Airborne electromagnetic surveys as a reconnaissance technique...
geothermal exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Airborne electromagnetic surveys as a reconnaissance technique for...
airborne gravity survey: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Gravity CERN Preprints Summary: Modified gravity theories may provide an alternative to dark energy to explain cosmic acceleration. We argue that the observational program...
airborne resistivity techniques: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
152 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
Category:Gravity Techniques | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton GreensVisualizations.inGravity
Investigating High Field Gravity using Astrophysical Techniques
Bloom, Elliott D.; /SLAC
2008-02-01T23:59:59.000Z
The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and plans for future experiments.
Barnhart, Kevin Scott
2013-10-01T23:59:59.000Z
We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless %5Cnodes%22 which can be left in the eld for many months. Embedded software would then increase sampling frequency during periods of rainfall. We hypothesized that this contrast between no-volume ow in karst passageways dur- ing dry periods and partial- or saturated-volume ow during a rain event is detectable by these Wireless Sensor Network (WSN) geophysical nodes, we call this a Wireless Resistivity Network (WRN). The development of new methodologies to characterize semi-arid karst hydrology is intended to augment Sandia National Laboratorys mission to lead e orts in energy technologies, waste disposal and climate security by helping to identify safe and secure regions and those that are at risk. Development and initial eld testing identi ed technological barriers to using WRNs for identifying semi-arid karst, exposing R&D which can be targeted in the future. Gravity, seismic, and resis- tivity surveys elucidated how each technique might e ectively be used to characterize semi-arid karst. This research brings to light the importance and challenges with char- acterizing semi-arid karst through a multi-method geophysical study. As there have been very few studies with this emphasis, this study has expanded the body of practical experience needed to protect the nations water and energy security interests.
Wahner, A.; Callies, J.; Dorn, H.P.; Platt, U.; Schiller, C. (Kernforschungsanlage Juelich (West Germany))
1990-03-01T23:59:59.000Z
Spectroscopic measurements of column abundances of NO{sub 2} were carried out from the NASA DC-8 airplane during the Airborne Arctic Stratospheric Expedition in January and February 1989. Stratospheric airmasses inside and close to the polar vortex were found to be highly depleted of NO{sub 2} with lowest vertical column abundances of NO{sub 2} below 2 {times} 10{sup 14} cm{sup {minus}2} compared to abundances of 3-5 {times} 10{sup 15} cm{sup {minus}2} south of 50{degree}N in winter (WMO, 1985).
Airborne Gravity Survey | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWindcapitalInformationChemicals IncOpen
Airborne Particulate Threat Assessment
Patrick Treado; Oksana Klueva; Jeffrey Beckstead
2008-12-31T23:59:59.000Z
Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.
Airborne Internet : market & opportunity
Bhadouria, Anand
2007-01-01T23:59:59.000Z
The purpose of this thesis to evaluate the opportunity for service provider entry and of the airborne internet, to analyze the disruptive impact technology used by AirCell and AeroSat has had on the development of an ...
Airborne wireless communication systems, airborne communication methods, and communication methods
Deaton, Juan D. (Menan, ID); Schmitt, Michael J. (Idaho Falls, ID); Jones, Warren F. (Idaho Falls, ID)
2011-12-13T23:59:59.000Z
An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.
airborne sunphotometer airborne: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
122 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
Ground Gravity Survey At Neal Hot Springs Geothermal Area (Colwell...
Technique Ground Gravity Survey Activity Date 2011 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Gravity surveys were conducted to gain a better...
Modeling for Airborne Contamination
F.R. Faillace; Y. Yuan
2000-08-31T23:59:59.000Z
The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift walls. The gamma-ray scattering properties of concrete are sufficiently similar to those of the host rock and proposed insert material; use of concrete will have no significant impact on the conclusions. The information in this report is presented primarily for use in performing pre-closure radiological safety evaluations of radiological contaminants, but it may also be used to develop strategies for contaminant leak detection and monitoring in the MGR. Included in this report are the methods for determining the source terms and release fractions, and mathematical models and model parameters for contaminant transport and distribution within the repository. Various particle behavior mechanisms that affect the transport of contaminant are included. These particle behavior mechanisms include diffusion, settling, resuspension, agglomeration and other deposition mechanisms.
Airborne agent concentration analysis
Gelbard, Fred
2004-02-03T23:59:59.000Z
A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.
None
2010-09-01T23:59:59.000Z
Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.
Signal processing for airborne bistatic radar
Ong, Kian P
The major problem encountered by an airborne bistatic radar is the suppression of bistatic clutter. Unlike clutter echoes for a sidelooking airborne monostatic radar, bistatic clutter echoes are range dependent. Using ...
Lightning Strikes on Airborne Grounded Systems
Malinga, Gilbert Aporu
2014-10-13T23:59:59.000Z
, NOAA, 2014. ........................................................................................ 4 Fig. 1-2 Schematic illustrating airborne wind turbines based on the concept of a tethered buoyant blimp (Altaeros, 2014... of airborne structures of varied diameter. ............................... 73 Table 4-3 Surface electrical charge, tQ induced on cylindrical structures of varied geometry, representing an airborne wind turbine, as a function of elevation...
Gravity Techniques | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <GlacialGoldenarticle is a stub.
airborne gravity tests: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in...
Category:Airborne Gravity Survey | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst2-M ProbeElectromagnetic
A 100-micron polarimeter for the Kuiper Airborne Observatory
Novak, G.; Gonatas, D.P.; Hildebrand, R.H.; Platt, S.R.
1989-02-01T23:59:59.000Z
Consideration is given to the design and performance of the 100-micron polarimeter proposed for use on the NASA Kuiper Airborne Observatory. The polarimeter specifications are listed. The polarimeter design and data reduction techniques are based on the work of Hildebrand et al. (1984) and Dragovan (1986). The polarimeter has an improved signal-to-noise ratio and systematic measurement errors below 0.2 percent. 20 refs.
Ng, Kit-Tong
1994-01-01T23:59:59.000Z
Digital image processing technique and fuzzy logic approach are used to identify forest areas infested with Southern Pine Beetle, SPB, using normal color airborne imageries in this research. This research will be used as a front end of a larger...
airborne aura big: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Computational Acoustics, Vol. 9, No. 3 (2001) 1215-1225 c IMACS AIRBORNE ACOUSTICS October 1999 Revised 16 April 2000 A recently developed theoretical model of the airborne...
airborne thermal magnetic: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Computational Acoustics, Vol. 9, No. 3 (2001) 1215-1225 c IMACS AIRBORNE ACOUSTICS October 1999 Revised 16 April 2000 A recently developed theoretical model of the airborne...
Reduced models for quantum gravity
T. Thiemann
1999-10-04T23:59:59.000Z
The preceding talks given at this conference have dealt mainly with general ideas for, main problems of and techniques for the task of quantizing gravity canonically. Since one of the major motivations to arrange for this meeting was that it should serve as a beginner's introduction to canonical quantum gravity, we regard it as important to demonstrate the usefulness of the formalism by means of applying it to simplified models of quantum gravity, here formulated in terms of Ashtekar's new variables. From the various, completely solvable, models that have been discussed in the literature we choose those that we consider as most suitable for our pedagogical reasons, namely 2+1 gravity and the spherically symmetric model. The former model arises from a dimensional, the latter from a Killing reduction of full 3+1 gravity. While 2+1 gravity is usually treated in terms of closed topologies without boundary of the initial data hypersurface, the toplogy for the spherically symmetric system is chosen to be asymptotically flat. Finally, 2+1 gravity is more suitably quantized using the loop representation while spherically symmetric gravity is easier to quantize via the self-dual representation. Accordingly, both types of reductions, both types of topologies and both types of representations that are mainly employed in the literature in the context of the new variables come into practice. What makes the discussion especially clear is the fact that for both models the reduced phase space turns out to be finitely dimensional.
Final report. Electro-Seise, Inc., Airborne Survey
Schulte, Ralph
2001-06-01T23:59:59.000Z
The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of an airborne microgravity and electric field sensing technology developed by Electro-Seise, Inc. of Fort Worth, Texas. The test involved the use of a single engine airplane to gather data over the Teapot Dome oil field along a tight grid spacing and along thirty (30) survey lines. The resultant gravity structure maps, based on the field data, were found to overlay the known structure of Teapot Dome. In addition, fault maps, based on the field data, were consistent with the known fault strike at Teapot Dome. Projected hydrocarbon thickness maps corresponded to some of the known production histories at RMOTC. Exceptions to the hydrocarbon thickness maps were also found to be true.
Lie algebraic noncommutative gravity
Banerjee, Rabin; Samanta, Saurav [S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata-700098 (India); Mukherjee, Pradip [Presidency College, 86/1 College Street, Kolkata-700073, West-Bengal (India)
2007-06-15T23:59:59.000Z
We exploit the Seiberg-Witten map technique to formulate the theory of gravity defined on a Lie algebraic noncommutative space-time. Detailed expressions of the Seiberg-Witten maps for the gauge parameters, gauge potentials, and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.
MSIV leakage airborne iodine transport
Cline, J.E. (Cline Associates Inc., Rockville, MD (United States))
1993-01-01T23:59:59.000Z
Gaseous iodine deposits on surfaces exposed to vapors. Basic chemical and physical principles predict this behavior, and several laboratory and in-plant measurements demonstrate the characteristic. An empirical model was developed that describes the deposition, resuspension, and transformation of airborne radioiodine molecular species as a stream containing these forms moves along its pathway. The model uses a data base of measured values of deposition and resuspension rates in its application and describes the conversion of the more reactive inorganic iodine species I[sub 2] to the less reactive organic species CH[sub 3]I as the iodine deposits and resuspends along the path. It also considers radioactive decay and chemical surface bonding during residence on surfaces. For the 8-day [sup 131]I, decay during the airborne portion of the transport is negligible. Verification of the model included measurement tests of long gaseous-activity sampling lines of different diameters, operated at different flow rates and stream temperatures. The model was applied to the streams at a boiling water reactor nuclear power plant to describe the transport through leaking main steam isolation valves (MSIVs), following a loss-of-coolant accident.
Conventional and synthetic aperature processing for airborne ground penetrating radar
Cameron, R.M. [Airborne Environmental Surveys, Santa Maria, CA (United States); Simkins, W.L.; Brown, R.D. [MSB Technologies, Inc., Rome, NY (United States)
1994-12-31T23:59:59.000Z
For the past four years Airborne Environmental Surveys (AES), a Division of Era Aviation, Inc. has used unique and patented airborne Frequency-Modulated, Continuous Wave (FM-CW) radars and processes for detecting and mapping subsurface phenomena. Primary application has focused on the detection of man-made objects in landfills, hazardous waste sites (some of which contain unexploded ordinance), and subsurface plumes of refined free-floating hydrocarbons. Recently, MSB Technologies, Inc. (MSB) has developed a form of synthetic aperture radar processing (SAR), called GPSAR{trademark}, that is tailored especially for the AES radars. Used as an adjunct to more conventional airborne ground-penetrating radar data processing techniques, GPSAR takes advantage of the radars` coherent transmission and produces imagery that is better focused and more accurate in determining an object`s range and true depth. This paper describes the iterative stages of data processing and analysis used with the radars and shows the added advantages that GPSAR processing offers.
Is nonrelativistic gravity possible?
Kocharyan, A. A. [School of Mathematical Sciences, Monash University, Clayton 3800 (Australia)
2009-07-15T23:59:59.000Z
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.
Chemistry of airborne particles from metallurgical processing
Jenkins, Neil Travis, 1973-
2003-01-01T23:59:59.000Z
Airborne particles fall into one of three size ranges. The nucleation range consists of nanoparticles created from vapor atom collisions. The decisive parameter for particle size and composition is the supercooling of the ...
Principles for Sampling Airborne Radioactivity from Stacks
Glissmeyer, John A.
2010-10-18T23:59:59.000Z
This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.
Airborne Gamma-Spectrometry in Switzerland
Butterweck, Gernot [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bucher, Benno [Swiss Federal Nuclear Safety Inspectorate, 5232 Villigen HSK (Switzerland); Rybach, Ladislaus [Swiss Federal Institute of Technology Zurich, Institute of Geophysics, 8093 Zurich (Switzerland)
2008-08-07T23:59:59.000Z
Airborne gamma-spectrometry is able to obtain fast radiological information over large areas. The airborne gamma-spectrometry unit deployed in Switzerland by the Swiss National Emergency Operations Centre (NEOC) consists of a Swiss army Super Puma helicopter equipped with four NaI-Detectors with a total volume of 17 liters, associated electronics and a real-time data evaluation and mapping unit developed by the Swiss Federal Institute of Technology (ETH) and the Paul Scherrer Institut (PSI). The operational readiness of the airborne gamma-spectrometry system is validated in annual exercises of one week duration. Data from 2005 and 2006 exercises are represented in maps of {sup 137}Cs activity concentration for two towns located in southern and western Switzerland. An indicator of man-made radioactivity (MMGC ratio) is demonstrated for an area with four different types of nuclear installations. The intercomparison between airborne gamma-spectrometry and ground measurements showed good agreement between both methods.
Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...
Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not...
Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski...
Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration...
B. L. Hu
1999-02-22T23:59:59.000Z
We give a summary of the status of current research in stochastic semiclassical gravity and suggest directions for further investigations. This theory generalizes the semiclassical Einstein equation to an Einstein-Langevin equation with a stochastic source term arising from the fluctuations of the energy-momentum tensor of quantum fields. We mention recent efforts in applying this theory to the study of black hole fluctuations and backreaction problems, linear response of hot flat space, and structure formation in inflationary cosmology. To explore the physical meaning and implications of this stochastic regime in relation to both classical and quantum gravity, we find it useful to take the view that semiclassical gravity is mesoscopic physics and that general relativity is the hydrodynamic limit of certain spacetime quantum substructures. Three basic issues - stochasticity, collectivity, correlations- and three processes - dissipation, fluctuations, decoherence- underscore the transformation from quantum micro structure and interaction to the emergence of classical macro structure and dynamics. We discuss ways to probe into the high energy activity from below and make two suggestions: via effective field theory and the correlation hierarchy. We discuss how stochastic behavior at low energy in an effective theory and how correlation noise associated with coarse-grained higher correlation functions in an interacting quantum field could carry nontrivial information about the high energy sector. Finally we describe processes deemed important at the Planck scale, including tunneling and pair creation, wave scattering in random geometry, growth of fluctuations and forms, Planck scale resonance states, and spacetime foams.
Thomas Rauch
2006-07-11T23:59:59.000Z
NLTE spectral analyses of high-gravity central stars by means of state-of-the-art model atmosphere techniques provide information about the precursor AGB stars. The hydrogen-deficient post-AGB stars allow investigations on the intershell matter which is apparently exhibited at the stellar surface. We summarize recent results from imaging, spectroscopy, and spectropolarimetry.
BioSAR Airborne Biomass Sensing System
Graham, R.L.; Johnson, P.
2007-05-24T23:59:59.000Z
This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.
Quantum Field Theory & Gravity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664...
Active airborne contamination control using electrophoresis
Veatch, B.D.
1994-06-01T23:59:59.000Z
In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.
Airborne electromagnetic surveys as a reconnaissance technique for
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWindcapitalInformationChemicals
CHARACTERIZATION OF LAND DEGRADATION PROCESSES USING AIRBORNE LASER SCANNING
Marco, Shmuel "Shmulik"
CHARACTERIZATION OF LAND DEGRADATION PROCESSES USING AIRBORNE LASER SCANNING Sagi Filin1 , Amit@tau.ac.il Commission VIII/8 KEY WORDS: Airborne laser scanning, Geomorphology, Dead Sea, Land Degradation, Sinkholes of collapse sinkholes in high resolution using airborne laser scanning technology. As a study case, we use
Chiral gravity, log gravity, and extremal CFT
Maloney, Alexander [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Song Wei [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Center for the Fundamental Laws of Nature Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts 02138 (United States); Strominger, Andrew [Center for the Fundamental Laws of Nature Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts 02138 (United States)
2010-03-15T23:59:59.000Z
We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.
Analyzing Options for Airborne Emergency Wireless Communications
Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry
2008-03-01T23:59:59.000Z
In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.
Quantum Gravity and Precision Tests
C. P. Burgess
2006-06-24T23:59:59.000Z
This article provides a cartoon of the quantization of General Relativity using the ideas of effective field theory. These ideas underpin the use of General Relativity as a theory from which precise predictions are possible, since they show why quantum corrections to standard classical calculations are small. Quantum corrections can be computed controllably provided they are made for the weakly-curved geometries associated with precision tests of General Relativity, such as within the solar system or for binary pulsars. They also bring gravity back into the mainstream of physics, by showing that its quantization (at low energies) exactly parallels the quantization of other, better understood, non-renormalizable field theories which arise elsewhere in physics. Of course effective field theory techniques do not solve the fundamental problems of quantum gravity discussed elsewhere in these pages, but they do helpfully show that these problems are specific to applications on very small distance scales. They also show why we may safely reject any proposals to modify gravity at long distances if these involve low-energy problems (like ghosts or instabilities), since such problems are unlikely to be removed by the details of the ultimate understanding of gravity at microscopic scales.
Airborne Tactical Free-Electron Laser
Roy Whitney; George Neil
2007-02-01T23:59:59.000Z
The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.
Quantifying forested stands with the pulsed airborne laser profiler
Whatley, Michael Craig
1986-01-01T23:59:59.000Z
) red H. Smeins (Member) Peter T Sprinz (Member) J ~ (Head aries Lee f Departmen ) May 1986 ABSTRACT Quantifying Forested Stands with the Pulsed Airborne Laser Profiler. (May 1986) Michael Craig Whatley, B. S. , Texas A&M University...; Chairman of Advisory Committee: Dr. Robert C. Maggio The use of airborne laser technology to enumerate forested stands was explored. A ground-based simulation laser, mimicing the pulsed airborne laser profiler (PALP) was used to quantify the PALP...
ccpi-airborne_r2 | netl.doe.gov
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen AIRBORNE PROCESS(tm)...
airborne science program: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1982 Major Subject: Nuclear Engineering AIRBORNE RADIOACTIVE MATERIAL...
airborne oceanographic lidar: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Channels Landslides Spatial Cognition The emergence of airborne lidar data cognition and perception, we also explore the notion that the ongoing use of lidar enables...
airborne aura lidar: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Channels Landslides Spatial Cognition The emergence of airborne lidar data cognition and perception, we also explore the notion that the ongoing use of lidar enables...
airborne particulate threat: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...
airborne fungi particulate: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...
airborne particulates european: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
particulate pollution in Beijing. Overall, coal burning and the traffic exhausts, plus mineral aerosol and it could provide the basic information in controlling the air-borne...
airborne aerosol prediction: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
modeling, radar, remote sensing, simulator, training. Dr. George; L. Bair; Camber Corporation 44 AIRBORNE MEASUREMENTS OF OZONE AND REACTIVE NITROGEN COMPOUNDS IN TAMPA,...
airborne em system: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
191 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne radioactivity levels: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Bronchial model; Radiation 1. Introduction Inhalation of airborne short-lived radon progeny in the indoor and outdoor environment yields the greatest amount of natural...
airborne rhinovirus detection: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
181 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne releases estimativa: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
172 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne radioactive materials: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Bronchial model; Radiation 1. Introduction Inhalation of airborne short-lived radon progeny in the indoor and outdoor environment yields the greatest amount of natural...
airborne acidity estimates: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
169 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne mycobacterium parafortuitum: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
223 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne allergens assessing: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
183 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne chemical emissions: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
187 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne sunphotometer measurements: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
66 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne pollutant concentrations: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
5 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne research canister: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
159 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne penicillium cfu: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
151 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne stachybotrys chartarum: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
125 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne separation assistance: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
15 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne particles: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
153 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne effluent control: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
175 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne gammaspectrometric systems: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
166 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne laser swath: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
191 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne radioactive contamination: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Bronchial model; Radiation 1. Introduction Inhalation of airborne short-lived radon progeny in the indoor and outdoor environment yields the greatest amount of natural...
airborne aspergillus fumigatus: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
176 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne refueling demonstration: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
158 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne nanoparticle exposures: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
182 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne compositae dermatitis: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
150 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne organic acids: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
192 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne toxic metals: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
187 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne radiometric measurements: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
105 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne mixtures part: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
P 18 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne radionuclide monitoring: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
188 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
airborne laser altimeter: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
211 Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with Biology and Medicine Websites Summary:...
Clean enough for industry? An airborne geophysical case study
Nyquist, J.E.; Beard, L.P.
1996-02-01T23:59:59.000Z
Data from two airborne geophysical surveys of the Department of Energy`s Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be released to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 m, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01--0.02 nT/m, is equivalent to only about 50--100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a ``sensitive hydrologic setting.`` We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization.
Airborne Multisensor Pod System (AMPS) data management overview
Wiberg, J.D.; Blough, D.K.; Daugherty, W.R.; Hucks, J.A.; Gerhardstein, L.H.; Meitzler, W.D.; Melton, R.B.; Shoemaker, S.V.
1994-09-01T23:59:59.000Z
An overview of the Data Management Plan for the Airborne Multisensor Pod System (AMPS) pro-grain is provided in this document. The Pacific Northwest Laboratory (PNL) has been assigned the responsibility of data management for the program, which includes defining procedures for data management and data quality assessment. Data management is defined as the process of planning, acquiring, organizing, qualifying and disseminating data. The AMPS program was established by the U.S. Department of Energy (DOE), Office of Arms Control and Non-Proliferation (DOE/AN) and is integrated into the overall DOE AN-10.1 technology development program. Sensors used for collecting the data were developed under the on-site inspection, effluence analysis, and standoff sensor program, the AMPS program interacts with other technology programs of DOE/NN-20. This research will be conducted by both government and private industry. AMPS is a research and development program, and it is not intended for operational deployment, although the sensors and techniques developed could be used in follow-on operational systems. For a complete description of the AMPS program, see {open_quotes}Airborne Multisensor Pod System (AMPS) Program Plan{close_quotes}. The primary purpose of the AMPS is to collect high-quality multisensor data to be used in data fusion research to reduce interpretation problems associated with data overload and to derive better information than can be derived from any single sensor. To collect the data for the program, three wing-mounted pods containing instruments with sensors for collecting data will be flight certified on a U.S. Navy RP-3A aircraft. Secondary objectives of the AMPS program are sensor development and technology demonstration. Pod system integrators and instrument developers will be interested in the performance of their deployed sensors and their supporting data acquisition equipment.
Study and Simulation of Remote Sensing System: COMPACT Airborne Spectral Sensor (COMPASS)
Salvaggio, Carl
1 Study and Simulation of Remote Sensing System: COMPACT Airborne Spectral Sensor (COMPASS) Paper............................................................................................ 5 COMPACT Airborne Spectral Sensor (COMPASS............................................................................................... 9 (FOUO) COMPASS Megacollect Data
E-Print Network 3.0 - airborne nitrogen load Sample Search Results
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
airborne remote sensing surveys verify vegetation and land surface... radiometry Airborne remote sensing surveys Field Experiments Spatial Modeling ET Estimation 12;Integrated......
airborne experimental test-bed: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Acoustics, Vol. 9, No. 3 (2001) 1215-1225 c IMACS AIRBORNE ACOUSTICS October 1999 Revised 16 April 2000 A recently developed theoretical model of the airborne acoustic...
Wavelet denoising of gravity gradiometry data Julio Cesar S. O. Lyrio*
Wavelet denoising of gravity gradiometry data Julio Cesar S. O. Lyrio* Gravity and Magnetic an automatic 1D wavelet filtering technique, specially designed to process gravity gradiometry data. The method uses compactly supported orthonormal wavelets that selectively filter out localized high
Ground Gravity Survey At Blue Mountain Geothermal Area (U.S....
Ground Gravity Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique...
Einstein Gravity, Massive Gravity, Multi-Gravity and Nonlinear Realizations
Garrett Goon; Kurt Hinterbichler; Austin Joyce; Mark Trodden
2014-12-18T23:59:59.000Z
The existence of a ghost free theory of massive gravity begs for an interpretation as a Higgs phase of General Relativity. We revisit the study of massive gravity as a Higgs phase. Absent a compelling microphysical model of spontaneous symmetry breaking in gravity, we approach this problem from the viewpoint of nonlinear realizations. We employ the coset construction to search for the most restrictive symmetry breaking pattern whose low energy theory will both admit the de Rham--Gabadadze--Tolley (dRGT) potentials and nonlinearly realize every symmetry of General Relativity, thereby providing a new perspective from which to build theories of massive gravity. In addition to the known ghost-free terms, we find a novel parity violating interaction which preserves the constraint structure of the theory, but which vanishes on the normal branch of the theory. Finally, the procedure is extended to the cases of bi-gravity and multi-vielbein theories. Analogous parity violating interactions exist here, too, and may be non-trivial for certain classes of multi-metric theories.
Ris-R-1462(EN) Airborne contamination in the indoor
Risř-R-1462(EN) Airborne contamination in the indoor environment and its implications for dose K. Byskov, X.L. Hou, H. Prip, S.K. Olsen, T. Roed Title: Airborne contamination in the indoor environment of contaminant aerosol were examined, and since the previous measurements had indicated that elemental iodine
Automatic Extraction of Cartographic Information from Airborne Interferometric SAR Data
Mayer, Helmut A.
Automatic Extraction of Cartographic Information from Airborne Interferometric SAR Data Reinhold cartographic feature extraction by the airborne AeS--1 instrument is presented. We extract regions corresponding to cartographic features for the classes built--up area, forest, water and open area. Water
airborne gamma ray: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
airborne gamma ray First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Digital Logarithmic Airborne Gamma...
Lightning Strikes on Airborne Grounded Systems
Malinga, Gilbert Aporu
2014-10-13T23:59:59.000Z
LIST OF FIGURES Page Fig. 1-1 Histogram of the average wind speed over a 10 year period at an elevation of a) sH ? 100 m and b) sH ? 600 m, above the mean water level at Montauk, New York. Wind data accessed from the National Buoy Data Center.... The destructive power of lightning discharges to both land-based and airborne systems that cannot adequately dissipate large impulses of energy is well documented (Miyake et al., 1990; Sorensen et al., 1998; Uman and Rakov, 2003). Lightning discharges can...
Asthmatic responses to airborne acid aerosols
Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. (California Department of Health Services, Berkeley (USA))
1991-06-01T23:59:59.000Z
Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.
Particle Dynamics And Emergent Gravity
Amir H. Fatollahi
2008-05-08T23:59:59.000Z
The emergent gravity proposal is examined within the framework of noncommutative QED/gravity correspondence from particle dynamics point of view.
Airborne chemical baseline evaluation of the 222-S laboratory complex
Bartley, P., Fluor Daniel Hanford
1997-02-12T23:59:59.000Z
The 222-S Laboratory complex stores and uses over 400 chemicals. Many of these chemicals are used in laboratory analysis and some are used for maintenance activities. The majority of laboratory analysis chemicals are only used inside of fume hoods or glove boxes to control both chemical and radionuclide airborne concentrations. This evaluation was designed to determine the potential for laboratory analysis chemicals at the 222-S Laboratory complex to cause elevated airborne chemical concentrations under normal conditions. This was done to identify conditions and activities that should be subject to airborne chemical monitoring in accordance with the Westinghouse Hanford Company Chemical Hygiene Plan.
A real-time airborne scatterometer data processor
Reisor, Gary James
1976-01-01T23:59:59.000Z
A REAL-TIME AIRBORNE SCATTEROMETER DATA PROCES'SOR A Thesis by Gary James Reisor Submitted to the Graduate College of Texas A)M Vniversity in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major... Subject: Electrical Fngineering A REAL-TIME AIRBORNE SCATTEROMETER DATA PROCESSOR A Thesis by Gary James Reisor Approved as to style and content by: arrman o Committee Hea o Depa tment em er Mem er August 1976 ABSTRACT A Real-time Airborne...
airborne laser scanner: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data Geosciences Websites...
Human Occupancy as a Source of Indoor Airborne Bacteria
Hospodsky, Denina
Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study ...
airborne moisture-indicating microorganisms: Topics by E-print...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
OF A COLD FRONT AS REVEALED BY AIRBORNE 95 GHZ RADAR Bart cold front moved through the Texas Panhandle . . The front was intercepted by an armada of mobile-defined dryline and a...
Airborne coastal current survey system for difficult to access areas
Pollock, Cheryl Elaine
1994-01-01T23:59:59.000Z
The development of an airborne current measurement system that can provide a near-synoptic view of near-bottom currents in extremely hostile wave and current environments is described. A helicopter is used as the support platform from which...
Epidemiology of Airborne Virulent Rhodococcus equi at Horse Breeding Farms
Kuskie, Kyle Ryan
2012-02-14T23:59:59.000Z
Rhodococcus equi causes severe pneumonia, resulting in disease and sometimes death of foals. Infection is thought to occur by inhalation of dust contaminated with virulent R equi. A recent study of 3 horse breeding farms in Ireland found airborne...
accidental airborne releases: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Fred A. Kruse; Joseph W. Boardman; Jonathan F. Huntington 2003-01-01 347 AUGUST 1961 MONTHLY WEATHER REVIEW 285 ACCURACY OF THE AIRBORNE ECONOMICAL RADIOMETER CiteSeer Summary:...
affects on the transport of airborne emissions. This information...
National Nuclear Security Administration (NNSA)
due to airborne material. Detailed analyses (CRWMS M&O 1995a, 1997b) of the local wind characteristics in the study area led to the choice of Site 1 as the meteorological...
