Jiajia Sun and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado School of Mines
and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Department of Geophysics, Colorado School of geophysical data has been widely uti- lized in data interpretation in both hydrocarbon and mineral exploration
, and wavelets Kristofer Davis and Yaoguo Li, Center for Gravity, Electrical, and Magnetics, Colorado School transforms on a re-ordered parameter set. The adaptive mesh discretizes the model region by starting transforms by storing only significant coefficients of those functions. This not only increases the speed
LABORATORY VI ELECTRICITY FROM MAGNETISM
Minnesota, University of
LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic can give rise to electric currents. This is the effect that allows the generation of electricity
measurements. Our methods are applied to real airborne magnetic data where by we compare measured of cal- culated gradients. INTRODUCTION Airborne magnetic gradiometry data are becoming common in large-mode noise rejection enhances the signal-to-noise ratio. Gradients in air- borne magnetometry have been used
Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li basins and have strong remanent magnetization. The appli- cation arises in exploration of natural gas identify the volcanic units at large depths. INTRODUCTION Exploration for natural gas hosted in volcanics
Electric-Magnetic Duality and Topological Insulators
Karch, A. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)
2009-10-23T23:59:59.000Z
We work out the action of the SL(2,Z) electric-magnetic duality group for an insulator with a nontrivial permittivity, permeability, and theta angle. This theory has recently been proposed to be the correct low-energy effective action for topological insulators. As applications, we give manifestly SL(2,Z) covariant expressions for the Faraday rotation at orthogonal incidence at the interface of two such materials, as well as for the induced magnetic and electric charges, slightly clarifying the meaning of expressions previously derived in the literature. We also use electric-magnetic duality to find a gravitational dual for a strongly coupled version of this theory using the gauge/gravity correspondence.
LABORATORY VI ELECTRICITY FROM MAGNETISM
Minnesota, University of
LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation
Determination of Electric-Field, Magnetic-Field, and Electric...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Determination of Electric-Field, Magnetic-Field, and Electric-Current...
Magnetic and Electric Black Holes in Arbitrary Dimension
Adil Belhaj; Pablo Diaz; Antonio segui
2009-06-02T23:59:59.000Z
In this work, we compare two different objects: electric black holes and magnetic black holes in arbitrary dimension. The comparison is made in terms of the corresponding moduli space and their extremal geometries. We treat parallelly the magnetic and the electric cases. Specifically, we discuss the gravitational solution of these spherically symmetric objects in the presence of a positive cosmological constant. Then, we find the bounded region of the moduli space allowing the existence of black holes. After identifying it in both the electric and the magnetic case, we calculate the geometry that comes out between the horizons at the coalescence points. Although the electric and magnetic cases are both very different (only dual in four dimensions), gravity solutions seem to clear up most of the differences and lead to very similar geometries.
Global Electrical Conductivity Magnetic Satellite Induction Studies
Constable, Steve
· Geomagnetic depth sounding (GDS) method Measure horizontal and vertical magnetic fields 2nd-varying magnetic field induces electric currents in conductors. × E = - B t Secondary magnetic fields created by these currents appose the primary magnetic field. So, conductors attenuate magnetic fields. 2nd
Electric field in 3D gravity with torsion
M. Blagojevi?; B. Cvetkovi?
2008-09-01T23:59:59.000Z
It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.
Electric field in 3D gravity with torsion
Blagojevic, M.; Cvetkovic, B. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia)
2008-08-15T23:59:59.000Z
It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.
Hendi, Seyed Hossein; Panah, Behzad Eslam
2015-01-01T23:59:59.000Z
In this paper, we are considering two first order corrections to both gravity and gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric which representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as the magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on deficit angle of spacetime near the origin.
Electric Dipole Moment of Magnetic Monopole
Makoto Kobayashi
2007-03-07T23:59:59.000Z
The electric dipole moment of magnetic monopoles with spin is studied in the N=2 supersymmetric gauge theory. The dipole moments of the electric charge distributions, as well as the dipole moments due to the magnetic currents, are calculated. The contribution of charge distribution of the fermion to the gyroelectric ratio is expressed by using zeta(3).
Engineering Magnetics, ECE 593 Structure: Three 80-minute lectures per week Instructors: A. Weisshaar (primaryECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields. Credits: 4 Terms Offered: Fall Prerequisites: MTH 255, ENGR 203 (concurrent enrollment
Can (electric-magnetic) duality be gauged?
Bunster, Claudio [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Muehlenberg 1, D-14476 Potsdam (Germany); Henneaux, Marc [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Universite Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Muehlenberg 1, D-14476 Potsdam (Germany)
2011-02-15T23:59:59.000Z
There exists a formulation of the Maxwell theory in terms of two vector potentials, one electric and one magnetic. The action is then manifestly invariant under electric-magnetic duality transformations, which are rotations in the two-dimensional internal space of the two potentials, and local. We ask the question: Can duality be gauged? The only known and battle-tested method of accomplishing the gauging is the Noether procedure. In its decanted form, it amounts to turning on the coupling by deforming the Abelian gauge group of the free theory, out of whose curvatures the action is built, into a non-Abelian group which becomes the gauge group of the resulting theory. In this article, we show that the method cannot be successfully implemented for electric-magnetic duality. We thus conclude that, unless a radically new idea is introduced, electric-magnetic duality cannot be gauged. The implication of this result for supergravity is briefly discussed.
Maroncelli, Mark
Electric-Field Control of Magnetism Intrinsic magnetoelectric coupling describes the microscopic interaction between magnetic and electric polarization in a single-phase material. The control of the magnetic of the two interactions. Moderate biaxial compression precipitates local magnetic competition
Electric-Magnetic Duality and Topological Insulators
Andreas Karch
2009-10-03T23:59:59.000Z
We work out the action of the SL(2,Z) electric-magnetic duality group for an insulator with a non-trivial permittivity, permeability and theta-angle. This theory has recently been proposed to be the correct low-energy effective action for topological insulators. As applications, we give manifestly SL(2,Z) covariant expressions for the Faraday rotation at orthogonal incidence at the interface of two such materials, as well as for the induced magnetic and electric charges, slightly clarifying the meaning of expressions previously derived in the literature. We also use electric-magnetic duality to find a gravitational dual for a strongly coupled version of this theory using the AdS/CFT correspondence.
Magnetic response enhancement via electrically induced magnetic moments
B. Jungnitsch; J. Evers
2008-04-22T23:59:59.000Z
The realization of negative refraction in atomic gases requires a strong magnetic response of the atoms. Current proposals for such systems achieve an enhancement of the magnetic response by a suitable laser field configuration, but still rely on high gas densities. Thus further progress is desirable, and this requires an understanding of the precise mechanism for the enhancement. Therefore, here we study the magnetic and electric response to a probe field interacting with three-level atoms in ladder configuration. In our first model, the three transitions are driven by a control field and the electric and magnetic component of the probe field, giving rise to a closed interaction loop. In a reference model, the coherent driving is replaced by an incoherent pump field. A time-dependent analysis of the closed-loop system enables us to identify the different contributions to the medium response. A comparison with the reference system then allows one to identify the physical mechanism that leads to the enhancement. It is found that the enhancement occurs at so-called multiphoton resonance by a scattering of the coupling field and the electric probe field mode into the magnetic probe field mode. Based on these results, conditions for the enhancement are discussed.
Electric-Magnetic Duality in Massless QED?
Chris Ford
2009-09-09T23:59:59.000Z
The possibility that QED and recently developed non-Hermitian, or magnetic, versions of QED are equivalent is considered. Under this duality the Hamiltonians and anomalous axial currents of the two theories are identified. A consequence of such a duality is that particles described by QED carry magnetic as well as electric charges. The proposal requires a vanishing zero bare fermion mass in both theories; Dirac mass terms are incompatible with the conservation of magnetic charge much as Majorana masses spoil the conservation of electric charge. The physical spectrum comprises photons and massless spin-1/2 particles carrying equal or opposite electric and magnetic charges. The four particle states described by the Dirac fermion correspond to the four possible charge assignments of elementary dyons. This scale invariant spectrum indicates that the quantum field theory is finite. The Johnson Baker Willey eigenvalue equation for the fine structure constant in finite spinor QED is interpreted as a Dirac-like charge quantisation condition for dyons.
Electric control of magnetization relaxation in thin film magnetic insulators.
Wang, Z.; Sun, Y.; Song, Y-Y.; Wu, M.; Schultheiss, H.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Colorado State Univ.)
2011-10-01T23:59:59.000Z
Control of magnetization relaxation in magnetic insulators via interfacial spin scattering is demonstrated. The experiments use nanometer-thick yttrium iron garnet (YIG)/Pt layered structures, with the Pt layer biased by an electric voltage. The bias voltage produces a spin current across the Pt thickness. As this current scatters off the YIG surface, it exerts a torque on the YIG surface spins. This torque can reduce or enhance the damping and thereby decrease or increase the ferromagnetic resonance linewidth of the YIG film, depending on the field/current configuration.
Ceramic electrical insulation for electrical coils, transformers, and magnets
Rice, John A. (Longmont, CO); Hazelton, Craig S. (Lafayette, CO); Fabian, Paul E. (Broomfield, CO)
2002-01-01T23:59:59.000Z
A high temperature electrical insulation is described, which is suitable for electrical windings for any number of applications. The inventive insulation comprises a cured preceramic polymer resin, which is preferably a polysiloxane resin. A method for insulating electrical windings, which are intended for use in high temperature environments, such as superconductors and the like, advantageously comprises the steps of, first, applying a preceramic polymer layer to a conductor core, to function as an insulation layer, and second, curing the preceramic polymer layer. The conductor core preferably comprises a metallic wire, which may be wound into a coil. In the preferred method, the applying step comprises a step of wrapping the conductor core with a sleeve or tape of glass or ceramic fabric which has been impregnated by a preceramic polymer resin. The inventive insulation system allows conducting coils and magnets to be fabricated using existing processing equipment, and maximizes the mechanical and thermal performance at both elevated and cryogenic temperatures. It also permits co-processing of the wire and the insulation to increase production efficiencies and reduce overall costs, while still remarkably enhancing performance.
Electric-magnetic duality implies (global) conformal invariance
Sung-Pil Moon; Sang-Jin Lee; Ji-Hye Lee; Jae-Hyuk Oh
2014-05-30T23:59:59.000Z
We have examined quantum theories of electric magnetic duality invariant vector fields enjoying classical conformal invariance in 4-dimensional flat spacetime. We extend Dirac's argument about "the conditions for a quantum field theory to be relativistic" to "those for a quantum theory to be conformal". We realize that electric magnetic duality invariant vector theories together with classical conformal invariance defined in 4-$d$ flat spacetime are still conformally invariant theories when they are quantized in a way that electric magnetic duality is manifest.
Thermal to electricity conversion using thermal magnetic properties
West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID
2010-04-27T23:59:59.000Z
A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.
Calculation Method of Permanent Magnet Pickups for Electric Guitars
Paris-Sud XI, UniversitÃ© de
in the 1930s, when Rickenbacker fitted out a guitar with a magnet and coils, thus designing the first magnetic to look at the types of magnetic circuit for the guitar pickups. We consider in this paper the most usual1 Calculation Method of Permanent Magnet Pickups for Electric Guitars G. Lemarquand and V
Thermo-electric transport in gauge/gravity models with momentum dissipation
Andrea Amoretti; Alessandro Braggio; Nicola Maggiore; Nicodemo Magnoli; Daniele Musso
2014-10-07T23:59:59.000Z
We present a systematic definition and analysis of the thermo-electric linear response in gauge/gravity systems focusing especially on models with massive gravity in the bulk and therefore momentum dissipation in the dual field theory. A precise treatment of finite counter-terms proves to be essential to yield a consistent physical picture whose hydrodynamic and beyond-hydrodynamics behaviors noticeably match with field theoretical expectations. The model furnishes a possible gauge/gravity description of the crossover from the quantum-critical to the disorder-dominated Fermi-liquid behaviors, as expected in graphene.
Light scattering by an array of electric and magnetic nanoparticles
Floreano, Dario
Light scattering by an array of electric and magnetic nanoparticles Braulio García-Cámara1, 2@unican.es Abstract: Light scattering by an array of alternating electric and magnetic nanoparticles is analyzed, "Polarization sensitive silicon photodiodes using nanostructured metallic grids," Appl. Phys. Lett. 94
Electric-Magnetic Duality, Matrices, & Emergent Spacetime
Shyamoli Chaudhuri
2005-08-23T23:59:59.000Z
This is a rough transcript of talks given at the Workshop on Groups & Algebras in M Theory at Rutgers University, May 31--Jun 04, 2005. We review the basic motivation for a pre-geometric formulation of nonperturbative String/M theory, and for an underlying eleven-dimensional electric-magnetic duality, based on our current understanding of the String/M Duality Web. We explain the concept of an emerging spacetime geometry in the large N limit of a U(N) flavor matrix Lagrangian, distinguishing our proposal from generic proposals for quantum geometry, and explaining why it can incorporate curved spacetime backgrounds. We assess the significance of the extended symmetry algebra of the matrix Lagrangian, raising the question of whether our goal should be a duality covariant, or merely duality invariant, Lagrangian. We explain the conjectured isomorphism between the O(1/N) corrections in any given large N scaling limit of the matrix Lagrangian, and the corresponding alpha' corrections in a string effective Lagrangian describing some weak-coupling limit of the String/M Duality Web.
Paris-Sud XI, Université de
1 Stochastic Modeling of Soft Magnetic Properties of Electrical Steels: Application to Stators magnetic materials properties (magnetic behavior law, iron losses) during the manufacturing process pole stator generator. Twenty eight (28) samples of slinky stator (SS) coming from the same production
Biological Effects of Electrical and Magnetic Fields: Is It Real?
Durham, M. O.
1993-01-01T23:59:59.000Z
this conflict. The model is a composite energy approach that identifies the classical, thermal electromagnetic interaction as well as a completely independent electric and independent magnetic component. An overview of the biological investigations is presented...
Superconducting magnetic energy storage for asynchronous electrical systems
Boenig, H.J.
1984-05-16T23:59:59.000Z
It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.
McQuade, D. Tyler
, electric cars, and wind-powered generators. Currently, the strongest permanent magnets contain rare earth
Orthopositronium: "On the possible relation of gravity to electricity"
B. A. Kotov; B. M. Levin; V. I. Sokolov
2006-04-24T23:59:59.000Z
The resolve of the 'orthopositronium-lifetime puzzle' needs study of the "isotope anomaly" in gaseous neon and also of the contribution ~ 0.002 of nonperturbative mode into orthopositronium annihilation. The Michigan results (2003) are considered as the first supervision of relation between gravitation and electricity. For the decision of alternative in interpretation of new and former results it is necessary to execute the program of additional measurements.
Plasmon-graviton conversion in a magnetic field in TeV-scale gravity
E. Yu. Melkumova
2011-12-13T23:59:59.000Z
Kaluza-Klein (KK) gravitons emission rates due to plasmon-graviton conversion in magnetic field are computed within the ADD model of TeV-scale gravity. Plasma is described in the kinetic approach as the system of charged particles and Maxwell field both confined on the brane. Interaction with multidimensional gravity living in the bulk with $n$ compact extra dimensions is introduced within the linearized theory. Plasma collective effects enter through the two-point correlation function of the fluctuations of the energy-momentum tensor. The estimate for magnetic stars is presented leading to the lower limit of the D-dimensional Plank mass.
Yao, Bin
magnet synchronous motor (PMSM) offers several advantages of high transmission efficiency and high cylinder driven by permanent magnet synchronous motor (PMSM). Though direct-drive linear motors has some to direct-drive linear motor, the solution of electrical cylinder with PMSM has larger output force
Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil
Watts, A. B. "Tony"
Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil A. B profile across the Parnaiba cratonic basin in NorthEast Brazil. The purpose of this project is to acquire margin of Parnaíba Basin, Brazil. Geophysics 64: 337-356. Ussami N, Cogo de Sa N, Molina EC. 1993
Magnetism Chapter 4 Delmar's/Electricity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, InaprilU .MagneticMagnetic
Anomalous Magnetic and Electric Dipole Moments of the Tau
Lucas Taylor
1998-10-23T23:59:59.000Z
This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the $\\eettg$ process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: $\\atau = 0.004 \\pm 0.027 \\pm 0.023$ and $\\dtau = (0.0 \\pm 1.5 \\pm 1.3)\\times 10^{-16}{e{\\cdot}\\mathrm{cm}}$.
Astrophysical Effects Related to Gravity-Induced Electric Polarization of Matter
B. V. Vasiliev
2000-02-08T23:59:59.000Z
The calculations in Thomas-Fermi approximation show that in a gravitational field each cell of ultra dense matter inside celestial bodies obtains a very small positive electric charge. A celestial body is electrically neutral as a whole, because the negative electric charge exists at its surface. The positive volume charge is very small, on the order of magnitude it equals to 10^{-18}e per atom only. But it is sufficient to explain the occurrence of magnetic fields of the celestial bodies and the existence of a discrete spectrum of steady-state values of masses of planets, stars, and pulsars.
Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M. [Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Rijk, G. de [European Organization for Nuclear Research CERN, 1211 Geneva (Switzerland)
2014-01-27T23:59:59.000Z
Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.
Longitudinal study of student conceptual understanding in electricity and magnetism S. J. Pollock
Colorado at Boulder, University of
Longitudinal study of student conceptual understanding in electricity and magnetism S. J. Pollock at the freshman level on juniors' performance on a conceptual survey of Electricity and Magnetism E&M . We measured student performance on a research-based conceptual instrument--the Brief Electricity & Magnetism
Electric control of magnetization relaxation in thin film ferromagnetic insulators.
Wang, Z.; Sun, Y.; Song, Y-Y.; Wu, M.; Schultheib, H.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Colorado State Univ.)
2011-01-01T23:59:59.000Z
Control of magnetization relaxation in magnetic insulators via interfacial spin scattering is demonstrated. The experiments use nanometer-thick yttrium iron garnet (YIG)/Pt layered structures, with the Pt layer biased by an electric voltage. The bias voltage produces a spin current across the Pt thickness. As this current scatters off the YIG surface, it exerts a torque on the YIG surface spins. This torque can reduce or enhance the damping and thereby decrease or increase the ferromagnetic resonance linewidth of the YIG film, depending on the field/current configuration.
The electric and magnetic form factors of the proton
A1 Collaboration; J. C. Bernauer; M. O. Distler; J. Friedrich; Th. Walcher; P. Achenbach C. Ayerbe Gayoso; R. Böhm; L. Debenjak; L. Doria; A. Esser; H. Fonvieille; M. Gómez Rodrígues de la Paz; J. M. Friedrich; M. Makek; H. Merkel; D. G. Middleton; U. Müller; L. Nungesser; J. Pochodzalla; M. Potokar; S. Sánchez Majos; B. S. Schlimme; S. Širca; M. Weinriefer
2014-07-29T23:59:59.000Z
The paper describes a precise measurement of electron scattering off the proton at momentum transfers of $0.003 \\lesssim Q^2 \\lesssim 1$\\ GeV$^2$. The average point-to-point error of the cross sections in this experiment is $\\sim$ 0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low $Q^2$ values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.
Polarizable vacuum analysis of electric and magnetic fields
Xing-Hao Ye
2009-08-22T23:59:59.000Z
The electric and magnetic fields are investigated on the basis of quantum vacuum. The analysis of the electromagnetic energy and force indicates that an electric field is a polarized distribution of the vacuum virtual dipoles, and that a magnetic field in vacuum is a rearrangement of the vacuum polarization. It means that an electromagnetic wave is a successional changing of the vacuum polarization in space. Also, it is found that the average half length of the virtual dipoles around an elementary charge is a=2.8 *10^(-15)m. The result leads to the step distribution of the field energy around an electron, the relation between the fine structure constant and the vacuum polarization distribution, and an extremely high energy density of the electromagnetic field.
Electrically operated magnetic switch designed to display reduced leakage inductance
Cook, E.G.
1994-05-10T23:59:59.000Z
An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together. 10 figures.
Electrically operated magnetic switch designed to display reduced leakage inductance
Cook, Edward G. (Livermore, CA)
1994-01-01T23:59:59.000Z
An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together.
Electric Fields and Chiral Magnetic Effect in Cu + Au Collisions
Wei-Tian Deng; Xu-Guang Huang
2015-02-16T23:59:59.000Z
The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impacts on the charge-dependent two-particle correlator $\\gamma_{q_1q_2}=$ (see main text for definition) which was used for the detection of the chiral magnetic effect (CME). Compared with Au + Au collisions, we find that the in-plane electric fields in Cu + Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if $\\gamma_{q_1q_2}$ is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu + Au collisions to test CME and understand the mechanisms that underlie $\\gamma_{q_1q_2}$.
Cognitive Issues in Upper-Division Electricity & Magnetism Steven J. Pollock
Colorado at Boulder, University of
interventions at the upper division. Keywords: physics education research, course reform, electricityCognitive Issues in Upper-Division Electricity & Magnetism Steven J. Pollock and Stephanie V. Chasteen* * Science Education Initiative, University of Colorado, Boulder, CO 80309, USA Department
Nonabelian Generalization of Electric-Magnetic Duality - a Brief Review
HM Chan; ST Tsou
1999-04-14T23:59:59.000Z
A loop space formulation of Yang-Mills theory high-lighting the significance of monopoles for the existence of gauge potentials is used to derive a generalization of electric-magnetic duality to the nonabelian theory. The result implies that the gauge symmetry is doubled from SU(N) to $SU(N) \\times \\widetilde{SU}(N)$, while the physical degrees of freedom remain the same, so that the theory can be described in terms of either the usual Yang-Mills potential $A_\\mu(x)$ or its dual $\\tilde{A}_\\mu(x)$. Nonabelian `electric' charges appear as sources of $A_\\mu$ but as monopoles of $\\tilde{A}_\\mu$, while their `magnetic' counterparts appear as monopoles of $A_\\mu$ but sources of $\\tilde{A}_\\mu$. Although these results have been derived only for classical fields, it is shown for the quantum theory that the Dirac phase factors (or Wilson loops) constructed out of $A_\\mu$ and $\\tilde{A}_\\mu$ satisfy the 't Hooft commutation relations, so that his results on confinement apply. Hence one concludes, in particular, that since colour SU(3) is confined then dual colour $\\widetilde{SU}(3)$ is broken. Such predictions can lead to many very interesting physical consequences which are explored in a companion paper.
Zakirjon Kanokov; Juern W. P. Schmelzer; Avazbek K. Nasirov
2009-04-07T23:59:59.000Z
An analysis of a variety of existing experimental data leads to the conclusion on the existence of a resonance mechanism allowing weak magnetic fields to affect biological processes. These fields may either be static magnetic fields comparable in magnitude with the magnetic field of the earth or weak ultra-low frequency time-dependent fields. So far, a generally accepted theoretical model allowing one to understand the effect of magnetic and electric fields on biological processes is not available. By this reason, it is not clear which characteristics of the fields, like magnetic and electric field strength, frequency of change of the field, shape of the electromagnetic wave, the duration of the magnetic or electric influence or some particular combination of them, are responsible for the biological effect. In the present analysis it is shown that external time-independent magnetic fields may cause a resonance amplification of ionic electric currents in biological tissues and, in particular, in the vasculature system due to a Brownian motion of charges. These resonance electric currents may cause necrotic changes in the tissues or blood circulation and in this way significantly affect the biological organism. The magnitude of the magnetic fields leading to resonance effects is estimated, it is shown that it depends significantly on the radius of the blood capillaries.
Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics
He, Q.
2011-01-01T23:59:59.000Z
Controllable Spontaneous Magnetism in Nanoscale Mixed Phase2001). Chakhalian, J. et al. Magnetism at the interfacelocal nature of this magnetism. We find that the spontaneous
Momentum transfer dependence of the proton's electric and magnetic polarizabilities
Hall, N L; Young, R D
2014-01-01T23:59:59.000Z
The Q^2-dependence of the sum of the electric and magnetic polarizabilities of the proton is calculated over the range 0 \\leq Q^2 \\leq 6 GeV^2 using the generalized Baldin sum rule. Employing a parametrization of the F_1 structure function valid down to Q^2 = 0.06 GeV^2, the polarizabilities at the real photon point are found by extrapolating the results of finite Q^2 to Q^2 = 0 GeV^2. We determine the evolution over four-momentum transfer to be consistent with the Baldin sum rule using photoproduction data, obtaining \\alpha + \\beta = 13.7 \\pm 0.7 \\times 10^{-4}\\, \\text{fm}^3.
But Does It Last? Sustaining a Research-Based Curriculum in Upper-Division Electricity & Magnetism
Colorado at Boulder, University of
But Does It Last? Sustaining a Research-Based Curriculum in Upper-Division Electricity & Magnetism Stephanie V. Chasteen, Rachel E. Pepper, Steven J. Pollock, Katherine K. Perkins Science Education course approach in junior-level electricity and magnetism (E&M). Almost all developed materials (i
TORSIONAL SHEAR FLOW OF LONG PITCH CHOLESTERIC MESOPHASES IN ELECTRIC AND MAGNETIC FIELDS
Paris-Sud XI, Université de
TORSIONAL SHEAR FLOW OF LONG PITCH CHOLESTERIC MESOPHASES IN ELECTRIC AND MAGNETIC FIELDS J. WAHL Physikalisches Institut der Universitat, D44 Munster, Germany Abstract. -- Torsional shear [1] and vertical. -- In vertical electric (or magnetic) fields thin cholesteric layers with homeotropic boun- daries and small
INTRODUCTION TO PHYSICS 108 INTRODUCTORY APPLIED PHYSICS LAB: ELECTRICITY AND MAGNETISM,
Hart, Gus
, AND MODERN PHYSICS What do we do in Physics 108? Physics 108 is a lab designed to support the Physics 106 of electricity and magnetism, optics, and modern physics. It is not likely that many of you have much experienceINTRODUCTION TO PHYSICS 108 INTRODUCTORY APPLIED PHYSICS LAB: ELECTRICITY AND MAGNETISM, OPTICS
INTRODUCTION TO PHYSICS 108 INTRODUCTORY APPLIED PHYSICS LAB: ELECTRICITY AND MAGNETISM,
Hart, Gus
, AND MODERN PHYSICS What do we do in Physics 108? Physics 108 is a lab designed to support the Physics 106 understanding of electricity and magnetism, optics, and modern physics. It is not likely that many of you haveINTRODUCTION TO PHYSICS 108 INTRODUCTORY APPLIED PHYSICS LAB: ELECTRICITY AND MAGNETISM, OPTICS
Measurements of electric and magnetic fields in the Waianae, Hawaii area
Mantiply, E.D.
1992-07-01T23:59:59.000Z
During November 27--30, 1990, the US Environmental Protection Agency (EPA) conducted a measurement survey of electric and magnetic field levels along the southwest coast of Oahu, Hawaii. These measurements were requested by the State of Hawaii to determine the levels of radiofrequency (RF) electric and magnetic fields near Naval radio transmitters at Lualualei. The objective was to determine maximum fields in residential areas. This report documents the measurement results. Also, a few measurements were made of extremely-low-frequency (ELF) electric and magnetic fields at 60 hertz, the frequency used for electrical power.
Mansuripur, Masud
2015-01-01T23:59:59.000Z
The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density $\\rho_{free}$, electric current-density $J_{free}$, polarization P, and magnetization M. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media - the seat of...
Chen, Long-Qing
). An alternative approach to engineering low electric- field-induced magnetic domain switching at room temperaPhase-field simulation of electric-field-induced in-plane magnetic domain switching in magnetic. Phys. Lett. 99, 182510 (2011) Quantum tunneling of the Bloch point in a magnetic film with strong
Irradiation requirements of Nb3Sn based SC magnets electrical insulation
McDonald, Kirk
Irradiation requirements of Nb3Sn based SC magnets electrical insulation developed within the Eu electrical insulation candidates · EuCARD insulators certification conditions · Post irradiation tests and neutrino factories will be subjected to very high radiation doses. · The electrical insulation employed
Assessing human exposure to power-frequency electric and magnetic fields
Kaune, W.T. [EM Factors, Richland, WA (United States)
1993-12-01T23:59:59.000Z
This paper reviews published literature and current problems relating to the assessment of occupational and residential human exposures to power-frequency electric and magnetic fields. Available occupational exposure data suggest that the class of job titles known as electrical workers may be an effective surrogate for time-weighted-average (TWA) magnetic-field (but not electric-field) exposure. Current research in occupational-exposure assessment is directed to the construction of job-exposure matrices based on electric- and magnetic-field measurements and estimates of worker exposures to chemicals and other factors of interest. Recent work has identified five principal sources of residential magnetic fields: electric power transmission lines, electric power distribution lines, ground currents, home wiring, and home appliances. Existing residential-exposure assessments have used one or more of the following techniques: questionnaires, wiring configuration coding, theoretical field calculations, spot electric- and magnetic-field measurements, fixed-site magnetic-field recordings, personal-exposure measurements, and geomagnetic-field measurements. Available normal-power magnetic-field data for residences differ substantially between studies. It is not known if these differences are due to geographical differences, differences in measurement protocols, or instrumentation differences. Available data suggest, but are far from proving, that spot measurements may be more effective than wire codes as predictors of long-term historical magnetic-field exposure. Two studies find that away-from-home TWA magnetic-field exposures are less variable than at home exposures. The importance of home appliances as contributors to total residential magnetic-field exposure is not known at this time. It also is not known what characteristics (if any) of residential electric and magnetic fields are determinants of human health effects. 41 refs., 9 figs., 10 tabs.
Electric Field Control of Ferromagnetism and Magnetic Devices Using Multiferroics
Heron, John Thomas
2013-01-01T23:59:59.000Z
deplete holes from a magnetic semiconductor (InMnAs) using aof holes in the magnetic semiconductor while the black arrowto investigate magnetic semiconductors in his group. I had
Porsev, S G; Flambaum, V V
2010-01-01T23:59:59.000Z
We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM (d_N) with the hyperfine interaction, the "magnetic moment effect". We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms 129Xe, 171Yb, 199Hg, 211Rn, and 225Ra have been calculated numerically. From the experimental limits on the atomic EDMs of 129Xe and 199Hg, we have placed the following constraints on the nuclear EDMs, |d_N(129Xe)|< 1.1 * 10^{-21} |e|cm and |d_N(199Hg)|< 2.8 * 10^{-24} |e|cm.
S. G. Porsev; J. S. M. Ginges; V. V. Flambaum
2011-03-02T23:59:59.000Z
We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM (d_N) with the hyperfine interaction, the "magnetic moment effect". We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms 129Xe, 171Yb, 199Hg, 211Rn, and 225Ra have been calculated numerically. From the experimental limits on the atomic EDMs of 129Xe and 199Hg, we have placed the following constraints on the nuclear EDMs, |d_N(129Xe)|< 1.1 * 10^{-21} |e|cm and |d_N(199Hg)|< 2.8 * 10^{-24} |e|cm.
Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.
1994-11-01T23:59:59.000Z
This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.
