Powered by Deep Web Technologies
Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area (Redirected from Grass Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Microseisms in geothermal exploration: studies in Grass Valley, Nevada  

DOE Green Energy (OSTI)

Frequency-wavenumber (f-k) spectra of seismic noise in the bands 1 less than or equal to f less than or equal to 10 Hz in frequency and parallel bar k parallel bar less than or equal to 35.7 cycles/km in wavenumber, measured at several places in Grass Valley, Nevada, exhibit numerous features which can be correlated with variations in surface geology and sources associated with hot spring activity. Exploration techniques for geothermal reservoirs, based upon the spatial distribution of the amplitude and frequency characteristics of short-period seismic noise, are applied and evaluated in a field program at a potential geothermal area in Grass Valley, Nevada. A detailed investigation of the spatial and temporal characteristics of the noise field was made to guide subsequent data acquisition and processing. Contour maps of normalized noise-level derived from carefully sampled data are dominated by the hot spring noise source and the generally high noise levels outlining the regions of thick alluvium. Major faults are evident when they produce a shallow lateral contrast in rock properties. Conventional seismic noise mapping techniques cannot differentiate noise anomalies due to buried seismic sources from those due to shallow geological effects. The noise radiating from a deep reservoir ought to be evident as body waves of high phase velocity with time-invariant source azimuth. A small two-dimensional array was placed at 16 locations in the region to map propagation parameters. The f-k spectra reveal local shallow sources, but no evidence for a significant body wave component in the noise field was found. With proper data sampling, array processing provides a powerful method for mapping the horizontal component of the vector phase velocity of the noise field. In Grass Valley, and probably in most areas, the 2 to 10 Hz microseismic field is predominantly fundamental mode Rayleigh waves controlled by the very shallow structure.

Liaw, A.L.C.

1977-11-01T23:59:59.000Z

4

MICROSEISMS IN GEOTHERMAL EXPLORATION: STUDIES IN GRASS VALLEY, NEVADA  

E-Print Network (OSTI)

period seismic noise (T>30 sec) . . . 2.5 Geothermal ground226. Clacy, G.R.T. ? 1968, Geothermal ground noise amplitudestudies at the Cos0 geothermal area, China Lake, California:

Liaw, A.L.C.

2011-01-01T23:59:59.000Z

5

Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open  

Open Energy Info (EERE)

Grass Valley Area (Morrison, Et Al., 1979) Grass Valley Area (Morrison, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) Exploration Activity Details Location Grass Valley Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes The attempt to carry out a detailed interpretation of a magnetotelluric survey has demonstrated some fundamental problems that must be addressed in future surveys and in future research. (see paper conclusions) References H. Frank Morrison, K i Ha Lee, Gary Oppliger, Abhi jit De (1979) Magnetotelluric Studies In Grass Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Grass_Valley_Area_(Morrison,_Et_Al.,_1979)&oldid=387832"

6

Geology and thermal regime, geothermal test USA No. 11-36, Grass Valley, Nevada  

DOE Green Energy (OSTI)

This report summarizes the results of drilling of an 8,565 foot geothermal test near Leach Hot Springs, Pershing County, Nevada, by Sunoco Energy Development Company. USA No.11-36 is located 500 feet south and 500 feet east of the northwest corner of Section 36, T. 32 N., R. 38 E (Mount Diablo Meridian), elevation 4,573 feet. It was drilled between May 15 and July 2, 1980. USA No.11-36 was deemed unsuccessful, having encountered no temperature higher than 270 F and no significant permeability, and was plugged and abandoned without testing prior to releasing the rig.

Wilde, Walter R.; Koenig, James B.

1980-08-01T23:59:59.000Z

7

Application of heat-flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada  

DOE Green Energy (OSTI)

A total of 82 holes ranging in depth from 18 to 400 meters were drilled for thermal and hydrologic studies in a 200 km/sup 2/ area of Grass Valley, Nevada, near Leach Hot Springs. Outside the immediate area of Leach Hot Springs, heat flow ranges from 1 to 6.5 hfu with a mean of 2.4 hfu (1 hfu = 10/sup -6/ cal cm/sup 2/ s/sup -1/ = 41.8 mWm/sup -2/). Within 2 km of the springs, conductive heat flow ranges between 1.6 and more than 70 hfu averaging 13.6 hfu. Besides the conspicuous thermal anomaly associated with the hot springs, two additional anomalies were identified. One is associated with faults bounding the western margin of the Tobin Range near Panther Canyon, and the other is near the middle of Grass Valley about 5 km SSW of Leach Hot Springs. The mid-valley anomaly appears to be caused by hydrothermal circulation in a bedrock horst beneath about 375 meters of impermeable valley sediments. If the convective and conductive heat discharge within 2 km of the Leach Hot Springs is averaged over the entire hydrologic system (including areas of recharge), the combined heat flux from this part of Grass Valley is about 3 hfu, consistent with the average regional conductive heat flow in the Battle Mountain High. The hydrothermal system can be interpreted as being in a stationary stable phase sustained by high regional heat flow, and no localized crustal heat sources (other than hydrothermal convection to depths of a few kilometers) need be invoked to explain the existence of Leach Hot Springs.

Sass, J.H.; Ziagos, J.P.; Wollenberg, H.A.; Munroe, R.J.; di Somma, D.E.; Lachenbruch, A.H.

1977-01-01T23:59:59.000Z

8

Magnetotelluric Studies In Grass Valley, Nevada | Open Energy Information  

Open Energy Info (EERE)

Studies In Grass Valley, Nevada Studies In Grass Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Magnetotelluric Studies In Grass Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A program of detail magnetotelluric soundings was initiated in 1974 in Green Valley, Nevada, as part of the Lawrence Berkeley Laboratory's major study of techniques for geothermal exploration in north central Nevada. The magnetotelluric program had three main goals; the determination of resistivity distribution at depths greater than that conveniently measured with other techniques; a comparison of the interpreted resistivity at shallow depth with the results of the other techniques ; and the evaluation of the SQUID or Josephson effect magnetometer i n practical

9

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

10

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

11

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

12

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Facility Dixie Valley Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Facility General Information Name Dixie Valley Geothermal Facility Facility Dixie Valley Sector Geothermal energy Location Information Location Dixie Valley, Nevada Coordinates 39.966973991529°, -117.85519123077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966973991529,"lon":-117.85519123077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Dixie Valley Geothermal Field | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley Geothermal Field Citation Online Nevada Encyclopedia. Dixie...

14

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Wisian & Blackwell, 2004)...

15

Direct-Current Resistivity At Dixie Valley Geothermal Field Area...  

Open Energy Info (EERE)

Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field...

16

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

17

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

18

NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS  

E-Print Network (OSTI)

School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

Goldstein, N.E.

2011-01-01T23:59:59.000Z

19

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

20

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

New River Geothermal Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal...

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

22

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

23

Magnetotelluric studies in Grass Valley, Nevada  

DOE Green Energy (OSTI)

A program of detailed magnetotelluric soundings was initiated in 1974 in Green Valley, Nevada, as part of the Lawrence Berkeley Laboratory's major study of techniques for geothermal exploration in north central Nevada. The magnetotelluric program had three main goals; the determination of resistivity distribution at depths greater than that conveniently measured with other techniques; a comparison of the interpreted resistivity at shallow depth with the results of the other techniques; and the evaluation of the SQUID or Josephson effect magnetometer in practical field surveys. In addition, new numerical models were developed so that interpretation could be carried out in terms of fairly complex two-dimensional models.

Morrison, H.F.; Lee, K.H.; Oppliger, G.; Dey, A.

1979-01-01T23:59:59.000Z

24

Low frequency electromagnetic prospecting system. [Grass Valley, KGRA  

DOE Green Energy (OSTI)

A prototype portable electromagnetic sounding system was assembled and depth sounding survey was conducted in Grass Valley, Nevada, as a part of a program to evaluate geophysical techniques in geothermal exploration. A horizontal loop transmitter of radius 50 meters operating between .01 Hz and 100 Hz was used in conjunction with a SQUID magnetometer. A digital synchronous detector was used for on site processing of magnetometer output. This detector allowed useful data acquisition with transmitter-receiver separation of up to 2 km with power requirements of less than 72 watts. Conductive sediments (1 to 10 ohm-m) of thicknesses of up to 1.5 km were well resolved with this system, and the interpreted sections compared very well with dc resistivity measurements made with much heavier equipment and larger arrays in the same area.

Jain, B.K.

1978-04-01T23:59:59.000Z

25

Geothermal resource investigations, Imperial Valley, California. Status report  

DOE Green Energy (OSTI)

The discussion is presented under the following chapter titles: geothermal resource investigations, Imperial Valley, California; the source of geothermal heat; status of geothermal resources (worldwide); geothermal aspects of Imperial Valley, California; potential geothermal development in Imperial Valley; environmental considerations; and proposed plan for development. (JGB)

Not Available

1971-04-01T23:59:59.000Z

26

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

DOE Green Energy (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

27

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,  

Open Energy Info (EERE)

Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Citation Gabriel L. Plank. 1995. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada. Geothermal Resources Council Transactions. 19: (!) . Retrieved from "http://en.openei.org/w/index.php?title=Structure,_Stratigraphy,_and_Tectonics_of_the_Dixie_Valley_Geothermal_Site,_Dixie_Valley,_Nevada&oldid=682622"

28

Sierra Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sierra Valley Geothermal Area Sierra Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Sierra Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.71166667,"lon":-120.3216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL...

30

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details...

31

Aerial Photography At Dixie Valley Geothermal Field Area (Wesnousky...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

32

Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

33

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009)...

34

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

35

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration...

36

Clayton Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Clayton Valley Geothermal Project Clayton Valley Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Clayton Valley Geothermal Project Project Location Information Coordinates 37.755°, -117.63472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.755,"lon":-117.63472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

38

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

In Dixie Valley, Nevada Retrieved from "http:en.openei.orgwindex.php?titleGroundGravitySurveyAtDixieValleyGeothermalFieldArea(Blackwell,EtAl.,2009)&oldid38834...

39

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area (Redirected from Dixie Valley Geothermal Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Temperature-gradient and heat flow data, Grass Valley, Nevada  

DOE Green Energy (OSTI)

A series of 16 shallow and intermediate-depth temperature-gradient holes were drilled for Sunoco Energy Development Co. in Grass Valley, Pershing County, Nevada, on leases held by Aminoil USA, Inc., under the cost-sharing industry-linked program of the Department of Energy. Thirteen shallow (85-152 m) and 3 intermediate-depth (360-457 m) holes were completed and logged during the period June through September, 1979. The locations of these holes and of pre-existing temperature-gradient holes are shown on plate 1. This report constitutes a final data transmittal and disclosure of results. The drilling subcontractor was Southwest Drilling and Exploration, Inc. of Central, Utah. They provided a Gardner-Denver 15W rig, a 3-man crew, and supporting equipment. A l l holes were drilled with mud as the circulating medium. Drilling histories for each hole are summarized in table 1. GeothermEx, Inc. performed on-site geological descriptions of the cuttings; obtained several temperature profiles for each hole, including an equilibrium profile taken 23 days or more after cessation of drilling; selected samples for thermal conductivity measurements; integrated temperature, temperature-gradient, and heat-flow data obtained in this project with published values; and prepared this report.

Koenig, James B.; Gardner, Murray C.

1979-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Little Valley Geothermal Area Little Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Hydrothermal system in Southern Grass Valley, Pershing County, Nevada  

DOE Green Energy (OSTI)

Southern Grass Valley is a fairly typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163 to 176/sup 0/C. Results of geologic, hydrologic, geophysical and geochemical investigations are discussed in an attempt to construct an internally consistent model of the system.

Welch, A.H.; Sorey, M.L.; Olmsted, F.H.

1981-01-01T23:59:59.000Z

44

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Little Valley Geothermal Area (Redirected from Little Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Whirlwind Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Whirlwind Valley Geothermal Project Whirlwind Valley Geothermal Project Project Location Information Coordinates 39.4375°, -113.87583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4375,"lon":-113.87583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

High Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

High Valley Geothermal Project High Valley Geothermal Project Project Location Information Coordinates 38.863611111111°, -122.80138888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.863611111111,"lon":-122.80138888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Dixie Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Project Dixie Valley Geothermal Project Project Location Information Coordinates 39.7223036°, -118.0616895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7223036,"lon":-118.0616895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

North Valley Geothermal Project North Valley Geothermal Project Project Location Information Coordinates 39.830833333333°, -119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.830833333333,"lon":-119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

50

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical  

Open Energy Info (EERE)

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Details Activities (0) Areas (0) Regions (0) Abstract: This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigations of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360°C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by

51

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Railroad Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Railroad Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.434,"lon":-115.529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Regional hydrology of the Dixie Valley geothermal field, Nevada...  

Open Energy Info (EERE)

Counc, 1999 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary...

53

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...  

Open Energy Info (EERE)

1995 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,...

54

Egs Exploration Methodology Project Using the Dixie Valley Geothermal...  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

55

An investigation of the Dixie Valley geothermal field, Nevada...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using...

56

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are...

57

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit History Facebook icon Twitter icon Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search...

58

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 2002 a high-resolution...

59

Cuttings Analysis At Imperial Valley Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Imperial Valley Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Imperial Valley Geothermal Area (1976) Exploration Activity Details Location Imperial Valley Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters

60

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An investigation of the Dixie Valley geothermal field, Nevada, using  

Open Energy Info (EERE)

investigation of the Dixie Valley geothermal field, Nevada, using investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Author Marshall J. Reed Conference Proceedings, 32nd Workshop on Geothermal Reservoir Engineering; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Citation Marshall J. Reed. 2007. An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests. In:

62

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Et Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes Geologic mapping from air photos in some places clearly located the structures in the valley and hence is very site specific. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388817

63

Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Hyperspectral data was also used to successfully map soil-mineral anomalies that are structurally related in Dixie Valley, Nevada. In the area of the power plant, 20 m spatial resolution AVIRIS data were used. For Dixie Meadows, Nevada, 3 m spatial resolution HyVista HyMap hyperspectral data

64

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area (Redirected from Valley Of Ten Thousand Smokes Region Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

65

Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv | Open  

Open Energy Info (EERE)

Sensing For Geothermal Exploration Over Buffalo Valley, Nv Sensing For Geothermal Exploration Over Buffalo Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Remote sensing is a useful tool for identifying the surface expression of geothermal systems based on characteristic mineral assemblages that result from hydrothermal alteration (Kratt et al., 2004; Vaughan et al., 2005). Buffalo Valley in Pershing and Lander Counties, Nevada, is an area of high potential for geothermal energy production (Shevenell et al., 2004). Geothermal heat is expressed by several hot springs with surface temperatures of up to 79°C (Olmsted et al., 1975). The hot springs and a chain of Quaternary cinder cones appear to be

66

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area (Redirected from Walker Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

67

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

68

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

69

Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA  

E-Print Network (OSTI)

Energy Sciences and Office of Geothermal Technologies underconcentrations in Long Valley geothermal waters discriminateand wells from the geothermal field and a nearby exploratory

Brown, Shaun

2010-01-01T23:59:59.000Z

70

Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy  

Open Energy Info (EERE)

Valley Geothermal Project Thermal Gradient Wells Valley Geothermal Project Thermal Gradient Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Pumpernickel Valley Geothermal Project Thermal Gradient Wells Details Activities (4) Areas (1) Regions (0) Abstract: The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault,

71

Resistivity studies of the Imperial Valley geothermal area, California |  

Open Energy Info (EERE)

Resistivity studies of the Imperial Valley geothermal area, California Resistivity studies of the Imperial Valley geothermal area, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Resistivity studies of the Imperial Valley geothermal area, California Abstract Electrical resistivity has been employed for mapping thehnperial Valley of California as part of a multi-disciplinaryapproach to assess its geothermal potential. Vertical and lateralresistivity changes were determined from Schlumherger deptilsoundings with effective probing depths up to 8000 ft.Chie/ conclusions were: (1) Known geothermal anomaliesappear as residual resistivity lows superimposed on the regionalgradient which decreases northwest.ward from the southeastcorner of the Imperial Valley, near the Colorado River, tovalues about two orders of magnitude lower at the Salton

72

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Exploration Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

73

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References

74

Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Exploration Activity Details Location Rose Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

75

Regional hydrology of the Dixie Valley geothermal field, Nevada-  

Open Energy Info (EERE)

hydrology of the Dixie Valley geothermal field, Nevada- hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Authors Gregory Nimz, Cathy Janik, Fraser Goff, Charles Dunlap, Mark Huebner, Dale Counce and Stuart D. Johnson Published Journal Trans Geotherm Resour Counc, 1999 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Citation Gregory Nimz,Cathy Janik,Fraser Goff,Charles Dunlap,Mark Huebner,Dale

76

Compound and Elemental Analysis At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Dixie Valley Compound and Elemental Analysis At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

77

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Abstract Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in

78

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Using a simple one-dimensional steady-state fluid flow model, the helium content and isotopic composition imply vertical fluid flow rates from the mantle of _7 mm/yr. This is a strict lower limit to the fluid flow rate: the one-dimensional model does not consider diffusive re-distribution of helium or mixing with water containing only a crustal helium component and

79

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The high resolution aeromagnetic technique was very successful along the east side of the valley, but less along the geothermally important west side. Detailed correlation will be investigated when the high resolution data are available. The magnetic results will also vary from area to area depending on the local rock types more than in the other techniques. Nonetheless important information on the style of the faulting is contained in the data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of

80

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Facility Coachella Valley Fish Farm Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692°, -116.0772244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

82

Possible Magmatic Input to the Dixie Valley Geothermal Field, and  

Open Energy Info (EERE)

Possible Magmatic Input to the Dixie Valley Geothermal Field, and Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Abstract Magnetotelluric (MT) profiling in northwestern Nevadais used to test hypotheses on the main sources of heat andhydrothermal fluid for the Dixie Valley-Central NevadaSeismic Belt area. The transect reveals families of resistivitystructures commonly dominated by steeply-dipping features,some of which may be of key geothermal significance. Mostnotably, 2-D inversion

83

Indian Valley Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Valley Hospital Space Heating Low Temperature Geothermal Facility Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Indian Valley Hospital Sector Geothermal energy Type Space Heating Location Greenville, California Coordinates 40.1396126°, -120.9510675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

84

Langel Valley Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Langel Valley Space Heating Low Temperature Geothermal Facility Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel Valley Sector Geothermal energy Type Space Heating Location Bonanza, Oregon Coordinates 42.1987607°, -121.4061076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

85

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal...  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

86

Data Acquisition-Manipulation At Imperial Valley Geothermal Area (1982) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Data Acquisition-Manipulation At Imperial Valley Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Imperial Valley Geothermal Area (1982) Exploration Activity Details Location Imperial Valley Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components

87

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Power Plants (0) Projects (0) Activities (1) NEPA(0) Geothermal Area Profile Location Nevada Exploration Region Northern Basin and Range Geothermal Region GEA Development Phase...