An airborne digital processor for radar scatterometer data
Yeadon, David Steven
1977-01-01T23:59:59.000Z
AN AIRBORNE DIGITAL PROCESSOR FOR RADAR SCATTEROMETER DATA A Thesis by DAVID STEVEN YEADON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1977... Major Subject: Electrical Engineering AN AIRBORNE DIGITAL PROCESSOR FOR RADAR SCATTEROMETER DATA A Thesis by DAVID STEVEN YEADON Approved as to style and content by: (Chairman o Committee) Head of epartment) ( (Member ) (Member) August 1977...
Simulated performance of an airborne lidar wind shear detection system
Griffith, Kenneth Scott
1987-01-01T23:59:59.000Z
SIMULATED PERFORMANCE OF AN AIRBORNE LIDAR WIND SHEAR DETECTION SYSTEM A Thesis by KENNETH SCOTT GRIFFITH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1987 Major Subject: Physics SIMULATED PERFORMANCE OF AN AIRBORNE LIDAR WIND SHEAR DETECTION SYSTEM A Thesis by KENNETH SCOTT GRIFFITH Approved as to style and content by: e . atta ar (Chair an of Committee) T omas . air, III (Member) ic...
Dec 7, 2013 ... As soon as the brakes of a railroad car in West Lafayette are released, the car will roll down under the force of gravity. It will accelerate, then ...
ARM Airborne Continuous carbon dioxide measurements
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Biraud, Sebastien
The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.
Emissions of airborne toxics from coal-fired boilers: Mercury
Huang, H.S.; Livengood, C.D.; Zaromb, S.
1991-09-01T23:59:59.000Z
Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.
AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION
Jerry Myers
2003-05-13T23:59:59.000Z
Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.
Development of a new airborne humidigraph system.
Pekour, Mikhail S.; Schmid, Beat; Chand, Duli; Hubbe, John M.; Kluzek, Celine D.; Nelson, Danny A.; Tomlinson, Jason M.; Cziczo, Daniel J.
2012-12-06T23:59:59.000Z
Modeling and measurements of aerosol properties is complicated by the hygroscopic behavior of the aerosols adding significant uncertainty to our best estimates of the direct effect aerosols exert on the radiative balance of the atmosphere. Airborne measurements of aerosol hygroscopicity are particularly challenging but critically needed. This motivated the development of a newly designed system which can measure the dependence of the aerosol light scattering coefficient (?sp) on relative humidity (RH), known as f(RH), in real-time at a rapid rate (<10 s) on an aerial platform. The new system has several advantages over existing systems. It consists of three integrating nephelometers and humidity conditioners for simultaneous measurement of the ?sp at three different RHs. The humidity is directly controlled in exchanger cells without significant temperature disturbances and without particle dilution, heating or loss of volatile compounds. The single-wavelength nephelometers are illuminated by LED-based light sources thereby minimizing heating of the sample stream. The flexible design of the RH conditioners, consisting of a number of specially designed exchanger cells (driers or humidifiers), enables us to measure f(RH) under hydration or dehydration conditions (always starting with the aerosol in a known state) with a simple system re-configuration. These exchanger cells have been characterized for losses of particles using latex spheres and laboratory generated ammonium sulfate aerosols. Residence times of 6 - 9 s in the exchangers and subsequent lines is sufficient for most aerosols to attain equilibrium with the new water vapor content. The performance of this system has been assessed aboard DOE’s G-1 research aircraft during test flights over California, Oregon, and Washington.
Time Gravity and Quantum Mechanics
W. G. Unruh
1993-12-17T23:59:59.000Z
Time plays different roles in quantum mechanics and gravity. These roles are examined and the problems that the conflict in the roles presents for quantum gravity are briefly summarised.
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Airborne Wind Energy Based on Dual Airfoils
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Airborne Wind Energy Based on Dual Airfoils Mario Zanon, S´ebastien Gros, Joel Andersson and Moritz Diehl Abstract--The Airborne Wind Energy paradigm Airborne Wind Energy enables flight in higher-altitude, stronger wind layers, the extra drag generated
Control of Airborne Wind Energy Systems Based on Nonlinear Model Predictive Control & Moving arising in the Airborne Wind Energy paradigm, an essential one is the control of the tethered airfoil], [3], the Airborne Wind Energy (AWE) paradigm shift proposes to get rid of the structural elements
Airborne Infrared Target Tracking with the Nintendo Wii Remote Sensor
Beckett, Andrew 1984-
2012-11-12T23:59:59.000Z
AIRBORNE INFRARED TARGET TRACKING WITH THE NINTENDO WII REMOTE SENSOR A Thesis by ANDREW WILSON BECKETT Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of MASTER... of UAS in use today and provide invaluable capabilities to both the military and civil services. UAS are well-suited to the ISR role: large UAS can remain airborne for far longer than the limits of human endurance without needing to be large enough...
Remote monitoring of soil moisture using airborne microwave radiometers
Kroll, Charles Lindsey
1973-01-01T23:59:59.000Z
REMOTE MONITORING OF SOIL MOISTURE USING AIRBORNE MICROWAVE RADIOMETERS A Thesis by CHARLES LINDSEY J(ROLL Submitted to the Graduate College of Texas A)M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1973 Major Subject: Electrical Engineering REMOTE MONITORING OF SOIL MOISTURE USING AIRBORNE MICROWAVE RADIOMETERS A Thesis by CHARLES LINDSEY KROLL Approved as to style and content by: man o Co mrtt Hca o D artmc c Ill l c r Mem e Member...
Airborne asbestos fiber evaluation: a comparison of three methods
Studinka, Emil
1979-01-01T23:59:59.000Z
AIRBORNE ASBFSTOS FIBER EVALUATION-A CONPARISON OF TliR'E NETHODS A Thesis EYiIL STUDINKA Submitted to the Graduate Co'ilege of Texas ALN University in partial fulfillment of the requirement for the degree of HASTER OF SCIEtiCE December 1979... Najor Subject: Industrial Hygiene AIRBORNE ASBESTOS FIBER EVALUATION-A COMPARISON OF THRFE METHODS A Thesis by EMIL STUDI NKA Approved as to style and content by: ichard B. onzen air ar, of Committee) llaymon L. Johnston (Member) hlilliam P...
The development of a passive dosimeter for airborne benzene vapors
Hager, David William
1978-01-01T23:59:59.000Z
THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE BENZENE VAPORS A Thesis DAVID NII LIAM HAGER Submitted to the Graduate Colleqe of Texas ASM University in partial fulfillment of the requirement for the d"gree of MASTER OF SC. IENCE May IB...7B Major Subject: Indus t& ial Hyqiene THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE BFNZENE VAPORS A Thesis by DAVID NILLIAM HAGER Approved as to style and content by: Z Chairman of Commi t e~ ~'g C'S~ Head of Department~ Member...
The development of a passive dosimeter for airborne aniline vapors
Campbell, James Evan
1977-01-01T23:59:59.000Z
THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE ANILINE VAPORS A Thesis by James Evan Campbell Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE I...'iay 1977 Major Subject: Industrial Hygiene THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE ANILINE VAPORS A Thesis by James E van Campbe1 1 Approved as to style and content by: Chairm of Com itt ea of De rtment Member Member May 1977...
Mitigating Geomagnetic Noise in Airborne Magnetic Surveys using GPS
Calgary, University of
Mitigating Geomagnetic Noise in Airborne Magnetic Surveys using GPS S. Skone Department and tropospheric effects on GPS. She has developed software for mitigation of atmospheric effects and is currently in this frequency band must be modeled, or measured, and mitigated. Despite reduction of many error sources for MAD
Passive Remote Sensing of Clouds from Airborne Platforms
Toohey, Darin W.
instrument: the Solar Spectral Flux Radiometer (SSFR) Â· Some spectrometry/radiometry basics Â· How can we Airborne Measurements? Â· For climate studies, the high temporal and spatial variability of aerosols vertical profiles of radiative flux: where is radiative energy being deposited? Â· Combined with in situ
airborne high energy: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
airborne high energy First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Department of Geomatics...
The study of cirrus clouds using airborne and satellite data
Meyer, Kerry Glynne
2004-09-30T23:59:59.000Z
Cirrus clouds are known to play a key role in the earth's radiation budget, yet are one of the most uncertain components of the earth-atmosphere system. With the development of instruments such as the Airborne Visible/Infrared Imaging Spectrometer...
airborne carbon 14c: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
airborne carbon 14c First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 PERSPECTIVE PERSPECTIVE Blowin'...
Quality Assurance Program Plan for radionuclide airborne emissions monitoring
Vance, L.M.
1993-07-01T23:59:59.000Z
This Quality Assurance Program Plan (QAPP) describes the quality assurance requirements and responsibilities for radioactive airborne emissions measurements activities from regulated stacks are controlled at the Hanford Site. Detailed monitoring requirements apply to stacks exceeding 1% of the standard of 10 mrem annual effective dose equivalent to the maximally exposed individual from operations of the Hanford Site.
airborne differential absorption: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
airborne differential absorption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Department of...
Gravity on Conformal Superspace
Bryan Kelleher
2003-11-11T23:59:59.000Z
The configuration space of general relativity is superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms. However, it has been argued that the configuration space for gravity should be conformal superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms and conformal transformations. Taking this conformal nature seriously leads to a new theory of gravity which although very similar to general relativity has some very different features particularly in cosmology and quantisation. It should reproduce the standard tests of general relativity. The cosmology is studied in some detail. The theory is incredibly restrictive and as a result admits an extremely limited number of possible solutions. The problems of the standard cosmology are addressed and most remarkably the cosmological constant problem is resolved in a natural way. The theory also has several attractive features with regard to quantisation particularly regarding the problem of time.
Gravity, Dimension, Equilibrium, & Thermodynamics
Jerome Perez
2006-03-30T23:59:59.000Z
Is it actually possible to interpret gravitation as space's property in a pure classical way. Then, we note that extended self-gravitating system equilibrium depends directly on the number of dimension of the space in which it evolves. Given those precisions, we review the principal thermodynamical knowledge in the context of classical gravity with arbitrary dimension of space. Stability analyses for bounded 3D systems, namely the Antonov instability paradigm, are then rapproched to some amazing properties of globular clusters and galaxies.
Iver Brevik
2012-11-23T23:59:59.000Z
A bulk viscosity is introduced in the formalism of modified gravity. It is shown that, on the basis of a natural scaling law for the viscosity, a simple solution can be found for quantities such as the Hubble parameter and the energy density. These solutions may incorporate a viscosity-induced Big Rip singularity. By introducing a phase transition in the cosmic fluid, the future singularity can nevertheless in principle be avoided.
Koyama, Kazuya
2015-01-01T23:59:59.000Z
Einstein's theory of General Relativity (GR) is tested accurately within the local universe i.e., the Solar System, but this leaves open the possibility that it is not a good description at the largest scales in the Universe. The standard model of cosmology assumes GR as the theory to describe gravity on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. The standard model of cosmology is based on a huge extrapolation of our limited knowledge of gravity. This discovery of the late time acceleration of the Universe may require us to revise the theory of gravity and the standard model of cosmology based on GR. We will review recent ...
Improved Steam Assisted Gravity Drainage (SAGD) Performance with Solvent as Steam Additive
Li, Weiqiang
2011-02-22T23:59:59.000Z
Steam Assisted Gravity Drainage (SAGD) is used widely as a thermal recovery technique in Canada to produce a very viscous bitumen formation. The main research objectives of this simulation and experimental study are to investigate oil recovery...
Entropic Gravity in Rindler Space
Edi Halyo
2011-04-13T23:59:59.000Z
We show that Rindler horizons are entropic screens and gravity is an entropic force in Rindler space by deriving the Verlinde entropy formula from the focusing of light due to a mass close to the horizon. Consequently, gravity is also entropic in the near horizon regions of Schwarzschild and de Sitter space-times. In different limits, the entropic nature of gravity in Rindler space leads to the Bekenstein entropy bound and the uncertainty principle.
Lifshitz Gravity for Lifshitz Holography
Tom Griffin; Petr Horava; Charles M. Melby-Thompson
2012-11-20T23:59:59.000Z
We argue that Horava-Lifshitz (HL) gravity provides the minimal holographic dual for Lifshitz-type field theories with anisotropic scaling and dynamical exponent z. First we show that Lifshitz spacetimes are vacuum solutions of HL gravity, without need for additional matter. Then we perform holographic renormalization of HL gravity, and show how it reproduces the full structure of the z=2 anisotropic Weyl anomaly in dual field theories in 2+1 dimensions, while its minimal relativistic gravity counterpart yields only one of two independent central charges in the anomaly.
Hall viscosity from gauge/gravity duality
Omid Saremi; Dam Thanh Son
2011-03-24T23:59:59.000Z
In (2+1)-dimensional systems with broken parity, there exists yet another transport coefficient, appearing at the same order as the shear viscosity in the hydrodynamic derivative expansion. In condensed matter physics, it is referred to as "Hall viscosity". We consider a simple holographic realization of a (2+1)-dimensional isotropic fluid with broken spatial parity. Using techniques of fluid/gravity correspondence, we uncover that the holographic fluid possesses a nonzero Hall viscosity, whose value only depends on the near-horizon region of the background. We also write down a Kubo's formula for the Hall viscosity. We confirm our results by directly computing the Hall viscosity using the formula.
Ivan Dimitrijevic; Branko Dragovich; Jelena Grujic; Zoran Rakic
2012-04-09T23:59:59.000Z
We consider some aspects of nonlocal modified gravity, where nonlocality is of the type $R \\mathcal{F}(\\Box) R$. In particular, using ansatz of the form $\\Box R = c R^\\gamma,$ we find a few $R(t)$ solutions for the spatially flat FLRW metric. There are singular and nonsingular bounce solutions. For late cosmic time, scalar curvature R(t) is in low regime and scale factor a(t) is decelerated. R (t) = 0 satisfies all equations when k = -1.
Ning Wu
2005-10-01T23:59:59.000Z
It is well-known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theory of gravitational interactions and electromagnetic interactions, a new mechanism of the generation of gravitational field is studied. According to this mechanism, in some special conditions, electromagnetic energy can be directly converted into gravitational energy, and strong gravitational field can be generated without massive stars. Gravity impulse found in experiments is generated by this mechanism.
Bergshoeff, Eric A.; Rosseel, Jan [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Townsend, Paul K. [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2011-05-15T23:59:59.000Z
The physical modes of a recently proposed D-dimensional 'critical gravity', linearized about its anti-de Sitter vacuum, are investigated. All 'log mode' solutions, which we categorize as 'spin-2' or 'Proca', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Einstein tensor of a spin-2 log mode is itself a 'nongauge' solution of the linearized Einstein equations whereas the linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate transformation. Our results suggest the existence of a holographically dual logarithmic conformal field theory.
Canonical Analysis of Unimodular Gravity
J. Kluson
2014-10-07T23:59:59.000Z
This short note is devoted to the Hamiltonian analysis of the Unimodular Gravity.We treat the unimodular gravity as General Relativity action with the unimodular constraint imposed with the help of Lagrange multiplier. We perform the canonical analysis of the resulting theory and determine its constraint structure.
Effectiveness of bomber deployed autonomous airborne vehicles in finding rail mobile SS-24s
Abey, A.E.; Erickson, S.A.; Norquist, P.D.
1990-08-01T23:59:59.000Z
Computer simulation predictions of the effectiveness of autonomous airborne vehicles in finding rail mobile SS-24s are presented. Effectiveness is discussed for several autonomous airborne vehicle endurances and survivabilities for the search area southwest of Moscow. The effect of where the Soviets place the SS-24s on the rail network was also investigated. The simulation predicts significant variations in the ability of a multi-autonomous airborne vehicle system to find SS-24s with these parameters. 12 figs., 1 tab.
SL(2,C) gravity on noncommutative space with Poisson structure
Miao Yangang; Zhang Shaojun [Department of Physics, Nankai University, Tianjin 300071 (China)
2010-10-15T23:59:59.000Z
The Einstein's gravity theory can be formulated as an SL(2,C) gauge theory in terms of spinor notations. In this paper, we consider a noncommutative space with the Poisson structure and construct an SL(2,C) formulation of gravity on such a space. Using the covariant coordinate technique, we build a gauge invariant action in which, according to the Seiberg-Witten map, the physical degrees of freedom are expressed in terms of their commutative counterparts up to the first order in noncommutative parameters.
Real-time airborne particle analyzer
Reilly, Peter T.A.
2012-10-16T23:59:59.000Z
An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.
AdS Chern-Simons Gravity induces Conformal Gravity
Rodrigo Aros; Danilo E. Diaz
2013-12-25T23:59:59.000Z
The leitmotif of this paper is the question of whether four- and higher even-dimensional Conformal Gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as dimensional reduction of a five-dimensional Chern-Simons action for a suitable (gauged-fixed, tractor-like) five-dimensional AdS connection. The gauge-fixing and dimensional reduction program admits a readily generalization to higher dimensions for the case of certain conformal gravities obtained by contractions of the Weyl tensor.
Analogy between turbulence and quantum gravity: beyond Kolmogorov's 1941 theory
S. Succi
2011-11-14T23:59:59.000Z
Simple arguments based on the general properties of quantum fluctuations have been recently shown to imply that quantum fluctuations of spacetime obey the same scaling laws of the velocity fluctuations in a homogeneous incompressible turbulent flow, as described by Kolmogorov 1941 (K41) scaling theory. Less noted, however, is the fact that this analogy rules out the possibility of a fractal quantum spacetime, in contradiction with growing evidence in quantum gravity research. In this Note, we show that the notion of a fractal quantum spacetime can be restored by extending the analogy between turbulence and quantum gravity beyond the realm of K41 theory. In particular, it is shown that compatibility of a fractal quantum-space time with the recent Horava-Lifshitz scenario for quantum gravity, implies singular quantum wavefunctions. Finally, we propose an operational procedure, based on Extended Self-Similarity techniques, to inspect the (multi)-scaling properties of quantum gravitational fluctuations.
M. G. Romania; N. C. Tsamis; R. P. Woodard
2014-12-05T23:59:59.000Z
We review some perturbative results obtained in quantum gravity in an accelerating cosmological background. We then describe a class of non-local, purely gravitational models which have the correct structure to reproduce the leading infrared logarithms of quantum gravitational back-reaction during the inflationary regime. These models end inflation in a distinctive phase of oscillations with slight and short violations of the weak energy condition and should, when coupled to matter, lead to rapid reheating. By elaborating this class of models we exhibit one that has the same behaviour during inflation, goes quiescent until the onset of matter domination, and induces a small, positive cosmological constant of about the right size thereafter. We also briefly comment on the primordial density perturbations that this class of models predict.
Henneaux, Marc; Teitelboim, Claudio [Physique Theorique et Mathematique and International Solvay Institutes, Universite Libre de Bruxelles, Campus Plaine C. P. 231, B-1050 Brussels (Belgium) and Centro de Estudios Cientificos (CECS), Valdivia (Chile); Centro de Estudios Cientificos (CECS), Valdivia (Chile)
2005-01-15T23:59:59.000Z
We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case.
Kay, Bernard S
2015-01-01T23:59:59.000Z
We give an account of the matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this new approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. We also very briefly review some recent related work on the nature of equilibrium states involving quantum black holes and point out how it promises to resolve some puzzling issues in the current version of the string theory approach to black hole entropy.
Natural Inflation and Quantum Gravity
Anton de la Fuente; Prashant Saraswat; Raman Sundrum
2015-01-29T23:59:59.000Z
Cosmic Inflation provides an attractive framework for understanding the early universe and the cosmic microwave background. It can readily involve energies close to the scale at which Quantum Gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular the constraint of the Weak Gravity Conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically-controlled and predictive class of Natural Inflation models.
Riding Gravity Away from Doomsday
Sen, Ashoke
2015-01-01T23:59:59.000Z
The discovery that most of the energy density in the universe is stored in the form of dark energy has profound consequences for our future. In particular our current limited understanding of quantum theory of gravity indicates that some time in the future our universe will undergo a phase transition that will destroy us and everything else around us instantaneously. However the laws of gravity also suggest a way out -- some of our descendants could survive this catastrophe by riding gravity away from the danger. In this essay I describe the tale of this escape from doomsday.
Riding Gravity Away from Doomsday
Ashoke Sen
2015-03-27T23:59:59.000Z
The discovery that most of the energy density in the universe is stored in the form of dark energy has profound consequences for our future. In particular our current limited understanding of quantum theory of gravity indicates that some time in the future our universe will undergo a phase transition that will destroy us and everything else around us instantaneously. However the laws of gravity also suggest a way out -- some of our descendants could survive this catastrophe by riding gravity away from the danger. In this essay I describe the tale of this escape from doomsday.
A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data
Kerschner, Hanns
A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data Christoph KNOLL-mail: christoph.knoll@uibk.ac.at ABSTRACT. A new approach to glacier inventory, based on airborne laser supervision. Earlier inventories, from 1983 and 1997, are used to compare changes in area, volume
2007-01-01T23:59:59.000Z
Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings
Giger, Christine
Laser Scanning Dr. sc. ETH Jürg Lüthy Zürich, 2008 #12;#12;Diese Publikation ist eine editierte Version Geländemodellen aus Airborne Laser Scanning A B H A N D L U N G zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN Qualitätsmodells für die Generierung von Digitalen Geländemodellen aus Airborne Laser Scanning Copyright © 2008
Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Moderate Resolution Imaging Spectrometer (MODIS). Key goals were to assess the nature of these relationships as they varied between sensors
airborne gamma-ray spectra: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
airborne gamma-ray spectra First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Digital Logarithmic Airborne...
Mason, Andrew
Abstract--Airborne pollution and explosive gases threaten human health and occupational safety and a thumb-drive sized prototype system. I. INTRODUCTION xposure to air pollution consistently ranks among to occupational safety as energy demands rise. Airborne pollutants and explosive gases vary in both time and space
Prospecting by sampling and analysis of airborne particulates and gases
Sehmel, G.A.
1984-05-01T23:59:59.000Z
A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.
Critical Gravity in Four Dimensions
Lue, H. [China Economics and Management Academy, Central University of Finance and Economics, Beijing 100081 (China); Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Pope, C. N. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)
2011-05-06T23:59:59.000Z
We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This ''critical'' theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical 'new massive gravity' with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.
A Relaxation Strategy for the Optimization of Airborne Wind Energy Systems S´ebastien Gros, M. Zanon and Moritz Diehl Abstract-- Optimal control is recognized by the Airborne Wind Energy (AWE problem. Keywords : airborne wind energy, optimal control, non- convex optimization, flight control I
Quantum Gravity: Motivations and Alternatives
Reiner Hedrich
2009-08-03T23:59:59.000Z
The mutual conceptual incompatibility between GR and QM/QFT is generally seen as the most essential motivation for the development of a theory of Quantum Gravity (QG). It leads to the insight that, if gravity is a fundamental interaction and QM is universally valid, the gravitational field will have to be quantized, not at least because of the inconsistency of semi-classical theories of gravity. If this means to quantize GR, its identification of the gravitational field with the spacetime metric has to be taken into account. And the resulting quantum theory has to be background-independent. This can not be achieved by means of quantum field theoretical procedures. More sophisticated strategies have to be applied. One of the basic requirements for such a quantization strategy is that the resulting quantum theory has GR as a classical limit. - However, should gravity not be a fundamental, but an residual, emergent interaction, it could very well be an intrinsically classical phenomenon. Should QM be nonetheless universally valid, we had to assume a quantum substrate from which gravity would result as an emergent classical phenomenon. And there would be no conflict with the arguments against semi-classical theories, because there would be no gravity at all on the substrate level. The gravitational field would not have any quantum properties, and a quantization of GR would not lead to any fundamental theory. The objective of a theory of 'QG' would instead be the identification of the quantum substrate from which gravity results. - The paper tries to give an overview over the main options for theory construction in the field of QG. Because of the still unclear status of gravity and spacetime, it pleads for the necessity of a plurality of conceptually different approaches to QG.
Gauge/gravity Duality and MetastableDynamical Supersymmetry Breaking
Argurio, Riccardo; Bertolini, Matteo; Franco, Sebastian; Kachru, Shamit
2006-10-24T23:59:59.000Z
We engineer a class of quiver gauge theories with several interesting features by studying D-branes at a simple Calabi-Yau singularity. At weak 't Hooft coupling we argue using field theory techniques that these theories admit both supersymmetric vacua and meta-stable non-supersymmetric vacua, though the arguments indicating the existence of the supersymmetry breaking states are not decisive. At strong 't Hooft coupling we find simple candidate gravity dual descriptions for both sets of vacua.
Conformal Lifshitz Gravity from Holography
Tom Griffin; Petr Horava; Charles M. Melby-Thompson
2012-04-03T23:59:59.000Z
We show that holographic renormalization of relativistic gravity in asymptotically Lifshitz spacetimes naturally reproduces the structure of gravity with anisotropic scaling: The holographic counterterms induced near anisotropic infinity take the form of the action for gravity at a Lifshitz point, with the appropriate value of the dynamical critical exponent $z$. In the particular case of 3+1 bulk dimensions and $z=2$ asymptotic scaling near infinity, we find a logarithmic counterterm, related to anisotropic Weyl anomaly of the dual CFT, and show that this counterterm reproduces precisely the action of conformal gravity at a $z=2$ Lifshitz point in 2+1 dimensions, which enjoys anisotropic local Weyl invariance and satisfies the detailed balance condition. We explain how the detailed balance is a consequence of relations among holographic counterterms, and point out that a similar relation holds in the relativistic case of holography in $AdS_5$. Upon analytic continuation, analogous to the relativistic case studied recently by Maldacena, the action of conformal gravity at the $z=2$ Lifshitz point features in the ground-state wavefunction of a gravitational system with an interesting type of spatial anisotropy.
Gauge Theory of Quantum Gravity
J. W. Moffat
1994-01-04T23:59:59.000Z
A gauge theory of quantum gravity is formulated, in which an internal, field dependent metric is introduced which non-linearly realizes the gauge fields on the non-compact group $SL(2,C)$, while linearly realizing them on $SU(2)$. Einstein's $SL(2,C)$ invariant theory of gravity emerges at low energies, since the extra degrees of freedom associated with the quadratic curvature and the internal metric only dominate at high energies. In a fixed internal metric gauge, only the the $SU(2)$ gauge symmetry is satisfied, the particle spectrum is identified and the Hamiltonian is shown to be bounded from below. Although Lorentz invariance is broken in this gauge, it is satisfied in general. The theory is quantized in this fixed, broken symmetry gauge as an $SU(2)$ gauge theory on a lattice with a lattice spacing equal to the Planck length. This produces a unitary and finite theory of quantum gravity.
Energy bounds in designer gravity
Amsel, Aaron J.; Marolf, Donald [Physics Department, UCSB, Santa Barbara, California 93106 (United States)
2006-09-15T23:59:59.000Z
We consider asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound in d{>=}4 spacetime dimensions. The boundary conditions in these ''designer gravity'' theories are defined in terms of an arbitrary function W. We give a general argument that the Hamiltonian generators of asymptotic symmetries for such systems will be finite, and proceed to construct these generators using the covariant phase space method. The direct calculation confirms that the generators are finite and shows that they take the form of the pure gravity result plus additional contributions from the scalar fields. By comparing the generators to the spinor charge, we derive a lower bound on the gravitational energy when W has a global minimum and the Breitenlohner-Freedman bound is not saturated.
Counterterms, critical gravity and holography
Kallol Sen; Aninda Sinha; Nemani V. Suryanarayana
2012-05-18T23:59:59.000Z
We consider counterterms for odd dimensional holographic CFTs. These counterterms are derived by demanding cut-off independence of the CFT partition function on $S^d$ and $S^1 \\times S^{d-1}$. The same choice of counterterms leads to a cut-off independent Schwarzschild black hole entropy. When treated as independent actions, these counterterm actions resemble critical theories of gravity, i.e., higher curvature gravity theories where the additional massive spin-2 modes become massless. Equivalently, in the context of AdS/CFT, these are theories where at least one of the central charges associated with the trace anomaly vanishes. Connections between these theories and logarithmic CFTs are discussed. For a specific choice of parameters, the theories arising from counterterms are non-dynamical and resemble a DBI generalization of gravity. For even dimensional CFTs, analogous counterterms cancel log-independent cut-off dependence.
Fluid Gravity Engineering Rocket motor flow analysis
Anand, Mahesh
Fluid Gravity Engineering Capability Â· Rocket motor flow analysis -Internal (performance) -External (plume / contamination) Â· Effect on landing site (surface alteration) -In-depth flow through porous young scientists/engineers Fluid Gravity Engineering Ltd #12;
Method for measuring the size distribution of airborne rhinovirus
Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.
2002-01-01T23:59:59.000Z
About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.
Initial assessment of an airborne Ku-band polarimetric SAR.
Raynal, Ann Marie; Doerry, Armin Walter
2013-02-01T23:59:59.000Z
Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940's. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analyst's understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band for airborne or unmanned aerial systems.
Granular physics in low-gravity environments using DEM
G. Tancredi; A. Maciel; L. Heredia; P. Richeri; S. Nesmachnow
2011-11-26T23:59:59.000Z
Granular materials of different sizes are present on the surface of several atmosphere-less Solar System bodies. The phenomena related to granular materials have been studied in the framework of the discipline called Granular Physics; that has been studied experimentally in the laboratory and, in the last decades, by performing numerical simulations. The Discrete Element Method simulates the mechanical behavior of a media formed by a set of particles which interact through their contact points. The difficulty in reproducing vacuum and low-gravity environments makes numerical simulations the most promising technique in the study of granular media under these conditions. In this work, relevant processes in minor bodies of the Solar System are studied using the Discrete Element Method. Results of simulations of size segregation in low-gravity environments in the cases of the asteroids Eros and Itokawa are presented. The segregation of particles with different densities was analysed, in particular, the case of comet P/Hartley 2. The surface shaking in these different gravity environments could produce the ejection of particles from the surface at very low relative velocities. The shaking causing the above processes is due to: impacts, explosions like the release of energy by the liberation of internal stresses or the re accommodation of material. Simulations of the passage of impact-induced seismic waves through a granular medium were also performed. We present several applications of the Discrete Element Methods for the study of the physical evolution of agglomerates of rocks under low-gravity environments.