Florida, University of
Electric and magnetic fields and field derivatives from lightning stepped leaders and first return; published 5 September 2008. [1] Using electric and magnetic field and field derivative sensors arrayed over-peak width of the stepped-leader/return-stroke electric field waveform; the stepped-leader electric field
11d Electric-Magnetic Duality and the Dbrane Spectrum
Shyamoli Chaudhuri
2005-07-21T23:59:59.000Z
We consider the gedanken calculation of the pair correlation function of spatially-separated macroscopic string solitons in strongly coupled type IIA string/M theory, with the macroscopic strings wrapping the eleventh dimension. The supergravity limit of this correlation function with well-separated, pointlike macroscopic strings corresponds to having also taken the IIA string coupling constant to zero. Thus, the pointlike limit of the gedanken correlation function can be given a precise worldsheet description in the 10D weakly-coupled type IIA string theory, analysed by us in hep-th/0007056 [Nucl. Phys. B591 (2000) 243]. The requisite type IIA string amplitude is the supersymmetric extension of the worldsheet formulation of an off-shell closed string tree propagator in bosonic string theory, a 1986 analysis due to Cohen, Moore, Nelson, and Polchinski. We point out that the evidence for pointlike sources of the zero-form field strength provided by our worldsheet results clarifies that the electric-magnetic duality in the Dirichlet-brane spectrum of type II string theories is eleven-dimensional.
3.15 Electrical, Optical & Magnetic Materials and Devices, Fall 2003
Ross, Caroline A.
Explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. Features a device-motivated ...
A two-phase spherical electric machine for generating rotating uniform magnetic fields
Lawler, Clinton T. (Clinton Thomas)
2007-01-01T23:59:59.000Z
This thesis describes the design and construction of a novel two-phase spherical electric machine that generates rotating uniform magnetic fields, known as a fluxball machine. Alternative methods for producing uniform ...
Axion electrodynamics and dark matter fingerprints in the terrestrial magnetic and electric fields
A. B. Balakin; L. V. Grunskaya
2012-09-27T23:59:59.000Z
We consider mathematical aspects of the axion electrodynamics in application to the problem of evolution of geomagnetic and terrestrial electric fields, which are coupled by relic axions born in the early Universe and (hypothetically) forming now the cold dark matter. We find axionic analogs of the Debye potentials, well-known in the standard Faraday - Maxwell electrodynamics, and discuss exact solutions to the equations of the axion electrodynamics describing the state of axionically coupled electric and magnetic fields in a spherical resonator Earth-Ionosphere. We focus on the properties of the specific electric and magnetic oscillations, which appeared as a result of the axion-photon coupling in the dark matter environment. We indicate such electric and magnetic field configurations as longitudinal electro-magnetic clusters.
Rayyan, Saif
We examine the performance of a group of students in Introductory Electricity and Magnetism following a ReView course in Introductory Mechanics focusing on problem solving employing the Modeling Applied to Problem Solving ...
Rouhani, S. Zia (Idaho Falls, ID)
1996-01-01T23:59:59.000Z
In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.
Rouhani, S.Z.
1996-12-03T23:59:59.000Z
In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.
Thin magnetic conductor substrate for placement-immune, electrically-small antennas.
Eubanks, Travis Wayne; McDonald, Jacob J.; Loui, Hung
2011-09-01T23:59:59.000Z
An antenna is considered to be placement-immune when the antenna operates effectively regardless of where it is placed. By building antennas on magnetic conductor materials, the radiated fields will be positively reinforced in the desired radiation direction instead of being negatively affected by the environment. Although this idea has been discussed thoroughly in theoretical research, the difficulty in building thin magnetic conductor materials necessary for in-phase field reflections prevents this technology from becoming more widespread. This project's purpose is to build and measure an electrically-small antenna on a new type of non-metallic, thin magnetic conductor. This problem has not been previously addressed because non-metallic, thin magnetic conductor materials have not yet been discovered. This work proposed the creation of an artificial magnetic conductor (AMC) with in-phase field reflections without using internal electric conductors, the placement of an electrically-small antenna on this magnetic conductor, and the development of a transmit-receive system that utilizes the substrate and electrically-small antenna. By not using internal electric conductors to create the AMC, the substrate thickness can be minimized. The electrically-small antenna will demonstrate the substrate's ability to make an antenna placement immune, and the transmit-receive system combines both the antenna and the substrate while adding a third layer of system complexity to demonstrate the complete idea.
Observations on student difficulties with mathematics in upper-division electricity and magnetism
Colorado at Boulder, University of
Observations on student difficulties with mathematics in upper-division electricity and magnetism Rachel E. Pepper, Stephanie V. Chasteen, Steven J. Pollock, and Katherine K. Perkins Science Education 2011; published 27 March 2012) We discuss common difficulties in upper-division electricity
Garmestani, Hamid
of thermal conductance in a composite material assuming a linear law of mixing, and nanotubepolymerEnhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic and electrical properties of single wall carbon nanotube CNT -polymer composites are significantly enhanced
Magnetized Target Fusion: Input to the 35-yr Fusion Long-Range Electric Plan
controlled thermonuclear fusion in the laboratory -- Intermediate between MFE and IFE · Presently only fundedMagnetized Target Fusion: Input to the 35-yr Fusion Long-Range Electric Plan G. A. Wurden Fusion Energy Program Office Los Alamos National Laboratory Jan. 14, 2003 #12;Magnetized Target Fusion: Input
Demokritov, S.O.
Ferrite-ferroelectric layered structures for electrically and magnetically tunable microwave It is demonstrated experimentally that a layered structure consisting of ferrite and ferroelectric thin films can constant , and a bias magnetic field to the ferrite layer. The resonator having central frequency f0 5 GHz
Scattering of Polarized Radiation by Atoms in Magnetic and Electric Fields
Yee Yee Oo; K. N. Nagendra; Sharath Ananthamurthy; G. Ramachandran
2005-09-26T23:59:59.000Z
The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Analytic formulae are derived for the scattering phase matrix. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed.
Ganichev, Sergey
2012-01-01T23:59:59.000Z
on the study of spin-polarized electric currents in diluted magnetic semiconductor (DMS) quantum wells in diluted magnetic semiconductors (DMS) are currently discussed as a key issue for the developmentPHYSICAL REVIEW B 86, 085310 (2012) Spin-polarized electric currents in diluted magnetic
Method for providing slip energy control in permanent magnet electrical machines
Hsu, John S.
2006-11-14T23:59:59.000Z
An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.
W. J. Huo
2003-01-27T23:59:59.000Z
By using the anomalous magnetic and electric dipole moments of the $\\tau$ lepton in an effective lagrangian approach to the new physics, we investigate the lepton flavor violation (LFV) decays, $l\\to l'\\gamma$, and $\\mu,\\tau$ anomalous magnetic and electric dipole moments in a lepton mass matrices ansatz which induced by SUSY GUT. We put very stringent constraints LFV decays and $\\tau$ anomalous magnetic and electric dipole moments.
Gravitational radiation, vorticity and the electric and magnetic part of Weyl tensor
L. Herrera; N. O. Santos; J. Carot
2006-05-15T23:59:59.000Z
The electric and the magnetic part of the Weyl tensor, as well as the invariants obtained from them, are calculated for the Bondi vacuum metric. One of the invariants vanishes identically and the other only exhibits contributions from terms of the Weyl tensor containing the static part of the field. It is shown that the necessary and sufficient condition for the spacetime to be purely electric is that such spacetime be static. It is also shown that the vanishing of the electric part implies Minkowski spacetime. Unlike the electric part, the magnetic part does not contain contributions from the static field. Finally a speculation about the link between the vorticity of world lines of observers at rest in a Bondi frame, and gravitational radiation, is presented.
Electrical detection of microwave assisted magnetization reversal by spin pumping
Rao, Siddharth; Subhra Mukherjee, Sankha; Elyasi, Mehrdad; Singh Bhatia, Charanjit; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering and NUSNNI, National University of Singapore, Singapore 117576 (Singapore)
2014-03-24T23:59:59.000Z
Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.
Superconducting magnetic energy storage for asynchronous electrical systems
Boenig, Heinrich J. (Los Alamos, NM)
1986-01-01T23:59:59.000Z
A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.
McQuade, D. Tyler
Magnetically induced electric polarization in an organometallic magnet V. S. Zapf,1 M. Kenzelmann,2 F. Wolff-Fabris,1,* F. Balakirev,1 and Y. Chen3,4,5 1 National High Magnetic Field Laboratory (NHMFL and Engineering, University of Maryland, College Park, Maryland 20742, USA Received 30 April 2009; revised
Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature
Zhai Junyi; Xing Zengping; Dong Shuxiang; Li Jiefang; Viehland, D. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)
2006-02-06T23:59:59.000Z
The measurement of low-frequency (10{sup -2}-10{sup 3} Hz) minute magnetic field variations (10{sup -12} Tesla) at room temperature in a passive mode of operation would be critically enabling for deployable neurological signal interfacing and magnetic anomaly detection applications. However, there is presently no magnetic field sensor capable of meeting all of these requirements. Here, we present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements.
Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization for the periodic orbits in a strongly coupled multidimen- sional Hamiltonian system, namely the hydrogen atom.15.Gy, 05.45.-a, 45.20.Jj I. INTRODUCTION The hydrogen atom in crossed electric and magnetic fields
Electric field controlled reversible magnetic anisotropy switching studied by spin rectification
Zhou, Hengan; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)] [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)] [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)
2014-03-10T23:59:59.000Z
In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1?3}Nb{sub 2?3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.
Learning physics in context: a study of student learning about electricity and magnetism
Colorado at Boulder, University of
re-centres the discussion of student learning in physics to focus on context. In order to do soLearning physics in context: a study of student learning about electricity and magnetism This paper and inextricable role of context in student learning. This work sits within a broader effort to create and analyze
On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric
Sminchisescu, Cristian
On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique Jochen Garcke and Michael Griebel Institut f on sparse grids. Here, O(d·(log N)d-1 ) different problems, each of size O(N), have to be solved
On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric
Sminchisescu, Cristian
On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique Jochen Garcke and Michael Griebel Institut f@iam.unibonn.de We introduce the combination technique for the numerical solution of eigenproblems on sparse grids
Electrically Controllable Surface Magnetism on the Surface of Topological Insulators Jia-Ji Zhu,1
Electrically Controllable Surface Magnetism on the Surface of Topological Insulators Jia-Ji Zhu,1 impurities on the surface of three- dimensional topological insulators, mediated by the helical Dirac named topolo- gical insulator (TI) in a number of materials, such as a two-dimensional (2D) HgTe quantum
Magnetic, electric and thermal properties of cobalt ferrite nanoparticles , N. Mlikia
Paris-Sud XI, UniversitÃ© de
1 Magnetic, electric and thermal properties of cobalt ferrite nanoparticles L.Ajroudia , N. Mlikia to occupy tetrahedral sites, contrary to what occurs in bulk ferrites. The nanopowders display a semi constant is significantly higher for these nanoparticles than for bulk ferrites. Co1.8Fe1.2O4 hal-01053683
Howell, Robert Sherwood
1972-01-01T23:59:59.000Z
13 birds in remainder of experiment. ~fel l. ~Eff o ~* ~st ~et~ass Eeoc~of ' ~o t *l ct o *t' ~*t ', ~o~es tfc~f' lo E e et l Treatments Day 8 Day 15 Day 22 ratio& ~ %( )ratio % ratio Control 260 MHz 915 MHz Electric field-45 Hz Magnetic field...
ANALYTIC CRITERIA FOR THE MECHANICAL AND THERMAL STABILITY OF MAGNETIC STARS WITH FINITE ELECTRICAL in the envelope. This physical complication also affects the interpretation of the RR Lyrae stars and other cool stars, the destabilized envelope is mostly radiative and convection probably plays only a small role
Electrical Detection of Spin Pumping due to the Precessing Magnetization of a Single Ferromagnet
van der Wal, Caspar H.
Electrical Detection of Spin Pumping due to the Precessing Magnetization of a Single Ferromagnet M of spin pumping, using a lateral normal-metal/ferromagnet/normal- metal device, where a single ferromagnet in ferromagnetic resonance pumps spin-polarized electrons into the normal metal, resulting in spin accumulation
Electric and magnetic properties of fullerenes Dan Jonsson, Patrick Norman, Kenneth Ruud,a)
Helgaker, Trygve
¨ping, Sweden Trygve Helgaker Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo of the noble gas shieldings of endohedral fullerenes have been presented,810 as well as some studies on the method of calculations used in this work. Due to the different nature of the electric and magnetic
Hildenbrand, T.G.; Kucks, R.P.
1981-01-01T23:59:59.000Z
An attempt is made to determine the sources that are responsible for producing geothermal anomalies observed within the southern Black Hills region. Lithologic and structural boundaries residing in the upper crust and their relationship to the geothermal system are discussed. A regional gravity survey was supplemented by a regional aeromagnetic survey.
Cheng, Hongguang, E-mail: chenghg7932@gmail.com; Deng, Ning [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)] [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)
2013-12-15T23:59:59.000Z
We investigated the influence of thermal agitation on the electric field induced precessional magnetization switching probability with perpendicular easy axis by solving the Fokker-Planck equation numerically with finite difference method. The calculated results show that the thermal agitation during the reversal process crucially influences the switching probability. The switching probability can be achieved is only determined by the thermal stability factor ? of the free layer, it is independent on the device dimension, which is important for the high density device application. Ultra-low error rate down to the order of 10{sup ?9} can be achieved for the device of thermal stability factor ? of 40. Low damping factor ? material should be used for the free layer for high reliability device applications. These results exhibit potential of electric field induced precessional magnetization switching with perpendicular easy axis for ultra-low power, high speed and high density magnetic random access memory (MRAM) applications.
Dynamic frequency tuning of electric and magnetic metamaterial response
O'Hara, John F; Averitt, Richard; Padilla, Willie; Chen, Hou-Tong
2014-09-16T23:59:59.000Z
A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.
Enhanced magnetic and electrical properties in amorphous Ge:Mn thin films by non-magnetic codoping
Yin Wenjing; Kell, Copeland D.; Duska, Chris; Lu Jiwei; Floro, Jerrold A. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); He Li; Hull, Robert [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Dolph, Melissa C. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Wolf, Stuart A. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)
2012-02-01T23:59:59.000Z
Amorphous Ge{sub 1-x}Mn{sub x} thin films have been prepared by co-depositing Ge and Mn on SiO{sub 2}/Si using an ultrahigh vacuum molecular beam epitaxy system. Across a range of growth temperatures and Mn concentrations (2.8 at. %, 10.9 at. %, and 21.3 at. %), we achieved enhanced magnetic and electrical properties with non-magnetic codopants dispersed in the films. Self-assembled Mn-rich amorphous nanostructures were observed in the amorphous Ge matrix, either as isolated nanoclusters or as nanocolumns, depending on Mn concentration. The ferromagnetic saturation moments were found to increase with Mn concentration and reached a maximum of 0.7 {mu}{sub B}/Mn in the as-grown samples. Two magnetic transition temperatures around 15 K and 200 K were observed in these amorphous MBE-grown samples. Coercivity is considered within the context of local magnetic anisotropy. The anomalous Hall effect confirmed a strong correlation between the magnetization and transport properties, indicating that global ferromagnetic coupling was carrier-mediated rather than through direct exchange. In addition, negative magnetoresistance was detected from 5 K to room temperature.
El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)
2012-07-17T23:59:59.000Z
An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.
Study of the electric field formation in a multi-cusped magnetic field
Liu, Hui, E-mail: hlying@gmail.com; Yu, Daren, E-mail: yudaren@hit.edu.cn [Lab of Plasma Propulsion, Mail Box 458, Harbin Institute of Technology (HIT), Harbin 150001 (China); Wu, Huan; Zhao, Yinjian; Ma, Chengyu; Wang, Di; Wei, Haoyu [School of Energy Science and Engineering, Harbin Institute of Technology (HIT), Harbin 150001 (China)
2014-09-15T23:59:59.000Z
The multi-cusped field thruster is a kind of electric thruster adopting a cusped magnetic field to achieve a potentially longer lifetime. It is observed in some experiments that the main electric potential drop forms near the exhaust plane, but the formation mechanism of the electric field in this kind of thrusters is not fully clear yet. Based on the analysis of the electron movement, a 2D Particle-in-Cell plus Monte Carlo model is built to reveal the difference of the constraint to electrons between the central leak path and the lateral region of the thruster. Electron trajectories from cathode are analyzed furthermore. It is found that the central leak path inside the discharge channel may play a significant role in the formation of the main electric potential drop near the exhaust plane.
Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components
Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng
2012-03-26T23:59:59.000Z
The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis that U.S. industry is ill prepared to handle which could further challenge U.S. competitiveness.
Spin counting in electrically detected magnetic resonance via low-field defect state mixing
Cochrane, Corey J.; Lenahan, Patrick M. [The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)
2014-03-03T23:59:59.000Z
The work herein describes a method that allows one to measure paramagnetic defect densities in semiconductor and insulator based devices with electrically detected magnetic resonance (EDMR). The method is based upon the mixing of defect states which results from the dipolar coupling of paramagnetic sites at low magnetic fields. We demonstrate the measurement method with spin dependent tunneling in thin film dielectrics; however, the method should be equally applicable to paramagnetic defect density measurements in semiconductors via the more commonly utilized EDMR technique called spin dependent recombination.
Interaction between a stationary electric charge and a stationary magnetic dipole
W. B. Bonnor
2002-03-13T23:59:59.000Z
Using Einstein-Maxwell theory I investigate the gravitational field generated by an electric charge and a magnetic dipole, both held in fixed positions, but spinning with prescribed angular momenta. There is a conical singularity between them representing a strut balancing the gravitational attraction of their masses. However, there is in general another singularity, which I call a torsion singularity. I interpret this as a couple needed to maintain the spins at their prescribed values. It vanishes when the parameters obey a certain formula. A conclusion of the work is that the charge and the magnet must spin relative to one another unless constrained by a couple.
EMF in your environment. Magnetic field measurements of everyday electrical devices
Not Available
1992-12-01T23:59:59.000Z
The publication compares the strength of 60 hertz magnetic fields produced by common electrical items and shows you how their strength diminishes as you move farther away from them. The information presented here has to do with the strength of the magnetic field; however, the authors aren't certain that the strength of the field is the only important consideration. It may turn out that other factors are also important. Future research is likely to reveal that the information given in the publication is only part of the story.
Electrical resistivity, optical and magnetic properties of the layered oxyselenide SmCuOSe
Llanos, Jaime [Departamento de Quimica, Facultad de Ciencias, Universidad Catolica del Norte, Casa Central Antofagasta Pab. Avda. Angamos 0610, Casilla 1280, Antofagasta (Chile)]. E-mail: jllanos@ucn.cl; Pena, Octavio [Laboratoire de Chimie du Solide et Inorganique Moleculaire, UMR 6511-CNRS, Universite Rennes 1-Institut de Chimie de Rennes, 35042 Rennes Cedex (France)
2005-04-15T23:59:59.000Z
The electrical and magnetic properties of the tetragonal phase SmCuOSe are reported as a function of the temperature. The optical properties were studied by means of diffuse reflectance spectrum in the UV-Vis range. The electrical resistivity measurements as well as diffuse reflectance spectrum show that SmCuOSe is a semiconductor with an optical band gap (E{sub g}) of 2.6eV. In this phase, Cu is at its monovalent oxidation state and, as such, it does not contribute to the total magnetic moment, whereas Sm is in its 3+ oxidation state, with a large VanVleck contribution due to the admixture of the fundamental state with higher energy levels.
CHARLES M. WEBER
2008-06-24T23:59:59.000Z
As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utility’s transmission system and to the reliability of the nation’s electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.
30-MJ superconducting magnetic energy storage for electric-transmission stabilization
Turner, R.D.; Rogers, J.D.
1981-01-01T23:59:59.000Z
The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.
Exciton-polaron complexes in pulsed electrically-detected magnetic resonance
T. L. Keevers; W. J. Baker; D. R. McCamey
2015-02-19T23:59:59.000Z
Several microscopic pathways have been proposed to explain the large magnetic effects observed in organic semiconductors, but identifying and characterising which microscopic process actually influences the overall magnetic field response is challenging. Pulsed electrically-detected magnetic resonance provides an ideal platform for this task as it intrinsically monitors the charge carriers of interest and provides dynamical information which is inaccessible through conventional magnetoconductance measurements. Here we develop a general time domain theory to describe the spin-dependent reaction of exciton-charge complexes following the coherent manipulation of paramagnetic centers through electron spin resonance. A general Hamiltonian is treated, and it is shown that the transition frequencies and resonance positions of the exciton-polaron complex can be used to estimate inter-species coupling. This work also provides a general formalism for analysing multi-pulse experiments which can be used to extract relaxation and transport rates.
Synthesis and Magnetic, Thermal, and Electrical Measurements on Complex non-Cuprate Superconductors
Henry, Laurence L
2006-02-27T23:59:59.000Z
The project investigated superconductivity in non-cuprate materials with critical temperatures, T{sub c}, in excess of 20 K in order to understand the thermodynamics of several of these materials. The project is a cooperative effort between investigators at Southern University (SU), Louisiana State University (LSU), and Los Alamos National Laboratory (LANL). It involved synthesis of high quality samples, and subsequent detailed magnetic, thermal and electrical measurements on them. The project provided a PhD Thesis research experience and training for a graduate student, Ms. Robin Macaluso. High quality, single crystal samples were synthesized by Ms. Macaluso under the direction of one of the CO-PIS, John Sarao, during the summer while she was a visitor at LANL being supported by this grant. On these samples magnetic measurements were performed at SU, thermal and electrical measurements were made in the LSU Physics and Astronomy Department. The crystallographic properties were determined in the LSU Chemistry Department by Ms. Macaluso under the direction of her dissertation advisor, Dr. Julia Chan. Additional high field magnetic measurements on other samples were performed at the National High Magnetic Field Laboratory (NHMFL) both in Tallahassee and at LANL. These measurements involved another graduate student, Umit Alver, who used some of the measurements as part of his PhD dissertation in Physics at LSU.
Jeong, J. H., E-mail: juno@fris.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai (Japan); Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai (Japan); Kim, Y.; Kim, W. K.; Park, S. O. [Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of)
2014-05-07T23:59:59.000Z
To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50?s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5?k? to 39?k?. Moreover, an additional 500?s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5?k? to 13.9?k?. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8?nm and 12.8?nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20?nm.
Y. Maezawa; S. Aoki; S. Ejiri; T. Hatsuda; N. Ishii; K. Kanaya; N. Ukita; T. Umeda
2010-05-11T23:59:59.000Z
Screenings of the quark-gluon plasma in electric and magnetic sectors are studied on the basis of generalized Polyakov-line correlation functions in lattice QCD simulations with two flavors of improved Wilson quarks. Using the Euclidean-time reflection ($\\R$) and the charge conjugation ($\\Ca$), electric and magnetic screening masses are extracted in a gauge invariant manner. Long distance behavior of the standard Polyakov-line correlation in the quark-gluon plasma is found to be dictated by the magnetic screening. Also, ratio of the two screening masses agrees with that obtained from the dimensionally-reduced effective field theory and the ${\\cal N}=4$ supersymmetric Yang-Mills theory.
Masashi Kuniyasu
2015-01-27T23:59:59.000Z
New solutions are derived in the $2+1$ gravity which is coupled to $|{\\cal F}|^k$ type non-linear electric field in Maxwell Power theory with dilaton field. We obtain consistent solutions in general $k$ case. We also investigate the behavior of the metric function with the space-time singularity. Then, we found some black hole solutions when the space-time has a singular point at $r=0$. Addition, we derive the Brown-York mass when the space-time represents black hole.
Magnetic and electric contributions to the energy loss in a dynamical QCD medium
Magdalena Djordjevic
2011-05-21T23:59:59.000Z
The computation of radiative energy loss in a finite size QCD medium with dynamical constituents is a key ingredient for obtaining reliable predictions for jet quenching in ultra-relativistic heavy ion collisions. It was previously shown that energy loss in dynamical QCD medium is significantly higher compared to static QCD medium. To understand this difference, we here analyze magnetic and electric contributions to energy loss in dynamical QCD medium. We find that the significantly higher energy loss in the dynamical case is entirely due to appearance of magnetic contribution in the dynamical medium. While for asymptotically high energies, the energy loss in static and dynamical medium approach the same value, we find that the physical origin of the energy loss in these two cases is different.
Modeling electron transport in the presence of electric and magnetic fields.
Fan, Wesley C.; Drumm, Clifton Russell; Pautz, Shawn D.; Turner, C. David
2013-09-01T23:59:59.000Z
This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.
A. Rossani; A. M. Scarfone
2009-03-05T23:59:59.000Z
The linear Boltzmann equation for elastic and/or inelastic scattering is applied to derive the distribution function of a spatially homogeneous system of charged particles spreading in a host medium of two-level atoms and subjected to external electric and/or magnetic fields. We construct a Fokker-Planck approximation to the kinetic equations and derive the most general class of distributions for the given problem by discussing in detail some physically meaningful cases. The equivalence with the transport theory of electrons in a phonon background is also discussed.
Goyal, Amit (Knoxville, TN), Kang; Sukill (Knoxville, TN)
2012-02-21T23:59:59.000Z
Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
Frischauf, Norbert [QASAR Technologie(s) GmbH, Johann Gottekgasse 39, A-1230, Vienna (Austria); Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias [QASAR Technologie(s) GmbH, Johann Gottekgasse 39, A-1230, Vienna (Austria); Koudelka, Otto [Institute of Communication Networks and Satellite Communication, Graz University of Technology, Inffeldgasse 12/I, A-8010 Graz (Austria)
2006-07-01T23:59:59.000Z
More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)
Interaction of biological systems with static and ELF electric and magnetic fields
Anderson, L.E.; Kelman, B.J.; Weigel, R.J. (eds.)
1987-01-01T23:59:59.000Z
Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic field strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.
Dynamics of Electric Currents, Magnetic Field Topology and Helioseismic Response of a Solar Flare
Sharykin, I N
2015-01-01T23:59:59.000Z
The solar flare on July 30, 2011 was of a modest X-ray class (M9.3), but it made a strong photospheric impact and produced a "sunquake," observed with the Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO). In addition to the helioseismic waves (also observed with the SDO/AIA instrument), the flare caused a large expanding area of white-light emission and was accompanied by substantial restructuring of magnetic fields, leading to the rapid formation of a sunspot structure in the flare region. The flare produced no significant hard X-ray emission and no coronal mass ejection. This indicates that the flare energy release was mostly confined to the lower atmosphere. The absence of significant coronal mass ejection rules out magnetic rope eruption as a mechanism of helioseismic waves. We discuss the connectivity of the flare energy release with the electric currents dynamics and show the potential importance of high-speed plasma flows in the lower solar atmosphere during the flare e...
Lasche, G.P.
1987-02-20T23:59:59.000Z
A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.
Lasche, G.P.
1983-09-29T23:59:59.000Z
The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.
Lasche, George P. (Arlington, VA)
1988-01-01T23:59:59.000Z
A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.
Yu, Y.Y.; Kim, D.S.; Char, K. [Center for Strongly Correlated Materials Research and School of Physics, Seoul National University, Seoul 151-742 (Korea, Republic of)
2004-12-01T23:59:59.000Z
We have studied the effects of fluorine inclusion on the electrical transport characteristics and interface structure of the hafnium oxide barrier in a magnetic tunnel junction. The tunneling magnetoresistance (TMR) and resistance-area (RA) as a function of oxidation time show that the TMR ratio of the hafnium oxyfluoride barrier is higher (8.3%) than that of the hafnium oxide barrier (5.7%) at their optimum conditions, and the oxyfluoride barrier junctions maintain a high TMR ratio even when the RA product increases by three orders of magnitude. X-ray photoelectron spectroscopy analysis shows that the fluorine atoms in the oxyfluoride barrier play an important role in the formation of a barrier with uniform composition. We believe that the initial fluoride layer is causing the subsequent oxygen diffusion to slow down, resulting in the formation of a defect-free hafnium oxide layer. These results are consistent with what we have found for aluminum oxyfluoride barriers.
Radiation of an electric charge in the field of a magnetic monopole
Michael Lublinsky; Claudia Ratti; Edward Shuryak
2009-10-06T23:59:59.000Z
We consider the radiation of photons from quarks scattering on color-magnetic monopoles in the Quark-Gluon Plasma. We consider a temperature regime $T\\gsim2T_c$, where monopoles can be considered as static, rare objects embedded into matter consisting mostly of the usual "electric" quasiparticles, quarks and gluons. The calculation is performed in the classical, non-relativistic approximation and results are compared to photon emission from Coulomb scattering of quarks, known to provide a significant contribution to the photon emission rates from QGP. The present study is a first step towards understanding whether this scattering process can give a sizeable contribution to dilepton production in heavy-ion collisions. Our results are encouraging: by comparing the magnitudes of the photon emission rate for the two processes, we find a dominance in the case of quark-monopole scattering. Our results display strong sensitivity to finite densities of quarks and monopoles.
J. Q. Zhang; X. C. Song; W. J. Huo; T. F. Feng
2002-06-17T23:59:59.000Z
In an effective lagrangian approach [EM97] to new physics, the authors in ref. [HL99] pushed tau anomalous magnetic and electric dipole moments (AMDM and EDM) down to $10^{-11}$ and $10^{-25} e cm$ by using a Fritzsch-Xing lepton mass matrix ansatz. In this note, we find that, in this approach, there exists the connection between $\\tau$ AMDM and EDM and the lepton flavor mixing matrix. By using the current neutrino oscillation experimental results, we investigate the parameter space of lepton mixing angles to $\\tau$ AMDM and EDM. We can obtain the same or smaller bounds of $\\delta a_\\tau$ and $d_\\tau$ acquired in ref. [HL99] and constrain $\\theta_l$ (the mixing angle obtained by long-baseline neutrino oscillation experiments) from $\\tau$ AMDM and EDM.
Thin film deposition by electric and magnetic crossed-field diode sputtering
Welch, Kimo M. (Mountain View, CA)
1980-01-01T23:59:59.000Z
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
Generalized Uhlenbeck-Goudsmit hypothesis 'Magnetic' S^{a} and 'Electric' Z^{a} Spins
Tomislav Ivezic
2010-03-23T23:59:59.000Z
In this paper, the connection between the dipole moment tensor D^{ab} and the spin four-tensor S^{ab} is formulated in the form of the generalized Uhlenbeck-Goudsmit hypothesis, D^{ab}=g_{S}S^{ab}. It is also found that the spin four-tensor S^{ab} can be decomposed into two 4-vectors, the usual `space-space' intrinsic angular momentum S^{a}, which will be called `magnetic' spin (mspin), and a new one, the `time-space' intrinsic angular momentum Z^{a}, which will be called `electric' spin (espin). Both spins are equally good physical quantities. Taking into account the generalized Uhlenbeck-Goudsmit hypothesis, the decomposition of S^{ab} and the decomposition of D^{ab} into the dipole moments m^{a} and d^{a}, we find that an electric dipole moment (EDM) of a fundamental particle, as a four-dimensional (4D) geometric quantity, is determined by Z^{a} and not, as generally accepted, by the spin $\\mathbf{S}$ as a 3-vector. Also it is shown that neither the T inversion nor the P inversion are good symmetries in the 4D spacetime. In this geometric approach, only the world parity W, Wx^{a}=-x^{a}, is well defined in the 4D spacetime. Some consequences for elementary particle theories and experiments that search for EDM are briefly discussed.
Not Available
1990-05-01T23:59:59.000Z
This report is a collection of papers documenting presentations made at the VIII ASA (American Statistical Association) Conference on Radiation and Health entitled Health Effects of Electric and Magnetic Fields: Statistical Support for Research Strategies. Individual papers are abstracted and indexed for the database.
Lynch, Jerome P.