88

Egs Exploration Methodology Project Using the Dixie Valley Geothermal  

Open Energy Info (EERE)

Egs Exploration Methodology Project Using the Dixie Valley Geothermal Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Authors Joe Iovenitti, Jon Sainsbury, Ileana Tibuleac, Robert Karlin, Philip Wannamaker, Virginia Maris, David Blackwell, Mahesh Thakur, Fletcher H. Ibser, Jennifer Lewicki, B. Mack. Kennedy and Michael Swyer Conference Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University; Stanford, California; 2013 Published Publisher Not Provided, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Egs Exploration Methodology Project Using the

89

Update On Geothermal Exploration At Fort Bidwell, Surprise Valley  

Open Energy Info (EERE)

Geothermal Exploration At Fort Bidwell, Surprise Valley Geothermal Exploration At Fort Bidwell, Surprise Valley California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Update On Geothermal Exploration At Fort Bidwell, Surprise Valley California Details Activities (1) Areas (1) Regions (0) Abstract: A fourth exploration well within Fort Bidwell Indian Community (FBIC) lands has been successfully drilled to a total depth of 4,670 feet. Mud return temperatures and cuttings analysis are consistent with the hydrothermal model on which the well location was based. Wireline surveys have encountered an obstruction just below the casing shoe, and further evaluation of this well and resource awaits clean-out and testing activities. Author(s): Joe LaFleur, Anna Carter, Karen Moore, Ben Barker, Paul

90

Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History  

Open Energy Info (EERE)

in Dixie Valley, Nevada- Case History in Dixie Valley, Nevada- Case History Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History Abstract After several years of reconnaissance geology in Nevada, an exploration program to evaluate the geothermal resource potential of Dixie Valley was begun in 1974. Between 1974 and 1978 Sunoco Energy Development Co. conducted two heat-flow drilling programs, a resistivity survey, a seismic emission study, a ground noise survey, two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led to the acquisition of geothermal resource leases from fee property owners,

91

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

92

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Aeromagnetic Survey At Dixie Valley Geothermal Field Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 2002 a high-resolution aeromagnetic survey was conducted over a 940 km2 area extending from Dixie Meadows northeastward to the Sou Hills, and from the eastern front of the Stillwater Range to the western edge of the Clan Alpine Range (Grauch, 2002). The resulting aeromagnetic map is described and discussed by Smith et al. (2002). Many of the shallow faults revealed by the aeromagnetic data (Figure 3) coincide with faults mapped based on surface expression on aerial photographs (Smith et al., 2001). However, in

93

Valley Fish Farms Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Fish Farms Aquaculture Low Temperature Geothermal Facility Fish Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Valley Fish Farms Aquaculture Low Temperature Geothermal Facility Facility Valley Fish Farms Sector Geothermal energy Type Aquaculture Location Imperial, California Coordinates 32.8475528°, -115.5694391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

94

Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hospital Space Heating Low Temperature Geothermal Facility Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Surprise Valley Hospital Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606°, -120.1732781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

95

Hyder Valley Aquaculture Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Aquaculture Low Temperature Geothermal Facility Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Valley Aquaculture Low Temperature Geothermal Facility Facility Hyder Valley Sector Geothermal energy Type Aquaculture Location Gila Bend, Arizona Coordinates 32.9478236°, -112.7168305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

96

Geothermal chemistry/exploration investigations at Dixie Valley, Nevada  

DOE Green Energy (OSTI)

Dixie Valley geothermal field has continuously produced electric power since 1988. At the request of Oxbow Geothermal Corp. and the US Department of Energy, the authors have organized an inter-agency team of investigators to examine several topics of concern regarding management and behavior of the resource. These topics include scaling of the injection system, recharge of the reservoir, geochemical monitoring of the reservoir, and development of increased fumarolic activity north of the power plant.

Goff, F.; Bergfeld, D.; Counce, D. [Los Alamos National Lab., NM (United States); Janik, C.J. [Geological Survey (United States); Bruton, C.J.; Nimz, G. [Lawrence Livermore National Lab., CA (United States)

1998-12-01T23:59:59.000Z

97

Buffalo Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Geothermal Area Buffalo Valley Hot Springs Geothermal Area (Redirected from Buffalo Valley Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Buffalo Valley Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.368333,"lon":-117.325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Long Valley Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area (Redirected from Long Valley Caldera Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (3) 10 Exploration Activities (50) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network (OSTI)

of a tracer test at Dixie Valley, Nevada, Proc. 22 ndand footwall faulting at Dixie Valley, Nevada, Geothermalthe shallow thermal regime at Dixie Valley geothermal field,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

100

Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References Steven Wesnousky, S. John Caskey, John W. Bell (2003) Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Dixie_Valley_Geothermal_Field_Area_(Wesnousky,_Et_Al.,_2003)&oldid=510736" Categories: Exploration Activities DOE Funded Activities What links here

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal hydrology of Warner Valley, Oregon: a reconnaissance study  

DOE Green Energy (OSTI)

Warner Valley and its southern extension, Coleman Valley, are two of several high-desert valleys in the Basin and Range province of south-central Oregon that contain thermal waters. At least 20 thermal springs, defined as having temperatures of 20/sup 0/C or more, issue from Tertiary basaltic flows and tuffs in and near the valleys. Many shallow wells also produce thermal waters. The highest measured temperature is 127/sup 0/C, reported from a well known as Crump geyser, at a depth of 200 meters. The hottest spring, located near Crump geyser, has a surface temperature of 78/sup 0/C. The occurrence of these thermal waters is closely related to faults and fault intersections in the graben and horst structure of the valleys. Chemical analyses show that the thermal waters are of two types: sodium chloride and sodium bicarbonate waters. Chemical indicators show that the geothermal system is a hot-water rather than a vapor-dominated system. Conductive heat flow in areas of the valley unaffected by hydrothermal convection is probably about 75 milliwatts per square meter. The normal thermal gradient in valley-fill dpeosits in these areas may be about 40/sup 0/C per kilometer. Geothermometers and mixing models indicate that temperatures of equilibration are at least 170/sup 0/C for the thermal components of the hotter waters. The size and location of geothermal reservoirs are unknown.

Sammel, E.A.; Craig, R.W.

1981-01-01T23:59:59.000Z

102

A model for the shallow thermal regime at Dixie Valley geothermal field |  

Open Energy Info (EERE)

A model for the shallow thermal regime at Dixie Valley geothermal field A model for the shallow thermal regime at Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A model for the shallow thermal regime at Dixie Valley geothermal field Authors R. G. Allis, Stuart D. Johnson, Gregory D. Nash and Dick Benoit Published Journal TRANSACTIONS-GEOTHERMAL RESOURCES COUNCIL, 1999 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for A model for the shallow thermal regime at Dixie Valley geothermal field Citation R. G. Allis,Stuart D. Johnson,Gregory D. Nash,Dick Benoit. 1999. A model for the shallow thermal regime at Dixie Valley geothermal field. TRANSACTIONS-GEOTHERMAL RESOURCES COUNCIL. 23:493-498. Retrieved from "http://en.openei.org/w/index.php?title=A_model_for_the_shallow_thermal_regime_at_Dixie_Valley_geothermal_field&oldid=682587"

103

Smith Creek Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Smith Creek Valley Geothermal Area Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3128,"lon":-117.5493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Buffalo Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Geothermal Area Buffalo Valley Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Buffalo Valley Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.368333,"lon":-117.325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Fish Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fish Lake Valley Geothermal Area Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.86,"lon":-118.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Long Valley Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (3) 10 Exploration Activities (50) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

West Valley Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valley Reservoir Geothermal Area Valley Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: West Valley Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.19166667,"lon":-120.385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Indian Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valley Hot Springs Geothermal Area Valley Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Indian Valley Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.14139,"lon":-120.93389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the

110

Fish Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.86,"lon":-118.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Cooperative geochemical investigation of geothermal resources in the Imperial Valley and Yuma areas. Final report  

DOE Green Energy (OSTI)

Preliminary studies indicate that the Imperial Valley has a large geothermal potential. In order to delineate additional geothermal systems a chemical and isotopic investigation of samples from water wells, springs, and geothermal wells in the Imperial Valley and Yuma areas was conducted. Na, K, and Ca concentrations of nearly 200 well water, spring water, hot spring, and geothermal fluid samples from the Imperial Valley area were measured by atomic absorption spectrophotometry. Fournier and Truesdell's function was determined for each water sample. Suspected geothermal areas are identified. Hydrogen and oxygen isotope abundances were determined in order to determine and to identify the source of the water in the Mesa geothermal system. (JGB)

Coplen, T.B.

1973-10-01T23:59:59.000Z

112

Dixie Valley - Geothermal Development in the Basin and Range | Open Energy  

Open Energy Info (EERE)

- Geothermal Development in the Basin and Range - Geothermal Development in the Basin and Range Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Dixie Valley - Geothermal Development in the Basin and Range Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Dixie Valley - Geothermal Development in the Basin and Range Citation Dixie Valley - Geothermal Development in the Basin and Range [Internet]. [updated 2013/01/01;cited 2013/01/01]. Available from: http://www.geothermex.com/projects-dixie-valley.php Retrieved from "http://en.openei.org/w/index.php?title=Dixie_Valley_-_Geothermal_Development_in_the_Basin_and_Range&oldid=682561" Categories: References Geothermal References Uncited

113

Climatology of air quality of Long Valley Geothermal Resource Area  

DOE Green Energy (OSTI)

The Long Valley Known Geothermal Resource Area is one of the more promising regions for development of a large-scale geothermal energy center. This report discusses the climatology and air quality of the area. Details are given on the temperatures, temperature inversions, and winds. Estimates are presented for the present air quality and future air quality during and following development of the resource area. Also discussed are project impact from added pollutants, noise, and precipitation augmentation. The major deleterious effects from development of the Long Valley Geothermal Resource Area appear to be due to increased dust loading during and following construction, and noise from production testing and potential well blowouts. Increased pollution from release of hydrogen sulfide and other pollutants associated with hot water geothermal wells seems to present no problems with regard to surrounding vegetation, potential contamination of Lake Crowley, and odor problems in nearby communities. Precipitation augmentation will probably increase the water level of Lake Crowley, at the expense of possible additional fogging and icing of nearby highways.

Peterson, K.R.; Palmer, T.Y.

1977-06-01T23:59:59.000Z

114

Surprise Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Surprise Valley Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Surprise Valley Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.53333,"lon":-120.07667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are not as site specific as the seismic, but put the major parts of the structure in their proper location and places vital constraints on the possible interpretations of the seismic data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388459

116

Electromagnetic soundings for geothermal resources in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field to map the subsurface resistivity in the geothermal field and the surrounding area. The EM survey, consisting of 19 frequency-domain depth soundings made with the LBL EM-60 system, was undertaken to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 km. Lithologic and well log resistivity information from well 66-21 show that for EM interpretation the section can be reduced to a three-layer model consisting of moderately resistive alluvial sediments, low resistivity lacustrine sediments, and high resistivity Tertiary volcanics and older rocks. This three layer model was used as a starting point in interpreting EM sounding data. Variations in resistivity and thickness provided structural information and clues to the accumulation of geothermal fluids. The interpreted soundings reveal a 1 to 1.5-km-deep low-resistivity zone spatially associated with the geothermal field. The shallow depth suggests that the zone detected is either fluid leakage or hydrothermal alteration, rather than high-temperature reservoir fluids. The position of the low-resistivity zone also conforms to changes in depth to the high resistivity basal layer, suggesting that faulting is a control on the location of productive intervals. 10 refs., 7 figs.

Wilt, M.J.; Goldstein, N.E.

1985-03-01T23:59:59.000Z

117

Geothermal assessment of a portion of the Escalante Valley, Utah  

DOE Green Energy (OSTI)

In February 1981, the Utah geological and Mineral Survey (UGMS) contracted with the Department of Energy (DOE) to evaluate the geothermal potential of an area proposed for a possible Missile Experimental (MX) operations base in the Escalante Valley region of Utah. Exploration techniques employed included a temperature survey, chemical analysis of springs and wells, and temperature-depth measurements in holes of opportunity. The highest water temperatures recorded in the area, with the exceptions of a 60/sup 0/C (140/sup 0/F) geothermal exploration hole and Thermo Hot Springs (42 to 78/sup 0/C or 108 to 172/sup 0/F), were 27 and 28/sup 0/C (81 and 82/sup 0/F) at two wells located northwest of Zane, Utah.

Klauk, R.H.; Gourley, C.

1983-12-01T23:59:59.000Z

118

Exploration ofr geothermal resources in Dixie Valley, Nevada  

Science Conference Proceedings (OSTI)

A case history of SUNEDCO's exploratory efforts, which ultimately led to the drilling and discovery of the Dixie Valley goethermal field, is presented. The geochemistry from three active lot springs in the area: Dixie Hot Springs, South Hot Springs, and Hyder Hot Springs, was examined. Two heat flow drilling programs were conducted at Dixie Hot Springs consisting of 45 temperature gradient holes ranging in depth from 30 to 1500 ft. From this program a heat-flow anomaly was mapped extending along the Stillwater Range front in which temperature gradients are greater than 100/sup 0/c/Km. in 1978, the number 1 SW Lamb well was drilled on a 152 acre farmout from Chevron. The well was completed as a geothermal producer in a zone of fractured volcanic rocks. Since then, five additional geothermal producing wells were completed within the anomalous area. (MJF)

Parchman, W.L.; Knox, J.W.

1981-06-01T23:59:59.000Z

119

Electromagnetic soundings over a geothermal reservoir in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field with the purpose of mapping the subsurface resistivity in the geothermal field and its surroundings. The EM survey consisted of 19 frequency-domain depth soundings made with the EM-60 system using three separate horizontal-loop transmitters, and was designed to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 k. Most sounding curves could be fitted to three-layer resistivity models. The surface layer is moderately conductive (10 to 15 ohm-m), has a maximum thickness of 500 m, and consists mainly of alluvial fan and lake sediments. More conductive zones are associated with hydrothermally altered rocks; a resistivity high may be associated with siliceous hot spring deposits. The conductive second layer (2 to 5 ohm-m) varies in thickness from 400 to 800 m and thickens toward the center of the valley. This layer probably consists of lacustrine sediments saturated with saline waters. Local resistivity lows observed in the second layer may be related to elevated subsurface temperatures. This layer may act as a cap rock for the geothermal system. Resistivities of the third layer are high (50 to 100 ohm-m) except in a narrow 5-km band paralleling the range front. This low-resistivity zone, within volcanic rocks, correlates well in depth and location with reported zones of geothermal fluid production. It also seems to correlate with the western margin of a concealed graben structure previously inferred from other geophysical data.

Wilt, M.J.; Goldstein, N.E.

1983-04-01T23:59:59.000Z

120

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mercury In Soils Of The Long Valley, California, Geothermal System | Open  

Open Energy Info (EERE)

In Soils Of The Long Valley, California, Geothermal System In Soils Of The Long Valley, California, Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Mercury In Soils Of The Long Valley, California, Geothermal System Details Activities (3) Areas (1) Regions (0) Abstract: An evaluation of the Hg distribution in soils of the Long Valley, California, geothermal area, was made. A1-horizon soil samples were collected utilizing a grid system from the resurgent dome area and the Long Valley area. In addition, samples were collected in five traverses across three fault systems and four traverses across east-west-oriented gullies to measure the importance of aspect. Additional samples were collected in an analysis of variance design to evaluate natural variability in soil composition with sampling interval distance. The primary objectives of this

122

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area (Kennedy & Van Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Dixie Valley study suggests that helium isotopes may provide a new tool for mapping zones of deep permeability and therefore the potential for high fluid temperatures. The permeable zones are identified by local enrichments in 3He relative to a regional helium isotope trend. More work needs to be done, but it appears that helium isotopes may provide the best and perhaps

123

Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Dixie Valley Geothermal Field Area Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

124

Map showing geothermal resources of The Lake City-Surprise Valley Known Geothermal Resource Area, Modoc County, California  

DOE Green Energy (OSTI)

Geothermal data are summarized from published and unpublished geophysical, geochemical, and geologic reports on Surprise Valley prepared during the past 26 years. Particular emphasis is placed on a comprehensive structural interpretation of the west half of the valley that is based on map compilation of concealed faults that have been inferred from geophysical methods and exposed faults that can be seen in the field and/or on aerial photographs. The faults apparently control the location of modern geothermal activity.

Not Available

1981-01-01T23:59:59.000Z

125

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

126

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest,  

Open Energy Info (EERE)

Van Soest, Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow

127

Field Mapping At Dixie Valley Geothermal Field Area (Smith, Et Al., 2001) |  

Open Energy Info (EERE)

Et Al., 2001) Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Smith, Et Al., 2001) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References Richard P. Smith, Kenneth W. Wisianz, David D. BlackweIl (2001) Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Dixie_Valley_Geothermal_Field_Area_(Smith,_Et_Al.,_2001)&oldid=510735" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

128

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Deymonaz, Et Al., Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes (1) Assembly and review of relevant published and proprietary literature and previous geothermal investigations in the region; References John Deymonaz, Jeffrey G. Hulen, Gregory D. Nash, Alex Schriener (2008) Esmeralda Energy Company Final Scientific Technical Report, January 2008, Emigrant Slimhole Drilling Project, Doe Gred Iii (De-Fc36-04Go14339) Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Fish_Lake_Valley_Area_(Deymonaz,_Et_Al.,_2008)&oldid=510804"

129

Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney,  

Open Energy Info (EERE)

2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

130

Geothermal resources and conflicting concerns in the Alvord Valley, Oregon: an update  

DOE Green Energy (OSTI)

The geothermal resource potential of the Alvord Valley is among the highest in Oregon. However, environmental concerns, litigation, and administrative requirements have delayed exploration for and development of this resource. Present estimates indicate that deep exploratory drilling may not take place on Federal lands in the Alvord Valley until 1982.

Wassinger, C.E.; Koza, D.M.

1980-01-01T23:59:59.000Z

131

Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Dixie Valley Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity;

132

Geotechnical environmental aspects of geothermal power generation at Herber, Imperial Valley, California  

DOE Green Energy (OSTI)

The feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source was assessed. Here, the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California were investigated. Geology, geophysics, hydrogeology, seismicity and subsidence are discussed in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. Estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds, are discussed.

Not Available

1976-10-01T23:59:59.000Z

133

Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics  

DOE Green Energy (OSTI)

Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

Layton, D. (ed.)

1980-07-01T23:59:59.000Z

134

InSAR At Dixie Valley Geothermal Field Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique InSAR Activity Date Usefulness useful DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data have been processed and an initial interpretation of the results is

135

Seismic refraction investigation of the Salton Sea geothermal area, Imperial Valley, California  

DOE Green Energy (OSTI)

Seven seismic refraction profiles and four long-distance refraction shots have been used to investigate the Salton Sea geothermal area. From these data, two models of the geothermal and adjacent area are proposed. Model 1 proposes a basement high within the geothermal area trending parallel to the axis of the Imperial Valley. Model 2 assumes a horizontal basement in the E-W direction, and proposes a seismic velocity gradient that increases the apparent basement velocity from east to west approximately 15% within the geothermal area. Both models propose basement dip of 3 degrees to the south, yielding a thickness of sediments of 6.6 km near Brawley, California, in the center of the Imperial Valley. Based on offsets inferred in the sedimentary seismic layers of the geothermal area, two NW-SE trending fault zones are proposed.

Frith, R.B.

