National Library of Energy BETA

Sample records for grease food wastes

  1. University of California, San Diego BMP C05: Food Service

    E-Print Network [OSTI]

    Russell, Lynn

    of grease or cooking oil to any storm drain or sanitary sewer system drain! Waste grease and cooking oil outdoor storm drains for evidence of improper disposal of grease, cooking oil, or other food waste & Debris Oil & Grease Bacteria Total Residual Chlorine Dry weather flows Purpose: To prevent or reduce

  2. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    SciTech Connect (OSTI)

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  3. Flexible Distributed Energy and Water from Waste for the Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 Flexible Distributed Energy and Water from Waste for the Food and Beverage...

  4. Flexible Distributed Energy & Water from Waste for the Food ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy & Water from Waste for the Food & Beverage Industry - Presentation by GE Global Research, June 2011 Flexible Distributed Energy & Water from Waste for the Food &...

  5. Food Grinders and Sustainable Food Waste Disposal Objective: Explore the environmental viability of household and commercial food

    E-Print Network [OSTI]

    Wolberg, George

    Food Grinders and Sustainable Food Waste Disposal Objective: Explore the environmental viability of household and commercial food grinders by quantifying their impact in an urban setting. Background: Food cities, food wastes are disposed of in two ways. Liquid waste--including ground up food waste

  6. Pumpkin Power: Turning Food Waste into Energy | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    food waste and deliver it to EBMUD's anaerobic digesters. Inside these giant tanks, bacteria break down the food waste and release methane gas as a byproduct. EBMUD captures this...

  7. Food waste management using an electrostatic separator with corona discharge

    SciTech Connect (OSTI)

    Lai, Koonchun; Teh, Pehchiong; Lim, Sooking

    2015-05-15

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0?mm.

  8. Food processing wastes as nutrient sources in algal growth

    SciTech Connect (OSTI)

    Wong, M-H; Chan, W-C; Chu, L-M

    1983-03-01

    Utilization of food processing wastes for biological production will ease part of the disposal problem, especially the potential hazards of eutrophication, andat the same time recycle the inherently rich plant nutrients in the waste materials. The present investigation is an attempt to study the feasibility of using five food processing wastes, including carrot, coconut, eggshell, soybean, and sugarcane, for culturing Chlorella pyrenoidosa (a unicellular green alga).

  9. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Ubc Food System Project: Food Waste Management The Hot Beverage Cup

    E-Print Network [OSTI]

    : Food Waste Management ­ The Hot Beverage Cup Vinci Ching, Paul Gazzola, Karen Juzkow, Kenrick Kan, Tina of a project/report". #12;AGSC 450 UBC FOOD SYSTEM PROJECT: FOOD WASTE MANAGEMENT ­ THE HOT BEVERAGE CUP GROUPUBC Social Ecological Economic Development Studies (SEEDS) Student Report Ubc Food System Project

  10. Production of degradable polymers from food-waste streams

    SciTech Connect (OSTI)

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  11. Production of degradable polymers from food-waste streams

    SciTech Connect (OSTI)

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  12. Waste Energy Analysis Recovery for a Typical Food Processing Plant 

    E-Print Network [OSTI]

    Miller, P. H.; Mann, L., Jr.

    1980-01-01

    An energy analysis made for the Joan of Arc Food Processing Plant in St. Francisville, Louisiana indicated that a significant quantity of waste heat energy was being released to the atmosphere in the forms of low quality steam and hot flue gases...

  13. Food wasting by house mice: variation among individuals, families, and genetic lines

    E-Print Network [OSTI]

    Saltzman, Wendy

    Food wasting by house mice: variation among individuals, families, and genetic lines PawelC Kotejaa considerable amounts of pelleted food and leave it scattered in their cages. The proportion of food thus wasted (in relation to food eaten) varies remarkably among individuals, from 2% to 40%, but is highly

  14. Lubrication from mixture of boric acid with oils and greases

    DOE Patents [OSTI]

    Erdemir, A.

    1995-07-11

    Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  15. Lubrication from mixture of boric acid with oils and greases

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL)

    1995-01-01

    Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  16. Process Waste Heat Recovery in the Food Industry - A System Analysis 

    E-Print Network [OSTI]

    Lundberg, W. L.; Mutone, G. A.

    1983-01-01

    An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

  17. Flexible Distributed Energy & Water from Waste for the Food ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Pharmaceutical 19% Fermentation 7% Food & Beverage 35% Sewage 4% Pulp and Paper 9% Source: Biothane (approx 500 installations) F&B Key Industrial Market * Small scale...

  18. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Composting Food Waste at the New Student Union Building

    E-Print Network [OSTI]

    Into Composting Food Waste at the New Student Union Building Peter Hua, Jordan Smith, Kelsey Zhu University Investigation Into Composting Food Waste at the New Student Union Building Peter Hua Jordan Smith Kelsey Zhu IMPLEMENTATION 2.1 CAPACITY 2.2 COMPOSTABLE FOOD WASTE GENERATION 2.3 WASTE DIVERSION 2.4 ROOFTOP COMPOST

  19. P. Ulloa, "Overview of Food Waste Composting in the U.S." Internal Report, Earth Engineering Center, Columbia University, July 2008.

    E-Print Network [OSTI]

    Columbia University

    P. Ulloa, "Overview of Food Waste Composting in the U.S." Internal Report, Earth Engineering Center, Columbia University, July 2008. 1 Overview of Food Waste Composting in the U.S. According to the State Solid Waste (MSW) generated in the U.S. (387 million tons). Food Waste in the United States Residential

  20. Continuous Flow Metathesis for Direct Valorization of Food Waste: an example of cocoa butter triglyceride

    E-Print Network [OSTI]

    Schotten, Christiane; Plaza, Dorota; Manzini, Simone; Nolan, Steven P.; Ley, Steven v.; Browne, Duncan L.; Lapkin, Alexei

    2015-05-26

    sources of triglycerides, following their primary use. Thus, used cooking oils have been intensively investigated as a feedstock for bio-diesel production.6 We have identified another source of waste triglycerides from food manufacturing – food ingredients... . Technol. 2007, 30, 569–576. (5) Gui, M. M.; Lee, K. T.; Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33, 1646–1653. (6) Zhang, Y.; Dube, M. A.; McKean, D. D.; Kates, M. Biodiesel...

  1. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Waste Behaviour in UBC Food Services Residence Dining Halls

    E-Print Network [OSTI]

    Waste Behaviour in UBC Food Services Residence Dining Halls Group 3, Scenario 3 Brian Cheng, JoannaUBC Social Ecological Economic Development Studies (SEEDS) Student Report Waste Behaviour in UBC Food Services Residence Dining Halls Brian Cheng, Joanna Cheuk Stephanie Lau Shudan Liu Angel Ngan

  2. ForPeerReview Greased hedgehogs new links between hedgehog

    E-Print Network [OSTI]

    Breitling, Rainer

    ForPeerReview 1 Greased hedgehogs ­ new links between hedgehog signaling and cholesterol metabolism on lipoprotein particles to establish its morphogenic gradient in the developing embryo. Additionally of morphogen gradients, which provide positional information to cells in an originally homogenous field

  3. Utilization of high-carbohydrate food wastes as the feedstock for degradable plastics

    SciTech Connect (OSTI)

    Tsai, S.P.; Coleman, R.D.; Tsai, TenLin S.; Bonsignore, P.V.

    1989-01-01

    Wastestreams from food processing industries have become an economic burden as well as a serious environmental problem. In the United States, billions of pounds of potato processed each year is typically discarded or sold as cattle feed at $3-6/ton. For large food processing plants, removal of more than 1 million gallons of waste/day/plant is required. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that (1) bioconverts existing food processing wastestream into lactic acid, and (2) utilizes lactic acid for making environmentally safe, degradable plastics. Although the initial substrate for Argonne's process development is potato waste, the process will be applied to many other high-carbohydrate food wastes. Argonne has developed a process to bioconvert greater than 90% of the fermentable starch in solid potato waste to glucose. Lactic acid is produced from glucose via fermentation and subsequently recovered/purified for plastic synthesis. A continuous lactic acid fermentation and recovery process has been designed. Batch fermentation data showed good cell growth and excellent yields (greater than 95%) of lactic acid production from the hydrolyzed potato waste. Three product recovery processes (electrodialysis, liquid-liquid extraction, and esterification) are being evaluated. Plastics containing lactic acid can be designed to have various mechanical properties and degradation rates. Argonne is developing lactic acid plastics that have some novel features. These environmentally-safe, degradable plastics have many attractive applications such as composting bags and agriculture mulch films. Other potential applications of lactic acid polymers include programmable pesticide and fertilizer delivery systems.

  4. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect (OSTI)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  5. Review of comparative LCAs of food waste management systems - Current status and potential improvements

    SciTech Connect (OSTI)

    Bernstad, A., E-mail: anna.bernstad@chemeng.lth.se [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, Chemical Centre, 221 00 Lund (Sweden); Cour Jansen, J. la [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, Chemical Centre, 221 00 Lund (Sweden)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer GHG-emissions from different treatment alternatives vary largely in 25 reviewed comparative LCAs of bio-waste management. Black-Right-Pointing-Pointer System-boundary settings often vary largely in reviewed studies. Black-Right-Pointing-Pointer Existing LCA guidelines give varying recommendations in relation to several key issues. - Abstract: Twenty-five comparative cycle assessments (LCAs) addressing food waste treatment were reviewed, including the treatment alternatives landfill, thermal treatment, compost (small and large scale) and anaerobic digestion. The global warming potential related to these treatment alternatives varies largely amongst the studies. Large differences in relation to setting of system boundaries, methodological choices and variations in used input data were seen between the studies. Also, a number of internal contradictions were identified, many times resulting in biased comparisons between alternatives. Thus, noticed differences in global warming potential are not found to be a result of actual differences in the environmental impacts from studied systems, but rather to differences in the performance of the study. A number of key issues with high impact on the overall global warming potential from different treatment alternatives for food waste were identified through the use of one-way sensitivity analyses in relation to a previously performed LCA of food waste management. Assumptions related to characteristics in treated waste, losses and emissions of carbon, nutrients and other compounds during the collection, storage and pretreatment, potential energy recovery through combustion, emissions from composting, emissions from storage and land use of bio-fertilizers and chemical fertilizers and eco-profiles of substituted goods were all identified as highly relevant for the outcomes of this type of comparisons. As the use of LCA in this area is likely to increase in coming years, it is highly relevant to establish more detailed guidelines within this field in order to increase both the general quality in assessments as well as the potentials for cross-study comparisons.

  6. Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households

    SciTech Connect (OSTI)

    Murto, Marika; Björnsson, Lovisa; Rosqvist, Håkan; Bohn, Irene

    2013-05-15

    Highlights: ? A novel approach for biogas production from a waste fraction that today is incinerated. ? Biogas production is possible in spite of the impurities of the waste. ? Tracer studies are applied in a novel way. ? Structural material is needed to improve the flow pattern of the waste. ? We provide a solution to biological treatment for the complex waste fraction. - Abstract: At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a dry fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m{sup 3}/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane.

  7. This is not a peer-reviewed article. Pp. 034-043 in the Ninth International Animal, Agricultural and Food Processing Wastes

    E-Print Network [OSTI]

    Mukhtar, Saqib

    and Food Processing Wastes Proceedings of the 12-15 October 2003 Symposium (Research Triangle Park, North #12;organic byproducts such as municipal biosolids, wood waste, food processing residuals OF COMPOSTED WASTE MATERIALS IN EROSION CONTROL L. M. Risse and L. B. Faucette ABSTRACT The objective

  8. Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective

    SciTech Connect (OSTI)

    Bernstad, A., E-mail: Anna.bernstad@chemeng.lth.se [Water and Environmental Engineering, Department of Chemical Engineering, Lund University (Sweden); Cour Jansen, J. la [Water and Environmental Engineering, Department of Chemical Engineering, Lund University (Sweden)

    2012-05-15

    Highlight: Black-Right-Pointing-Pointer Four modern and innovative systems for household food waste collection are compared. Black-Right-Pointing-Pointer Direct emissions and resource use were based on full-scale data. Black-Right-Pointing-Pointer Conservation of nutrients/energy content over the system was considered. Black-Right-Pointing-Pointer Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4 kg NO{sub 3}{sup -}eq/ton food waste), acidification potential (-0.4 to -1.0 kg SO{sub 2}{sup -}eq/ton food waste), global warming potential (-790 to -960 kg CO{sub 2}{sup -}eq/ton food waste) and primary energy use (-1.7 to -3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The hot spot identification shows that losses of organic matter in mechanical pretreatment as well as tank connected food waste disposal systems and energy in drying and vacuum systems reply to the largest impact on the results in each system respectively.

  9. Aircraft landing gear greased slider bearing steady-state thermo-elastohydrodynamic concept model

    E-Print Network [OSTI]

    to take place at the lower bearing­piston sliding interface of the main landing gear (MLG) (see Fig. 1Aircraft landing gear greased slider bearing steady-state thermo-elastohydrodynamic concept model for studying the thermal behavior of a greased aircraft landing gear lower slider bearing. Structural damage

  10. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    SciTech Connect (OSTI)

    Maranon, E., E-mail: emara@uniovi.es [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y. [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Gomez, L.; Garcia, M.M. [Zero Emissions Technology, 41018 Seville (Spain)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  11. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    Fuel oil and Turkey Based Biofuel Energy Rocovery 12,000 Industrial Waste $30,000 $500 $29,500 1500 re-distills the solvent when dirty. The removed grit and sludge is mixed in with the waste oil Wash * Waste Minimization 8,000 oils/grease to soils $16,000 $1,000 $16,000 This is a multi

  12. Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry- Presentation by GE Global Research, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry, given by Aditya Kumar of GE Global Research, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  13. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea

    SciTech Connect (OSTI)

    Kim, Mi-Hyung; Song, Yul-Eum; Song, Han-Byul; Kim, Jung-Wk; Hwang, Sun-Jin

    2011-09-15

    Highlights: > Various food waste disposal options were evaluated from the perspective of global warming. > Costs of the options were compared by the methodology of life cycle assessment and life cycle cost analysis. > Carbon price and valuable by-products were used for analyzing environmental credits. > The benefit-cost ratio of wet feeding scenario was the highest. - Abstract: The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO{sub 2} reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest.

  14. Flexible Distributed Energy & Water from Waste for Food and Beverage Industry

    SciTech Connect (OSTI)

    Shi, Ruijie

    2013-12-30

    Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) to recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.

  15. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  16. Boron-based Additives in Oil and Grease for Wind Turbine Applications 

    E-Print Network [OSTI]

    Kim, Jun-Hyeok

    2013-06-25

    This research investigates the tribological performance of crystalline and amorphous powders of boron as additives in lubricants: grease and mineral oil for potential applications of wind turbine. This research is focused on the wear resistance...

  17. Effects of Y_(2)O_(3) and ?-ZrP Additives on Lubrication of Grease 

    E-Print Network [OSTI]

    Kim, Chung Jwa

    2014-07-28

    lubricants is 40% ~50%. The objective of this research is to 1) develop novel nanomaterials as grease additives, and 2) obtain understanding in tribological performances of the same. The research focuses on zirconium phosphate and yttrium oxide nanoparticles...

