Sample records for grease food wastes

  1. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    SciTech Connect (OSTI)

    Wan Caixia; Zhou Quancheng; Fu Guiming [Department of Food, Agricultural, and Biological Engineering, Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural, and Biological Engineering, Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096 (United States)

    2011-08-15T23:59:59.000Z

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  2. Flexible Distributed Energy and Water from Waste for the Food...

    Energy Savers [EERE]

    Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 Flexible Distributed Energy and Water from Waste for the Food and Beverage...

  3. Waste Toolkit A-Z Food waste (recycling on-site)

    E-Print Network [OSTI]

    Melham, Tom

    into compost in 14 days, when mixed with wood chippings (from your grounds/gardens). The waste is heated usingWaste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling food waste on-site is a new concept as the University typically has its waste collected and taken away

  4. All Food Waste Food-soiled Paper Products

    E-Print Network [OSTI]

    Jacobs, Lucia

    Soymilk or Juice Boxes Yogurt Containers Plastics #1 and #2 (Narrow-necked bottles only) Glass Bottles Food Waste Clean Paper #1 and #2 Plastic Bottles Anything else that can be COMPOSTED or RECYCLED, chopsticks Teabags Non-Compostable Coffee Lids Liquids or Ice Plastic Glass Metal Styrofoam Soymilk

  5. Flexible Distributed Energy & Water from Waste for the Food ...

    Energy Savers [EERE]

    Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry - Presentation by GE Global Research, June 2011 Flexible Distributed Energy & Water from Waste for...

  6. The Pipe vs. The Shed: Waste Water compared with Natural Hydrology in an Urban Setting

    E-Print Network [OSTI]

    Lather, Alaska; Wozniak, Monika

    2011-01-01T23:59:59.000Z

    etc. ). Most oil and grease (aka sludge) are removed andoils, and greases; Page 14 of 20  winery waste; municipal water and wastewater sludge;

  7. RDS and Recycling Waste Diversion in Food Prep

    E-Print Network [OSTI]

    Awtar, Shorya

    RDS and Recycling Waste Diversion in Food Prep Setting #12;Why Recycle? Recycling saves resources Recycling one ton of paper saves 17 trees! Recycling saves energy Recycling one aluminum can saves enough energy to power a television for 3 hours! Recycling is easy There are 4 waste categories here at UM

  8. Production of degradable polymers from food-waste streams

    SciTech Connect (OSTI)

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01T23:59:59.000Z

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  9. Production of degradable polymers from food-waste streams

    SciTech Connect (OSTI)

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01T23:59:59.000Z

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  10. Waste Energy Analysis Recovery for a Typical Food Processing Plant

    E-Print Network [OSTI]

    Miller, P. H.; Mann, L., Jr.

    1980-01-01T23:59:59.000Z

    An energy analysis made for the Joan of Arc Food Processing Plant in St. Francisville, Louisiana indicated that a significant quantity of waste heat energy was being released to the atmosphere in the forms of low quality steam and hot flue gases...

  11. Lubrication from mixture of boric acid with oils and greases

    DOE Patents [OSTI]

    Erdemir, A.

    1995-07-11T23:59:59.000Z

    Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  12. EECBG Success Story: Atlanta Suburb Greases the Path to Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atlanta Suburb Greases the Path to Savings with Biodiesel EECBG Success Story: Atlanta Suburb Greases the Path to Savings with Biodiesel December 7, 2011 - 3:33pm Addthis Downtown...

  13. Bio-based Greases: Environmental concerns

    E-Print Network [OSTI]

    unknown authors

    are causing a resurgence for these plant-based lubricants. 36 • MAY 2014 TRIBOLOGY & LUBRICATION TECHNOLOGY WWW.STLE.ORGAFTER A 150-YEAR HIATUS, lubricating greases made from agricultural products are making a comeback. For some 4,000 years, animal fats, olive oil and other biobased materials kept wheels and gears moving along smoothly. The shift toward petroleum-based lubricants came about only in the latter half of the 19th century. 1 Now uncertainties in petroleum prices and supply sources, coupled with an emerging awareness of environmental factors, are turning a small segment of the market back to lubricants made from renewable resources—mainly plants. Back to the Future Can bio-based lubricants compete in a world of high-capacity generators, jet aircraft engines and 18-wheel trucks? This question is particularly challenging when the lubricants are greases, which require thickeners and additives and must perform under heavy loads and in hostile environments. WHY BIO?

  14. Bean Commercial Grease | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPowerBean Commercial Grease Jump to:

  15. Process Waste Heat Recovery in the Food Industry - A System Analysis

    E-Print Network [OSTI]

    Lundberg, W. L.; Mutone, G. A.

    1983-01-01T23:59:59.000Z

    An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

  16. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect (OSTI)

    Stabnikova, O. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)], E-mail: costab@ntu.edu.sg; Liu, X.Y.; Wang, J.Y. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2008-07-01T23:59:59.000Z

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  17. Utilization of high-carbohydrate food wastes as the feedstock for degradable plastics

    SciTech Connect (OSTI)

    Tsai, S.P.; Coleman, R.D.; Tsai, TenLin S.; Bonsignore, P.V.

    1989-01-01T23:59:59.000Z

    Wastestreams from food processing industries have become an economic burden as well as a serious environmental problem. In the United States, billions of pounds of potato processed each year is typically discarded or sold as cattle feed at $3-6/ton. For large food processing plants, removal of more than 1 million gallons of waste/day/plant is required. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that (1) bioconverts existing food processing wastestream into lactic acid, and (2) utilizes lactic acid for making environmentally safe, degradable plastics. Although the initial substrate for Argonne's process development is potato waste, the process will be applied to many other high-carbohydrate food wastes. Argonne has developed a process to bioconvert greater than 90% of the fermentable starch in solid potato waste to glucose. Lactic acid is produced from glucose via fermentation and subsequently recovered/purified for plastic synthesis. A continuous lactic acid fermentation and recovery process has been designed. Batch fermentation data showed good cell growth and excellent yields (greater than 95%) of lactic acid production from the hydrolyzed potato waste. Three product recovery processes (electrodialysis, liquid-liquid extraction, and esterification) are being evaluated. Plastics containing lactic acid can be designed to have various mechanical properties and degradation rates. Argonne is developing lactic acid plastics that have some novel features. These environmentally-safe, degradable plastics have many attractive applications such as composting bags and agriculture mulch films. Other potential applications of lactic acid polymers include programmable pesticide and fertilizer delivery systems.

  18. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect (OSTI)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01T23:59:59.000Z

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  19. ForPeerReview Greased hedgehogs new links between hedgehog

    E-Print Network [OSTI]

    Breitling, Rainer

    ForPeerReview 1 Greased hedgehogs ­ new links between hedgehog signaling and cholesterol metabolism on lipoprotein particles to establish its morphogenic gradient in the developing embryo. Additionally of morphogen gradients, which provide positional information to cells in an originally homogenous field

  20. Author's Accepted Manuscript Aircraft Landing Gear Greased Slider Bearing

    E-Print Network [OSTI]

    . Numerical results indicate fundamental differences in fluid flow behavior between greased and oil-lubricated in order to design high efficiency bearings. For more than 30 years, lubrication studies have been extended to include tem- perature effects [2]. Many of the thermo-elasto-hydrodynamic (TEHD) studies were steady

  1. Review of comparative LCAs of food waste management systems - Current status and potential improvements

    SciTech Connect (OSTI)

    Bernstad, A., E-mail: anna.bernstad@chemeng.lth.se [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, Chemical Centre, 221 00 Lund (Sweden); Cour Jansen, J. la [Water and Environmental Engineering at the Department of Chemical Engineering, Lund University, Chemical Centre, 221 00 Lund (Sweden)

    2012-12-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer GHG-emissions from different treatment alternatives vary largely in 25 reviewed comparative LCAs of bio-waste management. Black-Right-Pointing-Pointer System-boundary settings often vary largely in reviewed studies. Black-Right-Pointing-Pointer Existing LCA guidelines give varying recommendations in relation to several key issues. - Abstract: Twenty-five comparative cycle assessments (LCAs) addressing food waste treatment were reviewed, including the treatment alternatives landfill, thermal treatment, compost (small and large scale) and anaerobic digestion. The global warming potential related to these treatment alternatives varies largely amongst the studies. Large differences in relation to setting of system boundaries, methodological choices and variations in used input data were seen between the studies. Also, a number of internal contradictions were identified, many times resulting in biased comparisons between alternatives. Thus, noticed differences in global warming potential are not found to be a result of actual differences in the environmental impacts from studied systems, but rather to differences in the performance of the study. A number of key issues with high impact on the overall global warming potential from different treatment alternatives for food waste were identified through the use of one-way sensitivity analyses in relation to a previously performed LCA of food waste management. Assumptions related to characteristics in treated waste, losses and emissions of carbon, nutrients and other compounds during the collection, storage and pretreatment, potential energy recovery through combustion, emissions from composting, emissions from storage and land use of bio-fertilizers and chemical fertilizers and eco-profiles of substituted goods were all identified as highly relevant for the outcomes of this type of comparisons. As the use of LCA in this area is likely to increase in coming years, it is highly relevant to establish more detailed guidelines within this field in order to increase both the general quality in assessments as well as the potentials for cross-study comparisons.

  2. Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective

    SciTech Connect (OSTI)

    Bernstad, A., E-mail: Anna.bernstad@chemeng.lth.se [Water and Environmental Engineering, Department of Chemical Engineering, Lund University (Sweden); Cour Jansen, J. la [Water and Environmental Engineering, Department of Chemical Engineering, Lund University (Sweden)

    2012-05-15T23:59:59.000Z

    Highlight: Black-Right-Pointing-Pointer Four modern and innovative systems for household food waste collection are compared. Black-Right-Pointing-Pointer Direct emissions and resource use were based on full-scale data. Black-Right-Pointing-Pointer Conservation of nutrients/energy content over the system was considered. Black-Right-Pointing-Pointer Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4 kg NO{sub 3}{sup -}eq/ton food waste), acidification potential (-0.4 to -1.0 kg SO{sub 2}{sup -}eq/ton food waste), global warming potential (-790 to -960 kg CO{sub 2}{sup -}eq/ton food waste) and primary energy use (-1.7 to -3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The hot spot identification shows that losses of organic matter in mechanical pretreatment as well as tank connected food waste disposal systems and energy in drying and vacuum systems reply to the largest impact on the results in each system respectively.

  3. areca-a food waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    community characteristics and community food resources as well as materials for assessing household food security, food resource accessibility, food availability and...

  4. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Composting Food Waste at the New Student Union Building

    E-Print Network [OSTI]

    Into Composting Food Waste at the New Student Union Building Peter Hua, Jordan Smith, Kelsey Zhu University Investigation Into Composting Food Waste at the New Student Union Building Peter Hua Jordan Smith Kelsey Zhu LIST OF ILLUSTRATIONS GLOSSARY LIST OF ABBREVIATIONS 1.0 INTRODUCTION 2.0 ROOFTOP COMPOSTING

  5. P. Ulloa, "Overview of Food Waste Composting in the U.S." Internal Report, Earth Engineering Center, Columbia University, July 2008.

    E-Print Network [OSTI]

    Columbia University

    P. Ulloa, "Overview of Food Waste Composting in the U.S." Internal Report, Earth Engineering Center, Columbia University, July 2008. 1 Overview of Food Waste Composting in the U.S. According to the State of Garbage, in 2006, forty-six of the fifty states reported tonnage data for "recycled" (composted or mulched

  6. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea

    SciTech Connect (OSTI)

    Kim, Mi-Hyung, E-mail: mhkim9@snu.ac.kr [Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul 151-742 (Korea, Republic of); Song, Yul-Eum, E-mail: yesong0724@dongguk.edu [Department of Philosophy, Dongguk University, Pil-Dong 3-Ga, Jung-Gu, Seoul 100-715 (Korea, Republic of); Department of Life Science, Dongguk University, Pil-Dong 3-Ga, Jung-Gu, Seoul 100-715 (Korea, Republic of); Song, Han-Byul, E-mail: kuackyang@ssu.ac.kr [Department of Chemical Engineering, Soongsil University, Sangdo-Ro 369, Dongjak-Gu, Seoul 156-743 (Korea, Republic of); Kim, Jung-Wk, E-mail: kimjw@snu.ac.kr [Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul 151-742 (Korea, Republic of); Hwang, Sun-Jin, E-mail: sjhwang@khu.ac.kr [Department of Environmental Science and Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of)

    2011-09-15T23:59:59.000Z

    Highlights: > Various food waste disposal options were evaluated from the perspective of global warming. > Costs of the options were compared by the methodology of life cycle assessment and life cycle cost analysis. > Carbon price and valuable by-products were used for analyzing environmental credits. > The benefit-cost ratio of wet feeding scenario was the highest. - Abstract: The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO{sub 2} reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest.

  7. Flexible Distributed Energy & Water from Waste for Food and Beverage Industry

    SciTech Connect (OSTI)

    Shi, Ruijie

    2013-12-30T23:59:59.000Z

    Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) to recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.

  8. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15T23:59:59.000Z

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  9. The effects of surfactant concentration on grease removal by air flotation in municipal sewage treatment

    E-Print Network [OSTI]

    Perry, Larry Eugene

    1978-01-01T23:59:59.000Z

    systems, high grease loading contributes to the formation of scum blankets which reduce operating efficiency and may lead to expensive shut-down and clean-out operations. Normally, influent wastewater to biological treatment systems with oil and grease... are forcing engineers to take a closer look at specif1c aspects of wastewater treatment. One such aspect is that of remov1ng oil and grease from wastewater streams. The average ind1vidual is well aware of the effects of discharging oily substances...

  10. Boron-based Additives in Oil and Grease for Wind Turbine Applications

    E-Print Network [OSTI]

    Kim, Jun-Hyeok

    2013-06-25T23:59:59.000Z

    This research investigates the tribological performance of crystalline and amorphous powders of boron as additives in lubricants: grease and mineral oil for potential applications of wind turbine. This research is focused on the wear resistance...

  11. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    . Removed grit and sludge are mixed with the waste oil. Photon-counting spectrofluorimeter Substitution 54 or composted at the stump dump. Plant Engineering grounds vehicle wash system * Waste minimization 8,000 Oils and eliminates the potential of oil and grease being released to soil. Organic solvents Substitution 678

  12. An application of the theory of planned behaviour to study the influencing factors of participation in source separation of food waste

    SciTech Connect (OSTI)

    Karim Ghani, Wan Azlina Wan Ab., E-mail: wanaz@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Rusli, Iffah Farizan, E-mail: iffahrusli@yahoo.com [Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Biak, Dayang Radiah Awang, E-mail: dayang@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Idris, Azni, E-mail: azni@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia)

    2013-05-15T23:59:59.000Z

    Highlights: ? Theory of planned behaviour (TPB) has been conducted to identify the influencing factors for participation in source separation of food waste using self administered questionnaires. ? The findings suggested several implications for the development and implementation of waste separation at home programme. ? The analysis indicates that the attitude towards waste separation is determined as the main predictors where this in turn could be a significant predictor of the repondent’s actual food waste separation behaviour. ? To date, none of similar have been reported elsewhere and this finding will be beneficial to local Authorities as indicator in designing campaigns to promote the use of waste separation programmes to reinforce the positive attitudes. - Abstract: Tremendous increases in biodegradable (food waste) generation significantly impact the local authorities, who are responsible to manage, treat and dispose of this waste. The process of separation of food waste at its generation source is identified as effective means in reducing the amount food waste sent to landfill and can be reused as feedstock to downstream treatment processes namely composting or anaerobic digestion. However, these efforts will only succeed with positive attitudes and highly participations rate by the public towards the scheme. Thus, the social survey (using questionnaires) to analyse public’s view and influencing factors towards participation in source separation of food waste in households based on the theory of planned behaviour technique (TPB) was performed in June and July 2011 among selected staff in Universiti Putra Malaysia, Serdang, Selangor. The survey demonstrates that the public has positive intention in participating provided the opportunities, facilities and knowledge on waste separation at source are adequately prepared by the respective local authorities. Furthermore, good moral values and situational factors such as storage convenience and collection times are also encouraged public’s involvement and consequently, the participations rate. The findings from this study may provide useful indicator to the waste management authorities in Malaysia in identifying mechanisms for future development and implementation of food waste source separation activities in household programmes and communication campaign which advocate the use of these programmes.

