable expense prior to landfill disposal. This contamination also limits the re-use or recycling potential of these oxides as secondary resources of reliable quality. However, recycling of some selected wastes in blast furnaces or steelmaking vessels is possible, but first requires agglomeration of the fine particulate by such methods as cold bond briquetting. Cold bond briquetting technology provides both mechanical compacting and bonding (with appropriate binders) of the particulates. This method of recycling has the potential to be economically viable and environmentally sustainable. The nature of the present study is cold bond briquetting of iron ore pellet fines with a molasses-cement-H{sub 2}O binder for recycling in a blast furnace. The inclusion of molasses is for its contribution to the green strength of briquettes. During the curing stage, significant gains in strength may be credited to molasses in the presence of cement. The interactions of cement (and its substitutes), water and molasses and their effects on the properties of the agglomerates during and after various curing conditions were investigated. Tensile strengths of briquettes made in the laboratory and subjected to experimental conditions which simulated the top part of a blast furnace shaft were also examined.

D`Alessio, G.; Lu, W.K. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Materials Science and Engineering

1996-12-31T23:59:59.000Z

313

CHEMICAL WASTE RECYCLING PROGRAM All types of batteries are collected by Chemical Waste Services (CWS) for recycling. These include  

E-Print Network [OSTI]

Services (CWS) for recycling. These include alkaline, lithium, rechargeable, coin batteries, lead-cadmium (ni-cads), nickel metal hydride, lithium, etc. They are individually bagged and placed phones, drills, computers, cameras, PDAs, toys and games. It is also used as a corrosion resistant

Baker, Chris I.

314

Unanticipated potential cancer risk near metal recycling facilities  

SciTech Connect (OSTI)

Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside the facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind direction and the number of shifts that could operate a year. Further study is warranted to better understand the metal air pollution levels in the community and if necessary, to evaluate the feasibility of emission controls and identify operational improvements and best management practices for this industry. This research adds two new aspects to the literature: identification of types and magnitude of metal particulate matter air pollutants associated with a previously unrecognized area source, metal recyclers and their potential risk to health. -- Highlights: • Air monitoring study in response to community complaints found metal contamination. • Metal recyclers found to potentially pose cancer from metal particulates • Chromium, nickel, cobalt and cadmium samples were detected in five metal recyclers. • These metals were not detected in background air samples. • Estimated increased cancer risk ranges from 1 in 1,000,000 to 8 in 10,000.

Raun, Loren, E-mail: raun@rice.edu [Department of Statistics, MS 138, Rice University, P.O. Box 1892, Houston, TX 77251-1892 (United States)] [Department of Statistics, MS 138, Rice University, P.O. Box 1892, Houston, TX 77251-1892 (United States); Pepple, Karl, E-mail: pepple.karl@epa.gov [State and Local Programs Group, Air Quality Policy Division, Office of Air Quality Planning and Standards, Policy, Analysis, and Communications Staff, Mail Drop C404-03, U.S. EPA, Research Triangle Park, NC 27711 (United States)] [State and Local Programs Group, Air Quality Policy Division, Office of Air Quality Planning and Standards, Policy, Analysis, and Communications Staff, Mail Drop C404-03, U.S. EPA, Research Triangle Park, NC 27711 (United States); Hoyt, Daniel, E-mail: hoyt.daniel@epa.gov [Air Surveillance Section, US EPA, Region 6, 6EN-AS, 1445 Ross Avenue, Dallas, TX 75202-2733 (United States)] [Air Surveillance Section, US EPA, Region 6, 6EN-AS, 1445 Ross Avenue, Dallas, TX 75202-2733 (United States); Richner, Donald, E-mail: Donald.Richner@houstontx.gov [Houston Department of Health and Human Services, Bureau of Pollution Control and Prevention, 7411 Park Place Blvd., Houston, TX 77087 (United States)] [Houston Department of Health and Human Services, Bureau of Pollution Control and Prevention, 7411 Park Place Blvd., Houston, TX 77087 (United States); Blanco, Arturo, E-mail: arturo.blanco@houstontx.gov [Pollution Control and Prevention, Environmental Health Division, Houston Department of Health and Human Services, 7411 Park Place Blvd., Houston, TX 77087 (United States)] [Pollution Control and Prevention, Environmental Health Division, Houston Department of Health and Human Services, 7411 Park Place Blvd., Houston, TX 77087 (United States); Li, Jiao, E-mail: jiao.li@rice.edu [Wiess School of Natural Science, Rice University, 6100 Main St., Houston, TX 77005 (United States)] [Wiess School of Natural Science, Rice University, 6100 Main St., Houston, TX 77005 (United States)

2013-07-15T23:59:59.000Z

315

Sustained Recycle in Light Water and Sodium-Cooled Reactors  

SciTech Connect (OSTI)

From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

2010-11-01T23:59:59.000Z

316

Recycling flows in eMergy evaluation: A Mathematical Paradox? N.Y. Amponsah, O. Le Corre1  

E-Print Network [OSTI]

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Recycling involving recycling or reuse of waste. If waste exergy (its residual usefulness) is not negligible, wastes could serve as input to another process or be recycled. In cases of continuous waste recycle or reuse

Paris-Sud XI, Université de

317

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #DMI-0423484 Analysis of Recycling Systems  

E-Print Network [OSTI]

#DMI-0423484 Analysis of Recycling Systems Timothy G. Gutowski Malima I. Wolf Jeffrey B. Dahmus Dominic 02139 Abstract: This paper outlines past and future work on the topic of recycling systems. This project focuses on the performance of recycling systems from a range of perspectives. The recyclability

Gutowski, Timothy

318

Energy Management by Recycling of Vehicle Waste Oil in Pakistan  

E-Print Network [OSTI]

Abstract: Pakistan has been suffering from an energy crisis for about half a decade now. The power crisis is proving to be unbearable, so importing huge amount of hydrocarbons from abroad to meet its energy needs. This study therefore focuses on the analysis of energy and environmental benefits for vehicle waste lubricant oil pertaining to its reuse by means of: (i) regain the heating value of used oils in a combustion process and (ii) recycling of waste oil to make fresh oil products. The waste oil samples were tested by ICP method and the test results were compared with standard requirements. It was found that the matter could effectively be solved by means of waste oil management practices together with collection centers, transports and processors by encouraging and financial help for the recycling industry. The importance and worth of this work concludes minor levels of hazardous elements when regained the heating value from the waste lubricating oil.

Hassan Ali Durrani

319

Lead contamination around a kindergarten near a battery recycling plant  

SciTech Connect (OSTI)

Lead poisoning has been noticed for more than a thousand years. Increased lead absorption and/or impaired neurobehavioral function among children who lived nearby lead smelters were reported in many different countries. In November of 1987, a worker from a lead battery recycling smelter suffered from anemia and bilateral weakness of his extremities. He was diagnosed as lead poisoning at the National Taiwan University Hospital (NTUH). A subsequent epidemiological survey of the workers from this recycling smelter showed that 31 out of 64 who came for a medical examination suffered from lead poisoning. Since there was a kindergarten next to the factory, we performed this study to determine whether there was an increased lead absorption among children of the exposed kindergarten and its association with the extent of air and soil pollution in the surrounding area. 12 refs., 1 fig., 4 tabs.

Jung-Der Wang; Chang-Sheng Jang; Yaw-Huei Hwang; Zueng-Sang Chen [National Taiwan Univ. (China)

1992-07-01T23:59:59.000Z

320

Chlorinated solvent replacements recycle/recovery review report  

SciTech Connect (OSTI)

This report is a literature review of waste solvents recycle/recovery methods and shows the results of solvent separations using membrane and distillation technologies. The experimental solvent recovery methods were conducted on solvent replacements for chlorinated solvents at Montana State University. The literature review covers waste solvents separation using distillation, membranes decantation, filtration, carbon adsorption, solvent extraction, and other vapor-phase separation techniques. The results of this study identify solvent distillation methods as the most common separation technique. The alternative separation methods typically supplement distillation. The study shows the need for industries to identify waste solvent disposal methods and investigate the economics of waste solvent recycling as a possible waste reduction method.

Beal, M.; Hsu, D.; McAtee, R.E.; Weidner, J.R. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Berg, L.; McCandless, F.P.; Waltari, S.; Peterson, C. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemical Engineering

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Regional or global WEEE recycling. Where to go?  

SciTech Connect (OSTI)

Highlights: ? Source and Destination countries involved in the movement of WEEE have been studied. ? Legislation, facilities and EPR are presented in Source and Destination countries. ? Mostly Destination countries do not have EPR established and have informal facilities. ? Source countries: good technology, EPR established and mostly WEEE regulation enacted. ? Regional WEEE recycling should be under global standards for Sources and Destinations. - Abstract: If we consider Waste Electrical and Electronic Equipment (WEEE) management, we can see the development of different positions in developed and developing countries. This development started with the movement of WEEE from developed countries to the developing countries. However, when the consequences for health and the environment were observed, some developing countries introduced a ban on the import of this kind of waste under the umbrella of the Basel Convention, while some developed countries have been considering a regional or global WEEE recycling approach. This paper explores the current movements between Source and Destination countries, or the importers and exporters, and examines whether it is legal and why illegal traffic is still rife; how global initiatives could support a global WEEE management scheme; the recycling characteristics of the source an destination countries and also to ascertain whether the principle of Extended Producer Responsibility (EPR) has been established between the different stakeholders involved in WEEE management. Ultimately, the Full Extended Producer Responsibility is presented as a possible solution because the compensation of the environmental capacity for WEEE recycling or treatment could be made by the contribution of extra responsibility; and also generating an uniform standard for processing WEEE in an environmentally sound manner could support the regional or international solution of WEEE and also improve the performance of the informal sector.

Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of the Environment, Tsinghua University, Beijing 100084 (China); Lopez N, Brenda N.; Liu, Lili; Zhao, Nana; Yu, Keli; Zheng, Lixia [State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of the Environment, Tsinghua University, Beijing 100084 (China)

2013-04-15T23:59:59.000Z

322

Direct Solid-State Conversion of Recyclable Metals and Alloys  

SciTech Connect (OSTI)

Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

Kiran Manchiraju

2012-03-27T23:59:59.000Z

323

Decontamination of process equipment using recyclable chelating solvent  

SciTech Connect (OSTI)

The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. {open_quotes}Hard{close_quotes} chemical decontamination solutions, capable of achieving decontamination factors (Df`s) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. {open_quotes}Soft{close_quotes} chemical decontamination solutions, capable of achieving Df`s of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock & Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment.

Jevec, J.; Lenore, C.; Ulbricht, S.

1995-12-01T23:59:59.000Z

324

Magnetic error analysis of recycler pbar injection transfer line  

SciTech Connect (OSTI)

Detailed study of Fermilab Recycler Ring anti-proton injection line became feasible with its BPM system upgrade, though the beamline has been in existence and operational since year 2000. Previous attempts were not fruitful due to limitations in the BPM system. Among the objectives are the assessment of beamline optics and the presence of error fields. In particular the field region of the permanent Lambertson magnets at both ends of R22 transfer line will be scrutinized.

Yang, M.J.; /Fermilab

2007-06-01T23:59:59.000Z

325

AISI waste oxide recycling program. Final technical report  

SciTech Connect (OSTI)

In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

Aukrust, E.; Downing, K.B.; Sarma, B.

1995-08-01T23:59:59.000Z

326

Waste collection systems for recyclables: An environmental and economic assessment for the municipality of Aarhus (Denmark)  

SciTech Connect (OSTI)

Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed by means of a life cycle assessment and an assessment of the municipality's costs. Kerbside collection would provide the highest recycling rate, 31% compared to 25% in the baseline scenario, but bring schemes with drop-off containers would also be a reasonable solution. Collection of recyclables at recycling centres was not recommendable because the recycling rate would decrease to 20%. In general, the results showed that enhancing recycling and avoiding incineration was recommendable because the environmental performance was improved in several impact categories. The municipal costs for collection and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought.

Larsen, A.W., E-mail: awl@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Merrild, H.; Moller, J.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2010-05-15T23:59:59.000Z

327

Characterization of Transport and Solidification in the Metal Recycling Processes  

SciTech Connect (OSTI)

The characterization of the transport and solidification of metal in the melting and casting processes is significant for the optimization of the radioactively contaminated metal recycling and refining processes. . In this research project, the transport process in the melting and solidification of metal was numerically predicted, and the microstructure and radionuclide distribution have been characterized by scanning electron microscope/electron diffractive X-ray (SEWEDX) analysis using cesium chloride (CSC1) as the radionuclide surrogate. In the melting and solidification process, a resistance furnace whose heating and cooling rates are program- controlled in the helium atmosphere was used. The characterization procedures included weighing, melting and solidification, weighing after solidification, sample preparation, and SEM/EDX analysis. This analytical methodology can be used to characterize metal recycling and refining products in order to evaluate the performance of the recycling process. The data obtained provide much valuable information that is necessary for the enhancement of radioactive contaminated metal decontamination and recycling technologies. The numerical method for the prediction of the melting and solidification process can be implemented in the control and monitoring system-of the melting and casting process in radioactive contaminated metal recycling. The use of radionuclide surrogates instead of real radionuclides enables the research to be performed without causing harmfid effects on people or the community. This characterization process has been conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University since October 1995. Tests have been conducted on aluminum (Al) and copper (Cu) using cesium chloride (CSCI) as a radionuclide surrogate, and information regarding the radionuclide transfer and distribution in melting and solidification process has been obtained. The numerical simulation of the solidification of molten metal has been very successful for aluminium; however, a stability problem in the simulation of iron/steel solidification poses a challenge. Thus, additional development is needed to simulate the radionuclide transfer and distribution behaviors in the melting and casting processes. This project was initially based on a two-year plan. However, due to technical and financial difficulties, the project ended in FY96. The work which has been accomplished in the first year includes the characterization of radionuclide transfer and distribution in the melting-solidification process and the numerical simulation of metal solidification. The Argon-arc melting method was tested for the melting of copper and steel materials. Five tests were performed to characterize the transfer and distribution of radionuclides in the aluminiurn and copper melting/solidification process using CSC1 as radionuclide surrogates. The numerical simulation of molten aluminium and steel solidification process was performed. Different boundary conditions were applied in the simulations.