1978-12-01T23:59:59.000Z

136

Thermodynamic calculations of calcium carbonate scaling in geothermal wells, Dixie Valley geothermal field, U. S. A  

Science Conference Proceedings (OSTI)

Wells in the Dixie Valley geothermal field of central Nevada intercept a fracture-dominated hydrothermal system at depths of 2.5 to 3 km. The reservoir water is a dilute sodium-bicarbonate-chloride type of solution thought to be in equilibrium with quartz, calcite, chlorite, and albite. Fluid sampling and chemical analysis of production during an early flow test gave remarkably low calcium concentrations. Thermodynamic calculations of mineral stability in the presence of the reservoir water indicate that five times the amount of calcium measured in fluid reaching the surface is actually in solution in the reservoir fluid. Approximately 80 percent of the calcium is lost as calcium carbonate scale on the well casing before the fluid reaches the surface. The results of thermodynamic calculations compare well with the scale-volume measurements of Benoit.

Reed, M.J. (Geothermal Technology Div., U.S. Dept. of Energy, Washington, DC (US))

1989-01-01T23:59:59.000Z

137

FINAL REPORT ENHANCED GEOTHERMAL SYSTEMS TECHNOLOGY PHASE II ANIMAS VALLEY, NEW MEXICO  

Science Conference Proceedings (OSTI)

Final Technical Report covering siting, permitting, and drilling two geothermal temperature gradient holes. This report provides a summary of geotechnical and geophysical data that led to the siting, drilling, and completion of 2 temperature gradient holes in the geothermal anomaly at Lightning Dock Known Geothermal Resource Area in the Animas Valley of New Mexico. Included in this report is a summary of institutional factors and data defining the well drilling process and acquiring drilling permits. Data covering the results of the drilling and temperature logging of these two holes are provided. The two gradient holes were sited on federal geothermal leases owned by Lightning Dock Geothermal, Inc. and both holes were drilled into lakebed sediments some distance from the intense shallow geothermal anomaly located in the eastern half of Section 7, Township 25 South, Range 19 West.

Roy A.Cunniff; Roger L. Bowers

2003-12-29T23:59:59.000Z

138

Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California  

DOE Green Energy (OSTI)

The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid ''plumes'' in association with faulting are present within the Sonoma Valley area. A 5.8 km{sup 2} geothermal zone, that parallels the fault trace, is delineated and is perhaps the most favorable area for further investigation and possible geothermal production.

Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

1983-01-01T23:59:59.000Z

139

Saline Valley Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Saline Valley Hot Springs Pool & Spa Low Temperature Geothermal Facility Saline Valley Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Saline Valley Hot Springs Sector Geothermal energy Type Pool and Spa Location Inyo County, California Coordinates 36.3091865°, -117.5495846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

140

Valley View Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Valley View Hot Springs Pool & Spa Low Temperature Geothermal Facility Valley View Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Valley View Hot Springs Sector Geothermal energy Type Pool and Spa Location Villa Grove, Colorado Coordinates 38.248999°, -105.948608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Indian Valley Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Indian Valley Hot Springs Pool & Spa Low Temperature Geothermal Facility Indian Valley Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Indian Valley Hot Springs Sector Geothermal energy Type Pool and Spa Location Greenville, California Coordinates 40.1396126°, -120.9510675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

142

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Blackwell, Et Blackwell, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes "The gravity data are described by (Blackwell et al., 1999; 2002). On a basin-wide scale the gravity low in Dixie Valley is strongly asymmetrical from east to west. The west side is relatively well-defined by rapid horizontal changes in the gravity anomaly value, whereas along the east side horizontal changes are more subdued and often consist of several steps. The horizontal gradient of the gravity field has proved most useful

143

Preliminary investigation of scale formation and fluid chemistry at the Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

The chemistry of geothermal, production, and injection fluids at the Dixie Valley Geothermal Field, Nevada, was characterized to address an ongoing scaling problem and to evaluate the effects of reinjection into the reservoir. Fluids generally followed mixing-dilution trends. Recharge to the Dixie Valley system apparently originates from local sources. The low-pressure brine and injection waters were saturated with respect to amorphous silica, which correlated with the ongoing scaling problem. Local shallow ground water contains about 15% geothermal brine mixed with regional recharge. The elevated Ca, Mg, and HCO{sub 3} content of this water suggests that carbonate precipitation may occur if shallow groundwater is reinjected. Downhole reservoir fluids are close to equilibrium with the latest vein mineral assemblage of wairakite-epidote-quartz-calcite. Reinjection of spent geothermal brine is predicted to affect the region near the wellbore differently than it does the region farther away.

Bruton, C.J.; Counce, D.; Bergfeld, D.; Goff, F.; Johnson, S.D.; Moore, J.N.; Nimz, G.

1997-06-27T23:59:59.000Z

144

Non-electric utilization of geothermal energy in the San Luis Valley, Colorado. Final report  

DOE Green Energy (OSTI)

Information on the geothermal resources of the San Luis Valley, Colorado, has been gathered and reviewed and a preliminary, quantitative assessment of the magnitude and quality of resources present was carried out. Complete process designs were developed for the processes of producing crystal sugar from beets and for malting barley for use in the brewing industry, in each case adapting the processes to use a 302/sup 0/F geothermal water supply as the main process energy source. A parametric design analysis was performed for a major pipeline to be used to ship geothermal water, and thus deliver its heat, out of the San Luis Valley to three major Colorado cities along the eastern threshold of the Rocky Mountains. Cost estimates for capital equipment and energy utilization are presented. The analyses of the two process applications indicate favorable economics for conversion and operation as geothermally-heated plants. A major geothermal water pipeline for this region is seriously limited on achievement of the economy of scale by the physical absence of significant demand for heat energy. Finally, the development and utilization of Colorado's San Luis Valley geothermal groundwaters hold the potential to contribute to the prudent and beneficial management of that area's natural water resources systems.

Vorum, M.; Coury, G.E.; Goering, S.W.; Fritzler, E.A.

1978-02-01T23:59:59.000Z

145

Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada  

DOE Green Energy (OSTI)

The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

1985-01-01T23:59:59.000Z

146

Possible Magmatic Input to the Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

Basin. Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Published Journal 31st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford,...

147

Patterns of geothermal lease acquisition in the Imperial Valley: 1958--1974  

DOE Green Energy (OSTI)

Patterns for the development of geothermal resources in the Imperial Valley are analyzed, with particular consideration of corporate behavior in geothermal development. Actions of the companies were examined over a period of time to discover patterns of involvement, investment, and likelihood of further development. Discussion is presented under the following section headings: research organization; legal aspects; characteristics of development; location of geothermal leases; analysis of major leaseholders; and findings and conclusions. The addendum is entitled Federal Land Lease Sales: An analysis in terms of Lease Acquisition Patterns. The three appendices are: research methodology; a methodological note on the maps; and exploratory drilling sites. (JGB)

Sullivan, M.; McDougal, S.; Van Huntley, F.

1974-08-01T23:59:59.000Z

148

Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17  

DOE Green Energy (OSTI)

The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

149

Geothermal energy potential in the San Luis Valley, Colorado  

DOE Green Energy (OSTI)

The background of the area itself is investigated considering the geography, population, economy, attitudes of residents, and energy demands of the area. The requirements for geothermal energy development are considered, including socio-economic, institutional, and environmental conditions as well as some technical aspects. The current, proposed, and potential geothermal energy developments are described. The summary, conclusions, and methodology are included. (MHR)

Coe, B.A.

1980-01-01T23:59:59.000Z

150

Low-temperature geothermal assessment of the Jordan Valley Salt Lake County, Utah  

DOE Green Energy (OSTI)

Two known low-temperature areas (Warm Springs fault and Crystal Hot Springs) are located in the Jordan Valley, but the primary purpose of this report is to locate other low-temperature resources not previously identified. Geothermal reconnaissance techniques utilized in this study include a temperature survey and chemical analysis of wells and springs, and temperature-depth measurements in holes of opportunity. Also, further site specific gravity modelling for the Warm Springs fault geothermal area and initial modelling for the entire valley were also conducted. Areas identified as having potential low-temperature geothermal resources at depth are: (1) the north-central valley area; (2) an east-west portion of the central valley; and (3) a north-south oriented area extending from Draper to Midvale. Each of these areas exhibits ground-water temperatures 20/sup 0/C or greater. Each area has thermal wells with common ion characteristics similar to both Crystal Hot Springs and the Warm Springs fault geothermal systems. Significant concentrations of Sr, Li, B, and F are present in many of these wells.

Klauk, R.H.

1984-07-01T23:59:59.000Z

151

1974 geothermal field tests at the Niland Reservoir in the Imperial Valley of California  

DOE Green Energy (OSTI)

The phases of the 1974 geothermal field tests at the Niland Reservoir in the Imperial Valley of California are documented. The following tests are included: separator, steam scrubber, steam turbine, heat exchanger, packed heat exchanger, corrosion, chemical cleaning, and control and instrumentation. (MHR)

Not Available

1974-01-01T23:59:59.000Z

152

ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California  

DOE Green Energy (OSTI)

Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

Not Available

1976-01-01T23:59:59.000Z

153

Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range  

DOE Green Energy (OSTI)

The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

Berri, Dulcy A.; Korosec, Michael A.

1983-01-01T23:59:59.000Z

154

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes The seismic reflection data are very useful and can be site specific when a profile is in the right place, but are sparse, very difficult to interpret correctly, and expensive to collect. The velocity values used are uncertain even though there are several sonic logs for the wells. A VSP, Vertical Seismic Profile, survey would significantly improve the precision of the interpretation References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada

155

Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data  

SciTech Connect

Chemical and isotopic analyses of Dixie Valley regional waters indicate several distinct groups ranging in recharge age from Pleistocene (<20 ka) to recent (<50a). Valley groundwater is older than water from perennial springs and artesian wells in adjacent ranges, with Clan Alpine range (east) much younger (most <50a) than Stillwater range (west; most >1000a). Geothermal field fluids ({approximately}12-14 ka) appear derived from water similar in composition to non-thermal groundwater observed today in valley artesian wells (also -14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the ranges, more extensive interaction with deep-seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

Counce, D; Dunlap, C; Goff, F; Huebner, M; Janik, C; Johnson, S; Nimz, G

1999-08-16T23:59:59.000Z

156

Compound and Elemental Analysis At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two. Our...

157

Electromagnetic (EM-60) survey in the Panther Canyon Area, Grass Valley, Nevada  

DOE Green Energy (OSTI)

Eight frequency domain electromagnetic soundings were measured over the Panther Canyon thermal anomaly in Grass Valley, Nevada. The data were collected with Lawrence Berkeley Laboratory's large moment horizontal loop system (EM-60). At the transmitter site located near the center of the thermal anomaly, square wave currents of up to 70 A were impressed into a fourturn 50 m radius coil at frequencies from 0.033 to 500 Hz. At the eight receiver sites, 0.5 to 1.5 km from the loop, magnetic fields were detected with a three-component SQUID magnetometer and vertical and radial magnetic field spectra were calculated. Data were interpreted with a computer program which fit filled spectra and associated ellipse polarization data to one-dimensional resistivity models and results were compared to interpretations from earlier dipole-dipole resistivity measurements. Comparison of these interpretations indicates fairly close agreement between the two, with both models clearly indicating the presence and dimensions of the conductivity anomaly associated with the thermal zone. Although the dc data was better able to resolve the high resistivity bedrock, the EM-data were able to resolve all major features without distortion at shorter transmitter receiver separations and in about one-third of the field time.

Wilt, M.; Goldstein, N.; Stark, M.; Haught, R.

1980-05-01T23:59:59.000Z

158

Seismicity related to geothermal development in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

Ryall, A.S.; Vetter, U.R.

1982-07-08T23:59:59.000Z

159

Geological and geothermal investigation of the lower Wind River valley, southwestern Washington Cascade Range  

DOE Green Energy (OSTI)

The detailed geology of the lower Wind River valley is presented with emphasis on those factors that bear significantly on development of a geothermal resource. The lower Wind River drainage consists primarily of the Ohanapecosh Formation, an Oligocene unit that is recognized across the entire southern Washington Cascade Range. The formation is at least 300 m thick in the Wind River valley area. It consists largely of volcaniclastic sediments, with minor massive pyroclastic flows, volcanic breccias and lava flows. Low grade zeolite facies metamorphism during the Miocene led to formation of hydrothermal minerals in Ohanapecosh strata. Metamorphism probably occurred at less than 180{sup 0}C.

Berri, D.A.; Korosec, M.A.

1983-01-01T23:59:59.000Z

160

Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data  

Science Conference Proceedings (OSTI)

Chemical and isotopic analyses of Dixie Valley regional waters indicate several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids ({approximately}12-14 ka) appear derived from water similar in composition to non-thermal groundwater observed today in valley artesian wells (also -14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the ranges, more extensive interaction with deep-seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

Counce, D; Dunlap, C; Goff, F; Huebner, M; Janik, C; Johnson, S; Nimz, G

1999-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada  

DOE Green Energy (OSTI)

Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

Denton, J.M.; Bell, E.J.; Jodry, R.L.

1980-11-01T23:59:59.000Z

162

Preliminary direct heat geothermal resource assessment of the Tennessee Valley region  

DOE Green Energy (OSTI)

A preliminary appraisal of the direct heat geothermal energy resources of the Tennessee Valley region has been completed. This region includes Kentucky, Tennessee and parts of adjacent states. Intermediate and deep aquifers were selected for study. Basement and Top-of-Knox structure and temperature maps were compiled from oil and gas well data on file at various state geological survey offices. Results of this study indicate that the New Madrid seismic zone is the only area within the region that possesses potential for direct heat utilization. In other areas geothermal energy is either too deep for economical extraction or it will not be able to compete with other local energy resources. The only anomalously high temperature well outside the New Madrid seismic zone was located in the Rome Trough and near the central part of the eastern Kentucky coal basin. Geothermal energy in that region would face strong competition from coal, oil and natural gas.

Staub, W.P.

1980-01-01T23:59:59.000Z

163

Hydrologic properties of the Dixie Valley, Nevada, geothermal reservoir from well-test analyses  

DOE Green Energy (OSTI)

Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in methodologies was used to decouple interrelated terms. The methods were (1) step-drawdown, variable-discharge test; (2) recovery analysis; (3) damped-oscillation response; and (4) injection test. To date, TPS logs from five wells have been examined and results fall into two distinct categories. Productive, economically viable wells have permeability-thickness values on the order of 10{sup 5} millidarcy-meter (mD-m) and storativities of about 10{sup {minus}3}. Low-productivity wells, sometimes located only a few kilometers from their permeable counterparts, are artesian and display a sharp reduction in permeability-thickness to about 10 mD-m with storativities on the order of 10{sup {minus}4}. These results demonstrate that the hydrologic characteristics of this liquid-dominated geothermal system exhibit a significant spatial variability along the range-bounding normal fault that forms the predominant aquifer. A large-scale, coherent model of the Dixie Valley Geothermal Reservoir will require an understanding of the nature of this heterogeneity and the parameters that control it.

Morin, R.H. [Geological Survey, Denver, CO (United States); Hickman, S.H. [Geological Survey, Menlo Park, CA (United States); Barton, C.A. [Stanford Univ., CA (United States). Dept. of Geophysics; Shapiro, A.M. [Geological Survey, Reston, VA (United States); Benoit, W.R. [Oxbow Geothermal Corp., Reno, NV (United States); Sass, J.H. [Geological Survey, Flagstaff, AZ (United States)

1998-08-01T23:59:59.000Z

164

Geotechnical Environmental Aspects of Geothermal Power Generation at Heber, Imperial Valley, California. Topical report 1  

DOE Green Energy (OSTI)

This report presents a portion of the results from a one-year feasibility study sponsored by the Electric Power Research Institute (EPRI) to assess the feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source. The impact of power generation from hydrothermal resources on subsurface water flow, seismicity and subsidence are of acute interest in the determination of the environmental acceptance of geothermal energy. At the same time, the experience and data bases in these areas are very limited. The objective of the project was to assess the technical, geotechnical, environmental and economic feasibility of producing electricity from hydrothermal resources like those known to exist in the US. The objective of this part of the study was to investigate the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California. This report discusses geology, geophysics, hydrogeology, seismicity and subsidence in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. it also discusses estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds.

None

1976-10-01T23:59:59.000Z

165

Public opinion in Cobb Valley concerning geothermal development in Lake County, California  

DOE Green Energy (OSTI)

In the Spring of 1975 the Friends of Cobb, a local environmental group, polled the registered voters of the Cobb Valley precinct, Lake County, California, about their opinions regarding the development of geothermal energy in Lake County. Sixty-five percent of those polled responded, and an analysis of their responses indicates the following: (1) The people of the Cobb Valley (which lies directly in the path of geothermal development) are rather less pleased with the prospect than a previous poll has shown the people of Lake County as a whole to be. As measured by an index of general support for development, one-third of the Cobb people are for development, one-third are against, and the remaining third are undecided or have mixed feelings. (Countywide, nearly two-thirds support development.) (2) Support for and opposition to geothermal development correlate most highly with the perception of environmental impacts, the expectation of economic benefits in the form of increased job opportunities and tax revenues, and size of land holdings. (3) Among those who own more than ten acres of land, the willingness to lease land for geothermal development correlates most highly with the perception of environmental impacts.

Vollintine, L.; Weres, O.

1976-06-01T23:59:59.000Z

166

Geothermal Development and Resource Management in the Yakima Valley : A Guidebook for Local Governments.  

DOE Green Energy (OSTI)

The guidebook defines the barriers to geothermal energy development at all levels of government and proposes ways to overcome these various barriers. In recognition that wholesale development of the region's geothermal resources could create a series of environmental problems and possible conflicts between groundwater users, resource management options are identified as possible ways to ensure the quality and quantity of the resource for future generations. It is important for local governments to get beyond the discussion of the merits of geothermal energy and take positive actions to develop or to encourage the development of the resource. To this end, several sources of technical and financial assistance are described. These sources of assistance can enable local governments and others to take action should they choose to do so. Even though the Yakima Valley is the setting for the analysis of local issues that could hamper geothermal development, this guidebook could be used by any locale with geothermal energy resources. The guidebook is not a scientific manual, but rather a policy document written especially for local government staff and officials who do not have technical backgrounds in geology or hydrology.

Creager, Kurt

1984-03-01T23:59:59.000Z

167

Potential air quality impact of geothermal power production in the Imperial Valley  

DOE Green Energy (OSTI)

A regional assessment of the potential impact on air quality of developing the Imperial Valley's geothermal resources for power production is presented. A network of six stations was installed to characterize the air quality and atmospheric transport properties of the valley before development. These measured the ambient air concentrations of H/sub 2/S, SO/sub 2/, O/sub 3/, NO, NO/sub x/, CO/sub 2/, Hg, Rn, and particulates. Wind velocity and the directional variability of the winds were also measured to determine atmospheric stability. The geothermal fluids were analyzed chemically to estimate potential emission rates of H/sub 2/S, NH/sub 3/, CO/sub 2/, CH/sub 4/, Hg, and Rn from future power plants. Using these data and advanced air quality modeling led to the prediction of the potential valley-wide impact of a 3000 MW development scenario. The impact analysis reveals that H/sub 2/S is the principal gaseous pollutant of concern due to its noxious odor and the potential release rate. The ambient H/sub 2/S concentrations that would result from generating 3000 MW without emission controls exceed the California air quality standard (30 ppb) at least 1% of the time for an area in the northern part of the valley that is roughly 1500 km/sup 2/ in size. This compares with current ambient air concentrations that exceed the standard much less than 0.1% of the time. The population center most impacted is Calipatria, where the standard could be exceeded almost 10% of the time. In addition, the odor of H/sub 2/S will be noticeable at least 1% of the time for most of the valley if the 3000 MW are placed on-line without abatement systems.