  13. Study of Performance Characteristics of Diesel Engine Fuelled with Diesel, Yellow Grease Biodiesel and its Blends

    E-Print Network [OSTI]

    Virender Singh; Shubham Saxena; Shibayan Ghosh; Ankit Agrawal

    Abstract — The feedstock used in our experiment for the production of biodiesel was Yellow Grease. The whole experiment was divided into two parts: Production and Testing. Production involves Transesterification of free fatty acids in yellow grease to form yellow grease alkyl esters. The process of testing involved calculation of the physio – chemical properties, acid value, density, kinematics viscosity and various performance characteristics. The properties obtained were similar to the standards of biodiesel set by ASTM D6751. The conclusions derived from the experiments conducted were that the break thermal efficiency with biodiesel blends was little lower than that of diesel. The break specific energy consumption for B20, B40, B60, B80 and B100 is slightly higher than neat diesel. At all loads, diesel was found to have the lowet exhaust tempearture and the temperature for the different blends showed the upward trend with increasing concentration of biodiesel in the blends.

  14. A life cycle approach to the management of household food waste - A Swedish full-scale case study

    SciTech Connect (OSTI)

    Bernstad, A., E-mail: anna.bernstad@chemeng.lth.se [Department of Chemical Engineering, Box 124, Faculty of Engineering (LTH), Lund University, S-221 00 Lund (Sweden); Cour Jansen, J. la [Department of Chemical Engineering, Box 124, Faculty of Engineering (LTH), Lund University, S-221 00 Lund (Sweden)

    2011-08-15T23:59:59.000Z

    Research Highlights: > The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. > The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. > Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. - Abstract: Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6 kg CO{sub 2}-eq/household and year if incineration is utilised, to an avoidance of 5.6 kg CO{sub 2}-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.

  15. Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry

    Broader source: Energy.gov [DOE]

    Waste-to-value is a promising and comprehensive wastewater processing solution being pursued by GE that recovers valuable energy and purified water from the abundant wastewater generated and...

  16. The production of fuels and chemicals from food processing wastes using a novel fermenter separator

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01T23:59:59.000Z

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  17. Hanford Site annual dangerous waste report, calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This report is a compilation of data on the disposition of hazardous wastes generated on the Hanford Reservation. This information is on EPA requirement every two years. Wastes include: tank simulant waste; alkaline batteries; lead-based paints; organic solvents; light bulbs containing lead and/or mercury; monitoring well drilling wastes; soils contaminated with trace metals, halogenated organics, or other pollutants; Ni-Cd batteries; pesticides; waste oils and greases; wastes from the cleanup of fuel/gasoline spills; filters; metals; and other.

  18. Atlanta Suburb Greases the Path to Savings with Biodiesel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLCEnergyEnergy Atlanta Suburb Greases

  19. Plate Waste in Elementary-School Lunches: A Focus on Food Pairings, Shortfall Nutrients, Potatoes and Sodium

    E-Print Network [OSTI]

    Destefano, Megan K

    2014-12-08T23:59:59.000Z

    ……………………………………………………………………#17;58 vi REFERENCES………………………………………………………………………….61 APPENDIX……………………………………………………………………………..66 vii LIST OF FIGURES Page Figure 1. Mean Broccoli Waste Based on Entrée Selection…………………………… 26 Figure 2. Mean Green Beans Waste... ................................................... 22 Table 5. Study Sample .............................................................................................. 24 Table 6. Mean Broccoli Waste Based on Entrée Selection ....................................... 27 Table 7. Mean Green Bean...

  20. Solid Waste Paul Woodson, East Central University

    E-Print Network [OSTI]

    of groundwater contamination, air pollution, and odor. Solid wastes may be displeasing to the public either, industrial and medical wastes, food wastes, mineral waste, and nonhazardous wastes. In addition/reservoirs, special wastes, such as medical wastes, low level radioactive wastes, construction/demolition debris

  1. Accumulation and extraction of ultracold neutrons from a superfluid helium converter coated with fluorinated grease

    E-Print Network [OSTI]

    O. Zimmer; P. Schmidt-Wellenburg; M. Assmann; M. Fertl; J. Klenke; S. Mironov; H. -F. Wirth; B. van den Brandt

    2008-01-31T23:59:59.000Z

    We report experiments on the production of ultracold neutrons (UCN) in a converter of superfluid helium coated with fluorinated grease. We employed our technique of window-free extraction of accumulated UCN from the helium, in which they were produced by downscattering neutrons of a cold beam from the Munich research reactor. The time constant for UCN passage through the same extraction aperture as in a previous experiment was a factor two shorter, despite a lower mean velocity of the accumulated UCN in the present experiments. A time-of-flight measurement of the cold neutron spectrum incident on the converter allowed us to estimate the multi-phonon contribution to the UCN production. The UCN production rate inferred from two methods agrees with the theoretical expectation.

  2. FISHERY WASTE EFFLUENTS: A METHOD TO DETERMINE RELATIONSHIPS BETWEEN CHEMICAL OXYGEN DEMAND AND RESIDUE

    E-Print Network [OSTI]

    FISHERY WASTE EFFLUENTS: A METHOD TO DETERMINE RELATIONSHIPS BETWEEN CHEMICAL OXYGEN DEMAND effluents, especially for total suspended and settleable solids, and oil and grease. The relationship between chemical oxygen demand and residue was determined on a limited number of samples from four types

  3. Green Dining Internship Opportunities: Fall 2013 Are you passionate about composting? Waste reduction? Local and sustainable food?

    E-Print Network [OSTI]

    Hill, Wendell T.

    Green Dining Internship Opportunities: Fall 2013 Are you passionate about composting? Waste UMD students? Then, we are looking for you! UMD Dining Services Green Dining is seeking two interns to assist with the Green Dining Program. Learn more about Green Dining here: http

  4. Livestock waste treatment systems of the future: A challenge to environmental quality, food safety, and sustainability. OECD Workshop

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - operation and Development), Co-operative Research Programme: Biological Resource Management for Sustainable and to improve soil properties through accretion of soil organic matter. On the other hand, improperly managed quality, food safety, and sustainability. OECD Workshop This Special Issue of Bioresource Technology

  5. ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES

    E-Print Network [OSTI]

    Gerdes, J. Christian

    ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

  6. Project Organization name Project title 1 Centre for Sustainable Food Systems at UBC

    E-Print Network [OSTI]

    Pulfrey, David L.

    Project Organization name Project title 1 Centre for Sustainable Food City Studio, City of Vancouver Identify Local Food Waste Market and Food Recovery Industry 3 City Studio, City of Vancouver Identify Food Recovery Models

  7. Boron-based Additives in Oil and Grease for Wind Turbine Applications 

    E-Print Network [OSTI]

    Kim, Jun-Hyeok

    2013-06-25T23:59:59.000Z

    Biocompatibility, Non-toxic Food products Edible, Non-toxic Lubrication Chemical stability, Adsorptivity, Low price Crude oil purification Ease of deemulsion 1. 4. 1. Emulsion in lubrication Emulsion is widely used for various applications as mentioned... are different from 18.83% and 81.17% respectively. The isotope boron-10 is used for neutron-trapping reagent [45]. In biology, borate shows little toxicity in mammals but it is used for pesticides since it shows toxicity to the arthropod. Boron...

  8. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-01-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

  9. Holiday Foods.

    E-Print Network [OSTI]

    Reasonover, Frances L.; Sweeten, Mary K.

    1981-01-01T23:59:59.000Z

    . ....... . .... . .......... . ... . .. . ..... . .. . .. . . ... . ... . Serving ... . ................... . ... . . . . . .. .. . . ..... . . . .. .. .. . .. . Clean-up .. . ................ . .... . ....... .. . ... . .. . Holiday Food Service Styles ......... . . ... ................ . Spring..., serve cold foods over beds of ice. Keep hot foods in dishes such as a chafing dish or food warmer . Clean-up Put leftover foods back in the refrigerator as soon after the meal as possible. Foods should not be left out for more than 1 or 2 hours...

  10. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form · Separate liquid from solid · Radionuclide · Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to

  11. Radiofrequency power disinfects and disinfests food, soils and wastewater

    E-Print Network [OSTI]

    Lagunas-Solar, Manuel C.; Zeng, Nolan X.; Essert, Timothy K.; Truong, Tin D.; Pina U., Cecilia

    2006-01-01T23:59:59.000Z

    rice, soils, agricultural wastewater, and other foods andNUMBER 4 Treating agricultural wastewater We investigatedthe disinfection of agricultural wastes using wastewater

  12. ETH ZURICH 2012 Eating tomorrow rethinking the world food

    E-Print Network [OSTI]

    Miyashita, Yasushi

    countries Food security in emerging markets Organic and Fair-trade Value chains Quantis Suite IntroductionIARU GSP ETH ZURICH 2012 Eating tomorrow ­rethinking the world food system Akiko Segawa ETH: Eating tomorrow ­rethinking the world food system 1st week: lectures at Emmental 2nd and 3rd week: Food waste case

  13. The production of fuels and chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1991--December 1991

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01T23:59:59.000Z

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year`s project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  14. Energy Intensity of Agriculture and Food Systems

    E-Print Network [OSTI]

    Wang, Changlu

    dependencies in the light of energy price volatility and concerns as to long-term fossil energy availabilities ENERGY USE. . . . . . . . . . 232 6. FOOD WASTE AND ENERGY USE. . . . . . . . . . . . . Energy Intensity of Agriculture and Food Systems Nathan Pelletier,1 Eric Audsley,2 Sonja Brodt,3

  15. Environmental evaluation of municipal waste prevention

    SciTech Connect (OSTI)

    Gentil, Emmanuel C.; Gallo, Daniele [Department of Environmental Engineering, Building 115, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H., E-mail: thho@env.dtu.dk [Department of Environmental Engineering, Building 115, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2011-12-15T23:59:59.000Z

    Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail, beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.

  16. Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing

    E-Print Network [OSTI]

    Combes, R. S.; Boykin, W. B.

    1980-01-01T23:59:59.000Z

    from waste heat streams for reuse in the processing operations. This paper addresses the recovery of waste heat and the storage of thermal energy as a means of energy conservation in food processing. An energy conservation project in a poultry...

  17. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

  18. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

  19. UC Santa Cruz Storm Water Fall 2010 Volume 5, Number 1

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    materials (food wastes), oil and grease, toxic chemicals in cleaning products, and disinfectants. Practices quality and damage to the natural ecosystem. (Photo / UCSC Vehicle Maintenance and Storm Water) Fats, oil) 459-4520 Keep cooking oil waste containers clean and covered ­ clean up spills. Do not dump cooking

  20. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  1. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  2. Radioactivity in Food and the Environment, 2005

    E-Print Network [OSTI]

    ..................................................................................... 6 ..5 Food irradiation

  3. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes...

  4. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

  5. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

  6. Attitudes about Food

    E-Print Network [OSTI]

    Baker, Nicole Alexis

    2012-10-19T23:59:59.000Z

    Approximately 18% of adolescents are obese. Attitudes about Food is a cross sectional study that seeks to identify lifestyle factors associated with adolescent obesity such as fast food consumption, physical activity, attitudes about fast food...

  7. Safe Home Food Storage

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22T23:59:59.000Z

    Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

  8. FOOD AND DRINK REGULATIONS Serving hot food

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    . · No other sources of heating water may be used. Serving cold food · Food should be refrigerated prior in `batches' should the service time required extend beyond two hours. · No refrigeration should be used

  9. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    SciTech Connect (OSTI)

    Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

    2011-09-15T23:59:59.000Z

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  10. What's in your water? An Overview of the Dangers of Pharmaceutical Waste

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    What's in your water? An Overview of the Dangers of Pharmaceutical Waste An environmental education regarding the dangers of pharmaceutical waste and the impact of improper disposal practices on our practicing safe disposal of pharmaceutical waste to prevent further damage to our water system, our food

  11. QUANTITATIVE MICROBIAL RISK ASSESSMENT OF ORGANIC WASTE MANAGEMENT PRACTICES IN A PERI-URBAN COMMUNITY

    E-Print Network [OSTI]

    Richner, Heinz

    i QUANTITATIVE MICROBIAL RISK ASSESSMENT OF ORGANIC WASTE MANAGEMENT PRACTICES IN A PERI transfer station and the households who helped me in getting food waste samples. It should thing in my life with this little effort. #12;iii Abstract The growth of municipal solid waste

  12. Agricultural and Food Sciences

    E-Print Network [OSTI]

    Faculty of Agricultural and Food Sciences (FAFS) #12;88 Faculty of Agricultural and Food Sciences (FAFS) Graduate Catalogue 2013­14 Faculty of Agricultural and Food Sciences (FAFS) Officers aims to offer specialized training in a variety of fields in food and agriculture, and to prepare

  13. EnergyEfficiency Energy:Waste

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    EnergyEfficiency­ Energy:Waste Copyright © 2012 by Taylor & Francis. All rights reserved equivalence; the c is the speed of light in a vacuum); thus, mass and energy are interrelated. Mass and energy cars and trains, and boats and planes. It bakes food and keeps it frozen for storage. Energy lights our

  14. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  15. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  16. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  17. carleton.ca Food Science

    E-Print Network [OSTI]

    Dawson, Jeff W.

    of foods, genetically modified foods, food contamination and preservation. The Carleton advantage Food and biochemistry, genetics and organic chemistry. A Principles of Nutrition (FOOD 2001) course allows you to gaincarleton.ca Food Science and Nutrition #12;The production and distribution of food is one

  18. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    SciTech Connect (OSTI)

    Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Colturato, L.F. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Font, X.; Vicent, T. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Institut de Ciencia i Tecnologia Ambiental (ICTA) Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

    2010-10-15T23:59:59.000Z

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

  19. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  20. Estimation of residual MSW heating value as a function of waste component recycling

    SciTech Connect (OSTI)

    Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)], E-mail: ViriatoSemiao@ist.utl.pt

    2008-12-15T23:59:59.000Z

    Recycling of packaging wastes may be compatible with incineration within integrated waste management systems. To study this, a mathematical model is presented to calculate the fraction composition of residual municipal solid waste (MSW) only as a function of the MSW fraction composition at source and recycling fractions of the different waste materials. The application of the model to the Lisbon region yielded results showing that the residual waste fraction composition depends both on the packaging wastes fraction at source and on the ratio between that fraction and the fraction of the same material, packaging and non-packaging, at source. This behaviour determines the variation of the residual waste LHV. For 100% of paper packaging recycling, LHV reduces 4.2% whereas this reduction is of 14.4% for 100% of packaging plastics recycling. For 100% of food waste recovery, LHV increases 36.8% due to the moisture fraction reduction of the residual waste. Additionally the results evidence that the negative impact of recycling paper and plastic packaging on the LHV may be compensated by recycling food waste and glass and metal packaging. This makes packaging materials recycling and food waste recovery compatible strategies with incineration within integrated waste management systems.

