Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electricity and Magnetism  

Science Journals Connector (OSTI)

... and practical applications; or, speaking briefly, theory and practice. In the theoretical part, magnetism is first treated, then electricity, in the order statical electricity, electro-chemistry, and ... first treated, then electricity, in the order statical electricity, electro-chemistry, and electro-magnetism. In the practical part are comprised telegraphy and telephony, electric lighting and transmission of ...

A. GRAY

1891-11-05T23:59:59.000Z

2

Magnetism and Electricity  

Science Journals Connector (OSTI)

... WRITTEN in colloquial language, this book, which is a first-year course on magnetism and electricity, will appeal to many beginners besides the students in technical institutions, for ... have almost forgotten that their jargon is not that of the man in the street. Magnetism is first dealt with, and then the ideas of static and current electricity are ...

1922-11-11T23:59:59.000Z

3

LABORATORY VI ELECTRICITY FROM MAGNETISM  

E-Print Network (OSTI)

LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic can give rise to electric currents. This is the effect that allows the generation of electricity

Minnesota, University of

4

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li, Center for Gravity, Electrical, and Magnetic Studies, Colorado School of Mines  

E-Print Network (OSTI)

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li basins and have strong remanent magnetization. The appli- cation arises in exploration of natural gas identify the volcanic units at large depths. INTRODUCTION Exploration for natural gas hosted in volcanics

5

LABORATORY VI ELECTRICITY FROM MAGNETISM  

E-Print Network (OSTI)

LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

Minnesota, University of

6

Determination of Electric-Field, Magnetic-Field, and Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A Near-Field Determination of Electric-Field, Magnetic-Field, and Electric-Current...

7

Magnetism and Electricity  

Science Journals Connector (OSTI)

... of the mariner's compass being especially good; indeed, the whole chapter on terrestrial magnetism is the best elementary account of the subject which has come under our notice. ...

1889-11-14T23:59:59.000Z

8

Magnetic Fields Analogous to electric field, a magnet  

E-Print Network (OSTI)

characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction;Magnetic Fields Magnetic field lines enter one end (south) of magnet and exit the other end (north) Opposite magnetic poles attract like magnetic poles repel #12;Like the electric field lines

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

9

Electric and Magnetic Walls on Dielectric Interfaces  

E-Print Network (OSTI)

Sufficient conditions of the existence of electric or magnetic walls on dielectric interfaces are given for a multizone uniform dielectric waveguiding system. If one of two adjacent dielectric zones supports a TEM field distribution while the other supports a TM (TE) field distribution, then the common dielectric interface behaves as an electric (magnetic) wall, that is, the electric (magnetic) field line is perpendicular to the interface while the magnetic (electric) field line is parallel to the interface.

Changbiao Wang

2010-07-20T23:59:59.000Z

10

Electric field in 3D gravity with torsion  

E-Print Network (OSTI)

It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

M. Blagojevi?; B. Cvetkovi?

2008-09-01T23:59:59.000Z

11

MagLab - Timeline of Electricity and Magnetism  

NLE Websites -- All DOE Office Websites (Extended Search)

Timeline of Electricity and Magnetism: Introduction MagLab U logo The fields of electricity and magnetism are intimately intertwined. However, humankinds knowledge of magnetism...

12

Electric Dipole Moment of Magnetic Monopole  

E-Print Network (OSTI)

The electric dipole moment of magnetic monopoles with spin is studied in the N=2 supersymmetric gauge theory. The dipole moments of the electric charge distributions, as well as the dipole moments due to the magnetic currents, are calculated. The contribution of charge distribution of the fermion to the gyroelectric ratio is expressed by using zeta(3).

Makoto Kobayashi

2007-03-07T23:59:59.000Z

13

ECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields.  

E-Print Network (OSTI)

ECE 390 ­ Electric & Magnetic Fields Catalog Description: Static and quasi-static electric), A. Jander (secondary) Course Content: · Introduction, review of vector analysis · Static electric fields in free space: Coulomb's law, Gauss's law, and electric potential, electric dipole · Static

14

MagLab - Timeline of Electricity and Magnetism: 1750 - 1774  

NLE Websites -- All DOE Office Websites (Extended Search)

a Theory of Electricity and Magnetism), the first book to consider electricity and magnetism in terms of mathematics. 1762 Johann Sulzer, a Swiss physicist living in Berlin,...

15

Electrical properties of chain microstructure magnetic emulsions in magnetic field  

E-Print Network (OSTI)

The work deals with the experimental study of the emulsion whose dispersion medium is a magnetic fluid while the disperse phase is formed by a glycerin-water mixture. It is demonstrated that under effect of a magnetic field chain aggregates form from the disperse phase drops. Such emulsion microstructure change affects its macroscopic properties. The emulsion dielectric permeability and specific electrical conductivity have been measured. It is demonstrated that under the effect of relatively weak external magnetic fields (~ 1 kA/m) the emulsion electrical parameters may change several fold. The work theoretically analyzes the discovered regularities of the emulsion electrical properties.

Arthur Zakinyan; Yuri Dikansky; Marita Bedzhanyan

2014-02-05T23:59:59.000Z

16

Can (Electric-Magnetic) Duality Be Gauged?  

E-Print Network (OSTI)

There exists a formulation of the Maxwell theory in terms of two vector potentials, one electric and one magnetic. The action is then manifestly invariant under electric-magnetic duality transformations, which are rotations in the two-dimensional internal space of the two potentials, and local. We ask the question: can duality be gauged? The only known and battled-tested method of accomplishing the gauging is the Noether procedure. In its decanted form, it amounts to turn on the coupling by deforming the abelian gauge group of the free theory, out of whose curvatures the action is built, into a non-abelian group which becomes the gauge group of the resulting theory. In this article, we show that the method cannot be successfully implemented for electric-magnetic duality. We thus conclude that, unless a radically new idea is introduced, electric-magnetic duality cannot be gauged. The implication of this result for supergravity is briefly discussed.

Claudio Bunster; Marc Henneaux

2014-03-13T23:59:59.000Z

17

MagLab - Pioneers in Electricity and Magnetism: Roland Etvs  

NLE Websites -- All DOE Office Websites (Extended Search)

work involving gravity, but who also made significant studies of capillarity and magnetism. He employed an instrument of his own design commonly referred to as the Etvs...

18

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

chemistry. Related Electricity & Magnetism Pages Interactive Java Tutorials: Magnetic Field Lines Around a Wire Interactive Java Tutorials: Magnetic Field Lines Around a Wire, II...

19

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

high-tech field, gradually being replaced by semiconductors. Related Electricity & Magnetism Pages Magnetic Core Memory: Interactive Java Tutorial Magnetic core memory was...

20

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

strength of a magnetic field. He also made significant contributions to our understanding of the Earth's magnetic field. Related Electricity & Magnetism Pages Timeline: 1830 - 18...

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Earths magnetic field to the research community. Related Electricity & Magnetism Pages Interactive Java Tutorials: Compasses in Magnetic Fields Interactive Java...

22

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

General Electric, an enduring giant in the electric industry. Related Electricity & Magnetism Pages Interactive Java Tutorials: Alternating Current Interactive Java Tutorials:...

23

Gravity and magnetic data of Midway Valley, southwest Nevada  

SciTech Connect

Detailed gravity and ground magnetic data collected along five traverses across Midway Valley on the eastern flank of Yucca Mountain in southwest Nevada are described. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley.

Ponce, D.A.; Langenheim, V.E.; Sikora, R.F. [Geological Survey, Menlo Park, CA (United States)

1993-12-31T23:59:59.000Z

24

Electric and magnetic field exposure associated with electric blankets  

SciTech Connect

electric blankets may be important contributors to the public's overall exposure to 60 Hz electric and magnetic fields (EMFs) since they are common appliances that are used close to the body for long periods of time. This report describes a series of experimental and computer analyses characterizing various aspects of EMF exposure from electric blankets in use prior to Fall 1990. Almost of electric blankets were found to use on/off controllers with cycle periods of minutes. Calculations of magnetic fields within the body show that, when blankets are heating, flux densities averaged over the whole body range from 15--33 mG during the on'' cycle with typical values of 22 mG. Duty cycles are predicted to vary widely from user-to-user, with typical values of perhaps 40%. Given typical blanket usage patterns, the long-term body-averaged magnetic field exposure from blankets is expected to be comparable to that form other EMF sources for a significant fraction of the blanket-using population. No significant differences were found between time-averaged magnetic field exposures from blankets with metal alloy and plastic polymer heating elements. Blankets with alloy and polymer heating elements did differ significantly in electric field exposure. Calculations show that the unperturbed field 5 cm above flat blankets range from 60--150 V/m for alloy heating cables and unperturbed field 5 cm above flat blankets range from 60--150 V/m for alloy heating cables and 10--40 V/m polymer cables. Starting in Fall 1990, electric blanket manufactures introduced new designs that produce much smaller magnetic fields. These are expected to replace the current in-use stock at a rate of 10--15% per year.

Florig, H.K.; Hoburg, J.F. (Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Engineering and Public Policy)

1991-12-01T23:59:59.000Z

25

Elementary Lessons in Electricity and Magnetism  

Science Journals Connector (OSTI)

... is not a law at all. In the text it is stated that the resistance of a given conductor is, in fact, constant, so long as its physical ... physicists as much as in any other direction; and from that aspect alone his Elementary Lessons in Electricity and Magnetism is worth reading. ...

1915-11-11T23:59:59.000Z

26

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

navigate the seas, effectively changing the course of history. Related Electricity & Magnetism Pages Museum: Lodestone Timeline: 600 1599 Tutorial: Compasses in Magnetic Fields...

27

MagLab - Pioneers in Electricity and Magnetism: William Gilbert  

NLE Websites -- All DOE Office Websites (Extended Search)

who wrote a six-volume treatise that compiled all the information regarding magnetism and electricity known at the time. Entitled De Magnete, Magneticisque Corporibus, et...

28

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigators cited human error as the cause of the collision. Related Electricity & Magnetism Pages Maglev Trains: On Track with Superconductivity Magnets from Mini to Mighty If...

29

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

was still unrealized. Davenport first became interested in electricity and magnetism when he heard about a magnet-based machine built by Joseph Henry used to separate...

30

MagLab - Pioneers in Electricity and Magnetism: Carl Friedrich...  

NLE Websites -- All DOE Office Websites (Extended Search)

mathematicians of all time, Carl Friedrich Gauss was also a pioneer in the study of magnetism and electricity. For an extensive survey of terrestrial magnetism, he invented an...

31

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

William Sturgeon developed the first rotary electric motor, a forerunner of the present-day direct-current motor. Related Electricity & Magnetism Pages Timeline: 1820 182...

32

MagLab - Timeline of Electricity and Magnetism: 1870 - 1879  

NLE Websites -- All DOE Office Websites (Extended Search)

discussion of his theory of electromagnetism in his Treatise on Electricity and Magnetism. 1873 English electrical engineer Willoughby Smith discovers photoconductivity when...

33

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

of static electrical charges. A French engineer with an interest in electricity and magnetism, Charles-Augustin de Coulomb, developed one of the earliest instruments capable of...

34

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

physics courses, the Wimshurst is often the electrostatic device of choice for demonstrations of static electricity. Related Electricity & Magnetism Pages Timeline: 1880 - 188...

35

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

armature and numerous overlapped coils, his design remains the basis of many of today's direct-current electric motors. Related Electricity & Magnetism Pages Timeline: 1870 - 187...

36

Magnetic response enhancement via electrically induced magnetic moments  

E-Print Network (OSTI)

The realization of negative refraction in atomic gases requires a strong magnetic response of the atoms. Current proposals for such systems achieve an enhancement of the magnetic response by a suitable laser field configuration, but still rely on high gas densities. Thus further progress is desirable, and this requires an understanding of the precise mechanism for the enhancement. Therefore, here we study the magnetic and electric response to a probe field interacting with three-level atoms in ladder configuration. In our first model, the three transitions are driven by a control field and the electric and magnetic component of the probe field, giving rise to a closed interaction loop. In a reference model, the coherent driving is replaced by an incoherent pump field. A time-dependent analysis of the closed-loop system enables us to identify the different contributions to the medium response. A comparison with the reference system then allows one to identify the physical mechanism that leads to the enhancement. It is found that the enhancement occurs at so-called multiphoton resonance by a scattering of the coupling field and the electric probe field mode into the magnetic probe field mode. Based on these results, conditions for the enhancement are discussed.

B. Jungnitsch; J. Evers

2008-04-22T23:59:59.000Z

37

Electric-Magnetic Duality in Massless QED?  

E-Print Network (OSTI)

The possibility that QED and recently developed non-Hermitian, or magnetic, versions of QED are equivalent is considered. Under this duality the Hamiltonians and anomalous axial currents of the two theories are identified. A consequence of such a duality is that particles described by QED carry magnetic as well as electric charges. The proposal requires a vanishing zero bare fermion mass in both theories; Dirac mass terms are incompatible with the conservation of magnetic charge much as Majorana masses spoil the conservation of electric charge. The physical spectrum comprises photons and massless spin-1/2 particles carrying equal or opposite electric and magnetic charges. The four particle states described by the Dirac fermion correspond to the four possible charge assignments of elementary dyons. This scale invariant spectrum indicates that the quantum field theory is finite. The Johnson Baker Willey eigenvalue equation for the fine structure constant in finite spinor QED is interpreted as a Dirac-like charge quantisation condition for dyons.

Chris Ford

2009-09-09T23:59:59.000Z

38

2.6 ELECTRIC AND MAGNETIC FIELDS Introduction  

E-Print Network (OSTI)

325 §2.6 ELECTRIC AND MAGNETIC FIELDS Introduction In electromagnetic theory the mks system MKS units Replacement symbol GAUSSIAN units E (Electric field) volt/m E statvolt/cm B (Magnetic field gauss-cm V (Electric potential) volt V statvolt (Dielectric constant) 4 µ (Magnetic permeability) 4µ c2

California at Santa Cruz, University of

39

Electricity and Magnetism Review Notes by L. Qian1  

E-Print Network (OSTI)

) --------------------------------------------------- ------------------------------------------------- Electric Field Lines: Magnetic Field Lines: - Start from positive charges or - External field lines start) --------------------------------------------------- ------------------------------------------------- Electric Field: Magnetic Field: Symbol: E r Symbol: B r Unit: V/m = N/C Unit: T = Ns /(Cm) [T: Tesla] - Electric field due to a static charge q - Magnetic field due to a current element sdi r r r q E ^ 4 1 2 0 r

Qian, Li

40

Electric- and Magnetic-Charge Renormalization. I  

Science Journals Connector (OSTI)

An important question in the field theory of electric and magnetic charge is the relative renormalization of the two kinds of charges. A general view of renormalization, as a scale change introduced in proceeding from the field to the particle level of description, indicates the universality of charge renormalization. This is confirmed by an explicit calculation of the long-range interaction of static charges.

Julian Schwinger

1966-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment  

Science Journals Connector (OSTI)

The Brief Electricity and Magnetism Assessment (BEMA), developed by Chabay and Sherwood, was designed to assess student understanding of basic electricity and magnetism concepts covered in college-level calculus-based introductory physics courses. To evaluate the reliability and discriminatory power of this assessment tool, we performed statistical tests focusing both on item analyses (item difficulty index, item discrimination index, and item point biserial coefficient) and on the entire test (test reliability and Fergusons delta). The results indicate that BEMA is a reliable assessment tool.

Lin Ding; Ruth Chabay; Bruce Sherwood; Robert Beichner

2006-03-15T23:59:59.000Z

42

2.6 ELECTRIC AND MAGNETIC FIELDS Introduction  

E-Print Network (OSTI)

325 §2.6 ELECTRIC AND MAGNETIC FIELDS Introduction In electromagnetic theory the mks system MKS units Replacement symbol GAUSSIAN units # E (Electric field) volt/m # E statvolt/cm # B (Magnetic potential) weber/m # A c gauss­cm V (Electric potential) volt V statvolt # (Dielectric constant) # 4# µ

California at Santa Cruz, University of

43

TWO FREEDERICKSZ TRANSITIONS IN CROSSED ELECTRIC AND MAGNETIC FIELDS  

E-Print Network (OSTI)

965 TWO FREEDERICKSZ TRANSITIONS IN CROSSED ELECTRIC AND MAGNETIC FIELDS H. J. DEULING-p-dibu- tylazoxybenzène. Abstract. 2014 A planar nematic slab shows a Freedericksz transition in a perpendicular electric by external electric or magnetic fields. The resulting distortion is governed by a balance of stabilizing

Boyer, Edmond

44

Electric-Field Control of Magnetism Intrinsic magnetoelectric coupling describes the microscopic interaction between magnetic and  

E-Print Network (OSTI)

Electric-Field Control of Magnetism Intrinsic magnetoelectric coupling describes the microscopic interaction between magnetic and electric polarization in a single-phase material. The control of the magnetic state of a material with an electric field is an enticing prospect for device engineering. MRSEC

Maroncelli, Mark

45

Electric-magnetic duality implies (global) conformal invariance  

E-Print Network (OSTI)

We have examined quantum theories of electric magnetic duality invariant vector fields enjoying classical conformal invariance in 4-dimensional flat spacetime. We extend Dirac's argument about "the conditions for a quantum field theory to be relativistic" to "those for a quantum theory to be conformal". We realize that electric magnetic duality invariant vector theories together with classical conformal invariance defined in 4-$d$ flat spacetime are still conformally invariant theories when they are quantized in a way that electric magnetic duality is manifest.

Sung-Pil Moon; Sang-Jin Lee; Ji-Hye Lee; Jae-Hyuk Oh

2014-05-20T23:59:59.000Z

46

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

such as bringing cable television into homes and connecting home video equipment. Related Electricity & Magnetism Pages Museum: Transatlantic Telegraph Cable Timeline: 1910 - 192...

47

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

are used in plasma screens and various scientific apparatus in which power must be produced in a microwave frequency. Related Electricity & Magnetism Pages Timeline: 1920 1929...

48

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

television, they were benefitting from De Forests discovery. Related Electricity & Magnetism Pages Pioneers: John Ambrose Fleming Pioneers: Lee De Forest Timeline: 1900 190...

49

MagLab - Timeline of Electricity and Magnetism: 1775 - 1799  

NLE Websites -- All DOE Office Websites (Extended Search)

advances in science every year. Torsion Balance Yet in part because electricity and magnetism were not fully understood, many ideas we consider strange today continued to thrive....

50

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

accomplish the same tasks and the choice between them comes down to individual tastes. Related Electricity & Magnetism Pages Interactive Java Tutorials: Electromagnetic Induction...

51

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

in 1872), which argued that facial expressions are universal among humans and animals. Related Electricity & Magnetism Pages Pioneers: Luigi Galvani Timeline: 1850 186...

52

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

theory that oxygen was an essential part of all acids. Related Electricity & Magnetism Pages Interactive Java Tutorials: Daniell Cell Interactive Java Tutorials: Simple...

53

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

from our spinning CD players to dancing Santa Claus dolls. Related Electricity & Magnetism Pages Interactive Java Tutorials: Daniell Cell Interactive Java Tutorials: Simple...

54

MagLab - Timeline of Electricity and Magnetism: 1800 - 1819  

NLE Websites -- All DOE Office Websites (Extended Search)

recognized the astounding nature of his discovery a link between electricity and magnetism and an Italian newspaper reported it, the news somehow failed to make any waves...

55

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

several Geiger counters at once to observe showers of cosmic rays, a phenomenon which became the focus of his research. Related Electricity & Magnetism Pages Timeline: 1900 190...

56

MagLab - Pioneers in Electricity and Magnetism: Hans Christian...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hans Christian rsted forever changed the way scientists think about electricity and magnetism. While preparing to perform an experiment during a lecture at the University of...

57

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

features allowing fast and easy on-the-spot measurements. Related Electricity & Magnetism Pages Electromagnetic Deflection in a Cathode Ray Tube, I Discovering how cathode...

58

MagLab - Pioneers in Electricity and Magnetism: John Ambrose...  

NLE Websites -- All DOE Office Websites (Extended Search)

professor. From Maxwell, Fleming received a strong foundation in both electricity and magnetism. He became a social recluse so as to avoid any distractions that could hinder his...

59

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

example, are often useful in widefield fluorescence microscopy. Related Electricity & Magnetism Pages Interactive Java Tutorials: Arc Lamp Museum: Fluorescent Lamp Pioneers: Sir...

60

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

others to observe the wonders of electrostatics first hand. Related Electricity & Magnetism Pages Pioneers: William Gilbert Timeline: 1600 1699 Tutorials: Electrostatic...

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

method for measuring resistance is still widely used today. Related Electricity & Magnetism Pages Interactive Java Tutorials: Rheostat Interactive Java Tutorials: Wheatstone...

62

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

the number one cause of death in the United States today. Related Electricity & Magnetism Pages Interactive Java Tutorials: Electromagnetic Induction Interactive Java...

63

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

high-tech advances made it possible for manufacturers to produce fully electronic meters with LCD screens Related Electricity & Magnetism Pages Timeline: 1870 1879...

64

MagLab - Timeline of Electricity and Magnetism: 1850 - 1869  

NLE Websites -- All DOE Office Websites (Extended Search)

work. Applying his gift for mathematics to Faraday's findings on electricity and magnetism, Maxwell formulated some 20 equations on electrodynamics. Condensed to four after...

65

MagLab - Timeline of Electricity and Magnetism: 1820 - 1829  

NLE Websites -- All DOE Office Websites (Extended Search)

Christian rsted became the second scientist to discover the interrelationship of magnetism and electricity. In April 1820, the Danish physicist and chemist was reportedly...

66

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

and businesses as an energy-saving alternative to incandescent. Related Electricity & Magnetism Pages Interactive Java Tutorials: Arc Lamp Museum: Arc Lamp Pioneers: Nikola Tesla...

67

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

important components in electronics, such as lights and radio. Related Electricity & Magnetism Pages Interactive Java Tutorial: Capacitor Interactive Java Tutorial: Electrostatic...

68

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

century and continues to evolve and influence today's culture. Related Electricity & Magnetism Pages Morse Telegraph The man most commonly associated with the telegraph, Samuel...

69

MagLab - Pioneers in Electricity and Magnetism: Michael Faraday  

NLE Websites -- All DOE Office Websites (Extended Search)

he worked. He developed special interest in science, particularly in electricity and magnetism. Faraday soon turned his home into a lab, teaching himself the fundamentals of...

70

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

title in honor of his contributions to the transatlantic telegraph cable. Related Electricity & Magnetism Pages Museum: Morse Telegraph Pioneers: Lord Kelvin Timeline: 1850 186...

71

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

uncharged arrangement is proportional to the radiation intensity. Related Electricity & Magnetism Pages Museum: Torsion Balance Pioneers: William Gilbert Timeline: 1775 1799...

72

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

generators capable of generating larger and larger voltages. Related Electricity & Magnetism Pages Timeline: 600 BC - 1599 Timeline: 1600 - 1699 Timeline: 1700 - 1749 Tutorials:...

73

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Car batteries contain from 60 to 80 percent recycled materials. Related Electricity & Magnetism Pages Interactive Java Tutorials: Daniell Cell Interactive Java Tutorials: Simple...

74

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

which is why it can be used repeatedly after it has been initially charged via friction. Related Electricity & Magnetism Pages Pioneers: Alessandro Volta Timeline: 1750 1774...

75

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

(sometimes called an atom smasher) can be miles long, a cyclotron can be small enough to slip inside your pocket. Related Electricity & Magnetism Pages Timeline: 1930 - 193...

76

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

became the most profitable product of the great inventor. Related Electricity & Magnetism Pages Interactive Java Tutorials: Daniell Cell Interactive Java Tutorials: Simple...

77

MagLab - Pioneers in Electricity and Magnetism: Lord Kelvin ...  

NLE Websites -- All DOE Office Websites (Extended Search)

of absolute temperature that bears his name. He made contributions to electricity, magnetism, thermodynamics, hydrodynamics, geophysics and telegraphy and other fields,...

78

MagLab - Timeline of Electricity and Magnetism: 1840 - 1849  

NLE Websites -- All DOE Office Websites (Extended Search)

In this decade scientists sought to deepen their understanding of how electricity and magnetism work and interrelate. Joules law, formulated by English physicist James Prescott...

79

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

to the Italian scientist and inventor Alessandro Volta. Related Electricity & Magnetism Pages Interactive Java Tutorials: Daniell Cell Interactive Java Tutorials: Leyden...

80

MagLab - Pioneers in Electricity and Magnetism: Heinrich Friedrich...  

NLE Websites -- All DOE Office Websites (Extended Search)

scientists were beginning to gain a rudimentary understanding of electricity and magnetism, but they knew almost nothing about the relationship between the two. Baltic German...

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal to electricity conversion using thermal magnetic properties  

DOE Patents (OSTI)

A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

2010-04-27T23:59:59.000Z

82

Optimal trajectories with solar electric propulsion and gravity assisted maneuver.  

E-Print Network (OSTI)

??The future interplanetary missions will probably use the conventional chemical rockets to leave the sphere of influence of the Earth, and solar electric propulsion (SEP) (more)

Denilson Paulo Souza dos Santos

2009-01-01T23:59:59.000Z

83

Spin diffusion at finite electric and magnetic fields  

Science Journals Connector (OSTI)

Spin-transport properties at finite electric and magnetic fields are studied by using the generalized semiclassical Boltzmann equation. It is found that the spin-diffusion equation for nonequilibrium spin density and spin currents involves a number of length scales that explicitly depend on the electric and magnetic fields. The set of macroscopic equations can be used to address a broad range of the spin-transport problems in magnetic multilayers as well as in semiconductor heterostructure. A specific example of spin injection into semiconductors at arbitrary electric and magnetic fields is illustrated.

Y. Qi and S. Zhang

2003-02-27T23:59:59.000Z

84

Orthopositronium: "On the possible relation of gravity to electricity"  

E-Print Network (OSTI)

The resolve of the 'orthopositronium-lifetime puzzle' needs study of the "isotope anomaly" in gaseous neon and also of the contribution ~ 0.002 of nonperturbative mode into orthopositronium annihilation. The Michigan results (2003) are considered as the first supervision of relation between gravitation and electricity. For the decision of alternative in interpretation of new and former results it is necessary to execute the program of additional measurements.

B. A. Kotov; B. M. Levin; V. I. Sokolov

2006-04-24T23:59:59.000Z

85

Biological Effects of Electrical and Magnetic Fields: Is It Real?  

E-Print Network (OSTI)

The hazardous effect of electric and magnetic fields on biological systems is the subject of considerable debate. Traditional methods have failed to provide a correlation between the fields and biological effects. A model is presented that solves...

Durham, M. O.

86

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

lamented in his later years, "I hate what they've done to my child ... I would never let my own children watch it." Related Electricity & Magnetism Pages Timeline: 1910 192...

87

National High Magnetic Field Laboratory - Pioneers in Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

to wave theory, Weber was very interested in the phenomena of electricity and magnetism. His interest in these areas he held in common with Carl Friedrich Gauss, with whom...

88

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

the fact that there is a computer there at all is owed in large part to Apples role in making computers personal. Related Electricity & Magnetism Pages Timeline: 1960 19...

89

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

On the big screen, a Tesla coil was used to produce lighting effects for the 1979 film "Star Trek: The Motion Picture." Related Electricity & Magnetism Pages Timeline: 1890 - 18...

90

Interference between electric and magnetic concepts in introductory physics Thomas M. Scaife* and Andrew F. Heckler  

E-Print Network (OSTI)

toward a magnetic pole [4­7] or is in the direction of the magnetic field lines [5­11]. The studies either an electric or a magnetic field. We find that after electric force instruction but before magnetic as the magnetic field. After magnetic force instruction, most students answer magnetic force questions correctly

Heckler, Andrew F.

91

Magnetism and Electricity for Schools and Science Classes  

Science Journals Connector (OSTI)

... SO many school manuals of Electricity and Magnetism have appeared during the last ten years, particularly since the establishment of the South ... and sufficiently illustrated, but occasionally insufficiently explicit for young boys. The chapter on Terrestrial Magnetism might with advantage be somewhat enlarged, and would be distinctly improved by the addition ...

1878-10-10T23:59:59.000Z

92

Magnetically and electrically tunable semiconductor quantum waveguide inverter  

E-Print Network (OSTI)

Magnetically and electrically tunable semiconductor quantum waveguide inverter M. J. Gilbert,a) R implementations. We present an electrically tunable semiconductor quantum waveguide implementation of an inverter. On the other hand, if a ``0'' is present in the control bit, then the qubit is inverted. In a recent study

Gilbert, Matthew

93

Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil  

E-Print Network (OSTI)

Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil A. B profile across the Parnaiba cratonic basin in NorthEast Brazil. The purpose of this project is to acquire margin of Parnaíba Basin, Brazil. Geophysics 64: 337-356. Ussami N, Cogo de Sa N, Molina EC. 1993

Watts, A. B. "Tony"

94

Magnetic and Electric Dipole Constraints on Extra Dimensions and Magnetic Fluxes  

E-Print Network (OSTI)

The propagation of charged particles and gauge fields in a compact extra dimension contributes to $g-2$ of the charged particles. In addition, a magnetic flux threading this extra dimension generates an electric dipole moment for these particles. We present constraints on the compactification size and on the possible magnetic flux imposed by the comparison of data and theory of the magnetic moment of the muon and from limits on the electric dipole moments of the muon, neutron and electron.

Aaron J. Roy; Myron Bander

2008-05-10T23:59:59.000Z

95

Purcell factor of Mie resonators featuring electric and magnetic modes  

E-Print Network (OSTI)

We present a modal approach to compute the Purcell factor in Mie resonators exhibiting both electric and magnetic resonances. The analytic expressions of the normal modes are used to calculate the effective volumes. We show that important features of the effective volume can be predicted thanks to the translation-addition coefficients of a displaced dipole. Using our formalism, it is easy to see that, in general, the Purcell factor of Mie resonators is not dominated by a single mode, but rather by a large superposition. Finally we consider a silicon resonator homogeneously doped with electric dipolar emitters, and we show that the average electric Purcell factor dominates over the magnetic one.

Zambrana-Puyalto, Xavier

2015-01-01T23:59:59.000Z

96

EMDEX (Electric and Magnetic Field Digital EXposure) system manuals  

SciTech Connect

The EPRI Electric and Magnetic Field Digital EXposure (EMDEX) system consists of hardware and software for characterizing electric and magnetic field exposures. The EMDEX meter is a computer-based portable unit that samples, at a user-programmable rate, the three vector components of magnetic flux density, a measure of the average electric field acting on the torso of the wearer (if an optional sensor is worn) and a measure of rotational motion of the meter in the earth's magnetic field. Modules of the DATACALC software package are used to program the EMDEX, retrieve data at the end of a measurement session, analyze EMDEX data, and prepare tabular and graphical data summaries. The User Manual is designed to provide instruction on the use of the exposure system hardware and software. The Technical Reference Manual provides additional, detailed descriptions of the hardware, software and methodologies used in the EMDEX system.

Not Available

1989-10-01T23:59:59.000Z

97

Preliminary gravity and magnetic models across Midway Valley and Yucca Wash, Yucca Mountain, Nevada  

SciTech Connect

Detailed gravity and ground magnetic data collected along ten traverses across Midway Valley and Yucca Wash on the eastern flank of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley. Gravity and magnetic data across the northwest trending Yucca Wash and the inferred Yucca Wash fault indicate no major vertical offsets greater than 100 m using a density contrast of 0.2 to 0.3 g/cm{sup 3} along the proposed Yucca Wash fault. In addition, a broad magnetic high coincides with the approximate location of the hydrologic gradient and probably reflects moderately magnetic Topopah Spring Tuff or lavas in the Calico Hills Formation.

Ponce, D.A.; Langenheim, V.E.