  18. Central Coast consumers want more food-related information, from safety to ethics

    E-Print Network [OSTI]

    Howard, Phil

    2006-01-01

    of food packaging or food waste. Several participants notedwas grown and the fate of food waste. Preferred information

  19. Lubricants and greases: Properties and evaluation. (Latest citations from Fluidex). Published Search

    SciTech Connect (OSTI)

    1998-02-01

    The bibliography contains citations concerning a variety of lubricants, including synthetic oils and greases. Topics include properties characterization, additives, rheological studies, and uses. Bearing and gear lubricants are discussed, and lubricant testing methods are described. Some attention is given to specific applications in industry. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Lubricants and greases: Properties and evaluation. (Latest citations from FLUIDEX data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    The bibliography contains citations concerning a variety of lubricants, including synthetic oils and greases. Topics include properties characterization, additives, rheological studies, and uses. Bearing and sea lubricants are discussed, and lubricant testing methods are described. Some attention is given to specific applications in industry. (Contains 250 citations and includes a subject term index and title list.)

  1. Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry

    Broader source: Energy.gov [DOE]

    Waste-to-value is a promising and comprehensive wastewater processing solution being pursued by GE that recovers valuable energy and purified water from the abundant wastewater generated and...

  2. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    SciTech Connect (OSTI)

    Xu, Suyun; Selvam, Ammaiyappan; Wong, Jonathan W.C.

    2014-02-15

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH{sub 4}/g VS{sub added} in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO{sub 2} respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.

  3. Method of and apparatus for recovery of waste energy

    SciTech Connect (OSTI)

    Molitor, V. D.

    1985-07-16

    A holding tank receives waste water from a dishwasher or laundry machine having a rinse cycle and at least one wash cycle. A pump moves the waste water through a heat exchanger at the same time that the rinse cycle requires hot water from a hot water heater. The cold water feed for the hot water heater is also passed in countercurrent heat exchange relationship with the waste water to provide warmed or heated makeup water at the same time that hot water is being withdrawn therefrom. The cooled waste water from the heat exchanger may be collected in a tank and supplied to any one or more of several additional devices, such as a water cooled refrigerant compressor, a grease extraction ventilator having water contact means, a waste food grinder, etc. The ventilator and compressor may also be placed in series, while the cooling water heated in the compressor is recirculated to the heat exchanger. The holding tank may be mounted directly beneath the dishwasher, or the holding tank and countercurrent heat exchanger may be placed in a common housing, with the holding tank beneath the heat exchanger and a pump to transfer the waste water from the holding tank to the appropriate tubes of the coils of the heat exchanger, from which waste water may be discharged into a discharge area adjacent the holding tank. A removable screen for the waste water may be provided above the holding tank in each instance. When a discharge area is adjacent the holding tank, the screen will be self-cleaning, due to flow of incoming waste water across the screen and into the discharge area, when the screen is occluded.

  4. FISHERY WASTE EFFLUENTS: A SUGGESTED SYSTEM FOR DETERMINING AND CALCULATING POLLUTANT PARAMETERS

    E-Print Network [OSTI]

    of protein and oil and grease from shrimp waste effluent and from fish and shellfish. These coefficients (1FISHERY WASTE EFFLUENTS: A SUGGESTED SYSTEM FOR DETERMINING AND CALCULATING POLLUTANT PARAMETERS in shrimp waste effluents is presented. In addition, two methods were developed to calculate both protein

  5. Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to develop a systematic model-based predictive monitoring and supervisory control solution for the early detection of abnormal process variations and potential upsets in a waste-to-value wastewater processing system.

  6. The Pipe vs. The Shed: Waste Water compared with Natural Hydrology in an Urban Setting

    E-Print Network [OSTI]

    Lather, Alaska; Wozniak, Monika

    2011-01-01

    sludge; municipal food waste and groundwater, storm waterseepage as well as food industry waste (dairy, high totalwaste; animal processing waste; food grade fats, oils, and

  7. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01

    glass, metal, plastics, food wastes, and other miscellaneouspercentage (40-85%) of food waste and little packaging oras well as organic food waste from dining facilities is

  8. Transforming trash: reuse as a waste management and climate change mitigation strategy

    E-Print Network [OSTI]

    Vergara, Sintana Eugenia

    2011-01-01

    methodology for determining food waste in household wastecollected separately from food waste, it can be. The same ismarket. Co-digestion of food waste and wastewater sludge –

  9. Biochar: A Solution to Oakland's Green Waste?

    E-Print Network [OSTI]

    Villar, Amanda

    2012-01-01

    maize stover, is the food waste which differs from stoverfor simplicity, since food waste accounts for only 1/3 ofof Oakland. This waste consists of food scraps as well as

  10. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    exempt, small quantity hazardous waste, and industrial solid waste. It includes food waste, residential rubbish, commercial and industrial wastes, and construction and...

  11. Green Dining Internship Opportunities: Fall 2014 Are you passionate about composting? Waste reduction? Local and sustainable food?

    E-Print Network [OSTI]

    Hill, Wendell T.

    reduction? Local and sustainable food? Gardening? Conservation? Urban agriculture? Working with your fellow the Sustainable Food Working Group Student Sub-Committees Review Dining Services purchasing records and learn more about where the food served on campus comes from & present findings to the Sustainable Food Working

  12. An Economic Assessment of Market-Based Approaches to Regulating the Municipal Solid Waste Stream

    E-Print Network [OSTI]

    Menell, Peter S.

    2004-01-01

    Food Wastes Yard Wastes Other Wastes Total MSW Generated * includes recovery of paper for compostingFood Wastes Yard Wastes Other Wastes Total MSW Generated * includes recovery of paper for composting

  13. (Re)Imagining Food Systems: From Chariy to Solidarity

    E-Print Network [OSTI]

    Kordi, Hussin

    2013-01-01

    The Progressive Increase of Food Waste in America and ItsThe Progressive Increase of Food Waste in America and Its

  14. Ordinary Food Spaces in a Global City: Hong Kong

    E-Print Network [OSTI]

    Blake, Megan Kathleen

    2013-01-01

    food consumption and food waste. She is currently working tothe food from the wholesale market, become waste once theirwaste-paper-hits-scavengers Accessed 17/1/2013. Blake, Megan Kathleen. “Ordinary Food

  15. Science for a healthy society Food Safety

    E-Print Network [OSTI]

    Matthews, Adrian

    the global challenges of: Food Security Diet & Health Healthy Ageing Food Waste The IFR aims system? How we can best reduce food waste, or exploit it to improve sustainability? How can what we eatScience for a healthy society Food Safety & Security Food Databanks Food & Health National

  16. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management 

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29

    possible. Hazardous wastes are defined as materials that are ignitable, toxic, corrosive or explosive (TWC, 1990). Lists of hazardous wastes are contained in 40 Code of Federal Regulations (CFR), Part 261.31 through 261.34. Some hazardous materials..., such as antifreeze, oil and grease H Used oil filters H Solvents for oil and grease removal and disposal H Engine, parts and equipment cleaners H Lubricants H Rust removers H Paints and paint preparation products H Brush or spray gun cleaners H Lead acid batteries...

  17. Review and Status of Solid Waste Management Practices in Multan, Pakistan

    E-Print Network [OSTI]

    Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

    2006-01-01

    paper) 2.4 Rags Glass Food waste Animal waste Leaves, grass,bottle lids, food cans, computer waste, cosmetics residues,

  18. Plate Waste in Elementary-School Lunches: A Focus on Food Pairings, Shortfall Nutrients, Potatoes and Sodium 

    E-Print Network [OSTI]

    Destefano, Megan K

    2014-12-08

    Table 7. Mean Green Bean Waste Based on Entrée Selection Entrée Green Bean Waste Crispy Steak Fingers 42.22% Pepperoni Hot Pocket 46.84% Mini Sub Sandwich 72.45% Popcorn Chicken Bites 77.36% Chicken Nuggets 84.82% 0 0.2 0.4 0.6 0.8 1 Popcorn... Chicken Bites Mini Sub Sandwich Pepperoni Hot Pocket Crispy Steak Fingers Chicken Nuggets Green Bean Waste 29 As shown in Table 7, over 80% of green beans were wasted when served with chicken nuggets, whereas only 42.22% of green beans were...

  19. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste

    SciTech Connect (OSTI)

    Lim, Jun Wei; Wang, Jing-Yuan

    2013-04-15

    Highlights: ? Microaeration pretreatment was effective for brown water and food waste mixture. ? The added oxygen was consumed fully by facultative microorganisms. ? Enhanced solubilization, acidification and breakdown of SCFAs to acetate. ? Microaeration pretreatment improved methane yield by 10–21%. ? Nature of inoculum influenced the effects of microaeration. - Abstract: Microaeration has been used conventionally for the desulphurization of biogas, and recently it was shown to be an alternative pretreatment to enhance hydrolysis of the anaerobic digestion (AD) process. Previous studies on microaeration pretreatment were limited to the study of substrates with complex organic matter, while little has been reported on its effect on substrates with higher biodegradability such as brown water and food waste. Due to the lack of consistent microaeration intensities, previous studies were not comparable and thus inconclusive in proving the effectiveness of microaeration to the overall AD process. In this study, the role of microaeration pretreatment in the anaerobic co-digestion of brown water and food waste was evaluated in batch-tests. After a 4-day pretreatment with 37.5 mL-O{sub 2}/L{sub R}-d added to the liquid phase of the reactor, the methane production of substrates were monitored in anaerobic conditions over the next 40 days. The added oxygen was consumed fully by facultative microorganisms and a reducing environment for organic matter degradation was maintained. Other than higher COD solubilization, microaeration pretreatment led to greater VFA accumulation and the conversion of other short chain fatty acids to acetate. This could be due to enhanced activities of hydrolytic and acidogenic bacteria and the degradation of slowly biodegradable compounds under microaerobic conditions. This study also found that the nature of inoculum influenced the effects of microaeration as a 21% and 10% increase in methane yield was observed when pretreatment was applied to inoculated substrates, and substrates without inoculum, respectively.

  20. Eating Disorders: Body Wasting Away

    E-Print Network [OSTI]

    Shao, Shirley

    2015-01-01

    can begin with the waste of food, and end in the waste ofwaste in eating, regurgitating, and then flushing a box of Cheez-its down the toilet, or in tossing untouched food

  1. Biomass Boiler for Food Processing Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the...

  2. Rinse food containers. PLASTIC CONTAINERS

    E-Print Network [OSTI]

    Arnold, Elizabeth A.

    Rinse food containers. PLASTIC CONTAINERS PLASTIC BOTTLES & BOTTLE CAPS PLASTIC CUPS EXCEPT FOAM - www.jmu.edu/stewardship JMU WASTE BIN GUIDE Food residue, liquids and trash contaminate the recycling & Student Center: FOOD WASTE · NAPKINS · PAPER TOWELS Deposit these JMU Dining & Catering items in marked

  3. A Food Packaging Use Case for Argumentation Nouredine Tamani1,4

    E-Print Network [OSTI]

    Croitoru, Madalina

    between preferences expressed by the involved parties (food and packaging industries, health and waste expressed by the involved parties (food and packaging industries, health authorities, consumers, waste, food industry, packaging industry, waste management policy, etc.) requirements expressed as simple

  4. The City Feeds the Poor: The Struggle for Sustainable Food Systems in San Francisco

    E-Print Network [OSTI]

    Jones, Paula Kay

    2012-01-01

    discusses the issue of food waste, and the problem with pre-also outlines a plan for food waste, cafeteria seating,food and health, wellness policy, teaching, dining, procurement, facilities, finances, waste

  5. Project Organization name Project title 1 Centre for Sustainable Food Systems at UBC

    E-Print Network [OSTI]

    Pulfrey, David L.

    City Studio, City of Vancouver Identify Local Food Waste Market and Food Canada 2014 Summer Games on Campus: Sustainable Food Materials & Waste ProceduresProject Organization name Project title 1 Centre for Sustainable Food

  6. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01

    landscaping and food waste streams. Because composting is aComposting Collection and degradation of green and food wasteComposting is an excellent way to recycle green and food waste

  7. MMU Sustainable Food Policy Statement Purpose of Policy

    E-Print Network [OSTI]

    , glass, cardboard, aluminium and oil in all outlets and look to compost food waste as technology becomes and actively manage food waste at a production level and through the promotion of events such as Love Food, Hate Waste. Encourage suppliers to reduce packaging. We will embrace the University Waste Strategy

  8. ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES

    E-Print Network [OSTI]

    Gerdes, J. Christian

    ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

  9. Food Policy November 28, August 20, 2013

    E-Print Network [OSTI]

    Lotze, Heike K.

    in only the Atrium hallways. Food waste should be placed in the appropriate waste container. Non1 Food Policy November 28, 2012 August 20, 2013 Head, Killam Memorial Library University Librarian The purpose of the Killam Memorial Library Food policy is to preserve our collections and facilities

  10. Current State of Anaerobic Digestion of Organic Wastes in North...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10012015 ISSN 2196-3010 Keywords anaerobic digestion, biogas, biosolids, fertilizer, food waste, manure, organic waste, renewable energy Abstract With the large volumes of...

  11. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

  12. Food Redistribution as Optimization

    E-Print Network [OSTI]

    Phillips, Caleb; Higbee, Becky

    2011-01-01

    In this paper we study the simultaneous problems of food waste and hunger in the context of the possible solution of food (waste) rescue and redistribution. To this end, we develop an empirical model that can be used in Monte Carlo simulations to study the dynamics of the underlying problem. Our model's parameters are derived from a unique data set provided by a large food bank and food rescue organization in north central Colorado. We find that food supply is a non-parametric heavy-tailed process that is well-modeled with an extreme value peaks-over-threshold model. Although the underlying process is stochastic, the basic approach of food rescue and redistribution appears to be feasible both at small and large scales. The ultimate efficacy of this model is intimately tied to the rate at which food expires and hence the ability to preserve and quickly transport and redistribute food. The cost of the redistribution is tied to the number and density of participating suppliers, and costs can be reduced (and supp...

  13. Collection Policy: FOOD SCIENCE Subject Scope | Priority Tables | Other policies . . .

    E-Print Network [OSTI]

    Angenent, Lars T.

    Chemistry 3. Food Microbiology 4. Food Engineering 5. Dairy Science 6. Food Processing Waste Technology 7Collection Policy: FOOD SCIENCE Subject Scope | Priority Tables | Other policies . . . 1.0 TEACHING, RESEARCH AND EXTENSION PROGRAMS 1.1 Mission and emphases of the department Food Science activity at Cornell

  14. Ways to Waste: The Garbology of Post-consumer Refuse in the UBC Okanagan Cafeteria

    E-Print Network [OSTI]

    disposal patterns, we will quantify and classify the food waste disposed throughout the day. Data collected fries, pasta and bread are most wasteful. Non-food items such as napkins and plastic cups constitute. This idea is strongly related to food, society's food consumption patterns and the waste it produces. We

  15. Angel Huerta Senior Food Service Worker

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    , to keep food waste and costs to a minimum, saving the dept. approximately $4,000 to date. He worksAngel Huerta Senior Food Service Worker Resource Management and Planning: Early Childhood Education of all backgrounds, it participates in the Child and Adult Care Food Program (CACFP). The CACFP provides

  16. Public engagement initiative on food and drink

    E-Print Network [OSTI]

    Rambaut, Andrew

    .g. Gut flora E.g. Minimising food waste Global Context Growing, farming and Harvesting ProcessingPublic engagement initiative on food and drink #12;The Wellcome Trust is a global charitable initiative on food and drink 2 #12;We support the brightest minds in biomedical research and the medical

  17. Waste Heat-to-Power in Small Scale Industry Using Scroll Expander...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to recover waste heat that is exhausted in various manufacturing industries, including food processing. A large portion of unrecovered industrial waste heat is considered to be...