  1. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-04-30T23:59:59.000Z

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.

  2. Safer Food with Irradiation

    E-Print Network [OSTI]

    Thompson, Britta; Vestal, Andy; Van Laanen, Peggy

    2003-01-21T23:59:59.000Z

    This publication answers questions about food irradiation and how it helps prevent foodborne illnesses. Included are explanations of how irradiation works and its benefits. Irradiation is a safe method of preserving food quality and ensuring its...

  3. WASTE TO WATTS Waste is a Resource!

    E-Print Network [OSTI]

    Columbia University

    to Climate protection in light of the· Waste Framework Directive. The "energy package", e.g. the RenewablesWASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

  4. Four Simple Food Safety

    E-Print Network [OSTI]

    Garfunkel, Eric

    luncheon meat, cold cuts, deli-style meat and poul- try until steaming hot. Chill: Refrigerate or freeze Safe Food Handling and Preparation USDA's Meat and Poultry Hotline: 1-800-535-4555 FDA's Food. August, 2004 Separate: Separate raw meat, poultry and seafood from other foods in your grocery shopping

  5. Agricultural and Food Sciences

    E-Print Network [OSTI]

    Faculty of Agricultural and Food Sciences (FAFS) #12;86 Faculty of Agricultural and Food Sciences (FAFS) Undergraduate Catalogue 2014­15 Faculty of Agricultural and Food Sciences (FAFS) Officers-level courses in agriculture were offered by the School of Arts and Sciences at AUB as early as 1914. Between

  6. Food Exemption Request Organization Information

    E-Print Network [OSTI]

    Food Exemption Request Organization Information Organization Received ______ Organizations are permitted one food exemption per semester. Requests must be submitted): ___________________________________________________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________________________ Only homemade food may be provided by your organization. Initial ______ No prepared food may

  7. LIVSMEDELSHYGIEN KLG050 Food Hygiene

    E-Print Network [OSTI]

    LIVSMEDELSHYGIEN KLG050 Food Hygiene Poäng: 3.0 Betygskala: UG Kursansvarig: Göran Molin. Goran in Food Hygiene. #12;

  8. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  9. LIFE CYCLE ANALYSIS: COMPARING PLA PLASTIC FOOD USE PRODUCTS

    E-Print Network [OSTI]

    sections--agriculture, manufacture and transport. Energy inputs for each of these sections were determined in the analysis. BFS, however, avoids this energy input by purchasing a starch that is a waste stream from anotherLIFE CYCLE ANALYSIS: COMPARING PLA PLASTIC FOOD USE PRODUCTS ON THE BASIS OF ENERGY CONSUMPTION Sin

  10. Poster created by: Syracuse University Food Services General Information

    E-Print Network [OSTI]

    Raina, Ramesh

    sources such as beans, nuts and seeds. These foods are packed with essential vitamins and fiber. By going emissions, water waste and fossil fuel use. Lentil Chili Edamame Quinoa Tabouli History Meatless Monday to help aid the war effort. Eating/Cooking Going meatless is easy. Beans, nuts, soy, whole grains

  11. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    -labeled oligonucleotides Waste minimization 3,144 Radiological waste (396 ft3 ); Mixed waste (35 gallons); Hazardous Waste of radioactivity, thus avoiding radiological waste generation. This process won a 2008 DOE P2 Star Award environmentally friendly manor. BNL pays shipping fees to the recycling facility. Building demolition recycling

  12. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    1999-12-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  13. Radioactive Waste Management (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

  14. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrate Salt Bearing Waste

  15. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China

    SciTech Connect (OSTI)

    Liang Sai, E-mail: liangsai09@gmail.com [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.

  16. Solid Waste (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

  17. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06T23:59:59.000Z

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  18. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  19. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  20. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  1. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  2. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  3. Solid Waste and Infectious Waste Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste.

  4. Radioactive and chemotoxic wastes: Only radioactive wastes?

    SciTech Connect (OSTI)

    Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

    1993-12-31T23:59:59.000Z

    Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

  5. Cow2Joules: Distributed Conversion of Organic Waste to Energy Resources Background to the project THEY are undertaking at ESF DLJohnson, Feb. 2009

    E-Print Network [OSTI]

    Chatterjee, Avik P.

    and commercial restaurant food waste supplies, offering an alternative to the composting, incineration or land for simple, stable, small-scale operations. 1 http://www.iea-biogas.net/ 2 http://www.epa.gov/epawaste/conserve/materials/organics/foodCow2Joules: Distributed Conversion of Organic Waste to Energy Resources Background to the project

  6. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  7. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  8. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  9. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  10. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    records. The initial training of Hazardous Waste Management and Waste Minimization is done in a classHazardous Waste Management Training Persons (including faculty, staff and students) working before handling hazardous waste. Departments are re- quired to keep records of training for as long

  11. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    2000-01-06T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

  12. Radioactivity in Food and the Environment, 2006

    E-Print Network [OSTI]

    ............................................................................................................26 1.2.7 Food irradiation

  13. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01T23:59:59.000Z

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  14. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  15. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  16. Radium bearing waste disposal

    SciTech Connect (OSTI)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Schofield, W.D. [Foster Wheeler Environmental Corp. (United States)

    1995-07-01T23:59:59.000Z

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  17. A Primer on Food Additives.

    E-Print Network [OSTI]

    Anonymous,

    1979-01-01T23:59:59.000Z

    45.7 8-1208 :08 A Primer on Food Additives Extension Foods and Nutrition Specialists The Texas A&M University System Consumers today are very concerned about what goes into their food. This primer on food additives describes what food... additives do and why modern food technology has made them necessary, and recounts how Congress and the Federal Government have responded to con sumer demands for controls. Atter spending many months with the mid European immigrants who found work...

  18. Hazardous Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    "Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

  19. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  20. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Revision 6 Waste Management Quality Assurance Plan Waste6 WM QA Plan Waste Management Quality Assurance Plan LBNL/4 Management Quality Assurance

  1. waste | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlternativesSupplements to Coal - Feedstock Flexibility Waste Streams Gasification can be applied to a variety of waste streams, of which municipal solid waste (MSW) and...

  2. AgFoodTradeAgFoodTrade New Issues in Agricultural,New Issues in Agricultural,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AgFoodTradeAgFoodTrade New Issues in Agricultural,New Issues in Agricultural, Food & Bioenergy TradeFood & Bioenergy Trade AgFoodTradeAgFoodTrade New Issues in Agricultural,New Issues in Agricultural, Food & Bioenergy TradeFood & Bioenergy Trade AgFoodTradeAgFoodTrade New Issues in Agricultural

  3. Use of cooling-temperature heat for sustainable food production

    E-Print Network [OSTI]

    CERN. Geneva

    2013-01-01T23:59:59.000Z

    Food production and energy are undoubtedly interlinked. However, at present food production depends almost exclusively on direct use of stored energy sources, may they be nuclear-, petroleum- or bio-based. Furthermore, non-storage based “renewable” energy systems, like wind and solar, need development before bering able to contribute at a significant level. This presentation will point towards surplus heat as a way to bridge the gap between today’s food systems and truly sustainable ones, suitable to be performed in urban and peri-urban areas. Considering that arable land and fresh water resources are the base for our present food systems, but are limited, in combination with continued urbanisation, such solutions are urgently needed. By combining the use of surplus energy with harvest of society’s organic side flows, like e.g. food waste and aquatic based cash crops, truly sustainable and urban close food systems are possible at a level of significance also for global food security.

  4. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

  5. Estimation of food consumption

    SciTech Connect (OSTI)

    Callaway, J.M. Jr.

    1992-04-01T23:59:59.000Z

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  6. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  7. Food Safety Participant Materials for Notebook

    E-Print Network [OSTI]

    foods. · Not eating foods that have been irradiated. · Eating whole foods instead of processed foodsUNIT 5: Food Safety Participant Materials for Notebook #12;Navigating for Success Food Safety p 1 Food Safety Good food safety practices are crucial to reducing foodborne illnesses. Nutrition educators

  8. Solid Waste Management Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

  9. Action Plan Food Science and

    E-Print Network [OSTI]

    Fitze, Patrick

    Agroquímica y Tecnolo- gía de Alimentos (Institute of Agrochemicals and Food Technology) in Valencia. During

  10. Purdue extension Food Entrepreneurship Series

    E-Print Network [OSTI]

    be labeled organic if they are produced from genetically modified organisms or are irradiated. Organic meatPurdue extension FS-14-W Food Entrepreneurship Series Department of Food Science Katherine Clayton food science Extension outreach specialist Deidre Bush former Extension assistant Kevin Keener food

  11. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    applicable to manufacturing facilities in the chemical, food, pharma- ceutical, and refinery markets, which typically have effluent chemical oxygen demand (COD) and availability...

  12. Urban food waste generation: challenges and opportunities Bijaya K. Adhikaria

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and which, if introduced worldwide, could provide agricultural soils with a good source of organic matter, anaerobic digestion could provide energy as biogas for a few high energy demanding industries within cities (CSBE), American Society of Agricultural and Biological Engineers (ASABE), Nepalese Society

  13. Identification and Assessment of Food Waste Generators in Hawaii

    E-Print Network [OSTI]

    Department of Agriculture By University of Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Sciences and Technology Wendy Okazaki Scott Q. Turn December 2005 #12;2 Table of Contents 1. Executive............................................................................................... 11 3.4 Survey data entry and Microsoft Access database

  14. Flexible Distributed Energy & Water from Waste for the Food ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report Biogas Opportunities Roadmap Advanced Manufacturing Home Key Activities Research &...

  15. Pumpkin Power: Turning Food Waste into Energy | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment ofRecipientsandPublicPump Systems MatterPumpkin

  16. Sustainable solutions for solid waste management in Southeast Asian countries

    SciTech Connect (OSTI)

    Uyen Nguyen Ngoc [Institute for Process Engineering (IPE), Graz University of Technology, Inffeldgasse 21a, A8010 Graz (Austria)], E-mail: utemvnn2003@yahoo.com; Schnitzer, Hans [Institute for Process Engineering (IPE), Graz University of Technology, Inffeldgasse 21a, A8010 Graz (Austria)

    2009-06-15T23:59:59.000Z

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  17. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15T23:59:59.000Z

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  18. Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore

    E-Print Network [OSTI]

    Columbia University

    ;20031970 The Solid Waste Challenge Waste Explosion 1,200 t/d1,200 t/d 6,900 t/d6,900 t/d #12;Waste ManagementWaste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected

  19. Hazardous Waste Management (Arkansas)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

  20. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  1. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  2. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31T23:59:59.000Z

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  3. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect (OSTI)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01T23:59:59.000Z

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  4. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19T23:59:59.000Z

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  5. Final Report Waste Incineration

    E-Print Network [OSTI]

    solid waste, the composition and com- bustion of it. A main focus is on the European emission from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical with municipal solid waste incineration (MSWI) and the problems that occur in connection to this. The emphasis

  6. Rethinking the Waste Hierarchy

    E-Print Network [OSTI]

    principles of EU waste policies. The environmental damage caused by waste depends on which type of manage, Environmental Assessment Institute For further information please contact: Environmental Assessment Institute.imv.dk #12;Environmental Assessment Institute Rethinking the Waste Hierarchy March 2005 Recommendations

  7. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendixes 1 through 8: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  8. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  9. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03T23:59:59.000Z

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  10. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13T23:59:59.000Z

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  11. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31T23:59:59.000Z

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  12. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF)...

  13. Preventing Food Contamination: A Need for Innovation in Food Production

    E-Print Network [OSTI]

    Reynolds, Mark

    2013-01-01T23:59:59.000Z

    Machala. Plasma for Bio-Decontamination, Medicine and FoodPotts, et al. "Plasma decontamination of sealed packages."

  14. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    NONE

    1995-04-26T23:59:59.000Z

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  15. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

  16. Transuranic (TRU) Waste | Department of Energy

    Office of Environmental Management (EM)

    Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

  17. Development Food Science

    E-Print Network [OSTI]

    Center Linen Services Food Stores Farrall Agriculture Engineering International Center Erickson IM Sports Kedzie Morrill Hall of Agriculture Marshall Adams Eppley Center McPhail Equine Performance Ramp 1 Plant Transportation Services IPF Storage Bldg No. 1 IPF Storage Bldg No. 3 Nuclear Magnetic Resonator Chittenden Ramp

  18. Science & Research Agriculture & Food

    E-Print Network [OSTI]

    Science & Research Agriculture & Food Climate & Environment Consumers EU Priorities 2020 EU Treaty for nuclear fusion project ITER | EurActiv http://www.euractiv.com/en/science/funding-crisis-for-nuclear for nuclear fusion project ITER A multi-billion euro international research project has run into deep

  19. Review: Eating Together: Food, Friendship, and Inequality

    E-Print Network [OSTI]

    Laberge, Yves

    2014-01-01T23:59:59.000Z

    Food, Friendship, and Inequality By Alice P. Julier ReviewedFood, Friendship, and Inequality. Champaign, IL: UniversityFood, Friendship, and Inequality, sociologist Alice P.

  20. Carbon Strategy for the Food Industry FAPC Food Process Engineer

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    172-1 Carbon Strategy for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-172 Robert M and Natural Resources Introduction Carbon strategy is a term that refers to a systematic plan of action for managing carbon consumption and emissions related to food manufacturing and distribution activities

  1. New Waste Calcining Facility (NWCF) Waste Streams

    SciTech Connect (OSTI)

    K. E. Archibald

    1999-08-01T23:59:59.000Z

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

  2. Waste IncIneratIon and Waste PreventIon

    E-Print Network [OSTI]

    and heat. In 2005/2006, German waste incineration plants provided some 6 terawatt hours (TWh-/Abfallgesetz) continues to hold: Waste prevention has priority over recovery and disposal. Nevertheless, the use of waste for en- ergy recovery is an indispensable element of sus- tainable waste management. Waste incineration

  3. Energy from Waste UK Joint Statement on Energy from Waste

    E-Print Network [OSTI]

    Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

  4. www.d-waste.com info@d-waste.com

    E-Print Network [OSTI]

    marketplace, about 47 grams of waste is produced-- with worldwide municipal solid waste generation totaling, the International Solid Waste Association, GIZ/SWEEP-Net, the Waste to Energy Research Council (WTERT) and the Solid management data available". According to David Newman, president of the International Solid Waste Association

  5. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-Print Network [OSTI]

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum American Society of Civil Engineers. CE Database subject headings: Solid wastes; Leaching; Aluminum

  6. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS GENERATED AT DEPAUL UNIVERSITY.4 Hazardous Waste Defined p.5 Chemical Waste Procedure for Generating Departments p.6 o A of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G

  7. LIVSMEDELSHYGIEN KLG 050 Food Hygiene

    E-Print Network [OSTI]

    LIVSMEDELSHYGIEN KLG 050 Food Hygiene Antal poäng: 3.0. Valfri för: K4Li. Kursansvarig: Göran Molin som för samhället i sin helhet. Litteratur Molin, G.: Lectures in Food Hygiene. #12;

  8. Guidelines for mixed waste minimization

    SciTech Connect (OSTI)

    Owens, C.