1994-12-31T23:59:59.000Z

98

Magnetized black holes and black rings in the higher dimensional dilaton gravity  

E-Print Network (OSTI)

In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes and five dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the $D$-dimensional magnetized Schwarzschild-Tangherlini black holes.

Stoytcho S. Yazadjiev

2005-11-21T23:59:59.000Z

99

Elementary Lessons in Electricity and Magnetism  

Science Journals Connector (OSTI)

... of the long known facts on which it is the custom to dilate in every elementary text-book on electricity; but the historical statements indicate by little additional details that ... Ohm's law, nor with what is said con cerning the meaning and measurement of resistance. Towards the end of the book comes a brief account of the Siemens' and ...

O. J. L.

1882-04-13T23:59:59.000Z

100

magnetism  

Science Journals Connector (OSTI)

magnetism [A class of physical phenomena associated with moving electricity, including the mutual mechanical forces among magnets and electric currents] ? Magnetismus m

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Combined Electric and Magnetic Aharonov-Bohm Effects  

E-Print Network (OSTI)

It is well-known that the electric and magnetic Aharonov-Bohm effects may be formally described on equal footing using the four-vector potential in a relativistic framework. We propose an illustrative manifestation of both effects in a single configuration, in which the specific path of the charged particle determines the weight of the electric and magnetic acquired relative phases. The phases can be distinctively obtained in the Coulomb gauge. The scheme manifests the pedagogical lesson that though each of the relative phases is gauge-dependent their sum is gauge-invariant.

Samuel Marcovitch; Yakir Aharonov; Tirza Kaufferr; Benni Reznik

2007-09-11T23:59:59.000Z

102

Zigzag nanoribbons in external electric and magnetic fields  

Science Journals Connector (OSTI)

We consider the Schrodinger operators on zigzag nanoribbons (tight-binding models) in external magnetic and electric fields. If these fields are absent, then the spectrum of the Schrodinger operator consists of two non-flat bands and one flat band (an eigenvalue with infinite multiplicity) between them. We describe all magnetic and electric fields for which the unperturbed flat band remains the flat band and when one splits into the small band of the continuous spectrum. Also we determine spectral asymptotics for small fields and solve inverse spectral problem.

Evgeny L. Korotyaev; Anton A. Kutsenko

2010-01-01T23:59:59.000Z

103

On the Electrical and Magnetic Properties of some Indian Spices  

E-Print Network (OSTI)

We have made experimental measurements of electrical conductivity, pH and relative magnetic susceptibility of the aqueous solutions of 24 indian spices. The measured values of electrical conductance of these spices are found to be linearly related to their ash content and bulk calorific values reported in literature. The physiological relevance of the pH and diamagnetic susceptibility of spices when consumed as food or medicine will be also discussed.

Samson. K. Baby; T. E. Girish

2010-12-11T23:59:59.000Z

104

Crustal structure of Guadeloupe Islands and the Lesser Antilles Arc from a new gravity and magnetic synthesis  

E-Print Network (OSTI)

the compilation and processing of available, on-land, airborne and marine, gravity and magnetic data acquired is associated with formations consistent with the low measured density and the underlying hydrothermal system

Paris-Sud XI, Université de

105

Effect of Electric and Magnetic Fields on Spin Dynamics in the Resonant Electric Dipole Moment Experiment  

E-Print Network (OSTI)

A buildup of the vertical polarization in the resonant electric dipole moment (EDM) experiment [Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, Phys. Rev. Lett. 96, 214802 (2006)] is affected by a horizontal electric field in the particle rest frame oscillating at a resonant frequency. This field is defined by the Lorentz transformation of an oscillating longitudinal electric field and a uniform vertical magnetic one. The effect of a longitudinal electric field is significant, while the contribution from a magnetic field caused by forced coherent longitudinal oscillations of particles is dominant. The effect of electric field on the spin dynamics was not taken into account in previous calculations. This effect is considerable and leads to decreasing the EDM effect for the deuteron and increasing it for the proton. The formula for resonance strengths in the EDM experiment has been derived. The spin dynamics has been calculated.

Alexander J. Silenko

2007-10-02T23:59:59.000Z

106

On the influence of a magnetic field with circular field lines on the gravity flow of a magnetic fluid film down a thin cylinder  

Science Journals Connector (OSTI)

The gravity-induced flow of a magnetic fluid film down a vertical thin current-carrying cylindrical conductor is considered. The relative thickness of the film is small. A nonlinear equation is derived from a ...

V. M. Korovin

2009-10-01T23:59:59.000Z

107

The Electric and Magnetic Moments of the Neutron  

Science Journals Connector (OSTI)

...The Electric and Magnetic Moments of the Neutron J. M. Pendlebury K. Smith It is well known that the free neutron decays spontaneously into a proton, an...Grenoble, which have shown that the neutron charge is probably less than 4 x 10...

1980-01-01T23:59:59.000Z

108

MagLab - Pioneers in Electricity and Magnetism: J. J. Thomson  

NLE Websites -- All DOE Office Websites (Extended Search)

appeared in Thomsons 1892 treatise Notes on Recent Researches in Electricity and Magnetism. In the early 1890s, much of Thomsons research focused on electrical conduction in...

109

MagLab - MagLab U: Learning about Electricity and Magnetism  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Arrow MagLab U: Learning about Electricity and Magnetism MagLab U logo This is one-stop shopping for nearly anything you might want to know about electricity and magnetism....

110

Electric and magnetic response of hot QCD matter  

E-Print Network (OSTI)

We study the electric conductivity as well as the magnetic response of hot QCD matter at various temperatures $T$ and chemical potentials $\\mu_q$ within the off-shell Parton-Hadron-String Dynamics (PHSD) transport approach for interacting partonic systems in a finite box with periodic boundary conditions. The response of the strongly-interacting system in equilibrium to an external electric field defines the electric conductivity $\\sigma_0$ whereas the response to a moderate external magnetic field defines the induced diamagnetic moment $\\mu_L$ ($T, \\mu_q$) as well as the spin susceptibility $\\chi_S(T, \\mu_q)$. We find a sizeable temperature dependence of the dimensionless ratio $\\sigma_0/T$ well in line with calculations in a relaxation time approach for $T_c \\! line with results from the Dynamical QuasiParticle Model (DQPM). The spin susceptibility $\\chi_S(T,\\mu_q)$ is found to increase with temperature $T$ and to rise $\\sim \\mu_q ^2/T^2$, too. The actual values for the magnetic response of the QGP in the temperature range below 250 MeV show that the QGP should respond diamagnetically in actual ultra-relativistic heavy-ion collisions since the maximal magnetic fields created in these collisions are smaller than $B_c(T)$ which defines a boundary between diamagnetism and paramagnetism.

T. Steinert; W. Cassing

2013-12-11T23:59:59.000Z

111

Learning physics in context: a study of student learning about electricity and magnetism  

E-Print Network (OSTI)

Learning physics in context: a study of student learning about electricity and magnetism This paper a novel university class in electricity and magnetism are analyzed to demonstrate the central in electricity and magnetism. Many of these students, who had passed the introductory courses with high grades

Colorado at Boulder, University of

112

Longitudinal study of student conceptual understanding in electricity and magnetism S. J. Pollock  

E-Print Network (OSTI)

Longitudinal study of student conceptual understanding in electricity and magnetism S. J. Pollock at the freshman level on juniors' performance on a conceptual survey of Electricity and Magnetism E&M . We measured student performance on a research-based conceptual instrument--the Brief Electricity & Magnetism

Colorado at Boulder, University of

113

Magnetic and electric screening masses from Polyakov-loop correlations  

E-Print Network (OSTI)

Screening properties of the quark gluon plasma are studied from Polyakov-loop correlation in lattice QCD simulations with two flavors of improved Wilson quarks at temperatures $T/\\Tpc \\simeq 1$--4 where $\\Tpc$ is the pseudocritical temperature. Using the Euclidean-time reflection symmetry and the charge conjugation symmetry, we introduce various types of Polyakov-loop correlation functions and extract screening masses in magnetic and electric sectors. We find that the temperature dependence of the screening masses are well described by the weak coupling expansion. We also find that a ratio of the screening masses in the electric sector to the magnetic sector shows qualitative agreement with a prediction from the dimensionally-reduced effective field theory and the N=4 supersymmetric Yang-Mills theory at $1.3 < T/\\Tpc < 3$.

Y. Maezawa; S. Aoki; S. Ejiri; T. Hatsuda; N. Ishii; K. Kanaya; N. Ukita; T. Umeda

2008-11-04T23:59:59.000Z

114

The electric and magnetic form factors of the proton  

E-Print Network (OSTI)

The paper describes a precise measurement of electron scattering off the proton at momentum transfers of $0.003 \\lesssim Q^2 \\lesssim 1$\\ GeV$^2$. The average point-to-point error of the cross sections in this experiment is $\\sim$ 0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low $Q^2$ values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.

A1 Collaboration; J. C. Bernauer; M. O. Distler; J. Friedrich; Th. Walcher; P. Achenbach C. Ayerbe Gayoso; R. Bhm; L. Debenjak; L. Doria; A. Esser; H. Fonvieille; M. Gmez Rodrgues de la Paz; J. M. Friedrich; M. Makek; H. Merkel; D. G. Middleton; U. Mller; L. Nungesser; J. Pochodzalla; M. Potokar; S. Snchez Majos; B. S. Schlimme; S. irca; M. Weinriefer

2014-07-29T23:59:59.000Z

115

Synthesis and Electrical Characterization of Magnetic Bilayer Graphene Intercalate  

Science Journals Connector (OSTI)

Synthesis and Electrical Characterization of Magnetic Bilayer Graphene Intercalate ... Center for Superfunctional Materials, Department of Chemistry and Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea ... This work was supported by NRF (National Scientist Program, GRL, EPB Center, 2009-0063312; WCU, R32-2008-000-10180-0), the AFOSR0MURI, FENA, and DARPA CERA, and DOE (DE-FG02-05ER46215). ...

Namdong Kim; Kwang S. Kim; Naeyoung Jung; Louis Brus; Philip Kim

2011-01-26T23:59:59.000Z

116

(1) Elementary Electricity and Magnetism (2) Advanced Theory of Electricity and Magnetism  

Science Journals Connector (OSTI)

... abvolt, and abohm for the absolute units of current, E.M.F., and resistance is a feature of the books. The electromagnetic system only is used, and in ... perhaps wise, considering that the practical aspect of the subject predominates. (1) The elementary book commences with a description of the most important phenomena in electricity from a practical ...

J. R.

1915-07-22T23:59:59.000Z

117

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MR-EIT): A new technique for high resolution conductivity imaging  

E-Print Network (OSTI)

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MR-EIT): A new technique for high resolution potentials and the magnetic fields produced by the probing current are measured. Surface potentials are measured by using conventional electrical impedance tomography techniques and high resolution magnetic

Eyüboðlu, Murat

118

Longitudinal study of student conceptual understanding in electricity and magnetism  

Science Journals Connector (OSTI)

We have investigated the long-term effect of student-centered instruction at the freshman level on juniors performance on a conceptual survey of Electricity and Magnetism (E&M). We measured student performance on a research-based conceptual instrumentthe Brief Electricity & Magnetism Assessment (BEMA)over a period of 8 semesters (20042007). Concurrently, we introduced the University of Washington's Tutorials in Introductory Physics as part of our standard freshman curriculum. Freshmen took the BEMA before and after this Tutorial-based introductory course, and juniors took it after completion of their traditional junior-level E&M I and E&M II courses. We find that, on average, individual BEMA scores do not change significantly after completion of the introductory courseneither from the freshman to the junior year, nor from upper-division E&M I to E&M II. However, we find that juniors who had completed a non-Tutorial freshman course scored significantly lower on the (post-upper-division) BEMA than those who had completed the reformed freshman courseindicating a long-term positive impact of freshman Tutorials on conceptual understanding.

S. J. Pollock

2009-12-15T23:59:59.000Z

119

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP  

Science Journals Connector (OSTI)

The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation ... mission provides key wave and very low frequency magnetic field measurements to understand radia...

C. A. Kletzing; W. S. Kurth; M. Acuna; R. J. MacDowall

2014-01-01T23:59:59.000Z

120

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP  

Science Journals Connector (OSTI)

The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation ... mission provides key wave and very low frequency magnetic field measurements to understand radia...

C. A. Kletzing; W. S. Kurth; M. Acuna; R. J. MacDowall

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Second Harmonic Generation by Metamagnetics: Interplay of Electric and Magnetic Resonances  

Science Journals Connector (OSTI)

We present the first experimental study of the interplay of electric and magnetic resonances in a metamaterial to measure their independent contributions to second-harmonic generation....

Chandrasekar, Rohith; Emani, Naresh; Lagutchev, Alexei; Shalaev, Vladimir M; Kildishev, Alexander; Ciraci, Cristian; Smith, David R

122

Vector optical fields with polarization distributions similar to electric and magnetic field lines  

Science Journals Connector (OSTI)

We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations...

Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian

2013-01-01T23:59:59.000Z

123

MagLab - Pioneers in Electricity and Magnetism: Charles-Augustin...  

NLE Websites -- All DOE Office Websites (Extended Search)

solutions of engineering problems to studies of friction, elasticity, electricity and magnetism. In 1777 Coulomb was awarded part of the Academys grand prize for a paper...

124

MagLab - Pioneers in Electricity and Magnetism: Andr-Marie...  

NLE Websites -- All DOE Office Websites (Extended Search)

Although he was not the first person to observe a connection between electricity and magnetism, Andr-Marie Ampre was the first scientist to attempt to theoretically explain...

125

Electrically Controllable Spontaneous Magnetism in Nanoscale Mixed Phase Multiferroics  

E-Print Network (OSTI)

Controllable Spontaneous Magnetism in Nanoscale Mixed Phase2001). Chakhalian, J. et al. Magnetism at the interfacelocal nature of this magnetism. We find that the spontaneous

He, Q.

2011-01-01T23:59:59.000Z

126

MagLab - Pioneers in Electricity and Magnetism: Georg Bednorz  

NLE Websites -- All DOE Office Websites (Extended Search)

Zrich Magnet Lab Title Header Magnet Lab Title Florida State University Los Alamos National Laboratory University of Florida Magnet Lab Logo SEARCH Search People | Search Pubs...

127

Electric and magnetic screenings of gluons in a model with dimension-2 gluon condensate  

E-Print Network (OSTI)

Electric and magnetic screenings of the thermal gluons are studied by using the background expansion method in a gluodynamic model with dimension-2 gluon condensate. At low temperature, the electric and magnetic gluons are degenerate. With the increasing of temperature, it is found that the electric and magnetic gluons start to split at certain temperature $T_0$. The electric screening mass changes rapidly with temperature when $T>T_0$, and the Polyakov loop expectation value rises sharply around $T_0$ from zero in the vacuum to a value around 0.8 at high temperature. This suggests that the color electric deconfinement phase transition is driven by electric gluons. It is also observed that the magnetic screening mass keeps almost the same as its vacuum value, which manifests that the magnetic gluons remains confined. Both the screening masses and the Polyakov loop results are qualitatively in agreement with the Lattice calculations.

Fukun Xu; Mei Huang

2011-11-22T23:59:59.000Z

128

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR  

E-Print Network (OSTI)

MULTI-WATT ELECTRIC POWER FROM A MICROFABRICATED PERMANENT-MAGNET GENERATOR S. Das1 , D. P. Arnold2 presents the design, fabrication, and characterization of permanent-magnet (PM) generators for use, coupled to a transformer and rectifier, delivers 1.1 W of DC electrical power to a resistive load

129

But Does It Last? Sustaining a Research-Based Curriculum in Upper-Division Electricity & Magnetism  

E-Print Network (OSTI)

But Does It Last? Sustaining a Research-Based Curriculum in Upper-Division Electricity & Magnetism Stephanie V. Chasteen, Rachel E. Pepper, Steven J. Pollock, Katherine K. Perkins Science Education course approach in junior-level electricity and magnetism (E&M). Almost all developed materials (i

Colorado at Boulder, University of

130

Resonance scattering formalism for the hydrogen lines in the presence of magnetic and electric fields  

Science Journals Connector (OSTI)

We derive a formalism for the computation of resonance-scattering polarization of hydrogen lines in the presence of simultaneous magnetic and electric fields, within a framework of the quantum theory of polarized line formation in the limit of complete frequency redistribution and of collisionless regime. Quantum interferences between fine-structure levels are included in this formalism. In the presence of a magnetic field, these interferences affect, together with the magnetic Hanle effect, the polarization of the atomic levels. In the presence of an electric field, interferences between distinct orbital configurations are also induced, further affecting the polarization of the hydrogen levels. In turn, the electric field is expected to affect the polarization of the atomic levels (electric Hanle effect), in a way analogous to the magnetic Hanle effect. We find that the simultaneous action of electric and magnetic fields give rise to complicated patterns of polarization and depolarization regimes, for varying geometries and field strengths.

Roberto Casini

2005-06-22T23:59:59.000Z

131

Magnetic and electrical properties of layered magnets Tl(Cr,Mn,Co)Se{sub 2}  

SciTech Connect

Tl(Cr,Mn,Co)Se{sub 2} crystals were synthesized at T {approx} 1050 K. X-ray diffraction analysis showed that TlCrSe{sub 2}, TlMnSe{sub 2}, and TlCoSe{sub 2} compounds crystallize in the hexagonal crystal system with the lattice parameters: a = 3.6999 A, c = 22.6901 A, c/a {approx} 6.133, z = 3, {rho}{sub x} = 6.209 g/cm{sup 3}; a = 6.53 A, c = 23.96 A, c/a {approx} 3.669, z = 8, {rho}{sub x} = 6.71 g/cm{sup 3}; and a = 3.747 A, c = 22.772 A, c/a {approx} 6.077, z = 3, {rho}{sub x} = 7.577 g/cm{sup 3}, respectively. Magnetic and electrical studies in the temperature range from 80-400 K showed that TlCrSe{sub 2} is a semiconductor ferromagnet, TlMnSe{sub 2} is a semiconductor antiferromagnet, and TlCoSe{sub 2} is a ferrimagnet with a conductivity characteristic of metals. A rather large deviation in the experimental effective magnetic moment for TlCrSe{sub 2} (3.05 {mu}B) from the theoretical value (3.85 {mu}B) is attributed to two-dimensional magnetic ordering in the paramagnetic region of the noticeably layered ferromagnet TlCrSe{sub 2}. In TlCrSe{sub 2}, a correlation between magnetic and electrical properties was detected.

Veliyev, R. G.; Sadikhov, R. Z.; Kerimova, E. M., E-mail: ekerimova@physics.ab.az; Asadov, Yu. G.; Jabbarov, A. I. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

2009-02-15T23:59:59.000Z

132

Magnetic structures, phase diagram and spin waves of magneto-electric  

E-Print Network (OSTI)

Magnetic structures, phase diagram and spin waves of magneto-electric LiNiPO4 Thomas Bagger Stibius Roskilde, Denmark June 2007 #12;Author: Thomas Bagger Stibius Jensen Title: Magnetic structures, phase, having co-existing antiferromagnetic and ferroelectric phases when suitable magnetic fields are applied

133

Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity  

DOE Patents (OSTI)

In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.

Rouhani, S.Z.

1996-12-03T23:59:59.000Z

134

Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity  

DOE Patents (OSTI)

In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.

Rouhani, S. Zia (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

135

Electric Field Control of Ferromagnetism and Magnetic Devices Using Multiferroics  

E-Print Network (OSTI)

4 Electric field control of ferromagnetism: In-plane5 Electric field control of ferromagnetism: out-of-plane6.3.3 Electric field control of spin valve resistance

Heron, John Thomas

2013-01-01T23:59:59.000Z

136

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pages Interactive Java Tutorials: Galvanometer Interactive Java Tutorials: Magnetic Field Lines Around a Wire, I Interactive Java Tutorials: Magnetic Field Lines Around a Wire,...

137

MagLab - Pioneers in Electricity and Magnetism: Joseph Henry  

NLE Websites -- All DOE Office Websites (Extended Search)

most significant scientific work. At first, he focused his energies on terrestrial magnetism, which soon led him to broaden his scope to other types of magnetism. Henry attended...

138

MagLab - Pioneers in Electricity and Magnetism: Alessandro Volta  

NLE Websites -- All DOE Office Websites (Extended Search)

an Italian scientist whose skepticism of Luigi Galvanis theory of animal electricity led him to propose that an electrical current is generated by contact between different...

139

Calculation of the Electric and Magnetic Root Mean Squared Radiuses of Proton Based on MIT Bag Model  

E-Print Network (OSTI)

The electric and magnetic bag radiuses of the proton can be determined by MIT bag model based on electric and magnetic form factors of the proton. Also we determined electric and magnetic root mean squared radiuses of the proton, using of bag radius and compared with other results suggests a suitable compatibility.

Feili, Maryam Momeni

2015-01-01T23:59:59.000Z

140

Phase-field simulation of electric-field-induced in-plane magnetic domain switching in magnetic/ferroelectric layered heterostructures  

E-Print Network (OSTI)

Phase-field simulation of electric-field-induced in-plane magnetic domain switching in magnetic. Phys. Lett. 99, 182510 (2011) Quantum tunneling of the Bloch point in a magnetic film with strong uniaxial magnetic anisotropy Low Temp. Phys. 37, 690 (2011) Evolution of magnetic bubble domains

Chen, Long-Qing

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MagLab - Timeline of Electricity and Magnetism: 1930 - 1939  

NLE Websites -- All DOE Office Websites (Extended Search)

1,000,000 times their original size. Fluorescent Lamp A variety of events related to magnetism occurred during this period. Man-made magnets, first developed in the 1920s with...

142

3.15 Electrical, Optical & Magnetic Materials and Devices, Fall 2003  

E-Print Network (OSTI)

Explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. Features a device-motivated ...

Ross, Caroline A.

143

Calculation methods and detection techniques for electric and magnetic fields from power lines with measurement verification  

E-Print Network (OSTI)

An accurate determination and characterization of electric and magnetic fields produced by power lines is a complex task. Different models must be used for far fields and for near fields. This study is centered on computation and measurement aspects...

Mamishev, Alexander V

2012-06-07T23:59:59.000Z

144

MagLab - Pioneers in Electricity and Magnetism: Georg Simon Ohm  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohm with the space and instruments he needed to carry out studies of electricity and magnetism, phenomena that were being heavily investigated in the early 1820s following the...

145

Combined Use of Magnetic and Electrically Conductive Fillers in a Polymer Matrix for Electromagnetic Interference Shielding  

E-Print Network (OSTI)

for Electromagnetic Interference Shielding JUNHUA WU1,2 and D.D.L. CHUNG1,3 1.--Composite Materials Research for electromagnetic interference shielding than the use of a highly magnetic filler alone or the use of a highly, magnetic, electrical resistivity, nickel, mumetal, graphite INTRODUCTION Electromagnetic interference (EMI

Chung, Deborah D.L.

146

Strong permanent magnets provide a backbone technology required many products, including computers, electric cars, and  

E-Print Network (OSTI)

, electric cars, and wind-powered generators. Currently, the strongest permanent magnets contain rare earth for most technologies requiring permanent magnets, due to their high energy product and coercivity. However, and the extreme price volatility in recent years have led scientists to seek alternative formulas for permanent

McQuade, D. Tyler

147

Cognitive Issues in Upper-Division Electricity & Magnetism Steven J. Pollock  

E-Print Network (OSTI)

interventions ­at the upper division. Keywords: physics education research, course reform, electricityCognitive Issues in Upper-Division Electricity & Magnetism Steven J. Pollock and Stephanie V. Chasteen* * Science Education Initiative, University of Colorado, Boulder, CO 80309, USA Department

Colorado at Boulder, University of

148

Observations on student difficulties with mathematics in upper-division electricity and magnetism  

E-Print Network (OSTI)

Observations on student difficulties with mathematics in upper-division electricity and magnetism Rachel E. Pepper, Stephanie V. Chasteen, Steven J. Pollock, and Katherine K. Perkins Science Education 2011; published 27 March 2012) We discuss common difficulties in upper-division electricity

Colorado at Boulder, University of

149

MagLab - Timeline of Electricity and Magnetism: 1940 - 1959  

NLE Websites -- All DOE Office Websites (Extended Search)

1944 Mathematical chemist Lars Onsager provides a solution to the two-dimensional Ising model that accurately predicts the behavior of a magnet. 1945 The Electronic Numerical...

150

MagLab - Timeline of Electricity and Magnetism: 1900 - 1909  

NLE Websites -- All DOE Office Websites (Extended Search)

of intense, localized magnetic disturbance associated with auroras. 1903 First successful gas turbine is built in France. 1904 Hendrik Lorentz develops a set of equations known as...

151

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

which at the receiving end flowed through an electromagnet. This created a magnetic field that caused the receivers metal key to be attracted to an underlying plate,...

152

MagLab - Pioneers in Electricity and Magnetism  

NLE Websites -- All DOE Office Websites (Extended Search)

help his students easily determine the directional relationships between a current, its magnetic field and electromotive force. Luigi Galvani Luigi Galvani (1737-1798) - Luigi...

153

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

a special type of the mineral magnetite. All varieties of magnetite display signs of magnetism, but of them, only lodestone possesses distinctly north-south polarity. Lodestone...

154

MagLab - Pioneers in Electricity and Magnetism: Peter Debye  

NLE Websites -- All DOE Office Websites (Extended Search)

Peter Debye (1884-1966) Peter Debye Peter Debye carried out pioneering studies of molecular dipole moments, formulated theories of magnetic cooling and of electrolytic...

155

MagLab - Pioneers in Electricity and Magnetism: Felix Bloch  

NLE Websites -- All DOE Office Websites (Extended Search)

Felix Bloch (1905-1983) Felix Bloch Physicist Felix Bloch developed a non-destructive technique for precisely observing and measuring the magnetic properties of nuclear particles....

156

MagLab - Timeline of Electricity and Magnetism: 1890 - 1899  

NLE Websites -- All DOE Office Websites (Extended Search)

than the speed of light. 1895 French physicist Pierre Curie defends his thesis on magnetism, which includes his experimental findings regarding the effect of temperature on...

157

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

in 1963, Magneto is a powerful mutant with the ability to generate and control magnetism. Magneto However, 132 years before Marvel comics introduced Magneto, the first...

158

MagLab - Pioneers in Electricity and Magnetism: Walther Meissner  

NLE Websites -- All DOE Office Websites (Extended Search)

Meissner and Robert Ochsenfeld began their work with superconducting materials and magnetism. In the course of their investigations, the pair discovered that superconductors...

159

MagLab - Pioneers in Electricity and Magnetism: Paul Lauterbur  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul Lauterbur (1929-2007) Paul Lauterbur Chemist Paul Lauterbur pioneered the use of nuclear magnetic resonance (NMR) for medical imaging. Lauterbur developed a technique, now...

160

MagLab - Pioneers in Electricity and Magnetism: Anders Celsius  

NLE Websites -- All DOE Office Websites (Extended Search)

of the aurora borealis, including his accurate speculation regarding its relation to magnetism, in 1733. Celsius was born on November 27, 1701, in Uppsala, Sweden. Both his father...

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MagLab - Timeline of Electricity and Magnetism: 1600 - 1699  

NLE Websites -- All DOE Office Websites (Extended Search)

word for amber). Many of Gilberts ideas were incorrect: He wrongly deduced that magnetism accounted for the moons orbit around the Earth, for example, and conspicuously...

162

MagLab - Pioneers in Electricity and Magnetism: James Joule  

NLE Websites -- All DOE Office Websites (Extended Search)

James Joule (1818-1889) James Joule James Prescott Joule experimented with engines, electricity and heat throughout his life. Joules findings resulted in his development of the...

163

A Simple Proof of Magnetic and Electric Aharonov-Bohm Effects  

E-Print Network (OSTI)

Magnetic Aharonov-Bohm effect (AB effect) was studied in hundreds of papers starting with the seminal paper of Aharonov and Bohm [AB] published in 1959. We give a new proof of the magnetic Aharonov-Bohm effect without using the scattering theory and the theory of inverse boundary value problems. We consider separately the cases of one and several obstacles. The electric AB effect was studied much less. We give the first proof of the electric AB effect in domains with moving boundaries. When the boundary does not move with the time the electric AB effect is absent.

Gregory Eskin

2014-07-20T23:59:59.000Z

164

Magnetically induced electric polarization in an organometallic magnet V. S. Zapf,1 M. Kenzelmann,2 F. Wolff-Fabris,1,* F. Balakirev,1  

E-Print Network (OSTI)

Magnetically induced electric polarization in an organometallic magnet V. S. Zapf,1 M. Kenzelmann,2 F. Wolff-Fabris,1,* F. Balakirev,1 and Y. Chen3,4,5 1 National High Magnetic Field Laboratory (NHMFL manuscript received 23 June 2010; published 13 August 2010 The coupling between magnetic order

McQuade, D. Tyler

165

Analysis of magnetic fields produced far from electric power lines  

SciTech Connect

In this paper, the authors develop a simple and general method for analyzing the magnetic fields produced by power lines at far distances, that is, at distances large in comparison to the spacing between the line's phase conductors. Magnetic fields produced far from conventional power lines have remarkably simple properties. The authors present formulae for the fields produced by various conventional and unconventional power line configurations; included are line designs characterized by reduced magnetic-field levels. Errors in the formulae are less than [plus minus]10% at the edge of a typical transmission right-of-way.

Kaune, W.T. (Enertech Consultants Campbell, CA (United States)); Zaffanella, L.E. (High Voltage Transmission Research Center, Lenox, MA (United States))

1992-10-01T23:59:59.000Z

166

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the composition of light. Light, of course, is a form of energy. A magnetic field changes the behavior of light - a phenomenon known as the Zeeman effect. The Zeeman...

167

National High Magnetic Field Laboratory: Museum of Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

it lacked sophistication, he was able to use the model to formulate his own law of magnetism. Magnetometers are used in many different fields; they are used in geophysics,...

168

MagLab - Pioneers in Electricity and Magnetism: Isidor Isaac...  

NLE Websites -- All DOE Office Websites (Extended Search)

Isidor Isaac Rabi (1898-1988) Isidor Isaac Rabi Isidor Isaac Rabi won the Nobel Prize in Physics in 1944 for his development of a technique for measuring the magnetic...

169

Graphene nanoribbons in criss-crossed electric and magnetic fields  

Science Journals Connector (OSTI)

...Electronic and photonic properties of graphene layers and carbon nanoribbons' compiled...Gumbs, Danhong Huang and Oleksiy Roslyak Graphene nanoribbons in criss-crossed electric...Kirtland Air Force Base, , NM-87117, USA Graphene nanoribbons (GNRs) in mutually perpendicular...

2010-01-01T23:59:59.000Z

170

Electric and magnetic response to the continuum for A=7 isobars in a dicluster model  

E-Print Network (OSTI)

Mirror isobars $^7$Li and $^7$Be are investigated in a dicluster model. The magnetic dipole moments and the magnetic dipole response to the continuum are calculated in this framework. The magnetic contribution is found to be small with respect to electric dipole and quadrupole excitations even at astrophysical energies, at a variance with the case of deuteron. Energy weighted molecular sum rules are evaluated and a formula for the molecular magnetic dipole sum rule is found which matches the numerical calculations. Cross-sections for photo-dissociation and radiative capture as well as the S-factor for reactions of astrophysical significance are calculated with good agreement with known experimental data.