M. A. Ebadian; R. C. Xin; Z. F. Dong

1997-08-06T23:59:59.000Z

328

Development of Recycling Compatible Pressure-Sensitive Adhesives and Coatings  

SciTech Connect (OSTI)

The objective of this project was the design of new water-based pressure-sensitive adhesive (PSA) products and coatings engineered for enhanced removal during the processing of recycled fiber. Research included the formulation, characterization, and performance measurements of new screenable coatings, testing of modified paper and board substrates and the design of test methods to characterize the inhibition of adhesive and coating fragmentation and relative removal efficiencies of developed formulations. This project was operated under the requirements that included commercially viable approaches be the focus, that findings be published in the open literature and that new strategies could not require changes in the methods and equipment used to produce PSA and PS labels or in the recycling process. The industrial partners benefited through the building of expertise in their company that they would not, and likely could not, have pursued if it had not been for the partnership. Results of research on water-based PSAs clearly identifies which PSA and paper facestock properties govern the fragmentation of the adhesive and provide multiple strategies for making (pressure-sensitive) PS labels for which the PSA is removed at very high efficiencies from recycling operations. The application of these results has led to the identification of several commercial products in Franklin International’s (industrial partner) product line that are recycling compatible. Several new formulations were also designed and are currently being scaled-up. Work on recycling compatible barrier coatings for corrugated containers examined the reinforcement of coatings using a small amount of exfoliated organically modified montmorillonite (OMMT). These OMMT/paraffin wax nanocomposites demonstrated significantly improved mechanical properties. Paraffin waxes containing clay were found to have significantly higher Young’s moduli and yield stress relative to the wax matrix, but the most impressive finding was the impact of the clay on the elongation at break; a nearly 400% increase was observed for a clay concentration of 0.5 wt.%. These coatings also demonstrate a number of other property enhancements, which make them a good candidate for continued research. Another approach explored in this research was the use of structured and self-cleaning surfaces. If the amount of coating utilized can be significantly reduced, the environmental impact is diminished.

Steven J. Severtson

2010-02-15T23:59:59.000Z

329

Design of Recycle/Reuse Networks with Thermal Effects and Variable Sources  

E-Print Network [OSTI]

-effective allocation of process streams (sources) to process units (sinks) without adding new equipment to the process. Examples of sources in direct recycle/reuse systems are the waste or low value streams considered for recycling. Examples of sinks are those units... performance targets which can be determined ahead of detailed design. In this regard, the ?pinch? technology is quite effective. Performance targets in terms of minimum amount of fresh requirements and waste flow are necessary for direct recycle/reuse...

Zavala Oseguera, Jose Guadalupe

2010-10-12T23:59:59.000Z

330

The Recycling Intentions of Sport Spectators: A Theory of Planned Behavior Approach  

E-Print Network [OSTI]

implemented a recycling and composting program that saved the organization over $100,000 (Environmental Protection Agency, 2010). The money saved was from filling fewer solid waste dumpsters that are destined for the landfill. By decreasing their solid... waste through composting and recycling, the organization filled up fewer solid waste dumpsters during games at AT&T Ballpark. Despite these savings, there is still more potential for cost savings by increasing the recovery rates of recyclable materials...

McCullough, Brian Patrick

2012-07-16T23:59:59.000Z

331

E-Print Network 3.0 - animal waste recycling Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measure for recycling of house-hold waste to agriculture 12;Sustainability analysis Bioenergy... , cereal grain), grass from seminatural ecosystem e.g. ... Source: Ris...

332

E-Print Network 3.0 - automobile catalyst recycling Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: automobile catalyst recycling Page: << < 1 2 3 4 5 > >> 1 SUPPLIERS WITHIN AN ECOLOGICALLY...

333

Implementation of EU Waste Recycling Regulation in Macedonia: The Challenges of Policy Integration and Normative Change  

E-Print Network [OSTI]

harmonization; plastic bottles; batteries; informal sector,recycling of PET plastic bottles and household batteries.3. Laws managing PET plastic bottles and batteries were

Ilievska Kremer, Jannika Sjostrand

2013-01-01T23:59:59.000Z

334

E-Print Network 3.0 - ash quality recycling Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilization Summary: Center for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik... CANMET Conference on Quality of Concrete Structures and...

335

Accelerated test methods for evaluating alkali-silica reactivity of recycled concrete aggregates.  

E-Print Network [OSTI]

??This thesis reports the findings of a study carried out to determine the effectiveness of Accelerated Tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete… (more)

Johnson, Robert C (Author)

2011-01-01T23:59:59.000Z

336

Analysis of multi-recycle thorium fuel cycles in comparison with once-through fuel cycles.  

E-Print Network [OSTI]

??The purpose of this research is to develop a methodology for a thorium fuel recycling analysis that provides results for isotopics and radio-toxicity evaluation and… (more)

Huang, Lloyd Michael

2013-01-01T23:59:59.000Z

337

THE PERFORMANCE AND MODIFICATION OF RECYCLED ELECTRONIC WASTE PLASTICS FOR THE IMPROVEMENT OF ASPHALT PAVEMENT MATERIALS.  

E-Print Network [OSTI]

?? Bulk electric waste plastics were recycled and reduced in size into plastic chips before pulverization or cryogenic grinding into powders. Two major types of… (more)

Colbert, Baron W.

2012-01-01T23:59:59.000Z

338

Water Recycling removal using temperature-sensitive hydronen  

SciTech Connect (OSTI)

The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

Rana B. Gupta

2002-10-30T23:59:59.000Z

339

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

SciTech Connect (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

340

The Energy Impact of Industrial Recycling and Waste Exchange  

E-Print Network [OSTI]

of regulations and the most interest. There is a chain of regulation that extends from those who generate hazardous waste to those who transport, store, treat, and dispose of it. However, facilities that recycle or reuse hazardous wastes are excluded from...~e listed as available in waste-exchange catalogs. The haza~dous natu~e of these wastes is ext~emely impo~tant in dete~mining the benefits of exchanging them, because the costs of ~egulated disposal, sto~age, and t~eatment may be avoided by ~ecycling (4...

Phillips, W. C.

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Recycling and composting demonstration projects for the Memphis region  

SciTech Connect (OSTI)

This report documents the development and implementation of the project entitled Recycling and Composting Demonstration Projects for the Memphis Region.'' The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

Muller, D. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

1992-05-01T23:59:59.000Z

342

Recycling and composting demonstration projects for the Memphis region  

SciTech Connect (OSTI)

This report documents the development and implementation of the project entitled ``Recycling and Composting Demonstration Projects for the Memphis Region.`` The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

Muller, D. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

1992-05-01T23:59:59.000Z

343

Nuclear fuel recycling in 4 minutes | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&DNuclear fuel recycling in 4 minutes Share Topic

344

RECYCLING GALVANIZED STEEL: OPERATING EXPERIENCE AND BENEFrI'S  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.Office ofMay 8,EMSLREAC/TS |9,RECYCLING

345

Recycling Hybrid and Elecectric Vehicle Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office of EnvironmentalRecycling CarbonHybrid

346

Recycling of Nutrients and Water in Algal Biofuels Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office of EnvironmentalRecycling(Engineering)

347

UW-Approved Waste Disposal, Recycling and Treatment Sites Hazardous waste disposal at the University of Washington is coordinated by the EH&S Environmental Programs Office  

E-Print Network [OSTI]

UW-Approved Waste Disposal, Recycling and Treatment Sites Hazardous waste disposal, WA Rabanco Recycling Co Landfill Roosevelt, WA Waste Management, Columbia Ridge Landfill Arlington Refrigeration Shop Recovery Seattle, WA Fluorescent light tubes - intact Ecolights NW Recycle Seattle, WA Shop

Wilcock, William

348

Proceedings of 2009 NSF Engineering Research and Innovation Conference, Honolulu, Hawaii Grant #0423484 Separation and Energy Use Performance of Material Recycling Systems  

E-Print Network [OSTI]

#0423484 Separation and Energy Use Performance of Material Recycling Systems Timothy Gutowski Malima I Abstract: This paper outlines current research on the performance of recycling processes and systems of recycling processes. Descriptive terminology for separation performance is presented. The goal

Gutowski, Timothy

349

Status of LLNL Hot-Recycled-Solid oil shale retort  

SciTech Connect (OSTI)

We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Baldwin, D.E.; Cena, R.J.

1993-12-31T23:59:59.000Z

350

Packaging, Transportation and Recycling of NPP Condenser Modules - 12262  

SciTech Connect (OSTI)

Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ?102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged in inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ?15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ?15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ?102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing facility. If any of these issues were not adequately resolved prior to the start of the outage, costly delays would result and the re-start of the power plant could be impacted. The main focus of this project was to find successful methods for keeping this material out of the landfills and preserving the natural resources. In addition, this operation provided a significant cost savings to the public utility by minimizing landfill disposal. The onsite portion of the project has been completed without impact to the overall outage schedule. By the date of presentation, the majority of the waste from the condenser replacement project will have been processed and recycled. The goals for this project included helping Energy Northwest maintain the outage schedule, package and characterize waste compliantly, perform transportation activities in compliance with 49CFR (Ref-1), and minimize the waste disposal volume. During this condenser replacement project, over three millions pounds of waste was generated, packaged, characterized and transported without injury or incident. It is anticipated that 95% of the waste generated during this project will not require landfill disposal. All of the waste is scheduled to be processed, decontaminated and recycled by June of 2012. (authors)

Polley, G.M. [Perma-Fix Environmental Services, 575 Oak Ridge Turnpike, Oak Ridge, TN 37830 (United States)

2012-07-01T23:59:59.000Z

351

TRITIUM RECYCLING AND INVENTORY IN ERODED DEBRIS OF PLASMA-FACING MATERIALS*  

E-Print Network [OSTI]

.,, TRITIUM RECYCLING AND INVENTORY IN ERODED DEBRIS OF PLASMA-FACING MATERIALS* Ahmed Hassanein RECYCLING AND INVENTORY IN ERODED DEBRIS OF PLASMA-FACING MATERIALS AmvlED H.ASSANEIN Argonne Mm therefore, they can significantly infIuence plasma behavior and tritium inventory during subsequent

Harilal, S. S.

352

Multi-Recycling of Transuranic Elements in a Modified PWR Fuel Assembly  

E-Print Network [OSTI]

production/destruction, and radiotoxicity reduction as compared to a UOX and MOX assembly. It is found that the most beneficial recycling strategy is the one where all of the transuranics are recycled. The inclusion of Cm reduces the required U-235...