    1992-02-01T23:59:59.000Z

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  9. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01T23:59:59.000Z

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  10. University Food Permit For Serving Food or Refreshments on University Property

    E-Print Network [OSTI]

    Amin, S. Massoud

    University Food Permit For Serving Food or Refreshments on University Property Not Required__________________________________________ Date ___________________ When applicable, this permit must be reviewed by the Environmental Hygiene only) #12;Caterer/Restaurant/ Market ADDITIONAL FOOD SOURCES: University Food Permit (Page 2) Foods

  11. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  12. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  13. Operational waste volume projection

    SciTech Connect (OSTI)

    Koreski, G.M.

    1996-09-20T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

  14. Healthy soils for food system resiliency

    E-Print Network [OSTI]

    Jackson, Trisha L.

    2011-08-31T23:59:59.000Z

    Urban gardens produce a growing portion of food consumed in U.S. cities and throughout the world. Spreading out food production means less reliance on centralized food industries, making the food system less vulnerable to ...

  15. FOOD STANDARDS AGENCY SCOTTISH ENVIRONMENT PROTECTION AGENCY

    E-Print Network [OSTI]

    .................................................................................... 21 1.2.4. Food irradiation ....1 FOOD STANDARDS AGENCY SCOTTISH ENVIRONMENT PROTECTION AGENCY Radioactivity in Food, Fisheries and Aquaculture Science on behalf of the Food Standards Agency and the Scottish Environment

  16. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01T23:59:59.000Z

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  17. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06T23:59:59.000Z

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  18. Solid Waste Management (Connecticut)

    Broader source: Energy.gov [DOE]

    Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental...

  19. Solid Waste Policies (Iowa)

    Broader source: Energy.gov [DOE]

    This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are...

  20. Solid Waste Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

  1. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01T23:59:59.000Z

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  2. Hazardous Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

  3. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  4. Solid Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that...

  5. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  6. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    SciTech Connect (OSTI)

    Oakley, Brian; Heacker, Fred [WAI, TRU Waste Processing Center, 100 WIPP Road Lenoir City, TN 37771 (United States)] [WAI, TRU Waste Processing Center, 100 WIPP Road Lenoir City, TN 37771 (United States); McMillan, Bill [DOE, Oak Ridge Operations, Bldg. 2714, Oak Ridge, TN 37830 (United States)] [DOE, Oak Ridge Operations, Bldg. 2714, Oak Ridge, TN 37830 (United States)

    2013-07-01T23:59:59.000Z

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ?12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated to be 1-3 mSv/hr (100-300 mrem/hr) with an unshielded dose rate on the waste itself of over 10 mSv/hr (1 rem/hr). Additional equipment to be installed at the TWPC will include a new perma-con enclosure and a shielded/inert glovebox in the process building to repackage and stabilize the waste. All of the waste will be repackaged into Standard Pipe Overpacks. Most of the waste (21 of the 26 drums) is expected to be repackaged at the food-pack can level (i.e. the food-pack cans will not be opened). Five of the incoming waste containers are expected to be repackaged at the primary waste level. Three of the containers exceed the 200 gram Pu-239 Fissile Gram Equivalent (FGE) limit for the Standard Pipe Overpack. These three containers will be repackaged down to the primary waste level and divided into eight Standard Pipe Overpacks for shipment to WIPP. Two containers must be stabilized to eliminate any reactive plutonium hydrides that may be present. These containers will be opened in the inert, shielded glovebox, and the remaining corroded plutonium metal converted to a stable oxide form by using a 600 deg. C tube furnace with controlled oxygen feed in a helium carrier gas. The stabilized waste will then be packaged into two Standard Pipe Overpacks. Design and build out activities for the additional repackaging capabilities at the TWPC are scheduled to begin in Fiscal Year 2013 with repackaging, stabilization, and certification activities scheduled to begin in Fiscal Year 2014. Following repackaging and stabilization activities, the Standard Pipe Overpacks will be certified for disposal at WIPP utilizing Non-Destructive Examination (NDE) to verify the absence of prohibited items and Non-Destructive Assay (NDA) to verify the isotopic content under the TWPC WIPP certification program implemented by the Central Characterization Project (CCP). (authors)

  7. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26T23:59:59.000Z

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  8. Waste Isolation Pilot Plant (WIPP) Waste Isolation Pilot Plant...

    National Nuclear Security Administration (NNSA)

    licensed to safely and permanently dispose of transuranic radioactive waste, or TRU waste, left over from the production of nuclear weapons. After more than 20 years of...

  9. Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides for planning for the processing and disposal of municipal waste; requires counties to submit plans for municipal waste management systems within their boundaries; authorizes...

  10. Solid Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

  11. Virginia Waste Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

  12. Hazardous Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

  13. Solid Waste Disposal Act (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

  14. Georgia Waste Control Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Waste Control Law makes it unlawful to dump waste in any lakes, streams or surfaces waters of the State or on any private property without consent of the property owner. Waste is very broadly...

  15. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  16. Solid Waste Management (South Dakota)

    Broader source: Energy.gov [DOE]

    This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

  17. RADIOACTIVE WASTE DISPOSAL IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

  18. Solid Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

  19. Animal Waste Technology Fund (Maryland)

    Broader source: Energy.gov [DOE]

    A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

  20. Solid Waste Rules (New Hampshire)

    Broader source: Energy.gov [DOE]

    The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

  1. Nebraska Hazardous Waste Regulations (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

  2. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  3. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-08-15T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  4. Waste classification sampling plan

    SciTech Connect (OSTI)

    Landsman, S.D.

    1998-05-27T23:59:59.000Z

    The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.

  5. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

    1987-01-01T23:59:59.000Z

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  6. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01T23:59:59.000Z

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  7. Heterogeneous waste processing

    DOE Patents [OSTI]

    Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

    2000-01-01T23:59:59.000Z

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  8. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  9. Preventing Food Contamination: A Need for Innovation in Food Production

    E-Print Network [OSTI]

    Reynolds, Mark

    2013-01-01T23:59:59.000Z

    174 Preventing Food Contamination A Need for Innovation infurther prevent microbial contamination. Due largely becausequick migration of the contamination in the example given

  10. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energy Department'sHobartFood

  11. Temporary Food Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafetyTed Donat About Us Ted Donat -Temescal1Food

  12. Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information

    E-Print Network [OSTI]

    ) and the definition of HLW from the Nuclear Waste Policy Act of 1982, as amended (NWPA). The WIPP Land Withdrawal Act by the disposal regulations; or #12;Hanford Tank Waste Information Enclosure 1 2 (C) waste that the Nuclear 10, Code of Federal Regulations. The Nuclear Waste Policy Act of 1982 (42 U.S.C. 10101

  13. Waste to Energy Time Activities

    E-Print Network [OSTI]

    SEMINAR Waste to Energy Time Activities 9:30-9:40 Brief introduction of participants 9:40-10:10 Presentation of Dr. Kalogirou, "Waste to Energy: An Integral Part of Worldwide Sustainable Waste Management" 10. Sofia Bethanis, "Production of synthetic aggregates for use in structural concrete from waste to energy

  14. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  15. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01T23:59:59.000Z

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  16. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23T23:59:59.000Z

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  17. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  18. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  19. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    or hydrochloric acid vapor should be mentioned upfront so the HRSG designer can take proper precauations while designing the unit.Material selection is also impacted by the presence of corrosive gases.If partial pressure of hydrogen is high in the gas stream...SPECIFYING WASTE HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants...

  20. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect (OSTI)

    Albert, R.

    1992-06-30T23:59:59.000Z

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  1. Hanford Site Secondary Waste Roadmap

    SciTech Connect (OSTI)

    Westsik, Joseph H.

    2009-01-29T23:59:59.000Z

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and performance requirements, waste composition, preliminary waste form screening, waste form development, process design and support, and validation. The regulatory and performance requirements activity will provide the secondary waste-form performance requirements. The waste-composition activity will provide workable ranges of secondary waste compositions and formulations for simulants and surrogates. Preliminary waste form screening will identify candidate waste forms for immobilizing the secondary wastes. The waste form development activity will mature the waste forms, leading to a selected waste form(s) with a defensible understanding of the long-term release rate and input into the critical decision process for a secondary waste treatment process/facility. The process and design support activity will provide a reliable process flowsheet and input to support a robust facility design. The validation effort will confirm that the selected waste form meets regulatory requirements. The final outcome of the implementation of the secondary waste roadmap is the compliant, effective, timely, and cost-effective disposal of the secondary wastes. The work necessary to address the programmatic, regulatory, and technical risks and uncertainties identified through the Secondary Waste Roadmap Workshop are assembled into several program needs elements. Programmatic/Regulatory needs include: • Select and deploy Hanford tank waste supplemental treatment technology • Provide treatment capability for secondary waste streams from tank waste treatment • Develop consensus on secondary waste form acceptance. Technology needs include: • Define secondary waste composition ranges and uncertainties • Identify and develop waste forms for secondary waste immobilization and disposal • Develop test methods to characterize secondary waste form performance. Details for each of these program elements are provided.

  2. Principle Investigator M. Cooney (Hawaii Natural Energy Institute)

    E-Print Network [OSTI]

    (Engineering Overview), Hawaii American Waters (Host WWTP), RealGreen Power (Technology Provider), Pacific Biodiesel (Produce Biodiesel from grease trap waste and fryer grease), Diacarbon Energy (Biochar producer that approaches theoretical maximum of 0.35 m3/Kg COD reduced. GTW Brown grease for biodiesel Separated wastewater

  3. Hazardous Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

  4. Solid Waste Management (Kansas)

    Broader source: Energy.gov [DOE]

    This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

  5. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  6. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    labeled chemicals Waste Minimization/ Volume Reduction 0 Solid Radioactive Waste $2,168 $3,795 $2,168 VialWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2003 WASTE TYPE DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste

  7. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  8. Hanford Site annual dangerous waste report. Volume 1, Part 1, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  9. Radioactivity in Food and the Environment, 2009

    E-Print Network [OSTI]

    ..............................................................................................................27 1.2.5 Solid radioactive waste disposal at sea Protection Agency. Printed on paper made from a minimum 75% deinked postconsumer waste. Front cover ............................................................................................................................22 1.2 Disposals of radioactive waste

  10. The determination of PCBs in Rocky Flats Type IV waste sludge by gas chromatography/electron capture detection. Part 2

    SciTech Connect (OSTI)

    Parish, K.J.; Applegate, D.V.; Postlethwait, P.D.; Boparai, A.S.; Reedy, G.T.

    1994-12-01T23:59:59.000Z

    Before disposal, radioactive sludge (Type IV) from Rocky Flats Plant (RFP) must be evaluated for polychlorinated biphenyl (PCB) content. The Type IV sludge consists of organic solvents, degreasers, cutting oils, and transuranic (TRU) waste mixed with calcium silicate (MicroCel E{reg_sign} and Oil Dri{reg_sign} to form a grease or paste-like material. For laboratory testing, a nonradioactive simulated Type 17V RFP sludge was prepared at Argonne National Laboratory-East (ANL-E). This sludge has a composition similar to that expected from field samples. In an earlier effort, a simplified method was developed for extraction, cleanup of extract, and determination of PCBs in samples of simulated sludge spiked with Aroclors 1254 and 1260. The simplified method has now been used to determine the presence and quantities of other Aroclors in the simulated sludge, namely, Aroclors 10 1 6, 1221, 1232, 1242, and 1248. The accuracy and precision of the data for these Aroclors were found to be similar to the data for sludges spiked with Aroclors 1254 and 1260. Since actual sludges may vary in composition, the method was also verified by analyzing another source of Type IV simulated sludge, prepared by Argonne National Laboratory-West (ANL-W).

  11. Citrus Waste Biomass Program

    SciTech Connect (OSTI)

    Karel Grohman; Scott Stevenson

    2007-01-30T23:59:59.000Z

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  12. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  13. Using Multiple Household Food Inventories to Measure Food Availability in the Home

    E-Print Network [OSTI]

    Sisk, Cheree L.

    2010-10-12T23:59:59.000Z

    The purpose of this study was to determine the feasibility of conducting multiple household food inventories over the course of 30 days to examine weekly food variability. Household food availability influences the foods individuals choose...

  14. Integrating Food Production and Biodiversity

    E-Print Network [OSTI]

    with food, and NPK fluxes at farm level. The biofuels were crude rapeseed oil, horse draft, ethanol from a combination of a workhorse and a crude rapeseed oil-fuelled tractor. Ethanol from wheat had the largest impactIntegrating Food Production and Biodiversity Energy and Scale Issues in Implementation Kristina

  15. The NASA Food Commercial Space

    E-Print Network [OSTI]

    Lin, Zhiqun

    The NASA Food Technology Commercial Space Center and How Your Company Can Participate space Commercial Space Center Iowa State University 2901 South Loop Drive, Suite 3700 Ames, IA 50010-8632 Phone Manager NASA Food Technology Commercial Space Center Iowa State University 2901 South Loop Drive, Suite

  16. assessing food chain: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics and community food resources as well as materials for assessing household food security, food resource accessibility, food availability and affordability, and...

  17. aqueous food simulants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics and community food resources as well as materials for assessing household food security, food resource accessibility, food availability and affordability, and...

  18. animal-based foods: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics and community food resources as well as materials for assessing household food security, food resource accessibility, food availability and affordability, and...

  19. african food security: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics and community food resources as well as materials for assessing household food security, food resource accessibility, food availability and affordability, and...

  20. assessing food consumption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics and community food resources as well as materials for assessing household food security, food resource accessibility, food availability and affordability, and...

  1. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  2. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01T23:59:59.000Z

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  3. Solid Waste Management Program (South Dakota)

    Broader source: Energy.gov [DOE]

    South Dakota's Solid Waste Management Program offers loans and grants for solid waste disposal, recycling, and waste tire projects. Funds are available for private or public projects, and...

  4. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect (OSTI)

    Randklev, E.H.

    1993-06-01T23:59:59.000Z

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  5. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17T23:59:59.000Z

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  6. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  7. Production of nitrogen rich ingredients from fish waste by a biotechnological process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    silage in different diets (Raa and Gildberg, 1982, Crit Rev Food Sci Nutr, 16, 383-419 ; Espe et al, 1992 and/or farmers despite the severe lack of animal feed ingredients. Biotransformation of fish waste matter (DM), ash, fat, reducing sugars (RS), total nitrogen (TN), non protein nitrogen (NPN), total

  8. Waste segregation procedures and benefits

    SciTech Connect (OSTI)

    Fish, J.D.; Massey, C.D.; Ward, S.J.