A. Mason; R. Chatterjee; L. Fortunato; A. Vitturi

2008-11-11T23:59:59.000Z

171

Emerging issues in extremely-low-frequency electric and magnetic field health research  

SciTech Connect

Concern has increased over potential consequences of exposure to electric and magnetic fields of extremely low frequency (0-100 Hz), particularly from power transmission and distribution. Also at issue are electrical environments in homes and workplaces. Until recently, research focused on the electric, rather than the magnetic, field; now, both are under extensive investigation. A review of research to date indicates the following: Electric and magnetic fields can produce effects in vitro, with the locus of field interaction believed to be at the cell membrane. Chronic in vivo electric field exposure fails to produce effects except in behavior, neurophysiology, endocrinology, and, possibly, fetal development. The extrapolation of these animal data to humans requires further research. The epidemiological literature has, in some cases, reported an association between increased cancer rates and putative field exposure. Exposure assessments indicate that, in all likelihood, human exposures to 60-Hz electric fields of the magnitudes found under transmission lines are very infrequent; assessments are continuing to characterize exposure to 60-Hz magnetic fields and to measure the field frequency spectra found in residential and workplace settings. The public health issues emerging from this research focus on fetal development and on the initiation or promotion of cancer. It is critical to reduce existing uncertainties in order to enable valid risk assessment.

Kavet, R.I.; Banks, R.S.

1986-04-01T23:59:59.000Z

172

Emerging issues in extremely-low-frequency electric and magnetic field health research  

Science Journals Connector (OSTI)

Concern has increased over potential consequences of exposure to electric and magnetic fields of extremely low frequency (0100 Hz), particularly from power transmission and distribution. Also at issue are electrical environments in homes and workplaces. Until recently, research focused on the electric, rather than the magnetic, field; now, both are under extensive investigation. A review of research to date indicates the following: (1) Electric and magnetic fields can produce effects in vitro, with the locus of field interaction believed to be at the cell membrane. (2) Chronic in vivo electric field exposure fails to produce effects except in behavior, neurophysiology, endocrinology, and, possibly, fetal development. The extrapolation of these animal data to humans requires further research. (3) The epidemiological literature has, in some cases, reported an association between increased cancer rates and putative field exposure. (4) Exposure assessments indicate that, in all likelihood, human exposures to 60-Hz electric fields of the magnitudes found under transmission lines are very infrequent; assessments are continuing to characterize exposure to 60-Hz magnetic fields and to measure the field frequency spectra found in residential and workplace settings. The public health issues emerging from this research focus on fetal development and on the initiation or promotion of cancer. It is critical to reduce existing uncertainties in order to enable valid risk assessment.

Robert I. Kavet; Robert S. Banks

1986-01-01T23:59:59.000Z

173

Stored energies in electric and magnetic current densities for small antennas  

E-Print Network (OSTI)

Electric and magnetic currents are essential to describe electromagnetic stored energy, as well as the associated quantities of antenna Q and the partial directivity to antenna Q-ratio, D/Q, for general structures. The upper bound of previous D/Q-results for antennas modeled by electric currents is accurate enough to be predictive, this motivates us here to extend the analysis to include magnetic currents. In the present paper we investigate antenna Q bounds and D/Q-bounds for the combination of electric- and magnetic-currents, in the limit of electrically small antennas. This investigation is both analytical and numerical, and we illustrate how the bounds depend on the shape of the antenna. We show that the antenna Q can be associated with the largest eigenvalue of certain combinations of the electric and magnetic polarizability tensors. The results are a fully compatible extension of the electric only currents, which come as a special case. The here proposed method for antenna Q provides the minimum Q-value...

Jonsson, B L G

2014-01-01T23:59:59.000Z

174

The Magnetic Noise of a DC Electric Motor Modeling of Three-Times-Coupled Electromagnetic, Mechanical and Acoustic Phenomena  

Science Journals Connector (OSTI)

The sound power level of the magnetic noise radiated from a DC electric motor was numerically estimated for different loading conditions and two motor designs. Since the mechanism of the magnetic noise generation...

M. Furlan; M. Boltear

2005-01-01T23:59:59.000Z

175

The electric charge and magnetic moment of neutral fundamental particles  

E-Print Network (OSTI)

The article focuses on the issue of the two definitions of charge, mainly the gauge charge and the effective charge of fundamental particles. Most textbooks on classical electromagnetism and quantum field theory only works with the gauge charges while the concept of the induced charge remains unattended. In this article it has been shown that for intrinsically charged particles both of the charges remain the same but there can be situations where an electrically neutral particle picks up some electrical charge from its plasma surrounding. The physical origin and the scope of application of the induced charge concept has been briefly discussed in the article.

Kaushik Bhattacharya

2009-05-27T23:59:59.000Z

176

Electric/magnetic duality for chiral gauge theories with anomaly cancellation  

E-Print Network (OSTI)

We show that 4D gauge theories with Green-Schwarz anomaly cancellation and possible generalized Chern-Simons terms admit a formulation that is manifestly covariant with respect to electric/magnetic duality transformations. This generalizes previous work on the symplectically covariant formulation of anomaly-free gauge theories as they typically occur in extended supergravity, and now also includes general theories with (pseudo-)anomalous gauge interactions as they may occur in global or local N=1 supersymmetry. This generalization is achieved by relaxing the linear constraint on the embedding tensor so as to allow for a symmetric 3-tensor related to electric and/or magnetic quantum anomalies in these theories. Apart from electric and magnetic gauge fields, the resulting Lagrangians also feature two-form fields and can accommodate various unusual duality frames as they often appear, e.g., in string compactifications with background fluxes.

Jan De Rydt; Torsten T. Schmidt; Mario Trigiante; Antoine Van Proeyen; Marco Zagermann

2009-02-07T23:59:59.000Z

177

On the asymptotic balance between electric and magnetic energies for hydromagnetic relativistic flows  

SciTech Connect

In the equations of classical magnetohydrodynamics, the displacement current is considered vanishingly small due to low plasma velocities. For velocities comparable to the speed of light, the full relativistic electromagnetic equations must be used. In the absence of gravitational forcings and with an isotropic Ohm's law, it is proved that for poloidal magnetic field and velocity and toroidal electric field, the electric and magnetic energies tend to be equivalent in average for large times. This represents a partial extension of Cowling's theorem for axisymmetric fields.

Nez, Manuel [Department of Algebra and Mathematical Analysis and IMUVA, Universidad de Valladolid, 47005 Valladolid (Spain)] [Department of Algebra and Mathematical Analysis and IMUVA, Universidad de Valladolid, 47005 Valladolid (Spain)

2013-06-15T23:59:59.000Z

178

An audio?tutorial electricity and magnetism laboratory for introductory physics  

Science Journals Connector (OSTI)

An audio?tutorial laboratory which accompanies an introductory electromagnetism course at Michigan Technological University has been in operation for three years. The application of this laboratory method to electricity and magnetism provided unique problems in the design of experiments and in the selection of instruments. In some cases new apparatus had to be designed and built. A set of eight experiments is in use. Several involve the electrical system of an automobile.

David F. Chimino; Ruben R. Hoyer

1985-01-01T23:59:59.000Z

179

Measurements of static electrical conductivity of a dense plasma in a magnetic field  

Science Journals Connector (OSTI)

New experimental setup for generation of a non-ideal plasma, placed in a magnetic field of up to 25 T, is presented. The plasma generation technique is based on gas compression and heating behind the front of a shock wave with the use of an explosively driven linear generator. The magnetic field is produced by a discharge of a capacitor through a solenoid reeled on the generator channel. DC electrical conductivity of the plasma is determined by two and four contact techniques. Possibilities of magnetized dense plasma generation are discussed.

N S Shilkin; D S Yuriev; S V Dudin; V B Mintsev; V E Fortov

2006-01-01T23:59:59.000Z

180

Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits  

E-Print Network (OSTI)

Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization for the periodic orbits in a strongly coupled multidimen- sional Hamiltonian system, namely the hydrogen atom.15.Gy, 05.45.-a, 45.20.Jj I. INTRODUCTION The hydrogen atom in crossed electric and magnetic fields

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Electric charge in the field of a magnetic event in three-dimensional spacetime  

E-Print Network (OSTI)

We analyze the motion of an electric charge in the field of a magnetically charged event in three-dimensional spacetime. We start by exhibiting a first integral of the equations of motion in terms of the three conserved components of the spacetime angular momentum, and then proceed numerically. After crossing the light cone of the event, an electric charge initially at rest starts rotating and slowing down. There are two lengths appearing in the problem: (i) the characteristic length $\\frac{q g}{2 \\pi m}$, where $q$ and $m$ are the electric charge and mass of the particle, and $g$ is the magnetic charge of the event; and (ii) the spacetime impact parameter $r_0$. For $r_0 \\gg \\frac{q g}{2 \\pi m}$, after a time of order $r_0$, the particle makes sharply a quarter of a turn and comes to rest at the same spatial position at which the event happened in the past. This jump is the main signature of the presence of the magnetic event as felt by an electric charge. A derivation of the expression for the angular momentum that uses Noether's theorem in the magnetic representation is given in the Appendix.

Claudio Bunster; Cristian Martinez

2012-02-09T23:59:59.000Z

182

Comparison Between Two Models for Interactions Between Electric and Magnetic Fields and Proteins in Cell Membranes  

E-Print Network (OSTI)

, Melbourne, Australia. Departments of 2 Medical Radiation Physics and 3 Neurosurgery, Lund University, Lund Lines; Interaction Models; Biological Effects Introduction Static magnetic and electric fields occur naturally; time-varying fields, however, do not. These man-made fields have health consequences remains

Halgamuge, Malka N.

183

Propulsion efficiencies of magnetohydrodynamic propulsors considering electrical and magnetic end effects. Research and development report  

SciTech Connect

A mathematical theory for the performance of a direct current, rectangular duct magnetohydrodynamic (MBD) propulsion system propelling a marine vehicle is presented. The model accounts for the effects of spatially nonuniform magnetic fields and current distributions which are present at the ends of the propulsion unit. The theory is based on an approximate solution of the general NM duct flow problem in which the mutual interaction of the electric current and fluid flow in a strong magnetic field are considered in detail. For a specified vehicular steady state cruising speed, the propulsive efficiency and electrical power requirements can be calculated from the theory given the hydrodynamic drag of the vehicle and the properties of the fluid medium. Explicit electrical end loss factors are calculated to relate the performance of a propulsor with nonuniform field distributions to the performance of an idealized propulsor with no end losses operating under the same conditions. The power losses due to auxiliary equipment such as electrical generators, buswork, and magnetic cryogenic systems are not included in the study. Numerical results from the models for five design configurations for a nominal geometry under a reasonable range of operating parameters are presented. The numerical results, including the ideal propulsor with no end effects, indicate that the fringing magnetic and current distributions at the ends of the duct generally significantly degrade the propulsive efficiency. The degree of degradation depends on details of the design configuration of the rectangular duct.

Beatty, P.A.; Hughes, W.F.; Brown, S.H.; Walters, J.D.; Sondergaard, N.A.

1992-04-01T23:59:59.000Z

184

Electrical Conductivity of Dense Quark Matter with Fluctuations and Magnetic Field Included  

E-Print Network (OSTI)

We investigate the electrical conductivity(EC) of dense quark matter in the vicinity of the phase transition line. We show that: (i) At high density the Drude EC does not depend on the magnetic field up to $eB \\sim 10^{19} \\ G$. (ii) In the precritical region the fluctuation EC (paraconductivity) dominates over the Drude one.

B. O. Kerbikov; M. A. Andreichikov

2014-10-13T23:59:59.000Z

185

Influence of the pulsating electric field on the ECR heating in a nonuniform magnetic field  

SciTech Connect

According to a computer simulation, the randomized pulsating electric field can strongly influence the ECR plasma heating in a nonuniform magnetic field. It has been found out that the electron energy spectrum is shifted to the high energy region. The obtained effect is intended to be used in the ECR sources for effective X-ray generation.

Balmashnov, A. A., E-mail: abalmashnov@sci.pfu.edu.ru; Umnov, A. M. [People's Friendship University of Russia (Russian Federation)

2011-12-15T23:59:59.000Z

186

Diagnosis of Magnetic and Electric Fields of Chromospheric Jets through Spectropolarimetric Observations of HI Paschen Lines  

E-Print Network (OSTI)

Magnetic fields govern the plasma dynamics in the outer layers of the solar atmosphere, and electric fields acting on neutral atoms that move across the magnetic field enable us to study the dynamical coupling between neutrals and ions in the plasma. In order to measure the magnetic and electric fields of chromospheric jets, the full Stokes spectra of the Paschen series of neutral hydrogen in a surge and in some active region jets that took place at the solar limb were observed on May 5, 2012, using the spectropolarimeter of the Domeless Solar Telescope at Hida observatory, Japan. First, we inverted the Stokes spectra taking into account only the effect of magnetic fields on the energy structure and polarization of the hydrogen levels. Having found no definitive evidence of the effects of electric fields in the observed Stokes profiles, we then estimated an upper bound for these fields by calculating the polarization degree under the magnetic field configuration derived in the first step, with the additional ...

Anan, Tetsu; Ichimoto, Kiyoshi

2014-01-01T23:59:59.000Z

187

Dynamic frequency tuning of electric and magnetic metamaterial response  

DOE Patents (OSTI)

A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.

O'Hara, John F; Averitt, Richard; Padilla, Willie; Chen, Hou-Tong

2014-09-16T23:59:59.000Z

188

A Treatise on Electricity and Magnetism An Elementary Treatise on Electricity  

Science Journals Connector (OSTI)

... unbusinesslike statements of quantity and intensity, we have the precise ideas of electromotive force, resistance, current, and so on, measured in their respective units, the volt, the ... into the terminology of the subject. He is aware that at every point of the electric field there is conceived a directed quantity, which in the former edition of this ...

G. CHRYSTAL

1882-01-12T23:59:59.000Z

189

Comparison of coupling of humans to electric and magnetic fields with frequencies between 100 Hz and 100 kHz  

SciTech Connect

Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25--2,000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 {mu}T magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in US residences.

Kaune, W.T. [EM Factors, Richland, WA (United States)] [EM Factors, Richland, WA (United States); Guttman, J.L. [Enertech Consultants, Campbell, CA (United States)] [Enertech Consultants, Campbell, CA (United States); Kavet, R. [Electric Power Research Inst., Palo Alto, CA (United States)] [Electric Power Research Inst., Palo Alto, CA (United States)

1997-03-01T23:59:59.000Z

190

Electric machine  

DOE Patents (OSTI)

An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

2012-07-17T23:59:59.000Z

191

Energy loss of ions by electric-field fluctuations in a magnetized plasma  

SciTech Connect

The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.

Nersisyan, Hrachya B. [Institute of Radiophysics and Electronics, 0203 Ashtarak (Armenia); Centre of Strong Fields Physics, Yerevan State University, Alex Manoogian str. 1, 0025 Yerevan (Armenia); Deutsch, Claude [LPGP - UMR-CNRS 8578, Universite Paris XI, F-91405 Orsay (France)

2011-06-15T23:59:59.000Z

192

Comparison of heat sink and fan combinations and thermal electric coolers for use in the Mars Gravity Biosatellite  

E-Print Network (OSTI)

An experiment was conducted to help compare possible cooling methods for the payload module of the Mars Gravity Biosatellite. The Satellite will be launched into space with 15 mice on board and rotated to create a 0.38g ...

Parness, Aaron J. (Aaron Joseph), 1981-

2004-01-01T23:59:59.000Z

193

Directional properties of polar paramagnetic molecules subject to congruent electric, magnetic and optical fields  

E-Print Network (OSTI)

We show that congruent electric, magnetic and non-resonant optical fields acting concurrently on a polar paramagnetic (and polarisable) molecule offer possibilities to both amplify and control the directionality of the ensuing molecular states that surpass those available in double-field combinations or in single fields alone. At the core of these triple-field effects is the lifting of the degeneracy of the projection quantum number $M$ by the magnetic field superimposed on the optical field and a subsequent coupling of the members of the "doubled" (for states with $M \

Sharma, Ketan

2015-01-01T23:59:59.000Z

194

Finite nuclear mass corrections to electric and magnetic interactions in diatomic molecules  

SciTech Connect

In order to interpret precise measurements of molecular properties, finite nuclear mass corrections to the Born-Oppenheimer approximation have to be accounted for. It is demonstrated that they can be obtained systematically using nonadiabatic perturbation theory. The formulas for the leading corrections to the relativistic contribution to energy, the transition electric dipole moment, the electric polarizability, and the magnetic shielding constant are derived. They can be conveniently calculated for a fixed position of nuclei, as in the Born-Oppenheimer approximation, and then averaged over the rovibrational function.

Pachucki, Krzysztof [Institute of Theoretical Physics, University of Warsaw, PL-00-681 Warsaw, Hoza 69 (Poland)

2010-03-15T23:59:59.000Z

195

Magnetic saturable reactor type HTS fault current limiter for electrical application  

Science Journals Connector (OSTI)

An electrical fault current limiter (FCL) developed based on the principle of a magnetic saturable reactor requires a high current ampere-turn coil as its dc bias, and this coil is necessary to use a high temperature superconducting (HTS) winding. This HTS FCL has been studied, and identified with several advantages compared to other HTS FCLs, and therefore is further considered for its practical industry application.

J.X. Jin; S.X. Dou; C. Cook; C. Grantham; M. Apperley; T. Beales

2000-01-01T23:59:59.000Z

196

Effects on chickens of continuous exposure to low level electromagnetic, electric, and magnetic fields  

E-Print Network (OSTI)

for the degree of MASTER OF SCIENCE December 1972 Major Subjects Nuclear Engineering (Health Physics) EFFECTS ON CHI CKENS OF CONT INUOUS EXPOSURE TO LOW LEVEL ELECTRONAGNETIC, ELECTRIC, AND MAGNETIC 1 IELDS A Thesis by ROBERT SHERWOOD HOWELL Approved... exposure to ionizing radiation. The treated groups appear to have a significantly reduced growth rate and a slightly increased feed conversion ratio. The spleen weight in the 260 MHz {calculated average input power density of 0. 029 mW/cm ) group...

Howell, Robert Sherwood

1972-01-01T23:59:59.000Z

197

Unusually Small Electrical Resistance of Three-Dimensional Nanoporous Gold in External Magnetic Fields  

Science Journals Connector (OSTI)

We report the electric conductivity of three-dimensional (3D) nanoporous gold at low temperatures and in strong magnetic fields. It was found that topologically disordered 3D nanoporosity leads to extremely low magnetoresistance and anomalous temperature dependence as the characteristic length of nanoporous gold is tuned to be ?14??nm. This study underscores the importance of 3D topology of a nanostructure on electronic transport properties and has implications in manipulating electron transport by tailoring 3D nanostructures.

T. Fujita; H. Okada; K. Koyama; K. Watanabe; S. Maekawa; M. W. Chen

2008-10-16T23:59:59.000Z

198

COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS  

SciTech Connect

As an outgrowth of the Technology Reinvestment Program of the 1990s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utilitys transmission system and to the reliability of the nations electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.

CHARLES M. WEBER

2008-06-24T23:59:59.000Z

199

New Solutions of the $2+1$ Dimensional Einstein Gravity Coupled to Maxwell Power type Non Linear Electric field with Dilaton field  

E-Print Network (OSTI)

New solutions are derived in the $2+1$ gravity which is coupled to $|{\\cal F}|^k$ type non-linear electric field in Maxwell Power theory with dilaton field. We obtain consistent solutions in general $k$ case. We also investigate the behavior of the metric function with the space-time singularity. Then, we found some black hole solutions when the space-time has a singular point at $r=0$. Addition, we derive the Brown-York mass when the space-time represents black hole.

Masashi Kuniyasu

2015-01-27T23:59:59.000Z

200

The EMDEX (Electric and Magnetic Field Digital Exposure) Project: Technology transfer and occupational measurements  

SciTech Connect

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order to priority were: (1) to transfer the EMDEX technology to utilities; (2) to develop measurement protocols and data management capabilities for large exposure data sets; and (3) to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Documentation of the EMDEX Project is contained in three volumes: Volume 1 summarizes the methods and results, and provides an assessment of project objectives; Volume 2 provides detailed descriptions of methods, procedures, protocols, materials and analyses, and Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables. 12 refs., 27 figs., 23 tabs.

Not Available

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

30-MJ superconducting magnetic energy storage for electric-transmission stabilization  

SciTech Connect

The Bonneville Power Administration operates the electric power transmission system that connects the Pacific Northwest and southern California. The HVAC interties develop 0.35 Hz oscillations when the lines are heavily loaded. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for the oscillation. The unit is scheduled for installation in 1982 and operation in 1982-83. Status of the project is described. The conductor has been fully tested electrically and mechanically and the 5 kA superconducting cable has been produced. The 30 MJ superconducting coil is essentially complete. All major components of the electrical and cryogenic systems except the nonconducting dewar have been completed. The refrigerator and converter are undergoing tests. The system is to be located at the BPA Tacoma Substation and operated by microwave link from Portland, OR.

Turner, R.D.; Rogers, J.D.

1981-01-01T23:59:59.000Z

202

Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions  

SciTech Connect

To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50?s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5?k? to 39?k?. Moreover, an additional 500?s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5?k? to 13.9?k?. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8?nm and 12.8?nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20?nm.

Jeong, J. H., E-mail: juno@fris.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai (Japan); Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai (Japan); Kim, Y.; Kim, W. K.; Park, S. O. [Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of)

2014-05-07T23:59:59.000Z

203

Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Mokapu Penninsula Area Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the electrical basement, to a depth of 900 m, had resistivities ranging from 42 ohm.m to more than 1000 ohm.m, which is considered to be within the

204

Electric and Magnetic Screening Masses at Finite Temperature from Generalized Polyakov-Line Correlations in Two-flavor Lattice QCD  

E-Print Network (OSTI)

Screenings of the quark-gluon plasma in electric and magnetic sectors are studied on the basis of generalized Polyakov-line correlation functions in lattice QCD simulations with two flavors of improved Wilson quarks. Using the Euclidean-time reflection ($\\R$) and the charge conjugation ($\\Ca$), electric and magnetic screening masses are extracted in a gauge invariant manner. Long distance behavior of the standard Polyakov-line correlation in the quark-gluon plasma is found to be dictated by the magnetic screening. Also, ratio of the two screening masses agrees with that obtained from the dimensionally-reduced effective field theory and the ${\\cal N}=4$ supersymmetric Yang-Mills theory.

Y. Maezawa; S. Aoki; S. Ejiri; T. Hatsuda; N. Ishii; K. Kanaya; N. Ukita; T. Umeda

2010-05-11T23:59:59.000Z

205

Magnetic and electric contributions to the energy loss in a dynamical QCD medium  

E-Print Network (OSTI)

The computation of radiative energy loss in a finite size QCD medium with dynamical constituents is a key ingredient for obtaining reliable predictions for jet quenching in ultra-relativistic heavy ion collisions. It was previously shown that energy loss in dynamical QCD medium is significantly higher compared to static QCD medium. To understand this difference, we here analyze magnetic and electric contributions to energy loss in dynamical QCD medium. We find that the significantly higher energy loss in the dynamical case is entirely due to appearance of magnetic contribution in the dynamical medium. While for asymptotically high energies, the energy loss in static and dynamical medium approach the same value, we find that the physical origin of the energy loss in these two cases is different.

Magdalena Djordjevic

2011-05-21T23:59:59.000Z

206

High-precision determination of the electric and magnetic form factors of the proton  

E-Print Network (OSTI)

New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.

J. C. Bernauer; P. Achenbach; C. Ayerbe Gayoso; R. Bhm; D. Bosnar; L. Debenjak; M. O. Distler; L. Doria; A. Esser; H. Fonvieille; J. M. Friedrich; J. Friedrich; M. Gmez Rodrguez de la Paz; M. Makek; H. Merkel; D. G. Middleton; U. Mller; L. Nungesser; J. Pochodzalla; M. Potokar; S. Snchez Majos; B. S. Schlimme; S. irca; Th. Walcher; M. Weinriefer

2010-07-28T23:59:59.000Z

207

Effect of pressure on the electrical resistivity and magnetism in UPdSn  

SciTech Connect

The electrical resistivity of a UPdSn single crystal exerted to various hydrostatic pressures was measured as a function of temperature and magnetic field. Clear anomalies in the temperature dependence of resistivity along the c-axis mark the magnetic phase transitions between paramagnetic and antiferromagnetic (AF) state at TN and the AF 1 -AF2 transition at T I .L arge negative magnetoresistance effects have been observed not only in the AF state as a result of the metamagnetic transition to canted structure ai B,, but also at temperatures far above TN. The latter result is attributed to the existence of AF correlations or short range AF ordering in the paramagnetic range. The value of TN increases with increasing applied pressure, whereas TI simultaneously decreases. It is also found that 13, decreases with increasing pressure. As a consequence, the stability range of the AF- 1 phase expands with applied pressure partially on account of the ground-state AF-2 phase.

Honda, F.; Alsmadi, A. K. (Abdel Khaleq); Sechovsky, V. (Vladimir); Kamarad, J.; Nakotte, H. (Heinrich); Lacerda, A. H. (Alex H.); Mihalik, M.

2002-01-01T23:59:59.000Z

208

Local CP-violation and electric charge separation by magnetic fields from lattice QCD  

E-Print Network (OSTI)

We study local CP-violation on the lattice by measuring the local correlation between the topological charge density and the electric dipole moment of quarks, induced by a constant external magnetic field. This correlator is found to increase linearly with the external field, with the coefficient of proportionality depending only weakly on temperature. Results are obtained on lattices with various spacings, and are extrapolated to the continuum limit after the renormalization of the observables is carried out. This renormalization utilizes the gradient flow for the quark and gluon fields. Our findings suggest that the strength of local CP-violation in QCD with physical quark masses is about an order of magnitude smaller than a model prediction based on nearly massless quarks in domains of constant gluon backgrounds with topological charge. We also show numerical evidence that the observed local CP-violation correlates with spatially extended electric dipole structures in the QCD vacuum.

G. S. Bali; F. Bruckmann; G. Endrodi; Z. Fodor; S. D. Katz; A. Schafer

2014-01-16T23:59:59.000Z

209

Electric and magnetic fields research and public information dissemination program. Progress report  

SciTech Connect

The Electric and Magnetic Fields (EMF) Research and Public Information Dissemination (RAPID) Program was authorized by the Energy Policy Act of 1992 (enacted October 24, 1992) to determine whether or not exposure to EMF produced by the generation, transmission, and use of electric energy affects human health. Two Federal agencies, the Department of Energy (DOE) and the National Institute of Environmental Health Sciences (NIEHS), have primary responsibility for the program, but other Federal agencies are key participants as well. This program requires that Federal appropriations be matched by contributions from non-Federal sources. The authorized level of funding for the program was $65 million over a 5-year period (fiscal years 1993-1997 inclusive). For EMF RAPID to be a fully funded program, $32.5 million over 5 years will have to be appropriated by Congress and matched by non-Federal contributions.

NONE

1995-12-01T23:59:59.000Z

210

Modeling electron transport in the presence of electric and magnetic fields.  

SciTech Connect

This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.

Fan, Wesley C.; Drumm, Clifton Russell; Pautz, Shawn D.; Turner, C. David

2013-09-01T23:59:59.000Z

211

Combined Effects of Unsteady Electric Field and Uniform Magnetic Field on Magnetoelectroconvection in a Poorly Conducting Plasma  

Science Journals Connector (OSTI)

The magnetoelectroconvective instability of a plane horizontal layer of a poorly conducting plasma subjected to a strong nonuniform electric field and uniform magnetic field is investigated in the combined magnetoelectrohydrodynamic approximations when charge formation is produced by this convection. The spatio?temporal variation of electric field density of charge distribution and temperature are found for the quiescent basic state. The influence of combined uniform magnetic field and a time?dependent electric field modulation on the behaviour of a poorly conducting plasma is studied using energy and moment methods along with Galerkin technique. The criterion for the onset of magnetoelectroconvection involving the effects of both strong electric and magnetic fields is computed and the results are compared with these obtained only in the presence of electric field. We found that the combined effect of electric and magnetic fields is more favourable to suppress convection significantly than in the presence of electric field alone. This result is useful in synthesizing smart and strong materials needed for many aeronautical automobile and biomedical engineering applications to minimize the weight and maximize the strength to achieve the sufficient dynamic advantages.

M. S. Gayathri

2006-01-01T23:59:59.000Z

212

API Gravity  

Science Journals Connector (OSTI)

n Measure of specific gravity of petroleum and petroleum products, defined by the following equation: $$\\eqalign{{\\rm{API\\,\\,Gravity,\\,\\,degrees }}...

Jan W. Gooch

2011-01-01T23:59:59.000Z

213

8.02 Electricity and Magnetism: TEAL:Studio Physics Project, Fall 2002  

E-Print Network (OSTI)

Introduction to electromagnetism and electrostatics: electric charge, Coulomb's law, electric structure of matter; conductors and dielectrics. Concepts of electrostatic field and potential, electrostatic energy. Electric ...

Belcher, John W.

214

Study on controlling chaos of permanent magnet synchronous motor in electric vehicles  

Science Journals Connector (OSTI)

The objective of this study is to analyse chaotic motion and its control in a Permanent Magnet Synchronous Motor (PMSM) in an Electric Vehicle (EV). Complex non-linear behaviours are observed over a range of parameter values in the bifurcation diagram. Hopf bifurcation and chaos may even occur in the PMSMs if the PMSMs are not properly sized. The Lyapunov exponent approach is utilised to identify the onset of chaotic motion and to verify the above analyses. Finally, an approach for effectively controlling a chaotic PMSM system is presented. The state feedback control procedure is employed to control chaotic motions in the PMSM effectively. Simulation results are presented to demonstrate the feasibility of the proposed approach.

Shun-Chang Chang; Hai-Ping Lin

2012-01-01T23:59:59.000Z

215

Using multimedia learning modules in a hybrid-online course in electricity and magnetism  

Science Journals Connector (OSTI)

We have been piloting web-based multimedia learning modules (MLMs), developed by the Physics Education Research Group at the University of Illinois at Urbana Champaign (UIUC), as a prelecture assignment in several introductory physics courses at California State Polytechnic University at Pomona. In this study, we report the results from a controlled study utilizing modules on electricity and magnetism as a part of a blended hybrid-online course. We asked students in the experimental section to view the MLMs prior to attending the face-to-face class, and to make sure this would not result in additional instructional time, we reduced the weekly class time by one-third. We found that despite reduced class time, student-learning outcomes were not hindered; in fact, the implementation of the UIUC MLMs resulted in a positive effect on student performance on conceptual tests and classroom discussion questions.

Homeyra R. Sadaghiani

2011-03-24T23:59:59.000Z

216

Large-scale electric fields resulting from magnetic reconnection in the corona  

SciTech Connect

The method of Forbes and Priest (2-D model) is applied to the large two-ribbon flare of July 29, 1973, for which both detailed H..cap alpha.. observations and magnetic data are available. For this flare the ribbons were long, nearly straight, and parallel to each other, and the 2-D model for the coronal field geometry may be adequate. The temporal profile E(t) is calculated and indicates that reconnection sets in at the beginning of the decay phase. From this time the electric field grows rapidly to a maximum value of about 2 V/cm within just a few minutes. Thereafter the decreases monotonically with time. 14 refs., 1 figs. (WRF)

Kopp, R.A.; Poletto, G.

1986-01-01T23:59:59.000Z

217

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

Lasche, G.P.

1987-02-20T23:59:59.000Z

218

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

Lasche, G.P.

1983-09-29T23:59:59.000Z

219

Thin film deposition by electric and magnetic crossed-field diode sputtering  

DOE Patents (OSTI)

Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

Welch, Kimo M. (Mountain View, CA)

1980-01-01T23:59:59.000Z

220

Choosing the right solution approach: The crucial role of situational knowledge in electricity and magnetism  

Science Journals Connector (OSTI)

Novice problem solvers are rather sensitive to surface problem features, and they often resort to trial and error formula matching rather than identifying an appropriate solution approach. These observations have been interpreted to imply that novices structure their knowledge according to surface features rather than according to problem type categories. However, it may also be the case that novices do know problem types, but cannot map the problem at hand to a known type, because they fail to create a sufficiently well-elaborated problem representation. This study aims to distinguish between these explanations. In this study novice physics students at high and low levels of proficiency completed two problem-sorting tasks from the domain of electricity and magnetism, one with and one without elaboration support. Results confirm that these students do distinguish problem types in accordance with their required solution approaches, and that their problem-sorting performance improves with elaboration support. Therefore, it was concluded that their major difficulty lies in the process of matching concrete problems to a proper category. Within-group analysis revealed that the performance of proficient novices clearly improved with elaboration support, whereas the effect for less proficient novices remained inconclusive. The latter finding is explained from the less proficient novices problem representations being too fragmented to integrate new information. These results suggest that, in order to promote schema-based problem solving, instruction in the domain of electricity and magnetism should be based not so much on restructuring the conceptual knowledge base but rather on enriching situational knowledge.