  18. UBC Social Ecological Economic Development Studies (SEEDS) Student Report The UBC Food System Project (UBCFSP): Summary Report 2006

    E-Print Network [OSTI]

    of AGSC 450 class), UBC Food Services, UBC Alma Mater Society Food and Beverage Department, UBC Waste and collaborators, including: UBC Food Services (UBCFS), AMS Food and Beverage Department (AMSFBD), UBC WasteUBC Social Ecological Economic Development Studies (SEEDS) Student Report The UBC Food System

  19. HKUST Environmental Report 2003 Update Waste Recycling and Minimization

    E-Print Network [OSTI]

    paper. 9:CSO, EMO and SEPO together with the LG1 caterer launched the food waste collection and composting scheme at LG1 catering outlet. The program aims to reduce the amount of food waste being sentHKUST Environmental Report 2003 Update #12;Waste Recycling and Minimization Enhanced efforts

  20. Biotech Breakthrough Produces Ethanol from Waste Glycerin

    E-Print Network [OSTI]

    Stuart, Steven J.

    , it actually assists with waste processing, vitamin K production and food absorption. The same principleBiotech Breakthrough Produces Ethanol from Waste Glycerin Doing something about global warming that this process creates large quantities of waste glycerin, that was so far impossible to put to good use

  1. DESCRIPTION OF SELECTED WASTE MANAGEMENT PROBLEMS,

    E-Print Network [OSTI]

    #12;DESCRIPTION OF SELECTED WASTE MANAGEMENT PROBLEMS, OPTIONS AND STRATEGIES Prepared for BC of Agriculture, Fisheries and Food Fisheries and Oceans Fraser River Action Plan November, 1996 Prepared by P. E Nutrients in Wastes 22 4.2.5 Waste Treatment 23 5.0 STRATEGY DEVELOPMENT 24 5.1 LAND USE MANAGEMENT 24 5

  2. UBC Social Ecological Economic Development Studies (SEEDS) Student Report AGSC 450: Scenario 8 Assessing the Sustainability of the UBC Food System

    E-Print Network [OSTI]

    -consumer food packaging waste. Our methods of data collection include these social, economic, and ecological compostable post-consumer food and food packaging waste on campus. As part of our research model, we propose that this paper will address are the ethnic diversity of options, post-consumer food packaging waste

  3. The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation

    E-Print Network [OSTI]

    Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

    2009-01-01

    waste, such as food and kitchen waste, green waste, paper;waste in view of their transformation into ethanol. Belgian Journal of Foodwastes, ADC final, ADC green, acid pretreatment, ethanol, lignin blocking, bovine serum albumin, Aspen model Introduction Overcoming challenges of food

  4. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Climate Action Partnership Contribution of Food GHG Emissions Reduction: Moving

    E-Print Network [OSTI]

    target: Ensure that 90% of UBC's food system waste can be composted or recycled by 2015. We reviewed Waste Management, UBC Food Services and the AMS Food and Beverage Partnership Contribution of Food GHG Emissions Reduction: Moving UBC Beyond Climate Neutral Jennifer Baum

  5. Environmental evaluation of municipal waste prevention

    SciTech Connect (OSTI)

    Gentil, Emmanuel C.; Gallo, Daniele [Department of Environmental Engineering, Building 115, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H., E-mail: thho@env.dtu.dk [Department of Environmental Engineering, Building 115, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2011-12-15

    Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail, beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.

  6. SEA MUSSELS AND DOGFISH .AS FOOD By Irving A. Field

    E-Print Network [OSTI]

    to waste. With our rapidly increasing population the capacity of the soil to produce enough foodSEA MUSSELS AND DOGFISH .AS FOOD J1. By Irving A. Field U. S. Fisheries Laboratory, Woods Hole AS FOOD. .Jl By IRVING A. FIELD, U. S. Fisheries Laboratory, Woods Hole, Mass. ~ Of the two sources

  7. FRE 460/503 Economics of Food Consumption

    E-Print Network [OSTI]

    restrictions 11. Environment and Food (Handbook ch 34) 11-1 Waste and Foodmiles 11-2 Vegetarianism, OrganicsFRE 460/503 Economics of Food Consumption Winter 2014 Instructor: Dr. Carol A McAusland 337 Mac-class experiments -- 3% Text: The Oxford Handbook of the Economics of Food Consumption and Policy (abbreviated

  8. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  9. Cleans UpUTS: Help Reduce Waste and Improve Recycling

    E-Print Network [OSTI]

    Tsang Wai Hung "Ivor"

    will need to take your garbage and food waste to the central bins. Food waste (such as tea bags, coffee grounds, fruit and vegetable peels, bread, meat and rice) will go into a green-lidded bin and general/photocopier). · Cleaners will empty all central red bins on a daily basis and green bins on a twice-daily basis. It doesn

  10. LIVESTOCK WASTE MANAGEMENT PRACTICES AND LEGISLATION

    E-Print Network [OSTI]

    L b b b L h b L i LIVESTOCK WASTE MANAGEMENT PRACTICES AND LEGISLATION OUTSIDE BRITISH COLUNf"+ Ministry of Environment,-" ~y!==- Lands and Parks O& kdi Ministry of Agriculture, m Fisheries and Food `-w . L / . #12;L LIVESTOCK WASTE MANAGEMENT PRACTICES AND LEGISLATION OUTSIDE BRITISH COLUMBIA JULY 1995

  11. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Assessing the Sustainability of the University of British Columbia Food System

    E-Print Network [OSTI]

    , large amounts of processed food and waste, exist within the UBC Food System. The UBC Food System UBC the Sustainability of the University of British Columbia Food System Mary Au-Yeung, Johan Coosemans, Mike Hanna of the University of British Columbia Food System AGSC 450 Group 4: Mary Au-Yeung Johan Coosemans Mike Hanna #12

  12. How can STFC contribute to the Global Food Security [GFS] Programme?

    E-Print Network [OSTI]

    of logistics to reduce food waste and food miles HPC: · Modelling of processes · Optimising of processesHow can STFC contribute to the Global Food Security [GFS] Programme? STFC will be running funding an overview of the end to end chain of food in society. Consider each area on the diagram and then answer

  13. Using wastes as resources

    SciTech Connect (OSTI)

    Prakasam, T.B.S.; Lue-Hing, C. )

    1992-09-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important.

  14. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  15. UC Santa Cruz Storm Water Fall 2010 Volume 5, Number 1

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    materials (food wastes), oil and grease, toxic chemicals in cleaning products, and disinfectants. Practices quality and damage to the natural ecosystem. (Photo / UCSC Vehicle Maintenance and Storm Water) Fats, oil) 459-4520 Keep cooking oil waste containers clean and covered ­ clean up spills. Do not dump cooking

  16. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    #12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

  17. IFAS Matters -July 2014 -Institute of Food and Agricultural Sciences -University of Florida http://ifas.ufl.edu/newsletter/july2014.shtml[3/19/2015 1:52:15 PM

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    's poorest and most food-insecure Multimedia Food Expiration Help eliminate food waste by learning what foodIFAS Matters - July 2014 - Institute of Food and Agricultural Sciences - University of Florida http on July 23, 2014 by Jack Payne Land-Grant Universities Are a Good Model for Facilitating Food Security

  18. Help UC San Diego reach its waste diversion goals by making your next conference, seminar or training session a zero-waste event. Here's how you can ensure that your event doesn't

    E-Print Network [OSTI]

    Aluwihare, Lihini

    portions to avoid excess food waste and individual containers. · For large events, encourage exhibitorsHelp UC San Diego reach its waste diversion goals by making your next conference, seminar or training session a zero-waste event. Here's how you can ensure that your event doesn't generate waste

  19. Sandia National Laboratories: 2011's Second Zero Waste Lunch...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    made from plant-based plastic and certified to biodegrade at a composting facility. All food waste, paper such as plates and napkins, and cutlery were diverted into large green...

  20. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Moving UBC Food Outlets Beyond Climate Neutral

    E-Print Network [OSTI]

    for waste and energy reduction and the need for policies to assist UBC food outlets to move beyond climateUBC Social Ecological Economic Development Studies (SEEDS) Student Report Moving UBC Food Outlets of a project/report". #12;AGSC 450 2008 Moving UBC Food Outlets Beyond Climate Neutral Group 30 Heather Allyn

  1. M.S. in Health and Human Development Sustainable Food Systems Emphasis

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    , consumer issues, and waste recycling. While sustainable food systems encompass activities from productionM.S. in Health and Human Development Sustainable Food Systems Emphasis Information for Prospective degree with an option in food, family, and community health sciences with two programs of study: 1

  2. UBC Social, Ecological Economic Development Studies (SEEDS) Student Report The UBC Food System Project: Summary 2010

    E-Print Network [OSTI]

    Services (UBCFS), AMS Food and Beverage Department (AMSFBD), UBC Waste Management (UBCWM), CentreUBC Social, Ecological Economic Development Studies (SEEDS) Student Report The UBC Food System.Sc. Candidate for Dietetics in the Faculty of Land and Food Systems and has served as Teaching Assistant in AGSC

  3. Food Allergies DEFINITIONS

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Food Allergies DEFINITIONS: Definition of a Food Allergy: Immune system response to a food that the body mistakenly thinks is harmful. Upon deciding a particular food is harmful, the immune system creates a defense immune system response (antibodies) to fight it. Food allergy symptoms develop when

  4. Preventing Food Contamination: A Need for Innovation in Food Production

    E-Print Network [OSTI]

    Reynolds, Mark

    2013-01-01

    and Expectations about Food Safety." Giannini Foundation ofof Bio?lm-Forming Bacteria for Food Safety Control." IEEEpower fights germs in food. ” Food Production Daily. (2013).

  5. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Mixed Waste Before generating mixed waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health & Safety: (858) 534-2753. * Disinfectants other than bleach mustBiohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

  6. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01

    canola oil, palm oil, and restaurant waste oil. Ethanol canand sunflower oils and restaurant waste oils and grease.

  7. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    SciTech Connect (OSTI)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  8. FOOD ALLERGY RESEARCH PROGRAM

    E-Print Network [OSTI]

    Chisholm, Rex L.

    FOOD ALLERGY RESEARCH PROGRAM INNOVATION ENGINES AT NORTHWESTERN MEDICINE INFLAMMATION, AUTOIMMUNITY, IMMUNOLOGY The growing prevalence of food allergy and the relative lack of treatment options investigation, and mechanistic science, we are striving towards halting the increase in food allergies, ensuring

  9. WASTE TO WATTS Waste is a Resource!

    E-Print Network [OSTI]

    Columbia University

    WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

  10. TOWARD A CLEANER, MORE EQUITABLE WASTE TRANSFER SYSTEM IN MANHATTAN

    E-Print Network [OSTI]

    Columbia University

    TOWARD A CLEANER, MORE EQUITABLE WASTE TRANSFER SYSTEM IN MANHATTAN Trash and the City EXECUTIVE SUMMARY #12;#12;Trash and the City TOWARD A CLEANER, MORE EQUITABLE WASTE TRANSFER SYSTEM IN MANHATTAN people, including the right to clean air, clean water, healthy food and flourishing ecosystems. Guided

  11. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  12. Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference

    E-Print Network [OSTI]

    Columbia University

    , wood, glass, metals and food waste. During combustion, nearly all of the chlorine content1 Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference May 19-21, 2008 of commercial tubing in Waste-to-Energy (WTE) boilers, a corrosion test was made by altering the HCl

  13. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02) nergFeet)DepartmentWasteWaste

  14. Electronic waste disassembly with industrial waste heat

    E-Print Network [OSTI]

    2013-01-01

    and for e?ective use of industrial exhaust heat is describedto scale up the process to industrial production levels.Waste Disassembly with Industrial Waste Heat Mengjun

  15. The effect of resource provisioning and sugar composition of foods on longevity of three Gonatocerus spp., egg parasitoids of Homalodisca vitripennis

    E-Print Network [OSTI]

    Irvin, Nicola A; Hoddle, M S; Castle, S J

    2007-01-01

    food sprays to increase eVectiveness of entomophagous insects.food resources such as Xoral nectars, extraXoral nectar, arthropod waste products, honey–water solutions, and a commercially available insect

  16. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

    E-Print Network [OSTI]

    Aluwihare, Lihini

    of biohazardous and chemical or radioactive waste), call Environment, Health & Safety: (858) 534Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (858

  17. Agricultural and Food Sciences

    E-Print Network [OSTI]

    Faculty of Agricultural and Food Sciences (FAFS) #12;86 Faculty of Agricultural and Food Sciences (FAFS) Undergraduate Catalogue 2014­15 Faculty of Agricultural and Food Sciences (FAFS) Officers in agriculture was initiated in 1956. #12;87Faculty of Agricultural and Food Sciences (FAFS) Undergraduate

  18. FOOD SERVICE Professional Organizations

    E-Print Network [OSTI]

    Acton, Scott

    FOOD SERVICE Professional Organizations: National Association of College and University Food National Association of College and University Food Services (NACUFS) conference NACUFS Mid-Atlantic Region of Colleges and University Food Services e-newsletter Social Media: National Association of College

  19. Why should I recycle? The average American generates 4.5 pounds of waste daily.

    E-Print Network [OSTI]

    California at San Diego, University of

    and plastic-coated papers · Tissue and paper towels · Paper or containers soiled by food or organic waste and clean foil) · Beverage and food containers (glass,steel and tin) · Plastic bottles or rigid containers free of trash. · Empty containers before recycling them. · Ensure paper is dry and free of food

  20. WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE

    E-Print Network [OSTI]

    large amounts of waste that must be managed as part of both immediate recovery and long-term recovery management plans that can address contaminated waste through the entire life cycle of the waste. Through Demonstration LLNL Lawrence Livermore National Laboratory MSW Municipal Solid Waste OSHA Occupational Safety

  1. Radioactivity and food

    SciTech Connect (OSTI)

    Olszyna-Marzys, A.E. (Laboratorio Unificado de Control de Alimentos y Medicamentos (LUCAM) (Guatemala))

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references.

  2. Food Science and Nutrition Department of Food Science and Nutrition

    E-Print Network [OSTI]

    Food Science and Nutrition Department of Food Science and Nutrition Institute for Food Safety of Food Science and Nutrition (FdSN) at the School of Applied Technology and the Institute for Food Safety and Health (IFSH), with IIT faculty, U.S. Food and Drug Administration (FDA) scientists, and food industry

  3. The importance of food demand management for climate mitigation

    E-Print Network [OSTI]

    Bajželj, Bojana; Richards, Keith S.; Allwood, Julian M.; Smith, Pete; Dennis, John S.; Curmi, Elizabeth; Gilligan, Christopher A.

    2014-08-31

    , Cambridge, CB2 1PZ, UK b Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK c Scottish Food Security Alliance-Crops and Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK d... the average consumption of sugar, oil, meat and dairy is limited according to expert health recommendations 37-40 . Scenarios Yields Demand-side reductions Current trends in yields Yield gap closures (sustainable intensification) 50% Food waste...