Chambers, Alex

2012-10-19T23:59:59.000Z

353

EXTENDING FIBER RESOURCES: FIBER LOADING RECYCLED FIBER AND MECHANICAL PULPS FOR LIGHTWEIGHT, HIGH OPACITY PAPER  

E-Print Network [OSTI]

alkalinity, precipitates calcium carbonate (PCC) in situ within pulp fibers. Because paper made from fiber include increasing the recovery and utilization of recycled fiber and optimizing virgin fiber yieldEXTENDING FIBER RESOURCES: FIBER LOADING RECYCLED FIBER AND MECHANICAL PULPS FOR LIGHTWEIGHT, HIGH

Abubakr, Said

354

EXTENDING FIBER RESOURCES: FIBER LOADING RECYCLED FIBERAND MECHANICAL PULPS FOR LIGHTWEIGHT, HIGH OPACITY PAPER  

E-Print Network [OSTI]

, precipitates calcium carbonate (PCC) in situ within pulp fibers. Because paper made from fiber-loaded pulp increasing the recovery and utilization of recycled fiber and optimizing virgin fiber yield by relying moreEXTENDING FIBER RESOURCES: FIBER LOADING RECYCLED FIBERAND MECHANICAL PULPS FOR LIGHTWEIGHT, HIGH

Abubakr, Said

355

RECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE ENVIRONMENTAL EFFECTS  

E-Print Network [OSTI]

RECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES ­ AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE.borup@risoe.dk ABSTRACT: This paper describes a method for reduction of negative environmental impacts of wind turbines and an analysis of future removal and recycling processes of offshore wind turbines. The method is process

356

Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestadand Cheng-Ching Yu  

E-Print Network [OSTI]

Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestad£and Cheng-Ching Yu This paper looks at control of a plant that consists of a reactor, separator and recycle of unreacted reactor where component A is converted to a product and the amount converted is given by ´�µ�� ��Ð

Skogestad, Sigurd

357

DOI: 10.1002/adem.201400414 Self-Assembled Recyclable Hierarchical Bucky Aerogels**  

E-Print Network [OSTI]

DOI: 10.1002/adem.201400414 Self-Assembled Recyclable Hierarchical Bucky Aerogels** By Mehmet, and recyclable multi-wall carbon nanotube (MWCNT) based light weight (density aerogels (BAGs than the energy dissipated by commercial foams with similar densities. 1. Introduction Aerogels

Daraio, Chiara

358

Cold in-place recycling with bitumen emulsion Animesh Das1  

E-Print Network [OSTI]

Cold in-place recycling with bitumen emulsion Animesh Das1 Introduction The cold in-place recycling and binder in cold form (emulsion or cutback or foamed bitumen) is added. Externally acquired Reclaimed is calculated from the water to bitumen proportion in the emulsion. While estimating the volumetric parameters

Das, Animesh

359

A Green Approach to Femtocells Capacity Improvement by Recycling Wasted Resources  

E-Print Network [OSTI]

A Green Approach to Femtocells Capacity Improvement by Recycling Wasted Resources Leonardo S and transmit power. The proposed technique recycles redundant resources of OFDM transmissions (e.g., guard, a better average link quality, more efficient usage of spectrum resources and higher spatial reuse (co

Boyer, Edmond

360

IJEP 8 ( 1 ) : 51-54 Municipal Solid Waste Recycle -An Economic Proposition for a  

E-Print Network [OSTI]

IJEP 8 ( 1 ) : 51-54 Municipal Solid Waste Recycle - An Economic Proposition for a Developing the disposal problem in an environmentally acceptable manner is, DO doubt, an economic proposition features of the pyrolysis process in particular. Suitability of the waste recycle techniques in the context

Columbia University

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ForReview.Confidential-ACS Plantwide Control to Economic Optimum of a Recycle  

E-Print Network [OSTI]

ForReview.Confidential-ACS Plantwide Control to Economic Optimum of a Recycle Process with Side #12;ForReview.Confidential-ACS Plantwide Control to Economic Optimum of a Recycle Process with Side, Trondheim N7491, Norway Abstract Plantwide control system design for economically optimum operation

Skogestad, Sigurd

362

A Property-Based Optimization of Direct Recycle Networks and Wastewater  

E-Print Network [OSTI]

A Property-Based Optimization of Direct Recycle Networks and Wastewater Treatment Processes Jose a mathematical programming approach to optimize direct recycle-reuse networks together with wastewater treatment of wastewater treatment units. In addition to composition-based constraints, the formulation also incorporates

Grossmann, Ignacio E.

363

Resources, Conservation and Recycling 54 (2010) 163170 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

-off recycling sites is influenced by demographic factors such as age, education, income and household size-off center operators are able to save on labor and transportation costs because these costs are transferred and Adams (1999) study the effect of disposal fee and household characteristics on recycling rates and waste

Lupi, Frank

364

N-Glycans Mediate Apical Recycling of the Sialomucin Endolyn in Polarized MDCK Cells  

E-Print Network [OSTI]

N-Glycans Mediate Apical Recycling of the Sialomucin Endolyn in Polarized MDCK Cells Beth A. Potter domain. This has led to a greater understanding of how proteins are sorted along the biosynthetic pathway surface, proteins can be recycled back to the appropriate cell- surface domain, transcytosed

Weisz, Ora A.

365

Feedbacks of consumer nutrient recycling on producer biomass and stoichiometry: separating direct and indirect effects  

E-Print Network [OSTI]

Feedbacks of consumer nutrient recycling on producer biomass and stoichiometry: separating direct exclusion cages to expose periphyton to recycled nutrients in the absence of direct grazing. In experiment 1 phosphorus and high body N:P. In experiment 1, we found that increasing catfish density led to lower biomass

McIntyre, Peter

366

Int. Symposium on Recycling and Reuse of Glass Cullet 19-20 March, 2001  

E-Print Network [OSTI]

Int. Symposium on Recycling and Reuse of Glass Cullet 19-20 March, 2001 University of Dundee, Scotland Recycled Glass ­ From Waste Material to Valuable Resource By Christian Meyer Department of Civil are finite. This awareness, coupled with the scarcity of suitable landfills, has led to the increasing

Meyer, Christian

367

Recycling and Uptake of Si(OH)4 when Protozoan Grazers Feed on Diatoms  

E-Print Network [OSTI]

1 Recycling and Uptake of Si(OH)4 when Protozoan Grazers Feed on Diatoms Sabine Schultesa,1 on Si(OH)4 recycling was investigated with cultures of single- celled diatoms, Thalassiosira pseudonana in discarded feeding vacuoles. Over the first 24h, microzooplankton grazing even led to enhanced uptake of Si

Paris-Sud XI, Université de

368

A Charge Recycling Differential Noise Immune Jabulani Nyathi, Valeriu Beiu, Suryanarayana Tatapudi, and David 3. Betowski  

E-Print Network [OSTI]

A Charge Recycling Differential Noise Immune Perceptron Jabulani Nyathi, Valeriu Beiu.wsu.edu Abslmct-This paper proposes a new differential neural These emerging nano devices have led to many in [SI, [91, [lo]. recycling differential noise-immune threshold logic (CRD-NTL) In this paper we shall

Nyathi, Jabulani

369

SAMPLE INTERNSHIP DESCRIPTION NOT CURRENTLY OPEN FOR INFORMATION ONLY Recycling Internship  

E-Print Network [OSTI]

SAMPLE INTERNSHIP DESCRIPTION ­ NOT CURRENTLY OPEN ­ FOR INFORMATION ONLY Recycling Internship Free and disassemble little stuff. You like warehouses. You'll want to look into our Recycling Internship. For more information and information on how to apply, please visit: http://www.freegeek.org/internships

370

The Recycling Center at UAB opened March 2, 2009! It is located at 620 11th  

E-Print Network [OSTI]

Paolone UAB Recycling Coordinator (205) 996-9043 GENERAL INSTRUCTIONS Please bring separated materialsThe Recycling Center at UAB opened March 2, 2009! It is located at 620 11th St. South. See map below for details. We accept materials listed to the left. The hours for drop- off are 6:30-9:00 a

Bedwell, David M.

371

Investigating citizens' preferences for recycling Residual Organic Products in agriculture: a choice experiment approach  

E-Print Network [OSTI]

in France (excluding agriculture waste) [1], the recycling of urban organic waste is a strong environmentalInvestigating citizens' preferences for recycling Residual Organic Products in agriculture or mineral fertilizers. The paper addresses in particular 3 environmental effects: the organic waste

Paris-Sud XI, Université de

372

RPM-2: A recyclable porous material with unusual adsorption capability: self assembly via structural transformations  

E-Print Network [OSTI]

-assembly of molecular electronics and smart materials will bring a new era in the field of material science.1 HoweverRPM-2: A recyclable porous material with unusual adsorption capability: self assembly via, fully recyclable porous material (RPM-2) with a very high sorption capability. Self

Li, Jing

373

An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report  

SciTech Connect (OSTI)

An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

Not Available

1993-08-01T23:59:59.000Z

374

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network [OSTI]

for the Purification of Water with Systems (a NationalWater Recycling . 99 8. Groundwater Replenishment System Purification

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

375

Overview of reductants utilized in nuclear fuel reprocessing/recycling  

SciTech Connect (OSTI)

Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold promises as a replacement for AHA. FHA undergoes hydrolysis to formic acid which is volatile, thus allowing the recycling of nitric acid. Unfortunately, FHA powder was not stable in the experiments we ran in our laboratory. In addition, AHA and FHA also decompose to hydroxylamine which may undergo an autocatalytic reaction. Other reductants are available and could be extremely useful for actinides separation. The review presents the current plutonium reductants used in used nuclear fuel reprocessing and will introduce innovative and novel reductants that could become reducers for future research on UNF separation.

Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

2013-10-01T23:59:59.000Z

376

78.1: Ultra Compact Polarization Recycling System for White Light LED based Pico-Projection System  

E-Print Network [OSTI]

78.1: Ultra Compact Polarization Recycling System for White Light LED based Pico-Projection System polarization recycling system, for white light LED based projectors, is proposed. White light LED is applied. In this paper, we propose an ultra compact polarization recycling system for white light LED based projection

377

Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges  

E-Print Network [OSTI]

1 Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high between discharges in NSTX, partly to reduce recycling. Reduced D emissions from the lower and upper of the recycling light, improvements in global confinement16-19 , along with the appearance of ELM-free regimes20

Princeton Plasma Physics Laboratory

378

RECYCLING OF LATEX BASED PAINT AS POLYMER FEEDSTOCK MATERIALS Jennifer K. Lynch, Thomas J. Nosker, Robert Hamill, Richard L. Lehman  

E-Print Network [OSTI]

RECYCLING OF LATEX BASED PAINT AS POLYMER FEEDSTOCK MATERIALS Jennifer K. Lynch, Thomas J. Nosker investigates the recycling of used latex paints into non-paint products. Waste latex paint was collected, dried container cost for either recycling or hazardous waste disposal, is very high for the retailer. Much

379

In-Order Pulsed Charge Recycling in Off-Chip Data Buses Kimish Patel, Wonbok Lee, Massoud Pedram  

E-Print Network [OSTI]

In-Order Pulsed Charge Recycling in Off-Chip Data Buses Kimish Patel, Wonbok Lee, Massoud Pedram,wonbokle,pedram}@usc.edu ABSTRACT This paper presents in-order pulsed charge recycling to reduce energy consumption in an off-chip data bus. The proposed technique performs charge recycling by employing three steps: i

Pedram, Massoud

380

A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: a  

E-Print Network [OSTI]

and aluminum, and not minor wastes such as glazing (Gerrard and Kandlikar 2007). The new recycling target (95 and polluted with organic material. The treatment and recycling of glass does however become difficult1 A cost and benefit analysis of future end-of- life vehicle glazing recycling in France

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

INEL metal recycle radioactive scrap metal survey report  

SciTech Connect (OSTI)

DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed doing in-field measurements to ascertain the amount of RSM actually available. This information was necessary to determine the economic viability of recycling and to identify feed stock that could be used to produce containers for radioactive waste. This inventory measured the amount of RSM available at the selected DOE sites. Information gathered included radionuclide content and chemical form, general radiation field, alloy type, and mass of metal.

Funk, D.M.

1994-09-01T23:59:59.000Z

382

Experimental realisation of Shor's quantum factoring algorithm using qubit recycling  

E-Print Network [OSTI]

Quantum computational algorithms exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shor's quantum algorithm for fast number factoring is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the substantial resource requirement, to date, there have been only four small-scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shor's algorithm in which the n qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N=21. The algorithmic output is distinguishable from noise, in contrast to previous demonstrations. These results point to larger-scale implementations of Shor's algorithm by harnessing scalable resource reductions applicable to all physical architectures.

Enrique Martin-Lopez; Anthony Laing; Thomas Lawson; Roberto Alvarez; Xiao-Qi Zhou; Jeremy L. O'Brien

2012-10-24T23:59:59.000Z

383

FY09 recycling opportunity assessment for Sandia National Laboratories/New Mexico.  

SciTech Connect (OSTI)

This Recycling Opportunity Assessment (ROA) is a revision and expansion of the FY04 ROA. The original 16 materials are updated through FY08, and then 56 material streams are examined through FY09 with action items for ongoing improvement listed for most. In addition to expanding the list of solid waste materials examined, two new sections have been added to cover hazardous waste materials. Appendices include energy equivalencies of materials recycled, trends and recycle data, and summary tables of high, medium, and low priority action items.