Tian, David Wenjie
2015-01-01T23:59:59.000Z
According to Lovelock's theorem, the Hilbert-Einstein and the Lovelock actions are indistinguishable from their field equations. However, they have different scalar-tensor counterparts, which correspond to the Brans-Dicke and the \\emph{Lovelock-Brans-Dicke} (LBD) gravities, respectively. In this paper the LBD model of alternative gravity with the Lagrangian density $\\mathscr{L}_{\\text{LBD}}=\\frac{1}{16\\pi}\\left[\\phi\\left(R+\\frac{a}{\\sqrt{-g}}{}^*RR + b\\mathcal{G}\\right)-\\frac{\\omega_{\\text L}}{\\phi}\
David Wenjie Tian; Ivan Booth
2015-03-02T23:59:59.000Z
According to Lovelock's theorem, the Hilbert-Einstein and the Lovelock actions are indistinguishable from their field equations. However, they have different scalar-tensor counterparts, which correspond to the Brans-Dicke and the \\emph{Lovelock-Brans-Dicke} (LBD) gravities, respectively. In this paper the LBD model of alternative gravity with the Lagrangian density $\\mathscr{L}_{\\text{LBD}}=\\frac{1}{16\\pi}[\\phi(R+\\frac{a}{\\sqrt{-g}}{}^*RR + b\\mathcal{G})-\\frac{\\omega_{\\text L}}{\\phi}\
Intrusive gravity currents in two-layer
Flynn, Morris R.
Intrusive gravity currents in two-layer stratified media Morris R. Flynn & Paul F. Linden Dept.avalanche.org/pictures #12;· `Microbursts' pose a non-trivial threat to airplane safety Introduction Impacts on human health;· Whereas gravity currents travel along a solid boundary, intrusive gravity currents or intrusions propagate
AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION
Jerry Myers
2005-04-15T23:59:59.000Z
Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.
Design and development of an airborne microwave radiometer for atmospheric sensing
Scarito, Michael P
2011-01-01T23:59:59.000Z
Satellite-based passive microwave remote sensing is a valuable tool for global weather monitoring and prediction. This thesis presents the design and development of a low-cost airborne weather sensing instrument to ...
The metal content of airborne particles in Edinburgh: application to epidemiological research
Hibbs, L R; Beverland, Iain J; Heal, Mathew R; Agius, Raymond M; Elton, Robert A; Fowler, D; Cape, Neil
2002-01-01T23:59:59.000Z
Metals are putative causative agents in the association between ill health and exposure to airborne particles. We present preliminary results from an epidemiological study using exposure metrics of metal contained in ...
Modeling Plot-Level Biomass and Volume Using Airborne and Terrestrial Lidar Measurements
Sheridan, Ryan D.
2012-07-16T23:59:59.000Z
The United States Forest Service (USFS) Forest Inventory and Analysis (FIA) program provides a diverse selection of data used to assess the status of the nation’s forested areas using sample locations dispersed throughout the country. Airborne...
Zhou, Lijun
2010-10-12T23:59:59.000Z
This study explored different chemical characterization methods of agricultural and urban airborne particulate matter. Three different field campaigns are discussed. For the agricultural aerosols, measurement of the chemical composition of size...
Multisensor Fusion of Ground-based and Airborne Remote Sensing Data for Crop Condition Assessment
Zhang, Huihui
2012-02-14T23:59:59.000Z
In this study, the performances of the optical sensors and instruments carried on both ground-based and airborne platforms were evaluated for monitoring crop growing status, detecting the vegetation response to aerial applied herbicides...
Design of a small fast steering mirror for airborne and aerospace applications
Boulet, Michael Thomas
2008-01-01T23:59:59.000Z
This thesis presents the analysis and design of a small advanced fast steering mirror (sAFSM) for airborne and aerospace platforms. The sAFSM provides feedback-controlled articulation of two rotational axes for precision ...
Antimatter, the SME, and Gravity
Jay D. Tasson
2012-12-07T23:59:59.000Z
A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number of SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.
Antimatter, the SME, and Gravity
Tasson, Jay D
2012-01-01T23:59:59.000Z
A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number of SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.
Liouville quantum gravity and KPZ
Duplantier, Bertrand
Consider a bounded planar domain D, an instance h of the Gaussian free field on D, with Dirichlet energy ... and a constant 0[less than or equal to]?<2. The Liouville quantum gravity measure on D is the weak limit as ...
Gao, Yige
2010-07-14T23:59:59.000Z
ALGORITHMS AND SOFTWARE TOOLS FOR EXTRACTING COASTAL MORPHOLOGICAL INFORMATION FROM AIRBORNE LiDAR DATA A Thesis by YIGE GAO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 2009 Major Subject: Geography ALGORITHMS AND SOFTWARE TOOLS FOR EXTRACTING COASTAL MORPHOLOGICAL INFORMATION FROM AIRBORNE LiDAR DATA A Thesis by YIGE GAO...
An investigation of three problems concerning the analysis of airborne asphalt fumes
Laird, Larry Teal
1981-01-01T23:59:59.000Z
AN INVESTIGATION OF THREE PROBLEMS CONCERNING THE ANALYSIS OF AIRBORNE ASPHALT FUMES A Thesis by LARRY TEAL LAIRD Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1981 Major Subject: Industrial Hygiene AN INVESTIGATION OF THREE PROBLEMS CONCERNING THE ANALYSIS OF AIRBORNE ASPHALT FUMES A Thesis by LARRY T. LAIRD Approved as to style and content by: (Chairm of Committee) (Head of Department...
Axions in gravity with torsion
Oscar Castillo-Felisola; Cristobal Corral; Sergey Kovalenko; Ivan Schmidt; Valery E. Lyubovitskij
2015-04-13T23:59:59.000Z
We study a scenario allowing a solution of the strong charge parity problem via the Peccei-Quinn mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related pseudoscalar field known as Kalb-Ramond axion. We compare it with the so-called Barbero-Immirzi axion recently proposed in the literature also in the context of the gravity with torsion. We show that they are equivalent from the viewpoint of the effective theory. The phenomenology of these torsion-descended axions is completely determined by the Planck scale without any additional model parameters. These axions are very light and very weakly interacting with ordinary matter. We briefly comment on their astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.
Axions in gravity with torsion
Castillo-Felisola, Oscar; Kovalenko, Sergey; Schmidt, Ivan; Lyubovitskij, Valery E
2015-01-01T23:59:59.000Z
We study a scenario allowing a solution of the strong CP-problem via the Peccei-Quinn mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related pseudoscalar field known as Kalb-Ramond axion. We compare it with the so called Barbero-Immirzi axion recently proposed in the literature also in the context of the gravity with torsion. We show that they are equivalent from the view point of the effective theory. The phenomenology of these torsion-descended axions is completely determined by the Planck scale without any additional model parameters. These axions are very light and very weakly interacting with ordinary matter. We briefly comment on their astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.
Black holes in massive gravity
Babichev, Eugeny
2015-01-01T23:59:59.000Z
We review the black hole solutions of the ghost-free massive gravity theory and its bimetric extension and outline the main results on the stability of these solutions against small perturbations. Massive (bi)-gravity accommodates exact black hole solutions, analogous to those of General Relativity. In addition to these solutions, hairy black holes -- solutions with no correspondent in General Relativity -- have been found numerically, whose existence is a natural consequence of the absence of the Birkhoff's theorem in these theories. The existence of extra propagating degrees of freedom, makes the stability properties of these black holes richer and more complex than those of General Relativity. In particular, the bi-Schwarzschild black hole exhibits an unstable spherically symmetric mode, while the bi-Kerr geometry is also generically unstable, both against the spherical mode and against superradiant instabilities. If astrophysical black holes are described by these solutions, the superradiant instability o...
Airborne radioactive effluent study at the Savannah River Plant
Blanchard, R.L.; Broadway, J.A.; Sensintaffar, E.L.; Kirk, W.P.; Kahn, B.; Garrett, A.J.
1984-07-01T23:59:59.000Z
Under the Clean Air Act, Sections 112 and 122 as amended in 1977, the Office of Radiation Programs (OPR) of the United States Environmental Protection Agency is currently developing standards for radionuclides emitted to the air by several source categories. In order to confirm source-term measurements and pathway calculations for radiation exposures to humans offsite, the ORP performs field studies at selected facilities that emit radionuclides. This report describes the field study conducted at the Savannah River Plant (SRP), a laboratory operated by E.I. du Pont de Nemours and Company for the US Department of Energy. This purpose of the study at ARP was to verify reported airborne releases and resulting radiation doses from the facility. Measurements of radionuclide releases for brief periods were compared with measurements performed by SRP staff on split samples and with annual average releases reported by SRP for the same facilities. The dispersion model used by SRP staff to calculate radiation doses offsite was tested by brief environmental radioactivity measurements performed simultaneously with the release measurements, and by examining radioactivity levels in environmental samples. This report describes in detail all measurements made and data collected during the field study and presents the results obtained. 34 references, 18 figures, 49 tables.
Design and calibration of the PHARUS polarimetric airborne SAR
Snoeij, P. [Delft Univ. of Technology, Delft (Netherlands); Hoogeboom, P.; Koomen, P.J. [and others
1996-11-01T23:59:59.000Z
The PHARUS system uses a phased array antenna with solid state amplifiers. The project consisted of two phases, a definition phase and a realization phase. The definition phase consisted of the actual realization of a SAR research system called PHARS, which made its first successful testflight in November 1990. The research system is based on the concept of a wide beamwidth antenna, rigidly fixed to the aircraft. Pulse compression and a high PRF ensure sufficient sensitivity in this system, which is equipped with a 160 Watt peak pulse power solid state transmitter. The processing is done off-line. In the realization phase the polarimetric PHARUS system has been developed. The design is based on the experience gained with the PHARS system. The system uses a phased array with dual polarized patch radiators and is equipped with solid state amplifiers. This paper will give an overview of the PHARUS design and operational use. Apart from the use as an advanced polarimetric airborne SAR, there is the perspective of using PHARUS as a demonstrator for ESA`s future ASAR system. 2 refs., 2 figs., 1 tab.
Chen, Gang; Lin, Yuehe
2008-07-20T23:59:59.000Z
Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.
Born-Infeld gravity in three dimensions
Alishahiha, Mohsen [School of physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Naseh, Ali [School of physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Soltanpanahi, Hesam [School of physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); School of Physics and Centre for Theoretical Physics, University of the Witwatersrand, WITS 2050 Johannesburg (South Africa)
2010-07-15T23:59:59.000Z
In this paper we explore different aspects of three dimensional Born-Infeld as well as Born-Infeld-Chern-Simons gravity. We show that the models have anti-de Sitter and anti-de Sitter wave vacuum solutions. Moreover, we observe that although Born-Infeld-Chern-Simons gravity admits a logarithmic solution, Born-Infeld gravity does not, though it has a limiting logarithmic solution as we approach the critical point.
Thin-shell wormholes from charged black holes in generalized dilaton-axion gravity
A. A. Usmani; F. Rahaman; Saibal Ray; Sk. A. Rakib; Z. Hasan; Peter K. F. Kuhfittig
2010-06-05T23:59:59.000Z
This paper discusses a new type of thin-shell wormhole constructed by applying the cut-and-paste technique to two copies of a charged black hole in generalized dilaton-axion gravity, which was inspired by low-energy string theory. After analyzing various aspects of this thin-shell wormhole, we discuss its stability to linearized spherically symmetric perturbations.
Supersymmetry and Gravity in Noncommutative Field Theories
Victor O. Rivelles
2003-05-14T23:59:59.000Z
We discuss the renormalization properties of noncommutative supersymmetric theories. We also discuss how the gauge field plays a role similar to gravity in noncommutative theories.
Can Gravity Probe B usefully constrain torsion gravity theories?
Flanagan, Eanna E.; Rosenthal, Eran [Center for Radiophysics and Space Research, Cornell University, Ithaca, New York, 14853 (United States)
2007-06-15T23:59:59.000Z
In most theories of gravity involving torsion, the source for torsion is the intrinsic spin of matter. Since the spins of fermions are normally randomly oriented in macroscopic bodies, the amount of torsion generated by macroscopic bodies is normally negligible. However, in a recent paper, Mao et al. (arXiv:gr-qc/0608121) point out that there is a class of theories, including the Hayashi-Shirafuji (1979) theory, in which the angular momentum of macroscopic spinning bodies generates a significant amount of torsion. They further argue that, by the principle of action equals reaction, one would expect the angular momentum of test bodies to couple to a background torsion field, and therefore the precession of the Gravity Probe B gyroscopes should be affected in these theories by the torsion generated by the Earth. We show that in fact the principle of action equals reaction does not apply to these theories, essentially because the torsion is not an independent dynamical degree of freedom. We examine in detail a generalization of the Hayashi-Shirafuji theory suggested by Mao et al. called Einstein-Hayashi-Shirafuji theory. There are a variety of different versions of this theory, depending on the precise form of the coupling to matter chosen for the torsion. We show that, for any coupling to matter that is compatible with the spin transport equation postulated by Mao et al., the theory has either ghosts or an ill-posed initial-value formulation. These theoretical problems can be avoided by specializing the parameters of the theory and in addition choosing the standard minimal coupling to matter of the torsion tensor. This yields a consistent theory, but one in which the action equals reaction principle is violated, and in which the angular momentum of the gyroscopes does not couple to the Earth's torsion field. Thus, the Einstein-Hayashi-Shirafuji theory does not predict a detectable torsion signal for Gravity Probe B. There may be other torsion theories which do.
airborne acoustical noise: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of anisotropy in oceanic ambient noise fields and its relevance to Acoustic Daylight imaging CiteSeer Summary: Acoustic Daylight is a new technique for creating pictorial...
Airborne flux measurements of Biogenic Isoprene over California
Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.
2014-10-10T23:59:59.000Z
Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and coniferous forests were extremely low, high concentrations of methanol and monoterpenes were found above some of these regions. These observations demonstrate the ability to measure fluxes from specific sources by eddy covariance from an aircraft, and suggest the utility of measurements using fast response chemical sensors to constrain emission inventories and map out source distributions for a much broader array of trace gases than was observed in this study. This paper reports the first regional direct eddy covariance fluxes of isoprene. The emissions of VOCs measured from aircraft with 2 km spatial resolution can quantify the distribution of major sources providing the observations required for testing statewide emission inventories of these important trace gases. These measurements will be used in a future study to assess BVOC emission models and their driving variable datasets.
A new multidimensional AMR Hydro+Gravity Cosmological code
Vicent Quilis
2004-05-20T23:59:59.000Z
A new cosmological multidimensional hydrodynamic and N-body code based on an Adaptive Mesh Refinement scheme is described and tested. The hydro part is based on modern high-resolution shock-capturing techniques, whereas N-body approach is based on the Particle Mesh method. The code has been specifically designed for cosmological applications. Tests including shocks, strong gradients, and gravity have been considered. A cosmological test based on Santa Barbara cluster is also presented. The usefulness of the code is discussed. In particular, this powerful tool is expected to be appropriate to describe the evolution of the hot gas component located inside asymmetric cosmological structures.
Gravity modeling of Cenozoic extensional basins, offshore Vietnam
Mauri, Steven Joseph
1993-01-01T23:59:59.000Z
(Yinggehai) basins. Gravity modeling results provide important clues to the controversial tectonic development of Southeast Asia during the Tertiary. Combined Bouguer and free-air gravity maps and residual gravity anomaly maps were generated for the study...
Yu, K.N.
Long-term determination of airborne concentrations of unattached and attached radon progeny using-term measurements Radon progeny a b s t r a c t We developed the theoretical basis for long-term determination of airborne concentrations of unattached and attached radon progeny. The work was separated into two parts
Ottley, D.B.
1995-05-01T23:59:59.000Z
Settled dust from nuclear operations may be contaminated with radionuclides and become resuspended and subsequently breathed. This is the predominate radionuclide inhalation hazard scenario in nuclear facilities that have been deactivated and no longer have liquid in their process systems that may become directly airborne in accident situations. Comparisons were made between indoor ambient airborne particulate size distribution and that of resuspended dust that could become contaminated and subsequently airborne during decommissioning operations at selected nuclear facilities on the Hanford Site. Results indicate that only 5% of the particles, by count, above the breathing zone are greater than ten (10) {mu}m in size and that the particulates that could be resuspended into the breathing zone had a mean aerodynamic equivalent diameter of four (4) {mu}m or less.
Testing Gravity with Cold-Atom Interferometers
G. W. Biedermann; X. Wu; L. Deslauriers; S. Roy; C. Mahadeswaraswamy; M. A. Kasevich
2014-12-10T23:59:59.000Z
We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a differential acceleration sensitivity of 4.2$\\times10^{-9}g/\\sqrt{Hz}$ over a 70 cm baseline or 3.0$\\times10^{-9}g/\\sqrt{Hz}$ inferred per accelerometer. Using the performance of this instrument, we characterize the results of possible future gravitational tests. We complete a proof-of-concept measurement of the gravitational constant with a precision of 3$\\times10^{-4}$ that is competitive with the present limit of 1.2$\\times10^{-4}$ using other techniques. From this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8$\\times$10$^{-3}$ near the poorly known length scale of 10 cm. Limits approaching 10$^{-5}$ appear feasible. We discuss improvements that can enable uncertainties falling well below 10$^{-5}$ for both experiments.
Negative mass solitons in gravity
Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram [Anadolu University, Department of Physics, Yunus Emre Campus, 26470, Eskisehir (Turkey); Department of Physics, Faculty of Arts and Sciences, Middle East Technical University, 06531, Ankara (Turkey)
2006-03-15T23:59:59.000Z
We first reconstruct the conserved (Abbott-Deser) charges in the spin-connection formalism of gravity for asymptotically (Anti)-de Sitter spaces, and then compute the masses of the AdS soliton and the recently found Eguchi-Hanson solitons in generic odd dimensions, unlike the previous result obtained for only five dimensions. These solutions have negative masses compared to the global AdS or AdS/Z{sub p} spacetimes. As a separate note, we also compute the masses of the recent even dimensional Taub-NUT-Reissner-Nordstroem metrics.
Preliminary calculations on direct heating of a containment atmosphere by airborne core debris
Pilch, M.; Tarbell, W.W.
1986-07-01T23:59:59.000Z
Direct heating of the containment atmosphere by airborne core debris may be a significant source of containment pressurization in those accident sequences where the primary system is still at high pressure when the RPV fails. Vigorous blowdown of the primary system may result in nearly complete relocation of core debris out of the reactor cavity and possibly into the containment atmosphere where the liberation of thermal and chemical energy can directly heat the atmosphere. Rate independent and rate dependent models are developed and exercised parametrically to quantify the possible magnitude and rate of containment pressurization from direct heating. The possible mitigative effects of airborne water and subcompartment heating are also investigated.
Reconstruction of Einstein-Aether Gravity from other Modified Gravity Models
Chayan Ranjit; Ujjal Debnath
2014-09-08T23:59:59.000Z
We briefly describe the modified Friedmann equations for Einstein-Aether gravity theory and we find the effective density and pressure. The purpose of our present work is to reconstruction of Einstein-Aether Gravity from other modified gravities like $f(T)$, $f(R)$, $f(G)$, $f(R,T)$ and $f(R,G)$ and check its viability. The scale factor is chosen in power law form. The free function $F(K)$ for Einstein-Aether gravity (where $K$ is proportional to $H^{2}$) have been found in terms for $K$ by the correspondence between Einstein-Aether gravity and other modified gravities and the nature of $F(K)$ vs $K$ have been shown graphically for every cases. Finally, we analyzed the stability of each reconstructed Einstein-Aether gravity model.
Conserved charges in 3D gravity
Blagojevic, M.; Cvetkovic, B. [University of Belgrade, Institute of Physics, P. O. Box 57, 11001 Belgrade (Serbia)
2010-06-15T23:59:59.000Z
The covariant canonical expression for the conserved charges, proposed by Nester, is tested on several solutions in three-dimensional gravity with or without torsion and topologically massive gravity. In each of these cases, the calculated values of energy momentum and angular momentum are found to satisfy the first law of black hole thermodynamics.
The Superheavy Elements and Anti-Gravity
Anastasovski, Petar K. [Department of Physics, Faculty of Technology and Metallurgy, Saints Cyril and Methodius University, Skopje (Macedonia, The Former Yugoslav Republic of)
2004-02-04T23:59:59.000Z
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.
Dual Accretion Disks in Alternate Gravity Theories
James S. Graber
1997-12-15T23:59:59.000Z
The interior of gravitationally collapsed objects in alternate theories of gravity in which event horizons and singularities do not occur in strong field gravity were generically investigated. These objects, called red holes, were found to contain dynamic configurations of matter, radiation and spacetime similar to inside out accretion disks well inside the photon orbit. Applications to astrophysical phenomena are briefly described.
Threat Mitigation: The Gravity Tractor
Russell Schweickart; Clark Chapman; Dan Durda; Piet Hut
2006-08-15T23:59:59.000Z
The Gravity Tractor (GT) is a fully controlled asteroid deflection concept using the mutual gravity between a robotic spacecraft and an asteroid to slowly accelerate the asteroid in the direction of the "hovering" spacecraft. Based on early warning, provided by ground tracking and orbit prediction, it would be deployed a decade or more prior to a potential impact. Ion engines would be utilized for both the rendezvous with the asteroid and the towing phase. Since the GT does not dock with or otherwise physically contact the asteroid during the deflection process there is no requirement for knowledge of the asteroid's shape, composition, rotation state or other "conventional" characteristics. The GT would first reduce the uncertainty in the orbit of the asteroid via Earth tracking of its radio transponder while station keeping with the asteroid. If, after analysis of the more precise asteroid orbit a deflection is indeed indicated, the GT would "hover" above the surface of the asteroid in the direction of the required acceleration vector for a duration adequate to achieve the desired velocity change. The orbit of the asteroid is continuously monitored throughout the deflection process and the end state is known in real time. The performance envelope for the GT includes most NEOs which experience close gravitational encounters prior to impact and those below 150-200 meters in diameter on a direct Earth impact trajectory.
Solar System constraints to nonminimally coupled gravity
Orfeu Bertolami; Riccardo March; Jorge Páramos
2013-06-05T23:59:59.000Z
We extend the analysis of Chiba, Smith and Erickcek \\cite{CSE} of Solar System constraints on $f(R)$ gravity to a class of nonminimally coupled (NMC) theories of gravity. These generalize $f(R)$ theories by replacing the action functional of General Relativity (GR) with a more general form involving two functions $f^1(R)$ and $f^2(R)$ of the Ricci scalar curvature $R$. While the function $f^1(R)$ is a nonlinear term in the action, analogous to $f(R)$ gravity, the function $f^2(R)$ yields a NMC between the matter Lagrangian density $\\LL_m$ and the scalar curvature. The developed method allows for obtaining constraints on the admissible classes of functions $f^1(R)$ and $f^2(R)$, by requiring that predictions of NMC gravity are compatible with Solar System tests of gravity. We apply this method to a NMC model which accounts for the observed accelerated expansion of the Universe.
airborne profiling laser: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
to be a powerful technique not only for characte... Corts, Angela; Guesalaga, Andrs; Osborn, James; Rigaut, Francois; Guzman, Dani 2012-01-01 32 Curso 1 -Novos Avanos nas...
Accurate Gravities of F, G, and K stars from High Resolution Spectra Without External Constraints
Brewer, John M; Basu, Sarbani; Valenti, Jeff A; Piskunov, Nikolai
2015-01-01T23:59:59.000Z
We demonstrate a new procedure to derive accurate and precise surface gravities from high resolution spectra without the use of external constraints. Our analysis utilizes Spectroscopy Made Easy (SME) with robust spectral line constraints and uses an iterative process to mitigate degeneracies in the fitting process. We adopt an updated radiative transfer code, a new treatment for neutral perturber broadening, a line list with multiple gravity constraints and separate fitting for global stellar properties and abundance determinations. To investigate the sources of temperature dependent trends in determining log g noted in previous studies, we obtained Keck HIRES spectra of 42 Kepler asteroseismic stars. In comparison to asteroseismically determined log g our spectroscopic analysis has a constant offset of 0.01 dex with a root mean square (RMS) scatter of 0.05 dex. We also analyzed 30 spectra which had published surface gravities determined using the $a/R_*$ technique from planetary transits and found a constan...
Savannah River Site Ingestion Pathway Methodology Manual for Airborne Radioactive Releases
Vincent, A.W. III
2001-01-03T23:59:59.000Z
This manual documents a recommended methodology for determining the ingestion pathway consequences of hypothetical accidental airborne radiological releases from facilities at the Savannah River Site. Both particulate and tritiated radioactive contaminants are addressed. Other approaches should be applied for evaluation of routine releases.
DETECTION OF IMPULSE-LIKE AIRBORNE SOUND FOR DAMAGE IDENTIFICATION IN ROTOR BLADES OF WIND TURBINES
Boyer, Edmond
DETECTION OF IMPULSE-LIKE AIRBORNE SOUND FOR DAMAGE IDENTIFICATION IN ROTOR BLADES OF WIND TURBINES burdens of wind turbines. To detect damage of rotor blades, several research projects focus on an acoustic, rotor blade, wind turbine INTRODUCTION There are several publications of non destructive damage
Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues
Short, Daniel
Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues: XAS XANES EXAFS Antimony Particulate matter Brake linings a b s t r a c t Insights into the speciation of Sb in samples of brake linings, brake pad wear residues, road dust, and atmospheric particulate
LAAS Ionosphere Spatial Gradient Threat Model and Impact of LGF and Airborne Monitoring
Stanford University
LAAS Ionosphere Spatial Gradient Threat Model and Impact of LGF and Airborne Monitoring Ming Luo of users for the current Category I LAAS architecture. In the ionosphere threat model used by previous-case ionosphere conditions. In this paper, the ionosphere threat model is reexamined based on WAAS and IGS data
Khuri-Yakub, Butrus T. "Pierre"
3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic was implemented by mechanical scanning a co-located transmitter and receiver using the classic synthetic aperture, silicone rubber, and foam plastics, in an attempt to overcome bad mechanical impedance matching between
Effect of sampling height on the concentration of airborne fungal spores
Levetin, Estelle
and possible sources of air pollution.8 In addition, it is high enough to avoid vandalism and bothering aeroallergens. Airborne fungal spores are commonly collected from the outdoor air at the rooftop level of high respiration level (1.5 m above the ground) and at roof level (12 m height). Methods: Air samples were
airborne gamma-ray spectrometer: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
gamma-ray spectrometer First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Digital Logarithmic Airborne...
airborne gamma-ray surveying: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
airborne gamma-ray surveying First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Digital Logarithmic...
airborne gamma-ray measurements: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
airborne gamma-ray measurements First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Digital Logarithmic...
Elemental composition of airborne particulates in uranium mining and milling operations
Paschoa, A.S.; Wrenn, M.E.; Jones, K.W.; Cholewa, M.; Carvalho, S.M.
1984-01-01T23:59:59.000Z
Airborne particulates were collected through filters in occupational areas of the uranium mining and milling complex located in Pocos de Caldas, Brazil. The filters were analyzed by microPIXE (particle induced x-ray emission) combined with Rutherford Backscattering (RBS) of the incident protons. The results are discussed in the paper. 4 references, 6 figures, 1 table.
Lefsky, Michael
Light transmittance in forest canopies determined using airborne laser altimetry and in Abstract The vertical distribution of light transmittance was derived from field and laser altimeter-directed laser light than of direct solar radiation from typical elevation angles. Transects of light
Measurement of airborne radioactivity from the Fukushima reactor accident in Tokushima, Japan
Fushimi, K; Sakama, M; Sakaguchi, Y
2011-01-01T23:59:59.000Z
The airborne radioactive isotopes from the Fukushima Daiichi nuclear plant was measured in Tokushima, western Japan. The continuous monitoring has been carried out in Tokushima. From March 23, 2011 the fission product $^{131}$I was observed. The radioisotopes $^{134}$Cs and $^{137}$Cs were also observed in the beginning of April. However the densities were extremely smaller than the Japanese regulation of radioisotopes.
Statistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter
Washington at Seattle, University of
of the Workshop was to initiate a statistical research program relevant to setting air quality standardsStatistical Issues in the Study of Air Pollution Involving Airborne Particulate Matter Lawrence H. Cox NRCSET e c h n i c a l R e p o r t S e r i e s NRCSE-TRS No. 041 January 10, 2000 The NRCSEwas
LONG-TERM DETERMINATION OF AIRBORNE RADON PROGENY CONCENTRATIONS USING LR 115 DETECTORS
Yu, K.N.
LONG-TERM DETERMINATION OF AIRBORNE RADON PROGENY CONCENTRATIONS USING LR 115 DETECTORS dose in the lung is mainly due to short-lived radon progeny, i.e. 218 Po, 214 Pb, 214 Bi and 214 Po, but not the radon (222 Rn) gas itself. Accordingly, long-term measure- ments of the concentrations of radon progeny
Measurement of airborne radioactivity from the Fukushima reactor accident in Tokushima, Japan
K. Fushimi; S. Nakayama; M. Sakama; Y. Sakaguchi
2012-10-19T23:59:59.000Z
The airborne radioactive isotopes from the Fukushima Daiichi nuclear plan t was measured in Tokushima, western Japan. The continuous monitoring has been carried out in Tokushima. From March 23, 2011 the fission product $^{131}$I was observed. The radioisotopes $^{134}$Cs and $^{137}$Cs were also observed in the beginning of April. However the densities were extremely smaller than the Japanese regulation of radioisotopes.