Elwin R. Savelsbergh; Ton de Jong; Monica G. M. Ferguson-Hessler

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Magneto-electric coupling in a two-dimensional ballistic Josephson junction with in-plane magnetic texture  

E-Print Network (OSTI)

Magneto-electric coupling in a two-dimensional ballistic Josephson junction with in-plane magnetic, Germany (Dated: August 20, 2014) We study a Josephson junction made with a spin-textured bridge, when both-dimensional ballistic Josephson junction close to the critical temperature of the heterostructure, when an anomalous

Boyer, Edmond

222

ASA conference on radiation and health: Health effects of electric and magnetic fields: Statistical support for research strategies. Final report  

SciTech Connect

This report is a collection of papers documenting presentations made at the VIII ASA (American Statistical Association) Conference on Radiation and Health entitled Health Effects of Electric and Magnetic Fields: Statistical Support for Research Strategies. Individual papers are abstracted and indexed for the database.

Not Available

1990-05-01T23:59:59.000Z

223

Measured electric and magnetic fields from an unusual cloud-to-ground lightning flash containing two positive  

E-Print Network (OSTI)

Measured electric and magnetic fields from an unusual cloud-to-ground lightning flash containing at multiple stations between about 300 and 800 m of a cloud-to-ground ``bipolar'' lightning flash containing an unusual cloud-to-ground lightning flash containing two positive strokes followed by four negative strokes

Florida, University of

224

The covariant description of electric and magnetic field lines of null fields: application to Hopf-Ranada solutions  

E-Print Network (OSTI)

The concept of electric and magnetic field lines is intrinsically non-relativistic. Nonetheless, for certain types of fields satisfying certain geometric properties, field lines can be defined covariantly. More precisely, two Lorentz-invariant 2D surfaces in spacetime can be defined such that magnetic and electric field lines are determined, for any observer, by the intersection of those surfaces with spacelike hyperplanes. An instance of this type of field is constituted by the so-called Hopf-Ranada solutions of the source-free Maxwell equations, which have been studied because of their interesting topological properties, namely, linkage of their field lines. In order to describe both geometric and topological properties in a succinct manner, we employ the tools of Geometric Algebra (aka Clifford Algebra) and use the Clebsch representation for the vector potential as well as the Euler representation for both magnetic and electric fields. This description is easily made covariant, thus allowing us to define electric and magnetic field lines covariantly in a compact geometric language. The definitions of field lines can be phrased in terms of 2D surfaces in space. We display those surfaces in different reference frames, showing how those surfaces change under Lorentz transformations while keeping their topological properties. As a byproduct we also obtain relations between optical helicity, optical chirality and generalizations thereof, and their conservation laws.

S. J. van Enk

2013-02-12T23:59:59.000Z

225

Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles  

SciTech Connect

This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

2007-11-30T23:59:59.000Z

226

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

227

GAS COOLED ELECTRICAL LEADS FOR USE ON FORCED COOLED SUPERCONDUCTING MAGNETS  

E-Print Network (OSTI)

11-14, 1981 GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDim mumii P mm GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDD. Henning, "Cryogenic Electrical Leads," Proceedings of the

Smits, R.G.

2010-01-01T23:59:59.000Z

228

Acceleration of electric current-carrying string loop near a Schwarzschild black hole immersed in an asymptotically uniform magnetic field  

E-Print Network (OSTI)

We study the acceleration of an electric current-carrying and axially-symmetric string loop initially oscillating in the vicinity of a Schwarzschild black hole embedded in an external asymptotically uniform magnetic field. The plane of the string loop is orthogonal to the magnetic field lines and the acceleration of the string loop occurs due to the transmutation effect turning in the deep gravitational field the internal energy of the oscillating strings to the energy of their translational motion along the axis given by the symmetry of the black hole spacetime and the magnetic field. We restrict our attention to the motion of string loop with energy high enough, when it can overcome the gravitational attraction and escape to infinity. We demonstrate that for the current-carrying string loop the transmutation effect is enhanced by the contribution of the interaction between the electric current of the string loop and the external magnetic field and we give conditions that have to be fulfilled for an efficient acceleration. The Schwarzschild black hole combined with the strong external magnetic field can accelerate the current-carrying string loop up to the velocities close to the speed of light $v \\sim c$. Therefore, the string loop transmutation effect can potentially well serve as an explanation for acceleration of highly relativistic jets observed in microquasars and active galactic nuclei.

Arman Tursunov; Martin Kolo; Zden?k Stuchlk; Bobomurat Ahmedov

2014-09-16T23:59:59.000Z

229

Electric and Magnetic Fields Research and Public Information Dissemination Program annual report for fiscal year 1996  

SciTech Connect

The Electric and Magnetic Fields (EMF) Research and Public Information Dissemination (RAPID) Program was authorized by the Energy Policy Act of 1992 as a near-term effort to expand and accelerate the research needed to address the EMF issue. As required by this legislation, the EMF Interagency Committee, the National EMF Advisory Committee (NEMFAC), and the National Academy of Sciences (NAS) are providing valued input and advice for the direction of this program. With this input and advice, the Department of Energy (DOE) and the National Institute of Environmental Health Sciences (NIEHS) have developed and are implementing five-year program plans. Multi-year health effects research projects and related EMF measurement and exposure assessment projects are underway using funds appropriated in fiscal years 1994, 1995, and 1996 together with voluntary non-Federal contributions. The results of these research projects, along with the results of other EMF research, will be used as input to the hazard evaluation effort, which is the focus of the EMF RAPID Program. A coordinated interagency program is underway to communicate needed information on the EMF issue in a clear manner to the public and other decision makers.

NONE

1997-06-01T23:59:59.000Z

230

SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources  

SciTech Connect

For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A{sup ?} and B{sup ?} in a judicious way. On the two potentials A{sup ?} and B{sup ?} the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant BornInfeld electrodynamics which can be important for D-brane dynamics in string theory. -- Highlights: We formulate a local, manifestly duality-symmetric, Zwanziger-type action. Maxwell electrodynamics is generalized to include dilaton and axion fields. SL(2,R) symmetry is manifest. We formulate a local, manifestly duality-symmetric, nonlinear BornInfeld action with SL(2,R) symmetry.

Lee, Choonkyu, E-mail: cklee@phya.snu.ac.kr [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of) [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Min, Hyunsoo, E-mail: hsmin@dirac.uos.ac.kr [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of)] [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of)

2013-12-15T23:59:59.000Z

231

Ubiquity of chaotic magnetic-field lines generated by three-dimensionally crossed wires in modern electric circuits  

Science Journals Connector (OSTI)

We investigate simple three-dimensionally crossed wires carrying electric currents which generate chaotic magnetic-field lines (CMFLs). As such wire systems, cross-ring and perturbed parallel-ring wires are studied, since topologically equivalent configurations to these systems can often be found in contemporary electric and integrated circuits. For realistic fundamental wire configurations, the conditions for wire dimensions (size) and current values to generate CMFLs are numerically explored under the presence of the weak but inevitable geomagnetic field. As a result, it is concluded that CMFLs can exist everywhere; i.e., they are ubiquitous in the modern technological world.

M. Hosoda; T. Miyaguchi; K. Imagawa; K. Nakamura

2009-12-21T23:59:59.000Z

232

Very-low-frequency and low-frequency electric and magnetic fields associated with electric shuttle bus wireless charging  

Science Journals Connector (OSTI)

......the charging process brings the batteries up to 90 per cent of the full...the test track to reduce the battery's SOC to between 60 and 70...2012) EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium......

R.A. Tell; Robert Kavet; J.R. Bailey; John Halliwell

2014-01-01T23:59:59.000Z

233

Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits  

E-Print Network (OSTI)

A hierarchical ordering is demonstrated for the periodic orbits in a strongly coupled multidimensional Hamiltonian system, namely the hydrogen atom in crossed electric and magnetic fields. It mirrors the hierarchy of broken resonant tori and thereby allows one to characterize the periodic orbits by a set of winding numbers. With this knowledge, we construct the action variables as functions of the frequency ratios and carry out a semiclassical torus quantization. The semiclassical energy levels thus obtained agree well with exact quantum calculations.

Stephan Gekle; Jrg Main; Thomas Bartsch; T. Uzer

2006-10-02T23:59:59.000Z

234

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

235

Quark mass dependence of the vacuum electric conductivity induced by the magnetic field in SU(2) lattice gluodynamics  

SciTech Connect

We study the electric conductivity induced by the magnetic field B in quenched SU(2) lattice gauge theory at a finite temperature below the deconfinement phase transition as a function of the bare quark mass m{sub q} in the range m{sub q}=55 MeV...540 MeV. At fixed quark mass, the conductivity grows linearly with the magnetic field strength |B|. The proportionality coefficient in this dependence increases towards smaller quark masses and seems to saturate at some finite value in the zero-mass limit. The nonanalytic dependence on the field strength might result from the mixing between vector mesons and pions in an external magnetic field. We discuss the implications of our results for dilepton angular distributions in heavy-ion collisions.

Buividovich, P. V. [ITEP, 117218 Russia, Moscow, B. Cheremushkinskaya str. 25 (Russian Federation); JINR, 141980 Russia, Moscow Region, Dubna, Joliot-Curie str. 6 (Russian Federation); Polikarpov, M. I. [ITEP, 117218 Russia, Moscow, B. Cheremushkinskaya str. 25 (Russian Federation)

2011-05-01T23:59:59.000Z

236

Muon anomalous magnetic moment in a $SU(4) \\otimes U(1)_N$ model without exotic electric charges  

E-Print Network (OSTI)

We study an electroweak gauge extension of the standard model, so called 3-4-1 model, which does not contain exotic electric charges and it is anomaly free. We discuss phenomenological constraints of the model and compute all the corrections to the muon magnetic moment. Mainly, we discuss different mass regimes and their impact on this correction, deriving for the first time direct limits on the masses of the neutral fermions and charged vector bosons. Interestingly, the model could address the reported muon anomalous magnetic moment excess, however it would demands a rather low scale of symmetry breaking, far below the current electroweak constraints on the model. Thus, if this excess is confirmed in the foreseeable future by the g-2 experiment at FERMILAB, this 3-4-1 model can be decisively ruled out since the model cannot reproduce a sizeable and positive contribution to the muon anomalous magnetic moment consistent with current electroweak limits.

Cogollo, D

2014-01-01T23:59:59.000Z

237

Acceleration of electric current-carrying string loop near a Schwarzschild black hole immersed in an asymptotically uniform magnetic field  

E-Print Network (OSTI)

We study the acceleration of an electric current-carrying and axially-symmetric string loop initially oscillating in the vicinity of a Schwarzschild black hole embedded in an external asymptotically uniform magnetic field. The plane of the string loop is orthogonal to the magnetic field lines and the acceleration of the string loop occurs due to the transmutation effect turning in the deep gravitational field the internal energy of the oscillating strings to the energy of their translational motion along the axis given by the symmetry of the black hole spacetime and the magnetic field. We restrict our attention to the motion of string loop with energy high enough, when it can overcome the gravitational attraction and escape to infinity. We demonstrate that for the current-carrying string loop the transmutation effect is enhanced by the contribution of the interaction between the electric current of the string loop and the external magnetic field and we give conditions that have to be fulfilled for an efficien...

Tursunov, Arman; Stuchlk, Zden?k; Ahmedov, Bobomurat

2014-01-01T23:59:59.000Z

238

Free Energy of Electrons in Metals with Magnetic and Electric Polarizations. II: Dielectric Constant and Spin Susceptibilities in the Ferromagnetic State  

Science Journals Connector (OSTI)

......Theoretical Physics February 1970 research-article Articles Free Energy of Electrons in Metals with Magnetic and Electric Polarizations...calculation and the Hartree-Fock approximation, the free energy of electrons in metals is expanded as a power series......

Ichiro Takahashi; Masao Shimizu

1970-02-01T23:59:59.000Z

239

The conditions for the existence of the electric field opposite to the current along the magnetic field lines in the thin plasma  

Science Journals Connector (OSTI)

The flow of the current along the magnetic field lines in the thin plasma directed opposite to the electric field is considered. The particles moving to the ... current density which are typical for the auroral field

M. V. Samokhin

240

MagLab - Pioneers in Electricity and Magnetism: James Clerk Maxwell  

NLE Websites -- All DOE Office Websites (Extended Search)

research into two topics that he would investigate throughout his life: color and magnetism. This work resulted in the publication of two papers in 1855, Experiments on...

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tunneling magnetoresistance tuned by a vertical electric field in an AA-stacked graphene bilayer with double magnetic barriers  

SciTech Connect

We investigate the effect of a vertical electric field on the electron tunneling and magnetoresistance in an AA-stacked graphene bilayer modulated by the double magnetic barriers with parallel or antiparallel configuration. The results show that the electronic transmission properties in the system are sensitive to the magnetic-barrier configuration and the bias voltage between the graphene layers. In particular, it is found that for the antiparallel configuration, within the low energy region, the blocking effect is more obvious compared with the case for the parallel configuration, and even there may exist a transmission spectrum gap which can be arbitrarily tuned by the field-induced interlayer bias voltage. We also demonstrate that the significant discrepancy between the conductance for both parallel and antiparallel configurations would result in a giant tunneling magnetoresistance ratio, and further the maximal magnetoresistance ratio can be strongly modified by the interlayer bias voltage. This leads to the possible realization of high-quality magnetic sensors controlled by a vertical electric field in the AA-stacked graphene bilayer.

Wang, Dali, E-mail: wangdali@mail.ahnu.edu.cn [Department of Physics and Center for Nano Science and Technology, Anhui Normal University, Wuhu 241000 (China); National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

2013-12-21T23:59:59.000Z

242

Magnetic-susceptibility and electrical-resistivity measurements on RPdSn (R=CeYb) compounds  

Science Journals Connector (OSTI)

Magnetic-susceptibility and electrical-resistivity measurements have been carried out on equiatomic ternary compounds, RPdSn (R=CeYb), in the temperature range 4.2 and 300 K. The compounds EuPdSn and YbPdSn have been synthesized. As-cast RPdSn (R=CeYb) compounds crystallize in the orthorhombic TiNiSi-type structure. However, on annealing at 950 C, Er- and Tm-containing compounds transform to hexagonal Fe2P-type structure. Magnetic-susceptibility measurements reveal that the compounds with R=Ce, Sm, Eu, Gd, Tb, Dy, and Er order antiferromagnetically with Nel temperatures (TN) of 7.5, 11, 13, 14.5, 23.5, 11.4, and 5.6 K, respectively. The compounds with R=Pr, Nd, Ho, and Tm are paramagnetic down to 4.2 K. Susceptibility of YbPdSn shows Curie-Weiss behavior between 300-150 K with ?eff=1.45?B and deviates considerably from it below 150 K. The electrical resistivity of all these compounds exhibits metallic behavior and shows a sharp drop at the respective Nel temperatures. The TN of the RPdSn series does not follow de Gennes scaling and, instead, peaks at Tb. This behavior of TN can be understood on the basis of crystalline-electric-field effects.

D. T. Adroja and S. K. Malik

1992-01-01T23:59:59.000Z

243

The relation between reconnected flux, the parallel electric field, and the reconnection rate in a three-dimensional kinetic simulation of magnetic reconnection  

SciTech Connect

We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection in a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of simple topological features such as null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a good correspondence between the locus of changes in magnetic connectivity or the quasi-separatrix layer and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we investigate the distribution of the parallel electric field along the reconnecting field lines. We find the reconnection rate is controlled by only the low-amplitude, zeroth and firstorder trends in the parallel electric field while the contribution from fluctuations of the parallel electric field, such as electron holes, is negligible. The results impact the determination of reconnection sites and reconnection rates in models and in situ spacecraft observations of 3D turbulent reconnection. It is difficult through direct observation to isolate the loci of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the running sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line.

Wendel, D. E.; Olson, D. K.; Hesse, M.; Kuznetsova, M.; Adrian, M. L. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)] [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Aunai, N. [Institute for Research in Astrophysics and Planetology, University Paul Sabatier, Toulouse (France)] [Institute for Research in Astrophysics and Planetology, University Paul Sabatier, Toulouse (France); Karimabadi, H. [SciberQuest, Inc., Del Mar, California 92014 (United States) [SciberQuest, Inc., Del Mar, California 92014 (United States); Department of Computer and Electrical Engineering, University of California, San Diego, La Jolla, California 92093 (United States); Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2013-12-15T23:59:59.000Z

244

Linear electric field frequency shift (important for next generation electric dipole moment searches) induced in confined gases by a magnetic field gradient  

E-Print Network (OSTI)

The search for particle electric dipole moments (edm) represents a most promising way to search for physics beyond the standard model. A number of groups are planning a new generation of experiments using stored gases of various kinds. In order to achieve the target sensitivities it will be necessary to deal with the systematic error resulting from the interaction of the well-known $\\overrightarrow{v}\\times \\overrightarrow{E}$ field with magnetic field gradients (often referred to as the geometric phase effect (Commins, ED; Am. J. Phys. \\QTR{bf}{59}, 1077 (1991), Pendlebury, JM \\QTR{em}{et al;} Phys. Rev. \\QTR{bf}{A70}, 032102 (2004)). This interaction produces a frequency shift linear in the electric field, mimicking an edm. In this work we introduce an analytic form for the velocity auto-correlation function which determines the velocity-position correlation function which in turn determines the behavior of the frequency shift (Lamoreaux, SK and Golub, R; Phys. Rev \\QTR{bf}{A71}, 032104 (2005)) and show how it depends on the operating conditions of the experiment. We also discuss some additional issues.

Authors A. L. Barabanov; R. Golub; S. K. Lamoreaux

2006-07-17T23:59:59.000Z

245

Free Energy of Electron in Metals with Magnetic and Electric Polarizations  

Science Journals Connector (OSTI)

......1969 research-article Articles Free Energy of Electron in Metals with Magnetic...Physics, Nagoya University, Nagoya Free energy of electrons in metals having definite...perturbation calculation, the free energy is expanded as a power series of......

Ichiro Takahashi; Masao Shimizu

1969-09-01T23:59:59.000Z

246

Electric and Magnetic Fields (EMF) RAPID Engineering Program, Project 7: Development of Field Exposure Models  

SciTech Connect

The purpose of this project was to develop a conceptual model for estimating magnetic field (EMF) personal exposure (PE) of individuals or groups and construct a working model using existing data.

Bracken, T.D.; Rankin, R.F.; Wiley, J.A.

1999-05-01T23:59:59.000Z

247

Implantable cardioverter defibrillator and 50-Hz electric and magnetic fields exposure in the workplace  

Science Journals Connector (OSTI)

The measurements are then taken again in the workers presence, in the order of increasing exposure. For this second stage, the implant wearer is also equipped with a magnetic field recorder (EMDEX II, Enertech-U...

M. Souques; I. Magne; J. Lambrozo

2011-01-01T23:59:59.000Z

248

Analysis of the electrical noise from the APS kicker magnet power supplies  

SciTech Connect

The APS kicker magnet power supplies deliver damped sinusoidal currents in excess of 2400A peak with a half-period of 300ns to the kicker magnets. Conducted and radiated electromagnetic interference (EMI) is created by this system in the low megahertz range. This interference affects a number of beam diagnostics in the APS injector. The sources and coupling mechanisms for the EMI generated by this system are described and solutions discussed.

Carwardine, J.A.; Wang, J.

1995-07-01T23:59:59.000Z

249

Magnetism  

Science Journals Connector (OSTI)

Historically, magnetism is related to rock magnetism, due to a few minerals exhibiting spontaneous magnetization. Attractive properties of magnetite were already known in Antiquity and were used for navigation...

Guillaume Morin

1998-01-01T23:59:59.000Z

250

Petroglyphs, Lighting, and Magnetism  

E-Print Network (OSTI)

1950 Electricity and Magnetism: Theory and Applications.I Petroglyphs, Lightning, and Magnetism | Walker Figure 8.I Petroglyphs, Lightning, and Magnetism | Walker Figure IL

Walker, Merle F

2007-01-01T23:59:59.000Z

251

Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski...  

Open Energy Info (EERE)

geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify...

252

Magnetic field characterization of electrical appliances as point sources through in situ measurements  

SciTech Connect

It is shown that magnetic field exposure from a point source can be studied by characterizing the source with a magnetic dipole. A technique based on in situ measurements of amplitude and phase angle of three orthogonal components of the magnetic field at three points at different distances from the source was developed. The method to determine the center and the real and imaginary components of the dipole moment along the three aces is described. The characterization of the source allows the prediction of the field at any distance and along any direction from the source. The effects of background fields and of the source dimensions and complexity on the accuracy of the results are discussed.

Zaffanella, L.E.; Sullivan, T.P. [Enertech Consultants, Lee, MA (United States)] [Enertech Consultants, Lee, MA (United States); Visintainer, I. [CESI, Milan (Italy)] [CESI, Milan (Italy)

1997-01-01T23:59:59.000Z

253

API gravity  

Science Journals Connector (OSTI)

API gravity [The standard American Petroleum Institute method for specifying the density of crude petroleum. The density in degrees API is 141.5/P 131.5...] ? (Roh)ldichte f in API-Graden

2014-08-01T23:59:59.000Z

254

Cold-hollow-cathode arc discharge in crossed electric and magnetic fields  

Science Journals Connector (OSTI)

A crossed-field cold-hollow-cathode arc is stable at low working gas pressures...?210?1 Pa, magnetic-field-and gas-dependent arcing voltages of 2050 V, and discharge currents of 20200 A. This is ... produced o...

P. M. Schanin; N. N. Koval; Yu. Kh. Akhmadeev; S. V. Grigoriev

2004-05-01T23:59:59.000Z

255

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 10, OCTOBER 2011 1771 Magnetic Resonance Electrical Impedance  

E-Print Network (OSTI)

conditions for successful electroporation, applications based on electropo- ration would greatly benefit of the cell with a sufficiently large electric field therefore presents one of the most important conditions for successful electroporation [7], [8]. Applications such as electrochemotherapy (ECT) [9], [10

Ljubljana, University of

256

Magnetism Digest  

Science Journals Connector (OSTI)

... and Institute of Electrical and Electronic Engineers, on the occasion of their annual conferences on magnetism and magnetic materials in the United States, have sponsored the production of a Magnetic ... references, drawn from a large number of sources, to work in the field of magnetism and magnetic materials published in the preceding year. They therefore provide a very convenient ...

J. H. PHILLIPS

1966-06-25T23:59:59.000Z

257

Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite  

SciTech Connect

REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

None

2012-01-01T23:59:59.000Z

258

Test particle motion in modified gravity theories  

E-Print Network (OSTI)

We derive the equations of motion of an electrically neutral test particle for modified gravity theories in which the covariant divergence of the ordinary matter energy-momentum tensor dose not vanish (i.e. $\

Mahmood Roshan

2013-02-05T23:59:59.000Z

259

Electric field control of magnetism using BiFeO{sub 3}-based heterostructures  

SciTech Connect

Conventional CMOS based logic and magnetic based data storage devices require the shuttling of electrons for data processing and storage. As these devices are scaled to increasingly smaller dimensions in the pursuit of speed and storage density, significant energy dissipation in the form of heat has become a center stage issue for the microelectronics industry. By taking advantage of the strong correlations between ferroic orders in multiferroics, specifically the coupling between ferroelectric and magnetic orders (magnetoelectricity), new device functionalities with ultra-low energy consumption can be envisioned. In this article, we review the advances and highlight challenges toward this goal with a particular focus on the room temperature magnetoelectric multiferroic, BiFeO{sub 3}, exchange coupled to a ferromagnet. We summarize our understanding of the nature of exchange coupling and the mechanisms of the voltage control of ferromagnetism observed in these heterostructures.

Heron, J. T., E-mail: jth247@cornell.edu [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Schlom, D. G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Ramesh, R. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-06-15T23:59:59.000Z

260

Electrical, optical and magnetic resonance studies of novel. pi. -conjugated polymers  

SciTech Connect

Conductivity, optical properties including visible and infrared absorption and photoluminescence, and magnetic resonance properties including electron spin resonance and optically detected magnetic resonance have been studied in polydiethynylsilanes (PDES) and poly(2,5-dibutoxyparaphenyleneacetylene) (PDBOPA), which have been recently synthesized. PDES and PDBOPA blend and PDBOPA-based electroluminescent preliminary diodes which were fabricated by the author were also explored. The undoped one-dimensional gap of PDES polymers, which have average molecular weight from {approximately}2{times}10{sup 5} to 1{times}10{sup 6}, is 2.0 eV in both films and solutions; photoluminescence is barely observed. I{sub 2} doping induces a single absorption band at {approximately}1.05 eV in solutions and lightly doped films, but another at {approximately}0.55 eV in heavily doped films. Both are correlated with strong IR-active vibrations associated with known lines in Raman scattering.

Ni, Qing-Xiao.

1992-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electrical, optical and magnetic resonance studies of novel {pi}-conjugated polymers  

SciTech Connect

Conductivity, optical properties including visible and infrared absorption and photoluminescence, and magnetic resonance properties including electron spin resonance and optically detected magnetic resonance have been studied in polydiethynylsilanes (PDES) and poly(2,5-dibutoxyparaphenyleneacetylene) (PDBOPA), which have been recently synthesized. PDES and PDBOPA blend and PDBOPA-based electroluminescent preliminary diodes which were fabricated by the author were also explored. The undoped one-dimensional gap of PDES polymers, which have average molecular weight from {approximately}2{times}10{sup 5} to 1{times}10{sup 6}, is 2.0 eV in both films and solutions; photoluminescence is barely observed. I{sub 2} doping induces a single absorption band at {approximately}1.05 eV in solutions and lightly doped films, but another at {approximately}0.55 eV in heavily doped films. Both are correlated with strong IR-active vibrations associated with known lines in Raman scattering.

Ni, Qing-Xiao

1992-04-20T23:59:59.000Z

262

Interface defects in SiC power MOSFETs - An electrically detected magnetic resonance study based on spin dependent recombination  

SciTech Connect

This study presents electrically detected magnetic resonance (EDMR) measurements on a silicon carbide (SiC) MOSFET having the structure of a double-diffused silicon MOSFET (DMOS). The resonance pattern of a SiC DMOS was measured by monitoring the change of the recombination current between the source/body and the drain. The amplitude of the response has a maximum when the device is biased in depletion due to the equal concentrations of electrons and holes at the interface resulting in the most efficient recombination. The measured anisotropic g-tensor has axial symmetry with g{sub ?} = 2.0051(4) (B ? c-axis), and g{sub ?} = 2.0029(4) (B? c-axis) and the pattern shows several hyperfine (HF) peaks. We tentatively identify the observed defect as a silicon vacancy located directly at the interface.

Gruber, Gernot [KAI GmbH, Europastrasse 8, 9500 Villach, Austria and Graz University of Technology - Institute of Solid State Physics, Petersgasse 16, 8020 Graz (Austria); Hadley, Peter [Graz University of Technology - Institute of Solid State Physics, Petersgasse 16, 8020 Graz (Austria); Koch, Markus [Graz University of Technology - Institute of Experimental Physics, Petersgasse 16, 8020 Graz (Austria); Peters, Dethard [Infineon Technologies, Schottkystrasse 10, 91058 Erlangen (Germany); Aichinger, Thomas [Infineon Technologies, Siemensstrasse 2, 9500 Villach (Australia)

2014-02-21T23:59:59.000Z

263

Magnetism  

Science Journals Connector (OSTI)

... dipoles in applied fields". It deals with the classical (Langevin) theory of para-magnetism, anisotropy fields and magnetic measurements. In the next chapter "Atomic structure" the author ... special relevance to ferrites and the inclusion of a quite lengthy discussion of Pauli para-magnetism and of Stoner's treatment of itinerant electron ferromagnetism, though it does much to ...

E. W. LEE

1972-03-31T23:59:59.000Z

264

The effects of Co-Ti co-doping on the magnetic, electrical, and magnetodielectric behaviors of M-type barium hexaferrites  

SciTech Connect

Magnetic, electrical and magnetodielectric properties have been studied in Co-Ti co-doped M-type hexaferrite BaCo{sub x}Ti{sub x}Fe{sub 12-2x}O{sub 19} (x = 0 ? 4). With the incorporation of Co-Ti, both their ferromagnetic magnetization and coercivity have been greatly changed. The temperature dependent magnetization curve shows a apparent hump at around 420 K, likely in association with more complicated cycloidal spin ordering, which is closely related to ferroelectric polarization. Interestingly, a significantly enhancement in resistivity (?3 orders in magnitude) can be obtained in co-doped samples (x > 2), which is beneficial for magnetoelectric properties. The magnetoelectric effect were examined by dielectric tunibility under external magnetic field, which shows apparent tunability up to ??3% for sample with x = 2 at 1T magnetic field, further supporting it is a room temperature single phase mutliferroic material.

Guan, Yujie; Lin, Yuanbin; Zou, Liangying; Miao, Qing; Zeng, Min; Gao, Xingsen, E-mail: xingsengao@scnu.edu.cn [Institute for Advanced Materials, South China Normal University, Guangzhou 510006 (China)] [Institute for Advanced Materials, South China Normal University, Guangzhou 510006 (China); Liu, Zhongwu [Department of Metallic Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)] [Department of Metallic Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Junming [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)] [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

2013-12-15T23:59:59.000Z

265

Direct and indirect exciton states in GaAs-(Ga, Al)As double quantum wells under crossed electric and magnetic fields  

Science Journals Connector (OSTI)

A theoretical study of the direct and indirect exciton states in GaAs/Ga1-xAlxAs coupled double quantum wells under crossed electric and magnetic fields is presented. The setup of the system under consideration consists of an ... Keywords: 71.55.Eq, 73.20.Mf, 73.21.Fg, Diamagnetic shifts, Double quantum-wells, Magnetoexcitons

L. E. Oliveira; M. de Dios-Leyva; C. A. Duque

2008-03-01T23:59:59.000Z

266

Deconfined fractional electric charges in graphene at high magnetic fields Chang-Yu Hou,1 Claudio Chamon,1 and Christopher Mudry2  

E-Print Network (OSTI)

Deconfined fractional electric charges in graphene at high magnetic fields Chang-Yu Hou,1 Claudio The resistance at the charge neutral Dirac point was shown by Checkelsky et al. Phys. Rev. B 79, 115434 2009.43. f I. INTRODUCTION The elementary excitations in the fractional quantum Hall FQH effect carry

267

Structural, magnetic, and electrical properties of Li2Ir1?xRuxO3  

Science Journals Connector (OSTI)

The crystal structure, resistivity, and magnetic susceptibility of the Li2Ir1?xRuxO3 (x=01) polycrystals have been investigated. We found that the parent antiferromagnetic phase disappears for x>0.2 and bond dimers appear in the averaged structure for x>0.5 and likely fluctuate for much smaller x. Unexpectedly, this system remains insulating for all the doping levels, contrary to the predictions based on the one-band jeff=1/2 Kitaev-Heisenberg model. These results suggest that the honeycomb iridates doped with ruthenium are a unique 5d-orbital-based platform for studying the interplay of the charge, orbital, spin, and lattice degrees of freedom.