    1990-01-01T23:59:59.000Z

    Segregation is a critical first step in handling hazardous and radioactive materials to minimize the generation of regulated wastes. In addition, segregation can significantly reduce the complexity and the total cost of managing waste. Procedures at Sandia National Laboratories, Albuquerque require that wastes be segregated, first, by waste type (acids, solvents, low level radioactive, mixed, classified, etc.). Higher level segregation requirements, currently under development, are aimed at enhancing the possibilities for recovery, recycle and reapplication; reducing waste volumes; reducing waste disposal costs, and facilitating packaging storage, shipping and disposal. 2 tabs.

  9. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal...

  10. Safe Food in a Hurry.

    E-Print Network [OSTI]

    Sweeten, Mary K.

    1980-01-01T23:59:59.000Z

    carefully before handling food. Be careful not to spread germs from raw meat to cooked meat. If you carry raw hamburgers to the grill on a platter, you should wash the platter before serving the cooked hamburgers. Otherwise there will be germs on your... cooked hamburgers. Never prepare food to be eaten raw on the same chop ping board as cooked food. After cutting raw chicken, wash the chopping board with 1 part bleach to 1 gallon water or a good detergent and water. This prevents trans ferring...

  11. Waste generator services implementation plan

    SciTech Connect (OSTI)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01T23:59:59.000Z

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  12. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University recycling and waste management facilities in Swansea university To ensure that Waste Management Objectives

  13. Page 1 of 2 UNIVERSAL WASTE

    E-Print Network [OSTI]

    Jia, Songtao

    (laboratories should follow hazardous waste procedures) or thorough central battery recycling receptaclesPage 1 of 2 UNIVERSAL WASTE and OTHER ENVIRONMENTALLY DELETERIOUS PRODUCTS Batteries All Universal Waste Batteries generated in laboratories must be collected through the hazardous waste program

  14. FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN

    E-Print Network [OSTI]

    Columbia University

    ;Canadian Energy-From-Waste Coalition (CEFWC) 1 There is considerable merit to the ideas outlined commitment to foster a green and sustainable economy. The Canadian Energy-From-Waste Coalition (CEFWC sign that the system is failing. #12;Canadian Energy-From-Waste Coalition (CEFWC) 2 Like you, the CEFWC

  15. L/O/G/OL/O/G/O Waste Waste

    E-Print Network [OSTI]

    Laksanacharoen, Sathaporn

    L/O/G/OL/O/G/O #12;· Waste Waste · Value () · · Flow #12;Genchi GenbutsuGenchi Genbutsu of waste) Zero Inventory #12;Just in Time in HealthcareJust in Time in Healthcare Takt time (pitch), one Electronic Call 3. #12;Poka-Yoke ?Poka-Yoke ? · Poka-Yoke yokeru = to avoid poka = inadvertent errors 1

  16. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  17. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  18. Waste Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Cleanup Waste Management Waste Management July 15, 2014 Energy Expos Students work in groups to create hands-on exhibits about the energy sources that power the nation, ways to...

  19. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  20. Low-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

  1. Copenhagen Waste Management and Incineration

    E-Print Network [OSTI]

    ownership of treatment facilities · Incineration plants · Land fill · Disposal of hazardous waste · Source waste prevention · Focus areas · Changes in behaviour among consumers and producers · City schemes almost fully developed · Collection of hazardous substances, paper, cardboard, gardening and bulky

  2. Waste Management Assistance Act (Iowa)

    Broader source: Energy.gov [DOE]

    This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

  3. Solid Waste Management Program (Missouri)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

  4. Delaware Solid Waste Authority (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

  5. Solid Waste Facilities Regulations (Massachusetts)

    Broader source: Energy.gov [DOE]

    This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management practices and to mitigate adverse effects, such as...

  6. Hazardous Waste Management (North Dakota)

    Broader source: Energy.gov [DOE]

    The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

  7. Montana Hazardous Waste Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

  8. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  9. Management of Solid Waste (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

  10. SUSTAINABILITY AND FOOD Anthropology Professors

    E-Print Network [OSTI]

    Holliday, Vance T.

    SUSTAINABILITY AND FOOD Anthropology Professors Maribel Alvarez Diane Austin Mamadou Baro Tim. Potential Helpful Minors Environmental Studies Environmental Sciences Nutritional Science Sustainable Built Environments Sustainable Plant Systems Potential Employers Documentary Films Government Jobs

  11. POTLUCK FOOD SAFETY 1. Definition

    E-Print Network [OSTI]

    refrigerated until it is time to serve. Hot foods should be reheated rapidly to 74 degrees C (165F) using be destroyed by heating. Leftovers should be refrigerated as soon as possible after service

  12. An internship in food services

    E-Print Network [OSTI]

    Smith, Bradley J.

    1992-01-01T23:59:59.000Z

    observation. The Department of Food Services is one of the largest collegiate food operations in the nation. It is a commissary- type system that serves 60, 000 meals a day in three dining centers and seventeen cash dining snack bars and cafeterias... service operation. The scope of the organization involves a commissary, three dining centers, and seventeen cash dining snack bars and cafeterias. All supplies are purchased and come to one central location, the Col. Fred W. Dollar Commissary. From...

  13. Chemotherapy waste may be a hazardous chemical waste or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Chemotherapy waste may be a hazardous chemical waste or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type. Hazardous Chemical Chemotherapy Waste: A number of chemotherapy drugs are regulated as a hazardous chemical waste. These include

  14. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  15. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  16. Heat Recovery From Solid Waste

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01T23:59:59.000Z

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  17. RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING

    E-Print Network [OSTI]

    Howitt, Ivan

    RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

  18. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    - Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

  19. Radioactivity in Food and the Environment, 1997

    E-Print Network [OSTI]

    AGENCY Ministry of Agriculture, Fisheries and Food #12;#12;1 MINISTRY OF AGRICULTURE, FISHERIES AND FOOD by the Joint Food Safety and Standards Group, Ministry of Agriculture, Fisheries and Food and the Scottish of foodstuffs and other materials close to nuclear sites throughout the United Kingdom. These measurements have

  20. Food Preparation Unit Preparation Materials and

    E-Print Network [OSTI]

    brush, potato masher, peeler, strainer, and steamer basket. · Food and kitchen equipment for preparation

  1. EPOK Centre for Organic Food and Farming

    E-Print Network [OSTI]

    EPOK ­ Centre for Organic Food and Farming EPOK­ Centre for Organic Food and Farming Compiling Sciences works to disseminate knowledge and coordinate research and education in the areas of organic food in the organic food chain. Range of activities Living website: www.slu.se/epok Expert responses on the internet

  2. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  3. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  4. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  5. Low-temperature catalytic gasification of wet industrial wastes

    SciTech Connect (OSTI)

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01T23:59:59.000Z

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  6. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15T23:59:59.000Z

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  7. D I G E S T Public Works

    E-Print Network [OSTI]

    US Army Corps of Engineers

    , Sustainability, Energy and Water ____________________________________________ 30 Fort Benning saves energy prioritization of nonnative invasive plant management, by Matthew Hohmann 37 Experimental grease trap waste

  8. TRU waste characterization chamber gloveboxes.

    SciTech Connect (OSTI)

    Duncan, D. S.

    1998-07-02T23:59:59.000Z

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  9. Purchase Fresh Food Provide safe and nutritious food for you and your

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    shopping, pick-up refrigerated and frozen foods just prior to checkout. Refrigerated foods should be cold, and frozen foods should be solid with no evidence of thawing. Refrigerated and frozen food should be bagged together. After grocery shopping, drive straight home and store food in the refrigerator or freezer

  10. WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop

    E-Print Network [OSTI]

    ; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

  11. Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

  12. Waste minimization handbook, Volume 1

    SciTech Connect (OSTI)

    Boing, L.E.; Coffey, M.J.

    1995-12-01T23:59:59.000Z

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  13. Diagnostic health risk assessment of electronic waste on the general population in developing countries' scenarios

    SciTech Connect (OSTI)

    Frazzoli, Chiara, E-mail: chiara.frazzoli@iss.i [Food and Veterinary Toxicology Unit and WHO/FAO Collaborating Centre for Veterinary Public Health - Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita, viale Regina Elena 299, 00161 Rome (Italy); Noodles Onlus, Nutrition and food safety and wholesomeness (Italy); Orisakwe, Orish Ebere [Toxicology Unit, Department of Pharmacology, Nnamdi Azikiwe University, College of Health Sciences Nnewi Campus, Nnewi, Anambra State (Nigeria); Noodles Onlus, Nutrition and food safety and wholesomeness (Italy); Dragone, Roberto [Institute of Nanostructured Materials (ISMN), Consiglio Nazionale delle Ricerche, at the Department of Chemistry of the 'Sapienza' University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Noodles Onlus, Nutrition and food safety and wholesomeness (Italy); Mantovani, Alberto [Food and Veterinary Toxicology Unit and WHO/FAO Collaborating Centre for Veterinary Public Health - Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita, viale Regina Elena 299, 00161 Rome (Italy); Noodles Onlus, Nutrition and food safety and wholesomeness (Italy)

    2010-11-15T23:59:59.000Z

    E-waste is the generic name for technological waste. Even though aspects related to e-waste environmental pollution and human exposure are known, scientific assessments are missing so far on the actual risks for health sustainability of the general population exposed to e-waste scenarios, such as illicit dumping, crude recycling and improper treatment and disposal. In fact, further to occupational and direct local exposure, e-waste scenarios may impact on the environment-to-food chain, thus eliciting a widespread and repeated exposure of the general population to mixtures of toxicants, mainly toxic chemical elements, polycyclic aromatic hydrocarbons and persistent organic pollutants. In the absence of any clear policy on e-waste flow management, the situation in the e-waste receiver countries may become quite scary; accordingly, here we address a diagnostic risk assessment of health issues potentially elicited by e-waste related mixtures of toxicants. Scientific evidence available so far (mainly from China) is discussed with special attention to the concept of health sustainability, i.e. the poor health burden heritage perpetuated through the mother-to-child dyad. Endocrine disruption and neurotoxicity are specifically considered as examples of main health burden issues relevant to perpetuation through life cycle and across generations; toxicological information are considered along with available data on environmental and food contamination and human internal exposure. The risk from exposure to e-waste related mixtures of toxicants of vulnerable subpopulation like breast-fed infants is given special attention. The diagnostic risk assessment demonstrates how e-waste exposure poses an actual public health emergency, as it may entrain significant health risks also for generations to come. Exposure scenarios as well as specific chemicals of major concern may vary in different contexts; for instance, only limited information is available on e-waste related exposures in a major site of e-waste dumping such as West Africa. Therefore, considerations are also given on data gaps possibly fitting a systematic risk assessment of the e-waste health impacts in different subscenarios as well as possible protective factors for exposed subpopulations.

  14. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18T23:59:59.000Z

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  15. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

    1997-01-01T23:59:59.000Z

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  16. Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Wilson, K. L.

    1997-08-01T23:59:59.000Z

    In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

  17. Geography of urban food access : exploring potential causes of food deserts

    E-Print Network [OSTI]

    Cameron, Caitlin

    2012-01-01T23:59:59.000Z

    We believe we understand food deserts, but we do not. In the last decade the phenomenon of food deserts has been often discussed, and many solutions are proposed to alleviate food access issues in American cities. However, ...

  18. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A.

    1984-06-01T23:59:59.000Z

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  19. Medical and Biohazardous Waste Generator's Guide (Revision 2)

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Waste Supplies 8. Solid Medical Waste Disposal ProceduresMedical/Biohazardous Waste Pickup Containers Solid Medical/Security Notice 8. Solid Medical Waste Disposal Procedures

  20. Waste Management in Dsseldorf Combination of separate collection,

    E-Print Network [OSTI]

    Columbia University

    Waste Management in Düsseldorf Combination of separate collection, recycling and waste-to-energy Biowaste Garden waste Light packaging Paper Glass Wood from bulky waste Bulky waste Rest / mixed waste Bio- Garden- Paper Glass Light Metals Wood Bulky Rest waste waste Card- Pack. waste board Saved CO2

  1. Update on Radioactive Waste Management in the UK

    SciTech Connect (OSTI)

    Dalton, John; McCall, Ann

    2003-02-24T23:59:59.000Z

    This paper provides a brief background to the current position in the United Kingdom (UK) and provides an update on the various developments and initiatives within the field of radioactive waste management that have been taking place during 2002/03. These include: The UK Government's Department of Trade and Industry (DTi) review of UK energy policy; The UK Government's (Department of Environment, Food and Rural Affairs (Defra) and Devolved Administrations*) consultation program; The UK Government's DTi White Paper, 'Managing the Nuclear Legacy: A Strategy for Action'; Proposals for improved regulation of Intermediate Level Waste (ILW) conditioning and packaging. These various initiatives relate, in Nirex's opinion, to the three sectors of the industry and this paper will provide a comment on these initiatives in light of the lessons that Nirex has learnt from past events and suggest some conclusions for the future.

  2. Hydraulic waste energy recovery

    SciTech Connect (OSTI)

    Lederer, C.C.; Thomas, A.H.; McGuire, J.L. (Detroit Buildings and Safety Engineering Dept., MI (USA))

    1990-12-01T23:59:59.000Z

    Water distribution systems are typically a municipality's largest consumer of energy and greatest expense. The water distribution network has varying pressure requirements due to the age of the pipeline and topographical differences. Certain circumstances require installation of pressure reducing devices in the pipeline to lower the water pressure in the system. The consequence of this action is that the hydraulic energy supplied by the high lift or booster pumps is wasted in the process of reducing the pressure. A possible solution to capture the waste hydraulic energy is to install an in-line electricity generating turbine. Energy recovery using in-line turbine systems is an emerging technology. Due to the lack of technical and other relevant information on in-line turbine system installations, questions of constructability and legal issues over the power service contract have yet to be answered. This study seeks to resolve these questions and document the findings so that other communities may utilize this information. 10 figs.

  3. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

    1995-11-07T23:59:59.000Z

    A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

  4. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, Rich (Cranbury, NJ); Ciebiera, Lloyd (Titusville, NJ); Tulipano, Francis J. (Teaneck, NJ); Vinson, Sylvester (Ewing, NJ); Walters, R. Thomas (Lawrenceville, NJ)

    1995-01-01T23:59:59.000Z

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  5. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28T23:59:59.000Z

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  6. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

    1993-01-01T23:59:59.000Z

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  7. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

    1987-01-01T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  8. Waste products in highway construction. Final report

    SciTech Connect (OSTI)

    Han, C.

    1993-04-01T23:59:59.000Z

    The report presents waste materials and products for highway construction. The general legislation, local liability, and research projects related to waste materials are outlined. The waste materials and products presented include waste paving materials, industrial ash materials, taconite tailing materials, waste tire rubber materials and products, building rubble materials, incinerator ash products and materials, waste glass materials, waste shingle materials and products, waste plastics products, and slag materials. For each waste category, the legislation and restrictions, material properties, construction and application, field performance, and recycling at the end of service life if available are discussed.

  9. Municipal Waste Planning, Recycling and Waste Reduction Act ...

    Open Energy Info (EERE)

    Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies BiomassBiogas, Coal with CCS,...