Airborne lead and other elements derived from local fires in the Himalayas
Davidson, C.I.; Grimm, T.C.; Nasta, M.A.
1981-12-18T23:59:59.000Z
The combustion of wood and yak dung for heating and cooking in a populated Nepal Himalayan valley contributes significantly to the ambient airborne concentrations of lead, copper, aluminum, magnesium, and elemental and organic carbon. A comparison of the concentrations of these elements in fresh snow with corresponding values in air suggests that the pollution aerosol is confined to the valley, with pristine air aloft.
Emergent Horava gravity in graphene
G. E. Volovik; M. A. Zubkov
2013-07-07T23:59:59.000Z
First of all, we reconsider the tight - binding model of monolayer graphene, in which the variations of the hopping parameters are allowed. We demonstrate that the emergent 2D Weitzenbock geometry as well as the emergent U(1) gauge field appear. The emergent gauge field is equal to the linear combination of the components of the zweibein. Therefore, we actually deal with the gauge fixed version of the emergent 2+1 D teleparallel gravity. In particular, we work out the case, when the variations of the hopping parameters are due to the elastic deformations, and relate the elastic deformations with the emergent zweibein. Next, we investigate the tight - binding model with the varying intralayer hopping parameters for the multilayer graphene with the ABC stacking. In this case the emergent 2D Weitzenbock geometry and the emergent U(1) gauge field appear as well, the emergent low energy effective field theory has the anisotropic scaling.
Dimensional Reduction in Quantum Gravity
G. 't Hooft
2009-03-20T23:59:59.000Z
The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two-dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. Essay dedicated to Abdus Salam.
Tom Fleming; Mark Gross; Ray Renken
1994-01-04T23:59:59.000Z
We define a simplified version of Regge quantum gravity where the link lengths can take on only two possible values, both always compatible with the triangle inequalities. This is therefore equivalent to a model of Ising spins living on the links of a regular lattice with somewhat complicated, yet local interactions. The measure corresponds to the natural sum over all 2^links configurations, and numerical simulations can be efficiently implemented by means of look-up tables. In three dimensions we find a peak in the ``curvature susceptibility'' which grows with increasing system size. However, the value of the corresponding critical exponent as well as the behavior of the curvature at the transition differ from that found by Hamber and Williams for the Regge theory with continuously varying link lengths.
Gravity-Induced Vacuum Dominance
Lima, William C. C.; Vanzella, Daniel A. T. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, CEP 15980-900, Sao Carlos, SP (Brazil)
2010-04-23T23:59:59.000Z
It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for backreaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.
Newtonian gravity, red shift, confinement, asymptotic freedom and quarks oscillations
G. Quznetsov
2008-10-18T23:59:59.000Z
Quarks oscillations give the Newtonian gravity law, the red shift, the confinement and the asymptotic freedom.
Loop Quantum Gravity 1. Classical framework : Ashtekar-Barbero connection
Sart, Remi
gravity Why Quantum Gravity ? Gravitation vs. Quantum Physics : the two infinities Gravitation : large Quantum Gravity ? Gravitation vs. Quantum Physics : the two infinities Gravitation : large scales-perturbative renormalization Gravity is not a fundamental theory but it is effective (law energy) Â· it has to be modified
Fractal Structure of Loop Quantum Gravity
Leonardo Modesto
2008-12-11T23:59:59.000Z
In this paper we have calculated the spectral dimension of loop quantum gravity (LQG) using simple arguments coming from the area spectrum at different length scales. We have obtained that the spectral dimension of the spatial section runs from 2 to 3, across a 1.5 phase, when the energy of a probe scalar field decrees from high to low energy. We have calculated the spectral dimension of the space-time also using results from spin-foam models, obtaining a 2-dimensional effective manifold at hight energy. Our result is consistent with other two approach to non perturbative quantum gravity: causal dynamical triangulation and asymptotic safety quantum gravity.
CDT meets Horava-Lifshitz gravity
J. Ambjorn; A. Gorlich; S. Jordan; J. Jurkiewicz; R. Loll
2010-04-06T23:59:59.000Z
The theory of causal dynamical triangulations (CDT) attempts to define a nonperturbative theory of quantum gravity as a sum over space-time geometries. One of the ingredients of the CDT framework is a global time foliation, which also plays a central role in the quantum gravity theory recently formulated by Ho\\v{r}ava. We show that the phase diagram of CDT bears a striking resemblance with the generic Lifshitz phase diagram appealed to by Ho\\v{r}ava. We argue that CDT might provide a unifying nonperturbative framework for anisotropic as well as isotropic theories of quantum gravity.
Ning Wu
2012-07-11T23:59:59.000Z
When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machine which can physically prolong human's lifetime.
National Airborne Field Experiments for Prediction in Ungauged Basins
Walker, Jeff
, such as validation of these data products from new sensors, maturing retrieval algorithms, developing techniques with thermal infrared, near infrared, visible and lidar data. Passive microwave data will be collected in both if there is sufficient interest. A trial campaign to evalu
Bounds on quantum communication via Newtonian gravity
D. Kafri; G. J. Milburn; J. M. Taylor
2014-10-08T23:59:59.000Z
Newtonian gravity yields specific observable consequences, the most striking of which is the emergence of a $1/r^2$ force. In so far as communication can arise via such interactions between distant particles, we can ask what would be expected for a theory of gravity that only allows classical communication. Many heuristic suggestions for gravity-induced decoherence have this restriction implicitly or explicitly in their construction. Here we show that communication via a $1/r^2$ force has a minimum noise induced in the system when the communication cannot convey quantum information, in a continuous time analogue to Bell's inequalities. Our derived noise bounds provide tight constraints from current experimental results on any theory of gravity that does not allow quantum communication.
Zhan, Lang; Yortsos, Yanis
2000-09-11T23:59:59.000Z
A new gravity finger model was proposed in this report in the absence of interfacial tension but in the presence of gravities. This model considered differences in density and viscosity of the two fluids. Thus, it was able to represent both stable and unstable displacements, and the finger development along either the upper or the bottom walls of a channel. This solution recovers the Saffman - Taylar solution if gravity is neglected. The results of the solution are very similar to the solutions proposed by Brener et al. for the gravity number up to 10. The solution provided in this work only has one free parameter while the solution of Brener et al. has three.
Gravity waves from vortex dipoles and jets
Wang, Shuguang
2009-05-15T23:59:59.000Z
The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here...
State sum models for quantum gravity
John W. Barrett
2000-10-12T23:59:59.000Z
This paper reviews the construction of quantum field theory on a 4-dimensional spacetime by combinatorial methods, and discusses the recent developments in the direction of a combinatorial construction of quantum gravity.
Energy conditions in f(R) gravity
Santos, J. [Universidade Federal do Rio Grande do Norte, Departamento de Fisica C.P. 1641, 59072-970 Natal-Rio Grande do Norte (Brazil); Departamento de Astronomia, Observatorio Nacional, 20921-400 Rio de Janeiro-Rio de Janeiro (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-Rio de Janeiro (Brazil); Alcaniz, J. S.; Carvalho, F. C. [Departamento de Astronomia, Observatorio Nacional, 20921-400 Rio de Janeiro-Rio de Janeiro (Brazil); Reboucas, M. J. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-Rio de Janeiro (Brazil)
2007-10-15T23:59:59.000Z
In order to shed some light on the current discussion about f(R)-gravity theories we derive and discuss the bounds imposed by the energy conditions on a general f(R) functional form. The null and strong energy conditions in this framework are derived from Raychaudhuri's equation along with the requirement that gravity is attractive, whereas the weak and dominant energy conditions are stated from a comparison with the energy conditions that can be obtained in a direct approach via an effective energy-momentum tensor for f(R) gravity. As a concrete application of the energy conditions to locally homogeneous and isotropic f(R) cosmology, the recent estimated values of the deceleration and jerk parameters are used to examine the bounds from the weak energy condition on the parameters of two families of f(R)-gravity theories.
Cosmology of modified (but second order) gravity
Tomi S. Koivisto
2009-10-21T23:59:59.000Z
This is a brief review of modified gravity cosmologies. Generically extensions of gravity action involve higher derivative terms, which can result in ghosts and instabilities. There are three ways to circumvent this: Chern-Simons terms, first order variational principle and nonlocality. We consider recent cosmological applications of these three classes of modified gravity models, in particular to the dark energy problem. The viable parameter spaces can be very efficiently constrained by taking into account cosmological data from all epochs in addition to Solar system tests and stability considerations. We make some new remarks concerning so called algebraic scalar-tensor theories, biscalar reformulation of nonlocal actions involving the inverse d'Alembertian, and a possible covariant formulation holographic cosmology with nonperturbative gravity.
Energy conditions in f(R)-gravity
J. Santos; J. S. Alcaniz; M. J. Reboucas; F. C. Carvalho
2007-09-06T23:59:59.000Z
In order to shed some light on the current discussion about f(R)-gravity theories we derive and discuss the bounds imposed by the energy conditions on a general f(R) functional form. The null and strong energy conditions in this framework are derived from the Raychaudhuri's equation along with the requirement that gravity is attractive, whereas the weak and dominant energy conditions are stated from a comparison with the energy conditions that can be obtained in a direct approach via an effective energy-momentum tensor for f(R)-gravity. As a concrete application of the energy conditions to locally homogeneous and isotropic f(R)-cosmology, the recent estimated values of the deceleration and jerk parameters are used to examine the bounds from the weak energy condition on the parameters of two families of f(R)-gravity theories.
Test particle motion in modified gravity theories
Mahmood Roshan
2013-02-05T23:59:59.000Z
We derive the equations of motion of an electrically neutral test particle for modified gravity theories in which the covariant divergence of the ordinary matter energy-momentum tensor dose not vanish (i.e. $\
A new vacuum for Loop Quantum Gravity
Bianca Dittrich; Marc Geiller
2015-05-05T23:59:59.000Z
We construct a new vacuum for loop quantum gravity, which is dual to the Ashtekar-Lewandowski vacuum. Because it is based on BF theory, this new vacuum is physical for $(2+1)$-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy-flux algebra which is cylindrically consistent with respect to the notion of refinement by time evolution suggested in [1]. This supports the proposal for a construction of a physical vacuum made in [1,2], also for $(3+1)$-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity.
Antimatter-Gravity Couplings, and Lorentz Symmetry
Tasson, Jay D
2015-01-01T23:59:59.000Z
Implications of possible CPT and Lorentz violation for antimatter-gravity experiments as well as other antimatter tests are considered in the context of the general field-theory-based framework of the Standard-Model Extension (SME).
Antimatter-Gravity Couplings, and Lorentz Symmetry
Jay D. Tasson
2015-01-27T23:59:59.000Z
Implications of possible CPT and Lorentz violation for antimatter-gravity experiments as well as other antimatter tests are considered in the context of the general field-theory-based framework of the Standard-Model Extension (SME).
Oblique reflections of internal gravity wave beams
Karimi, Hussain H. (Hussain Habibullah)
2012-01-01T23:59:59.000Z
We study nonlinear effects in reflections of internal gravity wave beams in a continuously stratified liquid which are incident upon a uniform slope at an oblique angle. Wave motion in a stratified fluid medium is unique ...
Gravity Recovery and Interior Laboratory (GRAIL) Launch
Gravity Recovery and Interior Laboratory (GRAIL) Launch Press Kit/AUGUst 2011 #12;http of its four channels to AC-3, making each channel's secondary audio MPEG 1 Layer II. For digital downlink
Anisotropic induced gravity and inflationary universe
W. F. Kao
2006-12-09T23:59:59.000Z
Existence and stability analysis of the Kantowski-Sachs type universe in a higher derivative induced gravity theory is studied in details. Existence of one stable mode and one unstable mode is shown to be in favor of the inflationary universe. As a result, the de Sitter background can be made to be stable against anisotropic perturbations with proper constraints imposed on the coupling constants of the induced gravity model.
Gravity waves from cosmic bubble collisions
Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar, E-mail: mpsalem@stanford.edu, E-mail: ps88@stanford.edu, E-mail: edgars@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, California 94305 (United States)
2013-02-01T23:59:59.000Z
Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.
The shape dynamics description of gravity
Tim Koslowski
2015-01-13T23:59:59.000Z
Classical gravity can be described as a relational dynamical system without ever appealing to spacetime or its geometry. This description is the so-called shape dynamics description of gravity. The existence of relational first principles from which the shape dynamics description of gravity can be derived is a motivation to consider shape dynamics (rather than GR) as the fundamental description of gravity. Adopting this point of view leads to the question: What is the role of spacetime in the shape dynamics description of gravity? This question contains many aspects: Compatibility of shape dynamics with the description of gravity in terms of spacetime geometry, the role of local Minkowski space, universality of spacetime geometry and the nature of quantum particles, which can no longer be assumed to be irreducible representations of the Poincare group. In this contribution I derive effective spacetime structures by considering how matter fluctuations evolve along with shape dynamics. This evolution reveals an "experienced spacetime geometry." This leads (in an idealized approximation) to local Minkowski space and causal relations. The small scale structure of the emergent geometric picture depends on the specific probes used to experience spacetime, which limits the applicability of effective spacetime to describe shape dynamics. I conclude with discussing the nature of quantum fluctuations (particles) in shape dynamics and how local Minkowski spacetime emerges from the evolution of quantum particles.
Gravity as Quantum Foam In-Flow
Reginald T Cahill
2003-07-01T23:59:59.000Z
The new information-theoretic Process Physics provides an explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. The older Newtonian and General Relativity theories for gravity are analysed. It is shown that Newtonian gravity may be written in the form of an in-flow. General Relativity is also analysed as an in-flow, for those cases where it has been tested. An analysis of various experimental data demonstrates that absolute motion relative to space has been observed by Michelson and Morley, Miller, Illingworth, Jaseja et al, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The experimental data suggests that the in-flow is turbulent, which amounts to the observation of a gravitational wave phenomena. A new in-flow theory of gravity is proposed which passes all the tests that General Relativity was claimed to have passed, but as well the new theory suggests that the so-called spiral galaxy rotation-velocity anomaly may be explained without the need of `dark matter'. Various other gravitational anomalies also appear to be explainable. Newtonian gravity appears to be strictly valid only outside of spherically symmetric matter systems.
Weitz, Lesley Anne
2005-11-01T23:59:59.000Z
Research Center (LaRC) in Hampton, Virginia, two parallel research efforts have focusedon terminal area research: one is Airborne Precision Spacing (APS), and the other is the Quiet Aircraft Technologies (QAT) project. The APS objective is to increase...
Oliva, Sergio Eduardo
2003-01-01T23:59:59.000Z
The purpose of this thesis is to develop a method for assessing airborne concentrations caused by off-target pesticide drift. Concentrations are bounded by the worst credible circumstances within a normal aircraft pesticide spraying. It is assumed...
Fortner, Edward Charles
2009-05-15T23:59:59.000Z
Measurements of ambient volatile organic compounds (VOCs) by proton transfer reaction mass spectrometry (PTR-MS) are reported from recent airborne and surface based field campaigns. The Southeast Texas Tetroon Study (SETTS) was a project within...
Quantum gravity and inventory accumulation
Scott Sheffield
2011-08-10T23:59:59.000Z
We begin by studying inventory accumulation at a LIFO (last-in-first-out) retailer with two products. In the simplest version, the following occur with equal probability at each time step: first product ordered, first product produced, second product ordered, second product produced. The inventory thus evolves as a simple random walk on Z^2. In more interesting versions, a p fraction of customers orders the "freshest available" product regardless of type. We show that the corresponding random walks scale to Brownian motions with diffusion matrices depending on p. We then turn our attention to the critical Fortuin-Kastelyn random planar map model, which gives, for each q>0, a probability measure on random (discretized) two-dimensional surfaces decorated by loops, related to the q-state Potts model. A longstanding open problem is to show that as the discretization gets finer, the surfaces converge in law to a limiting (loop-decorated) random surface. The limit is expected to be a Liouville quantum gravity surface decorated by a conformal loop ensemble, with parameters depending on q. Thanks to a bijection between decorated planar maps and inventory trajectories (closely related to bijections of Bernardi and Mullin), our results about the latter imply convergence of the former in a particular topology. A phase transition occurs at p = 1/2, q=4.
Encoding field theories into gravities
Aoki, Sinya; Onogi, Tetsuya
2015-01-01T23:59:59.000Z
We propose a method, which encodes the information of a $d$ dimensional quantum field theory into a $d+1$ dimensional gravity in the $1/N$ expansion. We first construct a $d+1$ dimensional field theory from the $d$ dimensional one via the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We then define the induced metric from $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large $N$ limit, in a sense that quantum fluctuations of the metric are suppressed as $1/N$ due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the induced metric in three dimensions, which is shown to describe De Sitter (dS) or Anti De Sitter (AdS) space in the massless limit, where the mass is dynamically generated in the O(N) non-l...
Universality of Gravity from Entanglement
Brian Swingle; Mark Van Raamsdonk
2014-05-12T23:59:59.000Z
The entanglement "first law" in conformal field theories relates the entanglement entropy for a ball-shaped region to an integral over the same region involving the expectation value of the CFT stress-energy tensor, for infinitesimal perturbations to the CFT vacuum state. In recent work, this was exploited at leading order in $N$ in the context of large N holographic CFTs to show that any geometry dual to a perturbed CFT state must satisfy Einstein's equations linearized about pure AdS. In this note, we investigate the implications of the leading 1/N correction to the exact CFT result. We show that these corrections give rise to the source term for the gravitational equations: for semiclassical bulk states, the expectation value of the bulk stress-energy tensor appears as a source in the linearized equations. In particular, the CFT first law leads to Newton's Law of gravitation and the fact that all sources of stress-energy source the gravitational field. In our derivation, this universality of gravity comes directly from the universality of entanglement (the fact that all degrees of freedom in a subsystem contribute to entanglement entropy).
Walsh, Don
1967-01-01T23:59:59.000Z
~ZNENTAL USE OP AIRBORNE SENSORS IN THE MEASUREMBNZ OP MISSISSIPPI RIVER OUTPLO? INTO THE GULP OP I'IEXICO DON 'WAKEN Lieutenant Commander U ~ ST Navy Submitted to the Graduate College of the Texas ASM University in partial fulfillment... . . . . , . , 39 2 Freight-data--handling - -o- ~ . . ----. ------58 Vo. -ARQZSXS OP. RBSULTS o -~ ~ ~ o ~ o '~ o=. oo ~ ? o =-'- 63 Airborne Sensor Evaluation , . . . . . . 63 l. Xnfrared Xmagery o . . . . '. . ~ , 63 Ultraviolet Imagery ~ ~ . o ' 65 3. Aerial...
Drennan, Kirby Lee
1967-01-01T23:59:59.000Z
AN INVESTIGATION OF SEA SURFACE TF"PERATURE PATTERNS IN THE GULF OF IKXICO AS DETERMINED BY AN AIRBORNE INFRARED SENSOR A Thesis by KIRBY IEE DRENNAN Submitted to the Graduate College of the Texas API University in partial tulfillment... of the requirements for the degree of 14IASTER OF SCIENCE August 1967 Physical Oceanography AN INVESTIGATION OF SEA SURFACE TEMPERATURE PATIERNS IN THE GULF OF MEXICO AS DETERMINED BY AN AIRBORNE INFRARED SENSOR A Thesis by KIRBY LEE DRENNAN Approved...
Gravity and Anti-gravity of Fermions: the Unification of Dark Matter and Dark Energy
Chen, X S
2005-01-01T23:59:59.000Z
Massive gravity with second and fourth derivatives is shown to give both attractive and repulsive gravity between fermions. In contrast to the attractive gravity correlated with energy-momentum tensor, the repulsive gravity is proportional to the graviton mass. Therefore, weakly interacting fermions with energy smaller than the graviton mass are both dark matter and dark energy: Their overall gravity is attractive with normal matter but repulsive among themselves. Detailed analyses reveal that this unified dark scenario can properly account for the observed dark matter/energy phenomena: galaxy rotation curves, transition from early cosmic deceleration to recent acceleration; and naturally overcome other dark scenarios' difficulties: the substructure and cuspy core problems, the difference of dark halo distributions in galaxies and clusters, and the cosmic coincidence.
A Kinetic Theory Approach to Quantum Gravity
B. L. Hu
2002-04-22T23:59:59.000Z
We describe a kinetic theory approach to quantum gravity -- by which we mean a theory of the microscopic structure of spacetime, not a theory obtained by quantizing general relativity. A figurative conception of this program is like building a ladder with two knotted poles: quantum matter field on the right and spacetime on the left. Each rung connecting the corresponding knots represent a distinct level of structure. The lowest rung is hydrodynamics and general relativity; the next rung is semiclassical gravity, with the expectation value of quantum fields acting as source in the semiclassical Einstein equation. We recall how ideas from the statistical mechanics of interacting quantum fields helped us identify the existence of noise in the matter field and its effect on metric fluctuations, leading to the establishment of the third rung: stochastic gravity, described by the Einstein-Langevin equation. Our pathway from stochastic to quantum gravity is via the correlation hierarchy of noise and induced metric fluctuations. Three essential tasks beckon: 1) Deduce the correlations of metric fluctuations from correlation noise in the matter field; 2) Reconstituting quantum coherence -- this is the reverse of decoherence -- from these correlation functions 3) Use the Boltzmann-Langevin equations to identify distinct collective variables depicting recognizable metastable structures in the kinetic and hydrodynamic regimes of quantum matter fields and how they demand of their corresponding spacetime counterparts. This will give us a hierarchy of generalized stochastic equations -- call them the Boltzmann-Einstein hierarchy of quantum gravity -- for each level of spacetime structure, from the macroscopic (general relativity) through the mesoscopic (stochastic gravity) to the microscopic (quantum gravity).
Apparatus for real-time airborne particulate radionuclide collection and analysis
Smart, John E. (West Richland, WA); Perkins, Richard W. (Richland, WA)
2001-01-01T23:59:59.000Z
An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.
A model for forming airborne synthetic aperture radar images of underground targets
Doerry, A.W.
1994-01-01T23:59:59.000Z
Synthetic Aperture Radar (SAR) from an airborne platform has been proposed for imaging targets beneath the earth`s surface. The propagation of the radar`s energy within the ground, however, is much different than in the earth`s atmosphere. The result is signal refraction, echo delay, propagation losses, dispersion, and volumetric scattering. These all combine to make SAR image formation from an airborne platform much more challenging than a surface imaging counterpart. This report treats the ground as a lossy dispersive half-space, and presents a model for the radar echo based on measurable parameters. The model is then used to explore various imaging schemes, and image properties. Dynamic range is discussed, as is the impact of loss on dynamic range. Modified window functions are proposed to mitigate effects of sidelobes of shallow targets overwhelming deeper targets.
MacMullin, S; Green, M P; Henning, R; Holmes, R; Vorren, K; Wilkerson, J F
2011-01-01T23:59:59.000Z
We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima I Nuclear Power Plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^2 and 0.42 +/- 0.07 mBq/m^2 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).
AdS Boundary Conditions and the Topologically Massive Gravity/CFT Correspondence
Skenderis, Kostas; Taylor, Marika; Rees, Balt C. van [Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)
2009-12-15T23:59:59.000Z
The AdS/CFT correspondence provides a new perspective on recurrent questions in General Relativity such as the allowed boundary conditions at infinity and the definition of gravitational conserved charges. Here we review the main insights obtained in this direction over the last decade and apply the new techniques to Topologically Massive Gravity. We show that this theory is dual to a non-unitary CFT for any value of its parameter mu and becomes a Logarithmic CFT at mu = 1.
Device and method for accurately measuring concentrations of airborne transuranic isotopes
McIsaac, C.V.; Killian, E.W.; Grafwallner, E.G.; Kynaston, R.L.; Johnson, L.O.; Randolph, P.D.
1996-09-03T23:59:59.000Z
An alpha continuous air monitor (CAM) with two silicon alpha detectors and three sample collection filters is described. This alpha CAM design provides continuous sampling and also measures the cumulative transuranic (TRU), i.e., plutonium and americium, activity on the filter, and thus provides a more accurate measurement of airborne TRU concentrations than can be accomplished using a single fixed sample collection filter and a single silicon alpha detector. 7 figs.
AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION
Jerry Myers
2003-11-12T23:59:59.000Z
Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.
Gamma-analysis of airborne particulates sampled in Youzhno-Sakhalinsk town at March - April 2011
E. G. Tertyshnik; V. P. Martynenko; F. A. Andreev; G. B. Artemyev
2012-03-22T23:59:59.000Z
The experience of discovery of the radioactive products which have released into atmosphere of Sakhalin region from Fukushima Daiichi accident is presented. Sampling of airborne particulates and atmosphere fallout was carried out by means of the air ventilation set and horizontal gauze planchs, respectively. The HPGe detector was used for gamma analyses of the airborne samples. Since 23 March we confidently measured 131I in the airborne samples, after 03.04.2011 we also registered a rise of activity 137Cs and 134Cs. 132Te and 132I were discovered in ashen sample of the planch, which had exposed in Youzhno-Kurilk from 14 to 17 March. The effect of the pairs production when in the samples 208Tl presence, which emits gamma-quanta of 2615 keV, causes a rise in apparatus spectra of the peak corresponding to energy 1593 keV, which could be in error ascribed to 140La. It had been experimentally shown that the systematic reduction of 134Cs content in measuring samples due to effect of gamma - gamma coincidence did not exceed 7 % (for the detector and geometry of the measurement used).
AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPLINE LEAK DETECTION
Jerry Myers
2004-05-12T23:59:59.000Z
Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The third six-month technical report contains a summary of the progress made towards finalizing the design and assembling the airborne, remote methane and ethane sensor. The vendor has been chosen and is on contract to develop the light source with the appropriate linewidth and spectral shape to best utilize the Ophir gas correlation software. Ophir has expanded upon the target reflectance testing begun in the previous performance period by replacing the experimental receiving optics with the proposed airborne large aperture telescope, which is theoretically capable of capturing many times more signal return. The data gathered from these tests has shown the importance of optimizing the fiber optic receiving fiber to the receiving optic and has helped Ophir to optimize the design of the gas cells and narrowband optical filters. Finally, Ophir will discuss remaining project issues that may impact the success of the project.
Gravity as Quantum Foam In-Flow
Cahill, R T
2003-01-01T23:59:59.000Z
The new information-theoretic Process Physics provides an explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. The older Newtonian and General Relativity theories for gravity are analysed. It is shown that Newtonian gravity may be written in the form of an in-flow. General Relativity is also analysed as an in-flow, for those cases where it has been tested. An analysis of various experimental data demonstrates that absolute motion relative to space has been observed by Michelson and Morley, Miller, Illingworth, Jaseja et al, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The experimental data suggests that the in-flow is turbulent, which amounts to the observation of a gravitational wave phenomena. A new in-flow theory of gravity is proposed which passes all the tests that General Relativity was claimed to have passed, but as well the new theory...
Gas and Particulate Sampling of Airborne Polycyclic Aromatic Compounds
Lane, D.A.; Gundel, L.A.
1995-10-01T23:59:59.000Z
The denuder surfaces of the gas and particle (GAP) sampler (developed at the Atmospheric Environment Service of Environment Canada) have been modified by coating with XAD-4 resin, using techniques developed at Lawrence Berkeley National Laboratory (LBNL) for the lower capacity integrated organic vapor/particle sampler (IOVPS). The resulting high capacity integrated organic gas and particle sampler (IOGAPS) has been operated in ambient air at 16.7 L min{sup -1} for a 24-hour period in Berkeley, California, USA. Simultaneous measurements were made at the same collection rate with a conventional sampler that used a filter followed by two sorbent beds. Gas and particle partition measurements were determined for 13 polycyclic aromatic hydrocarbons (PAH) ranging from 2-ring to 6-ring species. The IOGAPS indicated a higher particle fraction of these compounds than did the conventional sampler, suggesting that the conventional sampler suffered from 'blow-off' losses from the particles collected on the filter.
Airborne infrared observations and analyses of a large forest fire
Stearns, J.R.; Zahniser, M.S.; Kolb, C.E.; Sanford, B.P.
1986-08-01T23:59:59.000Z
Extensive IR spatial images and spectral signatures were gathered from an active large brush and forest fire by the Flying Infrared Signatures Technology Aircraft of the U.S. Air Force Geophysics Laboratory. Infrared images give the apparent temperatures of actively burning and burned over regions and aid in identifying the type and intensity of the fire. Spectral signatures of hot regions from interferometer and spatial data can also be used to determine apparent fire temperatures. Gasesous combustion products in the fire plume are quantitatively identified by the IR absorption spectra at 1-cm/sup -1/ resolution using the hot fire emission as the radiation source. Concentrations of CO were measured at 50 times higher than ambient levels. The applicability of these techniques to gathering data relevant to important environmental and military problems, including atmospheric pollution from fires and possible short-term climatic effects due to fires ignited in a nuclear exchange, is discussed.
M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.
2001-01-01T23:59:59.000Z
During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.
Solar System Constraints on Disformal Gravity Theories
Hiu Yan Ip; Jeremy Sakstein; Fabian Schmidt
2015-07-02T23:59:59.000Z
Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to $\\mathcal{M} \\gtrsim 100$ eV. These constraints render all disformal effects irrelevant for cosmology.
Quantum gravity effects in the Kerr spacetime
Reuter, M. [Institute of Physics, University of Mainz, Staudingerweg 7, D-55099 Mainz (Germany); Tuiran, E. [Departamento de Fisica, Universidad del Norte, Km 5 via a Puerto Colombia, AA-1569 Barranquilla (Colombia)
2011-02-15T23:59:59.000Z
We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the 'dressing' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.