Hechang Lei (???); Wei-Guo Yin (???); Zhicheng Zhong (???); Hideo Hosono

2014-01-31T23:59:59.000Z

268

CrRb: A molecule with large magnetic and electric dipole moments  

SciTech Connect

We report calculations of Born-Oppenheimer potential energy curves of the chromium-rubidium heteronuclear molecule ({sup 52}Cr{sup 87}Rb), and the long-range dispersion coefficient for the interaction between ground state Cr and Rb atoms. Our calculated van der Waals coefficient (C{sub 6}=1770 a.u.) has an expected error of 3%. The ground state {sup 6{Sigma}+} molecule at its equilibrium separation has a permanent electric dipole moment of d{sub e}(R{sub e}=3.34Angstrom)=2.90 D. We investigate the hyperfine and dipolar collisions between trapped Cr and Rb atoms, finding elastic to inelastic cross section ratio of 10{sup 2}-10{sup 3}.

Pavlovic, Z. [ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046 (United States); Sadeghpour, H. R. [ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Cote, R. [Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046 (United States); Roos, B. O. [Department of Theoretical Chemistry, University of Lund, S-221 00 Lund (Sweden)

2010-05-15T23:59:59.000Z

269

Ferrite permanent magnet electrical machine and the application thereof within vehicle traction drives  

SciTech Connect

This patent describes, in combination, a land vehicle having axially aligned ground engaging tractive wheels, and a drivetrain carried by the vehicle for the propulsion thereof. The drivetrain comprises: (a) a substantially fixed DC power source including at least one chemical battery, (b) transmission means including selectable multiple gear ratios, an input shaft and a mechanical differential operative to transfer torque to the wheels, (c) a single-phase self-synchronous permanent magnet motor including, (i) an elongated central shaft, (ii) a generally u-shaped frame assembly adapted for mechanical grounding the shaft to a relatively stationary portion of the vehicle, the shaft being secured to the frame proximate each end thereof, (iii) a stator assembly secured to the shaft and characterized by a plurality of outwardly directed integrally formed salient poles and associated bifilar-wound induction coils, and (iv) a rotor assembly rotatably disposed on the shaft and substantially enclosing the stator assembly, the rotor assembly comprising a cylindrical shell defining an inner surface.

Gritter, D.J.; O'Neil, W.K.; Turner, D.

1987-03-17T23:59:59.000Z

270

Magnetism  

Science Journals Connector (OSTI)

... THIS is a good book, and we are glad to see the subject of magnetism fully treated in a popularly written text-book. It is a second edition of ... of importance, accuracy, and exhaustiveness, places the present treatise, as far as terrestrial magnetism is concerned, much before any similar book with which we are acquainted. The correction ...

JAMES STUART

1872-03-07T23:59:59.000Z

271

Optical Magnetism  

Science Journals Connector (OSTI)

Magnetic dipole radiation one fourth as intense as electric dipole radiation, as well as a novel nonlinear magneto-optical effect are reported in dielectric media.

Oliveira, Samuel L; Rand, Stephen C

272

Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex  

Science Journals Connector (OSTI)

Abstract Recent evidence indicates subject-specific gyral folding patterns and white matter anisotropy uniquely shape electric fields generated by TMS. Current methods for predicting the brain regions influenced by TMS involve projecting the TMS coil position or center of gravity onto realistic head models derived from structural and functional imaging data. Similarly, spherical models have been used to estimate electric field distributions generated by TMS pulses delivered from a particular coil location and position. In the present paper we inspect differences between electric field computations estimated using the finite element method (FEM) and projection-based approaches described above. We then more specifically examined an approach for estimating cortical excitation volumes based on individualistic FEM simulations of electric fields. We evaluated this approach by performing neurophysiological recordings during MR-navigated motormapping experiments. We recorded motor evoked potentials (MEPs) in response to single pulse TMS using two different coil orientations (45 and 90 to midline) at 25 different locations (5נ5 grid, 1cm spacing) centered on the hotspot of the right first dorsal interosseous (FDI) muscle in left motor cortex. We observed that motor excitability maps varied within and between subjects as a function of TMS coil position and orientation. For each coil position and orientation tested, simulations of the TMS-induced electric field were computed using individualistic FEM models and compared to MEP amplitudes obtained during our motormapping experiments. We found FEM simulations of electric field strength, which take into account subject-specific gyral geometry and tissue conductivity anisotropy, significantly correlated with physiologically observed MEP amplitudes (rmax=0.91, p=1.8נ10-5 rmean=0.81, p=0.01). These observations validate the implementation of individualistic FEM models to account for variations in gyral folding patterns and tissue conductivity anisotropy, which should help improve the targeting accuracy of TMS in the mapping or modulation of human brain circuits.

Alexander Opitz; Wynn Legon; Abby Rowlands; Warren K. Bickel; Walter Paulus; William J. Tyler

2013-01-01T23:59:59.000Z

273

Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor  

DOE Patents (OSTI)

A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

Woolley, Robert D. (Belle Mead, NJ)

1999-01-01T23:59:59.000Z

274

Observation of a Magnetic Modulation of the Lattice Electric-Field Gradient of Fe2+ Substituted in 1T-TaS2  

Science Journals Connector (OSTI)

An unusual temperature dependence of the quadrupole splitting of Fe2+ in 1T-Fe0.1Ta0.9S2 can be understood in terms of a magnetic modulation of the lattice electric-field gradient. This modulation is produced by a strictive interaction between the local lattice environment and the continuous low-spin-high-spin transition of Fe2+. The onset of the charge-density-wave instability can also be observed.

M. Eibschtz and M. E. Lines

1977-09-12T23:59:59.000Z

275

A Hypothesis for the Speed of Propagation of Light in electric and magnetic fields and the Planning of an Experiment for its Verification  

E-Print Network (OSTI)

As generally known, the speed of propagation of light in solid state bodies can be different from the speed of light in vacuum. That the mere presence of electric or magnetic fields in the vacuum can suffice to influence the speed of light, is a hypothesis under discussion, which is based on considerations of Quantumelectrodynamics. For a verification of this hypothesis, an interference-experiment might be performed, of which the planning is given in this article.

Claus W. Turtur

2007-03-29T23:59:59.000Z

276

Quantum Field Theory & Gravity  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email...

277

Self-consistent particle modeling of radio frequency discharge in Ar/O{sub 2} mixtures: Effects of crossed electric and magnetic fields and partial pressure  

SciTech Connect

A particle-in-cell/Monte Carlo model is developed to study and analyze the electrical characteristics of the nonequilibrium plasma created by radio frequency (RF) discharge in Ar/O{sub 2} mixtures in the presence of crossed electric and magnetic fields. The method of collision treatment is based on an optimized estimation of the free time flight. The needed basic data--more specifically, the ion-neutral cross sections--are determined first. The simulation conditions are 50 mTorr for the total gas pressure and 200 V for the peak of the RF voltage at a frequency of 13.56 MHz. The magnetic field is varied from 0 to 50 G. The effect of the partial pressure ratio of O{sub 2} in the mixture and the effect of the magnitude of the magnetic field are discussed. In particular, the results show an increase of the plasma density that is ten times higher in the presence of a magnetic field.

Benyoucef, Djilali [University of Toulouse, UMR CNRS 5213, Laplace, Toulouse (France); Laboratoire Genie Electrique et Energie Renouvelables, Chlef University (Algeria); Yousfi, Mohammed [University of Toulouse, UMR CNRS 5213, Laplace, Toulouse (France); Belmadani, Bachir [Laboratoire Genie Electrique et Energie Renouvelables, Chlef University (Algeria)

2011-04-15T23:59:59.000Z

278

Note on the Induction of Electric Currents in a Cylinder placed across the Lines of Magnetic Force  

Science Journals Connector (OSTI)

......the Induction of Electric Currents. 271 where p is the specific resistance of the substance. From...place the components of electric momentum must be continuous...On the Induction of Electric Currents. [June 12...Routh, F.R.S. "An Elementary Treatise on Solid Geometry......

Horace Lamb

1883-11-01T23:59:59.000Z

279

magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

I I Painless Physics Articles BEAM COOLING August 2, 1996 By Leila Belkora, Office of Public Affairs ACCELERATION August 16, 1996 By Dave Finley, Accelerator Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART DEUX October 16, 1996 By Peter H. Garbincius, Physics Section and Leila Belkora, Office of Public Affaris CROSS SECTION November 1, 1996 By Doreen Wackeroth, Theoretical Physics Edited by Leila Belkora, Office of Public Affaris MAGNETS PART I November 15, 1996 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs MAGNETS PART II January 10, 1997 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs

280

A Study in Magnetism  

Science Journals Connector (OSTI)

... this century, for the simple comprehensiveness and original beauty of his researches in electricity and magnetism; chiefly, perhaps, for his discovery of magneto-electricitythe kind of electricity that ... space surrounding a magnet was thrown into a peculiar condition by the presence of the magnetism. Two centuries previously another Englishman, as uniquely great if not greater, Dr. Gilbert ...

SILVANUS P. THOMPSON

1878-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

On geometry influence on the behavior of a quantum mechanical scalar particle with intrinsic structure in external magnetic and electric fields  

E-Print Network (OSTI)

Relativistic theory of the Cox's scalar not point-like particle with intrinsic structure is developed on the background of arbitrary curved space-time. It is shown that in the most general form, the extended Proca-like tensor first order system of equations contains non minimal interaction terms through electromagnetic tensor F_{\\alpha \\beta} and Ricci tensor R_{\\alpha \\beta}. In relativistic Cox's theory, the limiting procedure to non-relativistic approximation is performed in a special class of curved space-time models. This theory is specified in simple geometrical backgrounds: Euclid's, Lobachevsky's, and Rie\\-mann's. Wave equation for the Cox's particle is solved exactly in presence of external uniform magnetic and electric fields in the case of Minkowski space. Non-trivial additional structure of the particle modifies the frequency of a quantum oscillator arising effectively in presence if external magnetic field. Extension of these problems to the case of the hyperbolic Lobachevsky space is examined. In presence of the magnetic field, the quantum problem in radial variable has been solved exactly; the quantum motion in z-direction is described by 1-dimensional Schr\\"{o}dinger-like equation in an effective potential which turns out to be too difficult for analytical treatment. In the presence of electric field, the situation is similar. The same analysis has been performed for spherical Riemann space model.

O. V. Veko; K. V. Kazmerchuk; E. M. Ovsiyuk; V. V. Kisel; V. M. Red'kov

2014-11-07T23:59:59.000Z

282

Radial Electric Field and its Influence on Poloidal Magnetic Field Oscillations in the IR-T1 Tokamak  

Science Journals Connector (OSTI)

The radial electric field has been investigated in the edge plasma of IR-T1 tokamak by movable sets of single Langmuir probes....

Hamid Bolourian; Pejman Khorshid; Mahmoud Ghoranneviss

2010-06-01T23:59:59.000Z

283

Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents  

DOE Patents (OSTI)

A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

Judkins, R.R.; Burchell, T.D.

1999-07-20T23:59:59.000Z

284

Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents  

DOE Patents (OSTI)

A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

Judkins, Roddie R. (9917 Rainbow Dr., Knoxville, TN 37922); Burchell, Timothy D. (109 Greywood Pl., Oak Ridge, TN 37830)

1999-01-01T23:59:59.000Z

285

Interface Magnetism in Multiferroics  

E-Print Network (OSTI)

1.2.1 Magnetism . . . . . . . . . . . . . . . . . . . 1.2.2domain walls . . . . . 3 Magnetism of domain walls in BiFeOof electrical control of magnetism in mixed phase BiFeO 3

He, Qing

2011-01-01T23:59:59.000Z

286

A new method of measuring the poloidal magnetic and radial electric fields in a tokamak using a laser-accelerated ion-beam trace probe  

SciTech Connect

Both the poloidal magnetic field (B{sub p}) and radial electric field (E{sub r}) are significant in magnetic confinement devices. In this paper, a new method was proposed to diagnose both B{sub p} and E{sub r} at the same time, which was named Laser-accelerated Ion-beam Trace Probe (LITP). This method based on the laser-accelerated ion beam, which has three properties: large energy spread, short pulse lengths, and multiple charge states. LITP can provide the 1D profiles, or 2D images of both B{sub p} and E{sub r}. In this paper, we present the basic principle and some preliminary theoretical results.

Yang, X. Y.; Chen, Y. H.; Lin, C.; Wang, X. G.; Xiao, C. J., E-mail: cjxiao@pku.edu.cn [State Key Labaratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

2014-11-15T23:59:59.000Z

287

Resistance and magnetization of La0.7Ca0.3MnO3 bulk at different resistance states induced by electric pulses  

Science Journals Connector (OSTI)

Electric-pulse-induced resistance (EPIR) switching behaviour was observed in bulk La0.7Ca0.3MnO3 polycrystalline. Temperature dependences of resistance and magnetic moment at different resistance states were studied. The metalinsulator phase transition temperature changed with the resistance states, which suggested that the EPIR phenomenon is related to the modulating bulk properties of perovskite manganites. The Curie temperature derived from the magnetic moment measurement did not change with the resistance states, which implied that there was no ferromagneticmetal and antiferromagneticinsulator transition occurring in perovskite manganite global materials. These results provided a new evidence for a filamentary mechanism in the EPIR effect.

Z H Wu; Q Wang; W D Yu; D S Shang; X M Li; L D Chen

2008-01-01T23:59:59.000Z

288

Sliding mode-based DTC-SVM control of permanent magnet synchronous motors for plug-in electric and hybrid vehicles  

Science Journals Connector (OSTI)

This paper presents a sliding mode controller design for a permanent magnet synchronous motor used in an integrated powertrain for plug-in electric and hybrid vehicles. In order to adapt to complicated driving environment and improve the robustness of the system, a sliding mode-based torque controller is developed. At the same time, a sliding mode speed controller is also proposed to meet the need of gear shift of the integrated powertrain. The stability and robustness of the proposed controllers are analysed. Computer simulations are performed to verify the effectiveness of the proposed control system. The simulation results illustrate that fast response and small ripples are achieved using the proposed control scheme. It is also shown that the control system is robust against load variations, measurement errors and parameter uncertainty. In addition, the transition during shift is smooth. Therefore, the proposed control scheme is suitable for control of the propulsion motor for plug-in electric and hybrid vehicles.

Hong Fu; Yaobin Chen; Guangyu Tian; Quanshi Chen

2011-01-01T23:59:59.000Z

289

Physics II Exam 2 -Chs. 18A,19,20 -Electric Current, Magnetic Field Feb. 23, 2009 Name Rec. Instr. Rec. Time  

E-Print Network (OSTI)

Physics II Exam 2 - Chs. 18A,19,20 - Electric Current, Magnetic Field Feb. 23, 2009 Name Rec. Instr·m/A, elementary charge e = 1.602?10-19 C, electron mass me = 9.11?10-31 kg, 1 electron-volt = 1.0 eV = 1. (aluminum resistivity is = 2.65?10-8 ·m). a) (4) What resistance should a 1.00 meter length of the wire

Wysin, Gary

290

Magnetic Levitation System The following figure shows the cross section of a magnetic levitation (MAGLEV) train.  

E-Print Network (OSTI)

Magnetic Levitation System The following figure shows the cross section of a magnetic levitation in matched pairs. The magnetic attraction of the vertically paired magnets balances the force of gravity and levitates the vehicle above the guideway. d h z Train Track Magnets Fixed Reference Line Magnets

Hagan, Martin

291

Effects of growth-direction electric and magnetic fields on excitons in GaAs-Ga1?xAlxAs coupled double quantum wells  

Science Journals Connector (OSTI)

Direct and indirect excitons in GaAs-Ga1?xAlxAs coupled double quantum wells, under growth-direction applied electric and magnetic fields, have been theoretically investigated within a variational procedure in the effective-mass and parabolic-band approximations. The exciton hydrogenic 1s-like envelope wave function is obtained through a variational procedure and an appropriate expansion in trigonometric functions of the electron and hole wave functions. The applied electric field produces a polarization of the exciton by pushing the electron and hole away from each other, whereas the magnetic field contracts the exciton by pushing the electron and hole closer to each other. Intersubband mixing produced by the Coulomb interaction of electron-hole pairs is taken into account and a detailed analysis of the properties of direct- and indirect-exciton states in GaAs-Ga1?xAlxAs coupled double quantum wells is presented, with theoretical results in good agreement with available experimental measurements.

A. L. Morales, N. Raigoza, C. A. Duque, and L. E. Oliveira

2008-03-17T23:59:59.000Z

292

MAXIMIZING MAGNETIC ENERGY STORAGE IN THE SOLAR CORONA  

SciTech Connect

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s{sup -1}. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface-suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to 'hold down' the nonpotential flux as its magnetic energy increases.

Wolfson, Richard; Drake, Christina; Kennedy, Max, E-mail: wolfson@middlebury.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

2012-05-01T23:59:59.000Z

293

Maximizing Magnetic Energy Storage in the Solar Corona  

Science Journals Connector (OSTI)

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s1. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surfacesuggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to "hold down" the nonpotential flux as its magnetic energy increases.

Richard Wolfson; Christina Drake; Max Kennedy

2012-01-01T23:59:59.000Z

294

Aeromagnetic and gravity surveys in the Coso Range, California | Open  

Open Energy Info (EERE)

and gravity surveys in the Coso Range, California and gravity surveys in the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aeromagnetic and gravity surveys in the Coso Range, California Details Activities (2) Areas (1) Regions (0) Abstract: The effect of an underlying magma reservoir cannot be identified within the complex gravity pattern in the Coso Range, California. Rather, linear gravity contours, which suggest a regional tectonic origin, enclose the location of most of the volcanic activity of the Coso Range. Faults along the edges of northwest trending, magnetic blocks probably provided paths of minimum resistance to the ascending viscous magma that was extruded as rhyolite domes. Dense, magnetic rocks associated with a complex mafic pluton 9 km in diameter form a relatively impermeable north border of

295

The Universe Adventure - Gravity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gravity: The Main Attraction Gravity: The Main Attraction Gravity Acts on All Matter Gravity's effect is apparent even at the largest scales: just as gravity keeps the Earth orbiting the sun, it holds these two irregular galaxies M32 and M110 in orbit around the larger Andromeda galaxy. In the late 1600s, the English mathematician Sir Isaac Newton gave the first scientific description of gravitation. Gravity is an attractive force existing between any two objects that have mass, causing them to accelerate towards each other. It is the weakest of the four fundamental forces but can act over great distances and is responsible for the formation of planets, stars, galaxies, and even larger scale structures such as groups and superclusters. Gravity is also the force that governs the motion of

296

Electrically and magnetically tunable phase shifters based on a barium strontium titanate-yttrium iron garnet layered structure  

E-Print Network (OSTI)

to rapidly change the dielectric constant of a ferroelectric material under the application of a dc electric, by incorporating a ferrite material into a device, one gains the ability to change both the dielectric constant, a phase shifter will have changing characteris- tic impedance as it changes its phase. In this work, we em

297

Influence of hydrogen on the magnetic and electrical properties of GdI{sub 2}H{sub x} (0=  

SciTech Connect

We have studied the effect of hydrogen insertion in GdI{sub 2} on its magnetic and electrical properties. The ferromagnetic layered metal GdI{sub 2} reversibly absorbs hydrogen with the formation of GdI{sub 2}H{sub x} which exhibits a range of homogeneity 0=Magnetization and resistance measurements reveal a substantial change in the physical properties of GdI{sub 2}H{sub x} as a function of the hydrogen content, particularly as x approaches a critical value of {approx}1/3. The Curie temperature rapidly decreases with increasing hydrogen content, and the long-range magnetic ordering is destroyed for x>0.33. The phases GdI{sub 2}H{sub x} with 0.42=magnetic freezing temperatures T{sub f}=24 and 3K for x=0.42 and 0.69, respectively. The hydride halides GdI{sub 2}H{sub x} (x>0.19) show thermally activated conduction, accompanied by a steep increase of the activation energy at x{approx}0.33. The anomalies observed can be understood by assuming an ordering of the hydrogen atoms for x=1/3 within each layer.

Ryazanov, Mikhail [Max-Planck Institut fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany); Simon, Arndt [Max-Planck Institut fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany)]. E-mail: A.Simon@fkf.mpg.de; Kremer, Reinhard K. [Max-Planck Institut fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany); Mattausch, Hansjuergen [Max-Planck Institut fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany)

2005-07-15T23:59:59.000Z

298

Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities  

E-Print Network (OSTI)

In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

V. G. Baryshevsky; A. A. Gurinovich

2005-06-14T23:59:59.000Z

299

X-ray diffraction study, magnetic susceptibility, and electric properties of Cu{sub 3}Fe{sub 0.5}Se{sub 2} crystal  

SciTech Connect

Single crystals of the Cu{sub 3}Fe{sub 0.5}Se{sub 2} composition have been grown. The orthorhombic lattice parameters are found to be a = 8.169 A, b = 8.238 A, c = 12.052 A, V = 811.15 A{sup 3}, D{sub x} = 6.23 g/cm{sup 3}, sp. gr. Pnma, Z = 8. The magnetic susceptibility is measured in the range 100 < T < 400 K at H = 2 T. It is established that a crystal transforms into the antiferromagnetic state below T{sub N} = 350 K. The temperature dependences of the electrical conduction ({sigma}), thermal electromotive force ({alpha}), and thermal conduction (k) are measured in the range 80 < T < 400 K; the n value was calculated to be 5 x 10{sup 19} cm{sup -1}.

Guseinov, G. G., E-mail: g.guseinov@rambler.ru; Ragimov, S. S.; Hasani Barbaran, J.; Agamirzoeva, G. M. [National Academy of Sciences, Institute of Physics (Azerbaijan)

2010-07-15T23:59:59.000Z

300

Remedial neural network inverse control of a multi-phase fault-tolerant permanent-magnet motor drive for electric vehicles  

Science Journals Connector (OSTI)

A five-phase in-wheel fault-tolerant interior permanent-magnet (FT-IPM) motor incorporates the merits of high efficiency, high power density and high reliability, suitable for Electric Vehicles (EVs). A new remedial Neural Networks Inverse (NNI) control strategy is proposed to attain the post-fault operation. In this scheme, the NN is used to approximate the inverse model of the FT-IPM motor. With this NNI system and the original motor drive combined, a pseudo-linear compound system can be obtained. The simulation demonstrates that the proposed control strategy leads to excellent control performance at the faulty mode and offers good robustness against load disturbance.

Duo Zhang; Guohai Liu; Wenxiang Zhao

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The String Landscape, Black Holes and Gravity as the Weakest Force  

E-Print Network (OSTI)

We conjecture a general upper bound on the strength of gravity relative to gauge forces in quantum gravity. This implies, in particular, that in a four-dimensional theory with gravity and a U(1) gauge field with gauge coupling g, there is a new ultraviolet scale Lambda=g M_{Pl}, invisible to the low-energy effective field theorist, which sets a cutoff on the validity of the effective theory. Moreover, there is some light charged particle with mass smaller than or equal to Lambda. The bound is motivated by arguments involving holography and absence of remnants, the (in) stability of black holes as well as the non-existence of global symmetries in string theory. A sharp form of the conjecture is that there are always light "elementary" electric and magnetic objects with a mass/charge ratio smaller than the corresponding ratio for macroscopic extremal black holes, allowing extremal black holes to decay. This conjecture is supported by a number of non-trivial examples in string theory. It implies the necessary presence of new physics beneath the Planck scale, not far from the GUT scale, and explains why some apparently natural models of inflation resist an embedding in string theory.

Nima Arkani-Hamed; Lubos Motl; Alberto Nicolis; Cumrun Vafa

2006-01-02T23:59:59.000Z

302

Gravity Train Project  

E-Print Network (OSTI)

Dec 7, 2013 ... Gravity Train Project. Same page in Romanian, Polish, and in French. Let us drill a straight tunnel from West Lafayette, IN to Paris, France:.

303

STABILITY OF THE TOROIDAL MAGNETIC FIELD IN STELLAR RADIATION ZONES  

SciTech Connect

The stability of the magnetic field in radiation zones is of crucial importance for mixing, angular momentum transport, etc. We consider the stability properties of a star containing a predominant toroidal field in spherical geometry by means of a linear stability in the Boussinesq approximation taking into account the effect of thermal conductivity. We calculate the growth rate of instability and analyze in detail the effects of stable stratification and heat transport. We argue that the stabilizing influence of gravity can never entirely suppress the instability caused by electric currents in radiation zones. However, the stable stratification can essentially decrease the growth rate of instability.

Bonanno, Alfio [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania (Italy); Urpin, Vadim, E-mail: alfio.bonanno@inaf.it, E-mail: vadim.urpin@uv.es [INFN, Sezione di Catania, Via S. Sofia 72, 95123 Catania (Italy)

2012-03-10T23:59:59.000Z

304

Effects of crossed electric and magnetic fields on the electronic and excitonic states in bulk GaAs and GaAs?Ga1?xAlxAs quantum wells  

Science Journals Connector (OSTI)

The variational procedure in the effective-mass and parabolic-band approximations is used in order to investigate the effects of crossed electric and in-plane magnetic fields on the electronic and exciton properties in semiconductor heterostructures. Calculations are performed for bulk GaAs and GaAs?Ga1?xAlxAs quantum wells, for applied magnetic fields parallel to the layers and electric fields in the growth direction, and it is shown that the combined effects on the heterostructure properties of the applied crossed electric and magnetic fields and the direct coupling between the center-of-mass and internal exciton motions may be dealt with via a simple parameter representing the spatial distance between the centers of the electron and hole magnetic parabolas. Exciton properties are analyzed by using a simple hydrogenlike envelope excitonic wave function and present theoretical results are found in fair agreement with available experimental measurements on the diamagnetic shift of the photoluminescence peak position of GaAs?Ga1?xAlxAs quantum wells under in-plane magnetic fields.

M. de Dios-Leyva, C. A. Duque, and L. E. Oliveira

2007-01-02T23:59:59.000Z

305

Electrical Resistance of Ferromagnetic Metals  

Science Journals Connector (OSTI)

......Physics September 1959 research-article Articles Electrical Resistance of Ferromagnetic Metals Isao Mannari Department of Physics...the Physical Society of Japan 81 (2012) 064715 (8 pages) Electric and Magnetic Properties of bcc Fe Based Multicomponent Alloys......

Isao Mannari

1959-09-01T23:59:59.000Z

306

Electrical Resistance of Ferromagnetic Metals  

Science Journals Connector (OSTI)

......calculate the anomalous electrical resistance from the standpoint of s-d...that the anomalous electrical resistance occurs because the exchange...2012) 064715 (8 pages) Electric and Magnetic Properties of...pp. 335-343 Electrical Resistance of Ferromagnetic Metals Isao......

Tadao Kasuya

1956-07-01T23:59:59.000Z

307

Electrical resistance and magnetic properties of the neptunium monopnictides NpAs, NpSb, and NpBi at high pressures  

Science Journals Connector (OSTI)

We report on high-pressure studies performed on the neptunium pnictides NpAs and NpBi via electrical resistance up to ?25 GPa between 1.3 K and room temperature, and on a high-pressure investigation up to 9 GPa and at 4.2 K on NpSb using 237Np Mssbauer spectroscopy. This work extends previous high-pressure studies carried out on NpAs via Mssbauer spectroscopy, on NpSb via resistance, and on all pnictides via x-ray study. In NpX (X=As,Sb,Bi) crystallizing in the cubic-NaCl phase the ground state is antiferromagnetic and displays a noncollinear 3k spin structure. The strong increase of the resistivity with decreasing temperature observed in the temperature range of the 3k order at ambient pressure collapses at 0.23 (NpAs), 2.7 (NpSb), and 3.9 GPa (NpBi). No significant change of the hyperfine interactions is found in NpAs or NpSb at the pressure where the resistance collapse is observed. The Kondo anomaly of the resistivity observed at ambient pressure disappears above 25 GPa (NpAs), 2.7 GPa (NpSb), and 3 GPa (NpBi). The Nel temperature TN of all compounds and the ordered moment of NpAs and NpSb decrease with reduced volume. For NpAs and NpBi the resistance indicates the presence of magnetic order at least up to 16 GPa. The compounds undergo a pressure-induced structural transition with a volume reduction by ?10%. Although in the resistance of NpSb the signature of magnetic order is lost already at 8 GPa in the high-pressure phase, a magnetic hyperfine field is present, which is reduced by ?30% relative to the NaCl phase. It is suggested that the resistance collapse is caused by a change of the magnetic structure, that the decrease of TN is due to a modification of the Fermi surface besides a small 5f delocalization, and that in NpSb the volume reduction in the structural high-pressure phase leads to an enhanced 5f delocalization.

V. Ichas; S. Zwirner; D. Braithwaite; J. C. Spirlet; J. Rebizant; W. Potzel

1997-12-01T23:59:59.000Z

308

Counterterms in Lovelock Gravity  

E-Print Network (OSTI)

In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences in the action of Lovelock gravity can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of the black hole solutions of third order Lovelock gravity. We calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. We, also, find that in contrast to Einstein gravity in which there ex...

Mehdizadeh, M R; Zangeneh, M Kord

2015-01-01T23:59:59.000Z

309

Gravity perturbed Crapper waves  

Science Journals Connector (OSTI)

...waves are known to have multi-valued height. Using...gravity-capillary waves with multi-valued height. The...of single-valued and multi-valued travelling waves...absence of gravity, a family of exact solutions is...elliptic functions. Building upon the work by Tanveer...

2014-01-01T23:59:59.000Z

310

Selection Rules for the Nonlinear Interactions of Internal Gravity Waves and Inertia-Gravity Waves  

E-Print Network (OSTI)

Internal Gravity Waves . . . . . . . . . . . . . . 3.2.1 Twodimensional inertia-gravity wave physics . . . . . . . . .Three dimensional inertia-gravity wave physics . . . . . .

Jiang, Chung-Hsiang

2010-01-01T23:59:59.000Z

311

Magnetic field reversal of electric polarization and magnetoelectric phase diagram of the hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22}  

SciTech Connect

Low magnetic field reversal of electric polarization has been demonstrated in the multiferroic Y-type hexaferrite Ba{sub 1.3}Sr{sub 0.7}Co{sub 0.9}Zn{sub 1.1}Fe{sub 10.8}Al{sub 1.2}O{sub 22} single crystal. The maximum magnetoelectric coefficient at 200?K reaches 1065?ps/m near zero magnetic field. By a systematic investigation of magnetic field dependence of magnetic and dielectric responses at various temperatures, we obtained the magnetoelectric phase diagram describing the detailed evolution of the spin-induced ferroelectric phases with temperature and magnetic field. Below 225?K, the transverse spin cone can be stabilized at zero magnetic field, which is responsible for the reversal behavior of electric polarization. Our study reveals how to eventually achieve magnetic field reversal of electric polarization in hexaferrites at room temperature.

Shen, Shipeng; Yan, Liqin; Chai, Yisheng; Cong, Junzhuang; Sun, Young, E-mail: youngsun@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2014-01-20T23:59:59.000Z

312

Ground Magnetics At San Francisco Volcanic Field Area (Warpinski...  

Open Energy Info (EERE)

geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify...

313

Low Lying Magnetic and Electric Dipole Strength Distribution in the Even-Even 164-170Er  

SciTech Connect

Quasiparticle random-phase approximation calculations, where rotational and translational invariance are restored selfconsistently by using separable effective forces, are presented for the ground state dipole response in the even-even 164-170Er isotopes. We consider the 1+ vibrations generated by the isovector spin-spin interactions and the isoscalar and isovector quadrupole type separable forces restoring the broken symmetry by a deformed mean field. It has been shown that restoration of the broken rotational and translational symmetry of the Hamiltonian essentially decrease the B(M1) and the B(E1) values of the low lying 1+ and 1- states and increase the collectivization of the scissors mode and the electric dipole mode excitations in the spectroscopic energy region. The resulting M1 and E1 spectrum are compared with available experimental data. The calculated dipole strengths summed in the energy range 1.8-4 MeV are in agreement with the relevant experimental data. In this nuclei theory predicts many more low-lying 1+ and 1- states than experiment.