  4. The feasibility of source segregation as the first step for a municipal solid waste disposal scheme 

    E-Print Network [OSTI]

    Fiedler, Charles Walter

    1982-01-01

    ) In later years the history of Great Britain, in particular London, documents the progress of waste disposal in the growing urban environment. In recent years the problems of waste disposal have been compounded by the migration of the majority..., plastics, cardboard, etc. , and less combustible or non-combustible items, i. e. , the remaining wastes like cans, bottles, food wastes, etc. The project was strictly voluntary even though it took place in a military environment. The study period lasted...

  5. UBC Social Ecological Economic Development Studies (SEEDS) Student Report The Sustainability Of The Ubc Food System: Collaborative Project II

    E-Print Network [OSTI]

    . With trends towards an increasing population, a greater demand for food, and escalating amounts of waste Of The Ubc Food System: Collaborative Project II Chad Forbes, Kerry Smith, Tony Wong, Lara Jones, Vincent of a project/report". #12;1 THE SUSTAINABILITY OF THE UBC FOOD SYSTEM: COLLABORATIVE PROJECT II Agricultural

  6. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Agricultural Sciences 450 The Sustainability of the UBC Food System Collaborative

    E-Print Network [OSTI]

    's sustainability initiative. At the root of this unsustainability in the food system, is the management of waste and the efficiency of composting and recycling programs, as well as the excessive mileage that food has traveled The Sustainability of the UBC Food System Collaborative Project III Yuka Asada, Kathleen Condon, Glenda Jackson

  7. Food Movements Unite! Strategies to Transform Our Food Systems

    E-Print Network [OSTI]

    McLean, Lindsey

    2011-01-01

    the social movements actively transforming our food systems.For more information about Food First’s publicationsor the global food system, visit their website:

  8. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.

  9. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  10. Attitudes about Food 

    E-Print Network [OSTI]

    Baker, Nicole Alexis

    2012-10-19

    Approximately 18% of adolescents are obese. Attitudes about Food is a cross sectional study that seeks to identify lifestyle factors associated with adolescent obesity such as fast food consumption, physical activity, ...

  11. Four Simple Food Safety

    E-Print Network [OSTI]

    Garfunkel, Eric

    luncheon meat, cold cuts, deli-style meat and poul- try until steaming hot. Chill: Refrigerate or freeze Safe Food Handling and Preparation USDA's Meat and Poultry Hotline: 1-800-535-4555 FDA's Food. August, 2004 Separate: Separate raw meat, poultry and seafood from other foods in your grocery shopping

  12. WATERCHARRETTE food deserts

    E-Print Network [OSTI]

    WATERCHARRETTE food deserts University of Kansas School of Architecture, Design, and Planning 3 summary introduction context To provide a more local society that is less dependent upon large-scale food dialogues will be held to engage students in the concepts of sustainable water management, food deserts

  13. Waste remediation

    DOE Patents [OSTI]

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  14. EPOK Centre for Organic Food & Farming ORGANIC FOOD

    E-Print Network [OSTI]

    EPOK ­ Centre for Organic Food & Farming ORGANIC FOOD ­ food quality and potential health effects.slu.se/epok/english #12;ORGANIC FOOD ­ food quality and potential health effects Publishing year: 2015, Uppsala Publisher: SLU, EPOK ­ Centre for Organic Food & Farming Lay-out: Pelle Fredriksson, SLU, EPOK Photo, cover: i

  15. 1 Food Safety Policy July 2010 Food Safety Policy

    E-Print Network [OSTI]

    Sussex, University of

    1 Food Safety Policy July 2010 Food Safety Policy Food Safety Policy 19.7.2010 19.7.2014 #12;2 Food 5. Organisational Responsibilities 6. The Legal References 7. Glossary of Terms #12;3 Food Safety Policy July 2010 Food Safety Policy 1. Introduction 1.1 The University has a duty to assess the risks

  16. FNH 301 FOOD CHEMISTRY I Principles of Food Chemistry

    E-Print Network [OSTI]

    FNH 301 FOOD CHEMISTRY I Principles of Food Chemistry Instructor: Dr. David Kitts Department of Food Sciences Room 243 ­ Food, Nutrition & Health Building 2205 East Mall Food, Nutrition & Health Faculty of Land and Food Systems ­ University of British Columbia Phone: 604-822-5560; Fax: 604

  17. Waste-to-Energy Facilities in Taiwan by Shang-Hsiu Lee, WTERT/Earth Engineering Center

    E-Print Network [OSTI]

    Columbia University

    of Taiwan6 Composition wt (%) Water wt (%) Dry Weight Heating Value (Kcal/kg) Food Wastes 45 85 6.8 11001 Waste-to-Energy Facilities in Taiwan by Shang-Hsiu Lee, WTERT/Earth Engineering Center National Plan for Waste-to-Energy (WTE) facilities The total area of Taiwan is nearly 14000 sq. mi (36,000 sq

  18. Waste management Stockholm University tries to maintain its environmental certification and we would be happy if you

    E-Print Network [OSTI]

    Wohlfarth, Barbara

    containers in the garbage-room. The remnants in your waste-paper-baskets could be food remnants, fruit peelWaste management Stockholm University tries to maintain its environmental certification and we for new products All waste-paper-baskets in your rooms, the kitchen and the copying

  19. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  20. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  1. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2...

  2. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and...

  3. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  4. Waste-to-Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into renewable energy, thereby enabling a national network of distributed power and biofuel production sites. Image courtesy of Iona Capital Waste-to-Energy Cycle Waste...

  5. Radioactivity and foods

    SciTech Connect (OSTI)

    Olszyna-Marzys, A.E. (Unified Lab. of Food and Drug Control, Guatemala City (Guatemala))

    1991-01-01

    The purpose of this article is to describe and contrast two relationships between radiation and food--on the one hand, beneficial preservation of food by controlled exposure to ionizing radiation; and, on the other, contamination of food by accidental incorporation of radioactive nuclides within the food itself. In food irradiation, electrons or electromagnetic radiation is used to destroy microorganisms and insects or prevent seed germination. The economic advantages and health benefits of sterilizing food in this manner are clear, and numerous studies have confirmed that under strictly controlled conditions no undersirable changes or induced radioactivity is produced in the irradiated food. An altogether different situation is presented by exposure of food animals and farming areas to radioactive materials, as occurred after the major Soviet nuclear reactor accident at Chenobyl. This article furnishes the basic information needed to understand the nature of food contamination associated with that event and describes the work of international organizations seeking to establish appropriate safe limits for levels of radioactivity in foods.

  6. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  7. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  8. Extension Investment Option 2015-17 Food Systems, Food Security, Food Safety

    E-Print Network [OSTI]

    Tullos, Desiree

    Extension Investment Option 2015-17 Food Systems, Food Security, Food Safety The Statewide Need: Food is complicated--culturally, politically, and economically. A food systems approach is a key the foundational strengths of OSU Extension and its delivery model in communities and across the state. Food

  9. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Winfree, Erik

    HAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office@caltech.edu http://safety.caltech.edu #12;Hazardous Waste Management Reference Guide Page 2 of 36 TABLE OF CONTENTS Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT Labeling

  10. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China

    SciTech Connect (OSTI)

    Liang Sai; Zhang Tianzhu

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.

  11. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  12. Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels 

    E-Print Network [OSTI]

    Bettinger, J.; Koppel, P.; Margulies, A.

    1988-01-01

    of subcritical and supercritical wet oxidation technologies to chemical, food processing, pharmaceutical, wood-pulping, and coal-washing wastes. Each application is evaluated for technical and economic feasibility as well as its national applicability...

  13. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  14. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  15. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  16. Transuranic contaminated waste functional definition and implementation

    SciTech Connect (OSTI)

    Kniazewycz, B.G.

    1980-03-01

    The purpose of this report is to examine the problem(s) of TRU waste classification and to document the development of an easy-to-apply standard(s) to determine whether or not this waste package should be emplaced in a geologic repository for final disposition. Transuranic wastes are especially significant because they have long half-lives and some are rather radiotoxic. Transuranic radionuclides are primarily produced by single or multiple neutron capture by U-238 in fuel elements during the operation of a nuclear reactor. Reprocessing of spent fuel elements attempts to remove plutonium, but since the separation is not complete, the resulting high-activity liquids still contain some plutonium as well as other transuranics. Likewise, transuranic contamination of low-activity wastes also occurs when the transuranic materials are handled or processed, which is primarily at federal facilities involved in R and D and nuclear weapons production. Transuranics are persistent in the environment and, as a general rule, are strongly retained by soils. They are not easily transported through most food chains, although some reconcentration does take place in the aquatic food chain. They pose no special biological hazard to humans upon ingestion because they are weakly absorbed from the gastrointestional tract. A greater hazard results from inhalation since they behave like normal dust and fractionate accordingly.

  17. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01

    LBNL/PUB-5352, Revision 6 Waste Management QualityAssurance Plan Waste Management Group Environment, HealthRev. 6 WM QA Plan Waste Management Quality Assurance Plan

  18. carleton.ca Food Science

    E-Print Network [OSTI]

    Dawson, Jeff W.

    carleton.ca Food Science and Nutrition #12;The production and distribution of food is one on the effective processing, storage and handling of food. The field of food science integrates and applies, process, package and distribute foods that are nutritious, affordable, desirable and safe to eat

  19. Local Food, Sustainability, and Cuba's National Food Program

    E-Print Network [OSTI]

    Fusco, Audrey Corinne

    2008-01-01

    There is a tendency in food systems research and planning to associate sustainable and socially just food provisioning with the local scale. This thesis questions the assumption that food security and environmental ...

  20. Status Report of Projects in Waste Management in the Livestock Industry

    E-Print Network [OSTI]

    #12;Status Report of Projects in Waste Management in the Livestock Industry in the Interior Agriculture and Agri-Food Canada, 3015 Ord Rd., Kamloops, B.C. V2B 8A9 and 2 University College of the Cariboo and monitoring projects in the area of pollution prevention and waste minimization in the livestock industry

  1. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

  2. Electronic waste disassembly with industrial waste heat

    E-Print Network [OSTI]

    2013-01-01

    equipment for automatic dismantling of electronic componentsthe technology acceptance for dismantling of waste printedR. Research on with dismantling of PCB mounted electronic

  3. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oxygen demand (COD) and availability of low-grade waste heat sources. The pulp and paper industry and other industries are also potential MHRC users. Project Description This...

  4. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Broader source: Energy.gov (indexed) [DOE]

    - Allentown, PA A microbial reverse electrodialysis technology will be combined with waste heat recovery to convert effluents into electricity and chemical products, including...

  5. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  6. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  7. of Your Food Contents Page

    E-Print Network [OSTI]

    B-1400 8/11 of Your Food Content The Sodium #12;Contents Page Introduction.......................................................................................3 Sodium content of foods Beverages and fruit juices activity, and encourages Americans to consume more healthy foods like vegetables, fruits, seafood, whole

  8. Food Exemption Request Organization Information

    E-Print Network [OSTI]

    Food Exemption Request Organization Information Organization Received ______ Organizations are permitted one food exemption per semester. Requests must be submitted and Regulations Your group has requested a food exemption for an event. The rules and regulations for use

  9. Safe Home Food Storage 

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22

    leftovers? The charts in this publication give storage times for many leftover foods. Planning and us- ing leftovers carefully can save money and time. To prevent food-borne illness, it is important to prepare and handle foods properly: a78 Wash your hands.... Cooked fish or shellfish 2-3 days 3 months Canned fish or shellfish (unopened) 12 months (opened) 1 day Surimi seafood 2 weeks 9 months Fruits Fresh Do not wash fruit before storing?mois- Apples 1 month ture encourages spoilage?but wash Apricots, avocados...

  10. Copenhagen Waste Management and Incineration

    E-Print Network [OSTI]

    Columbia University

    Copenhagen Waste Management and Incineration Florence, April 24 2009 Julie B. Svendsen 24 20092 Presentation · General introduction to Copenhagen Waste Management System · National incentives · Waste Management plan 2012 · Incineration plants #12;Florence, April 24 20093 Copenhagen Waste

  11. Pumpkin Power: Turning Food Waste into Energy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptionsProteinTotal natural gas provedShalePortal

  12. Bean Commercial Grease | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:Bajo en Carbono,BeWind Power LtdBean Commercial

  13. Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore

    E-Print Network [OSTI]

    Columbia University

    ;20031970 The Solid Waste Challenge Waste Explosion 1,200 t/d1,200 t/d 6,900 t/d6,900 t/d #12;Waste ManagementWaste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected

  14. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  15. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27...

  16. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of...

  17. Pet Waste Management 

    E-Print Network [OSTI]

    Mechell, Justin; Lesikar, Bruce J.

    2008-08-28

    About 1 million pounds of dog waste is deposited daily in North Texas alone. That's why proper disposal of pet waste can make a big difference in the environment. 5 photos, 2 pages...

  18. Estimation of food consumption

    SciTech Connect (OSTI)

    Callaway, J.M. Jr.

    1992-04-01

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  19. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  20. Food Adulteration in Texas. 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1906-01-01

    ............ .Houston. ...... Salicylic Acid, Starch, Be zoic Acid, artificial colo 35 Fruit Catsup ......... Houston. ....... Colored. ig Tomato catsup ..... .Houston; ...... Starch. , , TABLE VE-CATSUP, NOT FOUND ADULTERATED ,aboratory N 0. 57 Tomato Catsup... is made in the Texas law-. The fol- lowing is the definition od misbranding under the Federal Food Law: In case of food- "First. If it be an imitation of or offered for sale under the distinctive , name of another article. n "Second. If it .be...

  1. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  2. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  3. Use of cooling-temperature heat for sustainable food production

    E-Print Network [OSTI]

    CERN. Geneva

    2013-01-01

    Food production and energy are undoubtedly interlinked. However, at present food production depends almost exclusively on direct use of stored energy sources, may they be nuclear-, petroleum- or bio-based. Furthermore, non-storage based “renewable” energy systems, like wind and solar, need development before bering able to contribute at a significant level. This presentation will point towards surplus heat as a way to bridge the gap between today’s food systems and truly sustainable ones, suitable to be performed in urban and peri-urban areas. Considering that arable land and fresh water resources are the base for our present food systems, but are limited, in combination with continued urbanisation, such solutions are urgently needed. By combining the use of surplus energy with harvest of society’s organic side flows, like e.g. food waste and aquatic based cash crops, truly sustainable and urban close food systems are possible at a level of significance also for global food security.

  4. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  5. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  6. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  7. Texas Food may be foun

    E-Print Network [OSTI]

    Selling H When you a 1) Texa follo 2) FDA 3) FDA 4) Loca 5) Hom Texas Food You may Food Facilit Food Labeli al Health Dep meowner or d Manufactu will need a nd at the fol ide column y The room us (also known Warehousin Your firm ob nt to becom he Foods hom click on sec ring facility a n

  8. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect (OSTI)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  9. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  10. Transuranic (TRU) Waste | Department of Energy

    Office of Environmental Management (EM)

    Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

  11. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  12. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendixes 1 through 8: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  13. Ferrocyanide tank waste stability

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

  14. www.d-waste.com info@d-waste.com

    E-Print Network [OSTI]

    Columbia University

    management data available". According to David Newman, president of the International Solid Waste Association collection services, according to the first global survey of waste management. The Waste Atlas 2013 Report marketplace, about 47 grams of waste is produced-- with worldwide municipal solid waste generation totaling

  15. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G. Chemical Compatibility p.9 Radioactive Waste Disposal p.10 Bio Hazard Waste chemical and radioactive waste, and Biohazardous waste. This document contains university procedures

  16. 8-Waste treatment and disposal A. Responsibility for waste management

    E-Print Network [OSTI]

    8- Waste treatment and disposal A. Responsibility for waste management 1. Each worker is responsible for correctly bagging and labeling his/her own waste. 2. A BSL3 technician will be responsible for transporting and autoclaving the waste. Waste will be autoclaved once or twice per day, depending on use

  17. Food for the Family. 

    E-Print Network [OSTI]

    Higgins, M. Hellen

    1924-01-01

    furnish a kind of protein that is cap­ able of replacing the protein found in the tissues of the body. Animal Protein. Veuetable Protein. Dried Peas. Dried Cow Peas. Dried Beans. Nuts. Peanuts. Milk. Skim Milk. Cheese. Eggs. Meat. Fish. Poultry. Group II... and starches, they should be eaten more sparingly in summer than in winter. Certain fat foods, especially butter and cream, furnish Vitamine A for this reason have a great advantage over the other foods of the group. Fats and Oils. Nuts. Salt Pork. Bacon...