Using electrical, magnetic and acoustic sensors to detect damage in segmental concrete pipes and Environmental Engineering, 2340 G.G. Brown Bldg., Ann Arbor, MI 48109, United States c Civil and Environmental Engineering, University of Rhode Island, Department of Civil and Environmental Engineering, Kingston, RI 02881
Otaduy, P.J.; Hsu, J.S.; Adams, D.J.
2007-11-30T23:59:59.000Z
This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.
L. Neslusan
2010-12-28T23:59:59.000Z
Considering two static, electrically charged, elementary particles, we demonstrate a possible way of proving that all known fundamental forces in the nature are the manifestations of the single, unique interaction. We re-define the gauging of integration constants in the Schwarzschild solution of Einstein field equations. We consider the potential energy in this context regardless it is gravitational or electric potential energy. With the newly gauged constants, we sketch how the unique interaction can be described with the help of an appropriate solution of the well-known Maxwell equations. According the solution, there are two zones, in the system of two oppositely charged particles, where the force is oscillating. The first particle can be in a stable, constant distance from the second particle, between the neighbouring regions of repulsion and attraction. In an outer oscillation zone, the corresponding energy levels in the proton-electron systems are identical (on the level of accuracy of values calculated by the Dirac's equations) to some experimentally determined levels in the hydrogen atom. For each system of two particles, there is also the zone with the macroscopic, i.e. monotonous behavior of the force. As well, the solution can be used to demonstrate that the net force between two assemblies consisting each (or at least one) of the same numbers of both positively and negatively charged particles is never zero. A secondary electric force, having the same orientation as the primary electric force between the oppositely charged particles, is always present. It can be identified to the gravity. Finally, the solution of the Maxwell equations can be used to calculate the inertia force of a particle. The consistent formulas for both acting and inertia forces enable to construct the dimensionless (without gravitational constant, permitivity of vacuum, etc.) equation of motion.
Arman Tursunov; Martin Kološ; Zden?k Stuchlík; Bobomurat Ahmedov
2014-09-18T23:59:59.000Z
We study the acceleration of an electric current-carrying and axially-symmetric string loop initially oscillating in the vicinity of a Schwarzschild black hole embedded in an external asymptotically uniform magnetic field. The plane of the string loop is orthogonal to the magnetic field lines and the acceleration of the string loop occurs due to the transmutation effect turning in the deep gravitational field the internal energy of the oscillating strings to the energy of their translational motion along the axis given by the symmetry of the black hole spacetime and the magnetic field. We restrict our attention to the motion of string loop with energy high enough, when it can overcome the gravitational attraction and escape to infinity. We demonstrate that for the current-carrying string loop the transmutation effect is enhanced by the contribution of the interaction between the electric current of the string loop and the external magnetic field and we give conditions that have to be fulfilled for an efficient acceleration. The Schwarzschild black hole combined with the strong external magnetic field can accelerate the current-carrying string loop up to the velocities close to the speed of light $v \\sim c$. Therefore, the string loop transmutation effect can potentially well serve as an explanation for acceleration of highly relativistic jets observed in microquasars and active galactic nuclei.
Office of Legacy Management (LM)
you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...
General Electric-Magnetic decomposition of fields, positivity and Rainich-like conditions
Jose M M Senovilla
2000-10-29T23:59:59.000Z
We show how to generalize the classical electric-magnetic decomposition of the Maxwell or the Weyl tensors to arbitrary fields described by tensors of any rank in general $n$-dimensional spacetimes of Lorentzian signature. The properties and applications of this decomposition are reviewed. In particular, the definition of tensors quadratic in the original fields and with important positivity properties is given. These tensors are usually called "super-energy" (s-e) tensors, they include the traditional energy-momentum, Bel and Bel-Robinson tensors, and satisfy the so-called Dominant Property, which is a straightforward generalization of the classical dominant energy condition satisfied by well-behaved energy-momentum tensors. We prove that, in fact, any tensor satisfying the dominant property can be decomposed as a finite sum of the s-e tensors. Some remarks about the conservation laws derivable from s-e tensors, with some explicit examples, are presented. Finally, we will show how our results can be used to provide adequate generalizations of the Rainich conditions in general dimension and for any physical field.
SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources
Lee, Choonkyu, E-mail: cklee@phya.snu.ac.kr [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of) [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Min, Hyunsoo, E-mail: hsmin@dirac.uos.ac.kr [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of)] [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of)
2013-12-15T23:59:59.000Z
For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A{sup ?} and B{sup ?} in a judicious way. On the two potentials A{sup ?} and B{sup ?} the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant Born–Infeld electrodynamics which can be important for D-brane dynamics in string theory. -- Highlights: •We formulate a local, manifestly duality-symmetric, Zwanziger-type action. •Maxwell electrodynamics is generalized to include dilaton and axion fields. •SL(2,R) symmetry is manifest. •We formulate a local, manifestly duality-symmetric, nonlinear Born–Infeld action with SL(2,R) symmetry.
Coïsson, R
2015-01-01T23:59:59.000Z
The interaction between point charge and magnetic dipole is usually considered only for the case of a rigid ferromagnetic dipole (constant-current): here the analysis of force, momentum and energy (including the energy provided by the internal current generator) is generalised to any magnetic dipole behaviour: rigid, paramagnetic, diamagnetic or superconducting (perfectly diamagnetic).
Stephan Gekle; Jörg Main; Thomas Bartsch; T. Uzer
2006-10-02T23:59:59.000Z
A hierarchical ordering is demonstrated for the periodic orbits in a strongly coupled multidimensional Hamiltonian system, namely the hydrogen atom in crossed electric and magnetic fields. It mirrors the hierarchy of broken resonant tori and thereby allows one to characterize the periodic orbits by a set of winding numbers. With this knowledge, we construct the action variables as functions of the frequency ratios and carry out a semiclassical torus quantization. The semiclassical energy levels thus obtained agree well with exact quantum calculations.
Structural, magnetic and electrical properties of the hexagonal ferrites MFeO{sub 3} (M=Y, Yb, In)
Downie, Lewis J.; Goff, Richard J. [EaStCHEM and School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST (United Kingdom); Kockelmann, Winfried [STFC ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxon, OX11 0QX (United Kingdom); Forder, Sue D. [Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Sheffield, S1 1WB (United Kingdom); Parker, Julia E. [Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 ODE (United Kingdom); Morrison, Finlay D. [EaStCHEM and School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST (United Kingdom); Lightfoot, Philip, E-mail: pl@st-and.ac.uk [EaStCHEM and School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST (United Kingdom)
2012-06-15T23:59:59.000Z
The hexagonal ferrites MFeO{sub 3} (M=Y, Yb, In) have been studied using a combination of neutron and X-ray powder diffraction, magnetic susceptibility, dielectric measurements and {sup 57}Fe Moessbauer spectroscopy. This study confirms the previously reported crystal structure of InFeO{sub 3} (YAlO{sub 3} structure type, space group P6{sub 3}/mmc), but YFeO{sub 3} and YbFeO{sub 3} both show a lowering of symmetry to at most P6{sub 3}cm (ferrielectric YMnO{sub 3} structure type). However, Moessbauer spectroscopy shows at least two distinct Fe sites for both YFeO{sub 3} and YbFeO{sub 3} and we suggest that the best model to rationalise this involves phase separation into more than one similar hexagonal YMnO{sub 3}-like phase. Rietveld analysis of the neutron diffraction data was carried out using two hexagonal phases as a simplest case scenario. In both YFeO{sub 3} and YbFeO{sub 3}, distinct dielectric anomalies are observed near 130 K and 150 K, respectively. These are tentatively correlated with weak anomalies in magnetic susceptibility and lattice parameters, for YFeO{sub 3} and YbFeO{sub 3}, respectively, which may suggest a weak magnetoelectric effect. Comparison of neutron and X-ray powder diffraction shows evidence of long-range magnetic order in both YFeO{sub 3} and YbFeO{sub 3} at low temperatures. Due to poor sample crystallinity, the compositional and structural effects underlying the phase separation and possible magnetoelectric phenomena cannot be ascertained. - Graphical abstract: Hexagonal MFeO{sub 3} (M=Y, Yb) exhibit phase separation into two YMnO{sub 3}-like phases. Variable temperature crystallographic, electrical and magnetic studies suggest weak correlations between electrical and magnetic responses and long-range magnetic order at low temperature. Highlights: Black-Right-Pointing-Pointer Multi-technique study of multiferroic hexagonal MFeO{sub 3}. Black-Right-Pointing-Pointer Phase separation into two similar hexagonal phases. Black-Right-Pointing-Pointer Weak coupling of electrical and magnetic responses. Black-Right-Pointing-Pointer Long-range magnetic order at low T.
Aleksandrov, V. V.; Barsuk, V. A.; Grabovski, E. V.; Gritsuk, A. N.; Zukakishvili, G. G.; Medovshchikov, S. F.; Mitrofanov, K. N.; Oleinik, G. M. [Troitsk Institute for Innovation and Thermonuclear Fusion Research (Russian Federation); Sasorov, P. V. [Institute for Theoretical and Experimental Physics (Russian Federation)
2009-03-15T23:59:59.000Z
Results are presented from measurements of the distributions of the azimuthal magnetic field in aluminum, copper, molybdenum, tungsten and other wire arrays electrically imploded at currents of up to 3 MA in the Angara-5-1 facility. It is shown that the time during which the magnetic field of the current pulse reaches the array axis depends on the material of the wires or wire coating. The current of the precursor formed on the array axis before the implosion of the main load mass is measured. It is shown that the penetration of the load material with the frozen-in magnetic field into a polymer (agar-agar) foam liner is drastically different from that in the case of a wire array. It is found that the rate of current transfer to the array axis is maximum for tungsten wire arrays. The rates of plasma production during implosion of loads made of different materials are compared.
Entanglement Entropy of Magnetic Electron Stars
Tameem Albash; Clifford V. Johnson; Scott MacDonald
2015-04-08T23:59:59.000Z
We study the behavior of the entanglement entropy in $(2+1)$--dimensional strongly coupled theories via the AdS/CFT correspondence. We consider theories at a finite charge density with a magnetic field, with their holographic dual being Einstein-Maxwell-Dilaton theory in four dimensional anti--de Sitter gravity. Restricting to black hole and electron star solutions at zero temperature in the presence of a background magnetic field, we compute their holographic entanglement entropy using the Ryu-Takayanagi prescription for both strip and disk geometries. In the case of the electric or magnetic zero temperature black holes, we are able to confirm that the entanglement entropy is invariant under electric-magnetic duality. In the case of the electron star with a finite magnetic field, for the strip geometry, we find a discontinuity in the first derivative of the entanglement entropy as the strip width is increased.
Brodsky, Stanley J.; /SLAC; Gardner, Susan; /Kentucky U.; Hwang, Dae Sung; /Sejong U.
2006-01-11T23:59:59.000Z
We consider the electric dipole form factor, F{sub 3}(q{sup 2}), as well as the Dirac and Pauli form factors, F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}), of the nucleon in the light-front formalism. We derive an exact formula for F{sub 3}(q{sup 2}) to complement those known for F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F{sub 2}(q{sup 2}) and F{sub 3}(q{sup 2}), Fock-state by Fock-state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, {kappa}{sup n} {approx} -{kappa}{sup p}.
Brodsky, Stanley J. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States); Gardner, Susan [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Hwang, Dae Sung [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)
2006-02-01T23:59:59.000Z
We consider the electric dipole form factor, F{sub 3}(q{sup 2}), as well as the Dirac and Pauli form factors, F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}), of the nucleon in the light-front formalism. We derive an exact formula for F{sub 3}(q{sup 2}) to complement those known for F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F{sub 2}(q{sup 2}) and F{sub 3}(q{sup 2}), Fock state by Fock state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, {kappa}{sup n}{approx}-{kappa}{sup p}.
S. J. Brodsky; S. Gardner; D. S. Hwang
2006-02-27T23:59:59.000Z
We consider the electric dipole form factor, F_3(q^2), as well as the Dirac and Pauli form factors, F_1(q^2) and F_2(q^2), of the nucleon in the light-front formalism. We derive an exact formula for F_3(q^2) to complement those known for F_1(q^2) and F_2(q^2). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F_2(q^2) and F_3(q^2), Fock state by Fock state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, kappa^n ~ - kappa^p.
Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid
Felderhof, B U
2014-01-01T23:59:59.000Z
The self-propulsion of a sphere immersed in a polar liquid or ferrofluid is studied on the basis of ferrohydrodynamics. In the electrical case an oscillating charge density located inside the sphere generates an electrical field which polarizes the fluid. The lag of polarization with respect to the electrical field due to relaxation generates a time-independent electrical torque density acting on the fluid causing it to move. The resulting propulsion velocity of the sphere is calculated in perturbation theory to second order in powers of the charge density.
Spontaneous transition of core radial electric field driven by magnetic islands in the H-1NF heliac
Kumar, S. T. A. [University of Wisconsin, Madison; Blackwell, B. D. [Australian National University, Canberra, Australia; Howard, J. [Australian National University, Canberra, Australia; Harris, J. H. [Oak Ridge National Laboratory (ORNL)
2011-01-01T23:59:59.000Z
This paper reports an experimental observation of spontaneous transition of the core radial electric field to a large positive value (E(r) similar to 5 kV m(-1)), with a strong electric-field shear (similar to 700 kV m(-2)) in a low temperature (T(e) similar to 10 eV) radio frequency generated argon plasma in the H-1NF heliac stellarator. The transition, which seems to be driven by a spontaneous excitation of m = 2 magnetic islands near the core, is associated with a localized increase in the plasma density and excitation of coherent low frequency (similar to 3 kHz) oscillations possibly due to unstable E(r) shear driven modes. Evidence suggests development of the core electron-root scenario, which previously has been observed only at high temperature electron cyclotron heated plasmas.
Rogers, J.D.; Boenig, H.J.; Schermer, R.I.; Hauer, J.F.
1984-01-01T23:59:59.000Z
The 30 MJ superconducting magnetic energy storage (SMES) system was installed in the Bonneville Power Administration (BPA) Tacoma Substation in 1982 to 1983. Operation of the unit since that time has been for over 1200 hours. Specific tests to explore the SMES system's thermal and electrical characteristics and the control functions were conducted. The coil heat load with current modulation was determined. A converter with two 6-pulse bridges interfaces the superconducting coil to the power bus. Equal bridge voltage amplitude and constant reactive power modes of operation of the system were run with computer control of the SCR bridge firing angles. Coil energy dump tests were performed. Electrical grid system response to SMES modulation was observed, and full power SMES modulation was undertaken.
Fleischhaker, Robert; Evers, Joerg [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)
2009-12-15T23:59:59.000Z
Light propagation is discussed in media with a cross coupling of the electric and magnetic component of an applied probe field. We derive the wave equations for a probe pulse propagating through such a medium and solve them analytically in Fourier space using the slowly varying envelope approximation. Our analysis reveals the influence of the different medium response coefficients on the propagation dynamics. We apply these results to a specific example system in which cross couplings are induced in an atomic medium by additional control fields. We show that the cross couplings render the propagation dynamics sensitive to the relative phase of the additional fields, and this phase dependence enables one to control the pulse during its propagation through the medium. Our results demonstrate that the magnetic field component of a probe beam can crucially influence the system dynamics already at experimentally accessible parameter ranges in dilute vapors.
Kajimura, Y. [Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Science and Technology Agency (JST), CREST 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012 (Japan); Matsuda, N.; Hayashida, K.; Maeno, A.; Nakashima, H. [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate school of Engineering Sciences, Kyushu University, Kasugakouen 6-1, Kasuga, Fukuoka 816-580 (Japan)
2008-12-31T23:59:59.000Z
Numerical simulations of plasma behavior in a magnetic nozzle of a Laser-Plasma Driven Nuclear Electric Propulsion System are conducted. The propellant is heated and accelerated by the laser and expanded isotropically. The magnetic nozzle is a combination of solenoidal coils and used to collimate and guide the plasma to produce thrust. Simulation calculations by a three-dimensional hybrid code are conducted to examine the plasma behaviors in the nozzle and to estimate the thrust efficiency. We also estimate a fraction ({alpha}) of plasma particles leaking in the forward (spacecraft) direction. By a combination of a few coils, we could decrease {alpha} value without degrading the thrust efficiency. Finally, the shaped propellant is proposed to increase the thrust efficiency.
MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR
with multi-turn surface windings on a soft magnetic substrate (back iron). The rotor contains an eight consisting of a multi-pole surface- wound stator and PM rotor. The microfabricated windings, with small inter, such as a microscale gas turbine [1,2]. Previous work from this group focused on the use of magnetic induction machines
Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields
Tang, Jing [Institute of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cao, Shuo; Gao, Yunan; Sun, Yue; Jin, Kuijuan; Xu, Xiulai, E-mail: xlxu@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Geng, Weidong, E-mail: gengwd@nankai.edu.cn [Institute of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071 (China); Williams, David A. [Hitachi Cambridge Laboratory, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)
2014-07-28T23:59:59.000Z
We report a photoluminescence (PL) spectroscopy study of charge state control in single self-assembled InAs/GaAs quantum dots by applying electric and/or magnetic fields at 4.2?K. Neutral and charged exciton complexes were observed under applied bias voltages from ?0.5?V to 0.5?V by controlling the carrier tunneling. The highly negatively charged exciton emission becomes stronger with increasing pumping power, arising from the fact that electrons have a smaller effective mass than holes and are more easily captured by the quantum dots. The integrated PL intensity of negatively charged excitons is affected significantly by a magnetic field applied along the sample growth axis. This observation is explained by a reduction in the electron drift velocity caused by an applied magnetic field, which increases the probability of non-resonantly excited electrons being trapped by localized potentials at the wetting layer interface, and results in fewer electrons distributed in the quantum dots. The hole drift velocity is also affected by the magnetic field, but it is much weaker.
Petroglyphs, Lighting, and Magnetism
Walker, Merle F
2007-01-01T23:59:59.000Z
1950 Electricity and Magnetism: Theory and Applications.I Petroglyphs, Lightning, and Magnetism | Walker Figure 8.I Petroglyphs, Lightning, and Magnetism | Walker Figure IL
A Difficult Concept The variation of electric and magnetic fields at large distances from sources.
Lü, James Jian-Qiang
in a relatively general context, let us consider what the three canonical geometries we address in this course Since electric fields must begin and end on charges and, since from Gauss' Law, r r E dS Qencl = , E
Bracken, T.D.; Rankin, R.F.; Wiley, J.A.
1999-05-01T23:59:59.000Z
The purpose of this project was to develop a conceptual model for estimating magnetic field (EMF) personal exposure (PE) of individuals or groups and construct a working model using existing data.
Mamishev, Alexander V
1994-01-01T23:59:59.000Z
of extremely low frequency magnetic fields in the direct proximity of the conductors of power lines, situated well above the ground level. Conventional approximation of a sagged wire as a straight horizontal conductor of infinite length has been substituted...
Yu, Zejun; Li, Faxin; Pei, Yongmao, E-mail: peiym@pku.edu.cn, E-mail: fangdn@pku.edu.cn; Fang, Daining, E-mail: peiym@pku.edu.cn, E-mail: fangdn@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871 (China); Mao, Weiguo [Faculty of Materials and Optoelectronics Physics, Xiangtan University, Hunan 411105 (China); Feng, Xue [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)
2014-06-15T23:59:59.000Z
For the first time a novel multi-field bulge-test instrument which enables measurements of the biaxial mechanical properties and electro-magnetic-mechanical coupling effect of free-standing films in external magnetic/electric fields was proposed. The oil pressure was designed with two ranges, 0–1 MPa for elastic small deformation and 0–7 MPa for plastic/damage large deformation. A magnetic field that was horizontal and uniform in the film plane was supplied by a hollow cylindrical magnet. The magnitude could be changed from 0 to 10?000 Oe by adjusting the position of the testing film. Meanwhile, an electric field applied on the film was provided by a voltage source (Maximum voltage: 1000 V; Maximum current: 1 A). Various signals related to deformation, mechanical loading, magnetic field, and electric field could be measured simultaneously without mutual interference, which was confirmed by the coincidence of the measured P-H curves for titanium (Ti)/nickel (Ni) specimens with/without external fields. A hardening phenomenon under magnetic/electric fields was observed for Ni and lead zirconate titanate specimens. The multi-field bulge-test instrument will provide a powerful research tool to study the deformation mechanism of functional films and flexible electronics in the coupling field.
Mustapha Azreg-Aïnou
2014-04-16T23:59:59.000Z
We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties that are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole emerged in a source-free radial electric or magnetic field, generate its, conjecturally stable, rotating counterpart which turns out to be an exotic imperfect fluid wormhole and determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field.
Ouyang, Fangping [Powder Metallurgy Research Institute and State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Physics and Electronics, Central South University, Changsha 410083 (China); Yang, Zhixiong; Wu, Nannan; Chen, Yu [School of Physics and Electronics, Central South University, Changsha 410083 (China); Ni, Xiang [Physics program at the Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016-4309 (United States); Xiong, Xiang, E-mail: xiongx228@sina.com [Powder Metallurgy Research Institute and State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)
2014-02-17T23:59:59.000Z
We performed density functional theory study on the electronic and magnetic properties of armchair MoS{sub 2} nanoribbons (AMoS{sub 2}NR) with different edge hydrogenation. Although bare and fully passivated AMoS{sub 2}NRs are nonmagnetic semiconductors, it was found that hydrogenation in certain patterns can induce localized ferromagnetic edge state in AMoS{sub 2}NRs and make AMoS{sub 2}NRs become antiferromagnetic semiconductors or ferromagnetic semiconductors. Electric field effects on the bandgap and magnetic moment of AMoS{sub 2}NRs were investigated. Partial edge hydrogenation can change a small-sized AMoS{sub 2}NR from semiconductor to metal or semimetal under a moderate transverse electric field. Since the rate of edge hydrogenation can be controlled experimentally via the temperature, pressure and concentration of H{sub 2}, our results suggest edge hydrogenation is a useful method to engineer the band structure of AMoS{sub 2}NRs.
Richard W. Haymaker; Takayuki Matsuki
2003-10-07T23:59:59.000Z
Through the use of a lattice U(1) Ward-Takahashi identity, one can find a precise definition of flux and electric four-current that does not rely on the continuum limit. The magnetic four-current defined for example by the DeGrand-Toussaint construction introduces order a^2 errors in the field distributions. We advocate using a single definition of flux in order to be consistent with both the electric and magnetic Maxwell's equations at any lattice spacing. In a U(1) theory the monopoles are slightly smeared by this choice, i.e. are no longer associated with a single lattice cube. In Abelian projected SU(2) the consistent definition suggests further modifications. For simulations in the scaling window, we do not foresee large changes in the standard analysis of the dual Abrikosov vortex in the maximal Abelian gauge because the order a^2 corrections have small fluctuations and tend to cancel out. However in other gauges, the consequences of our definitions could lead to large effects which may help in understanding the choice of gauge. We also examine the effect of truncating all monopoles except for the dominant cluster on the profile of the dual Abrikosov vortex.
Brodsky, S J; Hwang, D S
2006-01-01T23:59:59.000Z
We consider the electric dipole form factor, F_3(q^2), as well as the Dirac and Pauli form factors, F_1(q^2) and F_2(q^2), of the nucleon in the light-front formalism. We derive an exact formula for F_3(q^2) to complement those known for F_1(q^2) and F_2(q^2). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F_2(q^2) and F_3(q^2), Fock-state by Fock-state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo ...
The equilibrium of dense plasma in a gravity field
B. V. Vasiliev
2000-10-31T23:59:59.000Z
The equilibrium of dense plasma in a gravity field and problem of a gravity-induced electric polarization in this matter are discussed. The calculation for metals performed before shows that both - the gravity-induced compressive strain and the gravity-induced electric field - are inversely proportional to their Young moduli. The calculation for high dense plasma, where Young modulus is equal to zero, shows that there is another effect: each cell of this plasma inside a celestial body in own gravity field obtains the small positive electric charge. It happens as heavy ions sag on to light electron clouds. A celestial body stays electrically neutral as a whole, because the negative electric charge concentrates on its surface. The gravity-induced positive volume charge is very small, its order of magnitude equals to $10^{-18}e$ per atom only. But it is sufficient for the complete conterbalancing of the gravity force.
Electron cyclotron resonant multicusp magnetic field microwave plasma source for electric propulsion
Dahimene, M.; Mahoney, L.; Asmussen, J.
1987-05-01T23:59:59.000Z
The development of electrodeless microwave ion and plasma sources has been a recent, very active research project at Michigan State University. The results are efficient, compact microwave discharge configurations that operate at low pressures (0.5 mtorr to 100 mtorr) and efficiently produce low energy ions and free radicals and broad ion beams for oxidation, deposition, and etching experiments. The microwave discharge technology developed for these applications may be useful for application in electric propulsion. This paper reviews this microwave applicator technology and indicates how it may be extended to higher power levels and applied to electric propulsion systems. 12 references.
None
2012-01-01T23:59:59.000Z
REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.
Electric field control of magnetism using BiFeO{sub 3}-based heterostructures
Heron, J. T., E-mail: jth247@cornell.edu [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Schlom, D. G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Ramesh, R. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
2014-06-15T23:59:59.000Z
Conventional CMOS based logic and magnetic based data storage devices require the shuttling of electrons for data processing and storage. As these devices are scaled to increasingly smaller dimensions in the pursuit of speed and storage density, significant energy dissipation in the form of heat has become a center stage issue for the microelectronics industry. By taking advantage of the strong correlations between ferroic orders in multiferroics, specifically the coupling between ferroelectric and magnetic orders (magnetoelectricity), new device functionalities with ultra-low energy consumption can be envisioned. In this article, we review the advances and highlight challenges toward this goal with a particular focus on the room temperature magnetoelectric multiferroic, BiFeO{sub 3}, exchange coupled to a ferromagnet. We summarize our understanding of the nature of exchange coupling and the mechanisms of the voltage control of ferromagnetism observed in these heterostructures.
Wysin, Gary
Physics II Exam 2 - Chs. 18A,19,20 - Electric Current, Magnetic Field Feb. 23, 2009 Name Rec. Instr-hours, the quantity 850 amp-hours must be a. power. b. energy. c. current. d. charge. b) (4) Give 850 amp-hours in SI
Basu, Debjyoti; Pal, Rabindranath [Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064 (India); Ghosh, Joydeep; Chattopadhyay, Prabal K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2012-07-15T23:59:59.000Z
Improvement of plasma confinement is achieved in normal q{sub a} discharges of SINP-tokamak by introducing a biased electrode inside the last closed flux surface. All the important features of high confinement mode are observed biasing the electrode negatively with respect to the vacuum vessel. Arrays of electric and magnetic probes introduced in the edge plasma region reveal suppression of electric and magnetic fluctuations over distinct frequency ranges as well as modification of the toroidal current profile due to biasing. Further analysis identifies the electrostatic fluctuations to be due to drift mode and the magnetic fluctuations may be of slow compressional Alfven waves. Both get suppressed due to current profile modification during biasing, hence leading to the improvement of plasma confinement.
Eyüboðlu, Murat
nuclear magnetic resonance (NMR) active nuclei is planned using 0.15T Magnetic Resonance Imaging (MRI at each cycle within the object. The applied current pulse creates a measurable magnetic flux density. The component of magnetic flux density parallel to the main magnetic field accumulates an additional phase
Test particle motion in modified gravity theories
Mahmood Roshan
2013-02-05T23:59:59.000Z
We derive the equations of motion of an electrically neutral test particle for modified gravity theories in which the covariant divergence of the ordinary matter energy-momentum tensor dose not vanish (i.e. $\
Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Yaqub, Nadia [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)] [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Sepiol, Bogdan [Faculty of Physics, University of Vienna, Strudlhofgasse 4, A-1090 Wien (Austria)] [Faculty of Physics, University of Vienna, Strudlhofgasse 4, A-1090 Wien (Austria); Ismail, Bushra [Nanoscience and Catalysis Division, National Centre for Physics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)] [Nanoscience and Catalysis Division, National Centre for Physics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)
2011-11-15T23:59:59.000Z
Graphical abstract: A plot of crystallite size against the normalized values of resistivity, dielectric constant and the drift mobility of the CuFe{sub 2}O{sub 4} materials. Highlights: {yields} The CuFe{sub 2}O{sub 4} materials of different crystallite sizes of <100 nm are prepared by sol-gel method and others of the size of >100 nm by combustion method. {yields} The synthesized samples are characterized for different electrical, dielectrical, magnetic and structural properties. {yields} The results show a sudden change in dc-electrical resistivity, Curie temperature, dielectric parameters, etc. when their crystallite size approaches 84 nm. {yields} This study shows transition from bulk to the nano regime takes place at the particle size of 84 nm. -- Abstract: An attempt has been made to clarify the fundamental assumption that the properties of materials change as the crystallite size of the material is reduced below 100 nm. CuFe{sub 2}O{sub 4} samples of different crystallite sizes were prepared by the sol-gel and combustion methods and then analyzed by X-ray diffraction (XRD), thermal analyses (TGA/DTG) and scanning electron microscopy (SEM) techniques. The magnetic properties were studied by measuring the AC magnetic susceptibility ({chi}) and the Moessbauer spectroscopy. The DC electrical resistivity, dielectric constant, dielectric loss tangent, Curie temperature and hyperfine splitting of the samples change with the crystallite size. The change in the electrical properties is attributed to the formation of discrete energy levels instead of the bands. However, the magnetic parameters change due to the existence of non magnetic surface layers. The isomer shift and the hyperfine splitting show gradual increase with the increase in crystallite sizes.
EuCuOSe: Crystal structure refinement, electrical and magnetic properties
Llanos, Jaime [Departamento de Quimica, Universidad Catolica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta (Chile)], E-mail: jllanos@ucn.cl; Cortes, Rodrigo; Sanchez, Victor [Departamento de Quimica, Universidad Catolica del Norte, Avda. Angamos 0610, Casilla 1280, Antofagasta (Chile)
2008-02-05T23:59:59.000Z
The europium copper oxyselenide EuCuOSe has been prepared by reacting Eu, CuO and Se in the ratio 1:1:1 at 1123 K for a period of 10 days in sealed quartz ampoule. The structure has been determined by single-crystal X-ray methods. The compound crystallizes tetragonal in the space group P4/nmm (no. 129) with two formula units in the cell with dimensions a = 393.65(8) pm and c = 871.80(17) pm. The structure is composed of {sup 2}{sub {infinity}}{l_brace}[(Eu{sup 3+})(O{sup 2-}){sub 4/4}(Se{sup 2-}){sub 4/4}]{sup -}{r_brace} double layers separated by copper atoms, which are tetrahedrally coordinated to Se{sup 2-} anions. According to the resistivity measurements, EuCuOSe is a semiconductor. The magnetic susceptibility data shows the typical non-Curie-Weiss behavior of the {sup 7}F{sub J} states of Eu in the 4f{sup 6} configuration.
Gigahertz Non-Volatile Voltage Tuned Magnetic Film Inductors using a Ni/NiFe Core
Lewis, Mark Dylan
2012-01-01T23:59:59.000Z
energy harvesting, magnetic recording devices, and electric and magnetic field tunable microwaveenergy harvesting, magnetic recording devices, and electric and magnetic field tunable microwave
Woolley, Robert D. (Belle Mead, NJ)
1999-01-01T23:59:59.000Z
A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.