Holographic Superconductors in Quasi-topological Gravity
Xiao-Mei Kuang; Wei-Jia Li; Yi Ling
2010-12-05T23:59:59.000Z
In this paper we study (3+1) dimensional holographic superconductors in quasi-topological gravity which is recently proposed by R. Myers {\\it et.al.}. Through both analytical and numerical analysis, we find in general the condensation becomes harder with the increase of coupling parameters of higher curvature terms. In particular, comparing with those in ordinary Gauss-Bonnet gravity, we find that positive cubic corrections in quasi-topological gravity suppress the condensation while negative cubic terms make it easier. We also calculate the conductivity numerically for various coupling parameters. It turns out that the universal relation of $\\omega_g/T_c\\simeq 8$ is unstable and this ratio becomes larger with the increase of the coupling parameters. A brief discussion on the condensation from the CFT side is also presented.
Solar system constraints on alternative gravity theories
Sumanta Chakraborty; Soumitra Sengupta
2014-01-14T23:59:59.000Z
The perihelion precession of planetary orbits and the bending angle of null geodesics are estimated for different gravity theories in string-inspired models. It is shown that, for dilaton coupled gravity, the leading order measure in the angle of bending of light comes purely from vacuum expectation value of the dilaton field which may be interpreted as an indicator of a dominant stringy effect over the curvature effect. We arrive at similar results for spherically symmetric solution in quadratic gravity. We also present the perihelion shift and bending of light in the Einstein-Maxwell-Gauss-Bonnet theory with special reference to the Casimir effect and Damour-Polyakov mechanism. Numerical bounds to different coupling parameters in these models are estimated.
Gauge theory of gravity and supergravity
Kaul, Romesh K. [Institute of Mathematical Sciences, Chennai 600 113 (India)
2006-03-15T23:59:59.000Z
We present a formulation of gravity in terms of a theory based on complex SU(2) gauge fields with a general coordinate invariant action functional quadratic in the field strength. Self-duality or anti-self-duality of the field strength emerges as a constraint from the equations of motion of this theory. This in turn leads to Einstein gravity equations for a dilaton and an axion conformally coupled to gravity for the self-dual constraint. The analysis has also been extended to N=1 and 2 super Yang-Mills theory of complex SU(2) gauge fields. This leads to, besides other equations of motion, self-duality/anti-self-duality of generalized supercovariant field strengths. The self-dual case is then shown to yield as its solutions N=1, 2 supergravity equations, respectively.
Solar System Constraints on Disformal Gravity Theories
Ip, Hiu Yan; Schmidt, Fabian
2015-01-01T23:59:59.000Z
Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to $\\mathcal{M} \\gtrsim 100$ eV. These constraints render all disformal effects irrelevant for cosmology.
Entropic force, noncommutative gravity, and ungravity
Nicolini, Piero [Frankfurt Institute for Advanced Studies (FIAS), Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany)
2010-08-15T23:59:59.000Z
After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.
Emergence in Holographic Scenarios for Gravity
Dieks, Dennis; de Haro, Sebastian
2015-01-01T23:59:59.000Z
'Holographic' relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard 't Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic 'AdS/CFT' duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton's law of gravitation can be related holographically to the 'thermodynamics of information' on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde's scheme straightfowardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and ...
Theoretical and experimental study of nonlinear internal gravity wave beams
Tabaei Befrouei, Ali, 1974-
2005-01-01T23:59:59.000Z
Continuously stratified fluids, like the atmosphere and the oceans, support internal gravity waves due to the effect of buoyancy. This type of wave motion is anisotropic since gravity provides a preferred direction. As a ...
Exact solutions of three dimensional black holes: Einstein gravity vs F(R) gravity
S. H. Hendi; B. Eslam Panah; R. Saffari
2014-10-28T23:59:59.000Z
In this paper, we consider Einstein gravity in the presence of a class of nonlinear electrodynamics, called power Maxwell invariant (PMI). We take into account $(2+1)$-dimensional spacetime in Einstein-PMI gravity and obtain its black hole solutions. Then, we regard pure $F(R)$ gravity as well as $F(R)$-conformally invariant Maxwell theory to obtain exact solutions of the field equations with black hole interpretation. Finally, we investigate the conserved and thermodynamic quantities and discuss about the first law of thermodynamics for the mentioned gravitational models.
Testing a Dilaton Gravity Model using Nucleosynthesis
Sibel Boran; Emre Onur Kahya
2014-09-05T23:59:59.000Z
Big Bang Nucleosynthesis (BBN) offers one of the most strict evidences for the Lambda-CDM cosmology at present, as well as the Cosmic Microwave Background (CMB) radiation. In this work, our main aim is to present the outcomes of our calculations related to primordial abundances of light elements, in the context of higher dimensional steady-state universe model in the dilaton gravity. Our results show that abundances of light elements (primordial D, 3He, 4He, T, 7Li) are significantly different for some cases, and a comparison is given between a particular dilaton gravity model and Lambda-CDM in the light of the astrophysical observations.
Energy Distribution in f(R) Gravity
M. Sharif; M. Farasat Shamir
2009-12-18T23:59:59.000Z
The well-known energy problem is discussed in f(R) theory of gravity. We use the generalized Landau-Lifshitz energy-momentum complex in the framework of metric f(R) gravity to evaluate the energy density of plane symmetric solutions for some general f(R) models. In particular, this quantity is found for some popular choices of f(R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.
Multidimensional Gravity on the Principal Bundles
V. D. Dzhunushaliev
1997-11-10T23:59:59.000Z
The multidimensional gravity on the total space of principal bundle is considered. In this theory the gauge fields arise as nondiagonal components of multidimensional metric. The spherically symmetric and cosmology solutions for gravity on SU(2) principal bundle are obtained. The static spherically symmetric solution is wormhole-like solution located between two null surfaces, in contrast to 4D Einstein-Yang-Mills theory where corresponding solution (black hole) located outside of event horizon. Cosmology solution (at least locally) has the bouncing off effect for spatial dimensions. In spirit of Einstein these solutions are vacuum solutions without matter.
Violation of Energy Bounds in Designer Gravity
Thomas Hertog
2006-07-31T23:59:59.000Z
We continue our study of the stability of designer gravity theories, where one considers anti-de Sitter gravity coupled to certain tachyonic scalars with boundary conditions defined by a smooth function W. It has recently been argued there is a lower bound on the conserved energy in terms of the global minimum of W, if the scalar potential arises from a superpotential P and the scalar reaches an extremum of P at infinity. We show, however, there are superpotentials for which these bounds do not hold.
Weak Gravity Conjecture for Noncommutative Field Theory
Qing-Guo Huang; Jian-Huang She
2006-11-20T23:59:59.000Z
We investigate the weak gravity bounds on the U(1) gauge theory and scalar field theories in various dimensional noncommutative space. Many results are obtained, such as the upper bound on the noncommutative scale $g_{YM}M_p$ for four dimensional noncommutative U(1) gauge theory. We also discuss the weak gravity bounds on their commutative counterparts. For example, our result on 4 dimensional noncommutative U(1) gauge theory reduces in certain limit to its commutative counterpart suggested by Arkani-Hamed et.al at least at tree-level.
Holographic superconductors from the massive gravity
Hua Bi Zeng; Jian-Pin Wu
2014-09-24T23:59:59.000Z
A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite DC conductivity, the AC conductivity has Drude behavior at low frequency followed by a power law-fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.
One Loop Beta Functions in Topologically Massive Gravity
R. Percacci; E. Sezgin
2010-02-15T23:59:59.000Z
We calculate the running of the three coupling constants in cosmological, topologically massive 3d gravity. We find that \
HoravaLifshitz gravity Victoria University of Wellington
Visser, Matt
Abstract HoravaÂLifshitz gravity Victoria University of Wellington Te Whare WÂŻananga o te ÂŻUpoko o Vancouver Tuesday 25 August 2009 Matt Visser Who's afraid of Lorentz symmetry breaking? #12;Abstract HoravaÂLifshitz gravity HoravaÂLifshitz gravity: As of 23 August 2009 Spires reports that this topic has generated: 3
Nordstrom's scalar theory of gravity and the equivalence principle
Nathalie Deruelle
2011-04-24T23:59:59.000Z
Nordstrom's theory of gravity, which describes gravity by a scalar field in flat spacetime, is observationally ruled out. It is however the only theory of gravity with General Relativity to obey the strong equivalence principle. I show in this paper that this remarkable property is true beyond post-newtonian level and can be related to the existence of a 'Nordstrom-Katz' superpotential.
Observing ocean heat content using satellite gravity and altimetry
Jayne, Steven
: ocean heat content, altimetry, satellite gravity, steric height, remote sensing Citation: Jayne, S. RObserving ocean heat content using satellite gravity and altimetry Steven R. Jayne1,2 and John M with satellite measurements of the Earth's time-varying gravity to give improved estimates of the ocean's heat
Conformal gravity from the AdS/CFT mechanism
Aros, Rodrigo; Romo, Mauricio; Zamorano, Nelson [Departamento de Ciencias Fisicas, Universidad Andres Bello, Av. Republica 252, Santiago (Chile); Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Avda Blanco Encalada 2008, Santiago (Chile)
2007-03-15T23:59:59.000Z
We explicitly calculate the induced gravity theory at the boundary of an asymptotically anti-de Sitter five dimensional Einstein gravity. We also display the action that encodes the dynamics of radial diffeomorphisms. It is found that the induced theory is a four dimensional conformal gravity plus a scalar field. This calculation confirms some previous results found by a different approach.
Quantum Gravity in Three Dimensions from Higher-Spin Holography
Tan, Hai Siong
2013-01-01T23:59:59.000Z
Higher Spin Anti-de Sitter Gravity,” JHEP 1012, 007 (2010)gravity in three dimensions from the per- spective of higher-spin holography in anti-gravity in three dimen- sions in the framework of higher-spin holography in anti-
The Mars Gravity Biosatellite as an innovative partial gravity research platform
Fulford-Jones, Thaddeus R. F
2008-01-01T23:59:59.000Z
The Mars Gravity Biosatellite is an unprecedented independent spaceflight platform for gravitational biology research. With a projected first launch after 2010, the low Earth orbit satellite will support a cohort of fifteen ...
Webb, Spahr C.
, Petrologic and Seismic Expedition (GLIMPSE) study area from seismic refraction data R. Chadwick Holmes,1, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) experiment investigated the velocity in the Gravity Lineations, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) study area from
Infrared fixed point in quantum Einstein gravity
S. Nagy; J. Krizsan; K. Sailer
2012-06-28T23:59:59.000Z
We performed the renormalization group analysis of the quantum Einstein gravity in the deep infrared regime for different types of extensions of the model. It is shown that an attractive infrared point exists in the broken symmetric phase of the model. It is also shown that due to the Gaussian fixed point the IR critical exponent $\
A New Model of Nonlocal Modified Gravity
Ivan Dimitrijevic; Branko Dragovich; Jelena Grujic; Zoran Rakic
2014-11-18T23:59:59.000Z
We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$
Energy definition for quadratic curvature gravities
Ahmet Baykal
2012-12-03T23:59:59.000Z
A conserved current for generic quadratic curvature gravitational models is defined, and it is shown that, at the linearized level, it corresponds to the Deser-Tekin charges. An explicit expression for the charge for new massive gravity in three dimensions is given. Some implications of the linearized equations are discussed.
Ultrasonic hydrometer. [Specific gravity of electrolyte
Swoboda, C.A.
1982-03-09T23:59:59.000Z
The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.
Topological Black Holes in Quantum Gravity
J. Kowalski-Glikman; D. Nowak-Szczepaniak
2000-07-31T23:59:59.000Z
We derive the black hole solutions with horizons of non-trivial topology and investigate their properties in the framework of an approach to quantum gravity being an extension of Bohm's formulation of quantum mechanics. The solutions we found tend asymptotically (for large $r$) to topological black holes. We also analyze the thermodynamics of these space-times.
Schwarzschild solution in extended teleparallel gravity
Nashed, G G L
2015-01-01T23:59:59.000Z
Tetrad field, with two unknown functions of radial coordinate and an angle $\\Phi$ which is the polar angle $\\phi$ times a function of the redial coordinate, is applied to the field equation of modified theory of gravity. Exact vacuum solution is derived whose scalar torsion, $T ={T^\\alpha}_{\\mu \
Constraining torsion with Gravity Probe B
Mao Yi; Guth, Alan H.; Cabi, Serkan [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tegmark, Max [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, Massachusetts 02139 (United States)
2007-11-15T23:59:59.000Z
It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) such as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.
Scale invariance, unimodular gravity and dark energy
Mikhail Shaposhnikov; Daniel Zenhausern
2008-12-16T23:59:59.000Z
We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the existence of an exactly massless dilaton leads to the evolution of the universe supported by present observations: inflation in the past, followed by the radiation and matter dominated stages and accelerated expansion at present. All mass scales in this type of theories come from one and the same source.
Topology in 4D simplicial quantum gravity
S. Bilke; Z. Burda; B. Petersson
1996-11-22T23:59:59.000Z
We simulate 4d simplicial gravity for three topologis S4, S3xS1, (S1)^4 and show that the free energy for these three fixed topology ensembles is the same in the thermodynamic limit. We show, that the next-to-leading order corrections, at least away from the critical point, can be described by kinematic sources.
Schwarzschild solution in extended teleparallel gravity
G. G. L. Nashed
2015-01-05T23:59:59.000Z
Tetrad field, with two unknown functions of radial coordinate and an angle $\\Phi$ which is the polar angle $\\phi$ times a function of the redial coordinate, is applied to the field equation of modified theory of gravity. Exact vacuum solution is derived whose scalar torsion, $T ={T^\\alpha}_{\\mu \
The diffeomorphism algebra approach to quantum gravity
T. A. Larsson
1999-09-13T23:59:59.000Z
The representation theory of non-centrally extended Lie algebras of Noether symmetries, including spacetime diffeomorphisms and reparametrizations of the observer's trajectory, has recently been developped. It naturally solves some long-standing problems in quantum gravity, e.g. the role of diffeomorphisms and the causal structure, but some new questions also arise.
Running Coupling Constants in 2D Gravity
Christof Schmidhuber
1993-08-26T23:59:59.000Z
The renormalization group flow in two--dimensional field theories that are coupled to gravity is discussed at the example of the sine-Gordon model. In order to derive the phase diagram in agreement with the matrix model results, it is necessary to generalize the theory of David, Distler and Kawai.
Explicit versus Spontaneous Diffeomorphism Breaking in Gravity
Robert Bluhm
2015-04-02T23:59:59.000Z
Gravitational theories with fixed background fields break local Lorentz and diffeomorphism invariance either explicitly or spontaneously. In the case of explicit breaking it is known that conflicts can arise between the dynamics and geometrical constraints, while spontaneous breaking evades this problem. It is for this reason that in the gravity sector of the Standard-Model Extension (SME) it is assumed that the background fields (SME coefficients) originate from spontaneous symmetry breaking. However, in other examples, such as Chern-Simons gravity and massive gravity, diffeomorphism invariance is explicitly broken by the background fields, and the potential conflicts between the dynamics and geometry can be avoided in most cases. An analysis of how this occurs is given, and the conditions that are placed on the metric tensor and gravitational structure as a result of the presence of an explicit-breaking background are described. The gravity sector of the SME is then considered for the case of explicit breaking. However, it is found that a useful post-Newtonian limit is only obtained when the symmetry breaking is spontaneous.
Second order noncommutative corrections to gravity
Calmet, Xavier [Universite Libre de Bruxelles, Service de Physique Theorique, CP225 Boulevard du Triomphe (Campus plaine), B-1050 Brussels (Belgium); Kobakhidze, Archil [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)
2006-08-15T23:59:59.000Z
In this work, we calculate the leading order corrections to general relativity formulated on a canonical noncommutative spacetime. These corrections appear in the second order of the expansion in theta. First order corrections can only appear in the gravity-matter interactions. Some implications are briefly discussed.
Measuring the Earth's gravity field with cold atom interferometers
Carraz, Olivier; Massotti, Luca; Haagmans, Roger; Silvestrin, Pierluigi
2015-01-01T23:59:59.000Z
The scope of the paper is to propose different concepts for future space gravity missions using Cold Atom Interferometers (CAI) for measuring the diagonal elements of the gravity gradient tensor, the spacecraft angular velocity and the spacecraft acceleration. The aim is to achieve better performance than previous space gravity missions due to a very low white noise spectral behaviour of the CAI instrument and a very high common mode rejection, with the ultimate goals of determining the fine structures of the gravity field with higher accuracy than GOCE and detecting time-variable signals in the gravity field.
The equilibrium of dense plasma in a gravity field
B. V. Vasiliev
2000-10-31T23:59:59.000Z
The equilibrium of dense plasma in a gravity field and problem of a gravity-induced electric polarization in this matter are discussed. The calculation for metals performed before shows that both - the gravity-induced compressive strain and the gravity-induced electric field - are inversely proportional to their Young moduli. The calculation for high dense plasma, where Young modulus is equal to zero, shows that there is another effect: each cell of this plasma inside a celestial body in own gravity field obtains the small positive electric charge. It happens as heavy ions sag on to light electron clouds. A celestial body stays electrically neutral as a whole, because the negative electric charge concentrates on its surface. The gravity-induced positive volume charge is very small, its order of magnitude equals to $10^{-18}e$ per atom only. But it is sufficient for the complete conterbalancing of the gravity force.
Brink, Eric Jon
1980-01-01T23:59:59.000Z
, the hot gases flow into a condenser where they are (1-3, 7) cooled and the liquid sulfur 1s removed. The final steps 1n the gasif1cation process are to compr ess the methanated gas from appr oximately 140 psig to pipel1ne pr essure of 1000 psig...THE PARTICULATE AND VAPOR PHASE COMPONENTS OF AIRBORNE POLYAROMATIC HYDROCARBONS(PAHs) IN COAL GASIFICATION PILOT PLANTS A Thesis by ERIC JON BRINK Submitted to the Graduate College of Texas A & M University in partial fulfillment...
ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM-ACME V)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYouQualityAirborne Carbon Measurements
Renyi Entropies, the Analytic Bootstrap, and 3D Quantum Gravity at Higher Genus
Headrick, Matthew; Perlmutter, Eric; Zadeh, Ida G
2015-01-01T23:59:59.000Z
We compute the contribution of the vacuum Virasoro representation to the genus-two partition function of an arbitrary CFT with central charge $c>1$. This is the perturbative pure gravity partition function in three dimensions. We employ a sewing construction, in which the partition function is expressed as a sum of sphere four-point functions of Virasoro vacuum descendants. For this purpose, we develop techniques to efficiently compute correlation functions of holomorphic operators, which by crossing symmetry are determined exactly by a finite number of OPE coefficients; this is an analytic implementation of the conformal bootstrap. Expanding the results in $1/c$, corresponding to the semiclassical bulk gravity expansion, we find that---unlike at genus one---the result does not truncate at finite loop order. Our results also allow us to extend earlier work on multiple-interval Renyi entropies and on the partition function in the separating degeneration limit.
Renyi Entropies, the Analytic Bootstrap, and 3D Quantum Gravity at Higher Genus
Matthew Headrick; Alexander Maloney; Eric Perlmutter; Ida G. Zadeh
2015-03-24T23:59:59.000Z
We compute the contribution of the vacuum Virasoro representation to the genus-two partition function of an arbitrary CFT with central charge $c>1$. This is the perturbative pure gravity partition function in three dimensions. We employ a sewing construction, in which the partition function is expressed as a sum of sphere four-point functions of Virasoro vacuum descendants. For this purpose, we develop techniques to efficiently compute correlation functions of holomorphic operators, which by crossing symmetry are determined exactly by a finite number of OPE coefficients; this is an analytic implementation of the conformal bootstrap. Expanding the results in $1/c$, corresponding to the semiclassical bulk gravity expansion, we find that---unlike at genus one---the result does not truncate at finite loop order. Our results also allow us to extend earlier work on multiple-interval Renyi entropies and on the partition function in the separating degeneration limit.
Flight Testing of an Advanced Airborne Natural Gas Leak Detection System
Dawn Lenz; Raymond T. Lines; Darryl Murdock; Jeffrey Owen; Steven Stearns; Michael Stoogenke
2005-10-01T23:59:59.000Z
ITT Industries Space Systems Division (Space Systems) has developed an airborne natural gas leak detection system designed to detect, image, quantify, and precisely locate leaks from natural gas transmission pipelines. This system is called the Airborne Natural Gas Emission Lidar (ANGEL) system. The ANGEL system uses a highly sensitive differential absorption Lidar technology to remotely detect pipeline leaks. The ANGEL System is operated from a fixed wing aircraft and includes automatic scanning, pointing system, and pilot guidance systems. During a pipeline inspection, the ANGEL system aircraft flies at an elevation of 1000 feet above the ground at speeds of between 100 and 150 mph. Under this contract with DOE/NETL, Space Systems was funded to integrate the ANGEL sensor into a test aircraft and conduct a series of flight tests over a variety of test targets including simulated natural gas pipeline leaks. Following early tests in upstate New York in the summer of 2004, the ANGEL system was deployed to Casper, Wyoming to participate in a set of DOE-sponsored field tests at the Rocky Mountain Oilfield Testing Center (RMOTC). At RMOTC the Space Systems team completed integration of the system and flew an operational system for the first time. The ANGEL system flew 2 missions/day for the duration for the 5-day test. Over the course of the week the ANGEL System detected leaks ranging from 100 to 5,000 scfh.
Not Available
1988-07-01T23:59:59.000Z
This manual provides guidance to US Department of Energy (DOE) facilities on the prompt detection of airborne plutonium in the workplace. Information is first given to aid in detection systems that will function effectively in various workplaces. Steps in designing a system are covered: its general requirements, the plotting of workplace sources of plutonium, and methods of determining workplace airflow patterns. Guidance is provided on the proper numbers and locations of probe sites, the orientation of probes for representative sampling, and the mixture of stationary and portable probes. Recommendations for delivery in sampling systems include examination of particle loss and self-absorption problems, methods of eliminating air leakage in the system, and optimization of decontamination capabilities. System flow rate, requirements in a collection medium, burial loss and pressure drop, and prudent frequency of renewing the collection medium are among air sampling considerations covered. After a discussion of controlling airflow and of vacuum sources and system backups, the checkpoints to ensure system reliability are listed. The manual then discusses instrument specifications that provide correct airborne plutonium concentrations and reliably activate alarms. Focusing on the interrelationship of all components, essential factors in instrument reliability are addressed: the regulatory lower limit of detection and performance specifications of detectors and filters, maintenance and calibration requirements, and features of commonly used plutonium air-sampling instruments. Finally, the manual advises on establishing a documentation program to archive and evaluate the performance of a plutonium air-sampling program.
Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II)
David P. Colton
2007-02-28T23:59:59.000Z
The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time.
Propagation of gravitational waves in multimetric gravity
Manuel Hohmann
2012-04-22T23:59:59.000Z
We discuss the propagation of gravitational waves in a recently discussed class of theories containing N >= 2 metric tensors and a corresponding number of standard model copies. Using the formalism of gauge-invariant linear perturbation theory we show that all gravitational waves propagate at the speed of light. We then employ the Newman-Penrose formalism to show that two to six polarizations of gravitational waves may exist, depending on the parameters entering the equations of motion. This corresponds to E(2) representations N_2, N_3, III_5 and II_6. We finally apply our general discussion to a recently presented concrete multimetric gravity model and show that it is of class N_2, i.e., it allows only two tensor polarizations, as it is the case for general relativity. Our results provide the theoretical background for tests of multimetric gravity theories using the upcoming gravitational wave experiments.
Hydrogen atom in Palatini theories of gravity
Gonzalo J. Olmo
2008-06-03T23:59:59.000Z
We study the effects that the gravitational interaction of $f(R)$ theories of gravity in Palatini formalism has on the stationary states of the Hydrogen atom. We show that the role of gravity in this system is very important for lagrangians $f(R)$ with terms that grow at low curvatures, which have been proposed to explain the accelerated expansion rate of the universe. We find that new gravitationally induced terms in the atomic Hamiltonian generate a strong backreaction that is incompatible with the very existence of bound states. In fact, in the 1/R model, Hydrogen disintegrates in less than two hours. The universe that we observe is, therefore, incompatible with that kind of gravitational interaction. Lagrangians with high curvature corrections do not lead to such instabilities.
Quantum Gravity models - brief conceptual summary
Jerzy Lukierski
2014-11-27T23:59:59.000Z
After short historical overview we describe the difficulties with application of standard QFT methods in quantum gravity (QG). The incompatibility of QG with the use of classical continuous space-time required conceptually new approach. We present briefly three proposals: loop quantum gravity (LQG), the field-theoretic framework on noncommutative space-time and QG models formulated on discretized (triangularized) space-time. We evaluate these models as realizing expected important properties of QG: background independence, consistent quantum diffeomorphisms, noncommutative or discrete structure of space-time at very short distances, finite/renormalizable QG corrections. We only briefly outline an important issue of embedding QG into larger geometric and dynamical frameworks (e.g. supergravity, (super)strings, p-branes, M-theory), with the aim to achieve full unification of all fundamental interactions.
Holographic studies of quasi-topological gravity
Robert C. Myers; Miguel F. Paulos; Aninda Sinha
2010-06-09T23:59:59.000Z
Quasi-topological gravity is a new gravitational theory including curvature-cubed interactions and for which exact black hole solutions were constructed. In a holographic framework, classical quasi-topological gravity can be thought to be dual to the large $N_c$ limit of some non-supersymmetric but conformal gauge theory. We establish various elements of the AdS/CFT dictionary for this duality. This allows us to infer physical constraints on the couplings in the gravitational theory. Further we use holography to investigate hydrodynamic aspects of the dual gauge theory. In particular, we find that the minimum value of the shear-viscosity-to-entropy-density ratio for this model is $\\eta/s \\simeq 0.4140/(4\\pi)$.
Black holes in Asymptotically Safe Gravity
Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca
2015-01-01T23:59:59.000Z
Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.
Elliptic Genera and 3d Gravity
Benjamin, Nathan; Kachru, Shamit; Moore, Gregory W; Paquette, Natalie M
2015-01-01T23:59:59.000Z
We describe general constraints on the elliptic genus of a 2d supersymmetric conformal field theory which has a gravity dual with large radius in Planck units. We give examples of theories which do and do not satisfy the bounds we derive, by describing the elliptic genera of symmetric product orbifolds of $K3$, product manifolds, certain simple families of Calabi-Yau hypersurfaces, and symmetric products of the "Monster CFT." We discuss the distinction between theories with supergravity duals and those whose duals have strings at the scale set by the AdS curvature. Under natural assumptions we attempt to quantify the fraction of (2,2) supersymmetric conformal theories which admit a weakly curved gravity description, at large central charge.
Chaotic inflation in higher derivative gravity theories
Myrzakul, Shynaray; Sebastiani, Lorenzo
2015-01-01T23:59:59.000Z
In this paper, we investigate chaotic inflation from scalar field subjected to potential in the framework of $f(R^2, P, Q)$-gravity, where we add a correction to Einstein's gravity based on a function of the square of the Ricci scalar $R^2$, the contraction of the Ricci tensor $P$, and the contraction of the Riemann tensor $Q$. The Gauss-Bonnet case is also discussed. We give the general formalism of inflation, deriving the slow-roll parameters, the $e$-folds number, and the spectral indexes. Several explicit examples are furnished, namely we will consider the cases of massive scalar field and scalar field with quartic potential and some power-law function of the curvature invariants under investigation in the gravitational action of the theory. Viable inflation according with observations is analyzed.
Infrared modification of gravity from conformal symmetry
Gegenberg, Jack; Seahra, Sanjeev S
2015-01-01T23:59:59.000Z
We reconsider a gauge theory of gravity in which the gauge group is the conformal group SO(4,2) and the action is of the Yang-Mills form, quadratic in the curvature. The resulting gravitational theory exhibits local conformal symmetry and reduces to Weyl-squared gravity under certain conditions. When the theory is linearized about flat spacetime, we find that matter which couples to the generators of special conformal transformations reproduces Newton's inverse square law. Conversely, matter which couples to generators of translations induces a constant and possibly repulsive force far from the source, which may be relevant for explaining the late time acceleration of the universe. The coupling constant of theory is dimensionless, which means that it is potentially renormalizable.
Equivalence principle in scalar-tensor gravity
Dirk Puetzfeld; Yuri N. Obukhov
2015-05-06T23:59:59.000Z
We present a direct confirmation of the validity of the equivalence principle for unstructured test bodies in scalar tensor gravity. Our analysis is complementary to previous approaches and valid for a large class of scalar-tensor theories of gravitation. A covariant approach is used to derive the equations of motion in a systematic way and allows for the experimental test of scalar-tensor theories by means of extended test bodies.
Charged Cylindrical Black Holes in Conformal Gravity
Jackson Levi Said; Joseph Sultana; Kristian Zarb Adami
2013-01-04T23:59:59.000Z
Considering cylindrical topology we present the static solution for a charged black hole in conformal gravity. We show that unlike the general relativistic case there are two different solutions, both including a factor that when set to zero recovers the familiar static charged black string solution in Einstein's theory. This factor gives rise to a linear term in the potential that also features in the neutral case and may have significant ramifications for particle trajectories.
QPOs: Einstein's gravity non-linear resonances
Paola Rebusco; Marek A. Abramowicz
2006-01-30T23:59:59.000Z
There is strong evidence that the observed kHz Quasi Periodic Oscillations (QPOs) in the X-ray flux of neutron star and black hole sources in LMXRBs are linked to Einstein's General Relativity. Abramowicz&Klu\\'zniak (2001) suggested a non-linear resonance model to explain the QPOs origin: here we summarize their idea and the development of a mathematical toy-model which begins to throw light on the nature of Einstein's gravity non-linear oscillations.