  18. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive Holiday Food Drive Laboratory employees

  19. Development and Demonstration of a Biomass Boiler for Food Processing Applications

    SciTech Connect (OSTI)

    2009-02-01

    Burns & McDonnell Engineering Company, in collaboration with Frito-Lay, Inc., Oak Ridge National Laboratory, CPL Systems, Inc., Alpha Boilers, and Kansas State University will demonstrate use of a biomass boiler in the food processing industry. The 60,000 lb/hr innovative biomass boiler system utilizing a combination of wood waste and tire-derived fuel (TDF) waste will offset all natural gas consumption at Frito-Lay's Topeka, Kansas, processing facility.

  20. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  1. CARD No. 24 Waste Characterization

    E-Print Network [OSTI]

    CARD No. 24 Waste Characterization 24.A.1 BACKGROUND DOE must provide waste inventory information Report (TWBIR), Revisions 2 and 3, which provides waste characterization information specific to DOE solidified waste forms was included. Waste described in TWBIR Revision 3 was primarily characterized through

  2. Radioactivity in food crops

    SciTech Connect (OSTI)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  3. FOOD SYSTEM PLANNING FOR

    E-Print Network [OSTI]

    Delaware, University of

    justice, conservation and renewable energy options, integrated resource planning, and technology with an overview of the efficiency and environmental benefits associated local food systems. The Center for Energy of Delaware Center for Energy & Environmental Policy University of Delaware February 2011 #12;Mailing Address

  4. Development Food Science

    E-Print Network [OSTI]

    House Berkowitz Basketball Complex Breslin Student Events Center Wonders Coal Storage Simon Power Plant Power Plant Student Services IM Sports Circle Main Library Reservoir Food Safety and Toxicology Anthony Pegasus Critical Care Molecular Plant Sciences Plant Biology Laboratories Amtrak/ Greyhound Station Mc

  5. A Primer on Food Additives. 

    E-Print Network [OSTI]

    Anonymous,

    1979-01-01

    stream_source_info Bull1208a.pdf.txt stream_content_type text/plain stream_size 25137 Content-Encoding ISO-8859-1 stream_name Bull1208a.pdf.txt Content-Type text/plain; charset=ISO-8859-1 45.7 8-1208 :08 A Primer... on Food Additives Extension Foods and Nutrition Specialists The Texas A&M University System Consumers today are very concerned about what goes into their food. This primer on food additives describes what food additives do and why modern food...

  6. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  7. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  8. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  9. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  10. Hazardous Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

  11. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  12. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview Vitrification - general background Joule...

  13. Waste Confidence Discussion

    Office of Environmental Management (EM)

    Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum...

  14. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  15. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  16. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  17. National Poultry Waste Management Symposium, Birmingham AL 28-30 October, 2002 AMMONIA LOSSES, EVALUATIONS AND SOLUTIONS FOR

    E-Print Network [OSTI]

    Kentucky, University of

    National Poultry Waste Management Symposium, Birmingham AL 28-30 October, 2002 AMMONIA LOSSES projects toward current and upcoming agricultural and food problems. In FY 2001, the IFAFS waste management collecting data on ER or EF from selected U.S. poultry houses and the efficacy of certain management

  18. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  19. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Broader source: Energy.gov (indexed) [DOE]

    LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container Isolation Plan for identified nitrate salt bearing waste...

  20. Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides for planning for the processing and disposal of municipal waste; requires counties to submit plans for municipal waste management systems within their boundaries; authorizes...

  1. Report: EM Tank Waste Subcommittee Full Report for Waste Treatment...

    Office of Environmental Management (EM)

    meeting, enclosed please find the Environmental Management Advisory Board EM Tank Waste Subcommittee Report for Waste Treatment Plant; Report Number EMAB EM-TWS WTP-001,...

  2. Waste Treatment and Immobilation Plant HLW Waste Vitrification...

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August...

  3. Waste Loading Enhancements for Hanford Low-Activity Waste Glasses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WASTE LOADING ENHANCEMENTS FOR HANFORD LOW-ACTIVITY WASTE GLASSES Albert A. Kruger, Glass Scientist DOE-WTP Project Office Engineering Division US Department of Energy Richland,...

  4. Virginia Waste Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

  5. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non- Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

  6. Food grain policy in Bangladesh

    E-Print Network [OSTI]

    Rausser, Gordon C.

    1981-01-01

    ~o. FOOD GAAIN POLICY IN BANGLADESH by Gordon C. Rausser ;.period of time before Bangladesh becomes self-sufficient. Infor Food Grains in Bangladesh, Unpublished Ph.D. thesis,

  7. Emergency Food and Water Supplies 

    E-Print Network [OSTI]

    Van Laanen, Peggy

    1999-05-14

    Creating an emergency supply of food and water, and knowing how to safely handle food and water after a disaster, can reduce stress, worry and inconvenience. This publication provides information on water supply storage and purification...

  8. Food behavior checklist effectively evaluates nutrition education

    E-Print Network [OSTI]

    2006-01-01

    RESEARCH ARTICLE Food behavior checklist effectivelyB. Joy We developed a short food behavior checklist (FBC) todiverse women in the Food Stamp Nutrition Education

  9. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    SciTech Connect (OSTI)

    Oakley, Brian; Heacker, Fred; McMillan, Bill

    2013-07-01

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ?12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated to be 1-3 mSv/hr (100-300 mrem/hr) with an unshielded dose rate on the waste itself of over 10 mSv/hr (1 rem/hr). Additional equipment to be installed at the TWPC will include a new perma-con enclosure and a shielded/inert glovebox in the process building to repackage and stabilize the waste. All of the waste will be repackaged into Standard Pipe Overpacks. Most of the waste (21 of the 26 drums) is expected to be repackaged at the food-pack can level (i.e. the food-pack cans will not be opened). Five of the incoming waste containers are expected to be repackaged at the primary waste level. Three of the containers exceed the 200 gram Pu-239 Fissile Gram Equivalent (FGE) limit for the Standard Pipe Overpack. These three containers will be repackaged down to the primary waste level and divided into eight Standard Pipe Overpacks for shipment to WIPP. Two containers must be stabilized to eliminate any reactive plutonium hydrides that may be present. These containers will be opened in the inert, shielded glovebox, and the remaining corroded plutonium metal converted to a stable oxide form by using a 600 deg. C tube furnace with controlled oxygen feed in a helium carrier gas. The stabilized waste will then be packaged into two Standard Pipe Overpacks. Design and build out activities for the additional repackaging capabilities at the TWPC are scheduled to begin in Fiscal Year 2013 with repackaging, stabilization, and certification activities scheduled to begin in Fiscal Year 2014. Following repackaging and stabilization activities, the Standard Pipe Overpacks will be certified for disposal at WIPP utilizing Non-Destructive Examination (NDE) to verify the absence of prohibited items and Non-Destructive Assay (NDA) to verify the isotopic content under the TWPC WIPP certification program implemented by the Central Characterization Project (CCP). (authors)

  10. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast...

  11. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  12. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  13. Solid Waste Management (South Dakota)

    Broader source: Energy.gov [DOE]

    This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

  14. Attachment C ? Waste Analysis Plan

    Office of Environmental Management (EM)

    PLAN 1 Los Alamos National Laboratory Hazardous Waste Permit December 2013 TABLE OF CONTENTS LIST OF TABLES 2 WASTE ANALYSIS PLAN......

  15. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01

    Waste Management group organization chart. Revised to updatecurrent practices. New organization chart, roles, andManagement Group organization chart. EH&S Waste Management

  16. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  17. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    ,320 $5,817 Installation of motion detector lighting in common areas of Buildings 490 and 463. "Bio Circle Cleaner" parts washer Substitution 640 Hazardous waste $10,000 $4,461 $10,000 Eliminates the need disposal system Recycling 528 Hazardous waste $12,000 $0 $12,000 Empty aerosol cans are recycled as scrap

  18. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    Hazardous Waste Management Training Persons (including faculty, staff and students) working with hazardous materials should receive annual training that addresses storage, use, and disposal of hazardous before handling hazardous waste. Departments are re- quired to keep records of training for as long

  19. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  20. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  1. Managing America's solid waste

    SciTech Connect (OSTI)

    Phillips, J. A.

    1998-09-15

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  2. Improving medical waste disposal

    SciTech Connect (OSTI)

    O'Connor, L.

    1994-05-01

    This article describes the use of electron-beam irradiation, steam detoxification, and microwave disinfection systems rather than incineration to rid the waste stream of medical scraps. The topics of the article include biological waste stream sources and amounts, pyrolysis and oxidation, exhaust gas cleanup, superheated steam sterilization and detoxification.

  3. Vitrification of NORM wastes

    SciTech Connect (OSTI)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man`s oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ``lessons learned`` from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM.

  4. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  5. Safe Food in a Hurry. 

    E-Print Network [OSTI]

    Sweeten, Mary K.

    1980-01-01

    S fe Food ill a Hurry 8-1281 EMPLOYEO@ OMEMAKER Texas Agricultural Extension Service Til,e Texas A&M University System Daniel C. Pfannstiel, Director? College Station, Texas [Blank Page in Original Bulletin] Safe Food in a Hurry Mary K.... Sweeten* Foodborne illness can lead to time away from the job for the employed homemaker besides causing family misery. You have to work to prevent food poisoning as you buy, store, cook and serve food. When you must care for food in a hurry, keep...

  6. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  7. Waste Management & Research290 Waste Manage Res 2002: 20: 290301

    E-Print Network [OSTI]

    Florida, University of

    Waste Management & Research290 Waste Manage Res 2002: 20: 290­301 Printed in UK ­ all rights reserved Copyright © ISWA 2002 Waste Management & Research ISSN 0734­242X Introduction Chromated copper of sorting technologies for CCA treated wood waste Monika Blassino Helena Solo-Gabriele University of Miami

  8. Talking Trash: Oral Histories of Food In/Security from the Margins of a Dumpster

    E-Print Network [OSTI]

    Vaughn, Rachel Ann

    2011-12-31

    . Although the annual generation of garbage alone in the US is staggering at 388 billion tons produced, 64.1% of which is landfilled, this dissertation is particularly focused on the state of food excess and waste in the US—estimated by University...

  9. Application and energy saving potential of superheated steam drying in the food industry

    SciTech Connect (OSTI)

    Fitzpatrick, J. [Univ. College Cork (United Kingdom); Robinson, A. [Stork Engineering, Uxbridge (United Kingdom)

    1996-12-31

    The possibilities of using superheated steam in heat and mass transfer processes such as drying have lately been investigated and tested by several industries. The mode of operation, energy saving potential, advantages of and problems with this media in contact with foodstuffs and food waste sludge are discussed in this article.

  10. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  11. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  12. Specifying Waste Heat Boilers 

    E-Print Network [OSTI]

    Ganapathy, V.

    1992-01-01

    HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants, refineries... stream_source_info ESL-IE-92-04-42.pdf.txt stream_content_type text/plain stream_size 11937 Content-Encoding ISO-8859-1 stream_name ESL-IE-92-04-42.pdf.txt Content-Type text/plain; charset=ISO-8859-1 SPECIFYING WASTE...

  13. INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY

    E-Print Network [OSTI]

    Columbia University

    1 INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY AN OVERVIEW Presented to the DELAWARE SOLID WASTE MANAGEMENT TECHNICAL WORKING GROUP January 10, 2006 #12;2 INTERSTATE WASTE MANAGEMENT ALLIANCE and maintenance (30 years) ­ Will guarantee performance and Operation and Maintenance ­ Serves solid waste

  14. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  15. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  16. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  17. Carbon Emissions: Food Industry

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (MillionThousandChemicals IndustryFood

  18. Temporary Food Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexicoConference Tight Oil1 Soil Water andFood Service

  19. A plan for teaching waste management education at an outdoor education center 

    E-Print Network [OSTI]

    Armstrong, Joe Don

    1994-01-01

    ). ornamental plants, and vegetable gardens. Land application and distribution & marketing are both beneficial uses of biosolids. Sludge can also be incinerated or be placed in a landfill. Large amounts of biosolids are incinerated each year to reduce... in Municipal Solid Waste Distribution of Sludge in the United States, 1984 Holding Bin For Hot Pile Worm Bin Food Digester Composting Toilet 40 42 43 44 CHAPTER I INTRODUCTION Back round Information Waste Management has become a major issue...

  20. Preventing Food Contamination: A Need for Innovation in Food Production

    E-Print Network [OSTI]

    Reynolds, Mark

    2013-01-01

    174 Preventing Food Contamination A Need for Innovation infurther prevent microbial contamination. Due largely becausequick migration of the contamination in the example given

  1. Solid Waste Management (Kansas)

    Broader source: Energy.gov [DOE]

    This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

  2. Waste Steam Recovery 

    E-Print Network [OSTI]

    Kleinfeld, J. M.

    1979-01-01

    An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

  3. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  4. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  5. Hanford Site annual dangerous waste report. Volume 1, Part 1, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  6. Good Food is the longest running weekly food and wine guide in

    E-Print Network [OSTI]

    Peters, Richard

    Overview #12;Good Food Overview Good Food is the longest running weekly food and wine guide industry. Written and edited by some of the most noted food and wine writers and columnists, Good Food food related feature articles. Why Advertise ·262,000 or 60% of Good Food Epicure readers have been

  7. MECS 2006- Food and Beverage

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Food and Beverage (NAICS 311, 312) Sector with Total Energy Input, October 2012 (MECS 2006)

  8. Location and identification of radioactive waste in Massachusetts Bay

    SciTech Connect (OSTI)

    Colton, D.P.; Louft, H.L.

    1993-12-31

    The accurate location and identification of hazardous waste materials dumped in the world`s oceans are becoming an increasing concern. For years, the oceans have been viewed as a convenient and economical place to dispose of all types of waste. In all but a few cases, major dump sites have been closed leaving behind years of accumulated debris. The extent of past environmental damage, the possibility of continued environmental damage, and the possibility of hazardous substances reaching the human food chain need to be carefully investigated. This paper reports an attempt to accurately locate and identify the radioactive component of the waste material. The Department of Energy`s Remote Sensing Laboratory (RSL), in support of the US Environmental Protection Agency (EPA), provided the precision navigation system and prototype underwater radiological monitoring equipment that were used during this project. The paper also describes the equipment used, presents the data obtained, and discusses future equipment development.

  9. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  10. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility...

  11. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Environmental Management (EM)

    2013 More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory...

  12. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  13. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste...

  14. EIS-0200: Waste Management Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    00: Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Waste Management...