Egedal, Jan; Le, Ari; Borg, Anette L
2015-01-01T23:59:59.000Z
Using a kinetic simulation of magnetic reconnection it was recently shown that magnetic-field-aligned electric fields (E||) can be present over large spatial scales in reconnection exhausts. The largest values of E|| are observed within double layers. The existence of double layers in the Earth's magnetosphere is well documented. In our simulation their formation is triggered by large parallel streaming of electrons into the reconnection region. These parallel electron fluxes are required for maintaining quasi-neutrality of the reconnection region and increase with decreasing values of the normalized electron pressure upstream of the reconnection region. A threshold normalized pressure is derived for strong double layers to develop. We also document how the electron confinement, provided in part by the structure in E||, allows sustained energization by perpendicular electric fields. The energization is a consequence of the confined electrons' chaotic orbital motion that includes drifts aligned with the reconn...
Bakke, K., E-mail: kbakke@fisica.ufpb.br
2014-02-15T23:59:59.000Z
We discuss the arising of bound states solutions of the Schrödinger equation due to the presence of a Coulomb-type potential induced by the interaction between a moving electric quadrupole moment and a magnetic field. Furthermore, we study the influence of the Coulomb-type potential on the harmonic oscillator by showing a quantum effect characterized by the dependence of the angular frequency on the quantum numbers of the system, whose meaning is that not all values of the angular frequency are allowed. -- Highlights: • Interaction between a moving electric quadrupole moment and a magnetic field. • Arising of bound states solutions due to the presence of a Coulomb-type potential. • Influence of the Coulomb-type potential on the harmonic oscillator. • Dependence of the angular frequency on the quantum numbers of the system.
Is nonrelativistic gravity possible?
Kocharyan, A. A. [School of Mathematical Sciences, Monash University, Clayton 3800 (Australia)
2009-07-15T23:59:59.000Z
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.
Interface Magnetism in Multiferroics
He, Qing
2011-01-01T23:59:59.000Z
1.2.1 Magnetism . . . . . . . . . . . . . . . . . . . 1.2.2domain walls . . . . . 3 Magnetism of domain walls in BiFeOof electrical control of magnetism in mixed phase BiFeO 3
B. L. Hu
1999-02-22T23:59:59.000Z
We give a summary of the status of current research in stochastic semiclassical gravity and suggest directions for further investigations. This theory generalizes the semiclassical Einstein equation to an Einstein-Langevin equation with a stochastic source term arising from the fluctuations of the energy-momentum tensor of quantum fields. We mention recent efforts in applying this theory to the study of black hole fluctuations and backreaction problems, linear response of hot flat space, and structure formation in inflationary cosmology. To explore the physical meaning and implications of this stochastic regime in relation to both classical and quantum gravity, we find it useful to take the view that semiclassical gravity is mesoscopic physics and that general relativity is the hydrodynamic limit of certain spacetime quantum substructures. Three basic issues - stochasticity, collectivity, correlations- and three processes - dissipation, fluctuations, decoherence- underscore the transformation from quantum micro structure and interaction to the emergence of classical macro structure and dynamics. We discuss ways to probe into the high energy activity from below and make two suggestions: via effective field theory and the correlation hierarchy. We discuss how stochastic behavior at low energy in an effective theory and how correlation noise associated with coarse-grained higher correlation functions in an interacting quantum field could carry nontrivial information about the high energy sector. Finally we describe processes deemed important at the Planck scale, including tunneling and pair creation, wave scattering in random geometry, growth of fluctuations and forms, Planck scale resonance states, and spacetime foams.
Y. V. Stadnik; V. V. Flambaum
2015-02-24T23:59:59.000Z
We show that the interaction of an axion field, or in general a pseudoscalar field, with the axial-vector current generated by an electron through a derivative-type coupling can give rise to a time-dependent mixing of opposite-parity states in atomic and molecular systems. Likewise, the analogous interaction of an axion field with the axial-vector current generated by a nucleon can give rise to time-dependent mixing of opposite-parity states in nuclear systems. This mixing can induce oscillating electric dipole moments, oscillating parity non-conservation effects and oscillating anapole moments in such systems. By adjusting the energy separation between the opposite-parity states of interest to match the axion mass energy, axion-induced experimental observables can be enhanced by many orders of magnitude. Oscillating atomic electric dipole moments can also be generated by axions through hadronic mechanisms, namely the P,T-violating nucleon-nucleon interaction and through the axion-induced electric dipole moments of valence nucleons, which comprise the nuclei. The axion field is modified by the Earth's gravitational field. The interaction of the spin of either an electron or nucleon with this modified axion field leads to axion-induced observable effects. These effects, which are of the form $\\mathbf{g} \\cdot \\mathbf{\\sigma}$, differ from the axion-wind effect, which has the form $\\mathbf{p}_{\\textrm{a}} \\cdot \\mathbf{\\sigma}$.
O. V. Veko; K. V. Kazmerchuk; E. M. Ovsiyuk; V. V. Kisel; V. M. Red'kov
2014-11-07T23:59:59.000Z
Relativistic theory of the Cox's scalar not point-like particle with intrinsic structure is developed on the background of arbitrary curved space-time. It is shown that in the most general form, the extended Proca-like tensor first order system of equations contains non minimal interaction terms through electromagnetic tensor F_{\\alpha \\beta} and Ricci tensor R_{\\alpha \\beta}. In relativistic Cox's theory, the limiting procedure to non-relativistic approximation is performed in a special class of curved space-time models. This theory is specified in simple geometrical backgrounds: Euclid's, Lobachevsky's, and Rie\\-mann's. Wave equation for the Cox's particle is solved exactly in presence of external uniform magnetic and electric fields in the case of Minkowski space. Non-trivial additional structure of the particle modifies the frequency of a quantum oscillator arising effectively in presence if external magnetic field. Extension of these problems to the case of the hyperbolic Lobachevsky space is examined. In presence of the magnetic field, the quantum problem in radial variable has been solved exactly; the quantum motion in z-direction is described by 1-dimensional Schr\\"{o}dinger-like equation in an effective potential which turns out to be too difficult for analytical treatment. In the presence of electric field, the situation is similar. The same analysis has been performed for spherical Riemann space model.
Correa, J. D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M. E., E-mail: memora@uaem.mx [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C. A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-06-07T23:59:59.000Z
We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.
Sreenivasulu, G.; Zhang, Ru; Sharma, K.; Janes, C.; Mukundan, A.; Srinivasan, G., E-mail: srinivas@oakland.edu [Physics Department, Oakland University, Rochester, Michigan 48309 (United States); Popov, Maksym [Physics Department, Oakland University, Rochester, Michigan 48309 (United States); Radiophysics Department, Taras Shevchenko National University of Kyiv, Kyiv 01601 (Ukraine)
2014-02-03T23:59:59.000Z
Core-shell nanofibers of nickel ferrite and lead zirconate titanate have been synthesized by electrospinning, assembled into superstructure in uniform or non-uniform magnetic fields, and have been characterized in terms of ferroic order parameters and strain mediated magneto-electric (ME) coupling. The core-shell structure was confirmed by electron microscopy and scanning probe microscopy. Studies on magnetic field induced polarization P in assembled samples showed a decrease or increase in P, depending on the nature of fibers and strengthening of ME coupling with change in remnant-P as high as 32%. Strong ME interactions were evident from H-induced variation in permittivity at 20–22?GHz.
Yang, X. Y.; Chen, Y. H.; Lin, C.; Wang, X. G.; Xiao, C. J., E-mail: cjxiao@pku.edu.cn [State Key Labaratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)
2014-11-15T23:59:59.000Z
Both the poloidal magnetic field (B{sub p}) and radial electric field (E{sub r}) are significant in magnetic confinement devices. In this paper, a new method was proposed to diagnose both B{sub p} and E{sub r} at the same time, which was named Laser-accelerated Ion-beam Trace Probe (LITP). This method based on the laser-accelerated ion beam, which has three properties: large energy spread, short pulse lengths, and multiple charge states. LITP can provide the 1D profiles, or 2D images of both B{sub p} and E{sub r}. In this paper, we present the basic principle and some preliminary theoretical results.
Judkins, Roddie R. (9917 Rainbow Dr., Knoxville, TN 37922); Burchell, Timothy D. (109 Greywood Pl., Oak Ridge, TN 37830)
1999-01-01T23:59:59.000Z
A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.
Judkins, R.R.; Burchell, T.D.
1999-07-20T23:59:59.000Z
A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.
Quantum Field Theory & Gravity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664...
Song, J. B.
Recently, a cooling system using a solid cryogen such as solid nitrogen (SN2), was introduced for high temperature superconducting (HTS) magnet applications. In order to apply the SN2 cooling system successfully to HTS ...
Paris-Sud XI, Université de
air gap, it is possible to predict the magnetic field outside it, by taking into account the stator. It is based on a 3-D fi- nite element modeling coupled with a post-processing based on a volume integral
S. B. Chernyshuk; O. M. Tovkach; B. I. Lev
2011-09-14T23:59:59.000Z
The Green function method developed in Ref.[S. B. Chernyshuk and B. I. Lev, Phys. Rev. E \\textbf{81}, 041707 (2010)] is used to describe elastic interactions between axially symmetric colloidal particles in the nematic cell in the presence of the external electric or magnetic field. General formulas for dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions in the homeotropic and planar nematic cells with parallel and perpendicular field orientations are obtained. A set of new results has been predicted: 1) \\textit{Deconfinement effect} for dipole particles in the homeotropic nematic cell with negative dielectric anisotropy $\\Delta\\epsilonfield, when electric field is approaching it's Frederiks threshold value $E\\Rightarrow E_{c}$. This means cancellation of the confinement effect found in Ref. [M.Vilfan et al. Phys.Rev.Lett. {\\bf 101}, 237801, (2008)] for dipole particles near the Frederiks transition while it remains for quadrupole particles. 2) New effect of \\textit{attraction and stabilization} of the particles along the electric field parallel to the cell planes in the homeotropic nematic cell with $\\Delta\\epsilonfield and can be ordinary for . 3) Attraction and repulsion zones for all elastic interactions are changed dramatically under the action of the external field.
Baghdadi, M.; Ruiz, H. S.; Fagnard, J. F.; Zhang, M.; Wang, W.; Coombs, T. A.
2014-11-24T23:59:59.000Z
.e. 600 seconds, was then employed in order to allow the trapped magnetic field to relax due to thermally activated flux creep. Getting ready for applying the crossed field, the sample is turned 90 degrees, thus, the direction of the magnetic field would... testing flux-line cutting physics”, Supercond. Sci. Technol., vol. 24, no. 6, p. 062002, Mar. 2011. [14] G. P. Mikitik and E. H. Brandt, ”Vortex shaking in rectangular super- conducting platelets”, Phys. Rev. B, vol. 69, no. 13, p. 134521, Apr. 2004. [15...
Wavelet denoising of gravity gradiometry data Julio Cesar S. O. Lyrio*
Wavelet denoising of gravity gradiometry data Julio Cesar S. O. Lyrio* Gravity and Magnetic an automatic 1D wavelet filtering technique, specially designed to process gravity gradiometry data. The method uses compactly supported orthonormal wavelets that selectively filter out localized high
V. G. Baryshevsky; A. A. Gurinovich
2005-06-14T23:59:59.000Z
In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.
to rapidly change the dielectric constant of a ferroelectric material under the application of a dc electric, by incorporating a ferrite material into a device, one gains the ability to change both the dielectric constant, a phase shifter will have changing characteris- tic impedance as it changes its phase. In this work, we em
Chiral gravity, log gravity, and extremal CFT
Maloney, Alexander [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Song Wei [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Center for the Fundamental Laws of Nature Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts 02138 (United States); Strominger, Andrew [Center for the Fundamental Laws of Nature Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts 02138 (United States)
2010-03-15T23:59:59.000Z
We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.
Oliver Preuss; Mark P. Haugan; Sami K. Solanki; Stefan Jordan
2004-05-26T23:59:59.000Z
The coupling of the electromagnetic field directly with gravitational gauge fields leads to new physical effects that can be tested using astronomical data. Here we consider a particular case for closer scrutiny, a specific nonminimal coupling of torsion to electromagnetism, which enters into a metric-affine geometry of space-time. We show that under the assumption of this nonminimal coupling, spacetime is birefringent in the presence of such a gravitational field. This leads to the depolarization of light emitted from extended astrophysical sources. We use polarimetric data of the magnetic white dwarf ${RE J0317-853}$ to set strong constraints on the essential coupling constant for this effect, giving $k^2 \\lsim (19 {m})^2 $.
Advanced Integrated Electric Traction System
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Integrated Electric Traction System Greg S. Smith Email: gregory.3.smith@gm.com Phone: (310) 257-3812 Organization: General Motors Team members: Ames Laboratory Arnold Magnetics...
Background Material Important Questions about Magnetism
Mojzsis, Stephen J.
Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current
Einstein Gravity, Massive Gravity, Multi-Gravity and Nonlinear Realizations
Garrett Goon; Kurt Hinterbichler; Austin Joyce; Mark Trodden
2014-12-18T23:59:59.000Z
The existence of a ghost free theory of massive gravity begs for an interpretation as a Higgs phase of General Relativity. We revisit the study of massive gravity as a Higgs phase. Absent a compelling microphysical model of spontaneous symmetry breaking in gravity, we approach this problem from the viewpoint of nonlinear realizations. We employ the coset construction to search for the most restrictive symmetry breaking pattern whose low energy theory will both admit the de Rham--Gabadadze--Tolley (dRGT) potentials and nonlinearly realize every symmetry of General Relativity, thereby providing a new perspective from which to build theories of massive gravity. In addition to the known ghost-free terms, we find a novel parity violating interaction which preserves the constraint structure of the theory, but which vanishes on the normal branch of the theory. Finally, the procedure is extended to the cases of bi-gravity and multi-vielbein theories. Analogous parity violating interactions exist here, too, and may be non-trivial for certain classes of multi-metric theories.
Ostoma, T; Ostoma, Tom; Trushyk, Mike
1999-01-01T23:59:59.000Z
On a new approach to quantum gravity called Electro-Magnetic Quantum Gravity (EMQG) which is manifestly compatible with Cellular Automata (CA) theory and is based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia). Newtonian Inertia is due to the strictly local electrical force interactions of matter with the surrounding charged virtual particles of the quantum vacuum. The sum of all the tiny electrical forces originating from each charged particle in the mass with respect to the vacuum, is the source of the total inertial force of a mass which opposes accelerated motion in Newton's law 'F = MA'. The problems and paradoxes of accelerated motion introduced in Mach's principle are solved by suggesting that the state of acceleration of the charged virtual particles of the quantum vacuum (with respect to a mass) serves as Newton's universal reference frame for the mass. Einstein's principle of equivalence of inertial and gravitational...
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-11-16T23:59:59.000Z
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)
1986-01-01T23:59:59.000Z
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Dietrich, F.M.; Feero, W.E.; Jacobs, W.L.
1993-08-01T23:59:59.000Z
Concerns exist regarding the potential safety, environmental and health effects on the public and on transportation workers due to electrification along new or existing rail corridors, and to proposed maglev and high speed rail operations. Therefore, the characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz) is of interest. The report summarizes and compares the results of a survey of EMF characteristics (spatial, temporal and frequency bands) for representative conventional railroad and transit and advanced high-speed systems including: the German TR-07 maglev system; the Amtrak Northeast Corridor (NEC) and North Jersey Transit (NJT) trains; the Washington, DC Metrorail (WMATA) and the Boston, MA (MBTA) transit systems; and the French TGV-A high speed rail system. This comprehensive comparative EMF survey produced both detailed data and statistical summaries of EMF profiles, and their variability in time and space. EMF ELF levels for WMATA are also compared to those produced by common environmental sources at home, work, and under power lines, but have specific frequency signatures.
Magnetic monopole and the nature of the static magnetic field
Xiuqing Huang
2008-12-10T23:59:59.000Z
We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.
Davis, E.D.
1981-12-01T23:59:59.000Z
A thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. The electrons are electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently are collected on the other end wall of the chamber functioning as a collecting plate. The emf generated in the induction coil by action of the transiting electron stream interacting with the transverse magnetic field is applied to an external circuit to perform work, thereby implementing a direct heat energy to electrical energy conversion.
Particle Dynamics And Emergent Gravity
Amir H. Fatollahi
2008-05-08T23:59:59.000Z
The emergent gravity proposal is examined within the framework of noncommutative QED/gravity correspondence from particle dynamics point of view.
Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect
Keun-Young Kim; Kyung Kiu Kim; Yunseok Seo; Sang-Jin Sin
2015-03-17T23:59:59.000Z
We study electric, thermoelectric, and thermal conductivities of a strongly correlated system in the presence of magnetic field by gauge/gravity duality. We consider a general class of Einstein-Maxwell-Dilaton theory with axion fields imposing momentum relaxation. Analytic general formulas for DC conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study we analyse in detail the dyonic black hole modified by momentum relaxation. In this model, the Nernst signal shows a typical vortex-liquid effect when momentum relaxation effect is comparable to chemical potential. We compute all AC electric, thermoelectric, and thermal conductivities by numerical analysis and confirms that their zero frequency limits precisely reproduce our analytic formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effect on conductivities including cyclotron resonance poles.
Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect
Kim, Keun-Young; Seo, Yunseok; Sin, Sang-Jin
2015-01-01T23:59:59.000Z
We study electric, thermoelectric, and thermal conductivities of a strongly correlated system in the presence of magnetic field by gauge/gravity duality. We consider a general class of Einstein-Maxwell-Dilaton theory with axion fields imposing momentum relaxation. Analytic general formulas for DC conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study we analyse in detail the Dyonic black hole modified by momentum relaxation effect. In this model, the Nernst signal shows a typical vortex-liquid effect when momentum relaxation effect is comparable to chemical potential. We compute all AC electric, thermal, and thermal conductivities by numerical analysis and confirms that their zero frequency limits precisely reproduce our analytic formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effect on conductivities including cyclotron frequencies.
Mi, Chunting "Chris"
of Electrical Machines and Transformers Operated by Pulsewidth-Modulated Inverters Ruifang Liu1;2, Chris
Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity
Hu Yapeng; Sun Peng; Zhang Jianhui [Center for High-Energy Physics, Peking University, Beijing 100871 (China)
2011-06-15T23:59:59.000Z
Using the AdS/CFT correspondence, we study the hydrodynamics with conserved current from the dual Maxwell-Gauss-Bonnet gravity. After constructing the perturbative solution to the first order based on the boosted black brane solution in the bulk Maxwell-Gauss-Bonnet gravity, we extract the stress tensor and conserved current of the dual conformal fluid on its boundary, and also find the effect of the Gauss-Bonnet term on the dual conformal fluid. Our results show that the Gauss-Bonnet term can affect the parameters such as the shear viscosity {eta}, entropy density s, thermal conductivity {kappa} and electrical conductivity {sigma}. However, it does not affect the so-called Wiedemann-Franz law which relates {kappa} to {sigma}, while it affects the ratio {eta}/s. In addition, another interesting result is that {eta}/s can also be affected by the bulk Maxwell field in our case, which is consistent with some previous results predicted through the Kubo formula. Moreover, the anomalous magnetic and vortical effects by adding the Chern-Simons term are also considered in our case in the Maxwell-Gauss-Bonnet gravity.
Electric and Magnetic Fields Facts
none,
2006-08-01T23:59:59.000Z
This discussion outlines the EMF issue, summarizes the research conducted to date, and describes what Western Area Power Administration is doing to address concerns about EMF.
Dec 7, 2013 ... As soon as the brakes of a railroad car in West Lafayette are released, the car will roll down under the force of gravity. It will accelerate, then ...
Hong, Yang-Ki [University of Alabama] [University of Alabama; Haskew, Timothy [University of Alabama] [University of Alabama; Myryasov, Oleg [University of Alabama] [University of Alabama; Jin, Sungho [University of California San Diego] [University of California San Diego; Berkowitz, Ami [University of California San Diego] [University of California San Diego
2014-06-05T23:59:59.000Z
The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.
Commonwealth Associates, Inc.; IIT Research Institute
1997-08-01T23:59:59.000Z
This draft report consists of two volumes. Volume 1, the main body, contains an introducto~ sectionj an overview of magnetic fields sectio~ and field reduction technology evaluation section. Magnetic field reduction methods are evalpated for transmission lines, distribution Iines,sulxtations, building wiring applkmd machinery, and transportation systems. The evaluation considers effectiveness, co% and other ftiors. Volume 2 contains five appendices, Append~ A presents magnetic field shielding information. Appendices B and C present design assumptions and magnetic field plots for transmission and distribution lines, respectively. Appendices D and E present cost estimate details for transmission and distribution limes, respectively.
Nonlinear electrodynamics in 3D gravity with torsion
Blagojevic, M.; Cvetkovic, B.; Miskovic, O. [Institute of Physics, University of Belgrade, P. O. Box 57, 11001 Belgrade (Serbia); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile)
2009-07-15T23:59:59.000Z
We study exact solutions of nonlinear electrodynamics coupled to three-dimensional gravity with torsion. We show that in any static and spherically symmetric configuration, at least one component of the electromagnetic field has to vanish. In the electric sector of the theory, we construct an exact solution, characterized by the azimuthal electric field. When the electromagnetic action is modified by a topological mass term, we find two types of the self-dual solutions.
Dirac's point electron in the zero-gravity Kerr--Newman world
Kiessling, Michael K -H
2015-01-01T23:59:59.000Z
The results of a study of Dirac's Hamiltonian for a point electron in the zero-gravity Kerr--Newman spacetime are reported; here, "zero-gravity" means G to 0, where G is Newton's constant of universal gravitation, and the limit is effected in the Boyer--Lindquist coordinate chart of the maximal analytically extended, topologically nontrivial, Kerr--Newman spacetime. In a nutshell, the results are: the essential self-adjointness of the Dirac Hamiltonian; the reflection symmetry about zero of its spectrum; the location of the essential spectrum, exhibiting a gap about zero; and (under two smallness assumptions on some parameters) the existence of a point spectrum in this gap, corresponding to bound states of Dirac's point electron in the electromagnetic field of the zero-G Kerr--Newman ring singularity. The symmetry result of the spectrum extends to Dirac's Hamiltonian for a point electron in a generalization of the zero-G Kerr--Newman spacetime with different ratio of electric-monopole to magnetic-dipole momen...
Goodman, Ronald K. (Livermore, CA); Hunt, Angus L. (Alamo, CA)
1984-01-01T23:59:59.000Z
Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.
Light, Max E; Colestock, Patrick L
2014-01-28T23:59:59.000Z
An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.
advanced permanent magnet: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
magnetic poles, so of generation of magnetic elds in astrophysical objects (or in electrically conducting uids) constitutes Khesin, Boris A. 68 Radiation hardness of permanent...
Tenishev, Valeriy; Rubin, Martin; Combi, Michael R. [University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109 (United States)
2011-05-20T23:59:59.000Z
The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near-nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus.The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet's dusty gas environment.In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov-Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.
Time Gravity and Quantum Mechanics
W. G. Unruh
1993-12-17T23:59:59.000Z
Time plays different roles in quantum mechanics and gravity. These roles are examined and the problems that the conflict in the roles presents for quantum gravity are briefly summarised.
Gravity dual of spatially modulated phase
Nakamura, Shin [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Ooguri, Hirosi [California Institute of Technology, Pasadena, California 91125 (United States); IPMU, University of Tokyo, Kashiwa 277-8586 (Japan); Park, Chang-Soon [California Institute of Technology, Pasadena, California 91125 (United States)
2010-02-15T23:59:59.000Z
We show that the five-dimensional Maxwell theory with the Chern-Simons term is tachyonic in the presence of a constant electric field. When coupled to gravity, a sufficiently large Chern-Simons coupling causes instability of the Reissner-Nordstroem black holes in anti-de Sitter space. The instability happens only at nonvanishing momenta, suggesting a spatially modulated phase in the holographically dual quantum field theory in (3+1) dimensions, with spontaneous current generation in a helical configuration. The three-charge extremal black hole in the type IIB superstring theory on AdS{sub 5}xS{sup 5} barely satisfies the stability condition.
Zhang, Q. M.; Li, Q.; Zhou, W. P.; Wang, L. Y.; Yang, Y. T.; Wang, D. H., E-mail: wangdh@nju.edu.cn; Lv, L. Y.; Du, Y. W. [Jiangsu Key Laboratory for Nano Technology and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Gao, R. L. [School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China)
2014-04-07T23:59:59.000Z
La{sub 1?x}Sr{sub x}CoO{sub 3} (x?=?0.18, 0.33, and 0.5) films were grown epitaxially on piezoelectric Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} substrates by pulsed laser deposition. The magnetization of these films varies with the external electric field, showing the magnetoelectric effect. With different doping content of Sr{sup 2+} ions, the change of magnetization for these films show different behaviors with increasing temperature, which can be attributed to the competition between electric-field-induced changes of spin state and double exchange interaction. This work presents an alternative mechanism to investigate the electric field control of magnetism in magnetoelectric heterostructure by tuning the spin state.
ACCEPTANCE SUMMARY FOR LHC MAGNETS BUILT AT BNL Magnet D4L102
Ohta, Shigemi
the magnet's field quality. Engineering: Escallier reported via email that the magnet met the electricalACCEPTANCE SUMMARY FOR LHC MAGNETS BUILT AT BNL Magnet D4L102 Date of this summary: September 2 on September 2, 2004 and approved the magnet for shipment to CERN. On July 28, R. Ostojic reported that CERN
ACCEPTANCE SUMMARY FOR LHC MAGNETS BUILT AT BNL Magnet: D2L105
Ohta, Shigemi
of this magnet to be satisfactory [1]. Engineering: Escallier reviewed the electrical tests of the magnetACCEPTANCE SUMMARY FOR LHC MAGNETS BUILT AT BNL Magnet: D2L105 Date of this summary: 20 August 2003 of the minutes, or as footnotes]. Acceptance Status: The BNL committee has approved the magnet for shipment
AVTA: 2010 Electric Vehicles International Neighborhood Electric...
10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...
Plated lamination structures for integrated magnetic devices
Webb, Bucknell C.
2014-06-17T23:59:59.000Z
Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.
Characteristics of Graphitic Films for Carbon Based Magnetism and Electronics
Hong, Jeongmin
2009-01-01T23:59:59.000Z
A. Rangwala, “Electricity and Magnetism,” 419 (1989) 81. S.L. Helm, “Defect-Induced Magnetism in Graphene,” Phys Rev. BGraphitic Films for Carbon Based Magnetism and Electronics A
Gravity on Conformal Superspace
Bryan Kelleher
2003-11-11T23:59:59.000Z
The configuration space of general relativity is superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms. However, it has been argued that the configuration space for gravity should be conformal superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms and conformal transformations. Taking this conformal nature seriously leads to a new theory of gravity which although very similar to general relativity has some very different features particularly in cosmology and quantisation. It should reproduce the standard tests of general relativity. The cosmology is studied in some detail. The theory is incredibly restrictive and as a result admits an extremely limited number of possible solutions. The problems of the standard cosmology are addressed and most remarkably the cosmological constant problem is resolved in a natural way. The theory also has several attractive features with regard to quantisation particularly regarding the problem of time.
King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)
2012-02-07T23:59:59.000Z
The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.
Gravity, Dimension, Equilibrium, & Thermodynamics
Jerome Perez
2006-03-30T23:59:59.000Z
Is it actually possible to interpret gravitation as space's property in a pure classical way. Then, we note that extended self-gravitating system equilibrium depends directly on the number of dimension of the space in which it evolves. Given those precisions, we review the principal thermodynamical knowledge in the context of classical gravity with arbitrary dimension of space. Stability analyses for bounded 3D systems, namely the Antonov instability paradigm, are then rapproched to some amazing properties of globular clusters and galaxies.
Iver Brevik
2012-11-23T23:59:59.000Z
A bulk viscosity is introduced in the formalism of modified gravity. It is shown that, on the basis of a natural scaling law for the viscosity, a simple solution can be found for quantities such as the Hubble parameter and the energy density. These solutions may incorporate a viscosity-induced Big Rip singularity. By introducing a phase transition in the cosmic fluid, the future singularity can nevertheless in principle be avoided.
Lie algebraic noncommutative gravity
Banerjee, Rabin; Samanta, Saurav [S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata-700098 (India); Mukherjee, Pradip [Presidency College, 86/1 College Street, Kolkata-700073, West-Bengal (India)
2007-06-15T23:59:59.000Z
We exploit the Seiberg-Witten map technique to formulate the theory of gravity defined on a Lie algebraic noncommutative space-time. Detailed expressions of the Seiberg-Witten maps for the gauge parameters, gauge potentials, and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.
On the Dynamics of Magnetic Fluids in Magnetic Resonance Padraig J. Cantillon-Murphy
in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy B.E., Electrical and Electronic EngineeringOn the Dynamics of Magnetic Fluids in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment
Koyama, Kazuya
2015-01-01T23:59:59.000Z
Einstein's theory of General Relativity (GR) is tested accurately within the local universe i.e., the Solar System, but this leaves open the possibility that it is not a good description at the largest scales in the Universe. The standard model of cosmology assumes GR as the theory to describe gravity on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. The standard model of cosmology is based on a huge extrapolation of our limited knowledge of gravity. This discovery of the late time acceleration of the Universe may require us to revise the theory of gravity and the standard model of cosmology based on GR. We will review recent ...
Magnetic domains were not found in tetrataenite.
Mountziaris, T. J.
collaboration with electrical engineers to produce the proper magnetic tape to view domains in. Observing and Industrial Engineering, University of Massachusetts, Amherst, MA 01003 Future Work While the magnetism· Magnetic domains were not found in tetrataenite. · Figure 4 shows magnetic domains found
electric power equipment with more energy efficiency and higher capacity than today's systems of modernizing the electric grid to meet the nations's need for reliable, electric power, enhancing security continues to increase within the electricity infrastructure. DOE is conducting research, development
Abdelsamie, Maher A A; Mustafa, Shuhaimi; Hashim, Dzulkifly
2014-01-01T23:59:59.000Z
In this study, two software packages using different numerical techniques FEKO 6.3 with Finite-Element Method (FEM) and XFDTD 7 with Finite Difference Time Domain Method (FDTD) were used to assess exposure of 3D models of square, rectangular, and pyramidal shaped water containers to electromagnetic waves at 300, 900, and 2400 MHz frequencies. Using the FEM simulation technique, the peak electric field of 25, 4.5, and 2 V/m at 300 MHz and 15.75, 1.5, and 1.75 V/m at 900 MHz were observed in pyramidal, rectangular, and square shaped 3D container models, respectively. The FDTD simulation method confirmed a peak electric field of 12.782, 10.907, and 10.625 V/m at 2400 MHz in the pyramidal, square, and rectangular shaped 3D models, respectively. The study demonstrated an exceptionally high level of electric field in the water in the two identical pyramid shaped 3D models analyzed using the two different simulation techniques. Both FEM and FDTD simulation techniques indicated variations in the distribution of elect...
Entropic Gravity in Rindler Space
Edi Halyo
2011-04-13T23:59:59.000Z
We show that Rindler horizons are entropic screens and gravity is an entropic force in Rindler space by deriving the Verlinde entropy formula from the focusing of light due to a mass close to the horizon. Consequently, gravity is also entropic in the near horizon regions of Schwarzschild and de Sitter space-times. In different limits, the entropic nature of gravity in Rindler space leads to the Bekenstein entropy bound and the uncertainty principle.
Lifshitz Gravity for Lifshitz Holography
Tom Griffin; Petr Horava; Charles M. Melby-Thompson
2012-11-20T23:59:59.000Z
We argue that Horava-Lifshitz (HL) gravity provides the minimal holographic dual for Lifshitz-type field theories with anisotropic scaling and dynamical exponent z. First we show that Lifshitz spacetimes are vacuum solutions of HL gravity, without need for additional matter. Then we perform holographic renormalization of HL gravity, and show how it reproduces the full structure of the z=2 anisotropic Weyl anomaly in dual field theories in 2+1 dimensions, while its minimal relativistic gravity counterpart yields only one of two independent central charges in the anomaly.
Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.
1992-01-14T23:59:59.000Z
An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.
Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)
1992-01-01T23:59:59.000Z
An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.
Multi-winding homopolar electric machine
Van Neste, Charles W
2012-10-16T23:59:59.000Z
A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.
U.S. Energy Information Administration (EIA) Indexed Site
known as No. 1, No. 2, and No. 4 fuel oils are used primarily for space heating and electric power generation. 1. No. 1 Distillate: A light petroleum distillate that can be...
Ivan Dimitrijevic; Branko Dragovich; Jelena Grujic; Zoran Rakic
2012-04-09T23:59:59.000Z
We consider some aspects of nonlocal modified gravity, where nonlocality is of the type $R \\mathcal{F}(\\Box) R$. In particular, using ansatz of the form $\\Box R = c R^\\gamma,$ we find a few $R(t)$ solutions for the spatially flat FLRW metric. There are singular and nonsingular bounce solutions. For late cosmic time, scalar curvature R(t) is in low regime and scale factor a(t) is decelerated. R (t) = 0 satisfies all equations when k = -1.
Ning Wu
2005-10-01T23:59:59.000Z
It is well-known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theory of gravitational interactions and electromagnetic interactions, a new mechanism of the generation of gravitational field is studied. According to this mechanism, in some special conditions, electromagnetic energy can be directly converted into gravitational energy, and strong gravitational field can be generated without massive stars. Gravity impulse found in experiments is generated by this mechanism.
Bergshoeff, Eric A.; Rosseel, Jan [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Townsend, Paul K. [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2011-05-15T23:59:59.000Z
The physical modes of a recently proposed D-dimensional 'critical gravity', linearized about its anti-de Sitter vacuum, are investigated. All 'log mode' solutions, which we categorize as 'spin-2' or 'Proca', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Einstein tensor of a spin-2 log mode is itself a 'nongauge' solution of the linearized Einstein equations whereas the linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate transformation. Our results suggest the existence of a holographically dual logarithmic conformal field theory.
Dynamic control of spin states in interacting magnetic elements
Jain, Shikha; Novosad, Valentyn
2014-10-07T23:59:59.000Z
A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.
Reduced models for quantum gravity
T. Thiemann
1999-10-04T23:59:59.000Z
The preceding talks given at this conference have dealt mainly with general ideas for, main problems of and techniques for the task of quantizing gravity canonically. Since one of the major motivations to arrange for this meeting was that it should serve as a beginner's introduction to canonical quantum gravity, we regard it as important to demonstrate the usefulness of the formalism by means of applying it to simplified models of quantum gravity, here formulated in terms of Ashtekar's new variables. From the various, completely solvable, models that have been discussed in the literature we choose those that we consider as most suitable for our pedagogical reasons, namely 2+1 gravity and the spherically symmetric model. The former model arises from a dimensional, the latter from a Killing reduction of full 3+1 gravity. While 2+1 gravity is usually treated in terms of closed topologies without boundary of the initial data hypersurface, the toplogy for the spherically symmetric system is chosen to be asymptotically flat. Finally, 2+1 gravity is more suitably quantized using the loop representation while spherically symmetric gravity is easier to quantize via the self-dual representation. Accordingly, both types of reductions, both types of topologies and both types of representations that are mainly employed in the literature in the context of the new variables come into practice. What makes the discussion especially clear is the fact that for both models the reduced phase space turns out to be finitely dimensional.
Canonical Analysis of Unimodular Gravity
J. Kluson
2014-10-07T23:59:59.000Z
This short note is devoted to the Hamiltonian analysis of the Unimodular Gravity.We treat the unimodular gravity as General Relativity action with the unimodular constraint imposed with the help of Lagrange multiplier. We perform the canonical analysis of the resulting theory and determine its constraint structure.
Instabilities and Anti-Evaporation of Reissner-Nordström Black Holes in modified $F(R)$ gravity
Shin'ichi Nojiri; Sergei D. Odintsov
2014-10-05T23:59:59.000Z
We study the instabilities and related anti-evaporation of the extremal Reissner-Nordstr\\"om (RN) black hole in $F(R)$ gravity. It is remarkable that the effective electric charge can be generated for some solutions of $F(R)$ gravity without electromagnetic field. The anti-evaporation effect occurs but it emerges only in the strong coupling limit of the effective gravitational coupling. The instabilities of RN black hole are also investigated when the electromagnetic sector is added to the action of $F(R)$ gravity. We show the anti-evaporation occurs in the Maxwell-$F(R)$ gravity with the arbitrary gravitational coupling constant although it does not occur in the Maxwell-Einstein gravity. Furthermore, general spherically-symmetric solution of $F(R)$ gravity in the Einstein frame is obtained.
Electric Field Control of Local Ferromagnetism with a Magnetoelectric...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Electric Field Control of Local Ferromagnetism with a Magnetoelectric Multiferroic Print Magnetoelectric multiferroics-materials that simultaneously show some form of magnetic and...
A SUPERCONDUCTING MAGNET SYSTEM FOR THE SPIRIT COSMIC RAY SPACE TELESCOPE
Green, M.A.
2010-01-01T23:59:59.000Z
secondary circuit*® NbVSh superconducting coils ElectricalAugust 21-24, 1979 A SUPERCONDUCTING MAGNET SYSTEM FOR THETELESCOPE MASTER A SUPERCONDUCTING MAGNET SYSTEM FOR THE
Study of fully developed, liquid-metal, open-channel flow in a nearly coplanar magnetic field
Morley, N.B.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)
1997-03-01T23:59:59.000Z
Fully developed, gravity-driven flow in an open channel of arbitrary electrical conductance and orientation to an applied magnetic field is investigated. The formulation of the model equations and the numerical solution methodology are described in detail. Numerical solutions of the model equations for the flow velocity profile, induced magnetic field profile, and the uniform film height as a function of Hartmann number, field angle, flow rate, and channel conductivity are presented and discussed. The parameter ranges explored are those most representative of tokamak divertor surface protection schemes, where the field is predominantly coplanar in orientation. The formation of jets in velocity and the occurrence of abrupt jumps in uniform film height are seen as the wall conductance increases. Regimes where the flow is dominated by the smaller transverse field component instead of the larger coplanar field are also observed. Simple analytic relations predicting the film height are given for the different flow regimes. 13 refs., 14 figs., 1 tab.
Compact magnetic energy storage module
Prueitt, Melvin L. (Los Alamos, NM)
1994-01-01T23:59:59.000Z
A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.
Compact magnetic energy storage module
Prueitt, M.L.
1994-12-20T23:59:59.000Z
A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.
AdS Chern-Simons Gravity induces Conformal Gravity
Rodrigo Aros; Danilo E. Diaz
2013-12-25T23:59:59.000Z
The leitmotif of this paper is the question of whether four- and higher even-dimensional Conformal Gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as dimensional reduction of a five-dimensional Chern-Simons action for a suitable (gauged-fixed, tractor-like) five-dimensional AdS connection. The gauge-fixing and dimensional reduction program admits a readily generalization to higher dimensions for the case of certain conformal gravities obtained by contractions of the Weyl tensor.
Not Available
1990-03-01T23:59:59.000Z
Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.
Nanolithographically defined magnetic structures and quantum magnetic disk (invited)
- creasing demands for magnetic storage devices with higher density, faster speed, lower power consumption, smaller size, and lower weight than the current state-of-the-art devices. Presently, most magnetic storage. Chou, Peter R. Krauss, and Linshu Kong NanoStructure Laboratory, Department of Electrical Engineering
M. G. Romania; N. C. Tsamis; R. P. Woodard
2014-12-05T23:59:59.000Z
We review some perturbative results obtained in quantum gravity in an accelerating cosmological background. We then describe a class of non-local, purely gravitational models which have the correct structure to reproduce the leading infrared logarithms of quantum gravitational back-reaction during the inflationary regime. These models end inflation in a distinctive phase of oscillations with slight and short violations of the weak energy condition and should, when coupled to matter, lead to rapid reheating. By elaborating this class of models we exhibit one that has the same behaviour during inflation, goes quiescent until the onset of matter domination, and induces a small, positive cosmological constant of about the right size thereafter. We also briefly comment on the primordial density perturbations that this class of models predict.
Henneaux, Marc; Teitelboim, Claudio [Physique Theorique et Mathematique and International Solvay Institutes, Universite Libre de Bruxelles, Campus Plaine C. P. 231, B-1050 Brussels (Belgium) and Centro de Estudios Cientificos (CECS), Valdivia (Chile); Centro de Estudios Cientificos (CECS), Valdivia (Chile)
2005-01-15T23:59:59.000Z
We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case.
Kay, Bernard S
2015-01-01T23:59:59.000Z
We give an account of the matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this new approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. We also very briefly review some recent related work on the nature of equilibrium states involving quantum black holes and point out how it promises to resolve some puzzling issues in the current version of the string theory approach to black hole entropy.
Natural Inflation and Quantum Gravity
Anton de la Fuente; Prashant Saraswat; Raman Sundrum
2015-01-29T23:59:59.000Z
Cosmic Inflation provides an attractive framework for understanding the early universe and the cosmic microwave background. It can readily involve energies close to the scale at which Quantum Gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular the constraint of the Weak Gravity Conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically-controlled and predictive class of Natural Inflation models.
Riding Gravity Away from Doomsday
Sen, Ashoke
2015-01-01T23:59:59.000Z
The discovery that most of the energy density in the universe is stored in the form of dark energy has profound consequences for our future. In particular our current limited understanding of quantum theory of gravity indicates that some time in the future our universe will undergo a phase transition that will destroy us and everything else around us instantaneously. However the laws of gravity also suggest a way out -- some of our descendants could survive this catastrophe by riding gravity away from the danger. In this essay I describe the tale of this escape from doomsday.
Riding Gravity Away from Doomsday
Ashoke Sen
2015-03-27T23:59:59.000Z
The discovery that most of the energy density in the universe is stored in the form of dark energy has profound consequences for our future. In particular our current limited understanding of quantum theory of gravity indicates that some time in the future our universe will undergo a phase transition that will destroy us and everything else around us instantaneously. However the laws of gravity also suggest a way out -- some of our descendants could survive this catastrophe by riding gravity away from the danger. In this essay I describe the tale of this escape from doomsday.
Localized Magnetic Fields in Arbitrary Directions Using Patterned Nanomagnets
Dunin-Borkowski, Rafal E.
with the option of applying electric fields, for example, to move a quantum dot between regions where the magnetic magnetic films have a long history, for example, in bubble memory,6 but on scales required for spintronic electric fields, for example, to move a quantum dot between regions where the magnetic-field direction
Critical Gravity in Four Dimensions
Lue, H. [China Economics and Management Academy, Central University of Finance and Economics, Beijing 100081 (China); Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Pope, C. N. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)
2011-05-06T23:59:59.000Z
We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This ''critical'' theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical 'new massive gravity' with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.
Donahue, Michael J.
1 Manipulation and sorting of magnetic particles by a magnetic force microscope on a microfluidic magnetic trap platform Elizabeth Mirowski, John Moreland, Arthur Zhang and Stephen E. Russek Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology, Boulder, CO 80305 Michael
Krishnan, Kannan M.
Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy Frank Ludwig a , Hilke. Krishnan b,n a Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig
Onar, Omer C [ORNL] [ORNL
2011-01-01T23:59:59.000Z
This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.
Quantum Gravity: Motivations and Alternatives
Reiner Hedrich
2009-08-03T23:59:59.000Z
The mutual conceptual incompatibility between GR and QM/QFT is generally seen as the most essential motivation for the development of a theory of Quantum Gravity (QG). It leads to the insight that, if gravity is a fundamental interaction and QM is universally valid, the gravitational field will have to be quantized, not at least because of the inconsistency of semi-classical theories of gravity. If this means to quantize GR, its identification of the gravitational field with the spacetime metric has to be taken into account. And the resulting quantum theory has to be background-independent. This can not be achieved by means of quantum field theoretical procedures. More sophisticated strategies have to be applied. One of the basic requirements for such a quantization strategy is that the resulting quantum theory has GR as a classical limit. - However, should gravity not be a fundamental, but an residual, emergent interaction, it could very well be an intrinsically classical phenomenon. Should QM be nonetheless universally valid, we had to assume a quantum substrate from which gravity would result as an emergent classical phenomenon. And there would be no conflict with the arguments against semi-classical theories, because there would be no gravity at all on the substrate level. The gravitational field would not have any quantum properties, and a quantization of GR would not lead to any fundamental theory. The objective of a theory of 'QG' would instead be the identification of the quantum substrate from which gravity results. - The paper tries to give an overview over the main options for theory construction in the field of QG. Because of the still unclear status of gravity and spacetime, it pleads for the necessity of a plurality of conceptually different approaches to QG.
Broader source: Energy.gov [DOE]
The incumbent in this position will serve as an Electrical Engineer in the Strategy and Program Management organization of Transmission Services. The Strategy and Program Management organization is...
Ozpineci, Burak
2014-07-23T23:59:59.000Z
Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...
Ozpineci, Burak
2014-05-02T23:59:59.000Z
Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.
Fanning, Alan W. (San Jose, CA); Olich, Eugene E. (Aptos, CA)
1994-01-01T23:59:59.000Z
An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.
Gauge/Gravity Theory with Running Dilaton and Running Axion
Girma Hailu
2007-12-27T23:59:59.000Z
We present a new gauge/gravity duality construction of the Klebanov-Strassler throat which takes corrections to the anomalous mass dimension proposed in [1] into account on the gauge theory side and both the dilaton and the axion run on the gravity side. The corresponding supergravity solutions are found using equations for type IIB flows with N=1 supersymmetry obtained in [2]. We find that magnetic couplings of the axion to D7-branes filling 4-d spacetime and wrapping 4-cycles at locations of duality transitions and invisible Dirac 8-branes whose worldvolume emanates from the worldvolume of the D7-branes are the sources for the runnings of the dilaton and the axion. Our construction provides the first explicit example of a gauge/gravity duality mapping with a running dilaton or a running axion which is an important component towards finding gravity duals to gauge theories with physically more interesting renormalization group flows such as pure confining gauge theories in four dimensions. The D7-branes also serve as gravitational source for Seiberg duality transitions. The supergravity background has distinct features which could be useful for constructing cosmological models and studying possibilities for probing stringy signatures from the early universe.
Revealing Cosmic Magnetism with Radio Polarimetry
Bryan M. Gaensler
2007-12-18T23:59:59.000Z
While gravitation sustains the on-going evolution of the cosmos, it is magnetism that breaks gravity's symmetry and that provides the pathway to the non-thermal Universe. By enabling processes such as anisotropic pressure support, particle acceleration, and jet collimation, magnetism has for billions of years regulated the feedback vital for returning matter to the interstellar and intergalactic medium. After reviewing recent results that demonstrate the unique view of magnetic fields provided by radio astronomy, I explain how the Square Kilometre Array will provide data that will reveal what cosmic magnets look like, how they formed, and what role they have played in the evolving Universe.
Magnetic moment versus tensor charge
M. Mekhfi
2005-05-10T23:59:59.000Z
We express the baryon magnetic moments in terms of the baryon tensor charges, considering the quarks as relativistic interacting objects. Once tensor charges get measured accurately, the formula for the baryon magnetic moment will serve to extract precise information on the quark anomalous magnetic moment, the quark effective mass and the ratio of the quark constituent mass to the quark effective mass. The analogous formula for the baryon electric dipole moment is of no great use as it gets eventually sizable contributions from various CP- violating sources not necessary associated to the quark electric dipole moment.
International Electric Propulsion Conference IEPC-2007-153
King, Lyon B.
30th International Electric Propulsion Conference IEPC-2007-153 1 Confinement time in an electron and magnetic fields of a Hall-effect thruster with the goal of understanding the mechanism(s) responsible for anomalous cross-field mobility. A low-density electron plasma is confined using vacuum electric and magnetic
Electrical and Computer Engineering
Weber, Rodney
COE 1000 Electrical and Computer Engineering Jennifer Michaels Professor and Interim Associate Chair for Undergraduate Affairs School of Electrical and Computer Engineering Fall 2011 #12;Defining Electrical and Computer Engineering Electrical Engineering: Electrical engineers explore electrical phenomena
Liquid soap film generates electricity
Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin
2014-04-24T23:59:59.000Z
We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.
A numeric solution for metric-affine gravity and Einstein's gravitational theory with Proca matter
Marc Toussaint
1999-10-12T23:59:59.000Z
A special case of metric-affine gauge theory of gravity (MAG) is equivalent to general relativity with Proca matter as source. We study in detail a corresponding numeric solution of the Reissner-Nordstr"om type. It is static, spherically symmetric, and of electric type. In particular, this solution has no horizon, so it has a naked singularity as its origin.
Electric machine for hybrid motor vehicle
Hsu, John Sheungchun (Oak Ridge, TN)
2007-09-18T23:59:59.000Z
A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.
Axion Induced Oscillating Electric Dipole Moments
Hill, Christopher T
2015-01-01T23:59:59.000Z
The axion electromagnetic anomaly induces an oscillating electric dipole for any static magnetic dipole. Static electric dipoles do not produce oscillating magnetic moments. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency $m_a$ and strength $\\sim 10^{-32}$ e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model DC limit. This may suggest sensitive new experimental venues for the axion dark matter search.
Conformal Lifshitz Gravity from Holography
Tom Griffin; Petr Horava; Charles M. Melby-Thompson
2012-04-03T23:59:59.000Z
We show that holographic renormalization of relativistic gravity in asymptotically Lifshitz spacetimes naturally reproduces the structure of gravity with anisotropic scaling: The holographic counterterms induced near anisotropic infinity take the form of the action for gravity at a Lifshitz point, with the appropriate value of the dynamical critical exponent $z$. In the particular case of 3+1 bulk dimensions and $z=2$ asymptotic scaling near infinity, we find a logarithmic counterterm, related to anisotropic Weyl anomaly of the dual CFT, and show that this counterterm reproduces precisely the action of conformal gravity at a $z=2$ Lifshitz point in 2+1 dimensions, which enjoys anisotropic local Weyl invariance and satisfies the detailed balance condition. We explain how the detailed balance is a consequence of relations among holographic counterterms, and point out that a similar relation holds in the relativistic case of holography in $AdS_5$. Upon analytic continuation, analogous to the relativistic case studied recently by Maldacena, the action of conformal gravity at the $z=2$ Lifshitz point features in the ground-state wavefunction of a gravitational system with an interesting type of spatial anisotropy.
Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.
2006-11-21T23:59:59.000Z
An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.
Makarov, Sergey V; Krasnok, Alexander E; Belov, Pavel A
2015-01-01T23:59:59.000Z
We propose a novel concept for efficient dynamic tuning of optical properties of a high refractive index subwavelength nanoparticle with a magnetic Mie-type resonance by means of femtosecond laser radiation. This concept is based on ultrafast generation of electron-hole plasma within such nanoparticle, drastically changing its transient dielectric permittivity. This allows to manipulate by both electric and magnetic nanoparticle responses, resulting in dramatic changes of its extinction cross section and scattering diagram. Specifically, we demonstrate the effect of ultrafast switching-on a Huygens source in the vicinity of the magnetic dipole resonance. This approach enables to design ultrafast and compact optical switchers and modulators based on the "ultrafast magnetic light" concept.
Saturable inductor and transformer structures for magnetic pulse compression
Birx, Daniel L. (Londonderry, NH); Reginato, Louis L. (Orinda, CA)
1990-01-01T23:59:59.000Z
Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.
active magnetic regenerative: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position...
Argonne National Laboratory Partners with Advanced Magnet Lab...
next generation wind turbines and accelerate the deployment of advanced turbines for offshore wind energy in the United States. ANL will work with Magnet Lab, Emerson Electric...
Hickman, Mark
Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College
Hickman, Mark
Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College
Gauge Theory of Quantum Gravity
J. W. Moffat
1994-01-04T23:59:59.000Z
A gauge theory of quantum gravity is formulated, in which an internal, field dependent metric is introduced which non-linearly realizes the gauge fields on the non-compact group $SL(2,C)$, while linearly realizing them on $SU(2)$. Einstein's $SL(2,C)$ invariant theory of gravity emerges at low energies, since the extra degrees of freedom associated with the quadratic curvature and the internal metric only dominate at high energies. In a fixed internal metric gauge, only the the $SU(2)$ gauge symmetry is satisfied, the particle spectrum is identified and the Hamiltonian is shown to be bounded from below. Although Lorentz invariance is broken in this gauge, it is satisfied in general. The theory is quantized in this fixed, broken symmetry gauge as an $SU(2)$ gauge theory on a lattice with a lattice spacing equal to the Planck length. This produces a unitary and finite theory of quantum gravity.
Energy bounds in designer gravity
Amsel, Aaron J.; Marolf, Donald [Physics Department, UCSB, Santa Barbara, California 93106 (United States)
2006-09-15T23:59:59.000Z
We consider asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound in d{>=}4 spacetime dimensions. The boundary conditions in these ''designer gravity'' theories are defined in terms of an arbitrary function W. We give a general argument that the Hamiltonian generators of asymptotic symmetries for such systems will be finite, and proceed to construct these generators using the covariant phase space method. The direct calculation confirms that the generators are finite and shows that they take the form of the pure gravity result plus additional contributions from the scalar fields. By comparing the generators to the spinor charge, we derive a lower bound on the gravitational energy when W has a global minimum and the Breitenlohner-Freedman bound is not saturated.
Counterterms, critical gravity and holography
Kallol Sen; Aninda Sinha; Nemani V. Suryanarayana
2012-05-18T23:59:59.000Z
We consider counterterms for odd dimensional holographic CFTs. These counterterms are derived by demanding cut-off independence of the CFT partition function on $S^d$ and $S^1 \\times S^{d-1}$. The same choice of counterterms leads to a cut-off independent Schwarzschild black hole entropy. When treated as independent actions, these counterterm actions resemble critical theories of gravity, i.e., higher curvature gravity theories where the additional massive spin-2 modes become massless. Equivalently, in the context of AdS/CFT, these are theories where at least one of the central charges associated with the trace anomaly vanishes. Connections between these theories and logarithmic CFTs are discussed. For a specific choice of parameters, the theories arising from counterterms are non-dynamical and resemble a DBI generalization of gravity. For even dimensional CFTs, analogous counterterms cancel log-independent cut-off dependence.
Fluid Gravity Engineering Rocket motor flow analysis
Anand, Mahesh
Fluid Gravity Engineering Capability Â· Rocket motor flow analysis -Internal (performance) -External (plume / contamination) Â· Effect on landing site (surface alteration) -In-depth flow through porous young scientists/engineers Fluid Gravity Engineering Ltd #12;
Advanced Electric Traction System Technology Development
Anderson, Iver
2011-01-14T23:59:59.000Z
As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.
Tian, David Wenjie
2015-01-01T23:59:59.000Z
According to Lovelock's theorem, the Hilbert-Einstein and the Lovelock actions are indistinguishable from their field equations. However, they have different scalar-tensor counterparts, which correspond to the Brans-Dicke and the \\emph{Lovelock-Brans-Dicke} (LBD) gravities, respectively. In this paper the LBD model of alternative gravity with the Lagrangian density $\\mathscr{L}_{\\text{LBD}}=\\frac{1}{16\\pi}\\left[\\phi\\left(R+\\frac{a}{\\sqrt{-g}}{}^*RR + b\\mathcal{G}\\right)-\\frac{\\omega_{\\text L}}{\\phi}\
David Wenjie Tian; Ivan Booth
2015-03-02T23:59:59.000Z
According to Lovelock's theorem, the Hilbert-Einstein and the Lovelock actions are indistinguishable from their field equations. However, they have different scalar-tensor counterparts, which correspond to the Brans-Dicke and the \\emph{Lovelock-Brans-Dicke} (LBD) gravities, respectively. In this paper the LBD model of alternative gravity with the Lagrangian density $\\mathscr{L}_{\\text{LBD}}=\\frac{1}{16\\pi}[\\phi(R+\\frac{a}{\\sqrt{-g}}{}^*RR + b\\mathcal{G})-\\frac{\\omega_{\\text L}}{\\phi}\
Electrical Engineering Minor 2014-2015 Curriculum Chart
Stuart, Josh
Electrical Engineering Minor 2014-2015 Curriculum Chart EE 101/L EE 171/L Electronics EE 101/L/12/2014 #12;Electrical Engineering Minor 2014-2015 Curriculum Chart Fall _______ Winter _______ Spring to Physics III Electricity & Magnetism Phys 5C/N or 6C/N & Math 24 or AMS 20A or 20 EE 101/L Electronic
School of Electrical, Computer and Energy Engineering M.S. Final Oral Defense
Zhang, Junshan
-Phase Transmission Line for Increasing Power Transfer With Limited Right Of Way by Xianda Deng September 5th 10:00 AM. In this thesis, the line parameters, electric and magnetic fields, and right of way are the criteria magnetic field. Based on the electric and magnetic field results, right of way requirements for the six
Intrusive gravity currents in two-layer
Flynn, Morris R.
Intrusive gravity currents in two-layer stratified media Morris R. Flynn & Paul F. Linden Dept.avalanche.org/pictures #12;· `Microbursts' pose a non-trivial threat to airplane safety Introduction Impacts on human health;· Whereas gravity currents travel along a solid boundary, intrusive gravity currents or intrusions propagate
Thermodynamic properties of a magnetically modulated graphene
SK Firoz Islam; Naveen K. Singh; Tarun Kanti Ghosh
2011-09-12T23:59:59.000Z
The effect of magnetic modulation on thermodynamic properties of a graphene monolayer in presence of a constant perpendicular magnetic field is reported here. One-dimensional spatial electric or magnetic modulation lifts the degeneracy of the Landau levels and converts into bands and their band width oscillates with magnetic field leading to Weiss-type oscillation in the thermodynamic properties. The effect of magnetic modulation on thermodynamic properties of a graphene sheet is studied and then compared with electrically modulated graphene and magnetically modulated conventional two-dimensional electron gas (2DEG). We observe Weiss-type and de Haas-van Alphen (dHvA) oscillations at low and high magnetic field, respectively. There is a definite phase difference in Weiss-type oscillations in thermodynamic quantities of magnetically modulated graphene in compare to electrically modulated graphene. On the other hand, the phase remains same and amplitude of the oscillation is large when compared with the magnetically modulated 2DEG. Explicit asymptotic expressions of density of states and the Helmholtz free energy are provided to understand the phase and amplitude of the Weiss-type oscillations qualitatively. We also study thermodynamic properties when both electric and magnetic modulations are present. The Weiss-type oscillations still exist when the modulations are out-of-phase.
Charged star in (2+1)-dimensional gravity
Ayan Banerjee; Farook Rahaman; Tanuka Chattopadhyay
2014-07-26T23:59:59.000Z
We obtain a new class of exact solutions for the Einstein-Maxwell system in static spherically symmetric charged star in (2+1)-dimensional gravity. In order to obtain the analytical solutions we treat the matter distribution anisotropic in nature admitting linear or nonlinear equation of state and the electric field intensity was specified. By choosing a suitable choice of mass function m(r), it is possible to integrate the system in closed form. All the solution, which are obtained in both linear and nonlinear cases are regular at the center and well behaved in the stellar interior.
Electrically powered hand tool
Myers, Kurt S.; Reed, Teddy R.
2007-01-16T23:59:59.000Z
An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.
Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity
Gonzalo J. Olmo; D. Rubiera-Garcia; Helios Sanchis-Alepuz
2014-04-28T23:59:59.000Z
We show that electrically charged solutions within the Eddington-inspired Born-Infeld theory of gravity replace the central singularity by a wormhole supported by the electric field. As a result, the total energy associated with the electric field is finite and similar to that found in the Born-Infeld electromagnetic theory. When a certain charge-to-mass ratio is satisfied, in the lowest part of the mass and charge spectrum the event horizon disappears yielding stable remnants. We argue that quantum effects in the matter sector can lower the mass of these remnants from the Planck scale down to the TeV scale.
Quantum Gravity and Precision Tests
C. P. Burgess
2006-06-24T23:59:59.000Z
This article provides a cartoon of the quantization of General Relativity using the ideas of effective field theory. These ideas underpin the use of General Relativity as a theory from which precise predictions are possible, since they show why quantum corrections to standard classical calculations are small. Quantum corrections can be computed controllably provided they are made for the weakly-curved geometries associated with precision tests of General Relativity, such as within the solar system or for binary pulsars. They also bring gravity back into the mainstream of physics, by showing that its quantization (at low energies) exactly parallels the quantization of other, better understood, non-renormalizable field theories which arise elsewhere in physics. Of course effective field theory techniques do not solve the fundamental problems of quantum gravity discussed elsewhere in these pages, but they do helpfully show that these problems are specific to applications on very small distance scales. They also show why we may safely reject any proposals to modify gravity at long distances if these involve low-energy problems (like ghosts or instabilities), since such problems are unlikely to be removed by the details of the ultimate understanding of gravity at microscopic scales.
Thomas Rauch
2006-07-11T23:59:59.000Z
NLTE spectral analyses of high-gravity central stars by means of state-of-the-art model atmosphere techniques provide information about the precursor AGB stars. The hydrogen-deficient post-AGB stars allow investigations on the intershell matter which is apparently exhibited at the stellar surface. We summarize recent results from imaging, spectroscopy, and spectropolarimetry.
Antimatter, the SME, and Gravity
Jay D. Tasson
2012-12-07T23:59:59.000Z
A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number of SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.
Antimatter, the SME, and Gravity
Tasson, Jay D
2012-01-01T23:59:59.000Z
A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number of SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.
Liouville quantum gravity and KPZ
Duplantier, Bertrand
Consider a bounded planar domain D, an instance h of the Gaussian free field on D, with Dirichlet energy ... and a constant 0[less than or equal to]?<2. The Liouville quantum gravity measure on D is the weak limit as ...
Electrically tunable transverse magnetic focusing in graphene
Taychatanapat, Thiti
Electrons in a periodic lattice can propagate without scattering for macroscopic distances despite the presence of the non-uniform Coulomb potential due to the nuclei. Such ballistic motion of electrons allows the use of ...
Chapter 8 Electric and Magnetic Fields
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaffCeriumfor theChapter 3 -4-16-18-1
Wireless Power Transfer for Electric Vehicles
Scudiere, Matthew B [ORNL; McKeever, John W [ORNL
2011-01-01T23:59:59.000Z
As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.
Van Dam, Jeremy Daniel; Alexander, James Pellegrino; Lokhandwalla, Murtuza Yusuf
2013-12-31T23:59:59.000Z
In one embodiment, an apparatus includes a rotor shaft, at least one pole segment, at least one pole tip segment and at least one permanent magnet pair. The at least one pole segment is mechanically coupled to the rotor shaft. Each permanent magnet pair is disposed between the at least one pole segment and respective pole tip segment. The apparatus further includes at least one mechanical member that mechically restrains the at least one pole tip segment to at least one of the rotor shaft or the at least one pole segment.
Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications
None
2012-01-01T23:59:59.000Z
REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner core—coupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.