Gudiksen, P.H.; Ermak, D.L.; Lamson, K.C.; Axelrod, M.C.; Nyholm, R.A.

1979-10-01T23:59:59.000Z

168

Geobotanical characterization of a geothermal system using hyperspectral imagery: Long Valley Caldera, CA  

SciTech Connect

We have analyzed hyperspectral Airborne Visible-Infrared Imaging System (AVIRIS) imagery taken in September of 1992 in Long Valley Caldera, CA, a geothermally active region expressed surficially by hot springs and fumaroles. Geological and vegetation mapping are attempted through spectral classification of imagery. Particular hot spring areas in the caldera are targeted for analysis. The data is analyzed for unique geobotanical patterns in the vicinity of hot springs as well as gross identification of dominant plant and mineral species. Spectra used for the classifications come from a vegetation spectral library created for plant species found to be associated with geothermal processes. This library takes into account the seasonality of vegetation by including spectra for species on a monthly basis. Geological spectra are taken from JPL and USGS mineral libraries. Preliminary classifications of hot spring areas indicate some success in mineral identification and less successful vegetation species identification. The small spatial extent of individual plants demands either sub-pixel analysis or increased spatial resolution of imagery. Future work will also include preliminary analysis of a hyperspectral thermal imagery dataset and a multitemporal air photo dataset. The combination of these remotely sensed datasets for Long Valley will yield a valuable product for geothermal exploration efforts in other regions.

Carter, M R; Cochran, S A; Martini, B A; Pickles, W L; Potts, D C; Priest, R E; Silver, E A; Wayne, B A; White, W T

1998-12-01T23:59:59.000Z

169

Potential effects of geothermal energy conversion on Imperial Valley ecosystems. [Seven workshop presentations  

DOE Green Energy (OSTI)

This workshop on potential effcts of geothermal energy conversion on the ecology of Imperial Valley brought together personnel of Lawrence Livermore Laboratory and many collaborators under the sponsorship of the ERDA Imperial Valley Environmental Project (IVEP). The LLL Integrated Assessment Team identified the electric power potential and its associated effluents, discharges, subsidence, water requirements, land use, and noise. The Working Groups addressed the ecological problems. Water resource management problems include forces on water use, irrigation methods and water use for crops, water production, and water allocation. Agricultural problems are the contamination of edible crops and the reclamation of soil. A strategy is discussed for predevelopment baseline data and for identification of source term tracers. Wildlife resources might be threatened by habitat destruction, powerline impacts, noise and disturbance effects, gas emissions, and secondary impacts such as population pressure. Aquatic ecosystems in both the Salton Sea and fresh waters have potential hazards of salinity and trace metal effects, as well as existing stresses; baseline and bioassay studies are discussed. Problems from air pollution resulting from geothermal resource development might occur, particularly to vegetation and pollinator insects. Conversion of injury data to predicted economic damage isneeded. Finally, Imperial Valley desert ecosystems might be threatened by destruction of habitat and the possible effects on community structure such as those resulting from brine spills.

Shinn, J.H. (ed.)

1976-12-17T23:59:59.000Z

170

Prelimiary investigation desalting of geothermal brines in the Imperial Valley of California  

SciTech Connect

The Imperial Valley Project is an applied research program to provide geologic, hydrologic, engineering, and economic information necessary for development of the geothermal resources of the delta of the lower Colorado River. It is suggested that a desalting pilot plant be associated with the project to develop an economic desalting process if 2 to 3% geothermal brine is produced. The process will be unconventional in that waste heat must be rejected to atmosphere in wet or dry cooling towers. The presence of large amounts of CO/sub 2/, H/sub 2/S, and silica will require gas removal and silicascale control equipment. The plant would process up to 75,000 gallons of brine per day. (MCW)

Spiewak, I.; Hise, E.C.; Reed, S.A.; Thompson, S.A.

1970-03-01T23:59:59.000Z

171

Assessment of geothermal development in the Imperial Valley of California. Volume 2. Environmental control technology  

DOE Green Energy (OSTI)

Environmental control technologies are essential elements to be included in the overall design of Imperial Valley geothermal power systems. Environmental controls applicable to abatement of hydrogen sulfide emissions, cooling tower drift, noise, liquid and solid wastes, and induced subsidence and seismicity are assessed here. For optimum abatement of H{sub 2}S under a variety of plant operating conditions, removal of H{sub 2}S upstream of the steam turbine is recommended. The environmental impact of cooling tower drift will be closely tied to the quality of cooling water supplies. Conventional noise abatement procedures can be applied and no special research and development are needed. Injection technology constitutes the primary and most essential environmental control and liquid waste disposal technology for Imperial Velley geothermal operations. Subsurface injection of fluids is the primary control for managing induced subsidence. Careful maintenance of injection pressure is expected to control induced seismicity. (MHR)

Morris, W.; Hill, J. (eds.)

1980-07-01T23:59:59.000Z

172

Investigation of ecosystems impacts from geothermal development in Imperial Valley, California  

DOE Green Energy (OSTI)

A summary of three years of field ecological investigation in Imperial Valley Environmental Program is presented. The potential terrestrial habitat impacts of geothermal development are discussed for shorebirds and waterfowl habitat, the endangered clapper rail, powerline corridors, noise effects, animal trace element burdens, and the desert community. Aquatic habitats are discussed in terms of Salton Sea salinity, effects of geothermal brine discharges to the Salton Sea, trace element baselines, and potential toxicity of brine spills in freshwater. Studies of impacts on agriculture involved brine movement in soil, release of trace metals, trace element baselines in soil and plants, water requirements of crops, and H{sub 2}S effects on crop production in the presence of CO{sub 2} and ozone.

Shinn, J.H.; Ireland, R.R.; Kercher, J.R.; Koranda, J.J.; Tompkins, G.A.

1979-07-13T23:59:59.000Z

173

Geothermal environmental studies, Heber Region, Imperial Valley, California. Environmental baseline data acquisition. Final report  

DOE Green Energy (OSTI)

The Electric Power Research Institute (EPRI) has been studying the feasibility of a Low Salinity Hydrothermal Demonstration Plant as part of its Geothermal Energy Program. The Heber area of the Imperial Valley was selected as one of the candidate geothermal reservoirs. Documentation of the environmental conditions presently existing in the Heber area is required for assessment of environmental impacts of future development. An environmental baseline data acquisition program to compile available data on the environment of the Heber area is reported. The program included a review of pertinent existing literature, interviews with academic, governmental and private entities, combined with field investigations and meteorological monitoring to collect primary data. Results of the data acquisition program are compiled in terms of three elements: the physical, the biological and socioeconomic settings.

Not Available

1977-02-01T23:59:59.000Z

174

Recency of Faulting and Neotechtonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range  

DOE Green Energy (OSTI)

We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal development. The approach developed here during our pilot study provides an inexpensive approach to (1) better define the best locations to site geothermal wells within known geothermal fields and (2) to define the location of yet discovered geothermal fields which are not manifest at the surface by active geothermal springs. More specifically, our investigation shows that induced stress concentrations at the endpoints of normal fault ruptures appear to promote favorable conditions for hydrothermal activity in two ways. We conclude that an understanding of the spatial distribution of active faults and the past history of earthquakes on those faults be incorporated as a standard tool in geothermal exploration and in the siting of future boreholes in existing geothermal fields.

Steven Wesnousky; S. John Caskey; John W. Bell

2003-02-20T23:59:59.000Z

175

Identification of environmental control technologies for geothermal development in the Imperial Valley of California  

DOE Green Energy (OSTI)

Control technologies to manage environmental impacts from geothermal developments in California's Imperial Valley from development to 1985 are discussed. Included are descriptions of methods for managing land subsidence by fluid injection; for preventing undesirable induced seismicity or mitigating the effects of seismic events; for managing liquid wastes through pretreatment or subsurface injection; for controlling H/sub 2/S by dispersal, reinjection, and chemical treatment of effluents; and for minimizing the impact of noise from power plants by setting up buffer zones and exclusion areas.

Snoeberger, D.F.; Hill, J.H.

1978-10-05T23:59:59.000Z

176

Wine Valley Inn: A mineral water spa in Calistoga, California. Geothermal-energy-system conceptual design and economic feasibility  

DOE Green Energy (OSTI)

The purpose of this study is to determine the engineering and economic feasibility for utilizing geothermal energy for air conditioning and service water heating at the Wine Valley Inn, a mineral water spa in Calistoga, California. The study evaluates heating, ventilating, air conditioning and water heating systems suitable for direct heat geothermal application. Due to the excellent geothermal temperatures available at this site, the mechanics and economics of a geothermally powered chilled water cooling system are evaluated. The Wine Valley Inn has the resource potential to have one of the few totally geothermal powered air conditioning and water heating systems in the world. This total concept is completely developed. A water plan was prepared to determine the quantity of water required for fresh water well development based on the special requirements of the project. An economic evaluation of the system is included to justify the added capital investment needed to build the geothermally powered mineral spa. Energy payback calculations are presented. A thermal cascade system is proposed to direct the geothermal water through the energy system to first power the chiller, then the space heating system, domestic hot water, the two spas and finally to heat the swimming pool. The Energy Management strategy required to automatically control this cascade process using industrial quality micro-processor equipment is described. Energy Management controls are selected to keep equipment sizing at a minimum, pump only the amount of geothermal water needed and be self balancing.

Not Available

1981-10-26T23:59:59.000Z

177

Description, field test and data analysis of a controlled-source EM system (EM-60). [Leach Hot Springs, Grass Valley  

DOE Green Energy (OSTI)

The three sections describe the transmitter, the receiver, and data interpretations and indicate the advances made toward the development of a large moment electromagnetic (EM) system employing a magnetic dipole source. A brief description is given of the EM-60 transmitter, its general design, and the consideration involved in the selection of a practical coil size and weight for routine field operations. A programmable, multichannel, multi-frequency, phase-sensitive receiver is described. A field test of the EM-60, the data analysis and interpretation procedures, and a comparison between the survey results and the results obtained using other electrical techniques are presented. The Leach Hot Springs area in Grass Valley, Pershing County, Nevada, was chosen for the first field site at which the entire system would be tested. The field tests showed the system capable of obtaining well-defined sounding curves (amplitude and phase of magnetic fields) from 1 kHz down to 0.1 Hz. (MHR)

Morrison, H.F.; Goldstein, N.E.; Hoversten, M.; Oppliger, G.; Riveros, C.

1978-10-01T23:59:59.000Z

178

The Northern Fish Lake Valley Pull-Apart Basin: Geothermal Prospecting with Hyperspectral Imaging  

SciTech Connect

High fidelity continuous surface mineralogy maps are combined with local and regional structural models in order to define/refine exploration targets in Fish Lake Valley, NV. Surface mineralogy is derived from a 400 km{sup 2} airborne hyperspectral survey collected in July 2003. Smart and efficient first-tier algorithms consisting primarily of band indices were developed to process and 'spectrally strain' the large dataset for zones of prospective mineral assemblages. The reduced mineral targets then endured re-processing with more sophisticated spectral identification and mapping algorithms. A site at the intersection of the east-trending Coaldale Fault and north-northeast-trending Emigrant Peak Fault Zone was delineated and re-processed for further spectral identification. Populations of montmorillonite, kaolinite, jarosite, alunite and pyrophyllite in this region indicate anomalous geothermal gradients now or in the past and sustained hydrothermal discharge along faults, fractures and contacts in far northeastern Fish Lake Valley. Increased permeability and higher geothermal inputs at this locale are likely due to the transtensional deformation that focuses in this portion of the major right-stepover of the central Walker Lane deformation belt.

Martini, B; Hausknecht, P; Pickles, W

2004-04-26T23:59:59.000Z

179

Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980  

DOE Green Energy (OSTI)

Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.

1980-01-01T23:59:59.000Z

180

Potential growth of electric power production from Imperial Valley geothermal resources  

DOE Green Energy (OSTI)

The growth of geothermal electric power operations in Imperial Valley, California is projected over the next 40 years. With commercial power forecast to become available in the 1980's, the scenario considers three subsequent growth rates: 40, 100, and 250 MW per year. These growth rates, along with estimates of the total resource size, result in a maximum level of electric power production ranging from 1000 to 8000 MW to be attained in the 2010 to 2020 time period. Power plant siting constraints are developed and used to make siting patterns for the 400- through 8000-MW level of power production. Two geothermal technologies are included in the scenario: flashed steam systems that produce cooling water from the geothermal steam condensate and emit noncondensable gases to the atmosphere; and high pressure, confined flow systems that inject the geoghermal fluid back into the ground. An analysis of the scenario is made with regard to well drilling and power plant construction rates, land use, cooling water requirements, and hydrogen sulfide emissions.

Ermak, D.L.

1977-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska  

DOE Green Energy (OSTI)

An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

1985-01-01T23:59:59.000Z

182

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Reflection Survey Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes "The seismic reflection profiles of the range front structures are difficult to interpret because of he steep dips and 3-d fault zone geometry, in the-classical paper by Okaya and Thompson (1985) the range-bounding fault is not imaged as they proposed. The reflection seismic studies are the most useful of the geophysical techniques also the most expensive. The reflection data are two-dimensional making structural interpretation complicated for the three-dimensional geometry of the basin so that the other structural studied have been critical in correctly interpreting the seismic profiles. There are many

183

Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field  

Science Conference Proceedings (OSTI)

Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

Barton, C.A.; Zoback, M.D. [Stanford Univ., CA (United States). Dept. of Geophysics; Hickman, S. [Geological Survey, Menlo Park, CA (United States); Morin, R. [Geological Survey, Denver, CO (United States); Benoit, D. [Oxbow Geothermal Corp., Reno, NV (United States)

1998-08-01T23:59:59.000Z

184

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

E-Print Network (OSTI)

dioxide flux at the Dixie Valley geothermal field, Nevada;volcanic system, USA Dixie Valley Geothermal Field, USAProvince system like the Dixie Valley (Nevada) geothermal

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-01T23:59:59.000Z

185

Dixie Valley, Nevada: A promising geothermal area under development by industry  

Science Conference Proceedings (OSTI)

Selected subsurface reservoirs located in the Western United States may contain significant geothermal energy, and if development continues, this energy source may provide substantial electrical power or related energy by the year 2,000. Utility management must be convinced of the reliability and cost attractiveness of this energy source. A number of exploration programs are in progress to evaluate the potential of geothermal energy in the United States. For example, numerous exploration methods have been employed in Dixie Valley, Nevada, since 1967 with mixed results. However, with DOE support, additional data have recently become available. The authors have revised earlier structural models of the basin and have made recommendations for additional investigations that should assist in clarifying the geologic relationships within the reservoir. The principal geologic characteristics of the reservoir that may place limits on project economics appear to be the depth and trend area of producing zones, fluid quality and the amenability of the upper zones to accept large volumes of spent fluids. However, reservoir temperature, flow rates, recharge characteristics, and other factors appear to be acceptable either for electrical power production of more than 1,000 MWe, or for direct applications such as on-site agricultural processing.

Campbell, M.D.

1983-08-01T23:59:59.000Z

186

CO{sub 2} flux measurements across portions of the Dixie Valley geothermal system, Nevada  

DOE Green Energy (OSTI)

A map of the CO{sub 2} flux across a newly formed area of plant kill in the NW part of the Dixie Valley geothermal system was constructed to monitor potential growth of a fumarole field. Flux measurements were recorded using a LI-COR infrared analyzer. Sample locations were restricted to areas within and near the dead zone. The data delineate two areas of high CO{sub 2} flux in different topographic settings. Older fumaroles along the Stillwater range front produce large volumes of CO{sub 2} at high temperatures. High CO{sub 2} flux values were also recorded at sites along a series of recently formed ground fractures at the base of the dead zone. The two areas are connected by a zone of partial plant kill and moderate flux on an alluvial fan. Results from this study indicate a close association between the range front fumaroles and the dead zone fractures. The goals of this study are to characterize recharge to the geothermal system, provide geochemical monitoring of reservoir fluids and to examine the temporal and spatial distribution of the CO{sub 2} flux in the dead zone. This paper reports the results of the initial CO{sub 2} flux measurements taken in October, 1997.

Bergfeld, D.; Goff, F. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.; Janik, C.J. [Geological Survey, Menlo Park, CA (United States); Johnson, S.D. [Oxbow Power Services, Reno, NV (United States)

1998-12-31T23:59:59.000Z

187

Power produced from hot dry rock geothermal resources: a case study for the Imperial Valley, California  

SciTech Connect

The case study described here concerns an HDR system which provides geothermal fluids for a hypothetical electric plant located in California's Imperial Valley. Primary concern is focused on the implications of differing drilling conditions, as reflected by costs, and differing risk environments for the potential commercialization of an HDR system. Drilling costs for best, medium and worst drilling conditions are taken from a recent study of drilling costs for HDR systems. Differing risk environments are presented by differing rate of return requirements on stocks and interest on bonds which the HDR system is assumed to pay; rate of return/interest combinations considered are 6%/3%, 9%/6%, 12%/9% and 15%/12%. The method used for analyzing the HDR system involves a two-stage process. In stage 1, the maximum amount that the electric plant can pay to an HDR system for geothermal fluids is calculated for alternative busbar prices of electricity received by the electric plant. In stage 2, costs for the HDR system are calculated under differing assumed risk environments and drilling conditions. These two sets of data may then be used to analyze the minimum busbar price of electricity - which defines a maximum fuel bill that could be paid to the HDR system by the electric plant - which could result in the HDR system's full recouperation of all production and drilling costs.

Cummings, R.G.; Morris, G.E.; Arundale, C.J.; Erickson, E.L.

1979-12-01T23:59:59.000Z

188

Final Technical Report; Geothermal Resource Evaluation and Definitioni (GRED) Program-Phases I, II, and III for the Animas Valley, NM Geothermal Resource  

DOE Green Energy (OSTI)

This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource Evaluation and Definition (GRED) Program, and the work covers the time span from June 2001 through June 2004. Included in this new report are detailed results from the GRED Program, including: geophysical and geochemical surveys, reflection seismic surveys, aeromagnetic surveys, gravity and electrical resistivity surveys, soil thermal ion and soil carbon dioxide flux surveys, four temperature gradient holes, and one deep exploratory well.

Cunniff, Roy A.; Bowers, Roger L.

2005-08-01T23:59:59.000Z

189

Monitoring natural subsidence and seismicity in the Imperial Valley as a basis for evaluating potential impacts of geothermal production  

DOE Green Energy (OSTI)

Results of work done on potential geologic effects of geothermal development are discussed. The key geological issues in the Imperial Valley are the potential for significant subsidence and seismicity which could be induced by geothermal production. The major technical problem is to develop techniques to distinguish between natural and induced activity. In both subsidence and seismicity studies, the projects augment the existing network to obtain additional information in critical areas; thus, local subsidence detection networks were added to the regional networks. The U.S. Geological Survey seismograph network was augmented to increase sensitivity to small earthquakes near the Salton Sea. Techniques being used and initial results are summarized briefly. (JGB)

Crow, N.B.; Kasamayer, P.W.