  10. Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Hazardous Chemical Pharmaceutical Waste: A number of common pharmaceuticals are regulated as hazardous or more of the EPA characteristics of a hazardous chemical waste are also regulated as a hazardous

  11. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    Minimization/ Volume Reduction 0 Solid Radioactive Waste $2,168 $0 $2,168 Vial Crusher for glass vialsWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2004 WASTE TYPE DESCRIPTION DETAILS * Automotive Waste Substitution 510 Hazardous Waste $1,020 $1,000 $1,000 Aqueous Solvent

  12. Waste Toolkit A-Z Light bulbs

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Light bulbs Can I recycle light bulbs? It depends what type of bulbs you have of in the normal University waste bins (landfill waste). Energy saving bulbs and fluorescent tubes are classified light bulbs? Standard filament bulbs Put in the waste bin (landfill waste) as these are not classified

  13. Interface control document between the Tank Waste Remediation System and the Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Duncan, D.R.

    1995-04-01T23:59:59.000Z

    This document discusses the interface between the Tank Waste Remediation System (TWRS) and the Solid Waste Division (SWD).

  14. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect (OSTI)

    Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

    2010-08-15T23:59:59.000Z

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  15. Food Battery Competition Sponsored by

    E-Print Network [OSTI]

    Tennessee, University of

    and outstanding lithium-ion batteries, you can recognize the progress. Lithium provides good voltages and powerFood Battery Competition Sponsored by: The University of Tennessee, Materials Advantage (MA not have enough natural resources to support our growing populations and energy needs forever. Batteries

  16. Project Management Plan Chinese Food

    E-Print Network [OSTI]

    Igusa, Kiyoshi

    impact of this project? · Data management: How do we collect, preserve and sort all of the files? Which special equipment, facilities needed or wanted? According to http://project-management-knowledge.com/ weProject Management Plan Chinese Food According to NSF, the basic elements of a project management

  17. College of Food, Agricultural, and

    E-Print Network [OSTI]

    10. Undergraduate Student/Faculty Ratio and Class Size 11. Faculty Full-time Equivalent by Track 12 market for graduates · Record of collaboration (and leadership) within national network of peer ­ Food Production and Security; Energy and Environment; Health and Wellness ­ capture grand challenges

  18. Cook food to proper temperature.

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    and after handling or eating food; nafter playing with pets or visiting a zoo; nafter coughing, sneezing out of their mouths when they cough or sneeze. · Have the children touch something (table or chair. · Explain that if you wash your hands after coughing or sneezing in them, the germs will be washed away

  19. FOOD REFORM MOVEMENTS Nicolas Larchet

    E-Print Network [OSTI]

    Boyer, Edmond

    FOOD REFORM MOVEMENTS Nicolas Larchet Social historians have broadly defined two cycles of American history characterized by an efflorescence of social movements aiming to reform both the individual to the 1920s. The reform impulse thrived wherever there was a perceived vice, abuse or corruption

  20. Transport and transportation pathways of hazardous chemicals from solid waste disposal. Environ. Health Perspect

    E-Print Network [OSTI]

    Robert Van Hook

    1978-01-01T23:59:59.000Z

    To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceank environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources.

  1. Control of Viral Contamination of Food and Environment

    E-Print Network [OSTI]

    Cliver, Dean O.

    2009-01-01T23:59:59.000Z

    M. , & Sattar, S. A. (2000a). Contamination of foods by food2004). Norovirus cross-contamination during food handlingcoli in mussels after contamination and depu- ration.

  2. agricultural food chains: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGRICULTURE, FOOD & WINE Physics Websites Summary: Graduate Profile AGRICULTURE, FOOD & WINE "I was amazed that I could be a part of the food industry in a scientific way."...

  3. Vitrification of high sulfate wastes

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D.

    1994-09-01T23:59:59.000Z

    The US Department of Energy (DOE) through the Mixed Waste Integrated Program (MWIP) is investigating the application of vitrification technology to mixed wastes within the DOE system This work involves identifying waste streams, laboratory testing to identify glass formulations and characterize the vitrified product, and demonstration testing with the actual waste in a pilot-scale system. Part of this program is investigating process limits for various waste components, specifically those components that typically create problems for the application of vitrification, such as sulfate, chloride, and phosphate. This work describes results from vitrification testing for a high-sulfate waste, the 183-H Solar Evaporation Basin waste at Hanford. A low melting phosphate glass formulation has been developed for a waste stream high in sodium and sulfate. At melt temperatures in the range of 1,000 C to 1,200 C, sulfate in the waste is decomposed to gaseous oxides and driven off during melting, while the remainder of the oxides stay in the melt. Decomposition of the sulfates eliminates the processing problems typically encountered in vitrification of sulfate-containing wastes, resulting in separation of the sulfate from the remainder of the waste and allowing the sulfate to be collected in the off-gas system and treated as a secondary waste stream. Both the vitreous product and intentionally devitrified samples are durable when compared to reference glasses by TCLP and DI water leach tests. Simple, short tests to evaluate the compatibility of the glasses with potential melter materials found minimal corrosion with most materials.

  4. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

    2002-01-01T23:59:59.000Z

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  5. Progress Update: TRU Waste Shipping

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    A progress update at the Savannah River Site. A continued effort on shipping TRU waste to WIPP in Carlsbad, New Mexico.

  6. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01T23:59:59.000Z

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  7. Solid Waste Management Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

  8. Performance Assessment for Transuranic Waste

    National Nuclear Security Administration (NNSA)

    Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High- Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses...

  9. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  10. Hazardous Waste Transporter Permits (Connecticut)

    Broader source: Energy.gov [DOE]

    Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

  11. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-09-15T23:59:59.000Z

    This Notice reminds all DOE employees of their duty to report allegations of fraud, waste, and abuse to the Office of Inspector General. No cancellation.

  12. Nuclear waste incineration technology status

    SciTech Connect (OSTI)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15T23:59:59.000Z

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  13. KELP FOREST FOOD WEBS IN GWAII HAANAS

    E-Print Network [OSTI]

    Grazing Rates on Kelp Assimilation of Kelp-derived Organic Carbon in Kelp Forest Food Webs | 33 IntertidalKELP FOREST FOOD WEBS IN GWAII HAANAS: Ecosystem-Level Effects of Predator Depletion and Recovery

  14. Early Days of Food and Environmental Virology

    E-Print Network [OSTI]

    Cliver, Dean O.

    2010-01-01T23:59:59.000Z

    of irradiation of viruses, as it might pertain to foodirradiation studies were conducted in the Virology Branch of the US Food andirradiation technology for improved shell?sh sanitation. Journal of Food

  15. Peak Oil Food Network | Open Energy Information

    Open Energy Info (EERE)

    Butte, Colorado Zip: 81224 Website: http:www.PeakOilFoodNetwork. References: Peak Oil Food Network1 This article is a stub. You can help OpenEI by expanding it. The Peak...

  16. GENERAL GUIDELINES FOR SERVING SAFE FOOD

    E-Print Network [OSTI]

    to contamination by sneezing or coughing. · Dispose of any food that has been out for more than 2 hours. When

  17. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  18. Biotechnology for environmental control and waste treatment

    SciTech Connect (OSTI)

    Donaldson, T.L.; Harris, M.T.; Lee, D.D.; Walker, J.F.; Strandberg, G.W.

    1985-01-01T23:59:59.000Z

    A slide show is reproduced here to review the technology of anaerobic digestion as a process for cleaning waste waters from municipal and industry wastes. Radioactive wastes are addressed also. (PSB)

  19. Hazardous Waste Management Standards and Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

  20. Hazardous Waste Facility Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

  1. Eugene Solid Waste Management Market Analysis

    E-Print Network [OSTI]

    Oregon, University of

    Eugene Solid Waste Management Market Analysis Prepared By: Mitchell Johnson Alex Sonnichsen #12;Eugene Solid Waste Management Market Analysis May 2012 Page 1 Summary This study examines the economic impact of the solid waste management system

  2. Printed on recycled paper. 2013 Cornell Waste

    E-Print Network [OSTI]

    Chen, Tsuhan

    management by focusing University resources and capabilities on this pressing economic, environmental of waste generation and composition, waste reduction, risk management, environmental equity and publicPrinted on recycled paper. 2013 Cornell Waste Management Institute CWMI is a program

  3. Nanoparticle Technology for Biorefining of Non-Food Source Feedstocks

    SciTech Connect (OSTI)

    Pruski, Marek; Trewyn, Brian G.; Lee, Young-Jin; Lin, Victor S.-Y.

    2013-01-22T23:59:59.000Z

    The goal of this proposed work is to develop and optimize the synthesis of mesoporous nanoparticle materials that are able to selectively sequester fatty acids from hexane extracts from algae, and to catalyze their transformation, as well as waste oils, into biodiesel. The project involves studies of the interactions between the functionalized MSN surface and the sequestering molecules. We investigate the mechanisms of selective extraction of fatty acids and conversion of triglycerides and fatty acids into biodiesel by the produced nanoparticles. This knowledge is used to further improve the properties of the mesoporous nanoparticle materials for both tasks. Furthermore, we investigate the strategies for scaling the synthesis of the catalytic nanomaterials up from the current pilot plant scale to industrial level, such that the biodiesel obtained with this technology can successfully compete with food crop-based biodiesel and petroleum diesel.

  4. Local Food, Sustainability, and Cuba's National Food Program

    E-Print Network [OSTI]

    Fusco, Audrey Corinne

    2008-01-01T23:59:59.000Z

    to manufacture agrochemicals. Due to the extremity of the economic shock that followed the collapse of the Soviet Bloc and 3 the trade blockade imposed by the United States government, Cuba was forced to quickly reinvent its agriculture system.1... the period, Cuba was able to increase food production despite the reduction in supplies of petroleum and agrochemicals. It is important to understand the Cuban model because it is the largest attempted conversion from conventional agriculture to organic...

  5. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  6. INTRODUCTION Aquatic food-webs' ecology

    E-Print Network [OSTI]

    INTRODUCTION Aquatic food-webs' ecology: old and new challenges Andrea Belgrano Looking up ``aquatic food web'' on Google provides a dizzying array of eclectic sites and information (and disinformation!) to choose from. However, even within this morass it is clear that aquatic food-web research has

  7. Persistence of complex food webs in metacommunities

    E-Print Network [OSTI]

    Persistence of complex food webs in metacommunities Gesa A. B¨ohme 1 and Thilo Gross 2 1 Max of Engineering Mathematics, Bristol, UK Keywords: metacommunities, food webs, predator-prey interactions, geo diversity and food web complexity. Recently Pillai et al. proposed a simple modeling framework

  8. Food Security in the Western US

    E-Print Network [OSTI]

    Food Security in the Western US and Pacific Territories 23 Rural Connections Nov. 2009 By PeteR BaRcinas ADAP is tackling the food security implications of climate change, rising sea levels, and fuel costs Pacific (aDaP) Regional Food security and Sufficiency Project brings together community, local, state

  9. EPOK Centre for Organic Food and Farming

    E-Print Network [OSTI]

    EPOK ­ Centre for Organic Food and Farming Research on Organic Animal Husbandry in Sweden on organic production is coordinated by EPOK (Centre for Organic Food and Farming) at the Swedish University that have the potential to mitigate environmental effects. Publisher: EPOK ­ Centre for organic food

  10. Service Category: Outreach Organization: Food Medicine

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    Service Category: Outreach Organization: Food Medicine Person verifying Co-Curricular hours: Ethan location: Various sites in Detroit Area such as Whole Foods market, shelters, schools, Cass Clinic around the city like Whole Foods, schools, shelters, and senior centers. Commitment: Activities

  11. Experimental Foods 709:489 Fall 2012

    E-Print Network [OSTI]

    Chen, Kuang-Yu

    #11 Emulsions & fat replacers F 11/30 Food Colors T 12/4 Flavors & seasonings F 12/7 Genetically modified foods Reserve reading Research paper due 12/7 T 12/11 EXAM #12;Experimental Foods 709:489 Fall 2012 Lecture: Tuesday & Friday 9:30- 10:25 AM 106 HSB Lab sections

  12. Explaining Africa agricultural and food trade deficits

    E-Print Network [OSTI]

    0.8 percent per year. Food consumption on per capita basis grew only at about 1 percent per year of food consumption and imports per capita is consistent with the weak economic growth and unchanged the highest net food imports per capita (USD 185 per year in real terms), they had ample means to pay

  13. Radioactivity in Food and the Environment, 2002

    E-Print Network [OSTI]

    Radioactivity in Food and the Environment, 2002 RIFE - 8 2003 #12;1 ENVIRONMENT AGENCY ENVIRONMENT AND HERITAGE SERVICE FOOD STANDARDS AGENCY SCOTTISH ENVIRONMENT PROTECTION AGENCY Radioactivity in Food and the Environment, 2002 RIFE - 8 October 2003 #12;2 This report was compiled by the Centre for Environment

  14. Carbon Footprinting for the Food Industry

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    174-1 Carbon Footprinting for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-174 and Natural Resources Carbon footprinting in the food industry is an activity that determines the greenhouse.g. tons) of carbon dioxide (CO2) equivalent per functional unit (e.g. kg or liter of goods sold) (PAS2050

  15. Cholesterol-Lowering Foods Tasty, functional foods help you lower cholesterol naturally.

    E-Print Network [OSTI]

    for the American Dietetic Association. Researchers have found that some foods -- such as fatty fish, walnuts

  16. Coolside waste management research

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Objective was to produce sufficient information on physical and chemical nature of Coolside waste (Coolside No.1, 3 at Edgewater power plant) to design and construct stable, environmentally safe landfills. Progress during this period was centered on analytical method development, elemental and mineralogical analysis of samples, and field facilities preparation to receive lysimeter fill. Sample preparation techniques for thick target PIXE/PIGE were investigated; good agreement between measured and actual values for standard fly ash were obtained for all elements except Fe, Ba, K (PIXE).

  17. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal848 UnlimitedIntegrated DisposalWaste Treatment and

  18. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates >-Plans andWaste Isolation

  19. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect (OSTI)

    Anderson, Robert Stephen

    2001-02-01T23:59:59.000Z

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  20. Solid Waste Management Act (West Virginia)

    Broader source: Energy.gov [DOE]

    In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of...

  1. Independent Oversight Review, Waste Treatment and Immobilization...

    Energy Savers [EERE]

    Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant...

  2. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents...

  3. Independent Oversight Assessment, Salt Waste Processing Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

  4. Enforcement Letter, Westinghouse Waste Isolation Division - October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant On October 3, 2000,...

  5. Waste Package Materials Performance Peer Review | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review A consensus peer review of the current technical basis and the planned experimental...

  6. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Environmental Management (EM)

    Observation of the Waste Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities...

  7. Sandia National Laboratories: radiation waste cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  8. Integrated Solid Waste Management Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and municipality is required to file an integrated...

  9. DC Hazardous Waste Management (District of Columbia)

    Broader source: Energy.gov [DOE]

    This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

  10. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    system (LMH), the melter equipment support handling system (LSH), the radioactive solid waste handling system (RWH), and the radioactive liquid waste disposal system (RLD)....

  11. Chapter 47 Solid Waste Facilities (Kentucky)

    Broader source: Energy.gov [DOE]

    This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

  12. Development of Thermoelectric Technology for Automotive Waste...

    Energy Savers [EERE]

    Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S....

  13. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  14. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  15. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01T23:59:59.000Z

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  16. Solid Waste Management Policy and Programs (Minnesota)

    Broader source: Energy.gov [DOE]

    These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse...