Integration of Electric Propulsion Systems with Spacecraft An Overview
Walker, Mitchell
(Gravity field and steady-state Ocean Circulation Explorer), and JAXA's Hayabusa. Around the world, various to support robotic and human solar system exploration efforts to low-power (i.e., pace of electric propulsion technologies being infused into space missions, a growing need exists
Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity
Yan Liu; Ya-Wen Sun
2010-07-07T23:59:59.000Z
We construct holographic superconductors from Einstein-Maxwell-dilaton gravity in 3+1 dimensions with two adjustable couplings $\\alpha$ and the charge $q$ carried by the scalar field. For the values of $\\alpha$ and $q$ we consider, there is always a critical temperature at which a second order phase transition occurs between a hairy black hole and the AdS RN black hole in the canonical ensemble, which can be identified with the superconducting phase transition of the dual field theory. We calculate the electric conductivity of the dual superconductor and find that for the values of $\\alpha$ and $q$ where $\\alpha/q$ is small the dual superconductor has similar properties to the minimal model, while for the values of $\\alpha$ and $q$ where $\\alpha/q$ is large enough, the electric conductivity of the dual superconductor exhibits novel properties at low frequencies where it shows a "Drude Peak" in the real part of the conductivity.
On the support of neutrals against gravity in solar prominences
Terradas, J; Oliver, R; Ballester, J L
2015-01-01T23:59:59.000Z
Cool and dense prominences found in the solar atmosphere are known to be partially ionized because of their relative low temperature. In this Letter, we address the long-standing problem of how the neutral component of the plasma in prominences is supported against gravity. Using the multiple fluid approach we solve the time-dependent equations in two dimensions considering the frictional coupling between the neutral and ionized components of the magnetized plasma representative of a solar prominence embedded in a hot coronal environment. We demonstrate that given an initial density enhancement in the two fluids, representing the body of the prominence, the system is able to relax in the vicinity of magnetic dips to a stationary state in which both neutrals and ionized species are dynamically suspended above the photosphere. Two different coupling processes are considered in this study, collisions between ions and neutrals and charge exchange interactions. We find that for realistic conditions ions are essent...
Power-Invariant Magnetic System Modeling
Gonzalez Dominguez, Guadalupe Giselle
2012-10-19T23:59:59.000Z
: the reluctance, as analogous to the electric resistance, should be a dissipative element instead it is an energy storage element. Furthermore, the two other elements are not defined. This difference has initiated a reevaluation of the conventional magnetic model...
Wagner, Stephan
focuses on. · Smart Grids: Electricity networks are designed to transport energy from where of energy and smarter management of the system. These are called Smart Grids. A number of research projects in medical informatics, smart cities, mining, energy, financial systems, etc. · Bioinformatics
Magnetic behaviour and magnetocaloric effect of neodymium-based amorphous alloy
Paris-Sud XI, UniversitÃ© de
magnetic refrigerant materials. a) Corresponding author Â gorsse@icmcb-bordeaux.cnrs.fr hal-00267718 magnetization and demagnetization of the magnetic refrigerant. Families of magnetic materials which exhibit properties for a suitable magnetic refrigerants, e.g. a high electric resistivity that decreases eddy current
Transient magnetic field and temperature modeling in large magnet applications
Gurol, H.; Hardy, G.E.; Peck, S.D.; Leung, E. (General Dynamics Corp., San Diego, CA (USA). Space Systems Div.)
1989-07-01T23:59:59.000Z
This paper discusses a coupled magnetic/thermal model developed to study heat and magnetic field diffusion in conducting materials subject to time-varying external fields. There are numerous applications, both military and commercial. These include: energy storage devices, pulsed power transformers, and electromagnetic launchers. The time scales of interest may range from a magnetic field pulse of a microsecond in an electromagnetic launcher, to hundreds of seconds in an energy storage magnet. The problem can be dominated by either the magnetic field or heat diffusion, depending on the temperature and the material properties of the conductor. In general, heat diffuses much more rapidly in high electrical conductivity materials of cryogenic temperatures. The magnetic field takes longer to diffuse, since screening currents can be rapidly set up which shield the interior of the material from further magnetic field penetration. Conversely, in high resistivity materials, the magnetic field diffuses much more rapidly. A coupled two-dimensional thermal/magnetic model has been developed. The results of this model, showing the time and spatial variation of the magnetic field and temperature, are discussed for the projectile of an electromagnetic launcher.
Electrical and Computer Engineering Electrical Engineering
Heller, Barbara
Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro
Parametric electric motor study
Adams, D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Stahura, D. [GM-AC Delco Systems, Indianapolis, IN (United States)
1995-04-30T23:59:59.000Z
Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.
Axions in gravity with torsion
Oscar Castillo-Felisola; Cristobal Corral; Sergey Kovalenko; Ivan Schmidt; Valery E. Lyubovitskij
2015-04-13T23:59:59.000Z
We study a scenario allowing a solution of the strong charge parity problem via the Peccei-Quinn mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related pseudoscalar field known as Kalb-Ramond axion. We compare it with the so-called Barbero-Immirzi axion recently proposed in the literature also in the context of the gravity with torsion. We show that they are equivalent from the viewpoint of the effective theory. The phenomenology of these torsion-descended axions is completely determined by the Planck scale without any additional model parameters. These axions are very light and very weakly interacting with ordinary matter. We briefly comment on their astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.
Axions in gravity with torsion
Castillo-Felisola, Oscar; Kovalenko, Sergey; Schmidt, Ivan; Lyubovitskij, Valery E
2015-01-01T23:59:59.000Z
We study a scenario allowing a solution of the strong CP-problem via the Peccei-Quinn mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related pseudoscalar field known as Kalb-Ramond axion. We compare it with the so called Barbero-Immirzi axion recently proposed in the literature also in the context of the gravity with torsion. We show that they are equivalent from the view point of the effective theory. The phenomenology of these torsion-descended axions is completely determined by the Planck scale without any additional model parameters. These axions are very light and very weakly interacting with ordinary matter. We briefly comment on their astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.
Black holes in massive gravity
Babichev, Eugeny
2015-01-01T23:59:59.000Z
We review the black hole solutions of the ghost-free massive gravity theory and its bimetric extension and outline the main results on the stability of these solutions against small perturbations. Massive (bi)-gravity accommodates exact black hole solutions, analogous to those of General Relativity. In addition to these solutions, hairy black holes -- solutions with no correspondent in General Relativity -- have been found numerically, whose existence is a natural consequence of the absence of the Birkhoff's theorem in these theories. The existence of extra propagating degrees of freedom, makes the stability properties of these black holes richer and more complex than those of General Relativity. In particular, the bi-Schwarzschild black hole exhibits an unstable spherically symmetric mode, while the bi-Kerr geometry is also generically unstable, both against the spherical mode and against superradiant instabilities. If astrophysical black holes are described by these solutions, the superradiant instability o...
Circular polarization of obliquely propagating whistler wave magnetic field
Bellan, P. M. [Applied Physics, Caltech, Pasadena California 91125 (United States)] [Applied Physics, Caltech, Pasadena California 91125 (United States)
2013-08-15T23:59:59.000Z
The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.
Nithya, V.D.; Jacob Immanuel, R.; Senthilkumar, S.T. [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India)] [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Sanjeeviraja, C. [School of Physics, Alagappa University, Karaikudi 630 003 (India)] [School of Physics, Alagappa University, Karaikudi 630 003 (India); Perelshtein, I.; Zitoun, D. [Bar-Ilan Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel)] [Bar-Ilan Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Kalai Selvan, R., E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India)
2012-08-15T23:59:59.000Z
Highlights: ? LaCr{sub 0.5}M{sub 0.5}O{sub 3} (M = Cr{sup 3+}, Cu{sup 2+} and Fe{sup 3+}) was synthesized by simple sol–gel technique with subsequent heat treatment. ? The compound formation temperature was optimized through XRD analysis. ? The effects of Cu{sup 2+} and Fe{sup 3+} on the electrical properties of LaCrO{sub 3} were studied using impedance spectroscopy. ? The temperature dependence of electrical conductivity was discussed for LaCr{sub 0.5}Cu{sub 0.5}O{sub 3}. ? The magnetization was found to be enhanced in the LaCr{sub 0.5}Fe{sub 0.5}O{sub 3}. -- Abstract: The structural, electrical and magnetic properties of LaCr{sub 0.5}M{sub 0.5}O{sub 3} (M = Cr{sup 3+}, Cu{sup 2+} and Fe{sup 3+}) synthesized by a sol–gel technique were studied. The X-ray diffraction pattern shows the structure to be orthorhombic and the size of the particles is around 100 nm as seen from the TEM images. The effects of Cu{sup 2+} and Fe{sup 3+} on the electrical properties of LaCrO{sub 3} were studied using impedance spectroscopy at room temperature (RT). The properties of LaCr{sub 0.5}Cu{sub 0.5}O{sub 3} were studied over a wide range of temperature from RT to 533 K. A maximum conductivity of 1.7 × 10{sup ?3} S cm{sup ?1} was observed for LaCr{sub 0.5}Cu{sub 0.5}O{sub 3} at a measured temperature of 533 K. The impedance spectra indicate a negative temperature coefficient of resistance (NTCR) and also imply the conduction is through bulk of the material. The magnetic studies performed using a SQUID magnetometer interpret the antiferromagnetically ordered LaCrO{sub 3} to behave ferromagnetically on the addition of Cu{sup 2+} and Fe{sup 3+}, and the magnetization was found to be enhanced in the LaCr{sub 0.5}Fe{sub 0.5}O{sub 3}.
Ground Magnetic Data for west-central Colorado
Zehner, Richard
2012-03-08T23:59:59.000Z
Ground Magnetic Data for west-central Colorado Modeled ground magnetic data was extracted from the Pan American Center for Earth and Environmental Studies database at http://irpsrvgis08.utep.edu/viewers/Flex/GravityMagnetic/GravityMagnetic_CyberShare/ on 2/29/2012. The downloaded text file was then imported into an Excel spreadsheet. This spreadsheet data was converted into an ESRI point shapefile in UTM Zone 13 NAD27 projection, showing location and magnetic field strength in nano-Teslas. This point shapefile was then interpolated to an ESRI grid using an inverse-distance weighting method, using ESRI Spatial Analyst. The grid was used to create a contour map of magnetic field strength. This dataset includes the raw spreadsheet data, an ESRI point shapefile showing magnetic sample locations and magnetic field strength, and an ESRI line shapefile showing magnetic contours. Projection: UTM Zone 13 NAD27 Magnetic Contour Shapefile Extent: West -108.698836 East -105.283977 North 41.048206 South 36.950086 Magnetic Point Shapefile Extent: West -108.698832 East -105.283908 North 41.048142 South 36.950086
Capacity Markets for Electricity
Creti, Anna; Fabra, Natalia
2004-01-01T23:59:59.000Z
Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity
Retail Electricity Competition
Joskow, Paul; Tirole, Jean
2004-01-01T23:59:59.000Z
Reliability and Competitive Electricity Markets” mimeo, MITCSEM WP 130 Retail Electricity Competition * Paul Joskow andwww.ucei.org Retail Electricity Competition ? Paul Joskow †
Designing Electricity Auctions
Fabra, Natalia; von der Fehr, Nils-Henrik; Harbord, David
2004-01-01T23:59:59.000Z
market performance in electricity auctions, it appears thatMcSorely (2001) “Regulating Electricity Markets: Experiencethe United Kingdom,” The Electricity Journal, December, 81-
High Temperatures & Electricity Demand
High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND
6.061 / 6.979 Introduction to Electric Power Systems, Spring 2003
Kirtley, James L.
Fundamentals of energy-handling electric circuits and electromechanical apparatus. Modeling of magnetic field devices and description of their behavior using appropriate models. Simplification of problems using transformation ...
Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements
None
2012-01-01T23:59:59.000Z
REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in today’s most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.
Electric current generation in distorted graphene
Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio
2014-09-23T23:59:59.000Z
Graphene-like materials can be effectively described by quantum electrodynamics in 2+1 dimensions. In a pure state these systems exhibit a symmetry between the non-equivalent Dirac points in the honeycomb lattice. The effect of some types of doping or the contact with asymmetric external lattices (for instance a boron nitride layer) break this symmetry via a mechanism of effective mass generation that works differently for each Dirac point. In this work we show that the incorporation of an in-plane external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field. This mass structure is associated to a Chern-Simons type of effective action. Together with the presence of a magnetic field generating an electric current, this scenario resembles the chiral magnetic effect in Quantum Chromodynamics.
Gravity-Superconductors Interactions as a Possible Means to Exchange Momentum with the Vacuum
Giovanni Modanese
2014-06-03T23:59:59.000Z
We report on work in progress in quantum field theory about possible interactions between coherent matter, i.e. matter described by a macroscopic wave function or a classical field, and a certain class of vacuum fluctuations, called "zero-modes of the Einstein action". These are little-known virtual masses present in the vacuum state of quantum gravity. A couple of equal masses of this kind can be excited by an oscillating coherent source with frequency f and decays to its ground state emitting a virtual graviton, which can propagate and transfer momentum p to ordinary matter. The virtual masses recoil in the emission, and this amounts to a transfer of momentum -p to the vacuum; this momentum can be passed in turn to some matter, or not. The energy hf for the process does not come from the vacuum, but from the coherent source. The ratio hf/p is of the order of 1 m/s. This model was developed to explain experimental results showing the emission of anomalous high-momentum radiation from certain superconductors, sometimes with a strong recoil of the emitters. The recoil is energetically quite efficient, at least at small power, and could be exploited for propulsion. It has not been tested in space, however, and our model cannot yet predict if the recoil is affected by the presence of near matter. (Another model predicts that it is not.) We also briefly mention a possible application of the anomalous radiation itself and we evaluate the (large) electric and magnetic field strength needed to produce an effect equivalent to that of a superconducting emitter.
Illinois Municipal Electric Agency- Electric Efficiency Program
Broader source: Energy.gov [DOE]
The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...
The Plasma Magnet for Deep Space Exploration
Shepherd, Simon
. Expansion is halted by solar wind pressure is in balance with the magnetic pressure from the driven currentsW RF power ·Magnetic shielding of spacecraft from high energy solar particles ·Magneto-braking in magnetosphere of outer planets ·Electrical power generation from back emf on RF field coils from solar plasma
Born-Infeld gravity in three dimensions
Alishahiha, Mohsen [School of physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Naseh, Ali [School of physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Soltanpanahi, Hesam [School of physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); School of Physics and Centre for Theoretical Physics, University of the Witwatersrand, WITS 2050 Johannesburg (South Africa)
2010-07-15T23:59:59.000Z
In this paper we explore different aspects of three dimensional Born-Infeld as well as Born-Infeld-Chern-Simons gravity. We show that the models have anti-de Sitter and anti-de Sitter wave vacuum solutions. Moreover, we observe that although Born-Infeld-Chern-Simons gravity admits a logarithmic solution, Born-Infeld gravity does not, though it has a limiting logarithmic solution as we approach the critical point.
Casimir interaction energies for magneto-electric ?-function plates
Kimball A. Milton; Prachi Parashar; Martin Schaden; K. V. Shajesh
2013-02-01T23:59:59.000Z
We present boundary conditions for the electromagnetic fields on a \\delta-function plate, having both electric and magnetic properties, sandwiched between two magneto-electric semi-infinite half spaces. The optical properties for an isolated \\delta-function plate are shown to be independent of the longitudinal material properties of the plate. The Casimir-Polder energy between an isotropically polarizable atom and a magneto-electric \\delta-function plate is attractive for a purely electric \\delta-function plate, repulsive for a purely magnetic \\delta-function plate, and vanishes for the simultaneous perfect conductor limit of both electric and magnetic properties of the \\delta-function plate. The interaction energy between two identical \\delta-function plates is always attractive. It can be attractive or repulsive when the plates have electric and magnetic properties interchanged and reproduces Boyer's result for the interaction energy between perfectly conducting electric and magnetic plates. The change in the Casimir-Polder energy in the presence of a \\delta-function plate on a magneto-electric substrate is substantial when the substrate is a weak dielectric.
ELECTRICAL ENGINEERING EECS Department
ELECTRICAL ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering
ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preferences. · Identification of population segments with a strong interest for electric cars. · Forecasting
X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er)
Nandi, Shibabrata
2009-12-19T23:59:59.000Z
Electricity and magnetism were unified into a common subject by James Clerk Maxwell in the nineteenth century yielding the electromagnetic theory. Four equations govern the dynamics of electric charges and magnetic fields, commonly known as Maxwell's equations. Maxwell's equations demonstrate that an accelerated charged particle can produce magnetic fields and a time varying magnetic field can induce a voltage - thereby linking the two phenomena. However, in solids, electric and magnetic ordering are most often considered separately and usually with good reason: the electric charges of electrons and ions are responsible for the charge effects, whereas the electron spin governs magnetic properties.
Supersymmetry and Gravity in Noncommutative Field Theories
Victor O. Rivelles
2003-05-14T23:59:59.000Z
We discuss the renormalization properties of noncommutative supersymmetric theories. We also discuss how the gauge field plays a role similar to gravity in noncommutative theories.
Can Gravity Probe B usefully constrain torsion gravity theories?
Flanagan, Eanna E.; Rosenthal, Eran [Center for Radiophysics and Space Research, Cornell University, Ithaca, New York, 14853 (United States)
2007-06-15T23:59:59.000Z
In most theories of gravity involving torsion, the source for torsion is the intrinsic spin of matter. Since the spins of fermions are normally randomly oriented in macroscopic bodies, the amount of torsion generated by macroscopic bodies is normally negligible. However, in a recent paper, Mao et al. (arXiv:gr-qc/0608121) point out that there is a class of theories, including the Hayashi-Shirafuji (1979) theory, in which the angular momentum of macroscopic spinning bodies generates a significant amount of torsion. They further argue that, by the principle of action equals reaction, one would expect the angular momentum of test bodies to couple to a background torsion field, and therefore the precession of the Gravity Probe B gyroscopes should be affected in these theories by the torsion generated by the Earth. We show that in fact the principle of action equals reaction does not apply to these theories, essentially because the torsion is not an independent dynamical degree of freedom. We examine in detail a generalization of the Hayashi-Shirafuji theory suggested by Mao et al. called Einstein-Hayashi-Shirafuji theory. There are a variety of different versions of this theory, depending on the precise form of the coupling to matter chosen for the torsion. We show that, for any coupling to matter that is compatible with the spin transport equation postulated by Mao et al., the theory has either ghosts or an ill-posed initial-value formulation. These theoretical problems can be avoided by specializing the parameters of the theory and in addition choosing the standard minimal coupling to matter of the torsion tensor. This yields a consistent theory, but one in which the action equals reaction principle is violated, and in which the angular momentum of the gyroscopes does not couple to the Earth's torsion field. Thus, the Einstein-Hayashi-Shirafuji theory does not predict a detectable torsion signal for Gravity Probe B. There may be other torsion theories which do.
Design of a High Performance Ferrite Magnet-Assisted Synchronous Reluctance Motor for an
Paderborn, UniversitÃ¤t
Design of a High Performance Ferrite Magnet- Assisted Synchronous Reluctance Motor for an Electric) ferrite-based permanent magnet-assisted synchronous reluctance motor has been designed for an electric vehicle application. The design steps are outlined. Ferrite magnets have been chosen over conventional Nd
Evaluation of Magnetic Insulation in SF6 Filled Regions
Houck, T; Ferriera, T; Goerz, D; Javedani, J; Speer, R; Tully, L; Vogtlin, G
2009-06-08T23:59:59.000Z
The use of magnetic fields perpendicular to quasistatic electric fields to deter electrical breakdown in vacuum, referred to as magnetic insulation, is well understood and used in numerous applications. Here we define quasi-static as applied high-voltage pulse widths much longer than the transit time of light across the electrode gap. For this report we extend the concept of magnetic insulation to include the inhibition of electrical breakdown in gases. Ionization and electrical breakdown of gases in crossed electric and magnetic fields is only a moderately explored research area. For sufficiently large magnetic fields an electron does not gain sufficient energy over a single cycloidal path to ionize the gas molecules. However, it may be possible for the electron to gain sufficient energy for ionization over a number of collisions. To study breakdown in a gas, the collective behavior of an avalanche of electrons in the formation of a streamer in the gas is required. Effective reduced electric field (EREF) theory, which considers the bulk properties of an electron avalanche, has been successful at describing the influence of a crossed magnetic field on the electric field required for breakdown in gases; however, available data to verify the theory has been limited to low gas pressures and weak electronegative gases. High power devices, for example explosively driven magnetic flux compressors, operate at electrical field stresses, magnetic fields, and insulating gas pressures nearly two orders of magnitude greater than published research for crossed fields in gases. The primary limitation of conducting experiments at higher pressures, e.g. atmospheric, is generating the large magnetic fields, 10's Tesla, and electric fields, >100 kV/cm, required to see a significant effect. In this paper we describe measurements made with a coaxial geometry diode, form factor of 1.2, operating at peak electrical field stress of 220 kV/cm, maximum magnetic field of 20 Tesla, and SF{sub 6} pressure of 760 torr.
Asymptotically (anti)-de Sitter solutions in Gauss-Bonnet gravity without a cosmological constant
Dehghani, M.H. [Physics Department and Biruni Observatory, Shiraz University, Shiraz 71454, Iran (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha, P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)
2004-09-15T23:59:59.000Z
In this paper I show that one can have asymptotically de Sitter, anti-de Sitter (AdS), and flat solutions in Gauss-Bonnet gravity without a cosmological constant term in field equations. First, I introduce static solutions whose three surfaces at fixed r and t have constant positive (k=1), negative (k=-1), or zero (k=0) curvature. I show that for k={+-}1 one can have asymptotically de Sitter, AdS, and flat spacetimes, while for the case of k=0, one has only asymptotically AdS solutions. Some of these solutions present naked singularities, while some others are black hole or topological black hole solutions. I also find that the geometrical mass of these five-dimensional spacetimes is m+2{alpha}|k|, which is different from the geometrical mass m of the solutions of Einstein gravity. This feature occurs only for the five-dimensional solutions, and is not repeated for the solutions of Gauss-Bonnet gravity in higher dimensions. Second, I add angular momentum to the static solutions with k=0, and introduce the asymptotically AdS charged rotating solutions of Gauss-Bonnet gravity. Finally, I introduce a class of solutions which yields an asymptotically AdS spacetime with a longitudinal magnetic field, which presents a naked singularity, and generalize it to the case of magnetic rotating solutions with two rotation parameters.
Gravity modeling of Cenozoic extensional basins, offshore Vietnam
Mauri, Steven Joseph
1993-01-01T23:59:59.000Z
(Yinggehai) basins. Gravity modeling results provide important clues to the controversial tectonic development of Southeast Asia during the Tertiary. Combined Bouguer and free-air gravity maps and residual gravity anomaly maps were generated for the study...
Leong, R.
1993-06-22T23:59:59.000Z
The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.
Development of sodium silicate adhesives for electrical steel bonding
Marks, Jordan (Jordan Christine)
2014-01-01T23:59:59.000Z
Inorganic adhesives have several benefits over traditional joining methods for joining electrical steels used in magnetic cores of numerous industrial applications. As insulators with very high melting temperatures, the ...
Barclay, J.A.; Steyert, W.A.
1981-01-27T23:59:59.000Z
An apparatus and method for refrigeration are disclosed which provides efficient refrigeration over temperature ranges in excess of 20/sup 0/C and which requires no maintenance and is, therefore, usable on an unmanned satellite. The apparatus comprises a superconducting magnet which may be solenoidal. A piston comprising a substance such as a rare earth substance which is maintained near its Curie temperature reciprocates through the bore of the solenoidal magnet. A magnetic drive rod is connected to the piston and appropriate heat sinks are connected thereto. The piston is driven by a suitable mechanical drive such as an electric motor and cam. In practicing the invention, the body of the piston is magnetized and demagnetized as it moves through the magnetic field of the solenoid to approximate any of the following cycles or a condition thereof as well as, potentially, other cycles: Brayton, Carnot, Ericsson, and Stirling. Advantages of the present invention include: that refrigeration can be accomplished over at least a 20/sup 0/C scale at superconducting temperatures as well as at more conventional temperatures; very high efficiency, high reliability, and small size. (LCL)
An Anzatz about Gravity, Cosmology, and the Pioneer Anomaly
Murad, Paul [Morningstar Applied Physics Inc., LLC, Vienna, VA 22182 (Austria)
2010-01-28T23:59:59.000Z
The Pulsar 1913+16 binary system may represent a 'young' binary system where previously it is claimed that the dynamics are due to either a third body or a gravitational vortex. Usually a binary system's trajectory could reside in a single ellipse or circular orbit; the double ellipse implies that the 1913+16 system may be starting to degenerate into a single elliptical trajectory. This could be validated only after a considerably long time period. In a majority of binary star systems, the weights of both stars are claimed by analysis to be the same. It may be feasible that the trajectory of the primary spinning star could demonstrate repulsive gravitational effects where the neutron star's high spin rate induces a repulsive gravitational source term that compensates for inertia. If true, then it provides evidence that angular momentum may be translated into linear momentum as a repulsive source that has propulsion implications. This also suggests mass differences may dictate the neutron star's spin rate as an artifact of a natural gravitational process. Moreover, the reduced matter required by the 'dark' mass hypothesis may not exist but these effects could be due to repulsive gravity residing in rotating celestial bodies.The Pioneer anomaly observed on five different deep-space spacecraft, is the appearance of a constant gravitational force directed toward the sun. Pioneer spacecraft data reveals that a vortex-like magnetic field exists emanating from the sun. The spiral arms of the Sun's magnetic vortex field may be causal to this constant acceleration. This may profoundly provide a possible experimental verification on a cosmic scale of Gertsenshtein's principle relating gravity to electromagnetism. Furthermore, the anomalous acceleration may disappear once the spacecraft passes out into a magnetic spiral furrow, which is something that needs to be observed in the future. Other effects offer an explanation from space-time geometry to the Yarkovsky thermal effects are discussed.
Do Inertial Electric Charges Radiate with Respect to Uniformly Accelerated Observers?
George E. A. Matsas
1994-05-23T23:59:59.000Z
We revisit the long standing problem of analyzing an inertial electric charge from the point of view of uniformly accelerated observers in the context of semi-classical gravity. We choose a suitable set of accelerated observers with respect to which there is no photon emission coming from the inertial charge. We discuss this result against previous claims [F. Rohrlich, Ann. Phys. (N.Y.) vol: 22, 169 (1963)]. (This Essay was awarded a Honorable Mention for 1994 by the Gravity Research Foundation.)
Noncommutative magnetic moment of charged particles
Adorno, T. C.; Gitman, D. M. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Shabad, A. E. [P.N. Lebedev Physics Institute, Moscow (Russian Federation); Vassilevich, D. V. [CMCC - Universidade Federal do ABC, Santo Andre, S.P. (Brazil); Department of Physics, St. Petersburg State University (Russian Federation)
2011-10-15T23:59:59.000Z
It has been argued that in noncommutative field theories, the sizes of physical objects cannot be taken smaller than an ''elementary length'' related to noncommutativity parameters. By gauge covariantly extending field equations of noncommutative U(1){sub *} theory to cover the presence of external sources, we find electric and magnetic fields produced by an extended static charge. We find that such a charge, apart from being an ordinary electric monopole, is also a magnetic dipole. By writing off the existing experimental clearance in the value of the lepton magnetic moments for the present effect, we get the bound on noncommutativity at the level of 10{sup 4} TeV.
Superconducting electric power applications
Blaugher, R.D. [National Renewable Energy Lab., Golden, CO (United States)
1997-06-01T23:59:59.000Z
The application of superconductors to electric power systems has been actively pursued over the past 30 years. Following the realization of high-field, high-current superconductors in 1961, researchers applied these type II materials, such as Nb-Ti and Nb{sub 3}Sn, to laboratory magnets, followed by generators, motors, and transmission cables. Successful prototypes for the latter were constructed and tested by the mid-1980s. It is fair to assume that widespread utility acceptance of these low-temperature superconducting (LTS) power applications was compromised by the necessity for liquid helium cooling. The discovery of the high-temperature superconductors (HTS) in 1986, which offered the prospect for liquid nitrogen cooling, provided renewed interest and impetus and spurred the development of HTS power components. The expectations for HTS power components are, in fact, near realization, as a result of the rapid worldwide progress in HTS wire and tape development. This paper will review the history and present status of superconducting power-system-related applications. The major problems facing this technology and the prospects for commercialization and eventual integration into the utility sector will be discussed. General acceptance for superconducting power equipment by the electric utilities and other end-users will ultimately be based on the respective system performance, efficiency, reliability and maintenance, operational lifetime, and installed cost compared to conventional technologies.
Negative mass solitons in gravity
Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram [Anadolu University, Department of Physics, Yunus Emre Campus, 26470, Eskisehir (Turkey); Department of Physics, Faculty of Arts and Sciences, Middle East Technical University, 06531, Ankara (Turkey)
2006-03-15T23:59:59.000Z
We first reconstruct the conserved (Abbott-Deser) charges in the spin-connection formalism of gravity for asymptotically (Anti)-de Sitter spaces, and then compute the masses of the AdS soliton and the recently found Eguchi-Hanson solitons in generic odd dimensions, unlike the previous result obtained for only five dimensions. These solutions have negative masses compared to the global AdS or AdS/Z{sub p} spacetimes. As a separate note, we also compute the masses of the recent even dimensional Taub-NUT-Reissner-Nordstroem metrics.
None
2012-01-01T23:59:59.000Z
REACT Project: VCU is developing a new magnet for use in renewable power generators and EV motors that requires no rare earth minerals. Rare earths are difficult and expensive to process, but they make electric motors and generators smaller, lighter, and more efficient. VCU would replace the rare earth minerals in EV motor magnets with a low-cost and abundant carbon-based compound that resembles a fine black powder. This new magnet could demonstrate the same level of performance as the best commercial magnets available today at a significantly lower cost. The ultimate goal of this project is to demonstrate this new magnet in a prototype electric motor.
Ground Gravity Survey At Neal Hot Springs Geothermal Area (Colwell...
Technique Ground Gravity Survey Activity Date 2011 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Gravity surveys were conducted to gain a better...
airborne gravity survey: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Gravity CERN Preprints Summary: Modified gravity theories may provide an alternative to dark energy to explain cosmic acceleration. We argue that the observational program...
Constraints on Covariant Horava-Lifshitz Gravity from frame-dragging experiment
Ninfa Radicella; Gaetano Lambiase; Luca Parisi; Gaetano Vilasi
2014-08-06T23:59:59.000Z
The effects of Horava-Lifshitz corrections to the gravito-magnetic field are analyzed. Solutions in the weak field, slow motion limit, referring to the motion of a satellite around the Earth are considered. The post-newtonian paradigm is used to evaluate constraints on the Horava-Lifshitz parameter space from current satellite and terrestrial experiments data. In particular, we focus on GRAVITY PROBE B, LAGEOS and the more recent LARES mission, as well as a forthcoming terrestrial project, GINGER.
Hofmann, Heath F.
516 IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 2, FEBRUARY 2007 Analysis of Permanent-Magnet Hofmann Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA We present a magnetostatic continuum formulation for computing the magnetic fields and flux
IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 7, JULY 2006 1861 Analytical Design of Permanent-Magnet
Mi, Chunting "Chris"
IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 7, JULY 2006 1861 Analytical Design of Permanent-Magnet Traction-Drive Motors Chunting Chris Mi Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48128 USA This paper presents an analytical method for the design of permanent-magnet
Reconstruction of Einstein-Aether Gravity from other Modified Gravity Models
Chayan Ranjit; Ujjal Debnath
2014-09-08T23:59:59.000Z
We briefly describe the modified Friedmann equations for Einstein-Aether gravity theory and we find the effective density and pressure. The purpose of our present work is to reconstruction of Einstein-Aether Gravity from other modified gravities like $f(T)$, $f(R)$, $f(G)$, $f(R,T)$ and $f(R,G)$ and check its viability. The scale factor is chosen in power law form. The free function $F(K)$ for Einstein-Aether gravity (where $K$ is proportional to $H^{2}$) have been found in terms for $K$ by the correspondence between Einstein-Aether gravity and other modified gravities and the nature of $F(K)$ vs $K$ have been shown graphically for every cases. Finally, we analyzed the stability of each reconstructed Einstein-Aether gravity model.