1978-04-04T23:59:59.000Z

190

Utility of drill-stem tests in determination of the geothermal regime of Railroad Valley, Nye County, Nevada  

Science Conference Proceedings (OSTI)

Accurate representation of geothermal conditions is necessary to determine generation potential of source rocks buried in Railroad Valley. Boreholes, provide the best source of geothermal information, but formation temperature data must be screened for variations caused by drilling. Bottomhole temperatures from wireline logs are affected by initial formation conditions, drilling fluid that moves into the formation while drilling, and lag time between cessation of drilling fluid circulation and acquisition of logs. More accurate indicators of formation conditions are temperatures recorded during drill-stem tests, especially for tests that recovered large amounts of fluid. Over 130 drill-stem tests were examined to establish the viability of this source of data and to determine the geothermal conditions of the Railroad Valley basin. Results indicate that 500 feet or more of fluid recovery on a test is necessary to get a temperature recorded that is not influenced by drilling perturbations. The formation temperature data collected for Railroad Valley indicate the possibility of 2 thermal regimes. A low-temperature gradient regime is probably influenced by meteoric water. The high-temperature gradient regime probably reflects the regional heat flow associated with the thin crust of the Great Basin.

French, D.E. [Independent Geologist, Billings, MT (United States)

1995-06-01T23:59:59.000Z

191

Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment  

E-Print Network (OSTI)

dioxide flux at the Dixie Valley geothermal field, Nevada;volcanic system, USA Dixie Valley Geothermal Field, USAProvince system like the Dixie Valley (Nevada) geothermal

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2008-01-01T23:59:59.000Z

192

Inversion of Synthetic Aperture Radar Interferograms for Sources of Production-Related Subsidence at the Dixie Valley Geothermal Field  

DOE Green Energy (OSTI)

We used synthetic aperture radar interferograms to image ground subsidence that occurred over the Dixie Valley geothermal field during different time intervals between 1992 and 1997. Linear elastic inversion of the subsidence that occurred between April, 1996 and March, 1997 revealed that the dominant sources of deformation during this time period were large changes in fluid volumes at shallow depths within the valley fill above the reservoir. The distributions of subsidence and subsurface volume change support a model in which reduction in pressure and volume of hot water discharging into the valley fill from localized upflow along the Stillwater range frontal fault is caused by drawdown within the upflow zone resulting from geothermal production. Our results also suggest that an additional source of fluid volume reduction in the shallow valley fill might be similar drawdown within piedmont fault zones. Shallow groundwater flow in the vicinity of the field appears to be controlled on the NW by a mapped fault and to the SW by a lineament of as yet unknown origin.

Foxall, W; Vasco, D

2003-02-07T23:59:59.000Z

193

Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah  

DOE Green Energy (OSTI)

Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

Budding, K.E.; Sommer, S.N.

1986-01-01T23:59:59.000Z

194

Geothermal Energy Resource Assessment  

DOE Green Energy (OSTI)

This report covers the objectives and the status of a long-range program to develop techniques for assessing the resource potential of liquid-dominated geothermal systems. Field studies underway in northern Nevada comprise a systematic integrated program of geologic, geophysical, and geochemical measurements, necessary to specify a drilling program encompassing heat flow holes, deep calibration holes, and ultimately, deep test wells. The status of Nevada field activities is described. The areas under study are in a region characterized by high heat flow where temperatures at depth in some geothermal systems exceed 180 C. Areas presently being examined include Beowawe Hot Springs in Whirlwind Valley. Buffalo Valley Hot Springs, Leach Hot Springs in Grass Valley, and Kyle Hot Springs in Buena Vista Valley. Geologic studies encompass detailed examinations of structure and lithology to establish the geologic framework of the areas. The geothermal occurrences are characterized by zones of intense fault intersection, which furnish permeable channelways for the introduction of meteoric water into regions of high temperature at depth.

Wollenberg, H.A.; Asaro, F.; Bowman, H.; McEvilly, T.; Morrison, F.; Witherspoon, P.

1975-07-01T23:59:59.000Z

195

Tectonic controls on fracture permeability in a geothermal reservoir at Dixie Valley, Nevada  

DOE Green Energy (OSTI)

To help determine the nature and origins of permeability variations within a fault-hosted geothermal reservoir at Dixie Valley, Nevada, the authors conducted borehole televiewer logging and hydraulic fracturing stress measurements in six wells drilled into the Stillwater fault zone at depths of 2--3 km. Televiewer logs from wells penetrating the highly permeable portion of the fault zone revealed extensive drilling-induced tensile fractures. As the Stillwater fault at this location dips S45{degree}E at {approximately} 53{degree} it is nearly at the optimal orientation for normal faulting in the current stress field. Hydraulic fracturing tests from these permeable wells show that the magnitude of S{sub hmin} is very low relative to the vertical stress S{sub v}. Similar measurements conducted in two wells penetrating a relatively impermeable segment of the Stillwater fault zone 8 and 20 km southwest of the producing geothermal reservoir indicate that the orientation of S{sub hmin} is S20{degree}E and S41{degree}E, respectively, with S{sub hmin}/S{sub v} ranging from 0.55--0.64 at depths of 1.9--2.2 km. This stress orientation is near optimal for normal faulting on the Stillwater fault in the northernmost non-producing well, but {approximately} 40{degree} rotated from the optimal orientation for normal faulting in the southernmost well. The observation that borehole breakouts were present in these nonproducing wells, but absent in wells drilled into the permeable main reservoir, indicates a significant increase in the magnitude of maximum horizontal principal stress, S{sub Hmax}, in going from the producing to non-producing segments of the fault. The increase in S{sub Hmaz}, coupled with elevated S{sub hmin}/S{sub v} values and a misorientation of the Stillwater fault zone with respect to the principal stress directions, leads to a decrease in the proximity of the fault zone to Coulomb failure. This suggests that a necessary condition for high reservoir permeability is that the Stillwater fault zone be critically stressed for frictional failure in the current stress field.

Hickman, S. [Geological Survey, Menlo Park, CA (United States); Zoback, M. [Stanford Univ., CA (United States). Dept. of Geophysics

1998-08-01T23:59:59.000Z

196

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network (OSTI)

site and the Okuaizu geothermal field, Japan", Geothermics,at the Cerro Prieto geothermal field, Baja California,and seismicity in the Coso geothermal area, Inyo County,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

197

Engineering and economic feasibility of utilizing geothermal heat from the Heber reservoir for industrial processing purposes at Valley Nitrogen Producers Inc. , El Centro agricultural chemical plant. Final report  

DOE Green Energy (OSTI)

The engineering and economic feasibility of utilizing geothermal heat from the Heber KGRA for industrial processing purposes at the Valley Nitrogen Producers, Inc. El Centro, California agricultural chemical plant was investigated. The analysis proceeds through the preliminary economics to determine the restraints imposed by geothermal modification size on internal rates of return, and through the energy utilization evaluation to determine the best method for substituting geothermal energy for existing fossil fuel energy. Finally, several geothermal utilization schemes were analyzed for detailed cost-benefit evaluation. An economically viable plan for implementing geothermal energy in the VNP Plant was identified and the final conclusions and recommendations were made based on these detailed cost-benefit analyses. Costs associated with geothermal energy production and implementation were formulated utilizing a modified Battelle Pacific Northwest Laboratories' ''GEOCOST'' program.

Sherwood, P.B.; Newman, K.L.

1977-09-01T23:59:59.000Z

198

Some issues regarding regulatory policy, political participation, and social implications of geothermal resource development in the Imperial Valley  

DOE Green Energy (OSTI)

The early stages of geothermal resource development in the Imperial Valley have been characterized by an emphasis on the technological expertise of private developers and government officials. Government officials have created a complex array of Federal, state and county regulations to monitor the development. Local control is under the jurisdiction of the Imperial County government. The County has as its responsibility the protection of the general welfare of its residents, including any potentially adverse social, economic, or environmental impacts caused by geothermal resource development. Private developers and government officials are interested in the resources as a source of water desalination and electric power generation. An assessment of the interests and concerns of the public was made early in the development stage. In view of all these interests, it is essential in a democratic society that the various interests be identified so government can be representative of, and responsive to, those interests. Therefore, the four issues discussed in the paper are: (1) regulatory problems faced by local government officials in determining the course of development; (2) the social and political context in which the development is taking place; (3) the potential of geothermal development as perceived by community leaders and local government officials; and (4) the desirability of expanding citizen participation in geothermal decision-makingduring a period in which, as public opinion polls indicated, many citizens feel separated from government actions which may significantly affect their lives. Recommendations for regulations of geothermal resources and recommendations for improving public input into geothermal regulation are summarized in depth. (MCW)

Green, P.S.; Steinberger, M.F.

1976-02-01T23:59:59.000Z

199

Fracture Permeability and in Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir  

DOE Green Energy (OSTI)

We have collected and analyzed fracture and fluid flow data from wells both within and outside the producing geothermal reservoir at Dixie Valley. Data from wellbore imaging and flow tests in wells outside the producing field that are not sufficiently hydraulically connected to the reservoir to be of commercial value provide both the necessary control group of fracture populations and an opportunity to test the concepts proposed in this study on a regional, whole-reservoir scale. Results of our analysis indicate that fracture zones with high measured permeabilities within the producing segment of the fault are parallel to the local trend of the Stillwater fault and are optimally oriented and critically stressed for frictional failure in the overall east-southeast extensional stress regime measured at the site. In contrast, in the non-producing (i.e., relatively impermeable:) well 66-21 the higher ratio of S{sub hmin} to S{sub v} acts to decrease the shear stress available to drive fault slip. Thus, although many of the fractures at this site (like the Stillwater fault itself) are optimally oriented for normal faulting they are not critically stressed for frictional failure. Although some of the fractures observed in the non-producing well 45-14 are critically stressed for frictional failure, the Stillwater fault zone itself is frictionally stable. Thus, the high horizontal differential stress (i.e., S{sub Hmax}-S{sub hmin}) together with the severe misorientation of the Stillwater fault zone for normal faulting at this location appear to dominate the overall potential for fluid flow.

M. D. Zoback

1999-03-08T23:59:59.000Z

200

Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part I. Gravity survey  

DOE Green Energy (OSTI)

During 1980 and 1981 a total of 569 new gravity stations were taken in Utah and Goshen Valleys and adjacent areas, Utah. The new stations were combined with 530 other gravity stations taken in previous surveys which resulted in a compilation of 1099 stations which were used in this study. The additional surveys were undertaken to assist in the evaluation of the area for the possible development of geothermal resources by providing an interpreted structural framework by delineating faults, structural trends, intrusions, thickness of valley fill, and increased density of host rock. The gravity data are presented as (1) a complete Bouguer gravity anomaly map with a 2 mgal contour interval on a scale of 1:100,000 and (2) five generally east-trending gravity profiles. A geologic interpretation of the study area was made from the gravity map and from the interpretive geologic cross sections which were modeled along the gravity profiles.

Davis, D.A.; Cook, K.L.

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

SciTech Connect

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Pickles, W L; Martini, B A; Silver, E A; Cocks, P A

2004-03-03T23:59:59.000Z

202

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

SciTech Connect

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Martini, B; Silver, E; Pickles, W; Cocks, P

2004-03-25T23:59:59.000Z

203

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

DOE Green Energy (OSTI)

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Pickles, W L; Martini, B A; Silver, E A; Cocks, P A

2004-03-03T23:59:59.000Z

204

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

DOE Green Energy (OSTI)

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Martini, B; Silver, E; Pickles, W; Cocks, P

2004-03-25T23:59:59.000Z

205

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

206

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

Conceptual models of the Dixie Valley, Nevada Geothermaldioxide flux at the Dixie Valley geothermal field, Nevada;by faulting. At the Dixie Valley Geothermal Field, USA, CO 2

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

207

Reconnaissance for mercury over geothermal areas of the Imperial Valley, California. [Analysis of samples of soil gas and gas from drill holes  

DOE Green Energy (OSTI)

Nine samples of soil gas and gas from drill holes were collected over and near two geothermal anomalies in the Imperial Valley, California, to measure the possible presence of mercury. With the instrumentation used, the smallest quantity of mercury that could be detected was 2 nanograms. No mercury was detected in any sample.

Hinkle, M.E.; Vaughn, W.W.

1973-01-01T23:59:59.000Z

208

Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part II. Water temperature and chemistry  

DOE Green Energy (OSTI)

Geothermal reconnaissance techniques have identified five areas in Utah County warranting further investigation for low-temperature geothermal resources. One area in northern Utah Valley is along Utah Lake fault zone and includes Saratoga Hot Springs. Water temperatures within this area range from 21 to 43/sup 0/C. Common ion analyses as well as B and Li concentrations indicate waters sampled in this area are anomalous when compared to other samples from the same aquifer. Two other areas in southern Utah Valley also coincide with the Utah Lake fault zone. Common ion analyses, trace element concentrations, and C1/HCO/sub 3/ ratios distinguish these areas from all other waters in this valley. Temperatures within these southern areas range from 21 to 32/sup 0/C. All three thermal areas are possibly the result of deep circulation of meteoric water being warmed and subsequently migrating upward within the Utah Lake fault zone. The Castilla Hot Springs area has been expanded by this study to include a spring located 3 mi further up Spanish Fork Canyon near the Thistle earthflow. A temperature of 50/sup 0/C was recorded for this spring and chemistry is similar to Castilla. In Goshen Valley, the fifth geothermal area identified, measured temperatures range from 20 to 27/sup 0/C for some wells and springs. Chemical analyses, however, do not discern the location of low-temperature geothermal reservoirs. 18 refs., 7 figs., 5 tabs.

Klauk, R.H.; Davis, D.A.

1984-12-01T23:59:59.000Z

209

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

2009-01-01T23:59:59.000Z

210

Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley  

DOE Green Energy (OSTI)

Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project.

Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

2001-03-02T23:59:59.000Z

211

Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy  

DOE Green Energy (OSTI)

The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

Not Available

1981-03-01T23:59:59.000Z

212

Environmental overview of geothermal development: the Mono-Long Valley KGRA  

DOE Green Energy (OSTI)

Major issues and concerns relating to geothermal development were identified and assessed in seven broad areas: (1) air quality, (2) archaeology and cultural resources, (3) geology, (4) natural ecosystems, (5) noise, (6) socioeconomics, and (7) water quality. Existing data for each of these areas was identified and evaluated to determine if the data can be used to help resolve major issues. Finally, specific areas where additional data are needed to ensure that geothermal development is environmentally acceptable were recommended.

Strojan, C.L.; Romney, E.M. (eds.) [eds.

1979-01-01T23:59:59.000Z

213

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley...  

Open Energy Info (EERE)

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL...

214

Performance characteristics of the Lysholm engine as tested for geothermal power applications in the Imperial Valley  

Science Conference Proceedings (OSTI)

This paper contains a description of the performance tests of a Lysholm engine completed at the Lawrence Livermore National Laboratory at the University of California. The Lysholm engine is a rotary displacement engine which can accept a low quality (vapor fraction) two-phase mixture. Generally, the well-head condition of geothermal fluids is a mixture of liquid and vapor, with quality up to 40 percent, although for most liquid dominated geothermal resources the vapor fraction is considerably less than 40 percent. 13 refs.

Steidel, R.F. Jr.; Weiss, H.; Flower, J.E.

1982-01-01T23:59:59.000Z

215

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

216

Geology and geothermal waters of Lightning Dock region, Animas Valley and Pyramid Mountains, Hidalgo County, New Mexico  

DOE Green Energy (OSTI)

This circular covers the geology of the Pyramid Peak, Swallow Fork Peak, Table Top Mountain, and South Pyramid Peak 7-1/2-min quadrangles, which include the Lightning Dock KGRA. Hot wells (70 to 115.5/sup 0/C) seem to be structurally controlled by intersections of the ring-fracture zone of an Oligocene ash-flow tuff cauldron (Muir cauldron), a Miocene-to-Holocene north-trending basin-and-range fault (Animas Valley fault), and a northeast-trending lineament that appears to control anomalously heated underground waters and Pliocene-Pleistocene basalt cones in the San Bernardino, San Simon, and Animas Valleys. The Muir cauldron, approximately 20 km in diameter, collapsed in two stages, each associated with the eruption of a rhyolite ash-flow-tuff sheet and of ring-fracture domes. Most of the hydrothermal alteration of the Lightning Dock KGRA is related to the first stage of eruption and collapse, not to the modern geothermal system. Contrary to previous reports, no silicic volcanic rocks younger than basin-and-range faulting are known; unconformities beneath rhyolite ring-fracture domes are caused by Oligocene caldera collapse, not by basin-and-range faulting. The Animas Valley is the site of widespread post-20 My travertine deposits and near-surface veins of calcite, fluorite, and/or psilomelane, controlled by north- or northwest-trending basin-and-range faults. The fluoride-bearing waters of the Lightning Dock KGRA may be a late stage of this hydrothermal activity. Distribution of Pliocene-Pleistocene basalt suggests that deep-seated basalt near the solids may be the ultimate heat source.

Elston, W.E.; Deal, E.G.; Logsdon, M.J.

1983-01-01T23:59:59.000Z

217

Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982  

DOE Green Energy (OSTI)

Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, and temperature gradient drilling.

Trexler, D.T.; Flynn, T.; Koenig, B.A.; Bell, E.J.; Ghusn, G. Jr.

1982-01-01T23:59:59.000Z

218

Baseline studies in the desert ecosystem at East Mesa Geothermal Test Site, Imperial Valley, California  

DOE Green Energy (OSTI)

Baseline data reported herein for soil, vegetation, and small mammal components of the East Mesa desert ecosystem represent a collection period from October 1975 to September 1977. Inasmuch as changes in salt balance from geothermal brine sources are of potential impact upon the ecosystem, considerable analytical effort was given to the determination of element constituents in soil, plant, and animal samples. A preliminary synthesis of data was done to investigate the heterogeneity of element constituents among the sampled population and to summarize results. Findings indicate that periodic sampling and chemical analysis of vegetation around an industrialized geothermal energy source is probably the best way to monitor the surrounding ecosystem for assuring containment of any resource pollutants.

Romney, E.M.; Wallace, A.; Lunt, O.R.; Ackerman, T.A.; Kinnear, J.E.

1977-09-01T23:59:59.000Z

219

Session: Long Valley Exploratory Well  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

1992-01-01T23:59:59.000Z

220

ERDA Geothermal Component Test Facility (GCTF), East Mesa, Imperial Valley, California. Test operations management plan  

DOE Green Energy (OSTI)

Discussion of the operation of the Geothermal Component Test Facility (GCTF), established for testing heat extraction and energy conversion equipment and materials, is presented under the following section headings: purposes of the facility; operating policies: service, conflicts, safety and environmental, investigator activities, shops and equipment, and test certification; organization: chart; Lawrence Berkely Laboratory: organization, responsibilities, individual responsibilities, and funding; Bureau of Reclamation: organization, responsibilities, and funding; operations contractor: contract, qualifications, and personnel; Test Operations Advisory Board; experiment processing: test acceptance, scheduling and priorities, cost reimbursement, and activities flow chart.