  17. Independent Oversight Assessment, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the...

  18. Municipal Solid Waste Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector.

  19. Waste Management Programmatic Environmental Impact Statement...

    Office of Environmental Management (EM)

    Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision Waste Management Programmatic Environmental Impact Statement (WM PEIS)...

  20. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  1. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  2. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  3. Waste incineration and the community -

    E-Print Network [OSTI]

    Columbia University

    , metals, plastics, paper and hazardous materials from the organic portion of household waste, together the volumes collected have often exceeded the recycling capacity. Composting the organic portion has also beenWaste incineration and the community - The Amsterdam experience The successful community relations

  4. THE ECONOMIST The waste industry

    E-Print Network [OSTI]

    of ten feet. Humanity has always produced waste in vast quantities; but more people, more consumption as with toxic chemicals, governments need to persuade people that they should be responsible for the muck into electricity or fuel or fertiliser. Environmentalists dream of a world in which almost nothing is wasted. #12

  5. Generating Steam by Waste Incineration

    E-Print Network [OSTI]

    Williams, D. R.; Darrow, L. A.

    1981-01-01T23:59:59.000Z

    Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

  6. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-12-15T23:59:59.000Z

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG). Cancels: DOE N 221.12, Reporting Fraud, Waste, and Abuse, dated 10-19-06

  7. Waste Management Coordinating Lead Authors

    E-Print Network [OSTI]

    Columbia University

    -to-energy ..............................................601 10.4.4 Biological treatment including composting, anaerobic digestion, and MBT (Mechanical Biological Treatment) ........................................601 10.4.5 Waste reduction, re-use and recycling ..............602 10.4.6 Wastewater and sludge treatment.....................602 10.4.7 Waste

  8. Nutrition, Weight Control and Fast Food.

    E-Print Network [OSTI]

    Sweeten, Mary K.

    1980-01-01T23:59:59.000Z

    Page in Original Bulletin] Nutrition, Weight Control and Fast Food Mary K. Sweeten* The Fast Food Trend More people are eating fewer meals at home and more snack-type meals at fast food ' restaurants. Fast food sales in 1978 in the United States... chain when eating out 60 percent of the time. This trend is a result of more women employed outside the home, a higher per capita disposable income and more leisure time. Although they may cost more than the same meals prepared at home, fast food res...

  9. 4-H Favorite Foods Unit 1.

    E-Print Network [OSTI]

    Cox, Maeona; Mason, Louise; Reasonover, Frances; Tribble, Marie

    1958-01-01T23:59:59.000Z

    for this unit: 1. Prepare and serve one food from each of these groups olte time or more. Candy Snacks Desserts Main dishes Breads Salads Drinks Vegetables Fruit Set the table five times or more. Help serve meals five times or more. Plan, prepare... and other equipment in the kitchen. 7. Learn to work safely. 8. Learn the best way to wash dishes and clean up the kitchen. 0 Learn to eat the foods listed on the Texas Food Standard. Keep your food record up to date. Exhibit one food you learned...

  10. Characterization of geothermal solid wastes

    SciTech Connect (OSTI)

    Morris, W.F.; Stephens, F.B.

    1981-07-01T23:59:59.000Z

    The compositions of 5 major types of geothermal wastes have been determined, and samples have been subjected to EPA recommended extraction tests to determine if they contain toxic metals that would classify the wastes as hazardous. Of the samples tested, the extracts of geothermal brines clearly contain levels of As, Ba and Pb exceeding the maximum allowed concentrations that characterize wastes as toxic. Only one other waste type, geothermal scale, exhibited EP toxicity. Pb was found in the extract of geothermal scale at a level of 7 mg/l, only 2 mg/l over the maximum limit. All of the other types of geothermal waste samples showed levels of toxic metals in the extracts well below the regulated limits.

  11. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  12. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  13. Method of recycling hazardous waste

    SciTech Connect (OSTI)

    NONE

    1999-11-11T23:59:59.000Z

    The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

  14. UK report on waste management

    SciTech Connect (OSTI)

    Ferguson, J. [London Waste Regulation Authority (United Kingdom)

    1995-09-01T23:59:59.000Z

    Arising jointly from the National and European Union requirements for more intensive attention to be paid to the environment, the United Kingdom (UK) has taken many strides forward in protecting the environment from pollution and preventing harm to human health arising from the handling, transport and disposal of wastes. Major adjustments are taking place in Europe following the opening up of the Eastern European countries. The consequences of the illegal movement of wastes and its mistreatment and disposal are now recognised within the European Union. The UK as a member State is well aware of the consequences which arise from the lack of proper waste management. This paper discusses waste management and legislation pertaining to waste management in the United Kingdom.

  15. The Food Safety Knowledge Level of Certified Food Managers Who Attended Two Self-Selected Training Courses

    E-Print Network [OSTI]

    Payton, Larry Sean

    2013-05-30T23:59:59.000Z

    in food protection. For this inquiry, the researcher studied the knowledge level gained by food mangers from two food companies and two certification courses. There were 90 food service operations that participated in the study. The data was collected...

  16. Process waste assessment for solid low-level radioactive waste and solid TRU waste

    SciTech Connect (OSTI)

    Haney, L. [Westinghouse Savannah River Co., Aiken, SC (United States); Gamble, G.S. [Law Environmental, Inc., Kennesaw, GA (United States)

    1994-04-01T23:59:59.000Z

    Process Waste Assessments (PWAs) are a necessary and important part of a comprehensive waste management plan. PWAs are required by Federal RCRA regulations, certain state regulations and Department of Energy Orders. This paper describes the assessment process and provides examples used by Law Environmental, Inc., in performing numerous PWAs at the Savannah River Site in Aiken, SC.

  17. Tank waste remediation system dangerous waste training plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-05-13T23:59:59.000Z

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench.

  18. HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously with the words "Hazardous Waste."

    E-Print Network [OSTI]

    Slatton, Clint

    HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously. Decontaminate 5. Dispose of cleanup debris as Hazardous Waste Chemical Spill ­ major 1. Evacuate area, isolate with the words "Hazardous Waste." 2. Label all containers accurately, indicating the constituents and approximate

  19. Food Research InstituteSince 1946, a tradition of food safety leadership through research, training, and outreach

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Food Spoilage, Natural/Organic Foods, Water Safety and Quality, and Mycotoxins. FRI also collaborates with other groups on and off campus in organizing meetings on topics such as food import safety, foodFood Research InstituteSince 1946, a tradition of food safety leadership through research, training

  20. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01T23:59:59.000Z

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  1. LLNL Waste Minimization Program Plan

    SciTech Connect (OSTI)

    Not Available

    1990-02-14T23:59:59.000Z

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

  2. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  3. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01T23:59:59.000Z

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  4. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L [Washington TRU Solutions (United States); Edmiston, D. R. [John Hart and Associates (United States); O'Leary, G. A. [CH2M-WG Idaho, LLC (United States); Rivera, M. A. [Aspen Resources Ltd., Inc. (United States); Steward, D. M. [Boulder Research Enterprises, LLC (United States)

    2006-07-01T23:59:59.000Z

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  5. Waste drum refurbishment

    SciTech Connect (OSTI)

    Whitmill, L.J.

    1996-10-18T23:59:59.000Z

    Low-carbon steel, radioactive waste containers (55-gallon drums) are experiencing degradation due to moisture and temperature fluctuations. With thousands of these containers currently in use; drum refurbishment becomes a significant issue for the taxpayer and stockholders. This drum refurbishment is a non-intrusive, portable process costing between 1/2 and 1/25 the cost of repackaging, depending on the severity of degradation. At the INEL alone, there are an estimated 9,000 drums earmarked for repackaging. Refurbishing drums rather than repackaging can save up to $45,000,000 at the INEL. Based on current but ever changing WIPP Waste Acceptance Criteria (WAC), this drum refurbishment process will restore drums to a WIPP acceptable condition plus; drums with up to 40% thinning o the wall can be refurbished to meet performance test requirements for DOT 7A Type A packaging. A refurbished drum provides a tough, corrosion resistant, waterproof container with longer storage life and an additional containment barrier. Drums are coated with a high-pressure spray copolymer material approximately .045 inches thick. Increase in internal drum temperature can be held to less than 15 F. Application can be performed hands-on or the equipment is readily adaptable and controllable for remote operations. The material dries to touch in seconds, is fully cured in 48 hours and has a service temperature of {minus}60 to 500 F. Drums can be coated with little or no surface preparation. This research was performed on drums however research results indicate the coating is very versatile and compatible with most any material and geometry. It could be used to provide abrasion resistance, corrosion protection and waterproofing to almost anything.

  6. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    SciTech Connect (OSTI)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21T23:59:59.000Z

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  7. Bubblers Speed Nuclear Waste Processing at SRS

    SciTech Connect (OSTI)

    None

    2010-11-14T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  8. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

    1982-01-01T23:59:59.000Z

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  9. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23T23:59:59.000Z

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  10. Waste Toolkit A-Z Plastic Grundon

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Plastic ­ Grundon Also see `Swap Shop' and `Office Recycling ­ Grundon' in the Waste Toolkit A-Z How can I recycle plastic? There are lots of different types of plastic. Typically, waste contractors can only recycle PETE plastic and HDPE plastic. The University's preferred waste

  11. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  12. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema (OSTI)

    None

    2014-08-06T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  13. Waste disposal options report. Volume 1

    SciTech Connect (OSTI)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01T23:59:59.000Z

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

  14. Waste Management World November/December 2005

    E-Print Network [OSTI]

    Columbia University

    of wastes at waste-to-energy plants each year, generating an amount of energy that can supply electricity, 2005 Where is waste-to-energy, and where is it going? A WTE plant in Mallorca, Spain. European plants used in Europe ­ approximately 50% of the 243 million tonnes of municipal solid waste (MSW) generated

  15. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  16. Municipal Solid Waste in The United States

    E-Print Network [OSTI]

    Barlaz, Morton A.

    2011 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-13-001 May 2013 www.epa.gov #12;MUNICIPAL SOLID WASTE IN THE UNITED STATES: 2011 FACTS AND FIGURES Table of Contents Chapter Page MUNICIPAL SOLID WASTE

  17. AUSTRIA SHOWCASE WASTE-to-ENERGY

    E-Print Network [OSTI]

    &P #12;7 Waste Prevention: The Danube begins here ... © EbS, Austria #12;8 Treatment of Municipal Solid1 AUSTRIA SHOWCASE WASTE-to-ENERGY in AUSTRIA AECC Aberdeen Exhibition & Conference Center (M.I.T.) #12;2 Table of Content · Development of waste management in Austria · Status-Quo of waste

  18. http://wmr.sagepub.com/ Waste Management &

    E-Print Network [OSTI]

    : International Solid Waste Association can be found at:Waste Management & ResearchAdditional serviceshttp://wmr.sagepub.com/ Research Waste Management & http://wmr.sagepub.com/content/13/4/363 The online version of this article can be found at: DOI: 10.1177/0734242X9501300407 1995 13: 363Waste Manag

  19. ISWA Study Tour WASTE-TO-ENERGY

    E-Print Network [OSTI]

    .30 pm ­ 2.00 pm Development of Municipal Solid Waste Management and Treatment Facilities in Vienna, Treatment, and Intermediate Storage - without any disposal of untreated wastes exceeding 5 % TOC and public acceptance of hazardous waste treatment and waste incineration plants (typical "lulu" projects

  20. Industrial waste reduction: The process problem

    SciTech Connect (OSTI)

    Valentino, F.W.; Walmet, G.E.

    1986-09-01T23:59:59.000Z

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  1. Waste Disposal Site and Radioactive Waste Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

  2. Waste Examination Assay Facility operations: TRU waste certification

    SciTech Connect (OSTI)

    Schultz, F.J.; Caylor, B.A.; Coffey, D.E.; Phoenix, L.B.

    1987-01-01T23:59:59.000Z

    The ORNL Waste Examination Assay Facility (WEAF) was established to nondestructively assay (NDA) transuranic (TRU) waste generated at Oak Ridge National Laboratory (ORNL). The present facility charter encompasses the NDA and nondestructive examination (NDE) of both TRU and low-level wastes (LLW). Presently, equipment includes a Neutron Assay System (NAS), a Segmented Gamma Scanner (SGS), a drum-sized Real-Time Radiography (RTR) system, and a Neutron Slab Detector (NSD). The first three instruments are computer interfaced. Approximately 2300 TRU waste drums have been assayed with the NAS and the SGS. Another 3000 TRU and LLW drums have been examined with the RTR unit. Computer data bases have been developed to collate the large amount of data generated during the assays and examinations. 6 refs., 1 tab.

  3. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01T23:59:59.000Z

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  4. Consolidation process for producing ceramic waste forms

    DOE Patents [OSTI]

    Hash, Harry C. (Joliet, IL); Hash, Mark C. (Shorewood, IL)

    2000-01-01T23:59:59.000Z

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  5. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01T23:59:59.000Z

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  6. Emergency Food and Water Supplies

    E-Print Network [OSTI]

    Van Laanen, Peggy

    1999-05-14T23:59:59.000Z

    1 day. An appliance thermometer can help monitor the inside freezer tem per a- ture. Use of dry ice. Dry ice can be used to help maintain adequate freezer temperature if the power is out for more than one day. Use these precautions when using... dry ice. Use 3 pounds dry ice per cubic foot of freezer space. Avoid direct contact of dry ice with skin. Dry ice will burn skin and is not for consumption. Wrap dry ice in brown paper for longer storage and separate it from food with a piece...

  7. Food Service | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area(Sasada, 1988)PevafersaType Food

  8. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01T23:59:59.000Z

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  9. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  10. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect (OSTI)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2014-12-01T23:59:59.000Z

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  11. Transforming trash: reuse as a waste management and climate change mitigation strategy

    E-Print Network [OSTI]

    Vergara, Sintana Eugenia

    2011-01-01T23:59:59.000Z

    Biological treatment of waste solids. Waste Management andOF POLLUTANTS FROM SOLID WASTE Solid waste affects the32 5. Solid waste and its impact on the

  12. Waste Minimization: A Hidden Energy Savings?

    E-Print Network [OSTI]

    Good, R. L.; Hunt, K. E.

    vation and Recovery Act (RCRA), serve to regulate waste handling, storage, and disposal. However, these and other governmental laws and regulations have a common purpose: ultimate waste management is not producing waste at all. The common terms...-examination of waste generation within the petro chemical industry. In today's political/regulatory arena, industrial waste, both hazardous and non hazardous, has become an extreme potential liability in handling, storing, and disposal. Traditional methods...

  13. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  14. A THEORY OF WASTE AND VALUE 

    E-Print Network [OSTI]

    Ferná ndez-Solis, José Rybkowski, Zofia K.

    2015-02-08T23:59:59.000Z

    . However, when discrete waste requires the involvement of several stakeholders, the opportunity for synergistic waste can be expected to increase. In this case, synergistic waste can be considered to be multiplicative and contagious. When patterns... of breakdowns that become contagious and therefore cause systemic waste, a situation that integrated contracts address (Lichtig 2005). Figure 5. Web of Temporary Relationships. Figure 6. Breakdowns – One Source of Waste. These loops form a web...

  15. Cogeneration/Cogeneration - Solid Waste

    E-Print Network [OSTI]

    Pyle, F. B.

    1980-01-01T23:59:59.000Z

    This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

  16. Waste Handeling Building Conceptual Study

    SciTech Connect (OSTI)

    G.W. Rowe

    2000-11-06T23:59:59.000Z

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.