McCord, Samuel Adam

2010-07-01T23:59:59.000Z

384

A rational minor actinide (MA) recycling concept based on innovative oxide fuel with high AM content  

SciTech Connect (OSTI)

A rational MA recycle concept based on high Am content fuel has been proposed. A design study of an Am- MOX fabrication plant, which is a key facility for the MA recycle concept, has been done and the facility concept was clarified from the viewpoint of basic process viability. Preliminary cost estimation suggested that the total construction cost of the MA recycle facilities including Am-MOX, Np-MOX and MA recovery could be comparable with that of the large scale LWR-MOX fabrication plant required for plutonium in LWR fuel cycle. (authors)

Tanaka, Kenya; Sato, Isamu; Ishii, Tetsuya; Yoshimochi, Hiroshi; Asaga, Takeo [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higasiibaraki-gun, Ibaraki-ken, 311-1393 (Japan); Kurosaki, Ken [Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871 (Japan)

2007-07-01T23:59:59.000Z

385

Radiotoxicity Characterization of Multi-Recycled Thorium Fuel - 12394  

SciTech Connect (OSTI)

As described in companion papers, Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the transuranic (TRU) contained in the used nuclear fuel. The potential of thorium as a TRU burner is described in another paper presented at this conference. This paper analyzes the long-term impact of thorium on the front-end and backend of the fuel cycle. This is accomplished by an assessment of the isotopic make-up of Th in a closed cycle and its impact on representative metrics, such as radiotoxicity, decay heat and gamma heat. The behavior in both thermal and fast neutron energy ranges has been investigated. Irradiation in a Th fuel PWR has been assumed as representative of the thermal range, while a Th fuel fast reactor (FR) has been employed to characterize the behavior in the high-energy range. A comparison with a U-fuel closed-cycle FR has been undertaken in an attempt of a more comprehensive evaluation of each cycle's long-term potential. As the Th fuel undergoes multiple cycles of irradiation, the isotopic composition of the recycled fuel changes. Minor Th isotopes are produced; U-232 and Pa-231 build up; the U vector gradually shifts towards increasing amounts of U-234, U-235 etc., eventually leading to the production of non negligible amounts of TRU isotopes, especially Pu-238. The impact of the recycled fuel isotopic makeup on the in-core behavior is mild, and for some aspects beneficial, i.e. the reactivity swing during irradiation is reduced as the fertile characteristics of the fuel increase. On the other hand, the front and the back-end of the fuel cycle are negatively affected due to the presence of Th-228 and U-232 and the build-up of higher actinides (Pu-238 etc.). The presence of U-232 can also be seen as advantageous as it represents an obstacle to potential proliferators. Notwithstanding the increase in the short-term radiotoxicity and decay heat in the multi-recycled fuel, the Th closed cycle has some potentially substantial advantages compared to the U cycle, such as the smaller actinide radiotoxicity and decay heat for up to 25,000 years after irradiation. In order for these benefits to materialize, the capability to reprocess and remotely manufacture industrial amounts of recycled fuel appears to be the key. Westinghouse is proposing the implementation of a thorium based fuel cycle to burn the TRU contained in the current UNF. The general approach and the potential of thorium as TRU burner is described in other papers presented at this conference. The focus of this paper is to analyze the long-term potential of thorium, once the legacy TRU has been exhausted and the thorium reactor system will become self-sufficient. Therefore, a comparison of Th closed cycle, in fast and thermal neutron energy ranges, vs. U closed cycle, in the fast energy range, has been undertaken. The results presented focus on selected backend and front-end metrics: isotopic actinide composition and potential implications on ingested radiotoxicity, decay heat and gamma heat. The evaluation confirms potential substantial improvements in the backend of the fuel cycle by transitioning to a thorium closed cycle. These benefits are the result of a much lower TRU content, in particular Pu-241, Am-241 and Pu-240, characterizing the Th vs. U actinide inventories, and the ensuing process waste to be disposed. On the other hand, the larger gamma activity of Th recycled fuel, consisting predominantly of hard gammas from U-232's decay products, is a significant challenge for fuel handling, transportation and manufacturing but can be claimed as beneficial for the proliferation resistance of the fuel. It is worth remembering that in our perspective the Th closed cycle and the U closed cycle will follow a transmutation phase which will likely take place over several decades and dictate the technologies required. These will likely include remote fuel manufacturing, regardless of the specific system adopted for the transmutation, which could then be inherited for the ensuing closed cycles. Finally, specific data related to

Franceschini, F.; Wenner, M. [Westinghouse Electric Company, Cranberry Township, PA (United States); Fiorina, C. [Polytechnic of Milano, Milan (Italy); Paul Sherrer Institute (Switzerland); Huang, M.; Petrovic, B. [Georgia Technology University, Atlanta, GA (United States); Krepel, J. [Paul Sherrer Institute (Switzerland)

2012-07-01T23:59:59.000Z

386

IEEE International Symposium on Sustainable Systems and Technologies, Washington D.C., May 16-19, 2010 Abstract--Interest in recycling has surged in recent years due  

E-Print Network [OSTI]

featuring PET plastic and aluminum flake separation in the beverage container recycling industry. Index-19, 2010 Abstract--Interest in recycling has surged in recent years due to shifting material costs material recycling rates. In response, recycling systems are becoming more complex as increasing material

Gutowski, Timothy

387

Formulation of Molding Materials From Recycled Printed Wiring Boards  

SciTech Connect (OSTI)

The objective of this project was to formulate the pulverized electronic waste (PEW) stream derived from grinding obsolete electronic assemblies and combine this material with thermoplastic or thermosetting polymers into useful, high-value commercial products materials. PEW consists primarily of various thermoset plastic materials and glass fibers from the printed wiring boards, along with ceramic pieces from chip carriers and other electronic components. Typically, the thermosetting materials have the same desirable properties as in the original electronic assembly, including relatively high temperature resistance, excellent chemical resistance, and flame retardancy. These properties combine to make PEW an inherently good inert filler material for plastic composites.

Lula, J.W.; Bohnert, G.W.

1998-04-20T23:59:59.000Z

388

A performance comparison of individual and combined treatment modules for water recycling   

E-Print Network [OSTI]

An Advanced Water Recycling Demonstration Plant (AWRDP) was commissioned and constructed by the Queensland State Government in Australia. The AWRDP was used to study the effectiveness of a variety treatment processes in ...

Khan, Stuart; Wintgens, Thomas; Sherman, Paul; Zaricky, Jan; Schäfer, Andrea

2005-01-01T23:59:59.000Z

389

A grid-level alkali liquid metal battery recycling process : design, implementation, and characterization  

E-Print Network [OSTI]

The application of liquid metal batteries for large scale grid-level energy storage is being enabled through the development of research conducted at the Massachusetts Institute of Technology (MIT) in 2006. A recycling ...

Thomas, Dale Arlington, III

2014-01-01T23:59:59.000Z

390

WORLD ISWA CONGRESS 2012 Session 04: Challenges and Limits of Recycling (2)  

E-Print Network [OSTI]

and sanitary landfills imposed Threatens the informal recovery and recycling sector Waste Pickers! The type-3Oct2012 #12;Two case-studies in emerging countries Vitória ­ ES - Brazil Coimbatore ­ TN - India Waste

Paris-Sud XI, Université de

391

Design of an Integrated System to Recycle Zircaloy Cladding Using a Hydride-Milling-Dehydride Process  

E-Print Network [OSTI]

A process for recycling spent nuclear fuel cladding, a zirconium alloy (Zircaloy), into a metal powder that may be used for advanced nuclear fuel applications, was investigated to determine if it is a viable strategy. The process begins...

Kelley, Randy Dean

2011-10-21T23:59:59.000Z

392

Simulation of the nuclear fuel cycle with recycling : options and outcomes  

E-Print Network [OSTI]

A system dynamics simulation technique is applied to generate a new version of the CAFCA code to study the mass flow in the nuclear fuel cycle, and the impact of different options for advanced reactors and fuel recycling ...

Silva, Rodney Busquim e

2008-01-01T23:59:59.000Z

393

Analysis of conventional and plutonium recycle unit-assemblies for the Yankee (Rowe) PWR  

E-Print Network [OSTI]

An analysis and comparison of Unit Conventional UO2 Fuel-Assemblies and proposed Plutonium Recycle Fuel Assemblies for the Yankee (Rowe) Reactor has been made. The influence of spectral effects, at the watergaps -and ...

Mertens, Paul Gustaaf

1971-01-01T23:59:59.000Z

394

Evaluating electronic waste recycling systems : the influence of physical architecture on system performance  

E-Print Network [OSTI]

Many different forms of electronic waste recycling systems now exist worldwide, and the amount of related legislation continues to increase. Numerous approaches have been proposed including landfill bans, extended producer ...

Fredholm, Susan (Susan A.)

2008-01-01T23:59:59.000Z

395

Modeling the Impact of Product Portfolio on the Economic and Environmental Performance of Recycling Systems  

E-Print Network [OSTI]

hrough the development of a general model of electronics recycling systems, the effect of product portfolio choices on economic and environmental system performance is explored. The general model encompasses the three main ...

Dahmus, Jeffrey B.

396

S98-1 Recycling Papers and Defining Plagiarism Legislative History  

E-Print Network [OSTI]

S98-1 Recycling Papers and Defining Plagiarism Legislative History: At its meeting of February 2 for the stated purpose of storing submitted work in a database and using the database solely for the intended

Gleixner, Stacy

397

Incorporation of plastics and other recyclables into building materials in Nicaragua  

E-Print Network [OSTI]

For three communities in Nicaragua: Bluefields, Little Corn Island, and Corn Island, incentives are needed to motivate residents to not burn their trash and recyclables. There are various methods that could encourage ...

Ohlmacher, Christopher J

2011-01-01T23:59:59.000Z

398

Flashlamp radiation recycling for enhanced pumping efficiency and reduced thermal load  

DOE Patents [OSTI]

A method for recycling laser flashlamp radiation in selected wavelength ranges to decrease thermal loading of the solid state laser matrix while substantially maintaining the pumping efficiency of the flashlamp.

Jancaitis, Kenneth S. (Pleasant Hill, CA); Powell, Howard T. (Livermore, CA)

1989-01-01T23:59:59.000Z

399

Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems  

E-Print Network [OSTI]

Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential...

Husmoen, Derek Howard

2012-07-16T23:59:59.000Z

400

Knock mitigation on boosted Controlled Auto-Ignition engines with fuel stratification and Exhaust Gas Recycling  

E-Print Network [OSTI]

This research is carried out to understand the mechanism of using fuel stratification and Exhaust Gas Recycling (EGR) for knock mitigation on boosted Controlled Auto-Ignition (CAl) engines. Experiments were first conducted ...

Sang, Wen, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Modeling and Design of Material Separation Systems with Applications to Recycling  

E-Print Network [OSTI]

Material separation technology is critical to the success of the material recycling industry. End-of-life products, post-consumer waste, industrial excess, or otherwise collected materials for reuse are typically mixed ...

Wolf, Malima Isabelle, 1981-

2011-01-01T23:59:59.000Z

402

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

SciTech Connect (OSTI)

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

403

Resources, Conservation and Recycling, 11 (1994) 261-274 Elsevier Science B.V.  

E-Print Network [OSTI]

Resources, Conservation and Recycling, 11 (1994) 261-274 Elsevier Science B.V. 261 -~ Assessing can be re-used as a new resource material, such as soil fertilizer and conditioner, to substitute

Tiquia-Arashiro, Sonia M.

404

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities...  

Broader source: Energy.gov (indexed) [DOE]

four recycling trucks with hydraulic hybrid power systems implemented by Ohio-based Eaton Corporation. For these trucks, which make up to 1,200 stops each day, the Hydraulic...

405

Critical risk points of nanofiltration and reverse osmosis processes in water recycling applications   

E-Print Network [OSTI]

NF/RO membrane filtration processes have been recognized as an important technology to facilitate water recycling. Those processes are well-proven technologies, which can be used to remove a wide range of contaminants ...

Nghiem, Long D.; Schäfer, Andrea

2006-01-01T23:59:59.000Z

406

Removal of pharmaceuticals and endocrine disrupting compounds in water recycling process using reverse osmosis systems   

E-Print Network [OSTI]

A detailed investigation was carried out to evaluate the occurrence, persistence and fate of a range of micropollutants at different processing points at a full-scale water recycling plant (WRP) in Queensland, Australia. ...

Al-Rifai, Jawad H.; Khabbazb, Hadi; Schäfer, Andrea

2011-01-01T23:59:59.000Z

407

Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling  

E-Print Network [OSTI]

-i- Photo Courtesy of Carlsbad Water Distict Economic Evaluation for Water Recycling In Urban Areas................................................... 10 ECONOMIC EVALUATION BY BENEFIT-COST ANALYSIS ............................................................................... 12 FINANCIAL ANALYSIS AND ECONOMIC EVALUATION

Lund, Jay R.

408

E-Print Network 3.0 - alternative recycled waste Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

waste Search Powered by Explorit Topic List Advanced Search Sample search results for: alternative recycled waste Page: << < 1 2 3 4 5 > >> 1 11th North American Waste to Energy...

409

LANL's sanitary facility can now recycle up to 300,000 gallons...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the SERF. In an effort to process, treat and recycle up to 300,000 gallons of wastewater per day, Los Alamos National Laboratory launched operations at the new expansion of...

410

The material and energy flow through the abrasive waterjet machining and recycling processes  

E-Print Network [OSTI]

The purpose of this thesis was to investigate the material and energy flow through the abrasive waterjet machine and the WARD recycling machine. The goal was to track all of the material, water, abrasive, energy, air, and ...

Kurd, Michael Omar, 1982-

2004-01-01T23:59:59.000Z

411

Sustainable design for a subtropical green roof with local, recyclable substrates and native plant species  

E-Print Network [OSTI]

with compost, expanded shale with compost, and recycled crushed concrete with compost. The boxes were further subdivided into four plots with plantings of Lenophyllum texanum (coastal stonecrop), Buchloe dactyloides (buffalograss), and Bouteloua gracilis (blue...

Huerta, Angelica

2011-01-11T23:59:59.000Z

412

Non-equilibrium raft-like membrane domains under continuous recycling  

E-Print Network [OSTI]

We present a model for the kinetics of spontaneous membrane domain (raft) assembly that includes the effect of membrane recycling ubiquitous in living cells. We show that the domains have a broad power-law distribution with an average radius that scales with the 1/4 power of the domain lifetime when the line tension at the domain edges is large. For biologically reasonable recycling and diffusion rates the average domain radius is in the tens of nm range, consistent with observations. This represents one possible link between signaling (involving rafts) and traffic (recycling) in cells. Finally, we present evidence that suggests that the average raft size may be the same for all scale-free recycling schemes.