Twisted covariant noncommutative self-dual gravity
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C. [Centro de Estudios en Fisica y Matematicas Basicas y Aplicadas, Universidad Autonoma de Chiapas, Calle 4 Oriente Norte 1428, Tuxtla Gutierrez, Chiapas (Mexico); Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, P.O. Box 14-740, 07000 Mexico D.F. (Mexico); Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey, PIIT, Via del Conocimiento 201, Autopista nueva al Aeropuerto km 9.5, 66600, Apodaca Nuevo Leon (Mexico); Instituto de Fisica de la Universidad de Guanajuato, P.O. Box E-143, 37150, Leon Gto. (Mexico); Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000, Puebla (Mexico)
2008-12-15T23:59:59.000Z
A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the {theta} expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in {theta} for the Plebanski action is explicitly obtained.
Gravity and Yang-Mills amplitude relations
Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Soendergaard, Thomas [Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen O (Denmark); FengBo [Center of Mathematical Science, Zhejiang University, Hangzhou (China)
2010-11-15T23:59:59.000Z
Using only general features of the S matrix and quantum field theory, we prove by induction the Kawai-Lewellen-Tye relations that link products of gauge theory amplitudes to gravity amplitudes at tree level. As a bonus of our analysis, we provide a novel and more symmetric form of these relations. We also establish an infinite tower of new identities between amplitudes in gauge theories.
Gravity controlled anti-reverse rotation device
Dickinson, Robert J. (Shaler Township, Allegheny County, PA); Wetherill, Todd M. (Lower Burrell, PA)
1983-01-01T23:59:59.000Z
A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.
Holographic Superconductors in Horava-Lifshitz Gravity
Kai Lin; Elcio Abdalla; Anzhong Wang
2014-06-18T23:59:59.000Z
We consider holographic superconductors related to the Schwarzschild black hole in the low energy limit of Ho\\v{r}ava-Lifshitz spacetime. The non-relativistic electromagnetic and scalar fields are introduced to construct a holographic superconductor model in Ho\\v{r}ava-Lifshitz gravity and the results show that the $\\alpha_2$ term plays an important role, modifying the conductivity curve line by means of an attenuation the conductivity.
Exact Gravity Dual of a Gapless Superconductor
George Koutsoumbas; Eleftherios Papantonopoulos; George Siopsis
2009-06-17T23:59:59.000Z
A model of an exact gravity dual of a gapless superconductor is presented in which the condensate is provided by a charged scalar field coupled to a bulk black hole of hyperbolic horizon in asymptotically AdS spacetime. Below a critical temperature, the black hole acquires its hair through a phase transition while an electromagnetic perturbation of the background Maxwell field determines the conductivity of the boundary theory.
Holographic Superconductivity with Gauss-Bonnet gravity
Ruth Gregory
2010-12-07T23:59:59.000Z
I review recent work on holographic superconductivity with Einstein-Gauss-Bonnet gravity, and show how the critical temperature of the superconductor depends on both gravitational backreaction and the Gauss-Bonnet parameter, using both analytic and numerical arguments. I also review computations of the conductivity, finding the energy gap, and demonstrating that there is no universal gap ratio, $\\omega_g/T_c$, for these superconductors.
Selected applications of microwave radiometric techniques
Jean, Buford Randall
1971-01-01T23:59:59.000Z
detection capability is more promising. Airborne microwave radiometer measurements were made over selected flight lines near Weslaco, Texas to deter- mine the capability of a microwave radiometer system to monitor soil moisture content. An extensive... was supported by National Aeronautics and Space Administration Grant NsG 239-62. The cooperation of the NASA Goddard Space Flight Center and Dr. Thomas Schmugge in conducting the airborne microwave radiometer mission is gratefully acknowledged. Dr. Craig L...
Abelian-Higgs strings in Rastall gravity
Eugenio R. Bezerra de Mello; Julio C. Fabris; Betti Hartmann
2015-04-02T23:59:59.000Z
In this paper we analyze Abelian-Higgs strings in a phenomenological model that takes quantum effects in curved space-time into account. This model, first introduced by Rastall, cannot be derived from an action principle. We formulate phenomenological equations of motion under the guiding principle of minimal possible deformation of the standard equations. We construct string solutions that asymptote to a flat space-time with a deficit angle by solving the set of coupled non-linear ordinary differential equations numerically. Decreasing the Rastall parameter from its Einstein gravity value we find that the deficit angle of the space-time increases and becomes equal to $2\\pi$ at some critical value of this parameter that depends on the remaining couplings in the model. For smaller values the resulting solutions are supermassive string solutions possessing a singularity at a finite distance from the string core. Assuming the Higgs boson mass to be on the order of the gauge boson mass we find that also in Rastall gravity this happens only when the symmetry breaking scale is on the order of the Planck mass. We also observe that for specific values of the parameters in the model the energy per unit length becomes proportional to the winding number, i.e. the degree of the map $S^1 \\rightarrow S^1$. Unlike in the BPS limit in Einstein gravity, this is, however, not connect to an underlying mathematical structure, but rather constitutes a would-be-BPS bound.
Constraining Torsion with Gravity Probe B
Yi Mao; Max Tegmark; Alan Guth; Serkan Cabi
2007-10-05T23:59:59.000Z
It is well-entrenched folklore that torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope should also feel torsion. Using symmetry arguments, we show that to lowest order, the torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the PPN formalism and provide a concrete framework for further testing GR. We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi- Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B (GPB) is an ideal experiment for further constraining torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters
Assessor Training Assessment Techniques
NVLAP Assessor Training Assessment Techniques: Communication Skills and Conducting an Assessment listener ·Knowledgeable Assessor Training 2009: Assessment Techniques: Communication Skills & Conducting, truthful, sincere, discrete · Diplomatic · Decisive · Selfreliant Assessor Training 2009: Assessment
Cooling, Gravity and Geometry: Flow-driven Massive Core Formation
Fabian Heitsch; Lee Hartmann; Adrianne D. Slyz; Julien E. G. Devriendt; Andreas Burkert
2007-09-15T23:59:59.000Z
We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity -- triggered by a combination of strong thermal and dynamical instabilities -- causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few 100 M$_\\odot$. The forming clouds do not reach an equilibrium state, though the motions within the clouds appear comparable to ``virial''. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.
Boyer, Edmond
1 Evaluation of DART 3D model in the thermal domain using satellite/airborne imagery and ground ISSN0143-1161print/ISSN1366-5901, DOI:10.1080/01431161.2010.524672 jean to energy fluxes at the earth's surface. Its physical magnitude is defined as the effective kinetic
Sheridan, Jennifer
A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 in assessing the accuracy of the CO2-slicing cloud height algorithm. Infrared measurements of upwelling which included various single- layer and multilayer cloud conditions. Overall, the CO2-slicing method
Zhao, Kaiguang
2009-05-15T23:59:59.000Z
for realtime remote sensing platforms, e.g., to provide timely information for urgent applications. This study aims to develop an airborne profiling LiDAR system, featured with on-the-fly data processing, for near real- or real- time forest inventory...
cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessmentUse of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research SUSAN K. MAXWELLa , JAYMIE R. MELIKERb AND PIERRE GOOVAERTSc a U.S. Geological
EVALUATION OF AIRBORNE AND SATELLITE ELECTRO-OPTICAL SENSORS PERFORMANCES BY USE OF HIGH The impact of high-altitude clouds along an electro- optical sensor line of sight has been studied, F-91761 Palaiseau, France, email : karine.caillault@onera.fr KEYWORDS: sensor performance
Sehmel, G.A.
1982-12-20T23:59:59.000Z
A major eruption of Mount St. Helens occurred on May 18, 1980. Subsequently, airborne solid concentrations were measured as a function of time at two sites within the southern edge of the fallout plume about 211 km east of Mount St. Helens. This ash was a source for investigating area-wide resuspension. Rain had a variable effect on decreasing airborne concentrations from resuspension. From 0.5 to 1.5 cm of rain were required to significantly reduce airborne solid concentrations through July. For a more aged resuspension source in September, a rain of 2.0 cm had a negligible effect. A monthly average threshold-wind speed for resuspension was defined as 3.6 m/s. For monthly-average wind speeds less than the threshold wind speed, monthly-average airborne concentrations tended to decrease with time. A decrease was recorded between September and October. For this 4-month time period, the half-life was on the order of 50 days, corresponding to a weathering rate of 5.1 year/sup -1/.
Yu, K.N.
Long-term determination of airborne radon progeny concentrations using LR 115 solid-state nuclear. Introduction The radon-related absorbed dose in the lung is mainly due to short-lived radon progeny, i.e., 218-term measurements of the concentrations of radon progeny or the equilibrium factor F, among other information
Müller, Dietmar
grid for the World Digital Magnetic Anomaly Map. The resolution has been improved from 3 arc min to 2EMAG2: A 2arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, I-19020 Fezzano, Italy [1] A global Earth Magnetic Anomaly Grid (EMAG2) has been compiled from
New Agegraphic Dark Energy in $f(R)$ Gravity
M. R. Setare
2009-08-03T23:59:59.000Z
In this paper we study cosmological application of new agegraphic dark energy density in the $f(R)$ gravity framework. We employ the new agegraphic model of dark energy to obtain the equation of state for the new agegraphic energy density in spatially flat universe. Our calculation show, taking $nnew agegraphic dark energy model in flat universe in the modified gravity cosmology framework. Also we develop a reconstruction scheme for the modified gravity with $f(R)$ action.
Solar System experiments do not yet veto modified gravity models
Valerio Faraoni
2006-07-05T23:59:59.000Z
The dynamical equivalence between modified and scalar-tensor gravity theories is revisited and it is concluded that it breaks down in the limit to general relativity. A gauge-independent analysis of cosmological perturbations in both classes of theories lends independent support to this conclusion. As a consequence, the PPN formalism of scalar-tensor gravity and Solar System experiments do not veto modified gravity, as previously thought.
AdS waves as exact solutions to quadratic gravity
Guellue, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Guerses, Metin [Department of Mathematics, Faculty of Sciences Bilkent University, 06800 Ankara (Turkey)
2011-04-15T23:59:59.000Z
We give an exact solution of the quadratic gravity in D dimensions. The solution is a plane-fronted wave metric with a cosmological constant. This metric solves not only the full quadratic gravity field equations but also the linearized ones which include the linearized equations of the recently found critical gravity. A subset of the solutions change the asymptotic structure of the anti-de Sitter space due to their logarithmic behavior.
Analysis of faults using gravity methods in Mason County, Texas
Milligan, Michael Glen
1992-01-01T23:59:59.000Z
Committee: Dr. D. A. Fahlquist Dr. B. Johnson The objective of this study is to determine the applicability of gravity profiling methods for determining the location and throw of a series of faults related to a structural graben in northern Mason County... profiles. For two faults with the best geologic control, the best-fit gravity models compared favorably with the the geologic model constructed by Randolph (1991) on the basis of surface mapping, structural control and well control. The gravity models...
Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming
Silver, Wendy Ilene
1979-01-01T23:59:59.000Z
provide a potential source of information about the configuration of the sedimentary rock / Precambrian basement interface as well as the geometry of the overlying younger rocks. GRAVITY DA. A Regional Gravity The regional gravity field of Wyoming..., Jurassic and Lower Cretaceous units. It may therefore be concluded that the uplifts of the Precambrian basement were fomed after the deposition of those overly1ng sedimentary rocks. ACKNOWLEDGEMEWTS I w1sh to thank Dr, R. R. Berg, chairman of my...
Keaveny, Tony
2/21/2014 2:00-2:30 Beverages, 2:30-4 PM Seminar Abstract The mechanics of gravity water waves. Crucially, the input boundary Â the wavemaker Â imposes a particular kinematics profile (or wave form-8347 Water Wave Generation Techniques: Theory and Practice By Dr. Johannes Spinneken Imperial College, London
asymptotically safe gravity: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
at high energies. Elisa Manrique; Stefan Rechenberger; Frank Saueressig 2011-02-24 2 Fractal Spacetime Structure in Asymptotically Safe Gravity General Relativity & Quantum...
Ground Gravity Survey At Valles Caldera - Sulphur Springs Geothermal...
Survey Activity Date - 1986 Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting...
Quantized gauge-affine gravity in the superfiber bundle approach
A. Meziane; M. Tahiri
2005-11-10T23:59:59.000Z
The quantization of gauge-affine gravity within the superfiber bundle formalism is proposed. By introducing an even pseudotensorial 1-superform over a principal superfibre bundle with superconnection, we obtain the geometrical Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST transformations of the fields occurring in such a theory. Reducing the four-dimensional general affine group double-covering to the Poincare group double-covering we also find the BRST and anti-BRST transformations of the fields present in Einstein's gravity. Furthermore, we give a prescription leading to the construction of both BRST-invariant gauge-fixing action for gauge-affine gravity and Einstein's gravity.
atmospheric gravity waves: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
gravity waves (AGWs). Satellite imagery shows evidence the characteristics of these waves. The favorable wave propagation conditions in 12;this region are illustrated 5...
Integration of Full Tensor Gravity and ZTEM Passive Low Frequency...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
and ZTEM Passive Low Frequency EM Instruments for Simultaneous Data Acquisition Integration of Full Tensor Gravity and ZTEM Passive Low Frequency EM Instruments for...
Exercise protocols during short-radius centrifugation for artificial gravity
Edmonds, Jessica Leigh
2008-01-01T23:59:59.000Z
Long-duration spaceflight results in severe physiological deconditioning, threatening the success of interplanetary travel. Exercise combined with artificial gravity provided by centrifugation may be the comprehensive ...
The f(R) Gravity Function of the Linde Quintessence
Sergei V. Ketov; Natsuki Watanabe
2014-10-20T23:59:59.000Z
We calculate the f(R) gravity function in the dual gravity description of the quintessence model with a quadratic (Linde) scalar potential and a positive cosmological constant. We find that in the large curvature regime relevant to chaotic inflation in early Universe, the dual f(R) gravity is well approximated by the (matter) loop-corrected Starobinsky inflationary model. In the small curvature regime relevant to dark energy in the present Universe, the f(R) gravity function reduces to the Einstein-Hilbert one with a positive cosmological constant.
Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...
fault zones. The focus of Lake City Geothermal's current effort is on enhancing the site interpretation by re-evaluating the existing seismic data, conducting a detailed gravity...
Lessons in quantum gravity from quantum field theory
Berenstein, David [Department of Physics, University of California at Santa Barbara, CA 93106 (United States); Institute for Advanced Study, School of Natural Science, Princeton, NJ 08540 (United States)
2010-12-07T23:59:59.000Z
This paper reviews advances in the understanding of quantum gravity based on field theory calculations in the AdS/CFT correspondence.
Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...
DOE-funding Unknown Exploration Basis Gravity surveys were conducted to monitor the evolution of the geothermal reservoir. Notes A 12 month long experiment was conducted using a...
Summary of Session A6: Alternative Theories of Gravity
R. B. Mann
1998-03-13T23:59:59.000Z
This is a summary of the workshop A.6 on Alternative Theories of Gravity, prepared for the proceedings for the GR15 conference.
Ground Gravity Survey At Long Valley Caldera Geothermal Area...
Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...
Strong and weak gravitational field in $R+?^4/R$ gravity
Kh. Saaidi; A. Vajdi; S. W. Rabiei; A. Aghamohammadi; H. Sheikhahmadi
2012-01-18T23:59:59.000Z
We introduce a new approach for investigating the weak field limit of vacuum field equations in $f(R)$ gravity and we find the weak field limit of $f(R)=R+\\mu ^4/R$ gravity. Furthermore, we study the strong gravity regime in $R+\\mu^{4}/R$ model of $f(R)$ gravity. We show the existence of strong gravitational field in vacuum for such model. We find out in the limit $\\mu\\rightarrow 0$, the weak field limit and the strong gravitational field can be regarded as a perturbed Schwarzschild metric.
Stability of Non-asymptotically flat thin-shell wormholes in generalized dilaton-axion gravity
Ayan Banerjee; Farook Rahaman; Surajit Chattopadhyay; Sumita Banerjee
2013-04-11T23:59:59.000Z
We construct a new type of thin-shell wormhole for non-asymptotically flat charged black holes in generalized dilaton-axion gravity inspired by low-energy string theory using cut-and-paste technique. We have shown that this thin shell wormhole is stable. The most striking feature of our model is that the total amount of exotic matter needed to support the wormhole can be reduced as desired with the suitable choice of the value of a parameter. Various other aspects of thin-shell wormhole are also analyzed.
Closed formula for the matrix elements of the volume operator in canonical quantum gravity
T. Thiemann
1996-06-29T23:59:59.000Z
We derive a closed formula for the matrix elements of the volume operator for canonical Lorentzian quantum gravity in four spacetime dimensions in the continuum in a spin-network basis. We also display a new technique of regularization which is state dependent but we are forced to it in order to maintain diffeomorphism covariance and in that sense it is natural. We arrive naturally at the expression for the volume operator as defined by Ashtekar and Lewandowski up to a state independent factor.
Airborne Multisensor Pod System, Arms control and nonproliferation technologies: Second quarter 1995
Alonzo, G.M.; Sanford, N.M. [eds.] [eds.
1995-01-01T23:59:59.000Z
This issue focuses on the Airborne Multisensor Pod System (AMPS) which is a collaboration of many of the DOE national laboratories to provide a scientific environment to research multiple sensors and the new information that can be derived from them. The bulk of the research has been directed at nonproliferation applications, but it has also proven useful in environmental monitoring and assessment, and land/water management. The contents of this issue are: using AMPS technology to detect proliferation and monitor resources; combining multisensor data to monitor facilities and natural resources; planning a AMPS mission; SAR pod produces images day or night, rain or shine; MSI pod combines data from multiple sensors; ESI pod will analyze emissions and effluents; and accessing AMPS information on the Internet.
Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting
Burris, S.A.; Thomas, S.P.
1994-02-01T23:59:59.000Z
This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).
An overview of airborne radioactive emissions at Los Alamos National Laboratory
Guevara, F.A.; Dvorak, R.F.
1987-01-01T23:59:59.000Z
Strict control is essential over any emissions of radioactivity in the ventilation exhaust from facilities where radioactive materials may become airborne. At Los Alamos National Laboratory there are 87 stacks exhausting ventilation air to the environment from operations with a potential for radioactive emissions. These stacks cover the diverse operations at all Laboratory facilities where radioactive materials are handled and require continuous sampling/monitoring to detect levels of contamination. An overview is presented of the operations, associated ventilation exhaust cleanup systems, and analysis of the emissions. In keeping with the as-low-as-reasonably-achievable concept, emissions of radionuclides are reduced whenever practicable. A specific example describing the reduction of emissions from the linear accelerator beam stop area at the Los Alamos Meson Physics Facility during 1985 by a factor of 8 over previous emissions is presented.
Graceful Exit Inflation in $f(T)$ Gravity
G. G. L. Nashed; W. El Hanafy; Sh. Kh. Ibrahim
2015-04-04T23:59:59.000Z
We apply a quadratic teleparallel torsion scalar of the $f(T)=T+\\alpha T^{2}$ field equations to the spatially flat Friedmann-Robertson-Walker (FRW) model. We assume two perfect fluid components, the matter component has a fixed equation of state (EoS) parameter $\\omega$, while the torsion component has a dynamical EoS. We obtain an effective scale factor allowing a graceful exit inflation model with no need to slow roll technique. We perform a standard cosmological study to examine the cosmic evolution. In addition, the effective EoS shows consistent results confirming a smooth phase transition from inflation to radiation dominant universe. We consider the case when the torsion is made of a scalar field. This treatment enables us to induce a scalar field sensitive to the spacetime symmetry with an effective potential constructed from the quadratic $f(T)$ gravity. The model is parameterized by two parameters ($\\alpha,\\omega$) both derive the universe to exit out of de Sitter expansion. The first is purely gravitational and works effectively at large Hubble regime of the early stage allowing a slow roll potential. The second parameter $\\omega$ is a thermal-like correction coupled to the kinetic term and works effectively at low Hubble regime of late stages. The slow roll analysis of the obtained potential can perform tensor-to-scalar ratio and spectral index parameters consistent with the recent Planck and BICEP2 data. Both cosmological and scalar field analyses show consistent results.
A new quasidilaton theory of massive gravity
Shinji Mukohyama
2014-10-08T23:59:59.000Z
We present a new quasidilaton theory of Poincare invariant massive gravity, based on the recently proposed framework of matter coupling that makes it possible for the kinetic energy of the quasidilaton scalar to couple to both physical and fiducial metrics simultaneously. We find a scaling-type exact solution that expresses a self-accelerating de Sitter universe, and then analyze linear perturbations around it. It is shown that in a range of parameters all physical degrees of freedom have non-vanishing quadratic kinetic terms and are stable in the subhorizon limit, while the effective Newton's constant for the background is kept positive.
Fractal Spacetime Structure in Asymptotically Safe Gravity
O. Lauscher; M. Reuter
2005-08-26T23:59:59.000Z
Four-dimensional Quantum Einstein Gravity (QEG) is likely to be an asymptotically safe theory which is applicable at arbitrarily small distance scales. On sub-Planckian distances it predicts that spacetime is a fractal with an effective dimensionality of 2. The original argument leading to this result was based upon the anomalous dimension of Newton's constant. In the present paper we demonstrate that also the spectral dimension equals 2 microscopically, while it is equal to 4 on macroscopic scales. This result is an exact consequence of asymptotic safety and does not rely on any truncation. Contact is made with recent Monte Carlo simulations.
Gamma Ray Burst Neutrinos Probing Quantum Gravity
M. C. Gonzalez-Garcia; F. Halzen
2006-11-28T23:59:59.000Z
Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.
Dynamics of generalized Palatini theories of gravity
Vitagliano, Vincenzo; Liberati, Stefano [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy) and INFN sezione di Trieste, sezione di Trieste, via Valerio 2, 34127 Trieste (Italy); Sotiriou, Thomas P. [Department of Applied Mathematics and Theoretical Physics, Center for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2010-10-15T23:59:59.000Z
It is known that in f(R) theories of gravity with an independent connection which can be both nonmetric and nonsymmetric, this connection can always be algebraically eliminated in favor of the metric and the matter fields, so long as it is not coupled to the matter explicitly. We show here that this is a special characteristic of f(R) actions, and it is not true for actions that include other curvature invariants. This contradicts some recent claims in the literature. We clarify the reasons for this contradiction.
Modification of gravity due to torsion
Nair, V. P. [Physics Department, City College of the CUNY, New York, NY 10031 (United States); Nikiforova, V. [Physics Department, Mascow State University Moscow (Russian Federation); Randjbar-Daemi, S. [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Rubakov, V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation)
2010-01-01T23:59:59.000Z
Modifications of general relativity have been considered as one of the possible ways of addressing some of the outstanding problems related to the large scale gravitational physics. In this contribution we review some of the recent results which are due to the inclusion of dynamical torsion. More specifically we shall discuss the propagation of massive spin-2 particles in flat and curved space times. We shall show that, contrary to what is generally believed, spinning matter is not the sole source of torsion field. A symmetric energy momentum tensor can also couple to torsion degrees of freedom. The massive and massless spin-2 particles mix giving rise to an infrared modification of gravity.
A high frequency resonance gravity gradiometer
Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N. [Laser Physics Institute SB RAS, Novosibirsc (Russian Federation); Bezrukov, L. B.; Krysanov, V. A. [Institute of Nuclear Physics RAS, Moscow (Russian Federation); Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S. [Lomonosov MSU, Sternberg Astronomical Institute, Moscow (Russian Federation); Rudenko, V. N. [Institute of Nuclear Physics RAS, Moscow (Russian Federation); Lomonosov MSU, Sternberg Astronomical Institute, Moscow (Russian Federation)
2014-06-15T23:59:59.000Z
A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.
Confronting Dilaton-exchange gravity with experiments
H. V. Klapdor-Kleingrothaus; H. Päs; U. Sarkar
2000-08-16T23:59:59.000Z
We study the experimental constraints on theories, where the equivalence principle is violated by dilaton-exchange contributions to the usual graviton-exchange gravity. We point out that in this case it is not possible to have any CPT violation and hence there is no constraint from the CPT violating measurements in the $K-$system. The most stringent bound is obtained from the $K_L - K_S$ mass difference. In contrast, neither neutrino oscillation experiments nor neutrinoless double beta decay imply significant constraints.
Wave Packets Propagation in Quantum Gravity
Kourosh Nozari; S. H. Mehdipour
2005-07-03T23:59:59.000Z
Wave packet broadening in usual quantum mechanics is a consequence of dispersion behavior of the medium which the wave propagates in it. In this paper, we consider the problem of wave packet broadening in the framework of Generalized Uncertainty Principle(GUP) of quantum gravity. New dispersion relations are derived in the context of GUP and it has been shown that there exists a gravitational induced dispersion which leads to more broadening of the wave packets. As a result of these dispersion relations, a generalized Klein-Gordon equation is obtained and its interpretation is given.
Anisotropic higher derivative gravity and inflationary universe
W. F. Kao
2006-05-21T23:59:59.000Z
Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS type action. This method greatly reduces the labor in deriving field equations of any complicate models. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in details. Implications to the choice of physical theories are discussed in details in this paper.
Inflationary Universe in Higher Derivative Induced Gravity
W. F. Kao
2000-06-27T23:59:59.000Z
In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be $\\phi_0 \\partial_{\\phi_0}V(\\phi_0)=4V(\\phi_0)$. The presence of higher derivative terms will, however, act against the stability of this expanding solution unless further constraints on the field parameters are imposed. We find that these models will acquire a non-vanishing cosmological constant at the end of inflation. Some models are analyzed for their implication to the early universe.
Loop Quantum Gravity: An Inside View
Thomas Thiemann
2006-08-29T23:59:59.000Z
This is a (relatively) non -- technical summary of the status of the quantum dynamics in Loop Quantum Gravity (LQG). We explain in detail the historical evolution of the subject and why the results obtained so far are non -- trivial. The present text can be viewed in part as a response to an article by Nicolai, Peeters and Zamaklar [hep-th/0501114]. We also explain why certain no go conclusions drawn from a mathematically correct calculation in a recent paper by Helling et al [hep-th/0409182] are physically incorrect.
Thermodynamics of 5D dilaton-gravity
Megias, E. [Institute for Theoretical Physics, University of Heidelberg (Germany); Instituto de Fisica Teorica CSIC-UAM, Universidad Autonoma de Madrid (Spain)
2011-05-23T23:59:59.000Z
We calculate the free energy, spatial string tension and Polyakov loop of the gluon plasma using the dilaton potential of Ref. [1] in the dilaton-gravity theory of AdS/QCD. The free energy is computed from the Black Hole solutions of the Einstein equations in two ways: first, from the Bekenstein-Hawking proportionality of the entropy with the area of the horizon, and secondly from the Page-Hawking computation of the free energy. The finite temperature behaviour of the spatial string tension and Polyakov loop follow from the corresponding string theory in AdS{sub 5}. Comparison with lattice data is made.
Holographic renormalization of new massive gravity
Alishahiha, Mohsen [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Naseh, Ali [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of)
2010-11-15T23:59:59.000Z
We study holographic renormalization for three-dimensional new massive gravity. By studying the general falloff conditions for the metric allowed by the model at infinity, we show that at the critical point where the central charges of the dual conformal field theory (CFT) are zero, it contains a leading logarithmic behavior. In the context of AdS/CFT correspondence it can be identified as a source for an irrelevant operator in the dual CFT. The presence of the logarithmic falloff may be interpreted as the fact that the dual CFT would be a logarithmic conformal field theory.
Gravity dual of spatially modulated phase
Nakamura, Shin [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Ooguri, Hirosi [California Institute of Technology, Pasadena, California 91125 (United States); IPMU, University of Tokyo, Kashiwa 277-8586 (Japan); Park, Chang-Soon [California Institute of Technology, Pasadena, California 91125 (United States)
2010-02-15T23:59:59.000Z
We show that the five-dimensional Maxwell theory with the Chern-Simons term is tachyonic in the presence of a constant electric field. When coupled to gravity, a sufficiently large Chern-Simons coupling causes instability of the Reissner-Nordstroem black holes in anti-de Sitter space. The instability happens only at nonvanishing momenta, suggesting a spatially modulated phase in the holographically dual quantum field theory in (3+1) dimensions, with spontaneous current generation in a helical configuration. The three-charge extremal black hole in the type IIB superstring theory on AdS{sub 5}xS{sup 5} barely satisfies the stability condition.
Apparent horizon in fluid-gravity duality
Booth, Ivan; Heller, Michal P.; Plewa, Grzegorz; Spalinski, Michal [Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7 (Canada); Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands); Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland) and Physics Department, University of Bialystok, 15-424 Bialystok (Poland)
2011-05-15T23:59:59.000Z
This article develops a computational framework for determining the location of boundary-covariant apparent horizons in the geometry of conformal fluid-gravity duality in arbitrary dimensions. In particular, it is shown up to second order and conjectured to hold to all orders in the gradient expansion that there is a unique apparent horizon which is covariantly expressible in terms of fluid velocity, temperature, and boundary metric. This leads to the first explicit example of an entropy current defined by an apparent horizon and opens the possibility that in the near-equilibrium regime there is preferred foliation of apparent horizons for black holes in asymptotically anti-de Sitter spacetimes.
Seven-dimensional gravity with topological terms
Lue, H. [China Economics and Management Academy Central, University of Finance and Economics, Beijing 100081 (China); Institute for Advanced Study, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060 (China); Pang Yi [Key Laboratory of Frontiers in Theoretical Physics Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2010-04-15T23:59:59.000Z
We construct new seven-dimensional gravity by adding two topological terms to the Einstein-Hilbert action. For a certain choice of the coupling constants, these terms exist naturally in seven-dimensional gauged supergravity from the S{sup 4} reduction of eleven-dimensional supergravity with the R{sup 4} corrections. We derive the full set of the equations of motion. We find that the static spherically-symmetric black holes are unmodified by the topological terms. We obtain squashed AdS{sub 7}, and also squashed seven spheres and Q{sup 111} spaces in Euclidean signature.