  17. On Going TRU Waste Disposition

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01T23:59:59.000Z

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  18. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1...

  19. On Going TRU Waste Disposition

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  20. Solid Waste Disposal Facilities (Massachusetts)

    Broader source: Energy.gov [DOE]

    These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the...

  1. Hazardous and Industrial Waste (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

  2. Hazardous Waste Management Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the...

  3. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-06T23:59:59.000Z

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  4. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-29T23:59:59.000Z

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General’s responsibilities in this area. No cancellation.

  5. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-07-29T23:59:59.000Z

    DOE N 221.8 notifies all DOE employees, including National Nuclear Security Administration employees, of their duty to report allegations of fraud, waste, and abuse to appropriate authorities, including the DOE Office of Inspector General. No cancellation.

  6. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-07T23:59:59.000Z

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General's responsibilities in this area. Does not cancel other directives.

  7. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-06-09T23:59:59.000Z

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General’s responsibilities in this area. No cancellation.

  8. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-07-29T23:59:59.000Z

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General's responsibilities in this area. No cancellation.

  9. Reporting Fraud, Waste and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-07-12T23:59:59.000Z

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  10. Reporting Fraud, Waste and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-10-19T23:59:59.000Z

    To notify all Department of Energy employees, including National Nuclear Security Administration employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General. No cancellation.

  11. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-20T23:59:59.000Z

    To notify all Department of Energy employees, including National Nuclear Security Administration employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General.

  12. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12T23:59:59.000Z

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  13. Solid Waste Management Rules (Vermont)

    Broader source: Energy.gov [DOE]

    These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

  14. Cogeneration/Cogeneration - Solid Waste 

    E-Print Network [OSTI]

    Pyle, F. B.

    1980-01-01T23:59:59.000Z

    This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

  15. Sustainable Food Policy Nottingham Trent University (NTU) recognises that food production and

    E-Print Network [OSTI]

    Evans, Paul

    where possible, o Minimise waste and pollution through effective recycling and waste disposal systems, o assured meat and poultry; · We only use organic eggs and milk in freshly prepared meals and beverages Monitor, record and take the necessary action with regard to plate waste. Reviewed and updated: February

  16. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    SciTech Connect (OSTI)

    Ebert, William; Pereira, Candido; Heltemes, Thad A.; Youker, Amanda; Makarashvili, Vakhtang; Vandegrift, George F.

    2014-01-01T23:59:59.000Z

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  17. Waste Stream Disposal Pharmacy Quick Sheet (6/16/14) Also pharmacy employees must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous Additional Waste

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Additional Waste Disposal Location Green Bins for Non-hazardous waste Black Bins must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous for Hazardous Waste Yellow Trace Chemo Disposal Bin Red Sharps Bins Red

  18. Remediation of oil field wastes

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.

    1990-01-01T23:59:59.000Z

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  19. Energy Department, Northwest Food Processors Association Set...

    Office of Environmental Management (EM)

    Food Processors Association today set ambitious goals to reduce energy use and carbon emissions in the industrial sector. DOE Industrial Technologies Program Manager Douglas Kaempf...

  20. Covered Product Category: Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

  1. Consumer's Guide: Preventing Food-borne Illness

    E-Print Network [OSTI]

    Extension Food and Nutrition Specialists

    2008-12-22T23:59:59.000Z

    By following a few simple measures, you can help protect yourself and your family from food-borne illness caused by harmful bacteria....

  2. Ethanol: Producting Food, Feed, and Fuel

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol Board) discussed the food versus fuel issue.

  3. THERMAL IMPACT OF WASTE EMPLACEMENT AND SURFACE COOLING ASSOCIATED WITH GEOLOGIC DISPOSAL OF NUCLEAR WASTE

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2010-01-01T23:59:59.000Z

    thermohydroiogic behavior of nuclear waste r e p o s i t o rground repository for nuclear wastes in hard r o d ' .RELATED PROBLEMS IN A NUCLEAR WASTE REPOSITORY T h i s b i b

  4. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    SciTech Connect (OSTI)

    Price, S.M.

    1997-04-30T23:59:59.000Z

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  5. Characteristics of potential repository wastes

    SciTech Connect (OSTI)

    Notz, K.J.

    1989-01-01T23:59:59.000Z

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will be disposed of in a geologic repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. Detailed characterizations are required for all of these potential repository wastes. These characterizations include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. This information has been extracted from primary data sources, evaluated, and assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. The Characteristics Data Base provides a standard set of self-consistent data to the various areas of responsibility including systems integration and waste stream analysis, storage, transportation, and geologic disposal. The data will be used for design studies, evaluation of alternatives, and system optimization by OCRWM and supporting contractors. 7 refs., 5 figs., 7 tabs.

  6. EXTENSION CENTER FOR FOOD, AGRICULTURAL AND NATURAL RESOURCE SCIENCES Strengthening Minnesota's food, agriculture,

    E-Print Network [OSTI]

    Netoff, Theoden

    -increasing list of goods, services, and aesthetic values. RESOURCES: Extension's Center for Food, Agricultural agricultural and forestry practices that are economically and environmentally sustainable · Finding solutionsEXTENSION CENTER FOR FOOD, AGRICULTURAL AND NATURAL RESOURCE SCIENCES Strengthening Minnesota

  7. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-01T23:59:59.000Z

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  8. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  9. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01T23:59:59.000Z

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  10. affecting nuclear waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    influencing discussions on nuclear waste managementEthical Aspects of Nuclear Waste Alan Marshall Masaryk University Nuclear waste managementethical issues are just as important...

  11. Net Zero Waste - Tools and Technical Support ...and other observations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Zero Waste - Tools and Technical Support ...and other observations Net Zero Waste - Tools and Technical Support ...and other observations Presentation at Waste-to-Energy using...

  12. Micro-Continuum Modeling of Nuclear Waste Glass Corrosion

    E-Print Network [OSTI]

    Steefel, Carl

    2014-01-01T23:59:59.000Z

    21. Grambow, B. (2006). Nuclear waste glasses – How durable?Continuum Modeling of Nuclear Waste Glass Corrosion AugustContinuum Modeling of Nuclear Waste Glass Corrosion Prepared

  13. The Social and Ethical Aspects of Nuclear Waste

    E-Print Network [OSTI]

    Marshall, Alan

    2005-01-01T23:59:59.000Z

    siting a high-level nuclear waste repository at Hanford,Eds. ), Public reactions to nuclear waste. Durham, NC: DukeInternational politics of nuclear waste. London: Macmillan.

  14. Mr. John E. Kieling, Chief Hazardous Waste Bureau Departmen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to characterize and certify waste in accordance with the Waste Isolation Pilot Plant Hazardous Waste Facility Permit. The report contains the results of the recertification audit...

  15. Microsoft PowerPoint - EM SSAB Chairs Webinar - Marcinowski Waste...

    Office of Environmental Management (EM)

    Chair's Meeting Waste Disposition Strategies Update www.energy.govEM 1 Waste Disposition Strategies Update Frank Marcinowski Deputy Assistant Secretary for Waste Management Office...

  16. BUOYANCY FLOW IN FRACTURES INTERSECTING A NUCLEAR WASTE REPOSITORY

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2010-01-01T23:59:59.000Z

    discharge •side. As the wastes heat up the rock formationLBL—11112 "Heat Transfer to Nuclear Waste Disposal", ASMEv INTRODUCTION Heat released from a nuclear waste repository

  17. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    lived medium level waste (MLW), heat producing vitri- fiedpackage spacing, and waste package heat output, will resultdisposal gallery for heat-emitting waste and to quantify the

  18. Nuclear waste management. Semiannual progress report, April 1983-September 1983

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A. (comps.)

    1984-01-01T23:59:59.000Z

    The status of the following programs is reported: waste stabilization; waste isolation; low-level waste management; remedial action; and supporting studies. 58 figures, 39 tables.

  19. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A. (comps.)

    1985-06-01T23:59:59.000Z

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  20. EM Makes Significant Progress on Dispositioning Transuranic Waste...

    Office of Environmental Management (EM)

    Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed...

  1. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    geo-thermal energy, ocean thermal energy, wasted heat ingeothermal energy, ocean thermal energy, wasted heat inthermal energy, geo/ocean-thermal energy, wasted heat in

  2. Dredging up old wastes

    SciTech Connect (OSTI)

    Phipps, L. (CH2M Hill, Denver, CO (United States))

    1992-01-01T23:59:59.000Z

    In 1986, Portland General Electric (PGE) donated a parcel of prime riverfront land to the Oregon Museum of Science and Industry (OMSI) in Portland, OR, for OMSI's new facility. The site had PCB-Contaminated sediments, which had to be removed before construction could begin. In the face of tight deadlines and public concerns, the remediation project was completed in record time while using a unique combination of treatment methods, including low-volume dredging and capping. Conventional dredging would have resuspended the fine sediments containing PCBs and sent them downriver. Low-volume dredging used a diver-operated suction hose to remove sediment with minimal disturbance. Similar to equipment used for underwater archaeological excavations, the diver vacuums from the river bottom fine sediments, which are then discharged to a treatment facility. The water and sediment mixture was initially discharged to Bakr tanks for primary settling. The water was then pumped through a multimedia filter-system, a bag filter system, and a granular activated carbon system before discharge back into the river. The remaining contaminated sediments were air-dried in a lined containment area, stabilized, and transported to a hazardous waste landfill. PCB Concentrations were reduced to less than 6 mg/L. Although elements of this remedial action have been used before, it is believed that this is the first combined use of low-dredging and this particular water-treatment system in the US.

  3. DONATED FOOD SERVICES REQUEST The Department of Housing and Food Services proudly donates Pepsi Products and

    E-Print Network [OSTI]

    Sibille, Etienne

    DONATED FOOD SERVICES REQUEST The Department of Housing and Food Services proudly donates Pepsi in utilizing this service, please review the following important information. Pepsi products and food items: __________ Pitt Students Only? Yes____ No_____ At this event I would like... (Please List Specifically) Pepsi

  4. Remote Shopping Robot System for Fresh Foods Method of handling foods

    E-Print Network [OSTI]

    Ohya, Akihisa

    Remote Shopping Robot System for Fresh Foods ­ Method of handling foods ­ Tetsuo TOMIZAWA, Akihisa a mobile manipulator as a teleoperated tool for accessing and manipulating remote objects. A human uses the system to select and buy fresh foods of a super market from a remote location via the Internet. We

  5. Remote Shopping Robot System for Fresh Foods Development of the foods grasping mechanism

    E-Print Network [OSTI]

    Ohya, Akihisa

    Remote Shopping Robot System for Fresh Foods ­Development of the foods grasping mechanism­ Tetsuo) Abstract-- Our purpose is developing the remote shopping system as a concrete application. A human uses the system to select and buy fresh foods of a supermarket from a remote location via the Internet. We

  6. Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used...

  7. Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York)

    Broader source: Energy.gov [DOE]

    These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators,...

  8. Solid Waste Regulation No. 8- Solid Waste Composting Facilities (Rhode Island)

    Broader source: Energy.gov [DOE]

    Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for...

  9. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01T23:59:59.000Z

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  10. Ventura County hazardous waste minimization program

    SciTech Connect (OSTI)

    Hanlon, D.A.; Koepp, D.W.

    1987-05-01T23:59:59.000Z

    In 1985, Ventura County Environmental Health Department began a technical assistance program to encourage hazardous waste generators to reduce their dependence on land disposal. In order to accomplish this, information from the California State Hazardous Waste Manifest Information System was analyzed to identify the types, quantities and disposition of hazardous waste produced by companies in Ventura County. All generators that rely on land disposal were also surveyed to determine future waste management plans. Waste audits were conducted at each site to determine if alternative waste handling methods were feasible and to ensure that reuse, recycling and waste reduction methods are used when possible. This article summarizes these findings and projects future hazardous waste generation and disposal patterns for industries in Ventura County. It also identifies barriers to volume reduction and provides a framework for future local hazardous waste alternative technology/volume reduction program activities.

  11. Electronic waste management approaches: An overview

    SciTech Connect (OSTI)

    Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (China)

    2013-05-15T23:59:59.000Z

    Highlights: ? Human toxicity of hazardous substances in e-waste. ? Environmental impacts of e-waste from disposal processes. ? Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ? Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

  12. Waste Growth Challenges Local Democracy. The Politics of Waste between Europe and the Mediterranean: a Focus on Italy

    E-Print Network [OSTI]

    Mengozzi, Alessandro

    2010-01-01T23:59:59.000Z

    2008). ISWA. International Solid Waste Association. http://and Health Impact of Solid Waste Management Activities. InPerformance of Alternative Solid Waste Management Options: A

  13. The Canadian Food System: A Community Development Approach

    E-Print Network [OSTI]

    Fox, Michael

    management, food security, food safety and the regulation of genetically modified foods and pesticidesThe Canadian Food System: A Community Development Approach ERST/CAST 334 H -Fall 2008 Course Description: This interdisciplinary course examines agriculture and the food system in Canada, emphasizing

  14. MMU Sustainable Food Policy Statement Purpose of Policy

    E-Print Network [OSTI]

    in landfill by working with the Environment Team and our waste contractor to secure landfill alternatives. March 2013 progress update: The University have established a zero waste to landfill waste contract

  15. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  16. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    SciTech Connect (OSTI)

    Giugliano, Michele; Cernuschi, Stefano [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Grosso, Mario, E-mail: mario.grosso@polimi.it [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy); Rigamonti, Lucia [Politecnico di Milano - DIIAR, Environmental Section, P.zza Leonardo da Vinci, 32, 20133 Milano (Italy)

    2011-09-15T23:59:59.000Z

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials.

  17. Tax Policy and Food Security Pawan Gopalakrishnany

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    Tax Policy and Food Security Pawan Gopalakrishnany Anuradha Sahaz September 17, 2014 Abstract We regime. Keywords : Endogenous Growth, Fiscal Policy, Food Security, Welfare JEL Codes: E2, E62, H29, O00 Economics and Planning Unit, Indian Statistical Institute, New Delhi ­ 110016, India. Tel: 91-11- 27568306

  18. FOOD PRESERVATION SERIES types of potatoes

    E-Print Network [OSTI]

    FOOD PRESERVATION SERIES Potato types of potatoes hOW TO STORE PotatoMichigan-grown potatoes and make excellent mashed potatoes. yield FOOD SAFETY TIPS One pound 3 medium potatoes. 3 cups peeled canner load of 9 pints 50 pounds 18 ­ 22 quarts Purchase potatoes that are firm and do not have bruises

  19. Food Security in an Era of Globalization

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    . · In the South, many economic development policies have been built on bedrock of food security and low urban's Energy Got to Do With It? 6. Quo Vadis? 11 July 2008 #12;Roland-Holst 3 1. Motivation · Food markets to exports. · Grains account for over half of all calories consumed by the poor in Asia and Africa. · Riots

  20. Structural Degradation in Mediterranean Sea Food Webs

    E-Print Network [OSTI]

    Myers, Ransom A.

    Structural Degradation in Mediterranean Sea Food Webs: Testing Ecological Hypotheses Using in species composition and abun- dance in marine ecosystems which translate into degradation of food of ecosystem degradation. We assembled species lists and ecological information for both re- gions and time