Not Available

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Results from shallow research drilling at Inyo Domes, Long Valley Caldera, California and Salton Sea geothermal field, Salton Trough, California  

DOE Green Energy (OSTI)

This report reviews the results from two shallow drilling programs recently completed as part of the United States Department of Energy Continental Scientific Drilling Program. The purpose is to provide a broad overview of the objectives and results of the projects, and to analyze these results in the context of the promise and potential of research drilling in crustal thermal regimes. The Inyo Domes drilling project has involved drilling 4 shallow research holes into the 600-year-old Inyo Domes chain, the youngest rhyolitic event in the coterminous United States and the youngest volcanic event in Long Valley Caldera, California. The purpose of the drilling at Inyo was to understand the thermal, chemical and mechanical behavior of silicic magma as it intrudes the upper crust. This behavior, which involves the response of magma to decompression and cooling, is closely related to both eruptive phenomena and the establishment of hydrothermal circulation. The Salton Sea shallow research drilling project involved drilling 19 shallow research holes into the Salton Sea geothermal field, California. The purpose of this drilling was to bound the thermal anomaly, constrain hydrothermal flow pathways, and assess the thermal budget of the field. Constraints on the thermal budget links the local hydrothermal system to the general processes of crustal rifting in the Salton Trough.

Younker, L.W.; Eichelberger, J.C.; Kasameyer, P.W.; Newmark, R.L.; Vogel, T.A.

1987-09-01T23:59:59.000Z

222

Overview of Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

223

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

E-Print Network (OSTI)

flux at the Dixie Valley geothermal field, Nevada; relationssurface phenomena and the geothermal reservoir, Chemicalapplication to volcanic- geothermal areas and landfills,

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-01T23:59:59.000Z

224

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

to assess their geothermal desalination program. The studyavailability of fluid for desalination and the geochemistrywere appropriate for the USBR desalination project. In both

2009-01-01T23:59:59.000Z

225

Analysis of the apiclutural industry in relation to geothermal development and agriculture in the Imperial Valley, Imperial County, California  

DOE Green Energy (OSTI)

PART I: Continuous exposure to 30 ppB H/sub 2/S increased lifespan of caged worker honey bees, Apis mellifera L., 33%; whereas, bees exposed > 13 days to 100 ppB and 300 ppB H/sub 2/S the lifespan was shortened 32% and 51%, respectively, over unexposed bees; bees exposed > 15 days to a combination of 300 ppB H/sub 2/S + 50 ppM CO/sub 2/ the lifespan was shortened 4.4% more that 300 ppB H/sub 2/S alone. The mean temperature and/or relative humidity did not exert a direct effect on the hazard to bees. A continuous exposure to 300 ppB SO/sub 2/ was detrimental to caged worker honey bees; and, a mean temperature of 27.2/sup 0/C was 75.7% more toxic than the same dosage at 16.7/sup 0/C. Worker bee lifespans exposed to 300 ppB SO/sub 2/ at 16.7/sup 0/C were shortened 13.5% and 79%, respectively, compared to unexposed bees. Therefore, both dosage and temperature exert direct effects on the hazards to bees. PART II: The status of the apicultural industry in Imperial County, California, was outlined giving a short characterization of the area in relation to the apicultural industry. Agriculture utilizes 500,000 intensely farmed acres which generated a 11-year average income of $370 million. Over 40 agricultural commodities are produced. The apicultural industry is intimately involved in 25% of the total gross agricultural income. In addition, most of the flora growing in the desert community which comprises the remainder of the county are very important to honey bees by providing sustaining nectar and/or pollen for brood rearing. The bee foraged flora provides substantial bee forage when colonies are located outside of the agriculutral area. It is concluded that geothermal resource development in the Imperial Valley is contemplated to have minimal effects on the apicultural industry.

Atkins, E.L.

1979-04-01T23:59:59.000Z

226

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

227

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Thermochronometry At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area...

228

Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Gabbs Valley Area (DOE GTP) Exploration...

229

Geothermal: Sponsored by OSTI -- Climatology of air quality of...  

Office of Scientific and Technical Information (OSTI)

Climatology of air quality of Long Valley Geothermal Resource Area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

230

Geothermal Exploration Using Aviris Remote Sensing Data Over...  

Open Energy Info (EERE)

Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration Using Aviris Remote...

231

Reconnaissance geophysical studies of the geothermal system in...  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance...

232

Non-Double-Couple Microearthquakes At Long Valley Caldera, California...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

233

Evaluation of a Distributed Fiber-Optic Temperature Sensor for Logging Wellbore Temperature at the Beowawe and Dixie Valley Geothermal Fields  

DOE Green Energy (OSTI)

A distributed temperature sensor (DTS) system, utilizing Raman backscattering to measure temperatures of optical fiber, has recently been installed in production wells at the Beowawe and Dixie Valley, NV, geothermal fields. The system has the potential to reduce the cost and complexity of acquiring temperature logs. However, the optical transmission of the initial fibers installed at Beawawe degraded over several months, resulting in temperature errors. Optical transmission spectra of the failed fibers indicate hydroxide contamination via hydrogen diffusion as a possible failure mechanism. Additional fibers with coatings designed to resist hydrogen diffusion were installed and have maintained their optical transmission over several months in the 340-360 F Beowawe wells. The same fibers installed in a 470 F Dixie Valley well rapidly failed. Possible methods to prevent fiber degradation include encasing the fiber in metallic buffer layer that resists hydrogen diffusion. Additional methods to correct temperature errors include using additional optical sources to measure fiber losses at the operating wavelengths. Although the DTS system is expected to have one degree F accuracy, we have observed an average accuracy of five degrees. The fiber connections appear to be the uncertainty source. Using connectors with greater stability should restore accuracy.

Smithpeter, Colin; Norman, Randy; Krumhansl, James; Benoit, Dick; Thompson, Steve

1999-07-19T23:59:59.000Z

234

Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fish Lake Valley Area (DOE GTP) Exploration...

235

Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fish Lake Valley Area (DOE GTP) Exploration Activity...

236

Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Fish Lake Valley Area (DOE GTP) Exploration...

237

Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (DOE GTP) Exploration...

238

Over Core Stress At Gabbs Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Over Core Stress At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Over Core Stress At Gabbs Valley Area (DOE GTP)...

239

Field Mapping At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Gabbs Valley Area (DOE GTP) Exploration Activity...

240

Density Log at Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Gabbs Valley Area (DOE GTP) Exploration Activity...

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

LiDAR At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area...

242

Structural Analysis of Southern Dixie Valley using LiDAR and...  

Open Energy Info (EERE)

Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation, search...

243

Detachment Faulting and Geothermal Resources - An Innovative...  

Open Energy Info (EERE)

Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Detachment...

244

Stress and Permeability Heterogeneity within the Dixie Valley Geothermal Reservoir: Recent Results from Well 82-5  

DOE Green Energy (OSTI)

We collected borehole televiewer, temperature and flowmeter logs and conducted a hydraulic fracturing test in a well (82-5) that penetrated the SFZ within the known boundaries of the geothermal field but which failed to encounter significant permeability. Although stuck drill pipe prevented direct access to the SFZ, borehole breakouts and cooling cracks indicated a {approximately}90 degree rotation in the azimuth of the least horizontal principal stress (Shmin) in well 82-5 at about 2.7 km depth. This rotation, together with the low (Shmin) magnitude measured at 2.5 km depth in well 82-5, is most readily explained through the occurrences of one or more normal faulting earthquakes in the hanging wall of the SFZ in the northern part of the reservoir. The orientation of (Shmin) below 2.7 km (i.e., {approximately}20 to 50 m above the top of the SFZ) is such that both the overall SFZ and natural fractures directly above the SFZ are optimally oriented for normal faulting failure. If these fracture and stress orient ations persist into the SFZ itself, then the existence of a local stress relief zone (i.e., anormalously high (Shmin) magnitude) is the most likely explanation for the very low fault zone permeability encountered in well 82-5.

S. H. Hickman; M. D. Zoback; C. A. Barton; R. Benoit; J. Svitek; R. Summers

1999-12-01T23:59:59.000Z

245

Geothermal investigations in Idaho. Part 5. Geochemistry and geologic setting of the thermal waters of the northern Cache Valley area, Franklin County, Idaho  

DOE Green Energy (OSTI)

The thermal waters of the north-south trending graben structure known as northern Cache Valley in southeastern Idaho were sampled during the summer and fall of 1973. Geologic and gravity data for the area indicate fault control for nearly all thermal water occurrences. Thermal-water discharges are generally restricted to the course of the Bear River with few known in areas away from the river. Spring deposits in the form of travertine may not be indications of low temperature thermal waters because abundant limestone and dolomite make up the geologic framework. Much gas, believed to consist mostly of carbon dioxide, is being evolved from many of the springs. The hottest water is found near Battle Creek and Squaw hot springs approximately 4 kilometers northwest of the town of Preston. Metoric waters descend along fault planes, fractures, and fissures to depths at which they are heated by increasing rock temperatures (geothermal gradient of 5/sup 0/C per 100 meters). Due to decreased density, the heated waters rise along the same or adjacent fault planes to the surface. The quartz equilibrium geochemical thermometer applied to the thermal water discharges indicates temperatures approaching 150/sup 0/C may be encountered by deep drilling. Mixing models, based on quartz solubility, indicate higher aquifer temperatures than the quartz equilibrium thermometer, but chloride concentration vs. temperature plots are not linear. The sodium-potassium-calcium geochemical thermometer indicates higher temperatures than quartz equilibrium and mixing models. The thermal waters are higher in total dissolved solids (12,000 to 13,000 milligrams per liter) than are known elsewhere in Idaho and represent potential pollution hazards should large scale withdrawal be attempted.

Mitchell, J.C.

1976-07-01T23:59:59.000Z

246

Engineering and economic feasibility of utilizing geothermal heat from the Heber Reservoir for industrial processing purposes at Valley Nitrogen Producers Inc. , El Centro Agricultural Chemical Plant. Second quarterly report  

DOE Green Energy (OSTI)

The initial economic evaluation is provided for the alternatives to natural gas consumption previously identified. Using estimates of well costs, well flow, well life, temperature, enthalpy, and rates of return on invested capital, the cost of brine production has been estimated in terms of a demand charge and an energy charge. Capital costs of geothermal flash steam and binary systems from 5 to 30 Gross MW capacities have been estimated utilizing a modified Battelle Pacific Northwest Laboratories GEOCOST computer program. Fossil fuel costs, geothermal brine costs, and rate of inflation have been projected through 1997. Using these data, the thermal cycle efficiencies, and the capital cost data, the projected annual cost savings and the internal rate of return, as a function of the amount of fossil fuel displaced by geothermal energy, have been calculated and preliminary conclusions have been drawn based on this overall economic evaluation. In addition to an overall economic evaluation, an individual energy utilization evaluation was undertaken. Using estimates of capital costs, energy costs, and energy conversion efficiencies, a total unit charge rate in $/Hp-hr was assigned to each existing equipment driver and each proposed energy alternative to determine the best method for substituting geothermal energy for existing fossil fuel energy in the Valley Nitrogen Producers (VNP) Plant Steam Cycle. An optimal cost-effective plan for individual energy utilization in the VNP Plant Steam Cycle was developed from this evaluation and preliminary conclusions drawn.

Not Available

1977-06-30T23:59:59.000Z

247

Verdigris Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Verdigris Valley Electric Cooperative - Residential Energy Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Room Air Conditioner: $50 Electric Water Heaters: $50 - $199 Geothermal Heat Pumps (new): $300/ton Geothermal Heat Pumps (replacement): $150/ton Air-source/Dual Fuel Heat Pumps: $150/ton Provider Verdigris Valley Electric Cooperative Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are

248

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley  

Open Energy Info (EERE)

Of Faulting And Neotechtonic Framework In The Dixie Valley Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Details Activities (6) Areas (3) Regions (0) Abstract: We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal

249

Red River Valley REA- Heat Pump Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

250

Prairie Grasses  

NLE Websites -- All DOE Office Websites (Extended Search)

Grasses Grasses Prairie Resources - Exhibit Home "What is it about prairies? What fascinates us so about the grasslands that gird our continent? Other landscapes certainly offer more spectacular scenery such as the Rockies, the canyons, the deserts, the ocean coastlines. By contrast, the prairies seem, well, flat - flat and somewhat monotonous-undeniably vast but not as picturesque as a redwood forest or a mountain stream. "Yet the prairie holds a rightful place in American popular culture as one of our most distinctive and defining landscapes. Writers from Washington Irving to Willa Cather to Carl Sandburg have celebrated the prairie in prose and verse. Our national songs refer to the 'endless prairie' and 'the fruited plain.' Illinois, where only one-hundredth of 1 percent of its

251

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

252

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

253

Thermal Gradient Holes At Long Valley Caldera Area (Sorey, Et...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity...

254

Integrated dense array and transect MT surveying at dixie valley...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal...

255

Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et Al., 2010) Exploration Activity...

256

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

257

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope...

258

Modeling-Computer Simulations At Long Valley Caldera Area (Farrar...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity...

259

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity...

260

Modeling-Computer Simulations At Long Valley Caldera Area (Newman...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Newman, Et Al., 2006) Exploration Activity...

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Four-Dimensional Viscoelastic Deformation Model For Long Valley...  

Open Energy Info (EERE)

Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, California, Between 1995 And 2000 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

262

Water Sampling At Valley Of Ten Thousand Smokes Region Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

263

Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

264

Compound and Elemental Analysis At Buffalo Valley Hot Springs...  

Open Energy Info (EERE)

for geothermal development. These samples are being collected to support more detailed work and assessment at those sites. (e.g., Buffalo Valley and Rawhide-Fairview Peak)....

265

Compound and Elemental Analysis At Little Valley Area (Wood,...  

Open Energy Info (EERE)

Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Little Valley Area (Wood, 2002) Exploration...

266

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

267

Experience with the EM-60 electromagnetic system for geothermal exploration in Nevada  

DOE Green Energy (OSTI)

Lawrence Berkeley Laboratory (LBL) conducted controlled-source electromagnetic (EM) surveys at three geothermal prospects in northern Nevada. Over 40 soundings were made in Panther Canyon (Grass Valley), near Winnemucca; Soda Lakes, near Fallon; and McCoy, west of Austin, to test and demonstrate the applicability of LBL's EM-60 system to geothermal exploration. The EM-60 is a frequency-domain system using three-component magnetic detection. Typically, +-65 A is applied to an 100-m-diameter four-turn horizontal loop, generating a dipole moment >10/sup 6/ MKS over the frequency range 10/sup -3/ to 10/sup -3/ Hz. With such a source loop, soundings were made, at transmitter-receiver separations of up to 4 km, providing a maximum depth of penetration of 4 km.

Wilt, M.; Goldstein, N.E.; Stark, M.; Haught, J.R.; Morrison, H.F.

1981-09-01T23:59:59.000Z

268

Hyperspectral mineral mapping in support of geothermal exploration-  

Open Energy Info (EERE)

mineral mapping in support of geothermal exploration- mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hyperspectral mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA Abstract N/A Authors B. A. Martini, E. A. Silver, W. L. Pickles and P. A. Cocks Conference Geothermal Resources Council Annual Meeting; Morelia, Mexico; 2004 Published Geothermal Resources Council Annual Meeting;, 2004 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hyperspectral mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

269

Recency of Faulting and Neotectonic Framework in the Dixie Valley  

Open Energy Info (EERE)

of Faulting and Neotectonic Framework in the Dixie Valley of Faulting and Neotectonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Recency of Faulting and Neotectonic Framework in the Dixie Valley Geothermal Field and Other Geothermal Fields of the Basin and Range Abstract We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal development. The

270

Geothermal: Sponsored by OSTI -- GRED STUDIES AND DRILLING OF...  

NLE Websites -- All DOE Office Websites (Extended Search)

STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

271

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections...  

Open Energy Info (EERE)

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Jump to: navigation,...

272

geothermal_test.cdr  

Office of Legacy Management (LM)

The Bureau of Land Management (BLM) began studies The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at

273

geothermal_test.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at an elevation of about 28 feet above sea level. The Salton Sea is approximately 40 miles northwest

274

Final Technical Report, Geothermal Resource Evaluation And Definitioni  

Open Energy Info (EERE)

Technical Report, Geothermal Resource Evaluation And Definitioni Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Details Activities (9) Areas (1) Regions (0) Abstract: This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource

275

Utilization of geothermal energy for agribusiness development in southwestern New Mexico. Technical completion report, July 19, 1978-May 30, 1980  

DOE Green Energy (OSTI)

An evaluation is presented of the direct heat utilization from geothermal resources for agribusiness uses in the Animas Valley, Southwestern New Mexico. The analysis includes an evaluation of the groundwater and geothermal resources in the Animas Valley, monitoring of an existing geothermal greenhouse, and evaluation of two potential agribusiness applications of geothermal waters (greenhouses and meat precooking).

Landsford, R.R.; Abernathy, G.H.; Gollehon, N.R.

1981-01-01T23:59:59.000Z

276

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

277

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

278

Development of an injection augmentation program at the Dixie Valley,  

Open Energy Info (EERE)

an injection augmentation program at the Dixie Valley, an injection augmentation program at the Dixie Valley, Nevada geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of an injection augmentation program at the Dixie Valley, Nevada geothermal field Abstract Evaporative cooling at geothermal power plants generally reduces reservoir pressures even if all available geothermal liquids are reinjected. Controlled programs of injecting non geothermal waters directly into reservoirs have been tested or implemented at only four fields, three of them being vapor dominated. At the liquid-dominated Dixie Valley geothermal field an unsuccessful search for a large volume source of warm,chemically desirable fluid for augmentation was conducted.After determining water

279

Potential for crop drying with geothermal hot water resources in the western United States: alfalfa, a case study. Report 305-100-02  

DOE Green Energy (OSTI)

Preliminary results of engineering, economic, and geographic analysis of the use of low-temperature geothermal heat for the commercial drying of grains, grasses, fruits, vegetables and livestock products in the United States are reported. Alfalfa (lucerne) dehydration was chosen for detailed process and cost study. Six different geothermal heat exchanger/dryer configurations were examined. A conveyor type that could utilize geothermal hot water for its entire heat requirement proved to be the most economical. A capital cost estimate for an all-geothermal alfalfa dehydration plant near the Heber Known Geothermal Resource Area in the Imperial Valley, California was prepared. The combined cost for heat exchangers and dryer is about $1.6 million. Output is about 11 metric tons per hour. Acreage, production and dollar value data for 22 dryable crops were compiled for the areas surrounding identified hydrothermal resources in 11 western states. The potential magnitude of fossil fuel use that could be replaced by geothermal heat for drying these crops will be estimated.

Wright, T.C.

1977-06-22T23:59:59.000Z

280

Geothermal Technologies Office: Geothermal Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Surface Deformation from Satellite Data and Geothermal Assessment,  

Open Energy Info (EERE)

Surface Deformation from Satellite Data and Geothermal Assessment, Surface Deformation from Satellite Data and Geothermal Assessment, Exploration and Mitigation in Imperial Valley Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Surface Deformation from Satellite Data and Geothermal Assessment, Exploration and Mitigation in Imperial Valley Author Mariana Eneva Published N/A, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Surface Deformation from Satellite Data and Geothermal Assessment, Exploration and Mitigation in Imperial Valley Citation Mariana Eneva. Surface Deformation from Satellite Data and Geothermal Assessment, Exploration and Mitigation in Imperial Valley [Internet]. 2012. N/A. N/A. [cited 2013/09/17]. Available from: http://www.energy.ca.gov/research/notices/2012-02-29_workshop/presentations/Geothermal/Eneva-Imageair_Inc_Presentation.pdf

282

Hyperspectral Mineral Mapping In Support Of Geothermal Exploration-  

Open Energy Info (EERE)

Mineral Mapping In Support Of Geothermal Exploration- Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Details Activities (2) Areas (2) Regions (0) Abstract: Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic

283

Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001  

SciTech Connect

The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

Schochet, Daniel N.; Cunniff, Roy A.