Matthew S. Turner; Pierre Sens; Nicholas D. Socci

2005-03-30T23:59:59.000Z

413

Towards sustainable material usage : time-dependent evaluation of upgrading technologies for recycling  

E-Print Network [OSTI]

As consumption in the US grows, so does concern about sustainable materials usage. Increasing recycling is a key component within a broad arsenal of strategies for moving towards sustainable materials usage. There are many ...

Gaustad, Gabrielle G

2009-01-01T23:59:59.000Z

414

UM Waste Management Services 763-5539, www.recycle.umich.edu  

E-Print Network [OSTI]

FOOD WASTE ONLY! UM Waste Management Services 763-5539, www.recycle.umich.edu YES Potatoes or RicePlain Potatoes or RicePlain Potatoes or RicePlain Potatoes or RicePlain Potatoes or Rice

Awtar, Shorya

415

Experimental study to determine basic performance characteristics of recycled glass as beach nourishment material  

E-Print Network [OSTI]

EXPERIMENTAL STUDY TO DFTERMINE BASIC PERI'ORMANCE CHARACTFRISTICS OI RECYCLED GLASS AS BEACH NOLiRISHMENT MATERIAL A Thesis by OSCAR CRUZ CASTRO Submined to the Office of Graduate Studies of Texas AkM University in partial I ulfillment... of the requirements for the degree ot MASTER OF SCIENCF. May 2003 Major Subject: Ocean Engineering EXPERIMENTAL STUDY TO DFTERMINE BASIC PERFORMANCE CHARACTERISTICS OF RECYCLED OLASS AS BEACH NOI JRISHMENT MATERIAL A Thesis by OSCAR CRUZ CASTRO Submitted...

Cruz Castro, Oscar

2003-01-01T23:59:59.000Z

416

Recycling end-of-life vehicles of the future. Final CRADA report.  

SciTech Connect (OSTI)

Argonne National Laboratory (the Contractor) entered into a Cooperative Research and Development Agreement (CRADA) with the following Participants: Vehicle Recycling Partnership, LLC (VRP, which consists of General Motors [GM], Ford, and Chrysler), and the American Chemistry Council - Plastics Division (ACC-PD). The purpose of this CRADA is to provide for the effective recycling of automotive materials. The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles. The issues, technical requirements, and cost and institutional considerations in achieving that goal are complex and will require a concerted, focused, and systematic analysis, together with a technology development program. The scope and tasks of this program are derived from 'A Roadmap for Recycling End-of-Life Vehicles of the Future,' prepared in May 2001 for the DOE Office of Energy, Efficiency, and Renewable Energy (EERE)-Vehicle Technologies Program. The objective of this research program is to enable the maximum recycling of automotive materials and obsolete vehicles through the development and commercialization of technologies for the separation and recovery of materials from end-of-life vehicles (ELVs). The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles.

Jody, B. J.; Pomykala, J. A.; Spangenberger, J. S.; Daniels, E.; Energy Systems

2010-01-14T23:59:59.000Z

417

Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare – Wastewater Recycling Technology  

SciTech Connect (OSTI)

The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

2014-08-14T23:59:59.000Z

418

Continuation of Research, Commercialization, and Workforce Development in the Polymer/Electronics Recycling Industry  

SciTech Connect (OSTI)

The MARCEE Project was established to understand the problems associated with electronics recycling and to develop solutions that would allow an electronics recycling industry to emerge. While not all of the activities have been funded by MARCEE, but through private investment, they would not have occurred had the MARCEE Project not been undertaken. The problems tackled and the results obtained using MARCEE funds are discussed in detail in this report.

Mel Croucher; Rakesh Gupta; Hota GangaRao; Darran Cairns; Jinzing Wang; Xiaodong Shi; Jason Linnell; Karen Facemyer; Doug Ritchie; Jeff Tucker

2009-09-30T23:59:59.000Z

419

Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

Blengini, Gian Andrea, E-mail: blengini@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DITAG - Department of Land, Environment and Geo-Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fino, Debora, E-mail: debora.fino@polito.it [DISMIC - Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

2012-05-15T23:59:59.000Z

420

Recycling of electric arc furnace dust: Jorgensen steel facility  

SciTech Connect (OSTI)

This document is an evaluation of the Ek Glassification(TM) Process to recycle and convert K061-listed waste (Electric Arc Furnace or EAF dust) and other byproducts of the steel-making industry into usable products. The Process holds potential for replacing the need for expensive disposal costs associated with the listed waste with the generation of marketable products. The products include colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sandblasting grit; and materials for Portland cement production. Field testing of the technology was conducted by the U.S. Environmental Protection Agency (U.S. EPA) in early July of 1991 at the Earle M. Jorgensen Steel Co. (EMJ) plant in Seattle, Washington, and both technical and economic aspects of the technology were examined. TCLP testing of the product determined that leachability characteristics of metals in the product meet treatment standards for K061-listed waste. The Process was also shown to be economically viable, based on capital and operating cost estimates, and profit and revenue forecasts for a 21,000 ton-per-year operation. Although this effort showed that the technology holds promise, regulatory compliance should be evaluated on the basis of the actual hardware configuration and operating procedures along with the leachability of the specific product formulations to be used.

Jackson, T.W.; Chapman, J.S.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advance disposal fees and recycling: Partners or foes?  

SciTech Connect (OSTI)

A political trend of shifting government responsibilities from the federal to the state and local level is beginning to take hold in many municipalities this year. Evidence of this shift recently was codified by the passage of Congress`s unfunded mandates bills, which require a panel review of any federal government mandates that create a cost burden of at least $50 million on state and local government. Expecting to be freed from the yoke of the most costly unfunded federal laws, many states are taking a second look at their expensive recycling laws and considering reassessment of how funding mechanisms are structured. This search for ways to raise revenue has renewed the continuing debate over advance disposal fees (ADFs), which are included in the cost of a product to pay for its ultimate disposal or reuse. These ADFs have been used for several years in a majority of US states to help handle scrap tire disposal. Due to concern over fire hazards posed by the nation`s growing scrap tire piles, several states have implemented a $1--$2 fee on each tire to help pay for disposal, most of which have been reasonably successful.

Woods, R.

1995-05-01T23:59:59.000Z

422

Replacing chemicals in recycle mills with mechanical alternatives  

SciTech Connect (OSTI)

A high-intensity spark fired underwater decomposes a small amount of the water into hydroxyl radicals, which are strong oxidants. These are able to oxidize contaminants such as glue and wood pitch that enter paper recycling mills as a part of the incoming furnish and cost the industry several hundred million dollars. The sparking technique is safe, inexpensive, and is capable of treating large volumes of water, which makes it attractive for mill applications. Several mill trials were run. Sparking caused a decrease in the tack of the deposits in one case. Lower bleach use occurred in two other mills; sparking reduced the degree of ink reattachment to fiber. The payback for either application is attractive. Sparking induced deposition of contaminants in another mill, which is a positive development--if it can be controlled. The technique is also able to degas water and to oxidize odor-causing sulfur compounds. Although one unit has been purchased by a mill, second-order effects caused by the technology needs to be defined further before the technology can be broadly applied.

Institute of Paper Science Technology

2002-07-01T23:59:59.000Z

423

Circulating fluidized-bed boiler makes inroads for waste recycling  

SciTech Connect (OSTI)

Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

NONE

1995-09-01T23:59:59.000Z

424

Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.

Liang Sai, E-mail: liangsai09@gmail.com [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China)

2012-01-15T23:59:59.000Z

425

Some observations on the recycling of superalloys by EBCHM  

SciTech Connect (OSTI)

Two aspects of EB processing of high-purity superalloys merit attention; the removal of very stable non-metallic inclusions and the influence of inclusion solubility on the product material. We have taken as examples of the first case, the behaviour of alumina and hafnia in EBCHM, and of the second case, the reactions of nitrides in EBCHM. The alloys studied include IN 718, IN 100 Rene 125 and MarM 247, although the general principles can be extended to numerous other systems. The oxide inclusions are found to follow a path which is critically dependent on temperature and on surface forces, particularly on the interfacial tension between the metal and the oxide particle. These forces are sufficiently strong that they can drive particles to a free metal surface even when the relative bouyancy of the particle is negative. The implication of the finding is discussed in terms of the design and operation of furnaces for this purpose. The nitride inclusions follow a path which depends on thermochemical relationships already defined in the literature, but which have not been studied previously in relation to the super-alloy freezing mechanisms. The role of the nitrides in altering the casting behaviour of the alloys is described particularly in regard to microporosity and carbide morphology. We also make some estimations of the critical levels of bulk nitrogen content at which these effects can be eliminated, leading to suggested specification levels for nitrogen at which there will be no difference between the EB recycled alloy and virgin material in respect of casting characteristics.

Haruna, Y.; Mitchell, A.; Schmalz, A. [Univ. of British Columbia, Vancouver (Canada)

1994-12-31T23:59:59.000Z

426

FEASIBILITY STUDY OF DUPOLY TO RECYCLE DEPLETED URANIUM.  

SciTech Connect (OSTI)

DUPoly, depleted uranium (DU) powder microencapsulated in a low-density polyethylene binder, has been demonstrated as an innovative and efficient recycle product, a very durable high density material with significant commercial appeal. DUPoly was successfully prepared using uranium tetrafluoride (UF{sub 4}) ''green salt'' obtained from Fluor Daniel-Fernald, a U.S. Department of Energy reprocessing facility near Cincinnati, Ohio. Samples containing up to 90 wt% UF{sub 4} were produced using a single screw plastics extruder, with sample densities of up to 3.97 {+-} 0.08 g/cm{sup 3} measured. Compressive strength of as-prepared samples (50-90 wt% UF4 ) ranged from 1682 {+-} 116 psi (11.6 {+-} 0.8 MPa) to 3145 {+-} 57 psi (21.7 {+-} 0.4 MPa). Water immersion testing for a period of 90 days produced no visible degradation of the samples. Leach rates were low, ranging from 0.02 % (2.74 x 10{sup {minus}6} gm/gm/d) for 50 wt% UF{sub 4} samples to 0.72 % (7.98 x 10{sup {minus}5} gm/gm/d) for 90 wt% samples. Sample strength was not compromised by water immersion. DUPoly samples containing uranium trioxide (UO{sub 3}), a DU reprocessing byproduct material stockpiled at the Savannah River Site, were gamma irradiated to 1 x 10{sup 9} rad with no visible deterioration. Compressive strength increased significantly, however: up to 200% for samples with 90 wt% UO{sub 3}. Correspondingly, percent deformation (strain) at failure was decreased for all samples. Gamma attenuation data on UO{sub 3} DUPoly samples yielded mass attenuation coefficients greater than those for lead. Neutron removal coefficients were calculated and shown to correlate well with wt% of DU. Unlike gamma attenuation, both hydrogenous and nonhydrogenous materials interact to attenuate neutrons.

ADAMS,J.W.; LAGERAAEN,P.R.; KALB,P.D.; RUTENKROGER,S.P.

1998-02-01T23:59:59.000Z

427

Evaluation of western and eastern shale oil residua as asphalt pavement recycling agents  

SciTech Connect (OSTI)

The objective of this investigation was to perform a preliminary evaluation of the utility of residual materials prepared from Green River Formation (western) and New Albany Shale (eastern) shale oils as recycling agents for aged asphalt pavement. Four petroleum asphalts were first aged by a thin-film accelerated-aging test, which simulates long service life of asphalt in pavement. The aged asphalts were mixed (recycled) with Green River Formation shale oil distillation residua to restore the original viscosities. Separately, for comparison, a commercial recycling agent was used to recycle the aged asphalts under the same circumstances. The recycled asphalts were reaged and the properties of both binder and asphalt-aggregate mixtures studied. Originally, the same study was intended for an eastern shale residua. However, the eastern shale oil distillation residua with the required flash point specification also had the properties of a viscosity builder; therefore, it was studied as such with asphalts that do not achieve sufficient viscosity during processing to serve as usable binders. Results show that Green River Formation shale oil residuum can be used to restore the original asphalt properties with favorable rheological properties, the shale oil residuum has a beneficial effect on resistance to moisture damage, the low-temperature properties of the shale oil residuum recycled asphalts are not adversely affected, and the low-temperature properties of the shale oil residuum recycled asphalts are dependent upon the chemistry of the mixture. The eastern shale oil residua was blended with soft petroleum asphalts. Results show the products have higher viscosities than the starting materials, the rheological properties of the soft asphalt-eastern shale oil residue blends are acceptable, and the eastern shale oil residue has dispersant properties despite its high viscosity. 11 refs., 3 figs., 9 tabs.

Harnsberger, P.M.; Robertson, R.E.

1990-03-01T23:59:59.000Z

428

Greening the Department of Energy through waste prevention, recycling, and Federal acquisition. Strategic plan to implement Executive Order 13101  

SciTech Connect (OSTI)

This Plan provides strategies and milestones to implement Executive Order 13101, Greening the Government Through Waste Prevention, Recycling, and Federal Acquisition, and to achieve the new Secretarial goals for 2005 and 2010. It serves as the principal Secretarial guidance to Department of Energy (DOE) Headquarters, Field Offices, and laboratory and contractor staff to improve sanitary waste prevention, recycling, and the purchase and use of recycled content and environmentally preferable products and services in the DOE.