Conserved charges in 3D gravity
Blagojevic, M.; Cvetkovic, B. [University of Belgrade, Institute of Physics, P. O. Box 57, 11001 Belgrade (Serbia)
2010-06-15T23:59:59.000Z
The covariant canonical expression for the conserved charges, proposed by Nester, is tested on several solutions in three-dimensional gravity with or without torsion and topologically massive gravity. In each of these cases, the calculated values of energy momentum and angular momentum are found to satisfy the first law of black hole thermodynamics.
The Superheavy Elements and Anti-Gravity
Anastasovski, Petar K. [Department of Physics, Faculty of Technology and Metallurgy, Saints Cyril and Methodius University, Skopje (Macedonia, The Former Yugoslav Republic of)
2004-02-04T23:59:59.000Z
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.
Dual Accretion Disks in Alternate Gravity Theories
James S. Graber
1997-12-15T23:59:59.000Z
The interior of gravitationally collapsed objects in alternate theories of gravity in which event horizons and singularities do not occur in strong field gravity were generically investigated. These objects, called red holes, were found to contain dynamic configurations of matter, radiation and spacetime similar to inside out accretion disks well inside the photon orbit. Applications to astrophysical phenomena are briefly described.
Threat Mitigation: The Gravity Tractor
Russell Schweickart; Clark Chapman; Dan Durda; Piet Hut
2006-08-15T23:59:59.000Z
The Gravity Tractor (GT) is a fully controlled asteroid deflection concept using the mutual gravity between a robotic spacecraft and an asteroid to slowly accelerate the asteroid in the direction of the "hovering" spacecraft. Based on early warning, provided by ground tracking and orbit prediction, it would be deployed a decade or more prior to a potential impact. Ion engines would be utilized for both the rendezvous with the asteroid and the towing phase. Since the GT does not dock with or otherwise physically contact the asteroid during the deflection process there is no requirement for knowledge of the asteroid's shape, composition, rotation state or other "conventional" characteristics. The GT would first reduce the uncertainty in the orbit of the asteroid via Earth tracking of its radio transponder while station keeping with the asteroid. If, after analysis of the more precise asteroid orbit a deflection is indeed indicated, the GT would "hover" above the surface of the asteroid in the direction of the required acceleration vector for a duration adequate to achieve the desired velocity change. The orbit of the asteroid is continuously monitored throughout the deflection process and the end state is known in real time. The performance envelope for the GT includes most NEOs which experience close gravitational encounters prior to impact and those below 150-200 meters in diameter on a direct Earth impact trajectory.
Solar System constraints to nonminimally coupled gravity
Orfeu Bertolami; Riccardo March; Jorge Páramos
2013-06-05T23:59:59.000Z
We extend the analysis of Chiba, Smith and Erickcek \\cite{CSE} of Solar System constraints on $f(R)$ gravity to a class of nonminimally coupled (NMC) theories of gravity. These generalize $f(R)$ theories by replacing the action functional of General Relativity (GR) with a more general form involving two functions $f^1(R)$ and $f^2(R)$ of the Ricci scalar curvature $R$. While the function $f^1(R)$ is a nonlinear term in the action, analogous to $f(R)$ gravity, the function $f^2(R)$ yields a NMC between the matter Lagrangian density $\\LL_m$ and the scalar curvature. The developed method allows for obtaining constraints on the admissible classes of functions $f^1(R)$ and $f^2(R)$, by requiring that predictions of NMC gravity are compatible with Solar System tests of gravity. We apply this method to a NMC model which accounts for the observed accelerated expansion of the Universe.
Magnetic Monopoles in Spin Ice
Claudio Castelnovo; Roderich Moessner; Shivaji L. Sondhi
2007-10-31T23:59:59.000Z
Electrically charged particles, such as the electron, are ubiquitous. By contrast, no elementary particles with a net magnetic charge have ever been observed, despite intensive and prolonged searches. We pursue an alternative strategy, namely that of realising them not as elementary but rather as emergent particles, i.e., as manifestations of the correlations present in a strongly interacting many-body system. The most prominent examples of emergent quasiparticles are the ones with fractional electric charge e/3 in quantum Hall physics. Here we show that magnetic monopoles do emerge in a class of exotic magnets known collectively as spin ice: the dipole moment of the underlying electronic degrees of freedom fractionalises into monopoles. This enables us to account for a mysterious phase transition observed experimentally in spin ice in a magnetic field, which is a liquid-gas transition of the magnetic monopoles. These monopoles can also be detected by other means, e.g., in an experiment modelled after the celebrated Stanford magnetic monopole search.
Electric Field Quench in AdS/CFT
Koji Hashimoto; Shunichiro Kinoshita; Keiju Murata; Takashi Oka
2014-07-03T23:59:59.000Z
An electric field quench, a suddenly applied electric field, can induce nontrivial dynamics in confining systems which may lead to thermalization as well as a deconfinement transition. In order to analyze this nonequilibrium transitions,we use the AdS/CFT correspondence for $\\mathcal{N}=2$ supersymmetric QCD that has a confining meson sector. We find that the electric field quench causes the deconfinement transition even when the magnitude of the applied electric field is smaller than the critical value for the static case (which is the QCD Schwinger limit for quark-antiquark pair creation). The time dependence is crucial for this phenomenon, and the gravity dual explains it as an oscillation of a D-brane in the bulk AdS spacetime. Interestingly, the deconfinement time takes only discrete values as a function of the magnitude of the electric field. We advocate that the new deconfinement phenomenon is analogous to the exciton Mott transition.
ELECTRICAL CONDUCTIVITY OF THE DEEP MANTLE
Cerveny, Vlastislav
's magnetic field observed at permanent geomagnetic observatories, at temporary locations, measured from ships geomagnetic field induce electrical currents in the Earth's crust and mantle (Farraday's law) the induced of geomagnetic field Magnetosphere Ionosphere Use of observatory and satellite data for induction studies Recent
Electric Energy Application of the New Superconductors
Schneider, T.
of the importance of the new superconductors to electric energy generation, transmission and use and what performance will be needed for these new materials to compete with copper or aluminum wire and iron core magnets. Substantial efforts were made to develop Type...
Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G. [Geological Survey, Denver, CO (USA); Baldwin, M.J. [Fenix and Scisson, Inc., Mercury, NV (USA)
1983-12-31T23:59:59.000Z
Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.
Chakraborty, Tanushree [Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Meneghini, Carlo [Dipartimento di Scienze, Universitá Roma Tre, Via della Vasca Navale, 84 I-00146 Roma (Italy); Aquilanti, Giuliana [Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14, km 163.5 34149 Basovizza, Trieste (Italy); Ray, Sugata [Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2013-12-14T23:59:59.000Z
Detailed experimental studies have been carried out on a new possible dilute magnetic insulator Ba{sub 0.9}Ca{sub 0.1}Ti{sub 0.97}Fe{sub 0.03}O{sub 3??} and its oxygen deficient counterpart. Both the samples stabilize in overall tetragonal BaTiO{sub 3} structure at room temperature as indicated by x-ray diffraction and do exhibit room temperature magnetic order with obvious dependencies on ?. Apart from this, the as-grown sample also retains ferroelectricity at room temperature, which could potentially open up a possibility of achieving multifunctionality at room temperature. However, even though the magnetism is positively influenced by oxygen vacancies, the microscopic phase and ferroelectricity get adversely affected. Finally, using local structural probes, existence of diffused phases has been found, which successfully explains all the observed physical properties.
Petro-electric modeling for CSEM reservoir characterization and monitoring
Key, Kerry
underground gas storage reservoir and demon- strated that the data are repeatable enough to detect in the magnetic and electric fields emitted in the vicinity of the sea floor by electric dipole transmitters fields, or inverted attributes, e.g., rock resis- tivity, can be associated to changes in fluid
Electrical Engineering Department Los Angeles, California 90095-1594
Chen, Francis F.
of a permanent-magnet helicon reactor Francis F. Chen and Humberto Torreblanca Electrical Engineering Department Engineering Department Los Angeles, California 90095-1594 UNIVERSITY OF CALIFORNIA · LOS ANGELES Low Temperature Plasma Technology Laboratory Design of a permanent-magnet helicon reactor Francis F. Chen
Plume detachment from a magnetic nozzle
Deline, Christopher A. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Bengtson, Roger D.; Breizman, Boris N.; Tushentsov, Mikhail R. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Jones, Jonathan E.; Chavers, D. Greg; Dobson, Chris C. [Marshall Space Flight Center, Huntsville, Alabama 35805 (United States); Schuettpelz, Branwen M. [University of Alabama at Huntsville, Huntsville, Alabama 35899 (United States)
2009-03-15T23:59:59.000Z
High-powered electric propulsion thrusters utilizing a magnetized plasma require that plasma exhaust detach from the applied magnetic field in order to produce thrust. This paper presents experimental results demonstrating that a sufficiently energetic and flowing plasma can indeed detach from a magnetic nozzle. Microwave interferometer and probe measurements provide plume density, electron temperature, and ion flux measurements in the nozzle region. Measurements of ion flux show a low-beta plasma plume which follows applied magnetic field lines until the plasma kinetic pressure reaches the magnetic pressure and a high-beta plume expanding ballistically afterward. Several magnetic configurations were tested including a reversed field nozzle configuration. Despite the dramatic change in magnetic field profile, the reversed field configuration yielded little measurable change in plume trajectory, demonstrating the plume is detached. Numerical simulations yield density profiles in agreement with the experimental results.
The 32nd International Electric Propulsion Conference, Wiesbaden, Germany September 11 15, 2011
International Electric Propulsion Conference, Wiesbaden, Germany September 11 15, 2011 2 magnetic fieldThe 32nd International Electric Propulsion Conference, Wiesbaden, Germany September 11 15, 2011 1 Effect of Magnetic Shielding on Plasma Plume of the Cylindrical Hall Thrusters IEPC-2011-175 Presented
International Electric Propulsion Conference, Florence, Italy September 17-20, 2007
Walker, Mitchell
The 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 1-236 Presented at the 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 b = annulus outer diameter c = speed of light B = perturbed magnetic field B0 = equilibrium magnetic
Universal formulae for thermoelectric transport with magnetic field and disorder
Andrea Amoretti; Daniele Musso
2015-02-09T23:59:59.000Z
We obtain explicit expressions for the thermoelectric transport coefficients of a strongly coupled, planar medium in the presence of an orthogonal magnetic field and disorder. The computations are performed within the gauge/gravity framework, however we propose and argue for a possible universal relevance of the results relying on comparisons and extensions of previous hydrodynamical analyses and experimental data.
Universal formulae for thermoelectric transport with magnetic field and disorder
Amoretti, Andrea
2015-01-01T23:59:59.000Z
We obtain explicit expressions for the thermoelectric transport coefficients of a strongly coupled, planar medium in the presence of an orthogonal magnetic field and disorder. The computations are performed within the gauge/gravity framework, however we propose and argue for a possible universal relevance of the results relying on comparisons and extensions of previous hydrodynamical analyses and experimental data.
Design and analysis of a permanent magnet generator for naval applications
Rucker, Jonathan E. (Jonathan Estill)
2005-01-01T23:59:59.000Z
This paper discusses the electrical and magnetic design and analysis of a permanent magnet generation module for naval applications. Numerous design issues are addressed and several issues are raised about the potential ...
Garnier, Darren T.
ranging from vacuum to normal pressure. The magnet is wound on a stainless steel form. The heat exchanger is used also to warm up the magnet to 18-20 K during coil electrical discharging
Axion Induced Oscillating Electric Dipole Moments
Christopher T. Hill
2015-04-10T23:59:59.000Z
The axion electromagnetic anomaly induces an oscillating electric dipole for {\\em any} static magnetic dipole. Static electric dipoles do not produce oscillating magnetic moments. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion in the limit that it is only locally time dependent $(\\overrightarrow{\\beta}=0)$. The electron will acquire an oscillating electric dipole of frequency $m_a$ and strength $\\sim 10^{-32}$ e-cm, three orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model DC limit. This may suggest sensitive new experimental venues for the axion dark matter search.
Magnetic Field Safety Magnetic Field Safety
McQuade, D. Tyler
Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic
Flux formulation of loop quantum gravity: Classical framework
Bianca Dittrich; Marc Geiller
2014-12-11T23:59:59.000Z
We recently introduced a new representation for loop quantum gravity, which is based on the BF vacuum and is in this sense much nearer to the spirit of spin foam dynamics. In the present paper we lay out the classical framework underlying this new formulation. The central objects in our construction are the so-called integrated fluxes, which are defined as the integral of the electric field variable over surfaces of codimension one, and related in turn to Wilson surface operators. These integrated flux observables will play an important role in the coarse graining of states in loop quantum gravity, and can be used to encode in this context the notion of curvature-induced torsion. We furthermore define a continuum phase space as the modified projective limit of a family of discrete phase spaces based on triangulations. This continuum phase space yields a continuum (holonomy-flux) algebra of observables. We show that the corresponding Poisson algebra is closed by computing the Poisson brackets between the integrated fluxes, which have the novel property of being allowed to intersect each other.
Thomas R. Hemmert; Ulf-G. Meissner; Sven Steininger
1998-11-09T23:59:59.000Z
We present an analytic and parameter-free expression for the momentum dependence of the strange magnetic form factor of the nucleon and its corresponding radius which has been derived in Heavy Baryon Chiral Perturbation Theory. We also discuss a model-independent relation between the isoscalar magnetic and the strange magnetic form factors of the nucleon based on chiral symmetry and SU(3) only. These limites are used to derive bounds on the strange magnetic moment of the proton from the recent measurement by the SAMPLE collaboration.
Magnetically insulated transmission line oscillator
Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)
1988-01-01T23:59:59.000Z
A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.
Magnetic fields in anisotropic relativistic stars
Vladimir Folomeev; Vladimir Dzhunushaliev
2015-02-28T23:59:59.000Z
Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.
Magnetic Field Created by Tile Permanent R. Ravaud, G. Lemarquand, V. Lemarquand
Boyer, Edmond
, the most common shape for a permanent magnet in electrical engineering11 is certainly the tile, which can1 Magnetic Field Created by Tile Permanent Magnets R. Ravaud, G. Lemarquand, V. Lemarquand Abstract1 This paper presents the analytical calculation of the three components of the magnetic field
Thermoelectric DC conductivities with momentum dissipation from higher derivative gravity
Long Cheng; Xian-Hui Ge; Zu-Yao Sun
2015-04-28T23:59:59.000Z
We present a mechanism of momentum relaxation in higher derivative gravity by adding linear scalar fields to the Gauss-Bonnet theory. We analytically computed all of the DC thermoelectric conductivities in this theory by adopting the method given by Donos and Gauntlett in [arXiv:1406.4742]. The results show that the DC electric conductivity is not a monotonic function of the effective impurity parameter $\\beta$: in the small $\\beta$ limit, the DC conductivity is dominated by the coherent phase, while for larger $\\beta$, pair creation contribution to the conductivity becomes dominant, signaling an incoherent phase. In addition, the DC heat conductivity is found independent of the Gauss-Bonnet coupling constant.
Phenomenology of electrostatically charged droplet combustion in normal gravity
Anderson, Eric K.; Koch, Jeremy A.; Kyritsis, Dimitrios C. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)
2008-08-15T23:59:59.000Z
Experimental findings are provided on the effect of electrostatically charging a fuel on single-burning droplet combustion in normal gravity. It was established that significant modification of the flame morphology and the droplet burning time could be achieved, solely by the droplet charge, without the application of external electric fields. Negative charging of the droplets of mixtures of isooctane with either ethanol or a commercially available anti-static additive generated intense motion of the flame and abbreviated the droplet burning time by as much as 40% for certain blend compositions. Positive charging of the droplets generated almost spherical flames, because electrostatic attraction toward the droplets countered the effect of buoyancy. By comparing combustion of droplets of the same conductivity but different compositions, coupling of electrostatics with combustion chemistry was established. (author)
Emergent Horava gravity in graphene
G. E. Volovik; M. A. Zubkov
2013-07-07T23:59:59.000Z
First of all, we reconsider the tight - binding model of monolayer graphene, in which the variations of the hopping parameters are allowed. We demonstrate that the emergent 2D Weitzenbock geometry as well as the emergent U(1) gauge field appear. The emergent gauge field is equal to the linear combination of the components of the zweibein. Therefore, we actually deal with the gauge fixed version of the emergent 2+1 D teleparallel gravity. In particular, we work out the case, when the variations of the hopping parameters are due to the elastic deformations, and relate the elastic deformations with the emergent zweibein. Next, we investigate the tight - binding model with the varying intralayer hopping parameters for the multilayer graphene with the ABC stacking. In this case the emergent 2D Weitzenbock geometry and the emergent U(1) gauge field appear as well, the emergent low energy effective field theory has the anisotropic scaling.
Dimensional Reduction in Quantum Gravity
G. 't Hooft
2009-03-20T23:59:59.000Z
The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two-dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. Essay dedicated to Abdus Salam.
Tom Fleming; Mark Gross; Ray Renken
1994-01-04T23:59:59.000Z
We define a simplified version of Regge quantum gravity where the link lengths can take on only two possible values, both always compatible with the triangle inequalities. This is therefore equivalent to a model of Ising spins living on the links of a regular lattice with somewhat complicated, yet local interactions. The measure corresponds to the natural sum over all 2^links configurations, and numerical simulations can be efficiently implemented by means of look-up tables. In three dimensions we find a peak in the ``curvature susceptibility'' which grows with increasing system size. However, the value of the corresponding critical exponent as well as the behavior of the curvature at the transition differ from that found by Hamber and Williams for the Regge theory with continuously varying link lengths.
Gravity-Induced Vacuum Dominance
Lima, William C. C.; Vanzella, Daniel A. T. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, CEP 15980-900, Sao Carlos, SP (Brazil)
2010-04-23T23:59:59.000Z
It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for backreaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.
Newtonian gravity, red shift, confinement, asymptotic freedom and quarks oscillations
G. Quznetsov
2008-10-18T23:59:59.000Z
Quarks oscillations give the Newtonian gravity law, the red shift, the confinement and the asymptotic freedom.
Loop Quantum Gravity 1. Classical framework : Ashtekar-Barbero connection
Sart, Remi
gravity Why Quantum Gravity ? Gravitation vs. Quantum Physics : the two infinities Gravitation : large Quantum Gravity ? Gravitation vs. Quantum Physics : the two infinities Gravitation : large scales-perturbative renormalization Gravity is not a fundamental theory but it is effective (law energy) Â· it has to be modified
Southeastern Electric- Electric Equipment Loan Program
Broader source: Energy.gov [DOE]
Southeastern Electric Cooperative is a member-owned electric cooperative that serves customers in the southeastern part of South Dakota. Southeastern offers a loan program for customers who want...
Thermal and high magnetic field treatment of materials and associated apparatus
Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail
2010-06-29T23:59:59.000Z
An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.
Thermal and high magnetic field treatment of materials and associated apparatus
Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail
2007-01-09T23:59:59.000Z
An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.
Fractal Structure of Loop Quantum Gravity
Leonardo Modesto
2008-12-11T23:59:59.000Z
In this paper we have calculated the spectral dimension of loop quantum gravity (LQG) using simple arguments coming from the area spectrum at different length scales. We have obtained that the spectral dimension of the spatial section runs from 2 to 3, across a 1.5 phase, when the energy of a probe scalar field decrees from high to low energy. We have calculated the spectral dimension of the space-time also using results from spin-foam models, obtaining a 2-dimensional effective manifold at hight energy. Our result is consistent with other two approach to non perturbative quantum gravity: causal dynamical triangulation and asymptotic safety quantum gravity.
CDT meets Horava-Lifshitz gravity
J. Ambjorn; A. Gorlich; S. Jordan; J. Jurkiewicz; R. Loll
2010-04-06T23:59:59.000Z
The theory of causal dynamical triangulations (CDT) attempts to define a nonperturbative theory of quantum gravity as a sum over space-time geometries. One of the ingredients of the CDT framework is a global time foliation, which also plays a central role in the quantum gravity theory recently formulated by Ho\\v{r}ava. We show that the phase diagram of CDT bears a striking resemblance with the generic Lifshitz phase diagram appealed to by Ho\\v{r}ava. We argue that CDT might provide a unifying nonperturbative framework for anisotropic as well as isotropic theories of quantum gravity.
Ning Wu
2012-07-11T23:59:59.000Z
When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machine which can physically prolong human's lifetime.
Electrical/Electronic Engineering
Berdichevsky, Victor
Electrical/Electronic Engineering Technology The Division of Engineering of Science in Electrical/Electronic Engineering Technology Get ready for a dynamic career in Electrical/Electronic Engineering Technology. Possible applications
Novel Approach to Linear Accelerator Superconducting Magnet System
Kashikhin, Vladimir; /Fermilab
2011-11-28T23:59:59.000Z
Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.
Seeing the magnetic monopole through the mirror of topological surface states
Qi, Xiao-Liang; Li, Rundong; /Stanford U., Phys. Dept.; Zang, Jiadong; /Fudan U.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Fudan U.
2010-03-25T23:59:59.000Z
Existence of the magnetic monopole is compatible with the fundamental laws of nature, however, this illusive particle has yet to be detected experimentally. In this work, we show that an electric charge near the topological surface state induces an image magnetic monopole charge due to the topological magneto-electric effect. The magnetic field generated by the image magnetic monopole can be experimentally measured, and the inverse square law of the field dependence can be determined quantitatively. We propose that this effect can be used to experimentally realize a gas of quantum particles carrying fractional statistics, consisting of the bound states of the electric charge and the image magnetic monopole charge.
Electricity Restructuring: Deregulation or Reregulation?
Borenstein, Severin; Bushnell, James
2000-01-01T23:59:59.000Z
Power in the British Electricity Spot Market. ” American805. Catherine Wolfram. “Electricity Markets: Should thePower in Wholesale Electricity Markets. ” The Electricity
Electric field divertor plasma pump
Schaffer, M.J.
1994-10-04T23:59:59.000Z
An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.
Electric field divertor plasma pump
Schaffer, Michael J. (San Diego, CA)
1994-01-01T23:59:59.000Z
An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.
ELECTRICAL ENERGY SYSTEMS ELECTRICAL ENERGY SYSTEMS
Strathclyde, University of
countries to install solar energy technologies into local schools and hospitals. In its Energy PolicyMEng ELECTRICAL ENERGY SYSTEMS #12;MEng ELECTRICAL ENERGY SYSTEMS Electrical energy is vital aspects of modern life. One of the biggest challenges facing society is the need for reliable energy
DOE handbook electrical safety
NONE
1998-01-01T23:59:59.000Z
Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.
Not Available
1993-09-01T23:59:59.000Z
The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.
Target Plasma Formation for Magnetic Compression/Magnetized Target Fusion
Lindemuth, I.R.; Reinovsky, R.E.; Chrien, R.E.; Christian, J.M.; Ekdahl, C.A.; Goforth, J.H.; Haight, R.C.; Idzorek, G.; King, N.S.; Kirkpatrick, R.C.; Larson, R.E.; Morgan, G.L.; Olinger, B.W.; Oona, H.; Sheehey, P.T.; Shlachter, J.S.; Smith, R.C.; Veeser, L.R.; Warthen, B.J.; Younger, S.M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chernyshev, V.K.; Mokhov, V.N.; Demin, A.N.; Dolin, Y.N.; Garanin, S.F.; Ivanov, V.A.; Korchagin, V.P.; Mikhailov, O.D.; Morozov, I.V.; Pak, S.V.; Pavlovskii, E.S.; Seleznev, N.Y.; Skobelev, A.N.; Volkov, G.I.; Yakubov, V.A. [All-Russian Scientific Research Institute of Experimental Physics, Arzamas-16 (Russian Federation)] [All-Russian Scientific Research Institute of Experimental Physics, Arzamas-16 (Russian Federation)
1995-09-04T23:59:59.000Z
Experimental observations of plasma behavior in a novel plasma formation chamber are reported. Experimental results are in reasonable agreement with two-dimensional magnetohydrodynamic computations suggesting that the plasma could subsequently be adiabatically compressed by a magnetically driven pusher to yield 1 GJ of fusion energy. An explosively driven helical flux compression generator mated with a unique closing switch/opening switch combination delivered a 2.7 MA, 347 {mu}s magnetization current and an additional 5 MA, 2.5 {mu}s electrical pulse to the chamber. A hot plasma was produced and 10{sup 13} D-T fusion reactions were observed.
Kerns, J.A.; Stone, R.R.; Fabyan, J.
1985-02-12T23:59:59.000Z
A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.
Edison Electric Institute Update
Broader source: Energy.gov [DOE]
Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Edison Electric Institute (EEI) and the current electricity landscape.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
End Use: December 2014 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are...
California's electricity crisis
Joskow, Paul L.
2001-01-01T23:59:59.000Z
The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...
Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)
2010-11-16T23:59:59.000Z
A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.
Plaster, B. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); California Institute of Technology, Pasadena, California 91125 (United States); Semenov, A.Yu.; Semenova, I.A. [Kent State University, Kent, Ohio 44242 (United States); Joint Institute for Nuclear Research, Dubna RU-141980 (Russian Federation); Aghalaryan, A.; Asaturyan, R.; Mkrtchyan, H.; Stepanyan, S.; Tadevosyan, V. [Yerevan Physics Institute, Yerevan 375036 (Armenia); Crouse, E.; Finn, J.M.; Perdrisat, C.; Roche, J. [College of William and Mary, Williamsburg, Virginia 23187 (United States); MacLachlan, G.; Opper, A.K. [Ohio University, Athens, Ohio 45701 (United States); Tajima, S.; Churchwell, S.; Howell, C.R. [Duke University and TUNL, Durham, North Carolina 27708 (United States); Tireman, W. [Kent State University, Kent, Ohio 44242 (United States); Northern Michigan University, Marquette, Michigan 49855 (United States); Ahmidouch, A. [North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Anderson, B. D. [Kent State University, Kent, Ohio 44242 (United States)] (and others)
2006-02-15T23:59:59.000Z
We report values for the neutron electric to magnetic form factor ratio, G{sub En}/G{sub Mn}, deduced from measurements of the neutron's recoil polarization in the quasielastic {sup 2}H(e{yields},e{sup '}n{yields}){sup 1}H reaction, at three Q{sup 2} values of 0.45, 1.13, and 1.45 (GeV/c){sup 2}. The data at Q{sup 2}=1.13 and 1.45 (GeV/c){sup 2} are the first direct experimental measurements of G{sub En} employing polarization degrees of freedom in the Q{sup 2}>1 (GeV/c){sup 2} region and stand as the most precise determinations of G{sub En} for all values of Q{sup 2}.
Bradley Plaster; A.Yu. Semenov; A. Aghalaryan; Erick Crouse; Glen MacLachlan; Shigeyuki Tajima; William Tireman; Abdellah Ahmidouch; Brian Anderson; Hartmuth Arenhovel; Razmik Asaturyan; O. Baker; Alan Baldwin; David Barkhuff; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; T. Eden; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Ashot Gasparian; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; Richard Madey; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Nikolai Savvinov; Irina Semenova; Wonick Seo; Neven Simicevic; Gregory Smith; Stepan Stepanyan; Vardan Tadevosyan; Liguang Tang; Shawn Taylor; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu
2006-02-01T23:59:59.000Z
We report values for the neutron electric to magnetic form factor ratio, G{sub En}/G{sub Mn}, deduced from measurements of the neutron's recoil polarization in the quasielastic {sup 2}H({rvec e}, e{prime}{rvec n}) {sup 1}H reaction, at three Q{sup 2} values of 0.45, 1.13, and 1.45 (GeV/c){sup 2}. The data at Q{sup 2} = 1.13 and 1.45 (GeV/c){sup 2} are the first direct experimental measurements of GEn employing polarization degrees of freedom in the Q{sup 2} > 1 (GeV/c){sup 2} region and stand as the most precise determinations of GEn for all values of Q{sup 2}.
Bounds on quantum communication via Newtonian gravity
D. Kafri; G. J. Milburn; J. M. Taylor
2014-10-08T23:59:59.000Z
Newtonian gravity yields specific observable consequences, the most striking of which is the emergence of a $1/r^2$ force. In so far as communication can arise via such interactions between distant particles, we can ask what would be expected for a theory of gravity that only allows classical communication. Many heuristic suggestions for gravity-induced decoherence have this restriction implicitly or explicitly in their construction. Here we show that communication via a $1/r^2$ force has a minimum noise induced in the system when the communication cannot convey quantum information, in a continuous time analogue to Bell's inequalities. Our derived noise bounds provide tight constraints from current experimental results on any theory of gravity that does not allow quantum communication.
Zhan, Lang; Yortsos, Yanis
2000-09-11T23:59:59.000Z
A new gravity finger model was proposed in this report in the absence of interfacial tension but in the presence of gravities. This model considered differences in density and viscosity of the two fluids. Thus, it was able to represent both stable and unstable displacements, and the finger development along either the upper or the bottom walls of a channel. This solution recovers the Saffman - Taylar solution if gravity is neglected. The results of the solution are very similar to the solutions proposed by Brener et al. for the gravity number up to 10. The solution provided in this work only has one free parameter while the solution of Brener et al. has three.
Gravity waves from vortex dipoles and jets
Wang, Shuguang
2009-05-15T23:59:59.000Z
The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here...
State sum models for quantum gravity
John W. Barrett
2000-10-12T23:59:59.000Z
This paper reviews the construction of quantum field theory on a 4-dimensional spacetime by combinatorial methods, and discusses the recent developments in the direction of a combinatorial construction of quantum gravity.
Energy conditions in f(R) gravity
Santos, J. [Universidade Federal do Rio Grande do Norte, Departamento de Fisica C.P. 1641, 59072-970 Natal-Rio Grande do Norte (Brazil); Departamento de Astronomia, Observatorio Nacional, 20921-400 Rio de Janeiro-Rio de Janeiro (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-Rio de Janeiro (Brazil); Alcaniz, J. S.; Carvalho, F. C. [Departamento de Astronomia, Observatorio Nacional, 20921-400 Rio de Janeiro-Rio de Janeiro (Brazil); Reboucas, M. J. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-Rio de Janeiro (Brazil)
2007-10-15T23:59:59.000Z
In order to shed some light on the current discussion about f(R)-gravity theories we derive and discuss the bounds imposed by the energy conditions on a general f(R) functional form. The null and strong energy conditions in this framework are derived from Raychaudhuri's equation along with the requirement that gravity is attractive, whereas the weak and dominant energy conditions are stated from a comparison with the energy conditions that can be obtained in a direct approach via an effective energy-momentum tensor for f(R) gravity. As a concrete application of the energy conditions to locally homogeneous and isotropic f(R) cosmology, the recent estimated values of the deceleration and jerk parameters are used to examine the bounds from the weak energy condition on the parameters of two families of f(R)-gravity theories.