2001-02-01T23:59:59.000Z

284

Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001  

DOE Green Energy (OSTI)

The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

Schochet, Daniel N.; Cunniff, Roy A.

2001-02-01T23:59:59.000Z

285

Correlation of wireline log characteristics with hydrothermal alteration and other reservoir properties of the Salton Sea and Westmorland geothermal fields, Imperial Valley, California, USA  

Science Conference Proceedings (OSTI)

A detailed study of wireline logs from 11 wells in the Salton Sea and Westmorland geothermal systems was undertaken in order to determine the effects of hydrothermal alteration on the response of electrical and gamma-gamma density well logs. For the Salton Sea geothermal field, definite correspondence between log responses and hydrothermal mineralogy is evident, which in turn is related to the physical properties of the rocks. Three hydrothermal and one unaltered zone can be identified from log data on shales. These are: (1) the unaltered montmorillonite zone (290/sup 0/ to 300/sup 0/C). The characteristic responses on well logs by which these zones are identified result primarily from changes in clay mineralogy of the shales and increases in density with progressive hydrothermal metamorphism. In the Westmorland geothermal field, differentiating mineral zones from log responses was only partially successful. However, analyses of both well log and petrologic data for wells Landers 1 and Kalin Farms 1 suggest that the former is heating up and the latter is cooling.

Muramoto, F.S.; Elders, W.A.

1984-05-01T23:59:59.000Z

286

Correlation of wireline log characteristics with hydrothermal alteration and other reservoir properties of the Salton Sea and Westmorland geothermal fields, Imperial Valley, California, USA  

DOE Green Energy (OSTI)

A detailed study of wireline logs from 11 wells in the Salton Sea and Westmorland geothermal systems was undertaken in order to determine the effects of hydrothermal alteration on the response of electrical and gamma-gamma density well logs. For the Salton Sea geothermal field, definite correspondence between log responses and hydrothermal mineralogy is evident, which in turn is related to the physical properties of the rocks. Three hydrothermal and one unaltered zone can be identified from log data on shales. These are: (1) the unaltered montmorillonite zone (<100/sup 0/ to 190/sup 0/C); (2) the illite zone (100/sup 0/ to 190/sup 0/C to 230/sup 0/ to 250/sup 0/C); (3) the chlorite zone (230/sup 0/ to 250/sup 0/C to 290/sup 0/ to 300/sup 0/C); and (4) the feldspar zone (>290/sup 0/ to 300/sup 0/C). The characteristic responses on well logs by which these zones are identified result primarily from changes in clay mineralogy of the shales and increases in density with progressive hydrothermal metamorphism. In the Westmorland geothermal field, differentiating mineral zones from log responses was only partially successful. However, analyses of both well log and petrologic data for wells Landers 1 and Kalin Farms 1 suggest that the former is heating up and the latter is cooling.

Muramoto, F.S.; Elders, W.A.

1984-05-01T23:59:59.000Z

287

Remote sensing classification of grass seed cropping practices in western Oregon  

Science Conference Proceedings (OSTI)

Our primary objective was extending knowledge of major crop rotations and stand establishment conditions present in 4800 grass seed fields surveyed over three years in western Oregon to the entire Willamette Valley through classification of multiband ...

George W. Mueller-Warrant; Gerald W. Whittaker; Stephen M. Griffith; Gary M. Banowetz; Bruce D. Dugger; Tiffany S. Garcia; Guillermo Giannico; Kathryn L. Boyer; Brenda C. McComb

2011-05-01T23:59:59.000Z

288

Geotechnical studies of geothermal reservoirs | Open Energy Information  

Open Energy Info (EERE)

Geotechnical studies of geothermal reservoirs Geotechnical studies of geothermal reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geotechnical studies of geothermal reservoirs Details Activities (7) Areas (7) Regions (0) Abstract: It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot

289

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications...  

Open Energy Info (EERE)

In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

290

Density Log at Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Density Log at Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

291

Field Mapping At Walker Lake Valley Area (Shoffner, Et Al., 2010...  

Open Energy Info (EERE)

Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Retrieved from "http:en.openei.orgw...

292

Water Sampling At Long Valley Caldera Area (Goff, Et Al., 1991...  

Open Energy Info (EERE)

91) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Area (Goff, Et Al., 1991) Exploration Activity Details...

293

Water-Gas Samples At Gabbs Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs...

294

Geothermal development and the Salton Sea  

DOE Green Energy (OSTI)

The relationship of the Salton Sea, a key element of the Imperial Valley water system, to potential geothermal development in that region is studied. The effects of direct discharge of brines into the Sea are discussed along with the use of Salton Sea water for cooling the geothermal power plants. Methods for controlling the salinity of the Salton Sea are described. (MOW)

Goldsmith, M.

1976-02-01T23:59:59.000Z

295

1978 annual report, INEL geothermal environmental program  

DOE Green Energy (OSTI)

The objective of the Raft River Geothermal Environmental Program, in its fifth year, is to characterize the beneficial and detrimental impacts resulting from the development of moderate-temperature geothermal resources in the valley. This report summarizes the monitoring and research efforts conducted as part of this program in 1978. The results of these monitoring programs will be used to determine the mitigation efforts required to reduce long-term impacts resulting from geothermal development.

Spencer, S.G.; Sullivan, J.F.; Stanley, N.E.

1979-04-01T23:59:59.000Z

296

Petrology and stable isotope geochemistry of three wells in the Buttes area of the Salton Sea Geothermal Field, Imperial Valley, California, USA  

DOE Green Energy (OSTI)

A detailed investigation is reported of cuttings recovered from three wells in the Salton Sea geothermal field located at the southeast end of the Salton Sea, California. The wells, Magmamax No. 2, Magmamax No. 3, and Woolsey No. 1 penetrate 1340 m, 1200 m, and 730 m, respectively, of altered sandstones, siltstones, and shales of the Colorado River delta. The wells are located at the crest of a thermal anomaly, reach a maximum of 320/sup 0/C at 1070 m, and produce a brine containing approximately 250,000 mg/1 of dissolved solids.

Kendall, C.

1976-12-01T23:59:59.000Z

297

Geotechnical studies of geothermal reservoirs  

DOE Green Energy (OSTI)

It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot Springs, Utah, (4) Bacca Ranch, Valle Grande, New Mexico, (5) Jemez Caldera, New Mexico, (6) Raft River, Idaho, and (7) Marysville, Montona. (MHR)

Pratt, H.R.; Simonson, E.R.

1976-01-01T23:59:59.000Z

298

High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley  

Open Energy Info (EERE)

Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Abstract N/A Author V. J. S. Grauch Published U.S. Geological Survey, 2002 Report Number 02-384 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada Citation V. J. S. Grauch. 2002. High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada. (!) : U.S. Geological Survey. Report No.: 02-384. Retrieved from "http://en.openei.org/w/index.php?title=High-Resolution_Aeromagnetic_Survey_to_Image_Shallow_Faults,_Dixie_Valley_Geothermal_Field,_Nevada&oldid=682601"

299

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle  

Open Energy Info (EERE)

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Abstract The goal of this study is to map and characterize Quaternary faults in southern Dixie Valley for the Department of the Navy Geothermal Program Office's NAS Fallon Geothermal Exploration Project. We will use this information to better characterize the regional structure and geothermal resource potential of the area,with a focus on determining the structural

300

INEL Geothermal Environmental Program. 1979 annual report  

DOE Green Energy (OSTI)

The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

Thurow, T.L.; Sullivan, J.F.

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geological and geophysical studies of a geothermal area in the southern  

Open Energy Info (EERE)

Geological and geophysical studies of a geothermal area in the southern Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: areal geology; Cassia County Idaho; Cenozoic; clastic rocks; clasts; composition; conglomerate; economic geology; electrical methods; evolution; exploration; faults; folds; geophysical methods; geophysical surveys; geothermal energy; gravity methods; Idaho; igneous rocks; lithostratigraphy; magnetic methods; pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks

302

Geothermal: About  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - About Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

303

Geothermal: Publications  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Publications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

304

Geothermal Energy  

U.S. Energy Information Administration (EIA)

The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within the Earth.

305

Native Grass Restoration Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Reader pdf format) on the Oak Ridge Reservation. Native Grass Restoration Projects Power Line Right-of-Way Roadside Re-Vegetation Riparian Restoration SNS Entrance Habitat...

306

Geothermal Information Dissemination and Outreach  

SciTech Connect

Project Purpose To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and TV station interviews were conducted during the event. Technical Program included 136 technical papers. All were published in Volume 28 of the GRC Transactions. Volume 28, GRC Transactions Pblished as a high-quality, durable casebound volume, Volume 28 of the Transactions published 119 out of 136 technical papers (692 pp) presented at the GRC 2004 Annual Meeting. The papers were submitted by geothermal experts and professionals from around the world. The papers were reviewed over a 2-day period by 25 volunteer (in-kind) geothermal experts from the private sector and DOE National Laboratories. GRC staff received and cataloged the papers, and maintained interaction with authors for revisions and corrections. DOE Geothermal Technologies Newsletter The Office of Geothermal Technologies quarterly newsletter, Geothermal Technologies, is produced at the National Renewable Energy Laboratory (NREL). This 2-color, 4- to 16-page newsletter summarizes federal geothermal research and development projects and other DOE geothermal news. The GRC receives newsletter disk copy and color-key proof from NREL for each newsletter, then follows through with print production and distribution. Circulation is 1,000 per issue (plus 300 copies of the newsletter shipped to NREL for internal and public distribution). During the project period, the GRC printed, stitched and bound the Geothermal Technologies newsletter into the Sept/Oct 2003, Jan/Feb 2004, and May/June 2004 editions of the GRC Bulletin. Multiple copies (300) of the newsletter sans magazine were provided to NREL for internal DOE distribution. GRC Geothermal Research Library The GRC has built the largest and most comprehensive library in the world devoted to geothermal energy. The GRC Geothermal Library provides rapid accessibility to the majority of technical literature crafted over the past 30 years, and preserves hard copy and on-line databases for future use by geothermal researchers and developers. A bibliography for over half of the physical library's citations is available through keyword search on the GRC web site (www.geothe

Ted J. Clutter, Geothermal Resources Council Executive Director

2005-02-18T23:59:59.000Z

307

Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from

308

Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) |  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii

309

Geothermal Project Data and Personnel Resumes  

SciTech Connect

Rogers Engineering Co., Inc. is one of the original engineering companies in the US to become involved in geothermal well testing and design of geothermal power plants. Rogers geothermal energy development activities began almost twenty years ago with flow testing of the O'Neill well in Imperial Valley, California and well tests at Tiwi in the Philippines; a geothermal project for the Commission on Volcanology, Republic of the Philippines, and preparation of a feasibility study on the use of geothermal hot water for electric power generation at Casa Diablo, a geothermal area near Mammouth. This report has brief write-ups of recent geothermal resources development and power plant consulting engineering projects undertaken by Rogers in the US and abroad.

1980-01-01T23:59:59.000Z

310

Geothermal Project Data and Personnel Resumes  

DOE Green Energy (OSTI)

Rogers Engineering Co., Inc. is one of the original engineering companies in the US to become involved in geothermal well testing and design of geothermal power plants. Rogers geothermal energy development activities began almost twenty years ago with flow testing of the O'Neill well in Imperial Valley, California and well tests at Tiwi in the Philippines; a geothermal project for the Commission on Volcanology, Republic of the Philippines, and preparation of a feasibility study on the use of geothermal hot water for electric power generation at Casa Diablo, a geothermal area near Mammouth. This report has brief write-ups of recent geothermal resources development and power plant consulting engineering projects undertaken by Rogers in the US and abroad.

None

1980-01-01T23:59:59.000Z

311

Geothermal Resource Analysis and Structure of Basin and Range Systems,  

Open Energy Info (EERE)

Analysis and Structure of Basin and Range Systems, Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Authors David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published U.S. Department of Energy, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Citation David D. Blackwell,Kenneth W. Wisian,Maria C. Richards,Mark Leidig,Richard Smith,Jason McKenna. 2003. Geothermal Resource Analysis and Structure of

312

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

313

Petrography of late cenozoic sediments, Raft River geothermal field, Idaho  

Open Energy Info (EERE)

of late cenozoic sediments, Raft River geothermal field, Idaho of late cenozoic sediments, Raft River geothermal field, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Petrography of late cenozoic sediments, Raft River geothermal field, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; RAFT RIVER VALLEY; GEOTHERMAL FIELDS; PETROGRAPHY; BIOTITE; CALCITE; CLAYS; LIMESTONE; PYRITE; SANDSTONES; SEDIMENTS; SHALES; VOLCANIC ROCKS; ZEOLITES; ALKALINE EARTH METAL COMPOUNDS; CALCIUM CARBONATES; CALCIUM COMPOUNDS; CARBON COMPOUNDS; CARBONATE ROCKS; CARBONATES; CHALCOGENIDES; IDAHO; IGNEOUS ROCKS; INORGANIC ION EXCHANGERS; ION EXCHANGE MATERIALS; IRON COMPOUNDS; IRON SULFIDES; MICA; MINERALS; NORTH AMERICA; ORES; OXYGEN COMPOUNDS; PACIFIC NORTHWEST REGION; PYRITES; ROCKS; SEDIMENTARY ROCKS; SULFIDES; SULFUR COMPOUNDS;

314

Category:Geothermal References | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal References Jump to: navigation, search Add a new Reference Pages in category "Geothermal References" The following 200 pages are in this category, out of 323 total. (previous 200) (next 200) 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth 2007 Annual Report A A Case History of Injection Through 1991 at Dixie Valley, Nevada A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii A geochemical model of the Kilauea east rift zone A model for the shallow thermal regime at Dixie Valley geothermal field

315

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using  

Open Energy Info (EERE)

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Abstract Extended logging and surface-to-borehole electromagnetic induction measurements were performed at the Dixie Valley Geothermal Field as part of an ongoing effort to employ electromagnetic induction logging to geothermal reservoir characterization. The principal goal of this effort is to discern subsurface features useful in geothermal production, such as larger scale mapping of geothermal reservoirs and smaller scale mapping of producing

316

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

317

Health impacts of geothermal energy  

DOE Green Energy (OSTI)

The focus is on electric power production using geothermal resources greater than 150/sup 0/C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of noncondensing gases such as hydrogen sulfide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. It is shown that hydrogen sulfide emissions from most geothermal power plants are apt to cause odor annoyances among members of the exposed public - some of whom can detect this gas at concentrations as low as 0.002 parts per million by volume. A risk assessment model is used to estimate the lifetime risk of incurring leukemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. The risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic is also assessed. Finally, data on the occurrence of occupational disease in the geothermal industry are summarized briefly.

Layton, D.W.; Anspaugh, L.R.

1981-06-15T23:59:59.000Z

318

Geophysical Method At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

Method At Raft River Geothermal Area (1975) Method At Raft River Geothermal Area (1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1975 Usefulness not indicated DOE-funding Unknown Notes Geologic and geophysics studies were completed at the Raft River valley. References Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover, D.B. (1 May 1975) Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1975)&oldid=59434

319

Telluric Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1978) Raft River Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Telluric Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis Infer the structure and the general lithology underlying the valley Notes The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for lower values in the area of the geothermal system. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho

320

NREL: Learning - Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Production Electricity Production Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake  

Open Energy Info (EERE)

Using Aviris Remote Sensing Data Over Fish Lake Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Fish Lake Valley, in Esmeralda County, Nevada, sits at the southern end of the Mina Deflection where the very active Death Valley-Furnace Creek-Fish Lake Valley fault system makes a right step to transfer slip northward into the Walker Lane. Northern Fish Lake Valley has been pulling part since ca. 6 Ma, primarily along the Emigrant Peak normal fault zone (Stockli et al., 2003). Elevated tectonic activity in Fish Lake Valley suggests there may be increased fracture permeability to facilitate

322

Pearl River Valley Electric Power Association - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pearl River Valley Electric Power Association - Residential Energy Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount New Homes Heat Pump: $150 - $500 Geothermal Heat Pump: $500 Electric Water Heater: $150 Existing Homes Heat Pump: $200 Gas to Electric Water Heater Conversion: $150 Provider Pearl River Valley Electric Power Association Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the

323

Lower Valley Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Water Heating Windows, Doors, & Skylights Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Audit: Discounted Cost Weatherization Measures: Varies Marathon Water Heater: $25 Water Heater: $15 - $25 Clothes Washer: $25 - $50 Refrigerator: $15 Refrigerator Recycling: $75 Energy Star Manufactured Home: $1,000 Geothermal Heat Pumps: Up to $2,100 Provider Lower Valley Energy Lower Valley Energy offers numerous rebates for residential customers who

324

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

325

Heber Plant Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Geothermal Facility Plant Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber Plant Geothermal Facility General Information Name Heber Plant Geothermal Facility Facility Heber Plant Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Heber II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber II Geothermal Facility General Information Name Heber II Geothermal Facility Facility Heber II Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Heber South Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

South Geothermal Facility South Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber South Geothermal Facility General Information Name Heber South Geothermal Facility Facility Heber South Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Gould Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Gould Geothermal Facility Gould Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gould Geothermal Facility General Information Name Gould Geothermal Facility Facility Gould Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

330

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

331

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

332

Exploration and Development Techniques for Basin and Range Geothermal  

Open Energy Info (EERE)

Techniques for Basin and Range Geothermal Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV; 2002/09/22 Published Geothermal Resources Council, 2002 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Citation David D. Blackwell,Mark Leidig,Richard P. Smith,Stuart D. Johnson,Kenneth

333

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

1996-02-01T23:59:59.000Z

334

Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) |  

Open Energy Info (EERE)

Martin, Et Al., 2004) Martin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References B. Martin, E. Silver, W. Pickles, P. Cocks (Unknown) Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Long_Valley_Caldera_Area_(Martin,_Et_Al.,_2004)&oldid=511009" Categories: Exploration Activities DOE Funded

335

Geothermal guidebook  

DOE Green Energy (OSTI)

The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

Not Available

1981-06-01T23:59:59.000Z

336

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

337

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

DOE Green Energy (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

338

The investigation of anomalous magnetization in the Raft River valley,  

Open Energy Info (EERE)

investigation of anomalous magnetization in the Raft River valley, investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous magnetization in the Raft River valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; clastic sediments; economic geology; exploration; geophysical methods; geophysical surveys; geothermal energy; gravel; ground methods; Idaho; isothermal remanent magnetization; magnetic anomalies; magnetic methods; magnetic properties; magnetic susceptibility; magnetization; paleomagnetism; Raft River basin; remanent magnetization; sediments; surveys; United States Author(s): Anderson, L.A.; Mabey, D.R. Published: Abstracts - Society of Exploration Geophysicists International

339

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

340

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal: Sponsored by OSTI -- Applications of Geothermally...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels Geothermal Technologies...