None

2000-11-01T23:59:59.000Z

429

Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

Merrild, Hanna [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Larsen, Anna W., E-mail: awla@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2012-05-15T23:59:59.000Z

430

Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

No Name

2014-10-01T23:59:59.000Z

431

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect (OSTI)

This research has focused on new liquid-liquid extraction chemistry applicable to separation of major sodium salts from alkaline tank waste. It was the overall goal to provide the scientific foundation upon which the feasibility of liquid-liquid extraction chemistry for bulk reduction of the volume of tank waste can be evaluated. Sodium hydroxide represented the initial test case and primary focus. It is a primary component of the waste1 and has the most value for recycle. A full explanation of the relevance of this research to USDOE Environmental Management needs will be given in the Relevance, Impact, and Technology Transfer section below. It should be noted that this effort was predicated on the need for sodium removal primarily from low-activity waste, whereas evolving needs have shifted attention to volume reduction of the high-activity waste. The results of the research to date apply to both applications, though treatment of high-activity wastes raises new questions that will be addressed in the renewal period. Toward understanding the extractive chemistry of sodium hydroxide and other sodium salts, it was the intent to identify candidate extractants and determine their applicable basic properties regarding selectivity, efficiency, speciation, and structure. A hierarchical strategy was to be employed in which the type of liquid-liquid-extraction system varied in sophistication from simple, single-component solvents to solvents containing designer host molecules. As an aid in directing this investigation toward addressing the fundamental questions having the most value, a conceptualization of an ideal process was advanced. Accordingly, achieving adequate selectivity for sodium hydroxide represented a primary goal, but this result is worthwhile for waste applications only if certain conditions are met.

Moyer, Bruce A.; Marchand, Alan P.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Haverlock, Tamara J.

2002-03-30T23:59:59.000Z

432

Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.  

SciTech Connect (OSTI)

Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium by mixing high fissile feed from new sources (e.g., spent UO{sub 2} pins) with the low fissile material recovered from the recycled transmutation fuel. The blending of the fuels is anticipated to aid the multi-recycle of the transuranics. A systematic study of blending strategies (for both IMF and MOX) has been initiated and is currently ongoing. This work extends the previous study that considered separation strategies for plutonium, neptunium, and americium recycling in MOX, CORAIL, and IMF{sub 6} by considering blending schemes and approach to continuous recycle. Plutonium and americium are recycled in order to reduce the intermediate term (100 to 1500 years after spent fuel irradiation) decay heat of the disposed waste which accounts for the bulk of the repository heating. Since the long-term released dose from the repository is dominated by neptunium, it is sensible to consume it by transmutation in a reactor, as well. Curium accounts for {approx}0.6% of the TRU mass in spent UO{sub 2} fuel ({approx}0.008% of the heavy metal), but does constitute significantly higher fractions in spent transmutation fuels. This initial evaluation will focus on blending strategies for the multirecycling of Pu+Np+Am. The impact of curium recycle will be investigated as part of the systematic study of blending strategies. The initial study focuses on understanding a simple strategy for IMF recycle and blending. More complex strategies (i.e., heterogeneous assemblies) will be evaluated later in the year, including enriched uranium support options. Currently, a preliminary study of a serial blending strategy has been performed in order to evaluate the impact of blending on the performance of the IMF recycle and to evaluate the potential for continuous or infinite recycle. The continuous recycle of Pu+Np+Am in IMF would allow for complete destruction of all heat contributing actinides in the same LWRs that originally produced them. The only transuranics sent to the repository would be those lost in reprocessing and curium if it is not eventually recycled.

Hoffman, E. A.; Nuclear Engineering Division

2005-04-29T23:59:59.000Z

433

Rapid pyrolysis of Green River and New Albany oil shales in solid-recycle systems  

SciTech Connect (OSTI)

We are studying second generation oil shale retorting by a combined laboratory and modeling program coupled with operation of a 1 tonne-per-day solid-recycle pilot retorting facility. In the retort, we have measured oil yields equal to Fischer assay for Western, Green River shale and Eastern, New Albany shale. Laboratory experiments have measured yields of 125% of Fischer assay under ideal conditions in sand fluidized beds. However, when oxidized (or spent) shale is present in the bed, a decline in yield is observed along with increased coke formation. Recycling clay catalysts may improve oil yield by olefin absorption on active sites, preventing coke formation on these sites and allowing olefin incorporation into the oil. We studied the solid mixing limits in solid-recycle systems and conclude that nearly intimate mixing is required for adequate heat transfer and to minimize oil coke formation. Recycling oxidized shale has shown to self-scrub H/sub 2/S and SO/sub 2/ when processing Western shale. Cooling of spent shale with water from 500/degree/C releases H/sub 2/S. We describe an apparatus which uses solid-recycle to reduce the temperature before water spray to cool the shale without H/sub 2/S release. 6 refs., 5 figs., 2 tabs.

Cena, R.J.

1988-07-01T23:59:59.000Z

434

The pinch of cold ions from recycling in the tokamak edge pedestal  

SciTech Connect (OSTI)

We apply the ''natural fueling mechanism'' [W. Wan, S. E. Parker, Y. Chen, and F. W. Perkins, Phys. Plasmas 17, 040701 (2010)] to the edge pedestal. The natural fueling mechanism is where cold ions naturally pinch radially inward for a heat-flux dominated plasma. It is shown from neoclassical-neutral transport coupled simulations that the recycling neutrals and the associated source ions are colder than the main ions in the edge pedestal. These recycling source ions will pinch radially inward due to microturbulence. Gyrokinetic turbulence simulations indicate that near the top of the pedestal, the pinch velocity of the recycling source ions is much higher than the main ion outgoing flow velocity. The turbulent pinch of the recycling source ions may play a role in the edge pedestal transport and dynamics. The cold ion temperature significantly enhances the pinch velocity of the recycling source ions near to the pedestal top. Neoclassical calculations show a cold ion pinch in the pedestal as well.

Wan Weigang; Parker, Scott E.; Chen Yang [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Park, Gun-Young [National Fusion Research Institute, 113 Gwahangno, Yuseong-Gu, DaeJeon 305-333 (Korea, Republic of); Chang, Choong-Seock [Courant Institute of Mathematical Sciences, New York University, New York, New York 10003 (United States); Stotler, Daren [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2011-05-15T23:59:59.000Z

435

LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections  

SciTech Connect (OSTI)

Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can be used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.

Andrea Alfonsi; Gilles Youinou

2012-07-01T23:59:59.000Z

436

LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections  

SciTech Connect (OSTI)

Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can be used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.

Andrea Alfonsi; Gilles Youinou; Sonat Sen

2013-02-01T23:59:59.000Z

437

Quantum Noise in Differential-type Gravitational-wave Interferometer and Signal Recycling  

E-Print Network [OSTI]

There exists the standard quantum limit (SQL), derived from Heisenberg's uncertainty relation, in the sensitivity of laser interferometer gravitational-wave detectors. However, in the context of a full quantum-mechanical approach, SQL can be overcome using the correlation of shot noise and radiation-pressure noise. So far, signal recycling, which is one of the methods to overcome SQL, is considered only in a recombined-type interferometer such as Advanced-LIGO, LCGT, and GEO600. In this paper, we investigated quantum noise and the possibility of signal recycling in a differential-type interferometer. As a result, we found that signal recycling is possible and creates at most three dips in the sensitivity curve of the detector. Then, taking advantage of the third additional dip and comparing the sensitivity of a differential-type interferometer with that of a next-generation Japanese GW interferometer, LCGT, we found that SNR of inspiral binary is improved by a factor of 1.43 for neutron star binary, 2.28 for 50 M_sun black hole binary, and 2.94 for 100 M_sun black hole binary. We also found that power recycling to increase laser power is possible in our signal-recycling configuration of a detector.

Atsushi Nishizawa; Seiji Kawamura; Masa-aki Sakagami

2007-06-03T23:59:59.000Z

438

Development of mobile, on-site engine coolant recycling utilizing reverse-osmosis technology  

SciTech Connect (OSTI)

This paper presents the history of the development of self-contained, mobile, high-volume, engine coolant recycling by reverse osmosis (R/O). It explains the motivations, created by government regulatory agencies, to minimize the liability of waste generators who produce waste engine coolant by providing an engine coolant recycling service at the customer`s location. Recycling the used engine coolant at the point of origin minimizes the generators` exposure to documentation requirements, liability, and financial burdens by greatly reducing the volume of used coolant that must be hauled from the generator`s property. It describes the inherent difficulties of recycling such a highly contaminated, inconsistent input stream, such as used engine coolant, by reverse osmosis. The paper reports how the difficulties were addressed, and documents the state of the art in mobile R/O technology. Reverse osmosis provides a purified intermediate fluid that is reinhibited for use in automotive cooling systems. The paper offers a review of experiences in various automotive applications, including light-duty, medium-duty and heavy-duty vehicles operating on many types of fuel. The authors conclude that mobile embodiments of R/O coolant recycling technology provide finished coolants that perform equivalently to new coolants as demonstrated by their ability to protect vehicles from freezing, corrosion damage, and other cooling system related problems.

Kughn, W. [Toxguard Fluid Technologies, Irvine, CA (United States). CEO; Eaton, E.R. [Penray Companies, Inc., Elk Grove Village, IL (United States)

1999-08-01T23:59:59.000Z

439

Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap  

SciTech Connect (OSTI)

Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role in recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.

Adam C. Powell, IV

2012-07-19T23:59:59.000Z

440

A dynamic fuel cycle analysis for a heterogeneous thorium-DUPIC recycle in CANDU reactors  

SciTech Connect (OSTI)

A heterogeneous thorium fuel recycle scenario in a Canada deuterium uranium (CANDU) reactor has been analyzed by the dynamic analysis method. The thorium recycling is performed through a dry process which has a strong proliferation resistance. In the fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides, and fission products of a multiple thorium recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. The analysis results have shown that the heterogeneous thorium fuel cycle can be constructed through the dry process technology. It is also shown that the heterogeneous thorium fuel cycle can reduce the spent fuel inventory and save on the natural uranium resources when compared with the once-through cycle. (authors)

Jeong, C. J.; Park, C. J.; Choi, H. [Korea Atomic Energy Research Inst., P.O. Box 150, Yuseong, Daejeon, 305-600 (Korea, Republic of)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessment of opportunities to increase the recovery and recycling rates of waste oils  

SciTech Connect (OSTI)

Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

Graziano, D.J.; Daniels, E.J.

1995-08-01T23:59:59.000Z

442

Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

Liang Sai [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Xu Yijian [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); China Academy of Urban Planning and Design, Beijing 100037 (China)

2012-03-15T23:59:59.000Z

443

Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443  

SciTech Connect (OSTI)

Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

2013-07-01T23:59:59.000Z

444

Packaging waste recycling in Europe: Is the industry paying for it?  

SciTech Connect (OSTI)

Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the “recycling system” are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and Portugal the industry is paying local authorities more than just the incremental costs of recycling (full costs of selective collection and sorting minus the avoided costs). To provide a more definitive judgment on the fairness of the systems it will be necessary to assess the cost efficiency of waste management operators (and judge whether operators are claiming costs or eliciting “prices”)

Ferreira da Cruz, Nuno, E-mail: nunocruz@ist.utl.pt; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

2014-02-15T23:59:59.000Z

445

Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling  

E-Print Network [OSTI]

Twin-Signal-Recycling (TSR) builds on the resonance doublet of two optically coupled cavities and efficiently enhances the sensitivity of an interferometer at a dedicated signal frequency. We report on the first experimental realization of a Twin-Signal-Recycling Michelson interferometer and also its broadband enhancement by squeezed light injection. The complete setup was stably locked and a broadband quantum noise reduction of the interferometers shot noise by a factor of up to 4\\,dB was demonstrated. The system was characterized by measuring its quantum noise spectra for several tunings of the TSR cavities. We found good agreement between the experimental results and numerical simulations.

André Thüring; Christian Gräf; Henning Vahlbruch; Moritz Mehmet; Karsten Danzmann; Roman Schnabel

2010-05-25T23:59:59.000Z

446

Waste recycling in the textile industry. (Latest citations from World Textile Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-10-01T23:59:59.000Z

447

Waste recycling in the textile industry. (Latest citations from World Textile abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-11-01T23:59:59.000Z

448

Waste recycling in the textile industry. (Latest citations from World Textile Abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recycling of fiberous and other waste materials from textile production. The use of recyclable materials such as cellulosic and polymeric wastes, cloth scraps, fiber waste, glass fiber wastes, and waste dusts for use in textile products, insulation, paneling and other building supplies, yarns, roping, and pavement materials are considered. Equipment for collecting, sorting, and processing textile wastes is also discussed. Heat recovery and effluent treatment in the textile industry are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-07-01T23:59:59.000Z

449

Waste recycling in the textile industry. (Latest citations from World Textile abstracts). NewSearch  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-10-01T23:59:59.000Z

450

Waste recycling in the textile industry. (Latest citations from World Textile abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-09-01T23:59:59.000Z

451

Waste recycling in the textile industry. (Latest citations from World Textile Abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-10-01T23:59:59.000Z

452

Waste recycling in the textile industry. (Latest citations from World Textile abstracts). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-06-01T23:59:59.000Z

453

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect (OSTI)

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

454

Supplier Identify Need Determine Best Value & Select Supplier Place Order Receive Order Payment Close Order, Inventory, Recycle Non-Preferred  

E-Print Network [OSTI]

Close Order, Inventory, Recycle Non-Preferred Vendor/Non-Catalog REQuisition Approver(s) receive or service by an external company For purchases of goods over $5000, follow inventory process Ready to dispose or recycle? See Equipment Inventory & Disposal policy Yes Requestor creates a non

Shull, Kenneth R.