Cosmology of modified (but second order) gravity
Tomi S. Koivisto
2009-10-21T23:59:59.000Z
This is a brief review of modified gravity cosmologies. Generically extensions of gravity action involve higher derivative terms, which can result in ghosts and instabilities. There are three ways to circumvent this: Chern-Simons terms, first order variational principle and nonlocality. We consider recent cosmological applications of these three classes of modified gravity models, in particular to the dark energy problem. The viable parameter spaces can be very efficiently constrained by taking into account cosmological data from all epochs in addition to Solar system tests and stability considerations. We make some new remarks concerning so called algebraic scalar-tensor theories, biscalar reformulation of nonlocal actions involving the inverse d'Alembertian, and a possible covariant formulation holographic cosmology with nonperturbative gravity.
Energy conditions in f(R)-gravity
J. Santos; J. S. Alcaniz; M. J. Reboucas; F. C. Carvalho
2007-09-06T23:59:59.000Z
In order to shed some light on the current discussion about f(R)-gravity theories we derive and discuss the bounds imposed by the energy conditions on a general f(R) functional form. The null and strong energy conditions in this framework are derived from the Raychaudhuri's equation along with the requirement that gravity is attractive, whereas the weak and dominant energy conditions are stated from a comparison with the energy conditions that can be obtained in a direct approach via an effective energy-momentum tensor for f(R)-gravity. As a concrete application of the energy conditions to locally homogeneous and isotropic f(R)-cosmology, the recent estimated values of the deceleration and jerk parameters are used to examine the bounds from the weak energy condition on the parameters of two families of f(R)-gravity theories.
A new vacuum for Loop Quantum Gravity
Bianca Dittrich; Marc Geiller
2015-05-05T23:59:59.000Z
We construct a new vacuum for loop quantum gravity, which is dual to the Ashtekar-Lewandowski vacuum. Because it is based on BF theory, this new vacuum is physical for $(2+1)$-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy-flux algebra which is cylindrically consistent with respect to the notion of refinement by time evolution suggested in [1]. This supports the proposal for a construction of a physical vacuum made in [1,2], also for $(3+1)$-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity.
Antimatter-Gravity Couplings, and Lorentz Symmetry
Tasson, Jay D
2015-01-01T23:59:59.000Z
Implications of possible CPT and Lorentz violation for antimatter-gravity experiments as well as other antimatter tests are considered in the context of the general field-theory-based framework of the Standard-Model Extension (SME).
Antimatter-Gravity Couplings, and Lorentz Symmetry
Jay D. Tasson
2015-01-27T23:59:59.000Z
Implications of possible CPT and Lorentz violation for antimatter-gravity experiments as well as other antimatter tests are considered in the context of the general field-theory-based framework of the Standard-Model Extension (SME).
Oblique reflections of internal gravity wave beams
Karimi, Hussain H. (Hussain Habibullah)
2012-01-01T23:59:59.000Z
We study nonlinear effects in reflections of internal gravity wave beams in a continuously stratified liquid which are incident upon a uniform slope at an oblique angle. Wave motion in a stratified fluid medium is unique ...
Gravity Recovery and Interior Laboratory (GRAIL) Launch
Gravity Recovery and Interior Laboratory (GRAIL) Launch Press Kit/AUGUst 2011 #12;http of its four channels to AC-3, making each channel's secondary audio MPEG 1 Layer II. For digital downlink
Anisotropic induced gravity and inflationary universe
W. F. Kao
2006-12-09T23:59:59.000Z
Existence and stability analysis of the Kantowski-Sachs type universe in a higher derivative induced gravity theory is studied in details. Existence of one stable mode and one unstable mode is shown to be in favor of the inflationary universe. As a result, the de Sitter background can be made to be stable against anisotropic perturbations with proper constraints imposed on the coupling constants of the induced gravity model.
Gravity waves from cosmic bubble collisions
Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar, E-mail: mpsalem@stanford.edu, E-mail: ps88@stanford.edu, E-mail: edgars@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, California 94305 (United States)
2013-02-01T23:59:59.000Z
Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.
Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles
Paris-Sud XI, Université de
Space Vector PWM Control Synthesis for a H-Bridge Drive in Electric Vehicles A. Kolli1 , Student Magnet Synchronous Machine in Electric Vehicle application. First, a short survey of existing power regarding compactness and vehicle integration. More specifically electric vehicles (EVs) require a high
Suggested Course Plan for a UC Riverside Major in Electrical Engineering 06
Suggested Course Plan for a UC Riverside Major in Electrical Engineering 06 (Catalog Year 2006 9A First Year Calculus CHEM 1A/1LA General Chemistry EE 10 Intro to Electrical Engineering ENGR 92 Differential Equations PHYS 40C Physics (Electricity/Magnetism) EE 1A/1LA Engineering Circuit Analysis MATH 10A
Schrijver, Karel
Disturbances in the US electric grid associated with geomagnetic activity Carolus J. Schrijver on the US electric power grid for the period from 1992 through 2010. We find, with more than 3r significance. solar magnetic activity geomagnetic disturbances US electric power grid geomagnetically induced
Magnets & Magnet Condensed Matter Science
McQuade, D. Tyler
18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials Pressure 9 Metal to Insulator Transition on the N=0 Landau Level in Graphene 10 Evidence for Fractional Quantum Hall States in Suspended Bilayer and Trilayer Graphene 11 Fractional Quantum Hall Effect
The shape dynamics description of gravity
Tim Koslowski
2015-01-13T23:59:59.000Z
Classical gravity can be described as a relational dynamical system without ever appealing to spacetime or its geometry. This description is the so-called shape dynamics description of gravity. The existence of relational first principles from which the shape dynamics description of gravity can be derived is a motivation to consider shape dynamics (rather than GR) as the fundamental description of gravity. Adopting this point of view leads to the question: What is the role of spacetime in the shape dynamics description of gravity? This question contains many aspects: Compatibility of shape dynamics with the description of gravity in terms of spacetime geometry, the role of local Minkowski space, universality of spacetime geometry and the nature of quantum particles, which can no longer be assumed to be irreducible representations of the Poincare group. In this contribution I derive effective spacetime structures by considering how matter fluctuations evolve along with shape dynamics. This evolution reveals an "experienced spacetime geometry." This leads (in an idealized approximation) to local Minkowski space and causal relations. The small scale structure of the emergent geometric picture depends on the specific probes used to experience spacetime, which limits the applicability of effective spacetime to describe shape dynamics. I conclude with discussing the nature of quantum fluctuations (particles) in shape dynamics and how local Minkowski spacetime emerges from the evolution of quantum particles.
Gravity as Quantum Foam In-Flow
Reginald T Cahill
2003-07-01T23:59:59.000Z
The new information-theoretic Process Physics provides an explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. The older Newtonian and General Relativity theories for gravity are analysed. It is shown that Newtonian gravity may be written in the form of an in-flow. General Relativity is also analysed as an in-flow, for those cases where it has been tested. An analysis of various experimental data demonstrates that absolute motion relative to space has been observed by Michelson and Morley, Miller, Illingworth, Jaseja et al, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The experimental data suggests that the in-flow is turbulent, which amounts to the observation of a gravitational wave phenomena. A new in-flow theory of gravity is proposed which passes all the tests that General Relativity was claimed to have passed, but as well the new theory suggests that the so-called spiral galaxy rotation-velocity anomaly may be explained without the need of `dark matter'. Various other gravitational anomalies also appear to be explainable. Newtonian gravity appears to be strictly valid only outside of spherically symmetric matter systems.
Electrically-Charged Lifshitz Spacetimes, and Hyperscaling Violations
Zhong-Ying Fan; H. Lu
2015-01-21T23:59:59.000Z
Electrically-charged Lifshitz spacetimes are hard to come by. In this paper, we construct a class of such solutions in five dimensional Einstein gravity coupled to Maxwell and $SU(2)$ Yang-Mills fields. The solutions are electrically-charged under the Maxwell field, whose equation is sourced by the Yang-Mills instanton(-like) configuration living in the hyperbolic four-space of the Lifshitz spacetime. We then introduce a dilaton and construct charged and colored Lifshitz spacetimes with hyperscaling violations. We obtain a class of exact Lifshitz black holes. We also perform similar constructions in four dimensions.
Motional Spin Relaxation in Large Electric Fields
Schmid, Riccardo; Filippone, B W
2008-01-01T23:59:59.000Z
We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}\\mathrm{He}$ atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}\\mathrm{He}$ samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}\\mathrm{He}$ atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}\\mathrm{He}$ atoms at temperatures below $600 \\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, ...
Motional Spin Relaxation in Large Electric Fields
Riccardo Schmid; B. Plaster; B. W. Filippone
2008-07-02T23:59:59.000Z
We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}$He atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}$He samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}$He atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}$He atoms at temperatures below $600,\\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, while the $^{3}$He relaxation times may be important for the \\emph{nEDM} experiment.
Passive magnetic bearing element with minimal power losses
Post, Richard F. (Walnut Creek, CA)
1998-01-01T23:59:59.000Z
Systems employing passive magnetic bearing elements having minimal power losses are provided. Improved stabilizing elements are shown, employing periodic magnet arrays and inductively loaded circuits, but with improved characteristics compared to the elements disclosed in U.S. Patent No. 5,495,221 entitled "Dynamically Stable Magnetic Suspension/Bearing System." The improvements relate to increasing the magnitude of the force derivative, while at the same time reducing the power dissipated during the normal operation of the bearing system, to provide a passive bearing system that has virtually no losses under equilibrium conditions, that is, when the supported system is not subject to any accelerations except those of gravity.
Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios
Introduction Computational Efficiency Electricity Portfolio Planning Electricity Portfolios 2009/11/3012/01 István Maros Electricity Portfolio #12;Introduction Computational Efficiency Electricity Portfolio Outline 1 Introduction 2 Computational Efficiency 3 Electricity Portfolio Approximate
Kjall, Jonas Alexander
2012-01-01T23:59:59.000Z
Magnetism in Ultracold Gases 4 Magnetic phase diagram of aMagnetism . . . . . . . . . . . .1.3 Magnetism in condensedIntroduction 1 Brief introduction to magnetism 1.1 Classic
Renewable Electricity Futures Study
Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study
Renewable Electricity Futures Study
Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory
Renewable Electricity Futures Study
Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012
Massachusetts Electric Vehicle Efforts
California at Davis, University of
Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through
ELECTRICAL & COMPUTER ENGINEERING
ELECTRICAL & COMPUTER ENGINEERING SEMINAR "Agile Sensing Systems: Analysis, Design and Implementation" by Prof. Jun (Jason) Zhang Electrical and Computer Engineering University of Denver Tuesday of Electrical and Computer Engineering at the University of Denver. He was with the School of Electrical
ELECTRICAL ENGINEERING Curriculum Notes
Mather, Patrick T.
ELECTRICAL ENGINEERING Curriculum Notes 2013-2014 1. Electrical Engineering (EE) students must/programs/electrical_engineering) and minors are used to regulate technical electives. A student must complete four technical elective courses in Electrical Engineering or Computer Engineering. At a minimum
Electronics, Electrical Engineering
SCHOOL OF Electronics, Electrical Engineering and Computer Science IS IN YOUR HANDS THE FUTURE #12;SCHOOL OF Electronics, Electrical Engineering and Computer Science2 CAREERS IN ELECTRONICS, ELECTRICAL Belfast. Ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World
Syracuse University Electrical Engineering
Mather, Patrick T.
Syracuse University Electrical Engineering and Computer Science Tenure Track Faculty Position in Electrical Engineering The Department of Electrical Engineering and Computer Science is seeking applicants for a tenure track position in Electrical Engineering starting in August 2014 or January 2015. The department
Electrical Engineering UNDERGRADUATE
Suzuki, Masatsugu
447 Electrical Engineering UNDERGRADUATE PROGRAMS The bachelor of science program in electrical advising office. Requirements for BS Degree in Electrical Engineering To receive the BS degree in electrical engineer- ing, students must complete a minimum of 65 credit hours in the upper-division program
ELECTRICAL AND COMPUTER ENGINEERING
Haykin, Simon
Edison (prolific inventor), Nikola Tesla (inventor of the electric motor, transformer), Dilbert (comic
Quantum gravity and inventory accumulation
Scott Sheffield
2011-08-10T23:59:59.000Z
We begin by studying inventory accumulation at a LIFO (last-in-first-out) retailer with two products. In the simplest version, the following occur with equal probability at each time step: first product ordered, first product produced, second product ordered, second product produced. The inventory thus evolves as a simple random walk on Z^2. In more interesting versions, a p fraction of customers orders the "freshest available" product regardless of type. We show that the corresponding random walks scale to Brownian motions with diffusion matrices depending on p. We then turn our attention to the critical Fortuin-Kastelyn random planar map model, which gives, for each q>0, a probability measure on random (discretized) two-dimensional surfaces decorated by loops, related to the q-state Potts model. A longstanding open problem is to show that as the discretization gets finer, the surfaces converge in law to a limiting (loop-decorated) random surface. The limit is expected to be a Liouville quantum gravity surface decorated by a conformal loop ensemble, with parameters depending on q. Thanks to a bijection between decorated planar maps and inventory trajectories (closely related to bijections of Bernardi and Mullin), our results about the latter imply convergence of the former in a particular topology. A phase transition occurs at p = 1/2, q=4.
Encoding field theories into gravities
Aoki, Sinya; Onogi, Tetsuya
2015-01-01T23:59:59.000Z
We propose a method, which encodes the information of a $d$ dimensional quantum field theory into a $d+1$ dimensional gravity in the $1/N$ expansion. We first construct a $d+1$ dimensional field theory from the $d$ dimensional one via the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We then define the induced metric from $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large $N$ limit, in a sense that quantum fluctuations of the metric are suppressed as $1/N$ due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the induced metric in three dimensions, which is shown to describe De Sitter (dS) or Anti De Sitter (AdS) space in the massless limit, where the mass is dynamically generated in the O(N) non-l...
Universality of Gravity from Entanglement
Brian Swingle; Mark Van Raamsdonk
2014-05-12T23:59:59.000Z
The entanglement "first law" in conformal field theories relates the entanglement entropy for a ball-shaped region to an integral over the same region involving the expectation value of the CFT stress-energy tensor, for infinitesimal perturbations to the CFT vacuum state. In recent work, this was exploited at leading order in $N$ in the context of large N holographic CFTs to show that any geometry dual to a perturbed CFT state must satisfy Einstein's equations linearized about pure AdS. In this note, we investigate the implications of the leading 1/N correction to the exact CFT result. We show that these corrections give rise to the source term for the gravitational equations: for semiclassical bulk states, the expectation value of the bulk stress-energy tensor appears as a source in the linearized equations. In particular, the CFT first law leads to Newton's Law of gravitation and the fact that all sources of stress-energy source the gravitational field. In our derivation, this universality of gravity comes directly from the universality of entanglement (the fact that all degrees of freedom in a subsystem contribute to entanglement entropy).
Modelling of bulk superconductor magnetization
Ainslie, M. D.; Fujishiro, H.
2015-03-30T23:59:59.000Z
synchronous motor. It may also be possible to use superconducting materials of different Tcs and a dual cooling system to develop an in-situ FC magnetization process for YBCO bulk plates using the superconducting stator coils of an electric machine... . Furthermore, the relative ease of fabrication of MgB2 materials, as well as their long coherence length [10], lower anisotropy and strongly linked supercurrent flow in untextured polycrystalline samples [11,12], has enabled a number of different processing...
Controlling Magnetism at the Nanoscale
Wong, Jared
2012-01-01T23:59:59.000Z
Manipulation of Magnetism - External148 Conclusion A The Magnetism Cheat Sheet A.1 Magnetic157 A.2 Magnetism Unit Conversion
Transport and magnetic properties of rtx and related
Goruganti, Venkat
2009-05-15T23:59:59.000Z
Physical properties of RTX compounds (R = Rare earth, T = Transition metal and X = main group element from B, C or N group) compounds have been studied by means of electrical resistivity, heat capacity, dc magnetization and NMR. Searching for new...
Transport and magnetic properties of rtx and related
Goruganti, Venkat
2009-05-15T23:59:59.000Z
Physical properties of RTX compounds (R = Rare earth, T = Transition metal and X = main group element from B, C or N group) compounds have been studied by means of electrical resistivity, heat capacity, dc magnetization and NMR. Searching for new...
Newton-Cartan Gravity in Noninertial Reference Frames
Leo Rodriguez; James St. Germaine-Fuller; Sujeev Wickramasekara
2014-12-26T23:59:59.000Z
We study properties of Newton-Cartan gravity under transformations into all noninertial, nonrelativistic reference frames. The set of these transformations has the structure of an infinite dimensional Lie group, called the Galilean line group, which contains as a subgroup the Galilei group. We show that the fictitious forces of noninertial reference frames are naturally encoded in the Cartan connection transformed under the Galilean line group. These noninertial forces, which are coordinate effects, do not contribute to the Ricci tensor which describes the curvature of Newtonian spacetime. We show that only the $00$-component of the Ricci tensor is non-zero and equal to ($4\\pi$ times) the matter density in any inertial or noninetial reference frame and that it leads to what may be called Newtonian ADM mass. While the Ricci field equation and Gauss law are both fulfilled by the same physical matter density in inertial and linearly accelerating reference frames, there appears a discrepancy between the two in rotating reference frames in that Gauss law holds for an effective mass density that differs from the physical matter density. This effective density has its origin in the simulated magnetic field that appears in rotating frames, highlighting a rather striking difference between linearly and rotationally accelerating reference frames. We further show that the dynamical equations that govern the simulated gravitational and magnetic fields have the same form as Maxwell's equations, a surprising conclusion given that these equations are well-known to obey special relativity (and $U(1)$-gauge symmetry), rather than Galilean symmetry.
Electrical and Biological Effects of Transmission Lines: A Review.
Lee, Jack M.
1989-06-01T23:59:59.000Z
This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).
Manganese-Aluminum-Based Magnets: Nanocrystalline t-MnAI Permanent Magnets
None
2012-01-01T23:59:59.000Z
REACT Project: Dartmouth is developing specialized alloys with magnetic properties superior to the rare earths used in today’s best magnets. EVs and renewable power generators typically use rare earths to turn the axles in their electric motors due to the magnetic strength of these minerals. However, rare earths are difficult and expensive to refine. Dartmouth will swap rare earths for a manganese-aluminum alloy that could demonstrate better performance and cost significantly less. The ultimate goal of this project is to develop an easily scalable process that enables the widespread use of low-cost and abundant materials for the magnets used in EVs and renewable power generators.
The measurement and analysis of the magnetic field of a synchrotron light source magnet
Graf, Udo Werner
1994-01-01T23:59:59.000Z
section of the magnet shows the symmetric distribution of the coils about the center line of the magnet. The iron yolk which surrounds the conductors is thermally insulated to enhance the efficiency of the cooling system. The entire magnet assembly... of charged particles in a 21 conductor that are exposed to an electric and a magnetic field. The force experienced by these particles is characterized by the Lorentz Equation, F=q(E+vxB) (3) The conductor used for the Hall probe has the shape of a...
ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits
Gravity and Anti-gravity of Fermions: the Unification of Dark Matter and Dark Energy
Chen, X S
2005-01-01T23:59:59.000Z
Massive gravity with second and fourth derivatives is shown to give both attractive and repulsive gravity between fermions. In contrast to the attractive gravity correlated with energy-momentum tensor, the repulsive gravity is proportional to the graviton mass. Therefore, weakly interacting fermions with energy smaller than the graviton mass are both dark matter and dark energy: Their overall gravity is attractive with normal matter but repulsive among themselves. Detailed analyses reveal that this unified dark scenario can properly account for the observed dark matter/energy phenomena: galaxy rotation curves, transition from early cosmic deceleration to recent acceleration; and naturally overcome other dark scenarios' difficulties: the substructure and cuspy core problems, the difference of dark halo distributions in galaxies and clusters, and the cosmic coincidence.
A Kinetic Theory Approach to Quantum Gravity
B. L. Hu
2002-04-22T23:59:59.000Z
We describe a kinetic theory approach to quantum gravity -- by which we mean a theory of the microscopic structure of spacetime, not a theory obtained by quantizing general relativity. A figurative conception of this program is like building a ladder with two knotted poles: quantum matter field on the right and spacetime on the left. Each rung connecting the corresponding knots represent a distinct level of structure. The lowest rung is hydrodynamics and general relativity; the next rung is semiclassical gravity, with the expectation value of quantum fields acting as source in the semiclassical Einstein equation. We recall how ideas from the statistical mechanics of interacting quantum fields helped us identify the existence of noise in the matter field and its effect on metric fluctuations, leading to the establishment of the third rung: stochastic gravity, described by the Einstein-Langevin equation. Our pathway from stochastic to quantum gravity is via the correlation hierarchy of noise and induced metric fluctuations. Three essential tasks beckon: 1) Deduce the correlations of metric fluctuations from correlation noise in the matter field; 2) Reconstituting quantum coherence -- this is the reverse of decoherence -- from these correlation functions 3) Use the Boltzmann-Langevin equations to identify distinct collective variables depicting recognizable metastable structures in the kinetic and hydrodynamic regimes of quantum matter fields and how they demand of their corresponding spacetime counterparts. This will give us a hierarchy of generalized stochastic equations -- call them the Boltzmann-Einstein hierarchy of quantum gravity -- for each level of spacetime structure, from the macroscopic (general relativity) through the mesoscopic (stochastic gravity) to the microscopic (quantum gravity).
High slot utilization systems for electric machines
Hsu, John S (Oak Ridge, TN)
2009-06-23T23:59:59.000Z
Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.
Richmond Electric Vehicle Initiative Electric Vehicle Readiness...
Broader source: Energy.gov (indexed) [DOE]
The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. richmondevinitiative....
Richmond Electric Vehicle Initiative Electric Vehicle Readiness...
Broader source: Energy.gov (indexed) [DOE]
reflect those of the United States Government or any agency thereof. Richmond Electric Vehicle Initiative Readiness Plan | 1 Table of Contents Executive Summary...
Thermodynamics of Rotating Solutions in Gauss-Bonnet-Maxwell Gravity and the Counterterm Method
Dehghani, M H; Shamirzaie, M
2006-01-01T23:59:59.000Z
We present the $(n+1)$-dimensional charged rotating solutions of Gauss-Bonnet gravity with a complete set of allowed rotation parameters. By a suitable transformation, we show that these charged rotating solutions present black hole solutions with two inner and outer event horizons, extreme black holes or naked singularities provided the parameters of the solutions are chosen suitable. Using the surface terms that make the action well-defined for Gauss-Bonnet gravity and the counterterm method for eliminating the divergences in action and conserved quantities, we compute finite action and conserved quantities of the solutions. We also compute temperature, entropy, charge, and electric potential of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. Finally, we perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, ...
Neutrino magnetic moment in a magnetized plasma
N. V. Mikheev; E. N. Narynskaya
2010-11-08T23:59:59.000Z
The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.
Miniature electrically operated diaphragm valve
Adkins, Douglas R. (Albuquerque, NM); Spletzer, Barry L. (Albuquerque, NM); Wong, Chungnin C. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM); Fischer, Gary J. (Albuquerque, NM); Hesketh, Peter J. (Atlanta, GA)
2001-01-01T23:59:59.000Z
The present invention provides a miniature electrically operated valve that can stand off significant pressures, that can be inexpensively produced, and that can be made to operate without continuous electrical power. A valve according to the present invention comprises a housing and a beam mounted with the housing. A diaphragm mounted with the housing forms a sealed fluid volume. An electromagnetic energy source, such as an electromagnetic coil, mounts with the housing and when energized urges the beam in one direction. The beam can be urged in the opposing direction by passive means or by reversing the polarity of the electromagnetic energy source or by a second electromagnetic energy source. Two fluid ports mount with the housing. A first fluid port mounts so that, as the beam is urged in one direction or the opposite, the beam urges the diaphragm to move between engaging and substantially sealing the fluid port and disengaging and not substantially sealing the fluid port. A seat can be mounted with the diaphragm to aid in sealing the fluid port. Latching mechanisms such as permanent magnets can be mounted so that the valve remains in the open or closed positions without continuous electrical power input. Fluid can flow through the housing between the two fluid ports when the diaphragm does not seal the first fluid port, but can be prevented from flowing by urging the beam so that the diaphragm seals the first fluid port. Various embodiments accommodate various latching mechanisms, electromagnetic energy sources, number of fluid ports, and diaphragm design considerations.
Gravity as Quantum Foam In-Flow
Cahill, R T
2003-01-01T23:59:59.000Z
The new information-theoretic Process Physics provides an explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. The older Newtonian and General Relativity theories for gravity are analysed. It is shown that Newtonian gravity may be written in the form of an in-flow. General Relativity is also analysed as an in-flow, for those cases where it has been tested. An analysis of various experimental data demonstrates that absolute motion relative to space has been observed by Michelson and Morley, Miller, Illingworth, Jaseja et al, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The experimental data suggests that the in-flow is turbulent, which amounts to the observation of a gravitational wave phenomena. A new in-flow theory of gravity is proposed which passes all the tests that General Relativity was claimed to have passed, but as well the new theory...
Formation of magnetic discontinuities through viscous relaxation
Kumar, Sanjay; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)
2014-05-15T23:59:59.000Z
According to Parker's magnetostatic theorem, tangential discontinuities in magnetic field, or current sheets (CSs), are generally unavoidable in an equilibrium magnetofluid with infinite electrical conductivity and complex magnetic topology. These CSs are due to a failure of a magnetic field in achieving force-balance everywhere and preserving its topology while remaining in a spatially continuous state. A recent work [Kumar, Bhattacharyya, and Smolarkiewicz, Phys. Plasmas 20, 112903 (2013)] demonstrated this CS formation utilizing numerical simulations in terms of the vector magnetic field. The magnetohydrodynamic simulations presented here complement the above work by demonstrating CS formation by employing a novel approach of describing the magnetofluid evolution in terms of magnetic flux surfaces instead of the vector magnetic field. The magnetic flux surfaces being the possible sites on which CSs develop, this approach provides a direct visualization of the CS formation, helpful in understanding the governing dynamics. The simulations confirm development of tangential discontinuities through a favorable contortion of magnetic flux surfaces, as the magnetofluid undergoes a topology-preserving viscous relaxation from an initial non-equilibrium state with twisted magnetic field. A crucial finding of this work is in its demonstration of CS formation at spatial locations away from the magnetic nulls.
Choueiri, Edgar
Thrust and efficiency model for electron-driven magnetic nozzles Justin M. Little and Edgar Y-driven magnetic nozzles Justin M. Littlea) and Edgar Y. Choueiri Electric Propulsion and Plasma Dynamics
Electricity Today30 American Electric Power, working
Laughlin, Robert B.
Electricity Today30 American Electric Power, working at the request of, and in partnership with by building transmis- sion infrastructure that will enable wind power to become a larger part of the nation that could provide a basis for discussion to expand industry infrastructure needs in the future. AEP believes
Solar System Constraints on Disformal Gravity Theories
Hiu Yan Ip; Jeremy Sakstein; Fabian Schmidt
2015-07-02T23:59:59.000Z
Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to $\\mathcal{M} \\gtrsim 100$ eV. These constraints render all disformal effects irrelevant for cosmology.
Quantum gravity effects in the Kerr spacetime
Reuter, M. [Institute of Physics, University of Mainz, Staudingerweg 7, D-55099 Mainz (Germany); Tuiran, E. [Departamento de Fisica, Universidad del Norte, Km 5 via a Puerto Colombia, AA-1569 Barranquilla (Colombia)
2011-02-15T23:59:59.000Z
We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the 'dressing' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.
Holographic Superconductors in Quasi-topological Gravity
Xiao-Mei Kuang; Wei-Jia Li; Yi Ling
2010-12-05T23:59:59.000Z
In this paper we study (3+1) dimensional holographic superconductors in quasi-topological gravity which is recently proposed by R. Myers {\\it et.al.}. Through both analytical and numerical analysis, we find in general the condensation becomes harder with the increase of coupling parameters of higher curvature terms. In particular, comparing with those in ordinary Gauss-Bonnet gravity, we find that positive cubic corrections in quasi-topological gravity suppress the condensation while negative cubic terms make it easier. We also calculate the conductivity numerically for various coupling parameters. It turns out that the universal relation of $\\omega_g/T_c\\simeq 8$ is unstable and this ratio becomes larger with the increase of the coupling parameters. A brief discussion on the condensation from the CFT side is also presented.
Solar system constraints on alternative gravity theories
Sumanta Chakraborty; Soumitra Sengupta
2014-01-14T23:59:59.000Z
The perihelion precession of planetary orbits and the bending angle of null geodesics are estimated for different gravity theories in string-inspired models. It is shown that, for dilaton coupled gravity, the leading order measure in the angle of bending of light comes purely from vacuum expectation value of the dilaton field which may be interpreted as an indicator of a dominant stringy effect over the curvature effect. We arrive at similar results for spherically symmetric solution in quadratic gravity. We also present the perihelion shift and bending of light in the Einstein-Maxwell-Gauss-Bonnet theory with special reference to the Casimir effect and Damour-Polyakov mechanism. Numerical bounds to different coupling parameters in these models are estimated.
Gauge theory of gravity and supergravity
Kaul, Romesh K. [Institute of Mathematical Sciences, Chennai 600 113 (India)
2006-03-15T23:59:59.000Z
We present a formulation of gravity in terms of a theory based on complex SU(2) gauge fields with a general coordinate invariant action functional quadratic in the field strength. Self-duality or anti-self-duality of the field strength emerges as a constraint from the equations of motion of this theory. This in turn leads to Einstein gravity equations for a dilaton and an axion conformally coupled to gravity for the self-dual constraint. The analysis has also been extended to N=1 and 2 super Yang-Mills theory of complex SU(2) gauge fields. This leads to, besides other equations of motion, self-duality/anti-self-duality of generalized supercovariant field strengths. The self-dual case is then shown to yield as its solutions N=1, 2 supergravity equations, respectively.
Solar System Constraints on Disformal Gravity Theories
Ip, Hiu Yan; Schmidt, Fabian
2015-01-01T23:59:59.000Z
Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to $\\mathcal{M} \\gtrsim 100$ eV. These constraints render all disformal effects irrelevant for cosmology.
Entropic force, noncommutative gravity, and ungravity
Nicolini, Piero [Frankfurt Institute for Advanced Studies (FIAS), Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany)
2010-08-15T23:59:59.000Z
After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.
Emergence in Holographic Scenarios for Gravity
Dieks, Dennis; de Haro, Sebastian
2015-01-01T23:59:59.000Z
'Holographic' relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard 't Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic 'AdS/CFT' duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton's law of gravitation can be related holographically to the 'thermodynamics of information' on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde's scheme straightfowardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and ...
Estimating the Value of Electricity Storage Resources in Electricity...
Broader source: Energy.gov (indexed) [DOE]
for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a...
Assessing Vehicle Electricity Demand Impacts on California Electricity Supply
McCarthy, Ryan W.
2009-01-01T23:59:59.000Z
management in the US electricity sector, Energy Policy, 23(deep reductions in electricity sector GHG emissions requireson the electricity sector. 19 Table 3.
Assessing Vehicle Electricity Demand Impacts on California Electricity Supply
McCarthy, Ryan W.
2009-01-01T23:59:59.000Z
in Figure 63. Average electricity costs are noticeably lowerprofile has lower average electricity costs, because fossiland generation, average electricity costs, and GHG emissions
Biasing and fast degaussing circuit for magnetic materials
Dress, W.B. Jr.; McNeilly, D.R.
1983-10-04T23:59:59.000Z
A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a dc current and alternately apply a selectively damped ac current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.