  15. Biochar: A Solution to Oakland's Green Waste?

    E-Print Network [OSTI]

    Villar, Amanda

    2012-01-01

    as an alternative waste management solution. Biochar is asequestration and alternative green waste management. For5 years, Alameda County Waste Management’s (WM) residential

  16. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste inventories in a safe and compliant...

  17. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  18. Pollution prevention assessment for a manufacturer of food service equipment

    SciTech Connect (OSTI)

    Edwards, H.W.; Kostrzewa, M.F.; Looby, G.P.

    1995-09-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at Colorado State University performed an assessment at a plant that manufacturers commercial food service equipment. Raw materials used by the plant include stainless steel, mild steel, aluminum, and copper and brass. Operations performing in the plant include cutting, forming, bending, welding, polishing, painting, and assembly The team`s report, detailing findings and recommendations, indicated that paint-related wastes (organic solvents) are generated in large quantities and that significant cost savings could be achieved by retrofitting the water curtain paint spray booth to operate as a dry filter paint booth. Toluene could be replaced by a less toxic solvent. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  19. W I N T E R 2 0 1 2 / 1 3 APOCALYPSE WHEN > RETHINKING FOOD > STRIKING OUT FEAR

    E-Print Network [OSTI]

    Doedel, Eusebius

    W I N T E R 2 0 1 2 / 1 3 APOCALYPSE WHEN > RETHINKING FOOD > STRIKING OUT FEAR RETAILING RELIGION% recycled paper, including 20% post consumer waste. For each ton of recycled paper that displaces a ton emissions by 28%, wastewater by 33%, solid waste by 54% and wood use by 100%. w i n t e r 2 0 1 2 / 1 3 v o

  20. This document details how to manage hazardous waste with multiple hazards. Waste Management Procedures

    E-Print Network [OSTI]

    Mease, Kenneth D.

    This document details how to manage hazardous waste with multiple hazards. Waste Management Procedures · Always manage hazardous waste as the highest ranked waste in the hazardous waste hierarchy Waste Solids Place in solid radioactive waste box. Radioactive Waste Liquids Place in liquid radioactive

  1. The effects of food advertising and cognitive load on food choices

    E-Print Network [OSTI]

    Zimmerman, FJ; Shimoga, SV

    2014-01-01

    The effects of food advertising and cognitive load on foodeffects of television food advertising on eating behavior.R: The effects of advertising on food demand elasticities.

  2. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

  3. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  4. ABSTRACT: Farms that once spread only manures are now also applying sewage biosolids (sludge) and/or other wastes such as

    E-Print Network [OSTI]

    ABSTRACT: Farms that once spread only manures are now also applying sewage biosolids (sludge) and streamwater concentrations in most cases. (KEY TERMS: nonpoint source pollution; sludge; waste/sewage such as food processing wastes and sewage biosolids (sludge). A concurrent trend in agriculture is the con

  5. Integrating Food Production and Biodiversity

    E-Print Network [OSTI]

    with food, and NPK fluxes at farm level. The biofuels were crude rapeseed oil, horse draft, ethanol from a combination of a workhorse and a crude rapeseed oil-fuelled tractor. Ethanol from wheat had the largest impactIntegrating Food Production and Biodiversity Energy and Scale Issues in Implementation Kristina

  6. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval,...

  7. Food Image Recognition with Deep Convolutional Features

    E-Print Network [OSTI]

    Yanai, Keiji

    Food Image Recognition with Deep Convolutional Features Yoshiyuki Kawano, Keiji Yanai and diseases. If there is a food recommendation system, it is work to keep people in good health. A food recognition engine is needed to build a automatic food recommendation system. Food recognition: Deep

  8. Food Biophysics ISSN 1557-1858

    E-Print Network [OSTI]

    Franzese, Giancarlo

    1 23 Food Biophysics ISSN 1557-1858 Food Biophysics DOI 10.1007/s11483-013-9310-7 Water.springer.com". #12;Food Biophysics DOI 10.1007/s11483-013-9310-7 SPECIAL ISSUE ARTICLE Water at Biological and inorganic interfaces. In fields like food processing, food preservation or bionanotechnology

  9. Waste generator services implementation plan

    SciTech Connect (OSTI)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  10. Using Multiple Household Food Inventories to Measure Food Availability in the Home 

    E-Print Network [OSTI]

    Sisk, Cheree L.

    2010-10-12

    The purpose of this study was to determine the feasibility of conducting multiple household food inventories over the course of 30 days to examine weekly food variability. Household food availability influences the foods ...

  11. Recommendation 223: Recommendations on Additional Waste Disposal...

    Office of Environmental Management (EM)

    3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to...

  12. Waste management units - Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  13. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  14. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  15. Waste Management Assistance Act (Iowa)

    Broader source: Energy.gov [DOE]

    This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

  16. Management of Solid Waste (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

  17. Copenhagen Waste Management and Incineration

    E-Print Network [OSTI]

    ownership of treatment facilities · Incineration plants · Land fill · Disposal of hazardous waste · Source waste prevention · Focus areas · Changes in behaviour among consumers and producers · City schemes almost fully developed · Collection of hazardous substances, paper, cardboard, gardening and bulky

  18. Low-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

  19. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  20. Reducing Waste in Memory Hierarchies 

    E-Print Network [OSTI]

    Tian, Yingying

    2015-05-01

    power consumption by dynamically bypassing zero-reuse blocks. This dissertation exploits waste of data redundancy at the block-level granularity and finds that conventional cache design wastes capacity because it stores duplicate data. This dissertation...

  1. Process Waste Assessment - Paint Shop

    SciTech Connect (OSTI)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.

  2. Zero Waste, Renewable Energy & Environmental

    E-Print Network [OSTI]

    Columbia University

    Zero Waste, Renewable Energy & Environmental Stewardship - Connecting loose ends: Thermal Recycling Party, Berlin · Research Institute Karlsruhe, Germany · Oekoinstitut, Freiburg, Germany · BASF, Germany business, namely "zero waste" and "clean production." #12;Arguments given against WTE: People who think we

  3. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  4. Ferrocyanide waste simulant characterization

    SciTech Connect (OSTI)

    Jeppson, D.W.; Wong, J.J.

    1993-01-01

    Ferrocyanide waste simulants were prepared and characterized to help assess safety concerns associated with the ferrocyanide sludges stored in underground single-shell waste tanks at the Hanford Site. Simulants were prepared to represent the variety of ferrocyanide sludges stored in the storage tanks. Physical properties, chemical compositions, and thermodynamic properties of the simulants were determined. The simulants, as produced, were shown to not sustain propagating reactions when subjected to a strong ignition source. Additional testing and evaluations are recommended to assess safety concerns associated with postulated ferrocyanide sludge dry-out and exposure to external ignition sources.

  5. Heat Recovery From Solid Waste 

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  6. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    for reduction in mixed waste generation Pump Oil Substitution 51 Hazardous Waste / Industrial Waste $3,520 $6 with the subsequent clean up costs ($15,000). Hydraulic Oil Product Substitution 3,000 Industrial Waste $26,000 $0 $26WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2003 WASTE TYPE

  7. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  8. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University waste through waste hierarchy and managing the waste in-house for final disposal. To explain the waste

  9. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  10. The Food We Eat: An Evaluation of Food Items Input into an

    E-Print Network [OSTI]

    Connelly, Kay

    The Food We Eat: An Evaluation of Food Items Input into an Electronic Food Monitoring Application participants in a chronic kidney disease (stage 5) population input food items into an electronic intake monitoring application. Participants scanned food item barcodes or voice recorded food items they consumed

  11. MARSHALL UNIVERSITY HAZARDOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Sanyal, Suman

    /16/2005 1 #12;Marshall University Hazardous Waste Program POLICY STATEMENT- Hazardous Materials Management of the Hazardous Waste Management Program is to ensure that proper handling and legal disposal of hazardous wastes Management Program will apply to the following: 1. Any liquid, semi-solid, solid or gaseous substance defined

  12. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  13. Waste Management Coordinating Lead Authors

    E-Print Network [OSTI]

    Columbia University

    10 Waste Management Coordinating Lead Authors: Jean Bogner (USA) Lead Authors: Mohammed Abdelrafie Ahmed, C. Diaz, A. Faaij, Q. Gao, S. Hashimoto, K. Mareckova, R. Pipatti, T. Zhang, Waste Management University Press, Cambridge, United Kingdom and New York, NY, USA. #12;586 Waste Management Chapter 10 Table

  14. Pharmaceutical Waste Management Under Uncertainty

    E-Print Network [OSTI]

    Linninger, Andreas A.

    Pharmaceutical Waste Management Under Uncertainty Andreas A. Linninger and Aninda Chakraborty of their benefits and costs constitutes a formidable task. Designing plant-wide waste management policies assuming this article addresses the problem of finding optimal waste management policies for entire manufacturing sites

  15. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Supersedes DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  16. Final Report Waste Incineration

    E-Print Network [OSTI]

    methods have been evaluated, and with the information obtained, it seems that the price for treatment of the waste streams, or as fuel in an incineration facility generating heat and pos- sibly electricity for export that is economical and technical efficient. The aim of this project is to make a long

  17. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  18. Energy Department, Northwest Food Processors Association Set...

    Energy Savers [EERE]

    Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for...

  19. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Geothermal Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature...

  20. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  1. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  2. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  3. SUSTAINABILITY AND FOOD Anthropology Professors

    E-Print Network [OSTI]

    Watkins, Joseph C.

    SUSTAINABILITY AND FOOD Anthropology Professors Maribel Alvarez Diane Austin Mamadou Baro Tim. Potential Helpful Minors Environmental Studies Environmental Sciences Nutritional Science Sustainable Built Environments Sustainable Plant Systems Potential Employers Documentary Films Government Jobs

  4. Assessment of TEES reg sign applications for Wet Industrial Wastes: Energy benefit and economic analysis report

    SciTech Connect (OSTI)

    Elliott, D.C.; Scheer, T.H.

    1992-02-01

    Fundamental work is catalyzed biomass pyrolysis/gasification led to the Thermochemical Environmental Energy System (TEES{reg sign}) concept, a means of converting moist biomass feedstocks to high-value fuel gases such as methane. A low-temperature (350{degrees}C), pressurized (3100 psig) reaction environment and a nickel catalyst are used to reduce volumes of very high-moisture wastes such as food processing byproducts while producing useful quantities of energy. A study was conducted to assess the economic viability of a range of potential applications of the process. Cases examined included feedstocks of cheese whey, grape pomace, spent grain, and an organic chemical waste stream. The analysis indicated that only the organic chemical waste process is economically attractive in the existing energy/economic environment. However, food processing cases will become attractive as alternative disposal practices are curtailed and energy prices rise.

  5. TRU waste characterization chamber gloveboxes.

    SciTech Connect (OSTI)

    Duncan, D. S.

    1998-07-02

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  6. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 3. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-02-01

    This report consists of information related to the waste forms at the WIPP facility from the waste originators. Data for retrievably stored, projected and total wastes are given.

  7. Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

  8. WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop

    E-Print Network [OSTI]

    ; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

  9. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  10. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  11. Low-temperature catalytic gasification of wet industrial wastes

    SciTech Connect (OSTI)

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  12. Sustainable Food and the Institute for

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    Sustainable Food and the California Institute for Rural Studies Sustainable Food and the Promise Studies Agriculture/Sustainable Food? 3 "E's" of sustainabilityStudies 221 G Street Suite 204 Davis, CA Davis, CA 530.756.6555 v 530.756.7429 f i i Fair conditions for agricultural and other food system

  13. Food Safety Policy General Policy Statement

    E-Print Network [OSTI]

    Food Safety Policy General Policy Statement St. Anne's College has a commitment to food safety. The College takes all reasonable precaution and exercises all due diligence to ensure that food which and maintain these standards, the College: Designates managers who have a special responsibility for food

  14. Montana State University 1 Sustainable Food &

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Sustainable Food & Bioenergy Systems This program is a unique, processing, distribution, and utilization of food and bioenergy. The degree focuses on ecologically sound, socially just, and economically viable farming methods, food and health, and related food and bioenergy

  15. Food Stories Exhibition Trail Leader's Notes

    E-Print Network [OSTI]

    Neri, Peter

    Food Stories Exhibition Trail Leader's Notes 1. Take a look at the stone fragment. Where do you a story about a celebration involving food? (No answer required) 3. This is a food hook from Papua New of grass, palm leaves and bamboo. The food hook would hang from the ceiling of the hut. Why do you think

  16. Food Image Recognition with Deep Convolutional Features

    E-Print Network [OSTI]

    Yanai, Keiji

    Food Image Recognition with Deep Convolutional Features Yoshiyuki KAWANO Department of Informatics food recognition accuracy greatly by integrating it with conventional hand-crafted image features accuracy and 92.00% as the top-5 accuracy for the 100-class food dataset, UEC-FOOD100, which outperforms

  17. Food Safety Regulations for Farmers'Markets

    E-Print Network [OSTI]

    safety regulations. Classification of a Farmers'Market Food safety issues are governed by the retail food for all retail food establishments,including farmers' markets; however,each local county health departmentFood Safety Regulations for Farmers'Markets Christa Hofmann and Jennifer Dennis Department

  18. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

    1995-11-07

    A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

  19. Probative Investigation of the Thermal Stability of Wastes Involved...

    Office of Environmental Management (EM)

    the Thermal Stability of Wastes Involved in February 2014 Waste Isolation Pilot Plant (WIPP) Waste Drum Breach Event Probative Investigation of the Thermal Stability of Wastes...

  20. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  1. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  2. Naval Waste Package Design Report

    SciTech Connect (OSTI)

    M.M. Lewis

    2004-03-15

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository.

  3. Falls, Disability and Food Insecurity Present Challenges to Healthy Aging

    E-Print Network [OSTI]

    Wallace, Steven P.; Molina, L. Cricel; Jhawar, Mona

    2007-01-01

    increases food insecurity because functional limitations canadults food insecurity can also be caused by functional

  4. The Food Nutrition Link - Level II Leader Guide 

    E-Print Network [OSTI]

    Bielamowicz, Mary K.; Cooksey, Dymple C.; Hall, Gayle

    1995-11-01

    This curriculum focuses on food buying, storage and preservation, and the nutritional value of convenience foods.

  5. UC Irvine Construction Related Hazardous Waste Some construction related wastes are hazardous and require special handling. Examples of such wastes

    E-Print Network [OSTI]

    Mease, Kenneth D.

    UC Irvine Construction Related Hazardous Waste Scope Some construction related wastes are hazardous the hazardous waste manifest. Process 1. When a construction project will generate hazardous wastes, the project and require special handling. Examples of such wastes include: · Asbestos Containing Materials · Mercury

  6. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  7. Alumni & Industry Magazine Chemical Engineering & Applied Chemistry

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    grease, waste animal fats, recycled veg- etable oils and agricultural seed oils into biodiesel. BioxAlumni & Industry Magazine Chemical Engineering & Applied Chemistry University of Toronto Volume 10

  8. Increasing homogeneity in global food supplies and the implications for food security

    E-Print Network [OSTI]

    Rieseberg, Loren

    Increasing homogeneity in global food supplies and the implications for food security Colin K Trust, 53115 Bonn, Germany; g CGIAR Research Program on Climate Change, Agriculture, and Food Security to the world's food supplies has been considered a potential threat to food security. However, changes

  9. Reward value of food pictures / 1 Pictures of Food Have Reward Value that Varies

    E-Print Network [OSTI]

    Chabris, Christopher F.