455

Improvement effect of small scale recycled milled carbon fibre in DGEBA epoxy resin creating an improved matrix  

E-Print Network [OSTI]

energy [4, 5]. Also, till the last decade fibre reinforced composite materials were regarded as non, 10]. The reinforced material used in this paper is recycled milled carbon fibre (MCF). Addition1 Improvement effect of small scale recycled milled carbon fibre in DGEBA epoxy resin creating

456

From October 10, 2007 Report of E.U. Environmental Agency on Europe's environment: Recycling and WTE are complementary  

E-Print Network [OSTI]

From October 10, 2007 Report of E.U. Environmental Agency on Europe's environment: Recycling detrimental effects on public health and the environment. When comparing waste disposal options recycling and incineration with energy recovery. In contrast, countries with a medium level of landfill (25

Columbia University

457

Used Oil, Antifreeze, and Car Battery Recycling in Centre County* Location Used Oil Used Antifreeze Car Batteries  

E-Print Network [OSTI]

Used Oil, Antifreeze, and Car Battery Recycling in Centre County* Location Used Oil Used Antifreeze) 237-0121 Yes No No #12;Location Used Oil Used Antifreeze Car Batteries Valvoline Instant Oil Change-9929 Yes Yes Yes * See the DEP website, www.dep.state.pa.us/cgi_apps/oil, for used oil recycling locations

Maroncelli, Mark

458

Control Structure Selection for Reactor, Separator, and Recycle T. Larsson, M. S. Govatsmark, S. Skogestad,* and C. C. Yu  

E-Print Network [OSTI]

Control Structure Selection for Reactor, Separator, and Recycle Processes T. Larsson, M. S to control", for a simple plant with a liquid-phase reactor, a distillation column, and recycle of unreacted study that the reactor level should be kept at its maximum, which rules out many of the control

Skogestad, Sigurd

459

Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestad and ChengChing Yu y  

E-Print Network [OSTI]

Control of Reactor and Separator, with Recycle T. Larsson, S. Skogestad #3; and Cheng­Ching Yu y This paper looks at control of a plant that consists of a reactor, separator and recycle of unreacted reactor where component A is converted to a product and the amount converted is given by k(T )Mz [mole

Skogestad, Sigurd

460

Donate or sell your furniture, electronics, etc. Check out these helpful resources to recycle your unwanted items  

E-Print Network [OSTI]

Donate or sell your furniture, electronics, etc. · Check out these helpful resources to recycle's EcoDirectory can help you answer your recycling and reuse questions. (http, debris bins or place curbside. The Alameda County Computer Resource Center picks up anything with a plug

Alvarez-Cohen, Lisa

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network [OSTI]

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and HID (high-intensity discharge) lamps and all other mercury containing labeled for shipment to a recycling plant for mercury, glass and aluminum recovery. The beneficial re

Baker, Chris I.

462

Code qualification of structural materials for AFCI advanced recycling reactors.  

SciTech Connect (OSTI)

This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded

Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

2012-05-31T23:59:59.000Z

463

The Dalhousie Guide to Waste Management on Campus Look for the four bin system around campus designated for paper, recyclables, organics and garbage.  

E-Print Network [OSTI]

for the four bin system around campus designated for paper, recyclables, organics.) · Ceramics · Potato chip bags & candy wrappers · Styrofoam Not acceptable: · Organics · Recyclables and dry. Organic Waste No liquids. Garbage Reconsider all waste for potential reuse before discarding

Brownstone, Rob

464

TTUAB CARDBOARD RECYCLING PROTOCOL Fall 2012 Cardboard is stored on the first floor in the Department of Biological Sciences in the west  

E-Print Network [OSTI]

TTUAB CARDBOARD RECYCLING PROTOCOL ­ Fall 2012 Cardboard is stored on the first floor. On Friday, the individual who signed up for the cardboard recycling is responsible to transport the collected cardboard to recycle bin next to Murray Hall (dumpster is next to that building in the R2 parking

Rock, Chris

465

TTUAB CARDBOARD RECYCLING PROTOCOL 2013 Cardboard is stored on the first floor in the Department of Biological Sciences in the west  

E-Print Network [OSTI]

TTUAB CARDBOARD RECYCLING PROTOCOL 2013 Cardboard is stored on the first floor in the Department, the individual who signed up for the cardboard recycling is responsible for transporting the collected cardboard to recycle bin next to Murray Hall (dumpster is next to that building in the R2 parking lot and in close

Rock, Chris

466

Recycling effect of Germanium on ECR Ion Source P. Leherissier, C. Baru, C. Canet, M. Dubois, M. Dupuis, J.L. Flambard, G. Gaubert, P. Jardin, N. Lecesne,  

E-Print Network [OSTI]

1 Recycling effect of Germanium on ECR Ion Source P. Leherissier, C. Barué, C. Canet, M. Dubois, M investigated the recycling effect of an SF6 plasma. The initial beam was produced by the classical method of production, the recycling effect and perspectives are described in this paper. #12;2 I. INTRODUCTION At GANIL

Paris-Sud XI, Université de

467

Q. J. R. Meteorof. SOC.(1994),120, pp. 861-880 551.577.52:551.573:556.1(811) Precipitation recycling in the Amazon basin  

E-Print Network [OSTI]

recycling in the Amazon basin By E. A. B. ELTAHIR and R. L. BRAS' MassachusemImtitute of Technology, USA (Received 1 June 1993; revised 26 November 1993) SUMMARY Precipitation recycling is the contribution of evaporation within a region to precipitation in that same region. The recycling rate is a diagnostic measure

Saleska, Scott

468

Fundamental Advances in the Pulp and Paper Industry 159 AIChE Symposium Series No. 322, Vol. 95, 1999 Compatibility of Pressure Sensitive Adhesives With Recycling  

E-Print Network [OSTI]

, 1999 Compatibility of Pressure Sensitive Adhesives With Recycling Unit Operations David Bormett*, Carl) from recovered paper is a major problem facing the paper recycling industry. As a result of a United Testing and Research, paper recovery companies, paper recyclers, adhesive manufacturers, and chemical

Abubakr, Said

469

TTUAB CARDBOARD RECYCLING PROTOCOL Fall 2011 Cardboard is stored on the first floor in the Department of Biological Sciences in the west  

E-Print Network [OSTI]

TTUAB CARDBOARD RECYCLING PROTOCOL ­ Fall 2011 Cardboard is stored on the first floor. On Friday, one individual who signed up for the cardboard recycling is responsible to transport the collected cardboard to recycle bin next to Murray Hall (dumpster is next to that building in the R2 parking

Rock, Chris

470

Published in International Journal of Environment and Pollution, 7(3), 1997, pp. 538-546 THE ECONOMICS OF RECYCLING IN FRANCE  

E-Print Network [OSTI]

-546 THE ECONOMICS OF RECYCLING IN FRANCE: INSTITUTIONAL FRAMEWORK AND TECHNOLOGICAL ADOPTION Christophe Defeuilley allow the optimal application of recycling techniques, combined with waste-to-energy facilities of municipalities. The consequence will be the development of recycling at levels well below the objectives

Boyer, Edmond

471

The Dalhousie Guide to Waste Management on Campus Look for the four bin system around campus designated for paper, recyclables, organics and garbage.  

E-Print Network [OSTI]

for the four bin system around campus designated for paper, recyclables, organics.) · Ceramics · Potato chip bags & candy wrappers · Styrofoam Not acceptable: · Organics · Recyclables. For personal cell phone disposal, visit: call2recycle.ca · Employees can request office related e-waste

Brownstone, Rob

472

Recycling issues facing target and RTL materials of inertial fusion designs L. El-Guebaly, P. Wilson, M. Sawan, D. Henderson, A. Varuttamaseni,  

E-Print Network [OSTI]

inventory and enhance the economics. The RTLs meet the low level waste and recycling dose requirements inventory relative to the nuclear island waste, developed a comprehensive recycling approach for selected-through and recycling scenarios. This paper is organized as follows. We begin with a brief description of the ARIES- IFE

473

Composting with Worms Worm composting (or vermicomposting) is a natural and efficient way to recycle your  

E-Print Network [OSTI]

Composting with Worms Worm composting (or vermicomposting) is a natural and efficient way to recycle your organic kitchen scraps. And it sure beats plowing through knee-high snowdrifts to the compost project to do with kids; it's easy to make compost using worms as long as you have the right container

New Hampshire, University of

474

REUSE AND RECYCLE OF BIO-RESIDUE (PERCOLATE) FROM CONSTRUCTED WETLAND TREATING SEPTAGE  

E-Print Network [OSTI]

REUSE AND RECYCLE OF BIO-RESIDUE (PERCOLATE) FROM CONSTRUCTED WETLAND TREATING SEPTAGE by Sukon of percolate from constructed wetland (CW) treating septage in agricultural application with the specific focus CW treating septage could exhibit positive responses of the plant growth which increase seed yield

Richner, Heinz

475

Project Information Form Project Title Evaluation of the Combined Effect of Recycled Asphalt Pavement (RAP),  

E-Print Network [OSTI]

(s) and Amounts Provided (by each agency or organization) Caltrans $90,315 Total Project Cost $90,315 Agency IDProject Information Form Project Title Evaluation of the Combined Effect of Recycled Asphalt of Research Project As virgin material sources become increasingly scarce, and the volume of pavement material

California at Davis, University of

476

Project Information Form Project Title Evaluation of the Combined Effect of Recycled Asphalt Pavement (RAP),  

E-Print Network [OSTI]

(s) and Amounts Provided (by each agency or organization) Caltrans $90,538 Total Project Cost $90,538 Agency IDProject Information Form Project Title Evaluation of the Combined Effect of Recycled Asphalt of Research Project As virgin material sources become increasingly scarce, and the volume of pavement material

California at Davis, University of

477

Researchers at the University of Alicante develop a method for recycling plastic with printed ink  

E-Print Network [OSTI]

Researchers at the University of Alicante develop a method for recycling plastic with printed ink printed ink on plastic films used in flexible packaging getting a product free from ink and suitable Group, allows the removal of printed ink through a physical-chemical treatment and retrieves the plastic

Escolano, Francisco

478

Recycling non-hazardous industrial wastes and petroleum contaminated soils into structural clay ceramics  

SciTech Connect (OSTI)

Cherokee Environmental Group (CEG)--a subsidiary of the Cherokee Sanford Group, Inc. (CSG)--has developed a system to beneficially reuse non-hazardous industrial wastes and petroleum contaminated soils into the recycling process of CSG`s structural clay ceramics manufacturing operation. The wastes and soils are processed, screened, and blended with brickmaking raw materials. The resulting material is formed and fired in such a way that the bricks still exceed American Society for Testing and Materials (ASTM) quality standards. Prior to usage, recycled materials are rigorously tested for ceramic compatibility and environmental compliance. Ceramic testing includes strength, shrinkage, and aesthetics. Environmental compliance is insured by testing for both organic and inorganic constituents. This recycling process has been fully permitted by all required state regulatory agencies in North Carolina, Maryland, and South Carolina where facilities are located. This inter-industrial synergy has eliminated landfill reliance and liability for many companies and property owners. The recycling volume of wastes and soils is high because CSG is one of the largest brick manufacturers in the nation. Together, CEG and CSG have eliminated more than 1 billion pounds of material from landfills by beneficially reusing the non-hazardous wastes.

MacRunnels, Z.D.; Miller, H.B. Jr. [Cherokee Environmental Group, Sanford, NC (United States)

1994-12-31T23:59:59.000Z

479

Blue Laboratory Recycling Bins Thank you for your efforts in greening the NIH!  

E-Print Network [OSTI]

, or broken glass No hazardous, radioactive, or infectious materials Mixed Paper: Paper, Newspaper the recycling contractor directly at 301-402-6349. You may use plastic liners in your bins, especially, radioactive, or biological materials. Corrugated cardboard should be flattened and placed near

Baker, Chris I.

480

A Performance-Based Approach to the Development of a Recycled Plastic/Composite Crosstie  

E-Print Network [OSTI]

A Performance-Based Approach to the Development of a Recycled Plastic/Composite Crosstie Thomas Nosker, Ph.D., Richard Renfree Ph.D., and Jennifer Lynch Plastics & Composites Group, Rutgers University Introduction In 1994, Rutgers University's Plastics and Composites Group, formerly the Center for Plastics

Note: This page contains sample records for the topic "grease primarily recycled" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Tax-versus-trading and efficient revenue recycling as issues for greenhouse gas abatement  

E-Print Network [OSTI]

Tax-versus-trading and efficient revenue recycling as issues for greenhouse gas abatement Final abatement, using the first multi-party model to include both tax-versus-trading under uncertainties of an emissions tax over emissions (permit) trading in handling abatement-cost uncertainties, from that shown

Pezzey, Jack

482

Resources, Conservation and Recycling 51 (2007) 294313 Environmental impact assessment of different  

E-Print Network [OSTI]

Resources, Conservation and Recycling 51 (2007) 294­313 Environmental impact assessment environmental impacts. Therefore, it is vital to evaluate the environmental impacts of the symbiosis in order is proposed. In this paper, an LCA-type environmental impact assessment of different design schemes

Pike, Ralph W.