Drag phenomena from holographic massive gravity
Matteo Baggioli; Daniel K. Brattan
2015-04-28T23:59:59.000Z
We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.
Drag phenomena from holographic massive gravity
Baggioli, Matteo
2015-01-01T23:59:59.000Z
We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.
Authors, Various
2012-01-01T23:59:59.000Z
3 1st Edition FTN4 OPTIMIZATION TECHNIQUES November 1979O. INTRODUCTION 1. COt1PILER OPTIMIZATIONS 2. SOURCE CODEcode. Most of these optimizations decrease central processor
Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data
Demouchy, Sylvie
Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data C. Tiberi,1 to Miocene lithospheric instabilities. Key words: boudinage, continental rifts, gravity inversion, Greece
Gravity waves excited by jets: Propagation versus generation R. Plougonven
Plougonven, Riwal
Gravity waves excited by jets: Propagation versus generation R. Plougonven School of Mathematics imposed by the generation mechanism. In proceeding so, effects due to the propagation of the waves through simulations demonstrate that the propagation of inertia-gravity waves through horizontal deformation
Gravity Field and Internal Structure of Mercury from MESSENGER
Zuber, Maria
,5 Mark E. Perry,11 David D. Rowlands,5 Sander Goossens,12 James W. Head,13 Anthony H. Taylor14 RadioGravity Field and Internal Structure of Mercury from MESSENGER David E. Smith,1 Maria T. Zuber,1 tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern
Wavelet based inversion of gravity data Fabio Boschetti
Boschetti, Fabio
1 Wavelet based inversion of gravity data Fabio Boschetti CSIRO Exploration & Mining and Australian Running Heading: Wavelet based inversion of gravity data #12;2 ABSTRACT The Green's function of the Poisson equation, and its spatial derivatives, lead to a family of wavelets specifically tailored
Cosmological evolutions of $F(R)$ nonlinear massive gravity
De-Jun Wu
2014-03-24T23:59:59.000Z
Recently a new extended nonlinear massive gravity model has been proposed which includes the $F(R)$ modifications to dRGT model.We follow the $F(R)$ nonlinear massive gravity and study its implications on cosmological evolutions. We derive the critical points of the cosmic system and study the corresponding kinetics by performing the phase-plane analysis.
Mapping crustal thickness using marine gravity data: Methods and uncertainties
Müller, Dietmar
of petroleum systems within passive margins. However, direct measurements of crustal thickness are sparse geophysical data, to estimate crustal thickness. We evaluated alternative gravity inversion methodol- ogies, but economic considerations make gravity modeling a more practical approach for mapping crustal thickness over
On coupling NEC-violating matter to gravity
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Chatterjee, Saugata; Parikh, Maulik; van der Schaar, Jan Pieter
2015-05-01T23:59:59.000Z
We show that effective theories of matter that classically violate the null energy condition cannot be minimally coupled to Einstein gravity without being inconsistent with both string theory and black hole thermodynamics. We argue however that they could still be either non-minimally coupled or coupled to higher-curvature theories of gravity.
Deike, William D
2010-01-01T23:59:59.000Z
U.S. military assets' increasing need for secure global communications has led to the design and fabrication of airborne satellite communication terminals that operate under protected security protocol. Protected transmission ...
Dipole gravity waves from unbound quadrupoles
Felber, Franklin
2010-01-01T23:59:59.000Z
Dipole gravitational disturbances from gravitationally unbound mass quadrupoles propagate to the radiation zone with signal strength at least of quadrupole order if the quadrupoles are nonrelativistic, and of dipole order if relativistic. Angular distributions of parallel-polarized and transverse-polarized dipole power in the radiation zone are calculated for simple unbound quadrupoles, like a linear-oscillator/stress-wave pair and a particle storage ring. Laboratory tests of general relativity through measurements of dipole gravity waves in the source region are proposed. A NASA G2 flywheel module with a modified rotor can produce a post-Newtonian dc bias signal at a gradiometer up to 1 mE. At peak luminosity, the repulsive dipole impulses of proton bunches at the LHC can produce an rms velocity of a high-Q detector surface up to 4 micron/s. Far outside the source region, Newtonian lunar dipole gravity waves can produce a 1-cm displacement signal at LISA. Dipole signal strengths of astrophysical events invol...
Dipole gravity waves from unbound quadrupoles
Franklin Felber
2010-06-10T23:59:59.000Z
Dipole gravitational disturbances from gravitationally unbound mass quadrupoles propagate to the radiation zone with signal strength at least of quadrupole order if the quadrupoles are nonrelativistic, and of dipole order if relativistic. Angular distributions of parallel-polarized and transverse-polarized dipole power in the radiation zone are calculated for simple unbound quadrupoles, like a linear-oscillator/stress-wave pair and a particle storage ring. Laboratory tests of general relativity through measurements of dipole gravity waves in the source region are proposed. A NASA G2 flywheel module with a modified rotor can produce a post-Newtonian dc bias signal at a gradiometer up to 1 mE. At peak luminosity, the repulsive dipole impulses of proton bunches at the LHC can produce an rms velocity of a high-Q detector surface up to 4 micron/s. Far outside the source region, Newtonian lunar dipole gravity waves can produce a 1-cm displacement signal at LISA. Dipole signal strengths of astrophysical events involving unbound quadrupoles, like near collisions and neutron star kicks in core-collapse supernovae, are estimated.
A dynamical inconsistency of Horava gravity
Henneaux, Marc [Universite Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, 1050 Brussels (Belgium); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Kleinschmidt, Axel; Lucena Gomez, Gustavo [Universite Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, 1050 Brussels (Belgium)
2010-03-15T23:59:59.000Z
The dynamical consistency of the nonprojectable version of Horava gravity is investigated by focusing on the asymptotically flat case. It is argued that for generic solutions of the constraint equations the lapse must vanish asymptotically. We then consider particular values of the coupling constants for which the equations are tractable and in that case we prove that the lapse must vanish everywhere--and not only at infinity. Put differently, the Hamiltonian constraints are generically all second-class. We then argue that the same feature holds for generic values of the couplings, thus revealing a physical inconsistency of the theory. In order to cure this pathology, one might want to introduce further constraints but the resulting theory would then lose much of the appeal of the original proposal by Horava. We also show that there is no contradiction with the time-reparametrization invariance of the action, as this invariance is shown to be a so-called 'trivial gauge symmetry' in Horava gravity, hence with no associated first-class constraints.
Spherically symmetric conformal gravity and "gravitational bubbles"
V. A. Berezin; V. I. Dokuchaev; Yu. N. Eroshenko
2014-12-09T23:59:59.000Z
The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equation are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the "gravitational bubbles", which is compact and with zero Weyl tensor. The second class is more general, with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly the same features of non-vacuum solutions. One of them, the metrics a la Vaidya, is explicitly written.
Vacuum energy: quantum hydrodynamics vs quantum gravity
G. E. Volovik
2005-09-09T23:59:59.000Z
We compare quantum hydrodynamics and quantum gravity. They share many common features. In particular, both have quadratic divergences, and both lead to the problem of the vacuum energy, which in the quantum gravity transforms to the cosmological constant problem. We show that in quantum liquids the vacuum energy density is not determined by the quantum zero-point energy of the phonon modes. The energy density of the vacuum is much smaller and is determined by the classical macroscopic parameters of the liquid including the radius of the liquid droplet. In the same manner the cosmological constant is not determined by the zero-point energy of quantum fields. It is much smaller and is determined by the classical macroscopic parameters of the Universe dynamics: the Hubble radius, the Newton constant and the energy density of matter. The same may hold for the Higgs mass problem: the quadratically divergent quantum correction to the Higgs potential mass term is also cancelled by the microscopic (trans-Planckian) degrees of freedom due to thermodynamic stability of the whole quantum vacuum.
Bigravity and Lorentz-violating massive gravity
Blas, D.; Garriga, J. [ICC, Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Deffayet, C. [APC, Batiment Condorcet, 10 rue Alice Domont et Leonie Duquet, 75205 Paris Cedex 13 (France); GReCO/IAP, 98 bis Boulevard Arago, 75014 Paris (France)
2007-11-15T23:59:59.000Z
Bigravity is a natural arena where a nonlinear theory of massive gravity can be formulated. If the interaction between the metrics f and g is nonderivative, spherically symmetric exact solutions can be found. At large distances from the origin, these are generically Lorentz-breaking bi-flat solutions (provided that the corresponding vacuum energies are adjusted appropriately). The spectrum of linearized perturbations around such backgrounds contains a massless as well as a massive graviton, with two physical polarizations each. There are no propagating vectors or scalars, and the theory is ghost free (as happens with certain massive gravities with explicit breaking of Lorentz invariance). At the linearized level, corrections to general relativity are proportional to the square of the graviton mass, and so there is no van Dam-Veltam-Zakharov discontinuity. Surprisingly, the solution of linear theory for a static spherically symmetric source does not agree with the linearization of any of the known exact solutions. The latter coincide with the standard Schwarzschild-(anti)-de Sitter solutions of general relativity, with no corrections at all. Another interesting class of solutions is obtained where f and g are proportional to each other. The case of bi-de Sitter solutions is analyzed in some detail.
Canonical Quantum Gravity on Noncommutative Spacetime
Martin Kober
2014-09-04T23:59:59.000Z
In this paper canonical quantum gravity on noncommutative space-time is considered. The corresponding generalized classical theory is formulated by using the moyal star product, which enables the representation of the field quantities depending on noncommuting coordinates by generalized quantities depending on usual coordinates. But not only the classical theory has to be generalized in analogy to other field theories. Besides, the necessity arises to replace the commutator between the gravitational field operator and its canonical conjugated quantity by a corresponding generalized expression on noncommutative space-time. Accordingly the transition to the quantum theory has also to be performed in a generalized way and leads to extended representations of the quantum theoretical operators. If the generalized representations of the operators are inserted to the generalized constraints, one obtains the corresponding generalized quantum constraints including the Hamiltonian constraint as dynamical constraint. After considering quantum geometrodynamics under incorporation of a coupling to matter fields, the theory is transferred to the Ashtekar formalism. The holonomy representation of the gravitational field as it is used in loop quantum gravity opens the possibility to calculate the corresponding generalized area operator.
Contamination Control Techniques
EBY, J.L.
2000-05-16T23:59:59.000Z
Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.
Holt, Grady Lynn
1974-01-01T23:59:59.000Z
A COMPARATIVE STUDY OF COLLECTION EFFICIENCIES USING O. RO AND 1. 2 MICROMETER PORE SIZE FILTERS IN EVALUATING AIRBORNE ASBESTOS DUST A Thesis by GRADY LYNN HOLT Submitted to the Graduate College of' Texas A&M University in partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974. Major Subject: Industrial Hygiene A COMPARATIVE . TUDY OF COLLECTION EFFICIENCIES USING O. BO AND 1. 2 MICROMETER PORE SIZE FILTERS IN EVALUATING AIRBORNE ASBESTOS DUST A...
Holt, Grady Lynn
1974-01-01T23:59:59.000Z
A COMPARATIVE STUDY OF COLLECTION EFFICIENCIES USING O. RO AND 1. 2 MICROMETER PORE SIZE FILTERS IN EVALUATING AIRBORNE ASBESTOS DUST A Thesis by GRADY LYNN HOLT Submitted to the Graduate College of' Texas A&M University in partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974. Major Subject: Industrial Hygiene A COMPARATIVE . TUDY OF COLLECTION EFFICIENCIES USING O. BO AND 1. 2 MICROMETER PORE SIZE FILTERS IN EVALUATING AIRBORNE ASBESTOS DUST A...
The XMM Cluster Survey: Testing chameleon gravity using the profiles of clusters
Wilcox, Harry; Nichol, Robert C; Rooney, Philip J; Terukina, Ayumu; Romer, A Kathy; Koyama, Kazuya; Zhao, Gong-Bo; Hood, Ross; Mann, Robert G; Hilton, Matt; Manolopoulou, Maria; Sahlen, Martin; Collins, Chris A; Liddle, Andrew R; Mayers, Julian A; Mehrtens, Nicola; Miller, Christopher J; Stott, John P; Viana, Pedro T P
2015-01-01T23:59:59.000Z
The chameleon gravity model postulates the existence of a scalar field that couples with matter to mediate a fifth force. If it exists, this fifth force would influence the hot X-ray emitting gas that fills the potential wells of galaxy clusters. However, it would not influence the weak lensing signal from clusters. Therefore, by comparing X-ray and weak lensing profiles, one can place upper limits on the strength of a fifth force. This technique has been attempted before using a single, nearby cluster (Coma, $z=0.02$, Terukina et al. 2014). In this paper we apply the technique to the stacked profiles of 58 clusters at higher redshifts ($0.1
DL Edwards; KD Shields; MJ Sula; MY Ballinger
1999-09-28T23:59:59.000Z
Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP--US Code of Federal Regulations, Title 40 Part 61, Subpart H). In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the US Department of Energy and operated by Pacific Northwest National Laboratory (Pacific Northwest) on the Hanford Site. Two of the facilities evaluated, 325 Building Radiochemical Processing Laboratory, and 331 Building Life Sciences Laboratory met state and federal criteria for continuous sampling of airborne radionuclide emissions. One other building, the 3720 Environmental Sciences Laboratory, was recognized as being in transition with the potential for meeting the continuous sampling criteria.
S. MacMullin; G. K. Giovanetti; M. P. Green; R. Henning; R. Holmes; K. Vorren; J. F. Wilkerson
2012-10-03T23:59:59.000Z
We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima Dai-ichi nuclear power plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^3 and 0.42 +/- 0.07 mBq/m^3 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).
Jacobson, R. A., E-mail: robert.jacobson@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States)
2014-11-01T23:59:59.000Z
French et al. determined the orbits of the Uranian rings, the orientation of the pole of Uranus, and the gravity harmonics of Uranus from Earth-based and Voyager ring occultations. Jacobson et al. determined the orbits of the Uranian satellites and the masses of Uranus and its satellites from Earth-based astrometry and observations acquired with the Voyager 2 spacecraft; they used the gravity harmonics and pole from French et al. Jacobson and Rush reconstructed the Voyager 2 trajectory and redetermined the Uranian system gravity parameters, satellite orbits, and ring orbits in a combined analysis of the data used previously augmented with additional Earth-based astrometry. Here we report on an extension of that work that incorporates additional astrometry and ring occultations together with improved data processing techniques.
Li-E Qiang; Peng Xu
2015-02-16T23:59:59.000Z
High precision Superconductivity Gravity Gradiometers (SGG) are powerful tools for relativistic experiments. In this paper, we work out the tidal signals in non-dynamical Chern-Simons modified gravity, which could be measured by orbiting SGGs around Earth. We find that, with proper orientations of multi-axes SGGs, the tidal signals from the Chern-Simons modification can be isolated in the combined data of different axes. Furthermore, for three-axes SGGs, such combined data is the trace of the total tidal matrix, which is invariant under the rotations of SGG axes and thus free from axis pointing errors. Following nearly circular orbits, the tests of the parity-violating Chern-Simons modification and the measurements of the gravitomagnetic sector in parity-conserving metric theories can be carried out independently in the same time. A first step analysis on noise sources is also included.
Qiang, Li-E
2015-01-01T23:59:59.000Z
High precision Superconductivity Gravity Gradiometers (SGG) are powerful tools for relativistic experiments. In this paper, we work out the tidal signals in non-dynamical Chern-Simons modified gravity, which could be measured by orbiting SGGs around Earth. We find that, with proper orientations of multi-axes SGGs, the tidal signals from the Chern-Simons modification can be isolated in the combined data of different axes. Furthermore, for three-axes SGGs, such combined data is the trace of the total tidal matrix, which is invariant under the rotations of SGG axes and thus free from axis pointing errors. Following nearly circular orbits, the tests of the parity-violating Chern-Simons modification and the measurements of the gravitomagnetic sector in parity-conserving metric theories can be carried out independently in the same time. A first step analysis on noise sources is also included.
Aharon Davidson; Tomer Ygael
2014-10-22T23:59:59.000Z
A gravity-anti-gravity (GaG) odd linear dilaton action offers an eternal inflation evolution governed by the unified (cosmological constant plus radiation) equation of state $\\rho-3P=4\\Lambda$. At the mini superspace level, a 'two-particle' variant of the no-boundary proposal, notably 'one-particle' energy dependent, is encountered. While a GaG-odd wave function can only host a weak Big Bang boundary condition, albeit for any $k$, a strong Big Bang boundary condition requires a GaG-even entangled wave function, and singles out $k=0$ flat space. The locally most probable values for the cosmological scale factor and the dilaton field form a grid $\\{a^2,a\\phi\\}\\sim\\sqrt{4n_1+1}\\pm\\sqrt{4n_2+1}$.
Solar system tests of Ho?ava-Lifshitz gravity
Tiberiu Harko; Zoltan Kovács; Francisco S. N. Lobo
2010-10-28T23:59:59.000Z
Recently, a renormalizable gravity theory with higher spatial derivatives in four dimensions was proposed by Ho\\v{r}ava. The theory reduces to Einstein gravity with a non-vanishing cosmological constant in IR, but it has improved UV behaviors. The spherically symmetric black hole solutions for an arbitrary cosmological constant, which represent the generalization of the standard Schwarzschild-(A)dS solution, has also been obtained for the Ho\\v{r}ava-Lifshitz theory. The exact asymptotically flat Schwarzschild type solution of the gravitational field equations in Ho\\v{r}ava gravity contains a quadratic increasing term, as well as the square root of a fourth order polynomial in the radial coordinate, and it depends on one arbitrary integration constant. The IR modified Ho\\v{r}ava gravity seems to be consistent with the current observational data, but in order to test its viability more observational constraints are necessary. In the present paper we consider the possibility of observationally testing Ho\\v{r}ava gravity at the scale of the Solar System, by considering the classical tests of general relativity (perihelion precession of the planet Mercury, deflection of light by the Sun and the radar echo delay) for the spherically symmetric black hole solution of Ho\\v{r}ava-Lifshitz gravity. All these gravitational effects can be fully explained in the framework of the vacuum solution of the gravity. Moreover, the study of the classical general relativistic tests also constrain the free parameter of the solution.
Goedel-type universes in f(R) gravity
Reboucas, M. J. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ (Brazil); Santos, J. [Universidade Federal do Rio G. do Norte, Departamento de Fisica, 59072-970 Natal-RN (Brazil)
2009-09-15T23:59:59.000Z
The f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without a dark energy matter component. If gravity is governed by a f(R) theory, a number of issues should be reexamined in this framework, including the violation of causality problem on nonlocal scale. We examine the question as to whether the f(R) gravity theories permit space-times in which the causality is violated. We show that the field equations of these f(R) gravity theories do not exclude solutions with breakdown of causality for a physically well-motivated perfect-fluid matter content. We demonstrate that every perfect-fluid Goedel-type solution of a generic f(R) gravity satisfying the condition df/dR>0 is necessarily isometric to the Goedel geometry, and therefore presents violation of causality. This result extends a theorem on Goedel-type models, which has been established in the context of general relativity. We also derive an expression for the critical radius r{sub c} (beyond which the causality is violated) for an arbitrary f(R) theory, making apparent that the violation of causality depends on both the f(R) gravity theory and the matter content. As an illustration, we concretely take a recent f(R) gravity theory that is free from singularities of the Ricci scalar and is cosmologically viable, and show that this theory accommodates noncausal as well as causal Goedel-type solutions.
On the condensed matter scheme for emergent gravity and interferometry
G. Jannes
2008-11-10T23:59:59.000Z
An increasingly popular approach to quantum gravity rests on the idea that gravity (and maybe electromagnetism and the other gauge fields) might be an 'emergent phenomenon', in the sense of representing a collective behaviour resulting from a very different microscopic physics. A prominent example of this approach is the condensed matter scheme for quantum gravity, which considers the possibility that gravity emerges as an effective low-energy phenomenon from the quantum vacuum in a way similar to the emergence of collective excitations in condensed matter systems. This condensed matter view of the quantum vacuum clearly hints that, while the term 'ether' has been discredited for about a century, quantum gravity holds many (if not all) of the characteristics that have led people in the past to label various hypothetical substances with the term 'ether'. Since the last burst of enthusiasm for an ether, at the end of the 19th century, was brought to the grave in part by the performance of a series of important experiments in interferometry, the suggestion then naturally arises that maybe interferometry could also play a role in the current discussion on quantum gravity. We will highlight some aspects of this suggestion in the context of the condensed matter scheme for emergent gravity.
M Corriveau; H Jamieson; M Parsons; J Campbell; A Lanzirotti
2011-12-31T23:59:59.000Z
Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {micro}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {micro}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({micro}XANES) and X-ray diffraction ({micro}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.
Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma
2006-09-30T23:59:59.000Z
This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.
Black Hole Thermodynamics in Modified Gravity
Jonas R. Mureika; John W. Moffat; Mir Faizal
2015-03-03T23:59:59.000Z
We analyze the thermodynamics of a non-rotating and rotating black hole in a modified theory of gravity that includes scalar and vector modifications to general relativity, which results in a modified gravitational constant $G = G_N(1+\\alpha)$ and a new gravitational charge $Q = \\sqrt{\\alpha G_N}M$. The influence of the parameter $\\alpha$ alters the non-rotating black hole's lifetime, temperature and entropy profiles from the standard Schwarzschild case. The thermodynamics of a rotating black hole is analyzed and it is shown to possess stable, cold remnants. The thermodynamic properties of a vacuum solution regular at $r=0$ are investigated and the solution without a horizon called a "gray hole" is not expected to possess an information loss problem.
Quantum Mechanics, Gravity, and the Multiverse
Yasunori Nomura
2012-07-30T23:59:59.000Z
The discovery of accelerating expansion of the universe has led us to take the dramatic view that our universe may be one of the many universes in which low energy physical laws take different forms: the multiverse. I explain why/how this view is supported both observationally and theoretically, especially by string theory and eternal inflation. I then describe how quantum mechanics plays a crucial role in understanding the multiverse, even at the largest distance scales. The resulting picture leads to a revolutionary change of our view of spacetime and gravity, and completely unifies the paradigm of the eternally inflating multiverse with the many worlds interpretation of quantum mechanics. The picture also provides a solution to a long-standing problem in eternal inflation, called the measure problem, which I briefly describe.
Kinetic Gravity Braiding and axion inflation
Debaprasad Maity
2013-03-11T23:59:59.000Z
We constructed a new class of inflationary model with the higher derivative axion field which obeys constant shift symmetry. In the usual axion (natural) inflation, the axion decay constant is predicted to be in the super-Planckian regime which is believed to be incompatible with an effective field theory framework. With a novel mechanism originating from a higher derivative kinetic gravity braiding (KGB) of an axion field we found that there exist a huge parameter regime in our model where axion decay constant could be naturally sub-Planckian. Thanks to the KGB which effectively reduces the Planck constant. This effectively reduced Planck scale provides us the mechanism of further lowering down the speed of an axion field rolling down its potential without introducing super-Planckian axion decay constant. We also find that with that wide range of parameter values, our model induces almost scale invariant power spectrum as observed in CMB experiments.
A length operator for canonical quantum gravity
T. Thiemann
1996-06-29T23:59:59.000Z
We construct an operator that measures the length of a curve in four-dimensional Lorentzian vacuum quantum gravity. We work in a representation in which a $SU(2)$ connection is diagonal and it is therefore surprising that the operator obtained after regularization is densely defined, does not suffer from factor ordering singularities and does not require any renormalization. We show that the length operator admits self-adjoint extensions and compute part of its spectrum which like its companions, the volume and area operators already constructed in the literature, is purely discrete and roughly is quantized in units of the Planck length. The length operator contains full and direct information about all the components of the metric tensor which faciliates the construction of a new type of weave states which approximate a given classical 3-geometry.
Bi-metric Gravity and "Dark Matter"
I. T. Drummond
2000-08-18T23:59:59.000Z
We present a bi-metric theory of gravity containing a length scale of galactic size. For distances less than this scale the theory satisfies the standard tests of General Relativity. For distances greater than this scale the theory yields an effective gravitational constant much larger than the locally observed value of Newton's constant. The transition from one regime to the other through the galactic scale can explain the observed rotation curves of galaxies and hence the effects normally attributed to the presence of dark matter. Phenomena on an extragalactic scale such as galactic clusters and the expansion of the universe are controlled by the enhanced gravitational coupling. This provides an explanation of the missing matter normally invoked to account for the observed value of Hubble's constant in relation to observed matter.
QCD thermodynamics using five-dimensional gravity
Megias, E.; Veschgini, K. [Institute for Theoretical Physics, University of Heidelberg (Germany); Pirner, H. J. [Institute for Theoretical Physics, University of Heidelberg (Germany); Max Planck Institute for Nuclear Physics, Heidelberg (Germany)
2011-03-01T23:59:59.000Z
We calculate the critical temperature and free energy of the gluon plasma using the dilaton potential [B. Galow, E. Megias, J. Nian, and H. J. Pirner, Nucl. Phys. B834, 330 (2010).] in the gravity theory of anti-de Sitter/QCD. The finite temperature observables are calculated in two ways: first, from the Page-Hawking computation of the free energy, and secondly using the Bekenstein-Hawking proportionality of the entropy with the area of the horizon. Renormalization is well defined, because the T=0 theory has asymptotic freedom. We further investigate the change of the critical temperature with the number of flavors induced by the change of the running coupling constant in the quenched theory. The finite temperature behavior of the speed of sound, spatial string tension and vacuum expectation value of the Polyakov loop follow from the corresponding string theory in AdS{sub 5}.
Bergshoeff, Eric A.; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Townsend, Paul K. [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2009-06-15T23:59:59.000Z
We explore the space of static solutions of the recently discovered three-dimensional 'new massive gravity' (NMG), allowing for either sign of the Einstein-Hilbert term and a cosmological term parametrized by a dimensionless constant {lambda}. For {lambda}=-1 we find black hole solutions asymptotic (but not isometric) to the unique (anti) de Sitter [(A)dS] vacuum, including extremal black holes that interpolate between this vacuum and (A)dS{sub 2}xS{sup 1}. We also investigate unitarity of linearized NMG in (A)dS vacua. We find unitary theories for some dS vacua, but (bulk) unitarity in AdS implies negative central charge of the dual conformal field theories (CFT), except for {lambda}=3 where the central charge vanishes and the bulk gravitons are replaced by 'massive photons'. A similar phenomenon is found in the massless limit of NMG, for which the linearized equations become equivalent to Maxwell's equations.
Gravity dual of metastable dynamical supersymmetry breaking
DeWolfe, Oliver [Department of Physics, 390 UCB, University of Colorado, Boulder, Colorado 80309 (United States); Kachru, Shamit; Mulligan, Michael [Department of Physics and SLAC, Stanford University, Stanford, California 94305/94309 (United States)
2008-03-15T23:59:59.000Z
Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively determine the asymptotic supergravity solutions corresponding to D3-brane probes placed at the tip of the cascading warped deformed conifold geometry, which is dual to an SU(N+M)xSU(N) gauge theory. The backreaction of the antibranes has the effect of introducing imaginary anti-self-dual flux, squashing the compact part of the space and forcing the dilaton to run. Using the generalization of holographic renormalization to cascading geometries, we determine the expectation values of operators in the dual field theory in terms of the asymptotic values of the supergravity fields.
Brane f(R) gravity cosmologies
Balcerzak, Adam; DaPbrowski, Mariusz P. [Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin (Poland)
2010-06-15T23:59:59.000Z
By the application of the generalized Israel junction conditions we derive cosmological equations for the fourth-order f(R) brane gravity and study their cosmological solutions. We show that there exists a nonstatic solution which describes a four-dimensional de Sitter (dS{sub 4}) brane embedded in a five-dimensional anti-de Sitter (AdS{sub 5}) bulk for a vanishing Weyl tensor contribution. On the other hand, for the case of a nonvanishing Weyl tensor contribution, there exists a static brane solution only. We claim that in order to get some more general nonstatic f(R) brane configurations, one needs to admit a dynamical matter energy-momentum tensor in the bulk rather than just a bulk cosmological constant.
Bending of light in conformal Weyl gravity
Sultana, Joseph; Kazanas, Demosthenes [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States) and Department of Mathematics, University of Malta, Msida (Malta); Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)
2010-06-15T23:59:59.000Z
We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term {gamma}r in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces.
Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)] [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)] [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)] [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States)] [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)
2011-11-15T23:59:59.000Z
Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical significance. In summary, airborne exposure to manganese, mercury, and particulate matter are associated with increased risk of adjudication. Causality cannot be proven in observational studies such as this one, but the association warrants further examination in other research studies. Comprehensive epidemiologic investigations of metal exposure in pediatric populations should include social health outcomes, including measures of delinquent or criminal activity. Furthermore, the influence of metals on the neurotoxic pathway leading to delinquent activity should be further explored. - Highlights: Black-Right-Pointing-Pointer We evaluate the relationship between air pollutants and adjudication. Black-Right-Pointing-Pointer Manganese, mercury, and particulate matter are associated with risk of adjudication. Black-Right-Pointing-Pointer Further research of metal exposure should include social health outcomes.