Ertugral, F.; Kuliev, A. A. [Sakarya University, Physics Department, Adapazari (Turkey); Guliyev, E. [Institute of Physics, National Academy of Sciences, H.Cavid Avenue 33, Baku (Azerbaijan)

2007-04-23T23:59:59.000Z

314

Electric Currents Electric Current  

E-Print Network (OSTI)

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

315

Calculation of direct and indirect excitons in GaAs?Ga1?xAlxAs coupled double quantum wells: The effects of in-plane magnetic fields and growth-direction electric fields  

Science Journals Connector (OSTI)

The variational procedure, in the effective-mass and parabolic-band approximations, is used in order to investigate the effects of crossed electric and magnetic fields on the exciton states in GaAs?Ga1?xAlxAs coupled double quantum wells. Calculations are performed for double quantum wells under applied magnetic fields parallel to the layers and electric fields in the growth direction. The exciton envelope wave function is obtained through a variational procedure using a hydrogenic 1s-like wave function and an expansion in a complete set of trigonometric functions for the electron and hole wave functions. We take into account intersubband mixing brought about by the Coulomb interaction of electron-hole pairs in double quantum wells and present a detailed analysis of the properties of direct and indirect exciton states in these systems. The present study clearly reveals anticrossing effects on the dispersion with applied voltage (or growth-direction electric field) of the photoluminescence peaks associated with direct and indirect excitons. Calculated results are found in good agreement with available experimental measurements on the photoluminescence peak position associated with direct and indirect excitons in GaAs-Ga1?xAlxAs double quantum wells under growth-direction applied electric fields or under applied in-plane magnetic fields.

M. de Dios-Leyva, C. A. Duque, and L. E. Oliveira

2007-08-02T23:59:59.000Z

316

Background Material Important Questions about Magnetism  

E-Print Network (OSTI)

Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current

Mojzsis, Stephen J.

317

Magnetism, half-metallicity and electrical transport properties of V- and Cr-doped semiconductor SnTe: A theoretical study  

SciTech Connect

This work presents results for the electronic structure, magnetic properties, and electrical resistivity of the semiconductor SnTe doped with 3d transition metals V and Cr. From the standpoint of potential application in spintronics, we look for half-metallic states and analyze their properties in both rock salt and zinc blende structures using ab initio electronic structure methods. In both cases, it is the Sn-sublattice that is doped with the transition metals, as has been the case with experiments performed so far. We find four half-metallic compounds at their optimized cell volumes. Results of exchange interactions and the Curie temperature are presented and analyzed for all the relevant cases. Resistivity calculation based on Kubo-Greenwood formalism shows that the resistivities of these alloys due to transition metal doping of the Sn-sublattice may vary, in most cases, from typical liquid metal or metallic glass value to 23 times higher. 25% V-doping of the Sn-sublattice in the rock salt structure gives a very high resistivity, which can be traced to high values of the lattice parameter resulting in drastically reduced hopping or diffusivity of the states at the Fermi level.

Liu, Y. [State Key laboratory of Metastable Materials Science and Technology and College of Science, Yanshan University, Qinhuangdao, Hebei 066004 (China); Bose, S. K. [Physics Department, Brock University, St. Catharines, Ontario L2S 3A1 (Canada); Kudrnovsk, J. [Institute of Physics, Academy of the Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

2013-12-07T23:59:59.000Z

318

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents (OSTI)

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1986-01-01T23:59:59.000Z

319

Modifications of gravity  

Science Journals Connector (OSTI)

...requirement of cold dark matter (CDM...gravity|cosmology|dark energy| 1. Introduction...cosmology). The discovery that the expansion...the form of cold dark matter (CDM...and perhaps dark energy (DE) [22-26...

2011-01-01T23:59:59.000Z

320

Purely affine Gravity  

E-Print Network (OSTI)

We develop a topological theory of gravity with torsion where metric has a dynamical rather than a kinematical origin. This approach towards gravity resembles pre-geometrical approaches in which a fundamental metric does not exist, but the affine connection gives place to a local inertial structure. Such feature reminds us of Mach's principle, that assumes the inertial forces should have dynamical origin. Additionally, a Newtonian gravitational force is obtained in the non-relativistic limit of the theory.

Skirzewski, Aureliano

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Purely affine Gravity  

E-Print Network (OSTI)

We develop a topological theory of gravity with torsion where metric has a dynamical rather than a kinematical origin. This approach towards gravity resembles pre-geometrical approaches in which a fundamental metric does not exist, but the affine connection gives place to a local inertial structure. Such feature reminds us of Mach's principle, that assumes the inertial forces should have dynamical origin. Additionally, a Newtonian gravitational force is obtained in the non-relativistic limit of the theory.

Aureliano Skirzewski; Oscar Castillo-Felisola

2014-10-22T23:59:59.000Z

322

Matter Waves and Electricity  

Science Journals Connector (OSTI)

Classical four-dimensional relativity gives a most natural and harmonious interpretation of the three basic phenomena of nature: gravity, electricity, and the wave structure of matter, provided that the basic assumptions of the Einsteinian theory are modified in two respects: (1) the fundamental invariant of the action principle is chosen as a quadratic instead of a linear function of the curvature components; (2) the static equilibrium of the world is replaced by a dynamic equilibrium. Electricity comes out as a second-order resonance effect of the matter waves. The matter waves are gravitational waves but superposed not on an empty Euclidean space but on a space of high average curvature.

Cornelius Lanczos

1942-06-01T23:59:59.000Z

323

Thermionic electric converter  

SciTech Connect

A thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. The electrons are electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently are collected on the other end wall of the chamber functioning as a collecting plate. The emf generated in the induction coil by action of the transiting electron stream interacting with the transverse magnetic field is applied to an external circuit to perform work, thereby implementing a direct heat energy to electrical energy conversion.

Davis, E.D.

1981-12-01T23:59:59.000Z

324

Electric field statistics in MHD turbulence  

E-Print Network (OSTI)

Electric field statistics in MHD turbulence Bernard Knaepen, Nicolas Denewet & Daniele Carati, ULB #12;Electric field statistics in MHD turbulence Outline Electric field in MHD? Particle acceleration Statistics of the electric & magnetic fields #12;Outline Electric field in MHD? Particle acceleration

Low, Robert

325

Magnetic monopole and the nature of the static magnetic field  

E-Print Network (OSTI)

We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

Xiuqing Huang

2008-12-10T23:59:59.000Z

326

Glossary API Gravity: An  

Gasoline and Diesel Fuel Update (EIA)

5 60 60 131 5 . . The higher the API gravity, the lighter the compound. Light crudes generally exceed 38 degrees API and heavy crudes are commonly labeled as all crudes with an API gravity of 22 degrees or below. Intermediate crudes fall in the range of 22 degrees to 38 degrees API gravity. ASTM: American Society for Testing and Materials. Aviation Gasoline (Finished): A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifi- cations are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on fin- ished aviation gasoline. Barrel: A volumetric unit of measure for crude oil and petroleum products equivalent to 42 U.S. gallons. Bulk Sales: Wholesale sales of gasoline in individual

327

Glossary API Gravity: An  

Gasoline and Diesel Fuel Update (EIA)

60 60 1315 . . The higher the API gravity, the lighter the compound. Light crudes generally exceed 38 degrees API and heavy crudes are commonly labeled as all crudes with an API gravity of 22 degrees or below. Intermediate crudes fall in the range of 22 degrees to 38 degrees API gravity. ASTM: American Society for Testing and Materials. Aviation Gasoline (Finished): A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifi- cations are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on fin- ished aviation gasoline. Barrel: A volumetric unit of measure for crude oil and petroleum products equivalent to 42 U.S. gallons. Bulk Sales: Wholesale sales of gasoline in individual

328

(1) The Elements of Electricity and Magnetism. A Text-book for Colleges and Technical Schools (2) A Short University Course in Electricity, Sound and Light (3) Naturlehre fr hhere Lehranstalten auf Schulerbungen gegrundet (4) The Elementary Theory of Direct Current Dynamo Electric Machinery (5) Electrical Laboratory Course for Junior Students  

Science Journals Connector (OSTI)

... The author is convinced that "elementary science instruction must be made to touch upon the things of every day life if ... ."This sentence may be taken as the keynote to the entire book. Thus electric resistances are usually represented as electric lamps. Those who are accustomed to abstract thinking may ...

1909-07-15T23:59:59.000Z

329

Resummation of Massive Gravity  

SciTech Connect

We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in the decoupling limit to all orders. These theories resume explicitly all the nonlinear terms of an effective field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a similar toy model.

Rham, Claudia de [Department de Physique Theorique, Universite de Geneve, 24 Quai E. Ansermet, CH-1211 Geneve (Switzerland); Gabadadze, Gregory [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York 10003 (United States); Tolley, Andrew J. [Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)

2011-06-10T23:59:59.000Z

330

ROTATION AND STABILITY OF THE TOROIDAL MAGNETIC FIELD IN STELLAR RADIATION ZONES  

SciTech Connect

The stability of the magnetic field in radiation zones is of crucial importance for mixing and angular momentum transport in the stellar interior. We consider the stability properties of stars containing a predominant toroidal field in spherical geometry by means of a linear stability in the Boussinesq approximation taking into account the effect of thermal conductivity. We calculate the growth rate of instability and analyze in detail the effects of stable stratification and heat transport. We argue that the stabilizing influence of gravity can never entirely suppress the instability caused by electric currents in radiation zones. However, the stable stratification can essentially decrease the growth rate of instability.

Bonanno, Alfio; Urpin, Vadim, E-mail: alfio.bonanno@inaf.it, E-mail: vadim.urpin@uv.es [INAF, Osservatorio Astrofisico di Catania, Via S.Sofia 78, I-95123 Catania (Italy)] [INAF, Osservatorio Astrofisico di Catania, Via S.Sofia 78, I-95123 Catania (Italy)

2013-03-20T23:59:59.000Z

331

Rare?Earth?Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn?Bi and M?type Hexaferrite  

SciTech Connect

The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

Hong, Yang-Ki [University of Alabama] [University of Alabama; Haskew, Timothy [University of Alabama] [University of Alabama; Myryasov, Oleg [University of Alabama] [University of Alabama; Jin, Sungho [University of California San Diego] [University of California San Diego; Berkowitz, Ami [University of California San Diego] [University of California San Diego

2014-06-05T23:59:59.000Z

332

Phenomenological Quantum Gravity  

E-Print Network (OSTI)

Planck scale physics represents a future challenge, located between particle physics and general relativity. The Planck scale marks a threshold beyond which the old description of spacetime breaks down and conceptually new phenomena must appear. In the last years, increased efforts have been made to examine the phenomenology of quantum gravity, even if the full theory is still unknown.

S. Hossenfelder

2006-11-01T23:59:59.000Z

333

Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective  

Science Journals Connector (OSTI)

......is documented in magneto- resistance studies (e.g. Belov 1994...A., 1954. Magnetic and electric properties of magnetite at...A., 1950. Magnetic and electric properties of natural synchroton-radiation...Spalek, J., 1992. Elementary formulation of the Verwey......

A. R. Muxworthy; E. McClelland

2000-01-01T23:59:59.000Z

334

Lorentz Force Electrical Impedance Tomography  

E-Print Network (OSTI)

This article describes a method called Lorentz Force Electrical Impedance Tomography. The electrical conductivity of biological tissues can be measured through their sonication in a magnetic field: the vibration of the tissues inside the field induces an electrical current by Lorentz force. This current, detected by electrodes placed around the sample, is proportional to the ultrasonic pressure, to the strength of the magnetic field and to the electrical conductivity gradient along the acoustic axis. By focusing at different places inside the sample, a map of the electrical conductivity gradient can be established. In this study experiments were conducted on a gelatin phantom and on a beef sample, successively placed in a 300 mT magnetic field and sonicated with an ultrasonic transducer focused at 21 cm emitting 500 kHz bursts. Although all interfaces are not visible, in this exploratory study a good correlation is observed between the electrical conductivity image and the ultrasonic image. This method offers...

Grasland-Mongrain, Pol; Chapelon, Jean-Yves; Lafon, Cyril

2014-01-01T23:59:59.000Z

335

Modified Theories of Gravity  

E-Print Network (OSTI)

The recent observational data in cosmology seem to indicate that the universe is currently expanding in an accelerated way. An intriguing interpretation of these data is that they may just be signalling that Einstein's General Relativity is not the correct description of gravity when we consider distances of the order of the present horizon of the universe. In this thesis we consider two models which modify General Relativity at very large distances, the Cascading DGP and the dRGT massive gravity, and investigate their phenomenological viability. We start with a general introduction to standard cosmology and we introduce the late time acceleration problem and the cosmological constant problem. We then provide a pedagogical introduction to the DGP model, of which the Cascading DGP is an extension, and to the dRGT massive gravity. Concerning the Cascading DGP, we show that the thin limit of the 4D brane inside the (already thin) 5D brane is well defined, at least for the class of configurations that we consider, and confirm that gravity is regularized in these set-ups. We give a geometrical interpretation of the presence of the critical tension, and comment on the difference between the results in the literature and our results, which we support with a numerical calculation. Regarding the dRGT massive gravity, we focus on the branch of solutions in which the Vainshtein mechanism can occur. We determine analytically the number and properties of local solutions which exist asymptotically on large scales (but still below the gravitational Compton wavelength), and of local (inner) solutions which exist on small scales. We characterize exactly the properties of global solutions in every point of the phase space, and characterize precisely in which regions the Vainshtein mechanism takes place. We also provide numerical solutions which confirm our analysis.

Fulvio Sbisa'

2014-07-09T23:59:59.000Z

336

Magnetism and the Maxwellian Theory  

Science Journals Connector (OSTI)

... 31 that he is satisfied with my reply to his query concerning the place of magnetism in fundamental electrical theory. Of course there can be no question of annihilating magnetic ... and properties of permanent magnets; but, as regards the understanding of fundamental physical phenomena, magnetism appears to have played a part similar to that of money in economicsa useful ...

C. V. DRYSDALE

1939-02-18T23:59:59.000Z

337

Ion electric propulsion unit  

DOE Patents (OSTI)

An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

Light, Max E; Colestock, Patrick L

2014-01-28T23:59:59.000Z

338

Viscosity in modified gravity  

E-Print Network (OSTI)

A bulk viscosity is introduced in the formalism of modified gravity. It is shown that, on the basis of a natural scaling law for the viscosity, a simple solution can be found for quantities such as the Hubble parameter and the energy density. These solutions may incorporate a viscosity-induced Big Rip singularity. By introducing a phase transition in the cosmic fluid, the future singularity can nevertheless in principle be avoided.

Iver Brevik

2012-11-12T23:59:59.000Z

339

Unimodular Gravity and Averaging  

E-Print Network (OSTI)

The question of the averaging of inhomogeneous spacetimes in cosmology is important for the correct interpretation of cosmological data. In this paper we suggest a conceptually simpler approach to averaging in cosmology based on the averaging of scalars within unimodular gravity. As an illustration, we consider the example of an exact spherically symmetric dust model, and show that within this approach averaging introduces correlations (corrections) to the effective dynamical evolution equation in the form of a spatial curvature term.

A. Coley; J. Brannlund; J. Latta

2011-02-16T23:59:59.000Z

340

Gravity, Dimension, Equilibrium, & Thermodynamics  

E-Print Network (OSTI)

Is it actually possible to interpret gravitation as space's property in a pure classical way. Then, we note that extended self-gravitating system equilibrium depends directly on the number of dimension of the space in which it evolves. Given those precisions, we review the principal thermodynamical knowledge in the context of classical gravity with arbitrary dimension of space. Stability analyses for bounded 3D systems, namely the Antonov instability paradigm, are then rapproched to some amazing properties of globular clusters and galaxies.

Jerome Perez

2006-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modified Theories of Gravity  

E-Print Network (OSTI)

The recent observational data in cosmology seem to indicate that the universe is currently expanding in an accelerated way. An intriguing interpretation of these data is that they may just be signalling that Einstein's General Relativity is not the correct description of gravity when we consider distances of the order of the present horizon of the universe. In this thesis we consider two models which modify General Relativity at very large distances, the Cascading DGP and the dRGT massive gravity, and investigate their phenomenological viability. We start with a general introduction to standard cosmology and we introduce the late time acceleration problem and the cosmological constant problem. We then provide a pedagogical introduction to the DGP model, of which the Cascading DGP is an extension, and to the dRGT massive gravity. Concerning the Cascading DGP, we show that the thin limit of the 4D brane inside the (already thin) 5D brane is well defined, at least for the class of configurations that we consider...

Sbis, Fulvio

2014-01-01T23:59:59.000Z

342

Gravity Methods | Open Energy Information  

Open Energy Info (EERE)

Gravity Methods Gravity Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Methods Details Activities (0) Areas (0) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Gravity Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques NVN-084630 CU Vulcan Energy Patua Geothermal Area BLM Nevada State Office BLM Winnemucca District Office BLM Humboldt River Field Office BLM BLM Geothermal/Exploration Gravity Methods

343

Geometric scalar theory of gravity  

SciTech Connect

We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D. [Instituto de Cosmologia Relatividade Astrofisica ICRA - CBPF Rua Dr. Xavier Sigaud 150 - 22290-180 Rio de Janeiro - Brazil (Brazil); Moschella, U., E-mail: novello@cbpf.br, E-mail: eduhsb@cbpf.br, E-mail: Ugo.Moschella@uninsubria.it, E-mail: egoulart@cbpf.br, E-mail: jsalim@cbpf.br, E-mail: toniato@cbpf.br [Universit degli Studi dell'Insubria - Dipartamento di Fisica e Matematica Via Valleggio 11 - 22100 Como - Italy (Italy)

2013-06-01T23:59:59.000Z

344

Dual gravity and E11  

E-Print Network (OSTI)

We consider the equation of motion in the gravity sector that arises from the non-linear realisation of the semi-direct product of E11 and its first fundamental representation, denoted by l1, in four dimensions. This equation is first order in derivatives and at low levels relates the usual field of gravity to a dual gravity field. When the generalised space-time is restricted to be the usual four dimensional space-time we show that this equation does correctly describe Einstein's theory at the linearised level. We also comment on previous discussions of dual gravity.

Peter West

2014-11-04T23:59:59.000Z

345

Dual gravity and E11  

E-Print Network (OSTI)

We consider the equation of motion in the gravity sector that arises from the non-linear realisation of the semi-direct product of E11 and its first fundamental representation, denoted by l1, in four dimensions. This equation is first order in derivatives and at low levels relates the usual field of gravity to a dual gravity field. When the generalised space-time is restricted to be the usual four dimensional space-time we show that this equation does correctly describe Einstein's theory at the linearised level. We also comment on previous discussions of dual gravity.

West, Peter

2014-01-01T23:59:59.000Z

346

Relativistic Gravity and Non-Relativistic Effective Field Theories  

E-Print Network (OSTI)

There has been great interest recently in formulating non-relativistic effective field theories in a general coordinate invariant way. We show that relativistic gravity theories can offer such a framework. We focus on the parity violating case in 2+1 dimensions which is particularly appropriate for the study on quantum Hall effects and chiral superfluids. We discuss how the non-relativistic spacetime structure emerges from relativistic gravity. We present covariant maps and constraints that relate the field contents in the two theories, which also serve as holographic dictionary in context of gauge/gravity duality. A low energy effective action for fractional quantum Hall states is constructed and captures universal geometric properties and generates non-universal corrections systematically. We give another holographic example with dyonic black brane background to calculate thermodynamic and transport properties of strongly coupled non-relativistic fluids in magnetic field. Our formalism has a good projection...

Wu, Chaolun

2014-01-01T23:59:59.000Z

347

Echoes of Gravity  

E-Print Network (OSTI)

The study of anisotropies in the Cosmic Microwave Background radiation is progressing at a phenomenal rate, both experimentally and theoretically. These anisotropies can teach us an enormous amount about the way that fluctuations were generated and the way they subsequently evolved into the clustered galaxies which are observed today. In particular, on sub-degree scales the rich structure in the anisotropy spectrum is the consequence of gravity-driven acoustic oscillations occurring before the matter in the universe became neutral. The frozen-in phases of these sound waves imprint a dependence on many cosmological parameters, that we may be on the verge of extracting.

Douglas Scott; Martin White

1995-05-22T23:59:59.000Z

348

Electricity Reliability  

E-Print Network (OSTI)

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

349

Fluid Gravity Engineering Rocket motor flow analysis  

E-Print Network (OSTI)

Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External young scientists/engineers Fluid Gravity Engineering Ltd #12;

Anand, Mahesh

350

Electrical insulation  

Science Journals Connector (OSTI)

n....Material with very low conductivity, which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers.

2007-01-01T23:59:59.000Z

351

Electrical Insulation  

Science Journals Connector (OSTI)

n...Material with very low conductivity which surrounds active electrical devices. Common electrical insulation chemicals are fluorine-containing polymers (Dissado LA...

Jan W. Gooch

2011-01-01T23:59:59.000Z

352

Reduced models for quantum gravity  

E-Print Network (OSTI)

The preceding talks given at this conference have dealt mainly with general ideas for, main problems of and techniques for the task of quantizing gravity canonically. Since one of the major motivations to arrange for this meeting was that it should serve as a beginner's introduction to canonical quantum gravity, we regard it as important to demonstrate the usefulness of the formalism by means of applying it to simplified models of quantum gravity, here formulated in terms of Ashtekar's new variables. From the various, completely solvable, models that have been discussed in the literature we choose those that we consider as most suitable for our pedagogical reasons, namely 2+1 gravity and the spherically symmetric model. The former model arises from a dimensional, the latter from a Killing reduction of full 3+1 gravity. While 2+1 gravity is usually treated in terms of closed topologies without boundary of the initial data hypersurface, the toplogy for the spherically symmetric system is chosen to be asymptotically flat. Finally, 2+1 gravity is more suitably quantized using the loop representation while spherically symmetric gravity is easier to quantize via the self-dual representation. Accordingly, both types of reductions, both types of topologies and both types of representations that are mainly employed in the literature in the context of the new variables come into practice. What makes the discussion especially clear is the fact that for both models the reduced phase space turns out to be finitely dimensional.

T. Thiemann

1999-10-04T23:59:59.000Z

353

Gravity Waves in the Sun  

E-Print Network (OSTI)

We present numerical simulations of penetrative convection and gravity wave excitation in the Sun. Gravity waves are self-consistently generated by a convective zone overlying a radiative interior. We produce power spectra for gravity waves in the radiative region as well as estimates for the energy flux of gravity waves below the convection zone. We calculate a peak energy flux in waves below the convection zone to be three orders of magnitude smaller than previous estimates for m=1. The simulations show that the linear dispersion relation is a good approximation only deep below the convective-radiative boundary. Both low frequency propagating gravity waves as well as higher frequency standing modes are generated; although we find that convection does not continually drive the standing g-mode frequencies.

Tamara M. Rogers; Gary A. Glatzmaier

2005-08-25T23:59:59.000Z

354

Impact evaluation of electrical equipments on human health  

Science Journals Connector (OSTI)

Objectives of study: - Measure of the electric and magnetic field from electric power station: Darste - Brasov, Lacu Sarat-Braila, Bradu-Arges; - Evaluation of human health from electric power station: Darste - Brasov, Lacu Sarat-Braila, Bradu-Arges; ... Keywords: electric and megnetic field, electric power stations, melatonin

Alice Raducanu; Aurica Suvergel; Angela Stanca; Marin Stefan; Cornella Marcolt; Corneliu Neagu

2008-02-01T23:59:59.000Z

355

Intrinsic Magnetic Fields  

Science Journals Connector (OSTI)

Emission theory of electromagnetic fields.(1) Intrinsic magnetic field. The intrinsic magnetic field of a point charge is defined as that portion of the field which cannot be annihilated by the Lorentz transformation. It is shown that the intrinsic field can be represented by lines of force carried by the same moving elements as carry the electric field, and a potential is given for it. (2) Frequency of emission of moving elements. A relation between the frequency of emission of moving elements and the number of lines of force to a tube is deduced on the assumption that the latter number is the same for the electric and magnetic fields and that each moving element marks the intersection of an electric and magnetic line of force.

Leigh Page

1923-08-01T23:59:59.000Z

356

A University of Alabama Axial-Gap Electric Motor Developmenty  

E-Print Network (OSTI)

CAVT A University of Alabama Axial-Gap Electric Motor Developmenty Research Center OBJECTIVE ­ Develop axial gap permanent-magnet electric Axial motor ­ Develop axial gap permanent-magnet electric motor topologies with high torque and power densities MOTIVATION ­ Axial-gap ("pancake") motors have

Carver, Jeffrey C.

357

Liquid metal electric pump  

DOE Patents (OSTI)

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

358

Definition: Electricity generation | Open Energy Information  

Open Energy Info (EERE)

Electricity generation Electricity generation Jump to: navigation, search Dictionary.png Electricity generation The process of producing electric energy or the amount of electric energy produced by transforming other forms of energy into electrical energy; commonly expressed in kilowatt-hours (kWh) or megawatt-hours (MWh).[1][2] View on Wikipedia Wikipedia Definition Electricity generation is the process of generating electrical power from other sources of primary energy. The fundamental principles of electricity generation were discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today: electricity is generated by the movement of a loop of wire, or disc of copper between the poles of a magnet. For electric utilities, it is the

359

Characteristics of Graphitic Films for Carbon Based Magnetism and Electronics  

E-Print Network (OSTI)

A. Rangwala, Electricity and Magnetism, 419 (1989) 81. S.L. Helm, Defect-Induced Magnetism in Graphene, Phys Rev. BGraphitic Films for Carbon Based Magnetism and Electronics A

Hong, Jeongmin

2009-01-01T23:59:59.000Z

360

Electricity Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Markets Electricity Markets Researchers in the electricity markets area conduct technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, electricity reliability and distributed generation resources. Research is conducted in the following areas: Energy efficiency research focused on portfolio planning and market assessment, design and implementation of a portfolio of energy efficiency programs that achieve various policy objectives, utility sector energy efficiency business models, options for administering energy efficiency

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gravity Techniques | Open Energy Information  

Open Energy Info (EERE)

Gravity Techniques Gravity Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

362

Power-Invariant Magnetic System Modeling  

E-Print Network (OSTI)

properties and characteristics. Progress in magnetism was made after Oersted discovered in 1820 that a magnetic field could be generated with an electric current. Famous scientists, including Gauss, Maxwell and Faraday, tackled the phenomenon of magnetism... flows in the material. Meanwhile, in magnetic circuits, the reluctance is a measure of magnetic energy storage rather than being a measure of magnetic energy dissipation. 2. The Permeance-Capacitor Model In 1969, Dr. R.W. Buntenbach from...

Gonzalez Dominguez, Guadalupe Giselle

2012-10-19T23:59:59.000Z

363

Magnetic differential torque sensor  

SciTech Connect

A new torque sensor structure is presented. The basic idea is a simple torque sensor with a variable magnetic circuit excited by an axially magnetized permanent magnet ring. The circuit is constituted by iron toothed rings, whose teeth relative position changes whenever an applied torque twists the rotating shaft. A Hall probe measures the induction in an airgap where the induction is uniform. The new structure is an association of two previous ones, thus creating a differential system with the related advantages: diminution of thermal drifts, zero mean value for the signal. The new magnetic circuit is studied by calculating equivalent reluctances through energy calculations and by using electrical analogies.

Lemarquand, V.; Lemarquand, G. [Univ. de Savoie, Annecy-le-Vieux (France)] [Univ. de Savoie, Annecy-le-Vieux (France)

1995-11-01T23:59:59.000Z

364

Multi-winding homopolar electric machine  

DOE Patents (OSTI)

A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

Van Neste, Charles W

2012-10-16T23:59:59.000Z

365

Electrical Engineer  

Energy.gov (U.S. Department of Energy (DOE))

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

366

RHIC Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Project RHIC Project The Superconducting Magnet Division supplied 1740 magnetic elements, in 888 cryostats, for the RHIC facility at BNL. Of these, 780 magnetic elements were manufactured by Northrop-Grumman (Bethpage, NY) and 360 were made by Everson Electric (Bethlehem, PA). The magnets made in industry used designs developed at BNL. The first cooldown of the magnets for the RHIC engineering run was in 1999. Since then, the magnets have operated very reliably. arc dipole coil and yoke Arc dipole coil and yoke, with magnetic flux lines The magnets provide modest field (3.45 Teslas in the arc dipoles) in a cost-effective design. Key features in the principal bending and focusing magnets include the use of NbTi Rutherford cable, a single-layer coil, and cold iron as both yoke and collar. The magnets operate in forced-flow

367

residual magnetism  

Science Journals Connector (OSTI)

The magnetization, i.e., the magnetic polarization, that remains in a magnetized material after all attempts to remove the magnetization have been made. Note: An example of residual magnetization is the magnetiza...

2001-01-01T23:59:59.000Z

368

Gravity-induced electric polarisation near the Schwarzschild limit  

Science Journals Connector (OSTI)

... no doubt produces extremely small consequences. But in a collapsed star lying near to its Schwarzschild limit the local value of g may be large enough to produce observable effects, ... in conjunction with a rapid rotation of the star3. Thus if we apply the usual Schwarzschild metric to a condensed object then the local value of the gravitational intensity on the ...

W. DAVIDSON; H. J. EFINGER

1974-05-31T23:59:59.000Z

369

Ground Gravity Survey At Lightning Dock Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Ground Gravity Survey At Lightning Dock Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lightning Dock Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Lightning Dock Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes As a foundation for successful siting and drilling a deep test well, additional geophysical work has been completed including gravity, resistivity, and airborne magnetic surveys. Several new seismic profiles

370

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

371

Tuning Electrical and Optoelectronic Properties of Single Cadmium Telluride Nanoribbon  

E-Print Network (OSTI)

Tuning Electrical and Optoelectronic Properties of Single Cadmium Telluride Nanoribbon Maxwell C.e., electrical resistivity and field-effect transistor (FET) mobility) and optoelectronic property (photocurrent, and magnetic properties with potential application in nanoscale electronic, optoelectronic, spintronics

Chen, Wilfred

372

Dynamic control of spin states in interacting magnetic elements  

DOE Patents (OSTI)

A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

Jain, Shikha; Novosad, Valentyn

2014-10-07T23:59:59.000Z

373

Designing surveys for tests of gravity  

Science Journals Connector (OSTI)

...Bean and Andrew Taylor Designing surveys for tests of gravity Bhuvnesh Jain * * bjain@physics...that the observational programme developed to test dark energy needs to be augmented to capture new tests of gravity on astrophysical scales. Several...

2011-01-01T23:59:59.000Z

374

Kerr geometry in f(T) gravity  

E-Print Network (OSTI)

Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity.

Cecilia Bejarano; Rafael Ferraro; Mara Jos Guzmn

2014-12-01T23:59:59.000Z

375

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

376

Electric Vehicles  

SciTech Connect

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

377

Electrical hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

378

Compact magnetic energy storage module  

DOE Patents (OSTI)

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

379

Compact magnetic energy storage module  

DOE Patents (OSTI)

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

Prueitt, M.L.

1994-12-20T23:59:59.000Z

380

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field  

E-Print Network (OSTI)

Ch 16 Electric Charge &Ch 16. Electric Charge & Electric Field Liu UCD Phy1B 2012 #12;I Basic ConceptsI. Basic Concepts Static electricity: charges at rest Electric charge Like charges repel Unlike charges attract Liu UCD Phy1B 2012 #12;Electric ChargeElectric Charge Electron charge: -eElectron charge

Yoo, S. J. Ben

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

SciTech Connect

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

382

On the Electric Charge of the Neutrino  

E-Print Network (OSTI)

Exact expression is obtained for the differential cross section of elastic electroweak scattering of longitudinal polarized massive Dirac neutrinos with the electric charge and anomalous magnetic moment on a spinless nucleus. This formula contains all necessary information about the nature of the neutrino mass, charge and magnetic moment. Some of them state that between the mass of the neutrino its electric charge there exists an interconnection.