    Reward value of food pictures / 1 Pictures of Food Have Reward Value that Varies According RUNNING HEAD: Reward value of food pictures #12;Reward value of food pictures / 2 Abstract A stimulus pictures of food can be rewards for human subjects, with reward value operationalized as the physical

  10. WASTE DESCRIPTION CONTACT PHONE RECYCLED OR

    E-Print Network [OSTI]

    eliminates potential environmental impact of storing waste bricks. Waste Oil Roland Baillargeon, ext.3261 Source Reduction 3,500 Hazardous Waste $6,000 $0 $20,000 350 gallons of waste oil contaminated contamination was identified and replaced with non-chlorinated substitute. Waste oil is now removed free

  11. Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Hazardous Chemical Pharmaceutical Waste: A number of common pharmaceuticals are regulated as hazardous or more of the EPA characteristics of a hazardous chemical waste are also regulated as a hazardous

  12. University of Sussex Waste Management Policy

    E-Print Network [OSTI]

    Sussex, University of

    University of Sussex Waste Management Policy May 2007 #12;1 University of Sussex Waste Management Policy May 2007 University of Sussex Waste Management Policy Contents 1. Introduction 2. Policy Statement;2 University of Sussex Waste Management Policy May 2007 Waste Management Policy 1. Introduction Due

  13. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste and submit a chemical waste pick-up request form for proper disposal. Periodically evaluate your chemical are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO

  14. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  15. FOOD 520 Advances in Food Analysis Instructor: Dr. Jerzy Zawistowski

    E-Print Network [OSTI]

    and government. The course is composed of lectures and hands-on laboratories. Outline Spectroscopy: fundamental of the Journal of Food Science in the preparation of lab reports. Evaluation Theory 60% · Midterm 20% · Final. Handbook of Enzymatic Methods of Analysis. New York: Marcel Dekker, Inc. Hames, B.D. and Rickwood, D. (Eds

  16. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    SciTech Connect (OSTI)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facility intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.

  17. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-02-01

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  18. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  19. Progress Update: TRU Waste Shipping

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update at the Savannah River Site. A continued effort on shipping TRU waste to WIPP in Carlsbad, New Mexico.

  20. Solid Waste Management Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

  1. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  2. Enhanced Tank Waste Strategy Update

    Office of Environmental Management (EM)

    to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and...

  3. Nuclear Waste Partnership Contract Modifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Partnership Contract DE-EM0001971 Modifications NWP Modification Index Description Modification 001 Modification 002 Modification 003 Modification 004 Modification 005...

  4. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-09-15

    This Notice reminds all DOE employees of their duty to report allegations of fraud, waste, and abuse to the Office of Inspector General. No cancellation.

  5. Food Environments Near Home and School Related to Consumption of Soda and Fast Food

    E-Print Network [OSTI]

    Babey, Susan H; Wolstein, Joelle; Diamant, Allison L

    2011-01-01

    AM, Popkin BM. Trends in food locations and sources amongBM. Patterns and trends in food portion sizes, 1977-1998.Ludwig DS. Effects of fast-food consumption on energy intake

  6. Food deserts and access to fresh food in low-income San Diego

    E-Print Network [OSTI]

    Puhl, Emily Theresa

    2011-01-01

    R. Kaufman (2003) “Exploring Food Purchase Behavior of Low-Do the Poor Still Pay More? Food Price Variations in Largeand Pavan Yadav. 2008. “Beyond Food Deserts: Measuring and

  7. Geography of urban food access : exploring potential causes of food deserts

    E-Print Network [OSTI]

    Cameron, Caitlin

    2012-01-01

    We believe we understand food deserts, but we do not. In the last decade the phenomenon of food deserts has been often discussed, and many solutions are proposed to alleviate food access issues in American cities. However, ...

  8. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  9. Waste IncIneratIon and Waste PreventIon

    E-Print Network [OSTI]

    Columbia University

    replace fossil energy sources such as coal or oil and prevent about 9.75 million tonnes of carbon dioxide in recent years would withdraw these from material recovery. Regarding this point, the UBA would emphasise-/Abfallgesetz) continues to hold: Waste prevention has priority over recovery and disposal. Nevertheless, the use of waste

  10. Waste acceptance criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  11. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    SciTech Connect (OSTI)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  12. SYNERGIA Forum Integrated Municipal Solid Waste Management

    E-Print Network [OSTI]

    Columbia University

    2nd SYNERGIA Forum «Integrated Municipal Solid Waste Management: Recycling and Energy Change and Solid Waste Management" Anthony Mavropoulos President, Scientific Technical Committee, Chairman, SYNERGIA "Where Greece stands on the Ladder of Sustainable Waste Management " *Nikolaos

  13. Hazardous Waste Management Standards and Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

  14. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  15. Environmental Management Waste and Recycling Policy

    E-Print Network [OSTI]

    Haase, Markus

    Environmental Management Waste and Recycling Policy October 2006 The University is committed to sustainable waste management through reducing our consumption of materials, encouraging re-use where possible information in all future waste management contracts For further information see www

  16. Coolside waste management research

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Objective was to produce sufficient information on physical and chemical nature of Coolside waste (Coolside No.1, 3 at Edgewater power plant) to design and construct stable, environmentally safe landfills. Progress during this period was centered on analytical method development, elemental and mineralogical analysis of samples, and field facilities preparation to receive lysimeter fill. Sample preparation techniques for thick target PIXE/PIGE were investigated; good agreement between measured and actual values for standard fly ash were obtained for all elements except Fe, Ba, K (PIXE).

  17. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, John L. (Idaho Falls, ID)

    1988-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  18. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, John L. (Idaho Falls, ID)

    1989-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

  19. Tank Waste Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliers Tag:Take ActionPermitB3/15 Tank Waste

  20. IPM packages deliver food security

    E-Print Network [OSTI]

    Isaacs, Rufus

    IPM packages deliver food security For the past 5 years IPM CRSP researchers have been developing Package for potato production in Kyrgyzstan Central Asia Integrated Pest Management Collaborative Research, Walter Pett, and David Douches, Michigan State University. An IPM package is a set of practices

  1. IPM packages deliver food security

    E-Print Network [OSTI]

    Isaacs, Rufus

    IPM packages deliver food security For the past 5 years IPM CRSP researchers have been developing Package for open field tomato production in Uzbekistan Central Asia Integrated Pest Management. An IPM package is a set of practices and technologies that can be used in production to increase yield

  2. IPM packages deliver food security

    E-Print Network [OSTI]

    Isaacs, Rufus

    IPM packages deliver food security For the past 5 years IPM CRSP researchers have been developing Package for wheat production in Tajikistan Central Asia Integrated Pest Management Collaborative Research State University; Dr. Anvar Jalilov, Tajik Academy of Agricultural Sciences, Tajikistan. An IPM package

  3. Cook food to proper temperature.

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    and after handling or eating food; nafter playing with pets or visiting a zoo; nafter coughing, sneezing out of their mouths when they cough or sneeze. · Have the children touch something (table or chair. · Explain that if you wash your hands after coughing or sneezing in them, the germs will be washed away

  4. Project Management Plan Chinese Food

    E-Print Network [OSTI]

    Igusa, Kiyoshi

    impact of this project? · Data management: How do we collect, preserve and sort all of the files? Which special equipment, facilities needed or wanted? According to http://project-management-knowledge.com/ weProject Management Plan Chinese Food According to NSF, the basic elements of a project management

  5. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect (OSTI)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  6. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  7. Solid low-level radioactive waste radiation stability studies 

    E-Print Network [OSTI]

    Williams, Arnold Andre?

    1989-01-01

    MANAGEMENT . . . Historical background Characteristics of radioactive wastes Classification of radioactive wastes Disposal methodology and criteria Handling and storage of radioactive wastes SOLID RADIOACTIVE WASTES Historical background... Characteristics of the solidified wastes Storage and handling of solid radioactive wastes Shipment of solid radioactive wastes Solidification of waste solutions MATERIALS AND METHODS Ion-exchange methods. High integrity containers (HIC). . tv tx 15 15...

  8. Production and degradation of polyhydroxyalkanoates in waste environment

    E-Print Network [OSTI]

    waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA

  9. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    3 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2013 March 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction...

  10. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    2 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project...

  11. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 August 2011 Hanford Waste Treatment and Immobilization Plant Construction Quality...

  12. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    October 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant...

  13. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Office of Environmental Management (EM)

    Enterprise Assessments Review, Waste Isolation Pilot Plant - December 2014 Enterprise Assessments Review, Waste Isolation Pilot Plant - December 2014 December, 2014 Review of the...

  14. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant...

  15. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    May 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - May 2013 May 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction...

  16. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant...

  17. Waste Management Programmatic Environmental Impact Statement...

    Office of Environmental Management (EM)

    Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision Waste Management Programmatic Environmental Impact Statement (WM PEIS)...

  18. Independent Oversight Assessment, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the...

  19. Independent Oversight Activity Report, Hanford Waste Treatment...

    Energy Savers [EERE]

    - October 2013 October 2013 Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities...

  20. Integrated Solid Waste Management Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and municipality is required to file an integrated...

  1. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  2. Solid Waste Management Policy and Programs (Minnesota)

    Broader source: Energy.gov [DOE]

    These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse...

  3. Solid Waste Management Act (West Virginia)

    Broader source: Energy.gov [DOE]

    In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of...

  4. UNIVERSITY OF SOUTH CAROLINA INFECTIOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Morgan, Stephen L.

    UNIVERSITY OF SOUTH CAROLINA INFECTIOUS WASTE DISPOSAL Introduction All biologically EHS: -South Carolina Infectious Waste Management Regulations R.61-105 #12;

  5. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations This document was used to determine facts and conditions...

  6. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  7. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the results of an...

  8. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the results of an...

  9. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents...

  10. Overview of Integrated Waste Treatment Unit

    Office of Environmental Management (EM)

    Environmental Management Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety performance cleanup closure...

  11. Tank Waste System Integrated Project Team

    Office of Environmental Management (EM)

    to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve...

  12. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection...

  13. Enforcement Letter, Westinghouse Waste Isolation Division - October...

    Broader source: Energy.gov (indexed) [DOE]

    to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant On October 3, 2000,...

  14. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  15. Vitrification Melter Waste Incidental to Reprocessing Determination...

    Office of Environmental Management (EM)

    DOE Manual 435.1-1 Waste-Incidental-To-Reprocessing Determination for the West Valley Demonstration Project Vitrification Melter Vitrification Melter Waste Incidental to...

  16. Cummins Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Cummins Waste Heat Recovery Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit,...

  17. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

  18. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive Waste Heat Recovery Presentation given at the 2007 Diesel Engine-Efficiency & Emissions...

  19. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  20. Waste Encapsulation and Storage Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the waste inside those tanks. Both elements were ultimately placed in sturdy, stainless steel containers which were then put into Hanford's Waste Encapsulation Storage...

  1. Waste Treatment Facility Passes Federal Inspection, Completes...

    Office of Environmental Management (EM)

    Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins...

  2. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  3. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at...

  4. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-12-15

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG). Cancels: DOE N 221.12, Reporting Fraud, Waste, and Abuse, dated 10-19-06

  5. Generating Steam by Waste Incineration 

    E-Print Network [OSTI]

    Williams, D. R.; Darrow, L. A.

    1981-01-01

    Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

  6. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  7. UC Global Food Initiative: UC ANR student fellows work on food insecurity, food communication and developing the next generation of Cooperative Extension experts

    E-Print Network [OSTI]

    Downing, Jim

    2015-01-01

    Research news UC Global Food Initiative: UC ANRstudent fellows work on foodinsecurity, food communication and developing the next

  8. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  9. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  10. An Introduction to Virginia Tech's Waste Management Program

    E-Print Network [OSTI]

    ;Waste Management Program · Montgomery Regional Solid Waste Authority (MRSWA): · Provides integrated solid waste management for the New River Valley Region · Located in Christiansburg, VA · Materials;Waste Management Program · Non-Municipal Solid Waste Recycled MATERIAL DESCRIPTION SOURCE RESPONSIBLE

  11. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    possibly including both waste oils and crop-derived oils (latter is made only from waste oils and greases. If biomassSunflower Oil Palm Algae Waste Oils Hydrogenation Trans

  12. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    possibly including both waste oils and crop-derived oils (latter is made only from waste oils and greases. If biomassSunflower Oil Palm Algae Waste Oils Hydrogenation Trans

  13. Global trends in agriculture and food systems

    E-Print Network [OSTI]

    Delaware, University of

    development * Corresponding author: Danish Research Centre for Organic Food and Farming (DARCOF), P.O. Box 501 Global trends in agriculture and food systems Marie Trydeman Knudsen*, Niels Halberg, Jørgen E .................................................................................16 Global trends in organic agriculture

  14. Energy Savings in Food Processing Dehumidification 

    E-Print Network [OSTI]

    Turney, R. L.; Young, F. J.

    1994-01-01

    Food processors have the unique responsibility of maintaining environmental, process and sanitation standards for government and consumers. Usually the food plant is a large facility with many sources of contamination, all of which must...

  15. YOUR GUIDE TO BEING A ZER WASTE HERO AT UC SAN DIEGO BROUGHT TO YOU BY HDH SUSTAINABILITY

    E-Print Network [OSTI]

    California at San Diego, University of

    The Green Guide YOUR GUIDE TO BEING A ZERØ WASTE HERO AT UC SAN DIEGO BROUGHT TO YOU BY HDH SUSTAINABILITY #12;We are committed to all aspects of sustainability. We integrate green practices into our, bones, and coffee grinds and tea bags. Keep trash and recyclables out of the food scrap bins

  16. Nanoparticle Technology for Biorefining of Non-Food Source Feedstocks

    SciTech Connect (OSTI)

    Pruski, Marek; Trewyn, Brian G.; Lee, Young-Jin; Lin, Victor S.-Y.

    2013-01-22

    The goal of this proposed work is to develop and optimize the synthesis of mesoporous nanoparticle materials that are able to selectively sequester fatty acids from hexane extracts from algae, and to catalyze their transformation, as well as waste oils, into biodiesel. The project involves studies of the interactions between the functionalized MSN surface and the sequestering molecules. We investigate the mechanisms of selective extraction of fatty acids and conversion of triglycerides and fatty acids into biodiesel by the produced nanoparticles. This knowledge is used to further improve the properties of the mesoporous nanoparticle materials for both tasks. Furthermore, we investigate the strategies for scaling the synthesis of the catalytic nanomaterials up from the current pilot plant scale to industrial level, such that the biodiesel obtained with this technology can successfully compete with food crop-based biodiesel and petroleum diesel.

  17. Control of Viral Contamination of Food and Environment

    E-Print Network [OSTI]

    Cliver, Dean O.

    2009-01-01

    M. , & Sattar, S. A. (2000a). Contamination of foods by food2004). Norovirus cross-contamination during food handlingcoli in mussels after contamination and depu- ration.

  18. Food Decisions Among Working Latino Families in California

    E-Print Network [OSTI]

    Sawyer, Mirna Troncoso

    2015-01-01

    C. (2003). Personal and family food choice schemas of ruralevening meals. Scripts for food choice. Appetite, 51(3),parents' satisfaction with food-choice coping strategies.