The dynamics of metric-affine gravity
Vitagliano, Vincenzo, E-mail: vitaglia@sissa.it [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sez. di Trieste, Via Valerio 2, 34127 Trieste (Italy); Sotiriou, Thomas P., E-mail: T.Sotiriou@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Liberati, Stefano, E-mail: liberati@sissa.it [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sez. di Trieste, Via Valerio 2, 34127 Trieste (Italy)
2011-05-15T23:59:59.000Z
Highlights: > The role and the dynamics of the connection in metric-affine theories is explored. > The most general second order action does not lead to a dynamical connection. > Including higher order invariants excites new degrees of freedom in the connection. > f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to study the properties of metric-affine gravity.
Simulations of Solar System observations in alternative theories of gravity
A. Hees; B. Lamine; S. Reynaud; M. -T. Jaekel; C. Le Poncin-Lafitte; V. Lainey; A. Füzfa; J. -M. Courty; V. Dehant; P. Wolf
2013-02-27T23:59:59.000Z
In this communication, we focus on the possibility to test General Relativity (GR) with radioscience experiments. We present simulations of observables performed in alternative theories of gravity using a software that simulates Range/Doppler signals directly from the space time metric. This software allows one to get the order of magnitude and the signature of the modifications induced by an alternative theory of gravity on radioscience signals. As examples, we present some simulations for the Cassini mission in Post-Einsteinian gravity (PEG) and with Standard Model Extension (SME).
Particles on a Circle in Canonical Lineal Gravity
R. B. Mann
2001-05-02T23:59:59.000Z
A description of the canonical formulation of lineal gravity minimally coupled to N point particles in a circular topology is given. The Hamiltonian is found to be equal to the time-rate of change of the extrinsic curvature multiplied by the proper circumference of the circle. Exact solutions for pure gravity and for gravity coupled to a single particle are obtained. The presence of a single particle significantly modifies the spacetime evolution by either slowing down or reversing the cosmological expansion of the circle, depending upon the choice of parameters.
Emergent noncommutative gravity from a consistent deformation of gauge theory
Cortese, Ignacio; Garcia, J Antonio [Departamento de Fisica de Altas Energias, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F. 04510 (Mexico)
2010-05-15T23:59:59.000Z
Starting from a standard noncommutative gauge theory and using the Seiberg-Witten map, we propose a new version of a noncommutative gravity. We use consistent deformation theory starting from a free gauge action and gauging a killing symmetry of the background metric to construct a deformation of the gauge theory that we can relate with gravity. The result of this consistent deformation of the gauge theory is nonpolynomial in A{sub {mu}.} From here we can construct a version of noncommutative gravity that is simpler than previous attempts. Our proposal is consistent and is not plagued with the problems of other approaches like twist symmetries or gauging other groups.
Zaromb, Solomon
2004-07-13T23:59:59.000Z
Air is sampled at a rate in excess of 100 L/min, preferably at 200-300 L/min, so as to collect therefrom a substantial fraction, i.e., at least 20%, preferably 60-100%, of airborne particulates. A substance of interest (analyte), such as lead, is rapidly solubilized from the the collected particulates into a sample of liquid extractant, and the concentration of the analyte in the extractant sample is determined. The high-rate air sampling and particulate collection may be effected with a high-throughput filter cartridge or with a recently developed portable high-throughput liquid-absorption air sampler. Rapid solubilization of lead is achieved by a liquid extractant comprising 0.1-1 M of acetic acid or acetate, preferably at a pH of 5 or less and preferably with inclusion of 1-10% of hydrogen peroxide. Rapid determination of the lead content in the liquid extractant may be effected with a colorimetric or an electroanalytical analyzer.
COLLECTION OF AIRBORNE PARTICLES BY A HIGH-GRADIENT PERMANENT MAGNETIC METHOD
Cheng, Mengdawn [ORNL; Allman, Steve L [ORNL; Ludtka, Gerard Michael [ORNL; Avens, Larry R [ORNL
2014-01-01T23:59:59.000Z
We report on the use of magnetic force in collection of airborne particles by a high- gradient permanent magnetic separation (HGPMS) device. Three aerosol particles of different magnetic susceptibility (NaCl, CuO, and Fe2O3) were generated in the electrical mobility size range of 10 to 200 nm and were used to study HGPMS collection. One HGPMS matrix element, made of stainless steel wool, was used in the device configuration. Three flow rates were selected to simulate the environmental wind speeds of interest to the study. Magnetic force was found to exhibit an insignificant effect on the separation of NaCl particles, even in the HGPMS configuration. Diffusion was a major mechanism in the removal of the diamagnetic particles; however, diffusion is insignificant under the influence of a high-gradient magnetic field for paramagnetic or ferromagnetic particles. The HGPMS showed high-performance collection (> 99%) of paramagnetic CuO and ferromagnetic Fe2O3 particles for particle sizes greater than or equal to 60 nm. As the wind speed increases, the influence of the magnetic force weakens, and the capability to remove particles from the gas stream diminishes. The results suggest that the HGPMS principle could be explored for development of an advanced miniaturized passive aerosol collector.
Not Available
1981-05-01T23:59:59.000Z
An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.
Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report
Not Available
1981-04-01T23:59:59.000Z
An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.
Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report
Not Available
1981-05-01T23:59:59.000Z
An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.
Airborne gamma-ray spectrometer and magnetometer survey, Roseburg Quadrangle, Oregon. Final report
Not Available
1981-03-01T23:59:59.000Z
An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Roseburg, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1596 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.
Hendi, Seyed Hossein; Panah, Behzad Eslam
2015-01-01T23:59:59.000Z
In this paper, we are considering two first order corrections to both gravity and gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric which representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as the magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on deficit angle of spacetime near the origin.
The evolution of miscible gravity currents in horizontal porous layers
Szulczewski, Michael Lawrence
Gravity currents of miscible fluids in porous media are important to understand because they occur in important engineering projects, such as enhanced oil recovery and geologic CO[subscript 2] sequestration. These flows ...
Dust-shell Universe in the modified gravity scenario
Michael Maziashvili
2005-04-15T23:59:59.000Z
The dynamics of the dust-shell model of universe is exactly solved for the modified Schwarzschild solution. This solution is used to derive the cosmology corresponding to the modified gravity.
Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...
Hot Springs. Data from these surveys will be integrated with older data from Chevron Minerals 1979 drill hole. Notes The gravity survey covered an area of approximately 34 km2...
Horava-Lifshitz Gravity From Dynamical Newton-Cartan Geometry
Hartong, Jelle
2015-01-01T23:59:59.000Z
Recently it has been established that torsional Newton-Cartan (TNC) geometry is the appropriate geometrical framework to which non-relativistic field theories couple. We show that when these geometries are made dynamical they give rise to Horava-Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan (NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise dictionary relating all fields (including the scalar khronon), their transformations and other properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to construct the effective action for dynamical twistless torsional Newton-Cartan geometries in 2+1 dimensions for dynamical exponent 1
Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...
Notes Gravity low associated with Mt. Princeton Batholith; density contrast of -0.5 gcm3 of valley-fill sediments relative to batholith References J.E. Case, R.F. Sikora...
Ground Gravity Survey At Dixie Valley Geothermal Area (Iovenitti...
project area. These data were used in conjunction with past gravity data reported in by Smith et al (2001) and Blackwell et al (2005). The analysis of these data had not been...
Mixed convection and heat management in the Mars gravity biosatellite
Marsh, Jesse B. (Jesse Benjamin)
2007-01-01T23:59:59.000Z
The Mars Gravity Biosatellite will house fifteen mice in a low Earth orbit satellite spinning about its longitudinal axis. The satellite's payload thermal control system will reject heat through the base of the payload ...
Hyperbolic Equations for Vacuum Gravity Using Special Orthonormal Frames
Frank B. Estabrook; R. Steve Robinson; Hugo D. Wahlquist
2004-09-29T23:59:59.000Z
By adopting Nester's higher dimensional special orthonormal frames (HSOF) the tetrad equations for vacuum gravity are put into first order symmetric hyperbolic (FOSH) form with constant coefficients, independent of any time slicing or coordinate specialization.
Regional Gravity Survey of the Northern Great Salt Lake Desert...
Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Regional Gravity...
Quantized gauge-affine gravity in the superfiber bundle approach
Meziane, A.; Tahiri, M. [Laboratoire de Physique Theorique, Universite d'Oran Es-senia, 31100 Oran (Algeria)
2005-05-15T23:59:59.000Z
The quantization of gauge-affine gravity within the superfiber bundle formalism is proposed. By introducing an even pseudotensorial 1-superform over a principal superfiber bundle with superconnection, we obtain the geometrical Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST transformations of the fields occurring in such a theory. Reducing the four-dimensional general affine group double-covering GA(4,R) to the Poincare group double-covering ISO(1,3) we also find the BRST and anti-BRST transformations of the fields present in Einstein's gravity. Furthermore, we give a prescription leading to the construction of both BRST-invariant gauge-fixing action for gauge-affine gravity and Einstein's gravity.
Status of Matter-Gravity Couplings in the SME
Tasson, Jay D
2013-01-01T23:59:59.000Z
Constraints on Lorentz violation in matter-gravity couplings are summarized along with existing proposals to obtain sensitivities that exceed current limits by up to 11 orders of magnitude.
Status of Matter-Gravity Couplings in the SME
Jay D. Tasson
2013-08-06T23:59:59.000Z
Constraints on Lorentz violation in matter-gravity couplings are summarized along with existing proposals to obtain sensitivities that exceed current limits by up to 11 orders of magnitude.
axisymmetric viscous gravity: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
largely by the coefficient Wesley N. Colley; Linda S. Sparke 1995-12-19 4 Viscous Dark Energy in f(T) Gravity General Relativity & Quantum Cosmology (arXiv) Summary: We...
Constraining gravity using entanglement in AdS/CFT
Shamik Banerjee; Arpan Bhattacharyya; Apratim Kaviraj; Kallol Sen; Aninda Sinha
2014-07-09T23:59:59.000Z
We investigate constraints imposed by entanglement on gravity in the context of holography. First, by demanding that relative entropy is positive and using the Ryu-Takayanagi entropy functional, we find certain constraints at a nonlinear level for the dual gravity. Second, by considering Gauss-Bonnet gravity, we show that for a class of small perturbations around the vacuum state, the positivity of the two point function of the field theory stress tensor guarantees the positivity of the relative entropy. Further, if we impose that the entangling surface closes off smoothly in the bulk interior, we find restrictions on the coupling constant in Gauss-Bonnet gravity. We also give an example of an anisotropic excited state in an unstable phase with broken conformal invariance which leads to a negative relative entropy.
Application Of Gravity And Deep Dipole Geoelectrics In The Volcanic...
Of Mt Etna (Sicily) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Gravity And Deep Dipole Geoelectrics In The Volcanic Area Of...
assisted gravity drainage: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014 Geosciences Websites Summary: are water,...
Absence of scalar hair in scalar-tensor gravity
Valerio Faraoni; Thomas P. Sotiriou
2013-03-04T23:59:59.000Z
Stationary, asymptotically flat black holes in scalar-tensor theories of gravity are studied. It is shown that such black holes have no scalar hair and are the same as in General Relativity.
Turbulent round jet under gravity waves
Ryu, Yong Uk
2002-01-01T23:59:59.000Z
The behavior of a neutrally buoyant horizontal turbulent round jet under a wavy environment was investigated. Progressive waves with different wave amplitudes in an intermediate water depth were used. The Particle Image Velocimetry (PIV) technique...
PETERSEN SW
2010-12-02T23:59:59.000Z
Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground measurements to refine interpretations of AEM data; and (3) Improve the calibration and correlation of AEM information. The potential benefits of this project are as follows: (1) Develop a tool to map subsurface units at the Hanford Site in a rapid and cost effective manner; (2) Map groundwater pathways within the River Corridor; and (3) Aid development of the conceptual site model. If anomalies observed in the AEM data can be correlated with subsurface geology, then the rapid scanning and non-intrusive capabilities provided by the airborne surveys can be used at the Hanford Site to screen for areas that warrant further investigation.
Gravity Control Propulsion: Towards a General Relativistic Approach
O. Bertolami; F. G. Pedro
2006-10-16T23:59:59.000Z
Evaluation of gravity control concepts should be examined with respect to currently known physical theories. In this work we study the hypothetical conversion of gravitational potential energy into kinetic energy using the formalism of general relativity. We show that the energy involved in the process greatly exceeds the Newtonian estimate, given the nature of general relativity. We conclude that the impact of any gravity manipulation for propulsion greatly depends fundamentally on its exact definition.
A bird's eye view of f(R)-gravity
S. Capozziello; M. De Laurentis; V. Faraoni
2009-10-02T23:59:59.000Z
We survey the landscape of $f(R)$ theories of gravity in their various formulations, which have been used to model the cosmic acceleration as alternatives to dark energy and dark matter. Besides, we take into account the problem of gravitational waves in such theories. We discuss some successes of $f(R)$-gravity (where $f(R)$ is a generic function of Ricci scalar $R$), theoretical and experimental challenges that they face in order to satisfy minimal criteria for viability.
Einstein's other gravity and the acceleration of the Universe
Linder, Eric V. [Berkeley Lab and University of California, Berkeley, California 94720 (United States); Institute for the Early Universe, Ewha Womans University, Seoul 120-750 (Korea, Republic of)
2010-06-15T23:59:59.000Z
Spacetime curvature plays the primary role in general relativity but Einstein later considered a theory where torsion was the central quantity. Just as the Einstein-Hilbert action in the Ricci curvature scalar R can be generalized to f(R) gravity, we consider extensions of teleparallel, or torsion scalar T, gravity to f(T) theories. The field equations are naturally second order, avoiding pathologies, and can give rise to cosmic acceleration with unique features.
Gravity-free hydraulic jumps and metal femtocups
Rama Govindarajan; Manikandan Mathur; Ratul DasGupta; N. R. Selvi; Neena Susan John; G. U. Kulkarni
2006-10-03T23:59:59.000Z
Hydraulic jumps created by gravity are seen every day in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity, by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, we show that this leads to solid femtolitre cups of gold, silver, copper, niobium and tin.
Gravity Effects on Antimatter in the Standard-Model Extension
Jay D. Tasson
2015-01-30T23:59:59.000Z
The gravitational Standard-Model Extension (SME) is the general field-theory based framework for the analysis of CPT and Lorentz violation. In this work we summarize the implications of Lorentz and CPT violation for antimatter gravity in the context of the SME. Implications of various attempts to place indirect limits on anomalous antimatter gravity are considered in the context of SME-based models.
Gravity Effects on Antimatter in the Standard-Model Extension
Tasson, Jay D
2015-01-01T23:59:59.000Z
The gravitational Standard-Model Extension (SME) is the general field-theory based framework for the analysis of CPT and Lorentz violation. In this work we summarize the implications of Lorentz and CPT violation for antimatter gravity in the context of the SME. Implications of various attempts to place indirect limits on anomalous antimatter gravity are considered in the context of SME-based models.
Entropy and Area of Black Holes in Loop Quantum Gravity
I. B. Khriplovich
2002-03-31T23:59:59.000Z
Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.
Finite field-dependent symmetries in perturbative quantum gravity
Upadhyay, Sudhaker, E-mail: sudhaker@boson.bose.res.in
2014-01-15T23:59:59.000Z
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also.
Testing Horava-Lifshitz gravity using thin accretion disk properties
Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N. [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong); Centro de Fisica Teorica e Computacional, Faculdade de Ciencias da Universidade de Lisboa, Avenida Professor Gama Pinto 2, P-1649-003 Lisboa (Portugal)
2009-08-15T23:59:59.000Z
Recently, a renormalizable gravity theory with higher spatial derivatives in four dimensions was proposed by Horava. The theory reduces to Einstein gravity with a nonvanishing cosmological constant in IR, but it has improved UV behaviors. The spherically symmetric black hole solutions for an arbitrary cosmological constant, which represent the generalization of the standard Schwarzschild-(anti) de Sitter solution, have also been obtained for the Horava-Lifshitz theory. The exact asymptotically flat Schwarzschild-type solution of the gravitational field equations in Horava gravity contains a quadratic increasing term, as well as the square root of a fourth order polynomial in the radial coordinate, and it depends on one arbitrary integration constant. The IR-modified Horava gravity seems to be consistent with the current observational data, but in order to test its viability more observational constraints are necessary. In the present paper we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around black holes. The energy flux, the temperature distribution, the emission spectrum, as well as the energy conversion efficiency are obtained, and compared to the standard general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.
Bruce Herold Dean
2013-12-29T23:59:59.000Z
An analysis of all known spherically symmetric solutions to the field equations originating from the Riemann tensor quadratic curvature Lagrangian is presented. A new exact solution is found for the field equation originating from the "energy-momentum" equation of the gauge gravity theory. Imposing equivalence between the Palatini and standard variational field equations yields an algebraic condition that restricts the number spacetime solutions to gauge gravity. An analysis of a new spherically symmetric solution to the conformal gravity field equations is also presented. Point particle orbital dynamics in both the Schwarzschild and Reissner-Nordstrom black hole spacetimes are analyzed as 2-d conservative bifurcation phenomena. The Schwarzschild dynamics exhibit both saddle-center and transcritical bifurcation points and a calculation of periastron precession is presented that incorporates a phase-plane analysis of the relativistic equations of motion. Level curves of constant energy are illustrated for both timelike and null geodesics and a phase-plane analysis of dynamical invariance between the proper and coordinate time reference frames is discussed. The Reissner-Nordstrom dynamics exhibit saddle-center, transcritical, pseudo-transcritical, and additional bifurcations that combine all three previous bifurcations in various combinations. Periastron precession in the Reissner-Nordstrom spacetime is analyzed using the phase-plane and bifurcation techniques and extended to include a bifurcation point of the dynamics. A numerical solution at these parameter values illustrates that such orbits typically yield a much larger precession value compared to the standard value for timelike, precession. The acausal geodesics considered by Brigman are also discussed and their precession value is calculated.
FACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES
Laughlin, Robert B.
to the repair of hydraulic turbine runners and large pump impellers. Reclamation operates and maintains a wideFACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES VOLUME 2-5 TURBINE REPAIR Internet Version variety of reaction and impulse turbines as well as axial flow, mixed flow, radial flow pumps and pump
Galaxy Redshifts: Improved Techniques
A. F. Heavens
1993-05-26T23:59:59.000Z
This paper analyses the effects of random noise in determining errors and confidence levels for galaxy redshifts obtained by cross-correlation techniques. The main finding is that confidence levels have previously been overestimated, and errors inaccurately calculated in certain applications. New formul\\ae\\ are presented.
The attribute measurement technique
Macarthur, Duncan W [Los Alamos National Laboratory; Langner, Diana [Los Alamos National Laboratory; Smith, Morag [Los Alamos National Laboratory; Thron, Jonathan [Los Alamos National Laboratory; Razinkov, Sergey [RFNC-VNIIEF; Livke, Alexander [RFNC-VNIIEF
2010-01-01T23:59:59.000Z
Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.
GARDIENNAGE Help Desk technique
Nesterov, Yurii
--> Relais vers Garde GTPW ASCENSEURS 1Ă¨re impulsion Dispatching UCL (SystĂ¨me EBI Honeywell GTPW) Dispatching UCL --> SECURITAS LEW ALARMES CDC (SystĂ¨me EBI -Enterprise Building Integrator -Honeywell GTPW tĂ©lĂ©phonique ) TECHNIQUES CDC (SystĂ¨me EBI Honeywell GTPW) GTPW (Heures ouvrables) CDC (En dehors des heures
J. W. Maluf
2003-04-01T23:59:59.000Z
We show that the coupling of a Dirac spinor field with the gravitational field in the teleparallel equivalent of general relativity is consistent. For an arbitrary SO(3,1) connection there are two possibilities for the coupling of the spinor field with the gravitational field. The problems of consistency raised by Y. N. Obukhov and J. G. Pereira in the paper {\\it Metric-affine approach to teleparallel gravity} [gr-qc/0212080] take place only in the framework of one particular coupling. By adopting an alternative coupling the consistency problem disappears.
Anti-gravity and/or dark matter contributions from massive gravity
Bebronne, Michael V
2009-01-01T23:59:59.000Z
Recently, the static spherically symmetric solution of the gravitational field equations have been found in theories describing massive graviton with spontaneous breaking of the Lorentz invariance. These solutions, which show off two integration constants instead of one in General Relativity, are discussed. They are candidates for modified black holes provided they are stable against small perturbations. These solutions may have both attractive or repulsive behavior at large distances. Therefore, these modified black holes may mimics the presence of dark matter or be a source of anti-gravity.
Query Optimization Techniques Class Hierarchies
Mannheim, UniversitĂ¤t
Query Optimization Techniques Exploiting Class Hierarchies Sophie Cluet 1 Guido Moerkotte 2 1 INRIA Since the introduction of object base management systems (OBMS), many query optimization techniques tailored for object query languages have been proposed. They adapt known optimization techniques
Scalar-tensor gravity and conformal continuations
Kirill A. Bronnikov
2002-03-30T23:59:59.000Z
Global properties of vacuum static, spherically symmetric configurations are studied in a general class of scalar-tensor theories (STT) of gravity in various dimensions. The conformal mapping between the Jordan and Einstein frames is used as a tool. Necessary and sufficient conditions are found for the existence of solutions admitting a conformal continuation (CC). The latter means that a singularity in the Einstein-frame manifold maps to a regular surface S_(trans) in the Jordan frame, and the solution is then continued beyond this surface. S_(trans) can be an ordinary regular sphere or a horizon. In the second case, S_(trans) proves to connect two epochs of a Kantowski-Sachs type cosmology. It is shown that, in an arbitrary STT, with arbitrary potential functions $U(\\phi)$, the list of possible types of causal structures of vacuum space-times is the same as in general relativity with a cosmological constant. This is true even for conformally continued solutions. It is found that when S_(trans) is an ordinary sphere, one of the generic structures appearing as a result of CC is a traversable wormhole. Two explicit examples are presented: a known solution illustrating the emergence of singularities and wormholes, and a nonsingular 3-dimensional model with an infinite sequence of CCs.
Gravity stabilized thermal miscible displacement process
Vogel, J.V.
1987-10-06T23:59:59.000Z
A method is described of recovering viscous hydrocarbons from a subterranean reservoir. The reservoir is penetrated by at least one injection well and one production well. The injection well is in fluid communication with the upper portion of the reservoir and the production well is in fluid communication with the lower portion of the reservoir. The injection well and the production well defines a fluid flow path therebetween. The method comprises the steps of: (a) injecting a steam-solvent vapor mixture into the upper portion of the reservoir through the injection well. The steam-solvent vapor mixture is undersaturated in solvent and saturated with steam; (b) reducing the viscosity of the hydrocarbons by heat released upon condensation of the steam-solvent vapor mixture and reducing the viscosity of the hydrocarbons further upon condensation of solvent vapors. The condensed solvent vapors goes into solution with the hydrocarbons; and (c) collecting a mixture of hydrocarbons and solvent accumulated at the bottom of the production well substantially entirely under the force of gravity.
Non-Singular Cosmology in Modified Gravity
J. W. Moffat
2007-10-24T23:59:59.000Z
A non-singular cosmology is derived in modified gravity (MOG) with a varying gravitational coupling strength $G(t)=G_N\\xi(t)$. Assuming that the curvature $k$, the cosmological constant $\\Lambda$ and $\\rho$ vanish at $t=0$, we obtain a non-singular universe with a negative pressure, $p_G < 0$. Quantum fluctuations at $t\\sim 0$ produce creation of pairs of particles from the vacuum explaining the origin of matter. The universe expands for $t\\to \\infty$ according to the standard radiation and matter dominated solutions. The arrow of time reverses at $t=0$ always pointing in the direction of increasing entropy ${\\cal S}$ and the entropy is at a minimum value at $t=0$, solving the conundrum of the Second Law of Thermodynamics. The Hubble radius $H^{-1}(t)$ is infinite at $t=0$ removing the curvature and particle horizons. The negative pressure $p_G$ generated by the scalar field $\\xi$ at $t\\sim 0$ can produce quantum spontaneous creation of particles explaining the origin of matter and radiation.
Infrared modified gravity with dynamical torsion
Nikiforova, V. [Physics Department, Moscow State University, Moscow, 119899 (Russian Federation); Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, Moscow, 117312 (Russian Federation); Randjbar-Daemi, S. [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34014, Trieste (Italy); Rubakov, V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, Moscow, 117312 (Russian Federation)
2009-12-15T23:59:59.000Z
We continue the recent study of the possibility of constructing a consistent infrared modification of gravity by treating the vierbein and connection as independent dynamical fields. We present the generalized Fierz-Pauli equation that governs the propagation of a massive spin-2 mode in a model of this sort in the backgrounds of arbitrary torsionless Einstein manifolds. We show explicitly that the number of propagating degrees of freedom in these backgrounds remains the same as in flat space-time. This generalizes the recent result that the Boulware-Deser phenomenon does not occur in de Sitter and anti-de Sitter backgrounds. We find that, at least for weakly curved backgrounds, there are no ghosts in the model. We also discuss the interaction of sources in flat background. It is generally believed that the spinning matter is the only source of torsion. Our flat space study shows that this is not the case. We demonstrate that an ordinary conserved symmetric energy-momentum tensor can also generate torsion fields and thus excite massive spin-2 degrees of freedom.
Quantization of neutron in Earth's gravity
Pulak Ranjan Giri
2007-08-22T23:59:59.000Z
Gravity is the weakest of all four known forces in the universe. Quantum states of an elementary particle due to such a weak field is certainly very shallow and would therefore be an experimental challenge to detect. Recently an experimental attempt was made by V. V. Nesvizhevsky et al., Nature 415, 297 (2002), to measure the quantum states of a neutron, which shows that ground state and few excited states are \\sim 10^{-12}eV. We show that the energy of the ground state of a neutron confined above Earth's surface should be \\sim 10^{-37}eV. The experimentally observed energy levels are 10^{25} times deeper than the actual energy levels it should be and thus certainly not due to gravitational effect of Earth. Therefore the correct interpretation for the painstaking experimental results of Ref. \\cite{nes1} is due to the confinement potential of a one dimensional box of length L \\sim 50\\mu m, generated from the experimental setup as commented before \\cite{hansoon}. Our results thus creates a new challenge to the experimentalist to resolve the shallow energy levels of the neutron in Earth's gravitational field in future.
Scale-invariant gravity: Spacetime recovered
Bryan Kelleher
2004-07-28T23:59:59.000Z
The configuration space of general relativity is superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms. However, it has been argued that the configuration space for gravity should be conformal superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms and conformal transformations. Recently a manifestly 3-dimensional theory was constructed with conformal superspace as the configuration space. Here a fully 4-dimensional action is constructed so as to be invariant under conformal transformations of the 4-metric using general relativity as a guide. This action is then decomposed to a (3+1)-dimensional form and from this to its Jacobi form. The surprising thing is that the new theory turns out to be precisely the original 3-dimensional theory. The physical data is identified and used to find the physical representation of the theory. In this representation the theory is extremely similar to general relativity. The clarity of the 4-dimensional picture should prove very useful for comparing the theory with those aspects of general relativity which are usually treated in the 4-dimensional framework.
Softened Gravity and the Extension of the Standard Model up to Infinite Energy
Gian F. Giudice; Gino Isidori; Alberto Salvio; Alessandro Strumia
2015-03-25T23:59:59.000Z
Attempts to solve naturalness by having the weak scale as the only breaking of classical scale invariance have to deal with two severe difficulties: gravity and the absence of Landau poles. We show that solutions to the first problem require premature modifications of gravity at scales no larger than $10^{11}$ GeV, while the second problem calls for many new particles at the weak scale. To build models that fulfil these properties, we classify 4-dimensional Quantum Field Theories that satisfy Total Asymptotic Freedom (TAF): the theory holds up to infinite energy, where all coupling constants flow to zero. We develop a technique to identify such theories and determine their low-energy predictions. Since the Standard Model turns out to be asymptotically free only under the unphysical conditions $g_1 = 0$, $M_t = 186$ GeV, $M_\\tau = 0$, $M_h = 163$ GeV, we explore some of its weak-scale extensions that satisfy the requirements for TAF.
Softened Gravity and the Extension of the Standard Model up to Infinite Energy
Gian F. Giudice; Gino Isidori; Alberto Salvio; Alessandro Strumia
2015-02-06T23:59:59.000Z
Attempts to solve naturalness by having the weak scale as the only breaking of classical scale invariance have to deal with two severe difficulties: gravity and the absence of Landau poles. We show that solutions to the first problem require premature modifications of gravity at scales no larger than $10^{11}$ GeV, while the second problem calls for many new particles at the weak scale. To build models that fulfil these properties, we classify 4-dimensional Quantum Field Theories that satisfy Total Asymptotic Freedom (TAF): the theory holds up to infinite energy, where all coupling constants flow to zero. We develop a technique to identify such theories and determine their low-energy predictions. Since the Standard Model turns out to be asymptotically free only under the unphysical conditions $g_1 = 0$, $M_t = 186$ GeV, $M_\\tau = 0$, $M_h = 163$ GeV, we explore some of its weak-scale extensions that satisfy the requirements for TAF.
Resin infiltration transfer technique
Miller, David V. (Pittsburgh, PA); Baranwal, Rita (Glenshaw, PA)
2009-12-08T23:59:59.000Z
A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.
Innovative Technologies and Techniques
Samano, R.; Swinford, S.
2014-01-01T23:59:59.000Z
November 2014 Innovative Technologies and Techniques ESL-KT-14-11-22 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 What’s New in Energy Efficient Cooling Systems? ? Director of Energy Management ? Moving Away From... Refrigerants ? LEED ? Reducing the Carbon Footprint ? Improving Indoor Air Quality - IAQ ? High Efficiency Fans and Motors ? Economizers ESL-KT-14-11-22 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Outside Air Management Experts...
Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Edwards, Daniel L.
2003-12-05T23:59:59.000Z
Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods and provides the results for the assessment performed in 2003.