Rasulkhozha S. Sarafiddinov

2010-12-09T23:59:59.000Z

383

Magnetic Force Between Magnetic Nano Probes at Optical Frequency  

E-Print Network (OSTI)

Magnetic force microscopy based on the interaction of static magnetic materials was demonstrated in the past with resolutions in the order of nanometers. Measurement techniques based on forces between electric dipoles oscillating at optical frequencies have been also demonstrated leading to the standard operation of the scanning force microscope (SFM). However the investigations of a SFM based on the magnetic force generated by magnetic dipole moments oscillating at optical frequencies has not been tackled yet. With this goal in mind we establish a theoretical model towards observable magnetic force interaction between two magnetically polarizable nanoparticles at optical frequency and show such a force to be in the order of piconewtons which could be in principle detected by conventional microscopy techniques. Two possible principles for conceiving magnetically polarizable nano probes able to generate strong magnetic dipoles at optical frequency are investigated based on silicon nanoparticles and on clusters...

Guclu, Caner; Capolino, Filippo

2014-01-01T23:59:59.000Z

384

Modified gravity and the CMB  

Science Journals Connector (OSTI)

We consider the effect of modified gravity on the peak structure of the cosmic microwave background (CMB) spectrum. We focus on simple models of modified gravity mediated by a massive scalar field coupled to both baryons and cold dark matter. This captures the features of chameleon, symmetron, dilaton, and f(R) models. We find that the CMB peaks can be affected in three independent ways provided the Compton radius of the massive scalar is not far-off the sound horizon at last scattering. When the coupling of the massive scalar to cold dark matter is large, the anomalous growth of the cold dark matter perturbation inside the Compton radius induces a change in the peak amplitudes. When the coupling to baryons is moderately large, the speed of sound is modified and the peaks shifted to higher momenta. Finally when both couplings are nonvanishing, a new contribution proportional to the Newton potential appears in the Sachs-Wolfe temperature and increases the peak amplitudes. We also show how, given any temporal evolution of the scalar field mass, one can engineer a corresponding modified gravity model of the chameleon type. This opens up the possibility of having independent constraints on modified gravity from the CMB peaks and large scale structures at low redshifts.

Philippe Brax and Anne-Christine Davis

2012-01-10T23:59:59.000Z

385

Sources and Magnetic Charge  

Science Journals Connector (OSTI)

A beginning is made on a phenomenological reconstruction of the theory of magnetic charge. The concept is introduced by reference to a new kind of photon source. It is shown that photon exchange between different source types is relativistically invariant. The space-time generalization of this coupling involves an arbitrary vector. The only way to remove a corresponding arbitrariness of physical predictions is to recognize the localization of charge and impose a charge quantization condition. The consideration of particles that carry both kinds of charge loosens the charge restrictions. The great strength of magnetic attraction indicated by g24?=4(137) suggests that ordinary matter is a magnetically neutral composite of magnetically charged particles that carry fractional electric charge. There is a brief discussion of such a magnetic model of strongly interacting particles, which makes contact with empirical classification schemes. Additional remarks on notation, and on the general nature of the source description, are appended.

Julian Schwinger

1968-09-25T23:59:59.000Z

386

Multiple Ising Spins Coupled to 2d Quantum Gravity  

E-Print Network (OSTI)

We study a model in which p independent Ising spins are coupled to 2d quantum gravity (in the form of dynamical planar phi-cubed graphs). Consideration is given to the p tends to infinity limit in which the partition function becomes dominated by certain graphs; we identify most of these graphs. A truncated model is solved exactly providing information about the behaviour of the full model in the limit of small beta. Finally, we derive a bound for the critical value of the coupling constant, beta_c and examine the magnetization transition in the limit p tends to zero.

M. G. Harris; J. F. Wheater

1994-04-28T23:59:59.000Z

387

Magnetic Fields in the Formation of Sun-Like Stars  

E-Print Network (OSTI)

We report high-angular-resolution measurements of polarized dust emission toward the low-mass protostellar system NGC 1333 IRAS 4A. We show that in this system the observed magnetic field morphology is in agreement with the standard theoretical models of the formation of Sun-like stars in magnetized molecular clouds at scales of a few hundred astronomical units; gravity has overcome magnetic support, and the magnetic field traces a clear hourglass shape. The magnetic field is substantially more important than turbulence in the evolution of the system, and the initial misalignment of the magnetic and spin axes may have been important in the formation of the binary system.

Josep M. Girart; Ramprasad Rao; Daniel P. Marrone

2006-09-06T23:59:59.000Z

388

Mechanical vibration to electrical energy converter  

DOE Patents (OSTI)

Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

Kellogg, Rick Allen (Tijeras, NM); Brotz, Jay Kristoffer (Albuquerque, NM)

2009-03-03T23:59:59.000Z

389

Magnetic moment versus tensor charge  

E-Print Network (OSTI)

We express the baryon magnetic moments in terms of the baryon tensor charges, considering the quarks as relativistic interacting objects. Once tensor charges get measured accurately, the formula for the baryon magnetic moment will serve to extract precise information on the quark anomalous magnetic moment, the quark effective mass and the ratio of the quark constituent mass to the quark effective mass. The analogous formula for the baryon electric dipole moment is of no great use as it gets eventually sizable contributions from various CP- violating sources not necessary associated to the quark electric dipole moment.

M. Mekhfi

2005-05-10T23:59:59.000Z

390

Engineering Electrical &  

E-Print Network (OSTI)

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

Hickman, Mark

391

Engineering Electrical &  

E-Print Network (OSTI)

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

Hickman, Mark

392

Liquid soap film generates electricity  

E-Print Network (OSTI)

We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2014-04-24T23:59:59.000Z

393

Cryogenic Magnet Could Open New Fields  

Science Journals Connector (OSTI)

Now that its cryogenic superconducting magnet is commercially available (C&EN, Jan. 15, page 43), Westinghouse Electric expects the magnet to open up new areas of high-field magnet research with possible use in magnetohydrodynamics, thermonuclear fusion, and cryogenic devices. ...

1962-01-22T23:59:59.000Z

394

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents (OSTI)

Shock wave formation of superconductive ceramic oxide electric and magnetic circuit elements with improved microstructures and mechanical properties. 10 figs.

Nellis, W.J.; Maple, M.B.; Geballe, T.H.

1987-10-23T23:59:59.000Z

395

Notes for Presentations on Electricity for 3rd Grade The kits provided by the state for electricity do not, at all, explain anything about the  

E-Print Network (OSTI)

does wall­plug electricity come from? Use coil moving in magnet and hand­cranked generators (pass' styrofoam popcorn, styrofoam footstool; hand­cranked electric generators; mas­ sive coil­in­magnet generatorNotes for Presentations on Electricity for 3rd Grade Ray Frey The kits provided by the state

Frey, Raymond E.

396

Electric machine for hybrid motor vehicle  

DOE Patents (OSTI)

A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

Hsu, John Sheungchun (Oak Ridge, TN)

2007-09-18T23:59:59.000Z

397

Ising-link Regge gravity  

Science Journals Connector (OSTI)

We define a simplified version of Regge quantum gravity where the link lengths can take on only two possible values, both always compatible with the triangle inequalities. This is therefore equivalent to a model of Ising spins living on the links of a regular lattice with somewhat complicated, yet local interactions. The measure corresponds to the natural sum over all 2?links configurations, and numerical simulations can be efficiently implemented by means of look-up tables. In three dimensions we find a peak in the curvature susceptibility which grows with increasing system size. The value of the corresponding critical exponent appears to vary with the cosmological constant ?, agreeing with Regge gravity for at least one value of ?. However, the curvature does not go to zero at the transition.

Tom Fleming; Mark Gross; Ray Renken

1994-12-15T23:59:59.000Z

398

Dynamical 3-Space: Emergent Gravity  

E-Print Network (OSTI)

The laws of gravitation devised by Newton, and by Hilbert and Einstein, have failed many experimental and observational tests, namely the bore hole g anomaly, flat rotation curves for spiral galaxies, supermassive black hole mass spectrum, uniformly expanding universe, cosmic filaments, laboratory G measurements, galactic EM bending, precocious galaxy formation,.. The response has been the introduction of the new epicycles: ``dark matter", ``dark energy", and others. To understand gravity we must restart with the experimental discoveries by Galileo, and following a heuristic argument we are led to a uniquely determined theory of a dynamical 3-space. That 3-space exists has been missed from the beginning of physics, although it was 1st directly detected by Michelson and Morley in 1887. Uniquely generalising the quantum theory to include this dynamical 3-space we deduce the response of quantum matter and show that it results in a new account of gravity, and explains the above anomalies and others. The dynamical...

Cahill, Reginald T

2011-01-01T23:59:59.000Z

399

Electric Field Control of Local Ferromagnetism with a Magnetoelectric  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Field Control of Local Ferromagnetism with a Magnetoelectric Multiferroic Print Electric Field Control of Local Ferromagnetism with a Magnetoelectric Multiferroic Print Magnetoelectric multiferroics-materials that simultaneously show some form of magnetic and ferroelectric order-have excited condensed-matter researchers worldwide with the promise of coupling between magnetic and electric order parameters. A Berkeley-Stanford-Swiss group has now used the multiferroic bismuth-iron-oxygen compound BiFeO3 (BFO) to explore electrical control of magnetism through exchange coupling with a ferromagnet. Their experiments reveal the possibility of controlling ferromagnetism with an electric field at room temperature, a capability that could result in new and novel devices for magnetic data storage, spintronics, and high-frequency magnetic devices.

400

Electric Field Control of Local Ferromagnetism with a Magnetoelectric  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Field Control of Local Ferromagnetism with a Magnetoelectric Multiferroic Print Electric Field Control of Local Ferromagnetism with a Magnetoelectric Multiferroic Print Magnetoelectric multiferroics-materials that simultaneously show some form of magnetic and ferroelectric order-have excited condensed-matter researchers worldwide with the promise of coupling between magnetic and electric order parameters. A Berkeley-Stanford-Swiss group has now used the multiferroic bismuth-iron-oxygen compound BiFeO3 (BFO) to explore electrical control of magnetism through exchange coupling with a ferromagnet. Their experiments reveal the possibility of controlling ferromagnetism with an electric field at room temperature, a capability that could result in new and novel devices for magnetic data storage, spintronics, and high-frequency magnetic devices.

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electric Field Control of Local Ferromagnetism with a Magnetoelectric  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Field Control of Local Ferromagnetism with a Magnetoelectric Multiferroic Print Electric Field Control of Local Ferromagnetism with a Magnetoelectric Multiferroic Print Magnetoelectric multiferroics-materials that simultaneously show some form of magnetic and ferroelectric order-have excited condensed-matter researchers worldwide with the promise of coupling between magnetic and electric order parameters. A Berkeley-Stanford-Swiss group has now used the multiferroic bismuth-iron-oxygen compound BiFeO3 (BFO) to explore electrical control of magnetism through exchange coupling with a ferromagnet. Their experiments reveal the possibility of controlling ferromagnetism with an electric field at room temperature, a capability that could result in new and novel devices for magnetic data storage, spintronics, and high-frequency magnetic devices.

402

Electric Field Control of Local Ferromagnetism with a Magnetoelectric  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Field Control of Local Ferromagnetism with a Magnetoelectric Multiferroic Print Electric Field Control of Local Ferromagnetism with a Magnetoelectric Multiferroic Print Magnetoelectric multiferroics-materials that simultaneously show some form of magnetic and ferroelectric order-have excited condensed-matter researchers worldwide with the promise of coupling between magnetic and electric order parameters. A Berkeley-Stanford-Swiss group has now used the multiferroic bismuth-iron-oxygen compound BiFeO3 (BFO) to explore electrical control of magnetism through exchange coupling with a ferromagnet. Their experiments reveal the possibility of controlling ferromagnetism with an electric field at room temperature, a capability that could result in new and novel devices for magnetic data storage, spintronics, and high-frequency magnetic devices.

403

Supersymmetry in 5D gravity  

Science Journals Connector (OSTI)

We study a 5d gravity theory with a warped metric and show that two N=2 supersymmetric quantum-mechanical systems are hidden in the 4d spectrum. The supersymmetry can be regarded as a remnant of higher-dimensional general coordinate invariance and turns out to become a powerful tool to determine the physical 4d spectrum and the allowed boundary conditions. Possible extensions of the N=2 supersymmetry are briefly discussed.

C. S. Lim; Tomoaki Nagasawa; Satoshi Ohya; Kazuki Sakamoto; Makoto Sakamoto

2008-02-15T23:59:59.000Z

404

Supersymmetry in 5d Gravity  

E-Print Network (OSTI)

We study a 5d gravity theory with a warped metric and show that two N = 2 supersymmetric quantum-mechanical systems are hidden in the 4d spectrum. The supersymmetry can be regarded as a remnant of higher-dimensional general coordinate invariance and turns out to become a powerful tool to determine the physical 4d spectrum and the allowed boundary conditions. Possible extensions of the N = 2 supersymmetry are briefly discussed.

C. S. Lim; Tomoaki Nagasawa; Satoshi Ohya; Kazuki Sakamoto; Makoto Sakamoto

2007-10-01T23:59:59.000Z

405

Supersymmetry in 5d Gravity  

E-Print Network (OSTI)

We study a 5d gravity theory with a warped metric and show that two N = 2 supersymmetric quantum-mechanical systems are hidden in the 4d spectrum. The supersymmetry can be regarded as a remnant of higher-dimensional general coordinate invariance and turns out to become a powerful tool to determine the physical 4d spectrum and the allowed boundary conditions. Possible extensions of the N = 2 supersymmetry are briefly discussed.

Lim, C S; Ohya, Satoshi; Sakamoto, Kazuki; Sakamoto, Makoto

2007-01-01T23:59:59.000Z

406

Design of a High Performance Ferrite Magnet-Assisted Synchronous Reluctance Motor for an  

E-Print Network (OSTI)

Design of a High Performance Ferrite Magnet- Assisted Synchronous Reluctance Motor for an Electric) ferrite-based permanent magnet-assisted synchronous reluctance motor has been designed for an electric. Today, most electric vehicles use permanent magnet synchronous motors that contain rare-earth permanent

Paderborn, Universität

407

On the Dynamics of Magnetic Fluids in Magnetic Resonance Padraig J. Cantillon-Murphy  

E-Print Network (OSTI)

On the Dynamics of Magnetic Fluids in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of Electric'algngineering and Computer Science May 22nd, 2008. Certified

408

Electricity 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity > Soliciting comments on EIA-111 Electricity > Soliciting comments on EIA-111 EIA announces the proposal of Form EIA-111, Quarterly Electricity Imports and Exports Report Released: August 15, 2011 Background On August 11, 2011, a Federal Register Notice was published soliciting comments for the new EIA-111 survey form. The EIA-111, Quarterly Electricity Imports and Exports Report will replace the OE-781R, Monthly Electricity Imports and Exports Report. The OE-781R has been suspended and will be terminated upon the approval of the EIA-111. The OE-781R administered from July 2010 through May 2011, proved complex and confusing for the repondents. As a result, the EIA-111 was developed to more effectively and efficiently collect more accurate and meaningful data. The Paperwork Reduction Act (PRA) of 1995 requires that each Federal agency obtains approval from the Office of Management and Budget (OMB) before undertaking to collect information from ten or more persons, or continuing a collection for which the OMB approval and the OMB control number are about to expire. The approval process, which is popularly known as the "OMB clearance process," is extensive. It requires two Federal Register notices and a detailed application ("supporting statement") to OMB. The first Federal Register Notice was published on August 11, 2011. EIA is prepared to address the comments submitted by each individual.

409

Advanced Electric Traction System Technology Development  

SciTech Connect

As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

Anderson, Iver

2011-01-14T23:59:59.000Z

410

Magnetic Spinner  

Science Journals Connector (OSTI)

A science toy sometimes called the magnetic spinner is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays above two triangular magnets fixed to the base. The magnetic repulsive force experienced by the circular magnets is independent of their orientation; therefore the holder of these magnets can be rotated without affecting its stability. The holder with the circular magnets can be oscillated up and down as a horizontally suspended physical pendulum.

P. J. Ouseph

2006-01-01T23:59:59.000Z

411

Magnetic Insulation for Electrostatic Accelerators  

SciTech Connect

The voltage gradient which can be sustained between electrodes without electrical breakdowns is usually one of the most important parameters in determining the performance which can be obtained in an electrostatic accelerator. We have recently proposed a technique which might permit reliable operation of electrostatic accelerators at higher electric field gradients, perhaps also with less time required for the conditioning process in such accelerators. The idea is to run an electric current through each accelerator stage so as to produce a magnetic field which envelopes each electrode and its electrically conducting support structures. Having the magnetic field everywhere parallel to the conducting surfaces in the accelerator should impede the emission of electrons, and inhibit their ability to acquire energy from the electric field, thus reducing the chance that local electron emission will initiate an arc. A relatively simple experiment to assess this technique is being planned. If successful, this technique might eventually find applicability in electrostatic accelerators for fusion and other applications.

Grisham, L. R. [Princeton Plasma Physics Laboratory, P. O. Box 451, Princeton, New Jersey 08543 (United States)

2011-09-26T23:59:59.000Z

412

Global Electrical Conductivity Magnetic Satellite Induction Studies  

E-Print Network (OSTI)

-annual Daily variation Solar rotation (27 days) Storm activity Quiet days Schumann resonances Powerline noise

Constable, Steve

413

Chapter 8 Electric and Magnetic Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

are wet. Corona produces audible noise (see Chapter 9, Noise) and electromagnetic interference (static) that can affect AM radio or broadcast TV signals. The level of...

414

Electrically tunable transverse magnetic focusing in graphene  

E-Print Network (OSTI)

Electrons in a periodic lattice can propagate without scattering for macroscopic distances despite the presence of the non-uniform Coulomb potential due to the nuclei. Such ballistic motion of electrons allows the use of ...

Taychatanapat, Thiti

415

Regional North American gravity and magnetic anomaly correlations  

Science Journals Connector (OSTI)

......volcanic rocks of the Snake River Plain, Idaho...A. , 1964. Developments in Solid Earth...combined with lateral temperature perturbations are...regionally higher temperatures are associated...volcanic rocks of the Snake River Plain, Idaho...A., 1964. Developments in Solid Earth......

R. R. B. von Frese; W. J. Hinze; L. W. Braile

1982-06-01T23:59:59.000Z

416

Electric-charge quantization in the standard model  

Science Journals Connector (OSTI)

The logic of the construction of the standard model (with the usual minimal set of chiral fermions) as a consistent renormalizable theory necessarily leads to the quantization of electric charge and the absence of massless charged fermions, as well as the automatic cancellation of an anomaly in the divergence of the weak hypercharge current that could arise should a coupling to gravity be contemplated.

Serge Rudaz

1990-04-15T23:59:59.000Z

417

Growth histories in bimetric massive gravity  

SciTech Connect

We perform cosmological perturbation theory in Hassan-Rosen bimetric gravity for general homogeneous and isotropic backgrounds. In the de Sitter approximation, we obtain decoupled sets of massless and massive scalar gravitational fluctuations. Matter perturbations then evolve like in Einstein gravity. We perturb the future de Sitter regime by the ratio of matter to dark energy, producing quasi-de Sitter space. In this more general setting the massive and massless fluctuations mix. We argue that in the quasi-de Sitter regime, the growth of structure in bimetric gravity differs from that of Einstein gravity.

Berg, Marcus; Buchberger, Igor [Department of Physics, Karlstad University, 651 88 Karlstad (Sweden); Enander, Jonas; Mrtsell, Edvard; Sjrs, Stefan, E-mail: marcus.berg@kau.se, E-mail: igor.buchberger@kau.se, E-mail: enander@fysik.su.se, E-mail: edvard@fysik.su.se, E-mail: stefans@fysik.su.se [Oskar Klein Center, Stockholm University, Albanova University Center, 106 91 Stockholm (Sweden)

2012-12-01T23:59:59.000Z

418

Cosmological Acceleration: Dark Energy or Modified Gravity?  

E-Print Network (OSTI)

We review the evidence for recently accelerating cosmological expansion or "dark energy", either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any Dark Energy constituent. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of "dark energy" cannot be derived from the homogeneous expansion alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, with nearly static Dark Energy, or with gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish static "dark energy" from dynamic "dark energy" with equation of state $w(z)$ either changing rapidly or tracking the background matter. But to cosmologically distinguish $\\Lambda$CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati modifications of Einstein gravity may also be detected in refined bservations in the solar system or at the intermediate Vainstein scale. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence ("Why now?") without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity.

Sidney Bludman

2006-05-08T23:59:59.000Z

419

Bouguer gravity map | Open Energy Information  

Open Energy Info (EERE)

Bouguer gravity map. Map. Denver, Colorado. U.S. Geological Survey. () . Black & White. Scale 1:500,000. Retrieved from "http:en.openei.orgwindex.php?titleBouguergravi...

420

Doubly Special Relativity and quantum gravity phenomenology  

E-Print Network (OSTI)

I review the conceptual, algebraical, and geometrical structure of Doubly Special Relativity. I also speculate about the possible relevance of DSR for quantum gravity phenomenology.

J. Kowalski-Glikman

2003-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Localized Magnetic States in Graphene  

Science Journals Connector (OSTI)

We examine the conditions necessary for the presence of localized magnetic moments on adatoms with inner shell electrons in graphene. We show that the low density of states at the Dirac point, and the anomalous broadening of the adatom electronic level, lead to the formation of magnetic moments for arbitrarily small local charging energy. As a result, we obtain an anomalous scaling of the boundary separating magnetic and nonmagnetic states. We show that, unlike any other material, the formation of magnetic moments can be controlled by an electric field effect.

Bruno Uchoa; Valeri N. Kotov; N. M. R. Peres; A. H. Castro Neto

2008-07-11T23:59:59.000Z

422

Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski, Et  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

423

Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al., 2010) |  

Open Energy Info (EERE)

Chocolate Mountains Area (Alm, Et Al., 2010) Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Gravity and ground-based magnetics surveys were conducted during the summer of 2008. This data was acquired to aid in the identification of structures without fair surface expression, obscured by recent deposition. References Steve Alm, S. Bjornstad, M. Lazaro, A. Sabin1, D. Meade, J. Shoffner, W. C. Huang, J. Unruh, M. Strane, H. Ross (2010) Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,

424

Electric-dipole-induced spin resonance in disordered semiconductors  

E-Print Network (OSTI)

ARTICLES Electric-dipole-induced spin resonance in disordered semiconductors MATHIAS DUCKHEIM One of the hallmarks of spintronics is the control of magnetic moments by electric fields enabled in such structures is electric-dipole-induced spin resonance (EDSR), where the radio-frequency fields driving

Loss, Daniel

425

Tsunami-Made Electric Current Could Offer Warning  

E-Print Network (OSTI)

Tsunami-Made Electric Current Could Offer Warning Killer ocean waves apparently generate electric currents in the ocean that might be used to detect tsunamis quickly. By Larry O'Hanlon | Fri Jan 22, 2010 a magnetic field can induce a flow of electrons -- a.k.a. an electrical current. Ocean water is particularly

Harinarayana, T.

426

Electrical Engineering Minor 2014-2015 Curriculum Chart  

E-Print Network (OSTI)

Electrical Engineering Minor 2014-2015 Curriculum Chart EE 101/L EE 171/L Electronics EE 101/L to Physics III Electricity & Magnetism Phys 5C/N or 6C/N & Math 24 or AMS 20A or 20 EE 101/L Electronic/12/2014 #12;Electrical Engineering Minor 2014-2015 Curriculum Chart Fall _______ Winter _______ Spring

Stuart, Josh

427

Scientists use world's fastest supercomputer to explore magnetic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists use world's fastest supercomputer to explore magnetic reconnection The focus is to understand the three-dimensional evolution of thin electrical current layers...

428

Saturable inductor and transformer structures for magnetic pulse compression  

DOE Patents (OSTI)

Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

Birx, Daniel L. (Londonderry, NH); Reginato, Louis L. (Orinda, CA)

1990-01-01T23:59:59.000Z

429

ELECTRIC RAILWAYS  

Science Journals Connector (OSTI)

...candidate. It is safe to say that the...education in the fundamental facts and methods...Steam-engine, boilers and dynamos...road in successful operation upon or-dinary...been in successful operation for several years...now in successful operation electric rail-ways...

W. D. Marks

1886-04-09T23:59:59.000Z

430

Electric Propulsion  

Science Journals Connector (OSTI)

...is clear. The long-t?me continuous operation is required for electric propulsion pri-marily...travel against a small voltage to the cold element. The cell thereby produces an...concentrate and focus the solar rays on a heater. Little, if any, decrease in specific...

W. E. Moeckel

1963-10-11T23:59:59.000Z

431

Electricity costs  

Science Journals Connector (OSTI)

... index is used to correct for inflation. The short answer is given by the Central Electricity Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The ... Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The cost per kWh of fuel. . . rose by 18.6 per cent (between 1979 ...

J.W. JEFFERY

1982-03-18T23:59:59.000Z

432

electrical, engineering  

E-Print Network (OSTI)

in groundbreaking community solar project PMC-based technology products enter the market Expanding our capacity: new learning educational gaming energy-efficient data storage and computing health informatics haptic education K-12 STEM electrical energy storage thermal energy storage and conversion energy production

Zhang, Junshan

433

NSTX Electrical Power Systems  

SciTech Connect

The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.

A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

1999-12-16T23:59:59.000Z

434

Wireless Power Transfer for Electric Vehicles  

SciTech Connect

As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

Scudiere, Matthew B [ORNL; McKeever, John W [ORNL

2011-01-01T23:59:59.000Z

435

Gravity Probe B Gyroscope charge control using field?emission cathodes  

Science Journals Connector (OSTI)

We propose and test a method for controlling the charging of the Gravity Probe B(GP?B) electrostatically suspended gyroscopes using electrons generated by field emissioncathodes. The GP?B GyroscopeExperiment is designed to measure for the first time the geodetic and the frame?dragging effects predicted by Einsteins general theory of relativity. The expected accuracy of ?0.3 marcsec/yr (10?11 deg/h) will allow for a 0.01% measurement of the geodetic effect and a 1% measurement of the frame?dragging effect. Gyroscope charging is caused by cosmic radiation by field emission and by the separation of dissimilar metals. The expected charging rate for the gyroscopes is ?1 nC/yr and consequently above the 50 pC limit dictated by disturbing torque considerations. The present charge control technique is based on ultraviolet photoemission of electrons from both the gyroscope and an auxiliary electrode. Experiments have shown this method to be effective at room temperature in ground testing and calculations indicate that it is suitable for charge control in orbit. As an alternative we demonstrate the use of Spindt?type field emissioncathodes for the control of the positive charges on the gyroscopes by using a 10?000 tip emitter array produced by SRI International. The device requirements are (a) stable and reliable operation over two years at 2 K and 1.510?9 Pa (b) average power dissipation in the device of less than 50 ?W (c) peak emission current of 1100 pA (d) dimensions less than 2 mm (e) magnetization less than 10?8 G (f) electric field at the gyroscope less than 104 V/m. The control of negative charges on the gyroscope is achievable by operating in a regime in which the secondary electron emission coefficient is greater than unity.

Saps Buchman; Theodore Quinn; G. M. Keiser; Dale Gill

1993-01-01T23:59:59.000Z

436

Gravity-Superconductors Interactions as a Possible Means to Exchange Momentum with the Vacuum  

E-Print Network (OSTI)

We report on work in progress in quantum field theory about possible interactions between coherent matter, i.e. matter described by a macroscopic wave function or a classical field, and a certain class of vacuum fluctuations, called "zero-modes of the Einstein action". These are little-known virtual masses present in the vacuum state of quantum gravity. A couple of equal masses of this kind can be excited by an oscillating coherent source with frequency f and decays to its ground state emitting a virtual graviton, which can propagate and transfer momentum p to ordinary matter. The virtual masses recoil in the emission, and this amounts to a transfer of momentum -p to the vacuum; this momentum can be passed in turn to some matter, or not. The energy hf for the process does not come from the vacuum, but from the coherent source. The ratio hf/p is of the order of 1 m/s. This model was developed to explain experimental results showing the emission of anomalous high-momentum radiation from certain superconductors, sometimes with a strong recoil of the emitters. The recoil is energetically quite efficient, at least at small power, and could be exploited for propulsion. It has not been tested in space, however, and our model cannot yet predict if the recoil is affected by the presence of near matter. (Another model predicts that it is not.) We also briefly mention a possible application of the anomalous radiation itself and we evaluate the (large) electric and magnetic field strength needed to produce an effect equivalent to that of a superconducting emitter.

Giovanni Modanese

2014-06-03T23:59:59.000Z

437

Generalized second law in the modified theory of gravity  

SciTech Connect

In the context of modified theory of gravity [f(R) gravity], we try to study the conditions needed for validity of the generalized second law.

Mohseni Sadjadi, H. [Department of Physics, University of Tehran, P.O. Box 14395-547, Tehran 14399-55961 (Iran, Islamic Republic of)

2007-11-15T23:59:59.000Z

438

Conserved charges in 3D gravity  

Science Journals Connector (OSTI)

The covariant canonical expression for the conserved charges, proposed by Nester, is tested on several solutions in three-dimensional gravity with or without torsion and topologically massive gravity. In each of these cases, the calculated values of energy momentum and angular momentum are found to satisfy the first law of black hole thermodynamics.

M. Blagojevi? and B. Cvetkovi?

2010-06-09T23:59:59.000Z

439

Quantum Gravity Phenomenology and Lorentz Violation  

E-Print Network (OSTI)

If quantum gravity violates Lorentz symmetry, the prospects for observational guidance in understanding quantum gravity improve considerably. This article briefly reviews previous work on Lorentz violation (LV) and discusses aspects of the effective field theory framework for parametrizing LV effects. Current observational constraints on LV are then summarized, focusing on effects in QED at order E/M_Planck.

Ted Jacobson; Stefano Liberati; David Mattingly

2004-04-15T23:59:59.000Z

440

Conserved charges in 3D gravity  

SciTech Connect

The covariant canonical expression for the conserved charges, proposed by Nester, is tested on several solutions in three-dimensional gravity with or without torsion and topologically massive gravity. In each of these cases, the calculated values of energy momentum and angular momentum are found to satisfy the first law of black hole thermodynamics.

Blagojevic, M.; Cvetkovic, B. [University of Belgrade, Institute of Physics, P. O. Box 57, 11001 Belgrade (Serbia)

2010-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Quantum Gravity Phenomenology, Lorentz Invariance and Discreteness  

E-Print Network (OSTI)

Quantum Gravity Phenomenology, Lorentz Invariance and Discreteness Fay Dowker #3; , Joe Henson y invariant, and we recall the reasons why. For illustration, we introduce a phenomenological model of massive { LLI violating phenomenological e#11;ects of quantum gravity { has grown up around this idea

Sorkin, Rafael Dolnick

442

LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS  

E-Print Network (OSTI)

Lab II - 1 LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS In this lab you will continue to investigate the abstract concept of electric field. If you know the electric field at a point in space, you). With this simulation you can construct a complicated charge configuration and read out the resulting electric field

Minnesota, University of

443

Electrical and Computer Engineering Electrical Engineering  

E-Print Network (OSTI)

Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

Heller, Barbara

444

Gravity's Rainbow induces Topology Change  

E-Print Network (OSTI)

In this work, we explore the possibility that quantum fluctuations induce a topology change, in the context of Gravity's Rainbow. A semi-classical approach is adopted, where the graviton one-loop contribution to a classical energy in a background spacetime is computed through a variational approach with Gaussian trial wave functionals. The energy density of the graviton one-loop contribution, or equivalently the background spacetime, is then let to evolve, and consequently the classical energy is determined. More specifically, the background metric is fixed to be Minkowskian in the equation governing the quantum fluctuations, which behaves essentially as a backreaction equation, and the quantum fluctuations are let to evolve; the classical energy, which depends on the evolved metric functions, is then evaluated. Analysing this procedure, a natural ultraviolet (UV) cutoff is obtained, which forbids the presence of an interior spacetime region, and may result in a multipy-connected spacetime. Thus, in the context of Gravity's Rainbow, this process may be interpreted as a change in topology, and in principle results in the presence of a Planckian wormhole.