  19. Theorizing Food Sharing Practices in a Junior High Classroom

    E-Print Network [OSTI]

    Rice, Mary

    2013-01-01

    10.1177/0022487106296218 Theorizing Food Exchanges Conle,a psychosociology of food consumption. In C. Counihan &P. Van Estrik (Eds. ), Food, and culture: A reader (2 nd

  20. Metro Vancouver: Designing for Urban Food Production

    E-Print Network [OSTI]

    Roehr, Daniel; Kunigk, Isabel

    2009-01-01

    urbanism, which would provide for the integration of sustainableurbanism and municipal supported agriculture: a new food system path for sustainable

  1. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  2. Carbon Footprinting for the Food Industry

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    174-1 Carbon Footprinting for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-174 and Natural Resources Carbon footprinting in the food industry is an activity that determines the greenhouse footprint for their processing facility and products. The importance of establishing a carbon footprint

  3. Persistence of complex food webs in metacommunities

    E-Print Network [OSTI]

    Persistence of complex food webs in metacommunities Gesa A. B¨ohme 1 and Thilo Gross 2 1 Max of Engineering Mathematics, Bristol, UK Keywords: metacommunities, food webs, predator-prey interactions, geo diversity and food web complexity. Recently Pillai et al. proposed a simple modeling framework

  4. Modelling Food Webs B. Drossel1

    E-Print Network [OSTI]

    McKane, Alan

    Modelling Food Webs B. Drossel1 and A. J. McKane2,3 1 Institut f¨ur Festk¨orperphysik, TU Darmstadt, UK Abstract We review theoretical approaches to the understanding of food webs. After an overview of the available food web data, we discuss three different classes of models. The first class comprise static

  5. UNSTRUCTURED MARINE FOOD WEBS AND "POLLUTANT ANALOGUES"

    E-Print Network [OSTI]

    by using real data. Let us first assume that in a food web each transfer of organic material (or energyUNSTRUCTURED MARINE FOOD WEBS AND "POLLUTANT ANALOGUES" JOHN D. ISAACS' ABSTRACT The several envi- ronments. The concentration factor found in the known and describable food chain of the Salton

  6. INTRODUCTION Aquatic food-webs' ecology

    E-Print Network [OSTI]

    INTRODUCTION Aquatic food-webs' ecology: old and new challenges Andrea Belgrano Looking up ``aquatic food web'' on Google provides a dizzying array of eclectic sites and information (and disinformation!) to choose from. However, even within this morass it is clear that aquatic food-web research has

  7. Reducing Food Safety Risks in Community Gardens

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Reducing Food Safety Risks in Community Gardens Creating and maintaining community and school gardens has been identified as an effective strategy to increase healthy food awareness and consumption in the U.S. since 1990. In commercial food production, employing a set of risk-reduction steps -- known

  8. HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously with the words "Hazardous Waste."

    E-Print Network [OSTI]

    Slatton, Clint

    HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously. Decontaminate 5. Dispose of cleanup debris as Hazardous Waste Chemical Spill ­ major 1. Evacuate area, isolate with the words "Hazardous Waste." 2. Label all containers accurately, indicating the constituents and approximate

  9. Assessment of TEES{reg_sign} applications for Wet Industrial Wastes: Energy benefit and economic analysis report

    SciTech Connect (OSTI)

    Elliott, D.C.; Scheer, T.H.

    1992-02-01

    Fundamental work is catalyzed biomass pyrolysis/gasification led to the Thermochemical Environmental Energy System (TEES{reg_sign}) concept, a means of converting moist biomass feedstocks to high-value fuel gases such as methane. A low-temperature (350{degrees}C), pressurized (3100 psig) reaction environment and a nickel catalyst are used to reduce volumes of very high-moisture wastes such as food processing byproducts while producing useful quantities of energy. A study was conducted to assess the economic viability of a range of potential applications of the process. Cases examined included feedstocks of cheese whey, grape pomace, spent grain, and an organic chemical waste stream. The analysis indicated that only the organic chemical waste process is economically attractive in the existing energy/economic environment. However, food processing cases will become attractive as alternative disposal practices are curtailed and energy prices rise.

  10. Waste drum refurbishment

    SciTech Connect (OSTI)

    Whitmill, L.J.

    1996-10-18

    Low-carbon steel, radioactive waste containers (55-gallon drums) are experiencing degradation due to moisture and temperature fluctuations. With thousands of these containers currently in use; drum refurbishment becomes a significant issue for the taxpayer and stockholders. This drum refurbishment is a non-intrusive, portable process costing between 1/2 and 1/25 the cost of repackaging, depending on the severity of degradation. At the INEL alone, there are an estimated 9,000 drums earmarked for repackaging. Refurbishing drums rather than repackaging can save up to $45,000,000 at the INEL. Based on current but ever changing WIPP Waste Acceptance Criteria (WAC), this drum refurbishment process will restore drums to a WIPP acceptable condition plus; drums with up to 40% thinning o the wall can be refurbished to meet performance test requirements for DOT 7A Type A packaging. A refurbished drum provides a tough, corrosion resistant, waterproof container with longer storage life and an additional containment barrier. Drums are coated with a high-pressure spray copolymer material approximately .045 inches thick. Increase in internal drum temperature can be held to less than 15 F. Application can be performed hands-on or the equipment is readily adaptable and controllable for remote operations. The material dries to touch in seconds, is fully cured in 48 hours and has a service temperature of {minus}60 to 500 F. Drums can be coated with little or no surface preparation. This research was performed on drums however research results indicate the coating is very versatile and compatible with most any material and geometry. It could be used to provide abrasion resistance, corrosion protection and waterproofing to almost anything.

  11. The University of British Columbia FOOD 521 -Advances in Food Biotechnology

    E-Print Network [OSTI]

    quality, functional foods, and flavor manufacturing. Students will be assessed by mid-term and finalThe University of British Columbia FOOD 521 - Advances in Food Biotechnology Winter Term 2 (JAN: FOOD 521 is a topical course intended to provide an advanced understanding of key concepts and current

  12. FOOD 527G (3 credits) HACCP Food Safety Management System Target Audience

    E-Print Network [OSTI]

    1 FOOD 527G (3 credits) HACCP Food Safety Management System Target Audience The course is designed primarily for the MFS (Master of Food Science) students. However, this course would also be beneficial for other Food Science graduate students (M.Sc. and Ph.D.). Course Description The HACCP (Hazard Analysis

  13. Food, Glorious Food Mary-Slater Linn & Jeffrey Nystuen with Chef Chandra Longsaravane getting ready to

    E-Print Network [OSTI]

    Nystuen, Jeffrey A.

    35 Food, Glorious Food Mary-Slater Linn & Jeffrey Nystuen with Chef Chandra Longsaravane getting. How different would the food be from Thailand? Would there be unique flavors and products? Let's prowl the food markets, try the street stalls, verify the recommendations of the guidebook. We signed up

  14. S:Sensory&Food Mechanisms for Sensing Fat in Food in the Mouth

    E-Print Network [OSTI]

    Rolls, Edmund T.

    S:Sensory&Food Quality Mechanisms for Sensing Fat in Food in the Mouth Presented at the Symposium Pleasure and Beyond" held at the Institute of Food Technologists 2011 Annual Meeting, New Orleans, La., U show that the pleasantness of food texture is represented in the orbitofrontal cortex. These findings

  15. University Food Permit For Serving Food or Refreshments on University Property

    E-Print Network [OSTI]

    Thomas, David D.

    University Food Permit For Serving Food or Refreshments on University Property Not Required for Events When All Food is Provided or Catered by University Dining Services (The nature of your event may require that you provide additional details or information on request) Authorization for serving food

  16. Food ProtectionTrends,Vol. 25, No. 12, Pages 981990 2005, International Association for Food Protection

    E-Print Network [OSTI]

    Food ProtectionTrends,Vol. 25, No. 12, Pages 981­990 Copyright© 2005, International Association for Food Protection 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322-2864 Factors Impacting Food Workers' and Managers' Safe Food Preparation Practices: A Qualitative Study LAURA R. GREEN1* and CAROL SELMAN2 1 Health

  17. LLNL Waste Minimization Program Plan

    SciTech Connect (OSTI)

    Not Available

    1990-02-14

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

  18. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  19. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-07-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  20. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    SciTech Connect (OSTI)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  1. Waste Disposal Site and Radioactive Waste Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

  2. Waste heat: Utilization and management

    SciTech Connect (OSTI)

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  3. ISWA Study Tour WASTE-TO-ENERGY

    E-Print Network [OSTI]

    Columbia University

    .30 pm ­ 2.00 pm Development of Municipal Solid Waste Management and Treatment Facilities in Vienna;Practice Seminar on Sustainable Waste Management in Europe based on Prevention, Recycling, Recovery taught by senior experts in waste management, environmental policy and engineering 2. Visits to waste

  4. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  5. http://wmr.sagepub.com/ Waste Management &

    E-Print Network [OSTI]

    : International Solid Waste Association can be found at:Waste Management & ResearchAdditional serviceshttp://wmr.sagepub.com/ Research Waste Management & http://wmr.sagepub.com/content/13/4/363 The online version of this article can be found at: DOI: 10.1177/0734242X9501300407 1995 13: 363Waste Manag

  6. Wake Forest University Medical Waste Management Plan

    E-Print Network [OSTI]

    Cook, Greg

    Wake Forest University Medical Waste Management Plan June 15, 2009 Rev.1 1 Biohazard Waste without a permit from the Solid Waste Section. The Occupational Safety and Health Administration (OSHA) regulate Bloodborne Pathogens and Exposure Control Plans. Under state regulations a solid waste generator

  7. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    reflect avoided waste disposal costs and lower material purchase costs ($6000) Hydraulic Oil ProductWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2002 WASTE TYPE DESCRIPTION DETAILS * Electrophoretic Mini-Gels Microscale Chemical Use 2,200 Hazardous Waste - Lab Pack $10

  8. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    . Removed grit and sludge are mixed with the waste oil. Photon-counting spectrofluorimeter Substitution 54 or composted at the stump dump. Plant Engineering grounds vehicle wash system * Waste minimization 8,000 OilsWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2007 WASTE TYPE

  9. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  10. Bubblers Speed Nuclear Waste Processing at SRS

    SciTech Connect (OSTI)

    2010-11-14

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  11. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  12. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  13. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  14. Agricultural Waste Management System Component Design

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Agricultural Waste Management System Component Design Chapter 10 Part 651 Agricultural Waste Management Field Handbook 10­1(210-vi-AWMFH, rev. 1, July 1996) Chapter 10 Agricultural Waste Management....................................................................................................10­70 10­i #12;Chapter 10 Agricultural Waste Management System Component Design Part 651 Agricultural

  15. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema (OSTI)

    None

    2014-08-06

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  16. Food Safety for Tailgate Parties and Picnics 

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2001-10-22

    , diarrhea, nausea, headaches and maybe even vomiting, can result from the improper handling of foods. The bacteria that cause foodborne illness grow at temper- atures between 40 and 140 degrees F. This is called the ?danger zone.? Foods prepared for outdoor... eating can fall into the danger zone even when the weather is cool. What foods are risky? Almost any food can be a source of hazardous bacteria, but the most hazardous foods are moist and contain protein. This includes meats, poultry, fish, seafood, eggs...

  17. 4-H Favorite Foods Unit 1. 

    E-Print Network [OSTI]

    Cox, Maeona; Mason, Louise; Reasonover, Frances; Tribble, Marie

    1958-01-01

    Lettuce leaves or other greens 1. Wash lettuce or other greens. Place in refrigerator. 2. Wash apples and celery. Drain. Chop celery as shown. See drawing for how to dice apples. Put in large mixing bowl. 3. Add nuts. 4. Blend mayonnaise and cream... safely. 8. Learn the best way to wash dishes and clean up the kitchen. 0 Learn to eat the foods listed on the Texas Food Standard. Keep your food record up to date. Exhibit one food you learned to cook at favorite food show. Kitchen Tips for 4-H...

  18. The Role of Food in American Society

    E-Print Network [OSTI]

    Ballard, Hannah; Heiman, Kelly; Kimmel, Wes; Barnard, Julia; Holmes, Tyler

    2010-06-11

    Potawatomi managed to resist missionization and a subsequent loss of identity. Additionally, by behav- ing in this manner, the Potawatomi men preserved their culturally sanctioned role in food production. The male food responsibility was centered on hunting... stream_size 170307 stream_content_type text/plain stream_name The Role of Food.pdf.txt stream_source_info The Role of Food.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 The Role of Food...

  19. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctoberSustainableFAQS TITLETank Waste and Waste

  20. WIPP TRANSURANIC WASTE How has the WIPP TRU Waste Inventory Changed

    E-Print Network [OSTI]

    WIPP TRANSURANIC WASTE INVENTORY How has the WIPP TRU Waste Inventory Changed Since the 1998 improves. At the time of the 1998 Certification Decision, no waste had been emplaced in WIPP, therefore the entire waste inventory was an es- timation of the waste DOE might put in WIPP. The recer- tification

  1. Seventh State of the Environment Report 3.11 Waste Management 3.11 WASTE MANAGEMENT

    E-Print Network [OSTI]

    Columbia University

    Seventh State of the Environment Report ­ 3.11 Waste Management 211 3.11 WASTE MANAGEMENT 3 on waste management: specific types of waste (end-of-life vehicles, white goods) must be collected of waste management in Austria for the period under review (2000 - 2002) were shaped above all by two

  2. Consolidation process for producing ceramic waste forms

    DOE Patents [OSTI]

    Hash, Harry C. (Joliet, IL); Hash, Mark C. (Shorewood, IL)

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  3. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  4. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect (OSTI)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  5. Power Outage 1.Stop serving food and beverages.

    E-Print Network [OSTI]

    LESSON1 Power Outage 1.Stop serving food and beverages. Notify customers. 2.Do two things food. Emergency Readiness for Food Workers #12;LESSON1 Power Outage 5.Food being held cold: Discard

  6. Ordinary Food Spaces in a Global City: Hong Kong

    E-Print Network [OSTI]

    Blake, Megan Kathleen

    2013-01-01

    Megan Kathleen. “Ordinary Food Places in a Global City: Hongotherinfo/110318_food_supply_faq/e_foods upply_faq.pdf .Megan Kathleen. “Ordinary Food Places in a Global City: Hong

  7. Students' Perceptions of Food and Factors That Influence Purchasing Decisions 

    E-Print Network [OSTI]

    Smith, Lindsay Marie

    2013-06-06

    When it comes to food, college students need help selecting healthy food choices. Students are presented with many options to purchase food at grocery stores and restaurants and many of these options include organic food. ...

  8. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  9. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  10. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  11. Waste Handeling Building Conceptual Study

    SciTech Connect (OSTI)

    G.W. Rowe

    2000-11-06

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.

  12. Optimization of Waste Disposal - 13338

    SciTech Connect (OSTI)

    Shephard, E.; Walter, N.; Downey, H.; Collopy, P.; Conant, J.

    2013-07-01

    From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

  13. On Going TRU Waste Disposition

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  14. On Going TRU Waste Disposition

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  15. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report. This report is required by and has bee n prepared in accordance with the WIPP Hazardous Waste Facility Perm it Part 2, Permit Condition 2.4. We certify under penalty...

  16. Reporting Fraud, Waste and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-07-12

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  17. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-07

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General's responsibilities in this area. Does not cancel other directives.

  18. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  19. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-06-09

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General’s responsibilities in this area. No cancellation.

  20. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-29

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General’s responsibilities in this area. No cancellation.