483

Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells  

E-Print Network [OSTI]

Experimental demonstration of enhanced photon recycling in angle-restricted GaAs solar cells Emily, emphasizing the optical nature of the effect. 1 Introduction For ideal solar cells where all recombination. Despite this theoretical prediction, until recently even the highest efficiency solar cells were not close

Faraon, Andrei

484

Special Feature 2: Making a virtue of necessity: recycling solid waste by the poor, for  

E-Print Network [OSTI]

Special Feature 2: Making a virtue of necessity: recycling solid waste by the poor, for the poor, the management method for waste in Egypt was open dumps and unregulated accumulations of solid waste in public,000 informal solid waste removers. They were, and remain, the experts in collection, removal, re

Boyer, Edmond

485

COMPARISON BETWEEN FRESH AND AGED MUNICIPAL SOLID WASTES AND THEIR RECYCLING METHODS IN CHINA  

E-Print Network [OSTI]

SUMMARY: Fresh municipal solid wastes (MSW) and aged MSW including MSW from landfills and dumpsite have been characterized and compared by their components, moisture content and lower heat value (LHV) in order to recycle and dispose them properly. Firstly the characterizing experiments were performed and the results showed that generally the fresh MSW are of high moisture contents and their LHV is below 6500kJ/kg; and when 40 % of plastics were separated, their LHV is less than 5000kJ/kg. Combustibles in aged MSW were easily to be separated and their LHV is higher than 11000kJ/kg as just separated. Analysis of aged MSW of different years ’ old showed that as MSW became older the moisture and paper contents decreased. No leachate produced from aged MSW during the analysis and separation process. For both fresh MSW and aged MSW the main contributor to LHV is plastics. Secondly a simple separating system consisting of a roller screen and a winnower is used to separate plastics from fresh MSW and aged MSW, and the quality of plastics were compared by their physical parameters after made into pellets; the results showed that plastics from fresh MSW can be recycled as raw material for secondary product; while plastics separated from aged MSW are of lower quality and only suitable to be recycled as fuel material. Finally different recycling methods were suggested for fresh and aged MSWs based on their characteristics. 1.

G. Zhou; D. Chen; W. Cui

2007-01-01T23:59:59.000Z

486

Rare Earth Elements--End Use and Recyclability Scientific Investigations Report 20115094  

E-Print Network [OSTI]

Rare Earth Elements--End Use and Recyclability Scientific Investigations Report 2011­5094 U outside of China. Photograph by Dan Cordier, U.S. Geological Survey. #12;Rare Earth Elements--End Use materials contained within this report. Suggested citation: Goonan, T.G., 2011, Rare earth elements--End use

487

please recycle. Recent decades have seen fundamental shifts in the business of forestry worldwide. Private  

E-Print Network [OSTI]

please recycle. Recent decades have seen fundamental shifts in the business of forestry worldwide analysis and management. Today's master's programs in forestry and environmental management address forest; one of the oldest and best forestry education programs in the world; and a strong network

Reif, John H.

488

Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes  

SciTech Connect (OSTI)

Since the development of the first silicon based photovoltaic cell in the 1950's, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

Moskowitz, P.D.; Zweibel, K. (eds.)

1992-01-01T23:59:59.000Z

489

Towards the optimal integrated production of biodiesel with internal recycling of methanol  

E-Print Network [OSTI]

1 Towards the optimal integrated production of biodiesel with internal recycling of methanol of the production methanol from glycerol and its integration in the production of biodiesel from algae. We propose a limited superstructure where the glycerol from biodiesel is first reformed for which steam reforming

Grossmann, Ignacio E.

490

Conceivable new recycling of nuclear waste by nuclear power companies in their plants  

E-Print Network [OSTI]

We outline the basic principles and the needed experiments for a conceivable new recycling of nuclear waste by the power plants themselves to avoid its transportation and storage to a (yet unknown) dumping area. Details are provided in an adjoining paper and in patents pending.

Ruggero Maria Santilli

1997-04-09T23:59:59.000Z

491

St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids  

Broader source: Energy.gov [DOE]

Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids William Eleazer, Supervising Engineer, Brown and Caldwell

492

TREATMENT OF GASEOUS EFFLUENTS ISSUED FROM RECYCLING – A REVIEW OF THE CURRENT PRACTICES AND PROSPECTIVE IMPROVEMENTS  

SciTech Connect (OSTI)

The objectives of gaseous waste management for the recycling of nuclear used fuel is to reduce by best practical means (ALARA) and below regulatory limits, the quantity of activity discharged to the environment. The industrial PUREX process recovers the fissile material U(VI) and Pu(IV) to re-use them for the fabrication of new fuel elements e.g. recycling plutonium as a Mixed Oxide (MOX) fuel or recycling uranium for new enrichment for Pressurized Water Reactor (PWR). Meanwhile the separation of the waste (activation and fission product) is performed as a function of their pollution in order to store and avoid any potential danger and release towards the biosphere. Raffinate, that remains after the extraction step and which contains mostly all fission products and minor actinides is vitrified, the glass package being stored temporarily at the recycling plant site. Hulls and end pieces coming from PWR recycled fuel are compacted by means of a press leading to a volume reduced to 1/5th of initial volume. An organic waste treatment step will recycle the solvent, mainly tri-butyl phosphate (TBP) and some of its hydrolysis and radiolytic degradation products such as dibutyl phosphate (HDPB) and monobutyl phosphate (H2MBP). Although most scientific and technological development work focused on high level waste streams, a considerable effort is still under way in the area of intermediate and low level waste management. Current industrial practices for the treatment of gaseous effluents focusing essentially on Iodine-129 and Krypton-85 will be reviewed along with the development of novel technologies to extract, condition, and store these fission products. As an example, the current industrial practice is to discharge Kr-85, a radioactive gas, entirely to the atmosphere after dilution, but for the large recycling facilities envisioned in the near future, several techniques such as 1) cryogenic distillation and selective absorption in solvents, 2) adsorption on activated charcoal, 3) selective sorption on chemical modified zeolites, or 4) diffusion through membranes with selective permeability are potential technologies to retain the gas.

Patricia Paviet-Hartmann; William Kerlin; Steven Bakhtiar

2010-11-01T23:59:59.000Z

493

Recycling and recovery routes of plastic solid waste (PSW): A review  

SciTech Connect (OSTI)

Plastic solid waste (PSW) presents challenges and opportunities to societies regardless of their sustainability awareness and technological advances. In this paper, recent progress in the recycling and recovery of PSW is reviewed. A special emphasis is paid on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products. The four routes of PSW treatment are detailed and discussed covering primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary (energy recovery) schemes and technologies. Primary recycling, which involves the re-introduction of clean scrap of single polymer to the extrusion cycle in order to produce products of the similar material, is commonly applied in the processing line itself but rarely applied among recyclers, as recycling materials rarely possess the required quality. The various waste products, consisting of either end-of-life or production (scrap) waste, are the feedstock of secondary techniques, thereby generally reduced in size to a more desirable shape and form, such as pellets, flakes or powders, depending on the source, shape and usability. Tertiary treatment schemes have contributed greatly to the recycling status of PSW in recent years. Advanced thermo-chemical treatment methods cover a wide range of technologies and produce either fuels or petrochemical feedstock. Nowadays, non-catalytic thermal cracking (thermolysis) is receiving renewed attention, due to the fact of added value on a crude oil barrel and its very valuable yielded products. But a fact remains that advanced thermo-chemical recycling of PSW (namely polyolefins) still lacks the proper design and kinetic background to target certain desired products and/or chemicals. Energy recovery was found to be an attainable solution to PSW in general and municipal solid waste (MSW) in particular. The amount of energy produced in kilns and reactors applied in this route is sufficiently investigated up to the point of operation, but not in terms of integration with either petrochemical or converting plants. Although primary and secondary recycling schemes are well established and widely applied, it is concluded that many of the PSW tertiary and quaternary treatment schemes appear to be robust and worthy of additional investigation.

Al-Salem, S.M. [Centre for CO-2 Technology, Department of Chemical Engineering, School of Process Engineering, University College London (UCL), Torrington Place, London WC1E 7JE (United Kingdom)], E-mail: s.al-salem@ucl.ac.uk; Lettieri, P.; Baeyens, J. [Centre for CO-2 Technology, Department of Chemical Engineering, School of Process Engineering, University College London (UCL), Torrington Place, London WC1E 7JE (United Kingdom)

2009-10-15T23:59:59.000Z

494

Advanced recycling and research complexes: A second strategic use for installations on the base closure list  

SciTech Connect (OSTI)

Obstacles currently facing the solid waste recycling industry are often related to a lack of public and investor confidence, issues of profitability and liability, and insufficient consumer identification with products made from recycled materials. Resolution of these issues may not be possible without major changes in the way the solid waste recycling business is structured. At the same time, we are faced with opportunities which will not likely recur in our lifetimes: access to educated, well trained work forces; and large tracts of land that are contiguous with metropolitan areas and are developed for heavy industry and transportation. Military installations are being converted to civilian use just in time to serve as important a role in our national resource conservation policy. The future of recycling in North America converges with the future of selected bases on the closure list and takes the form of converting these bases into Advanced Recycling and Research Complexes. The premise is simple: use these strategically-located facilities as industrial parks where a broad range of secondary wastes are separated, refined, or converted and made into new products on site. The wastes would include municipal solid waste (MSW), demolition waste, landscape trimmings, used tires, scrap metal, agricultural waste, food processing waste, and other non-hazardous materials. The park would consist of separation and conversion facilities, research and product standards laboratories, and industries that convert the materials into products and fuels. Energy conversion systems using some waste streams as fuel could be located at the park to supplement energy demands of the industrial operations. The strategic co-location of the resource providers and user industries would minimize transportation costs.

Walter, D.W.; Kuusinen, T.L.; Beck, J.E.

1993-05-01T23:59:59.000Z

495

New Albany shale flash pyrolysis under hot-recycled-solid conditions: Chemistry and kinetics, II  

SciTech Connect (OSTI)

The authors are continuing a study of recycle retorting of eastern and western oil shales using burnt shale as the solid heat carrier. Stripping of adsorbed oil from solid surfaces rather than the primary pyrolysis of kerogen apparently controls the release rate of the last 10--20% of hydrocarbons. Thus, the desorption rate defines the time necessary for oil recovery from a retort and sets the minimum hold-time in the pyrolyzer. A fluidized-bed oil shale retort resembles a fluidized-bed cat cracker in this respect. Recycled burnt shale cokes oil and reduces yield. The kerogen H/C ratio sets an upper limit on yield improvements unless external hydrogen donors are introduced. Steam can react with iron compounds to add to the H-donor pool. Increased oil yield when New Albany Shale pyrolyzes under hot-recycled-solid, steam-fluidization conditions has been confirmed and compared with steam retorting of acid-leached Colorado oil shale. In addition, with retorted, but unburnt, Devonian shale present at a recycle ratio of 3, the authors obtain 50% more oil-plus-gas than with burnt shale present. Procedures to make burnt shale more like unburnt shale can realize some increase in oil yield at high recycle ratios. Reduction with H{sub 2} and carbon deposition are possibilities that the authors have tested in the laboratory and can test in the pilot retort. Also, eastern spent shale burned at a high temperature (775 C, for example) cokes less oil than does spent shale burned at a low temperature (475 C). Changes in surface area with burn temperature contribute to this effect. 15 refs., 8 figs., 4 tabs.

Coburn, T.T.; Morris, C.J.

1990-11-01T23:59:59.000Z

496

A Microfluidic System for the Continuous Recycling of Unmodified Homogeneous Palladium Catalysts through Liquid/Liquid Phase Separation  

E-Print Network [OSTI]

A prototype microflow system for the continuous recycling of homogeneous catalysts through liquid/liquid phase separation was developed and its effectiveness demonstrated in a challenging palladium-catalyzed hydroxylation ...

Li, Pengfei

497

RECYCLE REPURPOSE REUSE Here are a few things that will help you to same money, time and the  

E-Print Network [OSTI]

RECYCLE ­ REPURPOSE ­ REUSE Here are a few things that will help you to same money, time been soiled by pet it will not stink. If you have a low constantly wet area the carpet may mildew

Jawitz, James W.

498

Solvent recycle/contaminant reduction testing - Phase I, Task 3. Topical progress report, June 1994--December 1994  

SciTech Connect (OSTI)

The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. This report describes the solvent recyle test program for EDTA/ammonium carbonate solvent.

NONE

1995-07-01T23:59:59.000Z

499

Chemical decontamination of process equipment using recyclable chelating solvent Phase I. Final report, September 1993--June 1995  

SciTech Connect (OSTI)

The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment.

NONE

1995-10-01T23:59:59.000Z

500

Single Stream Recycling is coming to UNH campus wide! The Facilities Division along with departmental representatives from the Sustainability Institute,  

E-Print Network [OSTI]

and our business partner, Waste Management will be implementing single stream recycling campus wide shopping bags examples include: *Plastic food wrap, potato chip #12;* Soda and juice bottles *Shampoo

New Hampshire, University of