Remo Garattini; Francisco S. N. Lobo

2014-08-20T23:59:59.000Z

445

Threat Mitigation: The Gravity Tractor  

E-Print Network (OSTI)

The Gravity Tractor (GT) is a fully controlled asteroid deflection concept using the mutual gravity between a robotic spacecraft and an asteroid to slowly accelerate the asteroid in the direction of the "hovering" spacecraft. Based on early warning, provided by ground tracking and orbit prediction, it would be deployed a decade or more prior to a potential impact. Ion engines would be utilized for both the rendezvous with the asteroid and the towing phase. Since the GT does not dock with or otherwise physically contact the asteroid during the deflection process there is no requirement for knowledge of the asteroid's shape, composition, rotation state or other "conventional" characteristics. The GT would first reduce the uncertainty in the orbit of the asteroid via Earth tracking of its radio transponder while station keeping with the asteroid. If, after analysis of the more precise asteroid orbit a deflection is indeed indicated, the GT would "hover" above the surface of the asteroid in the direction of the required acceleration vector for a duration adequate to achieve the desired velocity change. The orbit of the asteroid is continuously monitored throughout the deflection process and the end state is known in real time. The performance envelope for the GT includes most NEOs which experience close gravitational encounters prior to impact and those below 150-200 meters in diameter on a direct Earth impact trajectory.

Russell Schweickart; Clark Chapman; Dan Durda; Piet Hut

2006-08-15T23:59:59.000Z

446

Gravity Dual of Superconformal Anomaly  

E-Print Network (OSTI)

The supergravity dual of superconformal anomaly in a four-dimensional supersymmetric gauge theory is investigated. We consider a well-established dual correspondence between the ${\\cal N}=1$ $SU(N+M)\\times SU(N)$ supersymmetric gauge theory with two flavors of matter fields in the bifundamental representation of gauge group and the type IIB superstring in the space-time background furnished by the Klebanov-Strassler (K-S) solution. The D-brane configuration for these two dual theories consists of N D3 branes and M fractional $D3$ branes in the singular space-time composed of a direct product of M^4 and a six-dimensional conifold ${\\cal C}_6$ with the base $T^{1,1}$. The superconformal anomaly originate from fractional branes frozen at the apex of ${\\cal C}_6$. While on the gravity side, the fractional branes deform the $AdS_5\\times T^{1,1}$ space-time background and partially break local supersymmetry of type IIB supergravity. We find that the deformation on $AdS_5\\times T^{1,1}$ leads to the spontaneous breaking local symmetries in gauged AdS_5 supergravity and consequently a super-Higgs mechanism arises. We thus conclude that the super-Higgs mechanism in gauged supergravity is dual to the superconformal anomaly of supersymmetric gauge theory in terms of gauge/gravity correspondence.

W. F. Chen

2005-08-16T23:59:59.000Z

447

Airborne Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Airborne Gravity Survey Airborne Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Airborne Gravity Survey Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

448

Definition: Ground Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Ground Gravity Survey Jump to: navigation, search Dictionary.png Ground Gravity Survey The ground gravitational method is the study of the distribution of mass in the subsurface with the observation point at the earth's surface.[1] View on Wikipedia Wikipedia Definition A gravity anomaly is the difference between the observed acceleration of a planet's gravity and a value predicted from a model. A location with a positive anomaly exhibits more gravity than predicted, while a negative anomaly exhibits a lower value than predicted. References ↑ http://www.amazon.com/Geophysical-Field-Theory-Three-Volume-Gravitational/dp/0124020410 Ret Like Like You like this.Sign Up to see what your friends like.

449

Ground Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Ground Gravity Survey Ground Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Gravity Survey Details Activities (48) Areas (34) Regions (2) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and large-scale deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

450

Aqua Magnetics Inc | Open Energy Information  

Open Energy Info (EERE)

Magnetics Inc Magnetics Inc Jump to: navigation, search Name Aqua-Magnetics Inc Place Satellite Beach, Florida Zip 32937 Sector Ocean Product Manufactures patented system that converts ocean wave energy into electric power. References Aqua-Magnetics Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Electric Buoy Mobil Stabilized Energy Conversion Platform Platform generators This article is a stub. You can help OpenEI by expanding it. Aqua-Magnetics Inc is a company located in Satellite Beach, Florida . References ↑ "Aqua-Magnetics Inc" Retrieved from "http://en.openei.org/w/index.php?title=Aqua_Magnetics_Inc&oldid=678881"

451

Magnetism.1  

Science Journals Connector (OSTI)

... each complete magnets with a pair of poles. The general character of the earth's magnetism has long been knownthat the earth behaves with regard to magnets as though it ... and that these poles have a slow secular motion. For many years the earth's magnetism has been the subject of careful study by the most powerful minds. Gauss organized ...

1890-01-16T23:59:59.000Z

452

Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications  

SciTech Connect

REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner corecoupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

None

2012-01-01T23:59:59.000Z

453

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

454

MAGNETIC NEUTRON SCATTERING  

SciTech Connect

Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

ZALIZNYAK,I.A.; LEE,S.H.

2004-07-30T23:59:59.000Z

455

Earths magnetism  

Science Journals Connector (OSTI)

Earths magnetism, geomagnetism, terrestrial magnetism [The magnetism of the Earth] ? Erdmagnetismus m, Geomagnetismus

2014-08-01T23:59:59.000Z

456

Illinois Municipal Electric Agency- Electric Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

457

Electrical Transport Experiments at High Pressure  

SciTech Connect

High-pressure electrical measurements have a long history of use in the study of materials under ultra-high pressures. In recent years, electrical transport experiments have played a key role in the study of many interesting high pressure phenomena including pressure-induced superconductivity, insulator-to-metal transitions, and quantum critical behavior. High-pressure electrical transport experiments also play an important function in geophysics and the study of the Earth's interior. Besides electrical conductivity measurements, electrical transport experiments also encompass techniques for the study of the optoelectronic and thermoelectric properties of materials under high pressures. In addition, electrical transport techniques, i.e., the ability to extend electrically conductive wires from outside instrumentation into the high pressure sample chamber have been utilized to perform other types of experiments as well, such as high-pressure magnetic susceptibility and de Haas-van Alphen Fermi surface experiments. Finally, electrical transport techniques have also been utilized for delivering significant amounts of electrical power to high pressure samples, for the purpose of performing high-pressure and -temperature experiments. Thus, not only do high-pressure electrical transport experiments provide much interesting and valuable data on the physical properties of materials extreme compression, but the underlying high-pressure electrical transport techniques can be used in a number of ways to develop additional diagnostic techniques and to advance high pressure capabilities.

Weir, S

2009-02-11T23:59:59.000Z

458

Electrical receptacle  

DOE Patents (OSTI)

The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

Leong, R.

1993-06-22T23:59:59.000Z

459

Electric current generation in distorted graphene  

E-Print Network (OSTI)

Graphene-like materials can be effectively described by quantum electrodynamics in 2+1 dimensions. In a pure state these systems exhibit a symmetry between the non-equivalent Dirac points in the honeycomb lattice. The effect of some types of doping or the contact with asymmetric external lattices (for instance a boron nitride layer) break this symmetry via a mechanism of effective mass generation that works differently for each Dirac point. In this work we show that the incorporation of an in-plane external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field. This mass structure is associated to a Chern-Simons type of effective action. Together with the presence of a magnetic field generating an electric current, this scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

2013-12-11T23:59:59.000Z

460

Testing Relativistic Gravity with Radio Pulsars  

E-Print Network (OSTI)

Before the 1970s, precision tests for gravity theories were constrained to the weak gravitational fields of the Solar system. Hence, only the weak-field slow-motion aspects of relativistic celestial mechanics could be investigated. Testing gravity beyond the first post-Newtonian contributions was for a long time out of reach. The discovery of the first binary pulsar by Russell Hulse and Joseph Taylor in the summer of 1974 initiated a completely new field for testing the relativistic dynamics of gravitationally interacting bodies. For the first time the back reaction of gravitational wave emission on the binary motion could be studied. Furthermore, the Hulse-Taylor pulsar provided the first test bed for the orbital dynamics of strongly self-gravitating bodies. To date there are a number of pulsars known, which can be utilized for precision test of gravity. Depending on their orbital properties and their companion, these pulsars provide tests for various different aspects of relativistic dynamics. Besides tests of specific gravity theories, like general relativity or scalar-tensor gravity, there are pulsars that allow for generic constraints on potential deviations of gravity from general relativity in the quasi-stationary strong-field and the radiative regime. This article presents a brief overview of this modern field of relativistic celestial mechanics, reviews some of the highlights of gravity tests with radio pulsars, and discusses their implications for gravitational physics and astronomy, including the upcoming gravitational wave astronomy.

Norbert Wex

2014-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Dimensional Reduction in Quantum Gravity  

E-Print Network (OSTI)

The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two-dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. Essay dedicated to Abdus Salam.

G. 't Hooft

2009-03-20T23:59:59.000Z

462

ELECTRICAL ENGINEERING EECS Department  

E-Print Network (OSTI)

ELECTRICAL ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering

463

Loop Quantum Gravity 1. Classical framework : Ashtekar-Barbero connection  

E-Print Network (OSTI)

gravity Why Quantum Gravity ? Gravitation vs. Quantum Physics : the two infinities Gravitation : large Quantum Gravity ? Gravitation vs. Quantum Physics : the two infinities Gravitation : large scales-perturbative renormalization Gravity is not a fundamental theory but it is effective (law energy) · it has to be modified

Sart, Remi

464

E-Print Network 3.0 - arbitrarily located electric Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

for EM modeling of waveguide-based arbitrarily shaped interactive electric (strip, patch) and magnetic... , as shown in Fig. 2. An arbitrarily shaped met- allization ......

465

Dynamical variables in Gauge-Translational Gravity  

E-Print Network (OSTI)

Assuming that the natural gauge group of gravity is given by the group of isometries of a given space, for a maximally symmetric space we derive a model in which gravity is essentially a gauge theory of translations. Starting from first principles we verify that a nonlinear realization of the symmetry provides the general structure of this gauge theory, leading to a simple choice of dynamical variables of the gravity field corresponding, at first order, to a diagonal matrix, whereas the non-diagonal elements contribute only to higher orders.

J. Julve; A. Tiemblo

2010-07-02T23:59:59.000Z

466

Investigations in massive 3D gravity  

SciTech Connect

Some interesting gravitational properties of the Bergshoeff-Hohm-Townsend model (massive 3D gravity), such as the presence of a short-range gravitational force in the nonrelativistic limit and the existence of an impact-parameter-dependent gravitational deflection angle, are studied. Interestingly enough, these phenomena have no counterpart in the usual Einstein 3D gravity. In order to better understand the two aforementioned gravitational properties, they are also analyzed in the framework of 3D higher-derivative gravity with the Einstein-Hilbert term with the 'wrong sign'.

Accioly, Antonio [Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil); Instituto de Fisica Teorica (IFT), Sao Paulo State University (UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco II-Barra Funda, 01140-070, Sao Paulo, SP (Brazil); Helayeel-Neto, Jose; Morais, Jefferson; Turcati, Rodrigo [Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil); Scatena, Eslley [Instituto de Fisica Teorica (IFT), Sao Paulo State University (UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco II-Barra Funda, 01140-070, Sao Paulo, SP (Brazil)

2011-05-15T23:59:59.000Z

467

Electric Wheel Hub Motor  

Science Journals Connector (OSTI)

Wheel hub motors are an innovative drive concept for electric vehicles where the electric machine and, in some cases, the...

Dipl.-Ing. Michael Grninger; Dipl.-Ing. Felix Horch

2012-02-01T23:59:59.000Z

468

A magneto-electric quantum wheel  

E-Print Network (OSTI)

Here we show that self-propulsion in quantum vacuum may be achieved by rotating or aggregating magneto-electric nano-particles. The back-action follows from changes in momentum of electro-magnetic zero-point fluctuations, generated in magneto-electric materials. This effect may provide new tools for investigation of the quantum nature of our world. It might also serve in the future as a "quantum wheel" to correct satellite orientation in space.

Alexander Feigel

2009-12-05T23:59:59.000Z

469

Performance Analysis and Comparison of Three IPMSM with High Homopolar Inductance for Electric Vehicle Applications  

E-Print Network (OSTI)

Synchronous Motor, Zero-Sequence Inductance, Electric Vehicle, Ripple Torque, Fast evaluation, Harmonics three topologies of PMSM according to the specifications of an electric vehicle (EV) with severe and especially for hybrid electric vehicle (HEV) and electric vehicle (EV). Moreover, interior permanent magnet

Boyer, Edmond

470

Studies of electrical breakdown processes across vacuum gaps between metallic electrodes  

E-Print Network (OSTI)

Studies of electrical breakdown processes across vacuum gaps between metallic electrodes L Keywords: Magnetic insulation Vacuum electrical breakdown Bacteria-induced electrical breakdown Accelerator a b s t r a c t An experimental program to elucidate the physical causes of electrical breakdown

Gilson, Erik

471

Circular polarization of obliquely propagating whistler wave magnetic field  

SciTech Connect

The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.

Bellan, P. M. [Applied Physics, Caltech, Pasadena California 91125 (United States)] [Applied Physics, Caltech, Pasadena California 91125 (United States)

2013-08-15T23:59:59.000Z

472

Reduced Gravity Education Flight Opportunity for Students at Minority  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduced Gravity Education Flight Opportunity for Students at Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions March 21, 2013 - 5:21pm Addthis Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions NASA is offering undergraduate students from Minority Serving Institutions an opportunity to test experiments in microgravity aboard NASA's reduced gravity aircraft. This opportunity is a partnership between the Minority University Research and Education Program and NASA's Reduced Gravity Education Flight Program, which gives aspiring explorers a chance to propose, design and fabricate a reduced-gravity experiment. Selected teams will test and evaluate their

473

Reduced Gravity Education Flight Opportunity for Students at Minority  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduced Gravity Education Flight Opportunity for Students at Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions March 21, 2013 - 5:21pm Addthis Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions NASA is offering undergraduate students from Minority Serving Institutions an opportunity to test experiments in microgravity aboard NASA's reduced gravity aircraft. This opportunity is a partnership between the Minority University Research and Education Program and NASA's Reduced Gravity Education Flight Program, which gives aspiring explorers a chance to propose, design and fabricate a reduced-gravity experiment. Selected teams will test and evaluate their

474

Gravity Duals of Lifshitz-Like Fixed Points  

SciTech Connect

We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t {yields} {lambda}{sup z}t, x {yields} {lambda}x; we focus on the case with z = 2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arise at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.

Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Liu, Xiao; /Perimeter Inst. Theor. Phys.; Mulligan, Michael; /Stanford U., Phys. Dept. /SLAC

2008-11-05T23:59:59.000Z

475

Electrical Equipment Inspection Program Electrical Safety  

E-Print Network (OSTI)

Electrical Equipment Inspection Program Electrical Safety SLAC-I-730-0A11A-001-R003 23 March 2005 Document Title: Electrical Equipment Inspection Program Original Publication Date: 19 January 2005 Revised Publication Date: 23 March 2005 (updated 29 November 2010) Department: Electrical Safety Document Number: SLAC

Wechsler, Risa H.

476

Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements  

SciTech Connect

REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in todays most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

None

2012-01-01T23:59:59.000Z

477

The Branching of Graphs in 2-d Quantum Gravity  

E-Print Network (OSTI)

The branching ratio is calculated for three different models of 2d gravity, using dynamical planar phi-cubed graphs. These models are pure gravity, the D=-2 Gaussian model coupled to gravity and the single spin Ising model coupled to gravity. The ratio gives a measure of how branched the graphs dominating the partition function are. Hence it can be used to estimate the location of the branched polymer phase for the multiple Ising model coupled to 2d gravity.

M. G. Harris

1996-07-16T23:59:59.000Z

478

Electrical Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE HANDBOOK ELECTRICAL SAFETY DOE-HDBK-1092-2013 July 2013 Superseding DOE-HDBK-1092-2004 December 2004 U.S. Department of Energy AREA SAFT Washington, D.C.20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1092-2013 Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/techstds/ ii DOE-HDBK-1092-2013 FOREWORD 1. This Department of Energy (DOE) Handbook is approved for use by the Office of Health, Safety and Security and is available to all DOE components and their contractors. 2. Specific comments (recommendations, additions, deletions, and any pertinent data) to enhance this document should be sent to: Patrick Tran

479

Modern Magnetism  

Science Journals Connector (OSTI)

... BATESS "Modern Magnetism", first published in 1939, is widely appreciated as a general survey in which ... grateful to the author for collecting together so much interesting information about recent work in magnetism. ...

E. C. S.

1948-06-05T23:59:59.000Z

480

2D gravity and the extended formalism  

Science Journals Connector (OSTI)

The role of SL(2,R) symmetry in two-dimensional gravity is investigated in the context of the extended Hamiltonian formalism. Using our results we clarify previous works on the subject.

Fernando P. Devecchi

1998-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "gravity magnetic electrical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy conditions in f(R)-gravity  

E-Print Network (OSTI)

In order to shed some light on the current discussion about f(R)-gravity theories we derive and discuss the bounds imposed by the energy conditions on a general f(R) functional form. The null and strong energy conditions in this framework are derived from the Raychaudhuri's equation along with the requirement that gravity is attractive, whereas the weak and dominant energy conditions are stated from a comparison with the energy conditions that can be obtained in a direct approach via an effective energy-momentum tensor for f(R)-gravity. As a concrete application of the energy conditions to locally homogeneous and isotropic f(R)-cosmology, the recent estimated values of the deceleration and jerk parameters are used to examine the bounds from the weak energy condition on the parameters of two families of f(R)-gravity theories.

J. Santos; J. S. Alcaniz; M. J. Reboucas; F. C. Carvalho

2007-09-06T23:59:59.000Z

482

SUSY QM meets 5d Gravity  

E-Print Network (OSTI)

We report hidden quantum mechanical supersymmetry structure in five-dimensional gravity with the Randall-Sundrum background. We show that two N=2 supersymmetries are hidden in the spectrum.

Ohya, Satoshi

2010-01-01T23:59:59.000Z

483

SUSY QM Meets 5d Gravity  

E-Print Network (OSTI)

We report hidden quantum mechanical supersymmetry structure in five-dimensional gravity with the Randall-Sundrum background. We show that two N=2 supersymmetries are hidden in the spectrum.

Satoshi Ohya

2010-12-01T23:59:59.000Z

484

Gravity waves from vortex dipoles and jets  

E-Print Network (OSTI)

The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here...

Wang, Shuguang

2009-05-15T23:59:59.000Z

485

Testing Modified Gravity with Gravitational Wave Astronomy  

E-Print Network (OSTI)

The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test alternative theories of gravity. In this contribution we describe how to use observations of extreme-mass-ratio inspirals by the future Laser Interferometer Space Antenna to test a particular class of theories: Chern-Simons modified gravity.

Carlos F. Sopuerta; Nicolas Yunes

2010-10-01T23:59:59.000Z

486

Relativistic Gravity With a Dynamical Preferred Frame  

E-Print Network (OSTI)

While general relativity possesses local Lorentz invariance, both canonical quantum gravity and string theory suggest that Lorentz invariance may be broken at high energies. Broken Lorentz invariance has also been postulated as an explanation for astrophysical anomalies such as the missing GZK cutoff. Therefore, we seek an effective field theory description of gravity where Lorentz invariance is broken. We will construct a candidate theory and then briefly discuss some of the implications.

David Mattingly; Ted Jacobson

2001-12-07T23:59:59.000Z

487

Electric Compressor With High-Speed Brushless DC Motor  

Science Journals Connector (OSTI)

Moving Magnet Technologies (MMT) from Besanon in France has developed a highly efficient brushless DC motor that is especially suitable for use in ... The following report presents technical details of the electric

Dr.-Ing. Stephan Biwersi; Dipl.-Ing. Stephan Tavernier; M.Sc. Samuel Equoy

2012-12-01T23:59:59.000Z

488

Development of sodium silicate adhesives for electrical steel bonding  

E-Print Network (OSTI)

Inorganic adhesives have several benefits over traditional joining methods for joining electrical steels used in magnetic cores of numerous industrial applications. As insulators with very high melting temperatures, the ...

Marks, Jordan (Jordan Christine)

2014-01-01T23:59:59.000Z

489

Migratory magnetism  

Science Journals Connector (OSTI)

... in tune with the Earth's magnetic field. But how, exactly, do creatures sense magnetism? This is one of the most intriguing questions in modern biology - and also ... move preferentially in a north-south direction. This finding hints at the possible influence of magnetism on their movements. ...

Henry Gee

1999-10-06T23:59:59.000Z

490

Magnetic Testing of Bonded Magnets  

Science Journals Connector (OSTI)

Many techniques exist to characterize the magnetic properties of bonded magnets. We will review the common and not so common techniques in use, with emphasis on the advantages and disadvantages of each one, an...

S. R. Trout

2003-01-01T23:59:59.000Z

491

Enhanced Leukemia Cell Detection Using a Novel Magnetic Needle and Nanoparticles  

Science Journals Connector (OSTI)

...electric + magnetic fields at these intensities...for this cell line. In contrast...electric + magnetic fields at these intensities...for this cell line. In contrast...after electro magnetic field exposure...With both cell lines and at both...

Jason E. Jaetao; Kimberly S. Butler; Natalie L. Adolphi; Debbie M. Lovato; Howard C. Bryant; Ian Rabinowitz; Stuart S. Winter; Trace E. Tessier; Helen J. Hathaway; Christian Bergemann; Edward R. Flynn; and Richard S. Larson

2009-11-01T23:59:59.000Z

492

X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er)  

SciTech Connect

Electricity and magnetism were unified into a common subject by James Clerk Maxwell in the nineteenth century yielding the electromagnetic theory. Four equations govern the dynamics of electric charges and magnetic fields, commonly known as Maxwell's equations. Maxwell's equations demonstrate that an accelerated charged particle can produce magnetic fields and a time varying magnetic field can induce a voltage - thereby linking the two phenomena. However, in solids, electric and magnetic ordering are most often considered separately and usually with good reason: the electric charges of electrons and ions are responsible for the charge effects, whereas the electron spin governs magnetic properties.

Nandi, Shibabrata

2009-12-19T23:59:59.000Z

493

Universality of Gravity from Entanglement  

E-Print Network (OSTI)

The entanglement "first law" in conformal field theories relates the entanglement entropy for a ball-shaped region to an integral over the same region involving the expectation value of the CFT stress-energy tensor, for infinitesimal perturbations to the CFT vacuum state. In recent work, this was exploited at leading order in $N$ in the context of large N holographic CFTs to show that any geometry dual to a perturbed CFT state must satisfy Einstein's equations linearized about pure AdS. In this note, we investigate the implications of the leading 1/N correction to the exact CFT result. We show that these corrections give rise to the source term for the gravitational equations: for semiclassical bulk states, the expectation value of the bulk stress-energy tensor appears as a source in the linearized equations. In particular, the CFT first law leads to Newton's Law of gravitation and the fact that all sources of stress-energy source the gravitational field. In our derivation, this universality of gravity comes directly from the universality of entanglement (the fact that all degrees of freedom in a subsystem contribute to entanglement entropy).

Brian Swingle; Mark Van Raamsdonk

2014-05-12T23:59:59.000Z

494

Structural, electrical, and magnetic properties of Ba{sub 0.9}Ca{sub 0.1}Ti{sub 0.97}Fe{sub 0.03}O{sub 3} and the effect of oxygen vacancies  

SciTech Connect

Detailed experimental studies have been carried out on a new possible dilute magnetic insulator Ba{sub 0.9}Ca{sub 0.1}Ti{sub 0.97}Fe{sub 0.03}O{sub 3??} and its oxygen deficient counterpart. Both the samples stabilize in overall tetragonal BaTiO{sub 3} structure at room temperature as indicated by x-ray diffraction and do exhibit room temperature magnetic order with obvious dependencies on ?. Apart from this, the as-grown sample also retains ferroelectricity at room temperature, which could potentially open up a possibility of achieving multifunctionality at room temperature. However, even though the magnetism is positively influenced by oxygen vacancies, the microscopic phase and ferroelectricity get adversely affected. Finally, using local structural probes, existence of diffused phases has been found, which successfully explains all the observed physical properties.

Chakraborty, Tanushree [Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Meneghini, Carlo [Dipartimento di Scienze, Universit Roma Tre, Via della Vasca Navale, 84 I-00146 Roma (Italy); Aquilanti, Giuliana [Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14, km 163.5 34149 Basovizza, Trieste (Italy); Ray, Sugata [Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

2013-12-14T23:59:59.000Z

495

A Development Path to the Efficient and Cost-Effective Bulk Storage of Electrical Energy  

SciTech Connect

Efficient and cost-effective means for storing electrical energy is becoming an increasing need in our electricity-oriented society. For example, for electric utilities an emerging need is for distributed storage systems, that is, energy storage at substations, at solar or wind-power sites, or for load-leveling at the site of major consumers of their electricity. One of the important consequences of distributed storage for the utilities would be the reduction in transmission losses that would result from having a local source of load-leveling power. For applications such as these there are three criteria that must be satisfied by any new system that is developed to meet such needs. These criteria are: (1) high 'turn-around' efficiency, that is, high efficiency of both storing and recovering the stored energy in electrical form, (2) long service life (tens of years), with low maintenance requirements, and, (3) acceptably low capital cost. An additional requirement for these particular applications is that the system should have low enough standby losses to permit operation on a diurnal cycle, that is, storing the energy during a portion of a given day (say during sunlight hours) followed several hours later by its use during night-time hours. One answer to the spectrum of energy storage needs just outlined is the 'electromechanical battery'. The E-M battery, under development for several years at the Laboratory and elsewhere in the world, has the potential to solve the above energy storage problems in a manner superior to the electro-chemical battery in the important attributes of energy recovery efficiency, cycle lifetime, and amortized capital cost. An electromechanical battery is an energy storage module consisting of a high-speed rotor, fabricated from fiber composite, and having an integrally mounted generator/motor. The rotor operates at high speed, in vacuo, inside of a hermetically sealed enclosure, supported by a 'magnetic bearing', that is, a bearing that uses magnetic forces to support the rotor against gravity. Magnetic bearings are a virtual necessity for the E-M battery in order to achieve long service life, and to minimize frictional losses so that the battery does not lose its charge (run down) too rapidly. These considerations mitigate against the use of conventional mechanical bearings in the E-M battery for most applications. The Laboratory has pioneered the development of a new form of magnetic bearing to meet the special requirements of the E-M battery: the 'ambient-temperature passive magnetic bearing'. Simpler, and potentially much less expensive than the existing 'active' magnetic bearings (ones requiring electronic amplifiers and feedback circuits for their operation) development of the ambient-temperature passive magnetic bearing represents a technological breakthrough. Beyond its use in the E-M battery, the ambient-temperature magnetic bearing could have important applications in replacing conventional lubricated mechanical bearings in electrical machinery. Here the gains would be two-fold: reduced frictional losses, leading to higher motor efficiency, and, of equal importance, the elimination of the need for lubricants and for routine replacement of the bearings owing to mechanical wear. Thus an added benefit from a vigorous pursuit of our electromechanical battery concepts could be its impact on many other areas of industry where rotating machinery in need of improved bearings is involved. If perfected, passive magnetic bearings would seem to represent an almost ideal replacement for the mechanical bearings in many types of industrial electrical machinery. Returning to the issued of energy storage, the E-M battery itself has much to contribute in the area of improving the efficiency of stationary energy storage systems. For example, many electrical utilities utilize 'pumped hydro' energy storage systems as a means of improving the utilization of their 'base-load' power plants. That is, electrical energy is stored during off-peak hours for delivery at times of peak usage. These pumped hydro sys

Post, R F

2009-09-24T23:59:59.000Z

496

Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy  

Open Energy Info (EERE)

Ground Magnetics At Marysville Mt Area (Blackwell) Ground Magnetics At Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Ground Magnetics Activity Date Usefulness not useful DOE-funding Unknown Notes A ground magnetic survey located no anomaly with an amplitude of more than 20 or 30 gammas that could be associated with the thermal anomaly, however the magnetic data did outline the Cretaceous stock in great detail and allow the removal from the gravity field of the effect of the stock. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Marysville_Mt_Area_(Blackwell)&oldid=389390"

497

Electric Dipole Moments of Dyon and `Electron'  

E-Print Network (OSTI)

The electric and magnetic dipole moments of dyon fermions are calculated within N=2 supersymmetric Yang-Mills theory including the theta-term. It is found, in particular, that the gyroelectric ratio deviates from the canonical value of 2 for the monopole fermion (n_m=1,n_e=0) in the case theta\

Makoto Kobayashi; Taichiro Kugo; Tatsuya Tokunaga

2008-01-08T23:59:59.000Z

498

Electric propulsion motor for marine vehicles  

SciTech Connect

An electric propulsion motor for marine vehicles is described comprising: a disk-shaped rotor and two coaxial disk-shaped stators, the rotor being separated from each of the stators in an axial direction by an air gap; the rotor including a plurality of permanent magnets that produce a first magnetic field; each stator comprising an armature winding that is connected to a source of electrical current to produce a second magnetic field, the first and second magnetic fields being capable of interacting to create an electromagnetic torque; means for coupling the rotor to a propeller shaft for transferring the torque from the rotor to the shaft, and means for detecting the angle of the shaft; a current control means for receiving a current control signal and for employing pulse width modulation to control the source of electrical current; the current control means including means for storing compensation information related to torque variations that are a function of shaft angle; the current control means further including means connected and responsive to the shaft angle detecting means for selecting the compensation information as a function of shaft angle and means for combining the compensation information with the current control signal to control the source of electrical current such that the torque variations that are a function of shaft angle are minimized; and wherein the means for coupling the rotor to the propeller shaft includes means within the motor for isolating the shaft from sound produced by the motor.

Dade, T.B.; Leiding, K.W.; Mongeau, P.P.; Piercey, M.S.

1993-07-20T23:59:59.000Z

499

Jones Electric Moho Page 1 ImagingandobservingtheElectricalMoho  

E-Print Network (OSTI)

Jones Electric Moho Page 1 ImagingandobservingtheElectricalMoho Alan G. Jones Dublin Institute version: 18 July, 2012 Revised version: 06 February 2013 Keywords: Moho, electrical Moho, electrical conductivity, electrical resistivity, crustmantle boundary #12;Jones Electric Moho Page 2 Abstract

Jones, Alan G.

500

Introduction to Modified Gravity: From the Cosmic Speedup Problem to Quantum Gravity Phenomenology  

E-Print Network (OSTI)

These notes represent a summary of the introductory part of a course on modified gravity delivered at several Spanish Universities (Granada, Valencia, and Valladolid), at the University of Wisconsin-Milwaukee (WI, USA), and at the Karl-Franzens Universitaet (Graz, Austria) during the period 2008-2011. We begin with a discussion of the classical Newtonian framework and how special relativity boosted the interest on new theories of gravity. Then we focus on Nordstrom's scalar theories of gravity and their influence on Einstein's theory of general relativity. We comment on the meaning of the Einstein equivalence principle and its implications for the construction of alternative theories of gravity. We present the cosmic speedup problem and how $f(R)$ theories can be constrained attending to their weak-field behavior. We conclude by showing that Palatini f(R) and f(R,Q) theories can be used to address different aspects of quantum gravity phenomenology and singularity problems.

Gonzalo J. Olmo

2011-12-09T23:59:59.000Z