342

INEL geothermal environmental program. 1980 annual report  

DOE Green Energy (OSTI)

An overview of continuing environmental research and monitoring programs conducted at the Raft River Geothermal Site is provided. The monitoring programs are designed to collect data on the physical, biological and human environments of the development area. Primary research during 1980 emphasized completing baseline studies on terrestrial fauna, establishing an air quality monitoring network, investigating potential sources of fluoride in the Raft River Valley, and studying water level changes in the shallow monitor wells in response to development of the geothermal resource.

Cahn, L.S.; Thurow, T.L.; Martinez, J.A.

1981-04-01T23:59:59.000Z

343

Geothermal overviews of the western United States  

DOE Green Energy (OSTI)

This compendium presents data on geothermal resources for all those western states with geothermal potential. Individual sections, which have been processed separately for inclusion in the EDB data base, are devoted to each of the following states: Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. A separate section is also devoted to the U.S. Bureau of Reclamation Imperial Valley Project. Maps and references are included for each section. (JGB)

Anderson, D.N.; Axtell, L.H. (comps.)

1972-01-01T23:59:59.000Z

344

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley  

Open Energy Info (EERE)

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Abstract A 2D reactive transport model of the Dixie Valley,Nevada, geothermal area was developed to assessfluid flow pathways and fluid rock interactionprocesses. Setting up the model includedspecification of the mineralogy of the different rockunits, the formulation of the corresponding mineraldissolution and precipitation reactions, the explicitdefinition of two major normal faults and thespecification of a dual continuum domain

345

Telluric Survey At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Telluric Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Telluric Survey Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs--Devil's Kitchen geothermal area.

346

Project development plan for East Mesa Geothermal Test Center  

DOE Green Energy (OSTI)

Plans for a test facility for geothermal energy systems and components designed for moderate temperature/low salinity geothermal fluids available at the East Mesa site in the Imperial Valley of California are discussed. Details of the following phases of development are given: technical plan; management plan; procurement and contracting plan; technology transfer and utilization plan; and resource requirements. (JGB)

Not Available

1975-03-01T23:59:59.000Z

347

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

348

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

349

Geothermal Technologies Office: Geothermal Electricity Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

350

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

351

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

352

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley  

Open Energy Info (EERE)

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Abstract A new generation MT array measurement system was applied in a contiguous bipole deployment at the Dixie Valley thermal area. Basic goals of the survey area are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single range front fault versus shallower, stepped pediment; 2) delineate fault zones which have experienced fluid flux as

353

Geothermometry At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Lualualei Valley Area (Thomas, 1986) Geothermometry At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Yhe extensive set of groundwater chemical data compiled for the wells in the valley (Table 1) showed that two of the primary indicators that have been commonly used in Hawaii for identifying geothermal potential (i.e. silica concentration and chloride to magnesium ion ratios) were anomalous in the groundwater of this survey area (Cox and Thomas, 1979). Several wells located on the caldera boundaries were found to have both

354

Why is grass green?  

NLE Websites -- All DOE Office Websites (Extended Search)

is grass green? is grass green? Name: Bob Whitbeck Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: What causes grass to be green? Replies: Bob, Grass and most other plants are green because they contain a pigment known as chlorophyll. The chlorophyll is used in the process of photosynthesis where a plant produces sugar in the presence of sunlight. In fact the word 'photosynthesis' means literally to synthesize or 'make' from light (photo). There are, of course some plants which do not contain chlorophyll, and these generally get their nutrition (food) by other means. Some examples are the fungi which decompose dead, and sometimes living, tissue, for their food. You will find that a green plant needs light to make food. If the source of light is cut off, the plant dies. Mushrooms, which are fungi, do not require light to make food (they decompose matter as I mentioned above) and you can find mushrooms growing in almost total darkness.

355

Raft River Geothermal Exploratory Hole No. 3  

DOE Green Energy (OSTI)

Raft River Geothermal Exploratory Hole No. 3 (RRGE-3) is an exploratory hole with three directional legs, drilled to depths ranging from approximately 5,500 to 6,000 feet into intruded quartz monzonite basement rock of the Raft River valley of southeastern Idaho. The goal of the Raft River Geothermal R and D program is to determine the feasibility of developing and utilizing medium temperature (300/sup 0/F) geothermal resources for power generation and nonelectrical applications. This well was drilled to provide data to further investigate and evaluate the geothermal reservoir, as well as to optimize the location of possible future resource and/or injection wells and to develop methods to reduce the cost of geothermal wells. The drilling and completion of RRGE-3 is described and the daily drilling reports, drill bit records, descriptions of the casing, cementing, logging and coring programs, and the containment techniques employed on RRGE-3 are included.

Shoopman, H.H. (comp.)

1977-06-01T23:59:59.000Z

356

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

357

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

358

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

359

Geothermal Handbook  

DOE Green Energy (OSTI)

This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

Leffel, C.S., Jr.; Eisenberg, R.A.

1977-06-01T23:59:59.000Z

360

Dixie Valley Geothermal Prospect Churchill County, Nevada  

DOE Green Energy (OSTI)

Attempts were made to cause well Dixie Federal 45-14 to flow by reducing the wellbore pressure opposing possible producing formation. Such pressure reduction was accomplished by using a Magcobar air compressor to lift the water column out of the wellbore. Three series of efforts using this method were performed. The conclusions from these last attempts to flow Dixie Federal 45-14 were: (1) the massive water entry at 5820-5870 feet was shut off; (2) the compressor, with some help from the mud pumps, was able to virtually clear the wellbore of water above the point of air injection; (3) despite evacuating water from the wellbore to as deep as 7500 feet, the Dixie Federal 45-14 had insufficient permeability to commence flowing on its own as of 7-8-79. The possible benefits of temperature equilibration or other time adjustments within the prospective interval below 8000 feet may include eventual capacity to flow. This potential will be evaluated with future flow attempts; and (4) there is some small liquid entry somewhere between 6290 and 9022 feet which caused the air compressor to go through very long (3-4 hour) cycles of unloading and slowly re-filling the wellbore.

none

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal  

Open Energy Info (EERE)

Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Areas- Cove Fort-Sulphurdale, Utah and Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Areas- Cove Fort-Sulphurdale, Utah and Dixie Valley, Nevada Abstract Geobotanical anomalies have been associated with mineralization and hydrocarbon microseepage. As both of these phenomena have been associated with hydrothermal convection systems in the Great Basin it is likely that geobotanical anomalies are present over geothermal areas. This paper present preliminary results for the ongoing Cove Fort Sulphurdale, Utah and Dixie Valley, Utah, studies. Data acquisition for these areas has included

362

Reconnaissance geophysical studies of the geothermal system in southern  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Gravity, aeromagnetic, and telluric current surveys in the southern Raft River have been used to infer the structure and the general lithology underlying the valley. The gravity data indicate the approximate thickness of the Cenozoic rocks and location of the larger normal faults, and the aeromagnetic data indicate the extent of the major Cenozoic volcanic units. The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for

363

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

364

Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) |  

Open Energy Info (EERE)

International Geothermal Area, New Zealand (Wood, 2002) International Geothermal Area, New Zealand (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area New Zealand (Wood, 2002) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley

365

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

366

Geophysical Method At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Geophysical Method At Raft River Geothermal Area (1977) Geophysical Method At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Borehole geophysics were completed at the Raft River valley, Idaho. References Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. (1 February 1977) Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1977)&oldid=594349" Category: Exploration Activities

367

Behavior Of Rare Earth Element In Geothermal Systems, A New  

Open Energy Info (EERE)

Behavior Of Rare Earth Element In Geothermal Systems, A New Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Details Activities (32) Areas (17) Regions (0) Abstract: The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields

368

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

369

Tectonic setting of the Coso geothermal reservoir | Open Energy Information  

Open Energy Info (EERE)

Tectonic setting of the Coso geothermal reservoir Tectonic setting of the Coso geothermal reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Tectonic setting of the Coso geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal reservoir is being developed in Sierran-type crystalline bedrock of the Coso Mountains, a small desert mountain range just to the east of the Sierra Nevada and Rose Valley, which is the southern extension of the Owens Valley of eastern California Optimum development of this reservoir requires an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection to regional groundwater and thermal sources. An interpreted, conceptually balanced regional cross section that extends from the Sierra

370

Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Area (1978) Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes The aeromagnetic data indicate the extent of the major Cenozoic volcanic units. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Raft_River_Geothermal_Area_(1978)&oldid=473817"

371

Geothermal: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

372

Flow and Mixing in the Rift Valley of the Mid-Atlantic Ridge  

Science Conference Proceedings (OSTI)

High levels of diapycnal mixing and geothermal heating near midocean ridges contribute to the buoyancy fluxes that are required to close the global circulation. In topographically confined areas, such as the deep median valleys of slow-spreading ...

A. M. Thurnherr; K. J. Richards; C. R. German; G. F. Lane-Serff; K. G. Speer

2002-06-01T23:59:59.000Z

373

Geothermal resources in California: potentials and problems  

DOE Green Energy (OSTI)

The technology, cost and potential of geothermal resources in California are examined. The production of power from dry stream fields is expanding in Northern California, at The Geysers, at costs that compare favorably with alternate means of generation. The possibility exists that economic production of power can be started in the Imperial Valley, but numerous issues remain to be resolved; chief among them is the demonstration that commercially valuable aquifers indeed exist. The production of demineralized water from the geothermal fluids of the Imperial Valley depends, among other things, upon the identification of other sources of water for power plant cooling, or for reservoir reinjection, should it be necessary to avoid subsidence. It would appear that water production, without the income-producing capability of associated power generation, is not economically reasonable. The pace of geothermal development at the Geysers could probably be accelerated perhaps offering the opportunity for maintenance of adequate generating reserves should their nuclear construction program be delayed. The unknown factors and risks involved seem to preclude the Imperial Valley resource from being immediately effective in improving the power generation picture in Southern California. However, in the next decade, geothermal power could provide a useful energy increment, perhaps 10 percent of peak load. Associated water production could offer relief for the Imperial Valley in its predicted water quality problem. The pace of public and private development in the Imperial Valley seems incommensurately slow in relation to the potential of the resource. Geothermal power and water production is not intrinsically pollution-free, but appropriate environmental protection is possible.

Goldsmith, M.

1971-12-01T23:59:59.000Z

374

Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA  

DOE Green Energy (OSTI)

Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

Miller, K.R.; Elders, W.A.

1980-08-01T23:59:59.000Z

375

Thermal And-Or Near Infrared At Railroad Valley Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Railroad Valley Area (Laney, 2005) Railroad Valley Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Railroad Valley Area (Laney, 2005) Exploration Activity Details Location Railroad Valley Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Objectives for FY 2004 were to map mineralogy in Dixie Meadows, NV and thermal anomalies in Railroad Valley, NV. The first objective relates to the project goal of testing hyperspectral imagery for applications in soil-mineralogy mapping to detect hidden faults and buried geothermal phenomena. The second objective relates to testing satellite thermal

376

Geothermal Environmental Impact Assessment: Subsurface Environmental Assessment for Four Geothermal Systems  

DOE Green Energy (OSTI)

Geothermal systems are described for Imperial Valley and The Geysers, California; Klamath Falls, Oregon; and the Rio Grande Rift Zone, New Mexico; including information on location, area, depth, temperature, fluid phase and composition, resource base and status of development. The subsurface environmental assessment evaluates potential groundwater degradation, seismicity and subsidence. A general discussion on geothermal systems, pollution potential, chemical characteristics of geothermal fluids and environmental effects of geothermal water pollutants is presented as background material. For the Imperial Valley, all publicly available water quality and location data for geothermal and nongeothermal wells in and near the East Mesa, Salton Sea, Heber, Brawley, Dunes and Glamis KGRAs have been compiled and plotted. The geothermal fluids which will be reinjected range in salinity from a few thousand to more than a quarter million ppm. Although Imperial Valley is a major agricultural center, groundwater use in and near most of these KGRAs is minimal. Extensive seismicity and subsidence monitoring networks have been established in this area of high natural seismicity and subsidence. The vapor-dominated Geysers geothermal field is the largest electricity producer in the world. Groundwater in this mountainous region flows with poor hydraulic continuity in fractured rock. Ground and surface water quality is generally good, but high boron concentrations in hot springs and geothermal effluents is of significant concern; however, spent condensate is reinjected. High microearthquake activity is noted around the geothermal reservoir and potential subsidence effects are considered minimal. In Klamath Falls, geothermal fluids up to 113 C (235 F) are used for space heating, mostly through downhole heat exchangers with only minor, relatively benign, geothermal fluid being produced at the surface. Seismicity is low and is not expected to increase. Subsidence is not recognized. Of all geothermal occurrences in the Rio Grande Rift, the Valles Caldera is currently of primary interest. injection of geothermal effluent from hydrothermal production wells should remove any hydrologic hazard due to some potentially noxious constituents. Waters circulating in the LASL Hot Dry Rock experiment are potable. Seismic effects are expected to be minimal. Subsidence effects could develop.

Sanyal, Subir; Weiss, Richard

1978-11-01T23:59:59.000Z

377

Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program Yellowstone Valley Electric Cooperative - Residential/Commercial Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Maximum Rebate Add-On Heat Pump: $800 Geothermal Heat Pump: $1,000 (residential); $5,000 (commercial) Program Info State Montana Program Type Utility Rebate Program Rebate Amount Add-On Heat Pump: $200 per ton Geothermal Heat Pump: $200/ton (residential); $150/ton (commercial) Water Heater: $100 - $150 Energy Star Dishwasher: $25 Energy Star Refrigerator: $25 Energy Star Clothes Washer: $50 Provider

378

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino  

Open Energy Info (EERE)

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Abstract A series of four tracer tests was recently conducted at the Dixie Valley, Nevada, geothermal reservoir in order to determine fluid-flow processes and to evaluate candidate tracers for use in hydrothermal systems. These tests have resulted in the first successful use of the compounds amino G and pyrenetetrasulfonate as tracers in a geothermal reservoir. The tracer candidates were subjected to simulated hydrothermal conditions in laboratory reactors at temperatures as high as 300°C in order to determine

379

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in six wells penetrating a geothermalreservoir associated with the Stillwater fault zone inDixie Valley, Nevada, were used to investigate therelationship between reservoir permeability and thecontemporary in situ stress field. Data from wellsdrilled into productive and nonproductive segments ofthe Stillwater fault zone indicate that permeability inall wells is dominated by a relatively small number offractures striking parallel to the local trend of

380

Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Area (Laney, 2005) Buffalo Valley Hot Springs Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

382

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

383

Geothermal Energy Resources (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

384

Grass Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9.2190608°, -121.0610606° 9.2190608°, -121.0610606° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2190608,"lon":-121.0610606,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Grass Valley, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

601247°, -120.7856114° 601247°, -120.7856114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3601247,"lon":-120.7856114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Geothermal: Sponsored by OSTI -- Fairbanks Geothermal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fairbanks Geothermal Energy Project Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

387

Decision Analysis for Enhanced Geothermal Systems Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Geothermal Analysis Project Description The result of the proposed...

388

Geothermal: Sponsored by OSTI -- Alaska geothermal bibliography  

Office of Scientific and Technical Information (OSTI)

Alaska geothermal bibliography Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

389

Geothermal: Sponsored by OSTI -- Fourteenth workshop geothermal...  

Office of Scientific and Technical Information (OSTI)

Fourteenth workshop geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

390

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

391

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

392

Isotopic Analysis- Fluid At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1990) Analysis- Fluid At Coso Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement.

393

Apacheta, A New Geothermal Prospect In Northern Chile | Open Energy  

Open Energy Info (EERE)

Apacheta, A New Geothermal Prospect In Northern Chile Apacheta, A New Geothermal Prospect In Northern Chile Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Apacheta, A New Geothermal Prospect In Northern Chile Details Activities (0) Areas (0) Regions (0) Abstract: The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a

394

North Brawley Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Brawley Geothermal Power Plant Brawley Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North Brawley Geothermal Power Plant General Information Name North Brawley Geothermal Power Plant Facility North Brawley Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.015046°, -115.542267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.015046,"lon":-115.542267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Water Sampling At International Geothermal Area, Philippines (Wood, 2002) |  

Open Energy Info (EERE)

Water Sampling At International Geothermal Area Water Sampling At International Geothermal Area Philippines (Wood, 2002) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

396

Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ormat Geothermal Ormat Geothermal Project in Nevada Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in Nevada September 23, 2011 - 3:37pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the Department finalized a partial guarantee for up to a $350 million loan to support a geothermal power generation project. The project, sponsored by Ormat Nevada, Inc., is expected to produce up to 113 megawatts (MW) of clean, baseload power from three geothermal power facilities and will increase geothermal power production in Nevada by nearly 25 percent. The facilities are Jersey Valley in Pershing County, McGinness Hills in Lander County and Tuscarora in Elko County. The company estimates the project will fund 332 jobs during construction and 64 during operations.

397

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Details Activities (3) Areas (1) Regions (0) Abstract: The Raft River geothermal system is located in southern Idaho, near the Utah-Idaho state boarder in the Raft River Valley. The field, which is owned and operated by U.S. Geothermal, has been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes ongoing geologic and petrologic investigations being conducted in support of this project. The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase

398

Geobotanical Remote Sensing For Geothermal Exploration | Open Energy  

Open Energy Info (EERE)

For Geothermal Exploration For Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Geobotanical Remote Sensing For Geothermal Exploration Details Activities (1) Areas (1) Regions (0) Abstract: This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and

399

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean,...

400

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and  

Open Energy Info (EERE)

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Details Activities (1) Areas (1) Regions (0) Abstract: The temporal and spatial distribution of seismicity in the Coso Range, the Coso geothermal field, and the Indian Wells Valley region of southeast-central California are discussed in this paper. An analysis of fault-related seismicity in the region led us to conclude that the Little Lake fault and the Airport Lake fault are the most significant seismogenic zones. The faulting pattern clearly demarcates the region as a transition

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981  

DOE Green Energy (OSTI)

Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

Not Available

1981-01-01T23:59:59.000Z

402

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=692525

403

Geothermal Reservoir Assessment Case Study, Northern Basin and Range  

Open Energy Info (EERE)

Reservoir Assessment Case Study, Northern Basin and Range Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Abstract N/A Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy, 1980 Report Number GLO2386 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Citation Elaine J. Bell,Lawrence T. Larson,Russell W. Juncal. 1980. Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province,

404

DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area  

Open Energy Info (EERE)

Area Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area (1974-1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique DC Resistivity Survey (Schlumberger Array) Activity Date 1974 - 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis Hydrogeologic study of the area Notes In 1975, the U.S. Geological Survey made 70 Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the 79 soundings made previously in the Raft River Valley and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location,

405

Understanding Fault Characteristics And Sediment Depth For Geothermal  

Open Energy Info (EERE)

Understanding Fault Characteristics And Sediment Depth For Geothermal Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Southern Walker Lake Basin, situated in the Walker Lake structural domain, consists of primarily E-W directed extension along N-NNW striking normal faults. Water well drilling on the eastern slopes of the Wassuk Range, west of the city of Hawthorne, Nevada showed elevated temperatures. Two recent drill holes reaching downhole depths of more than 4000 ft give some insight to the geologic picture, but more information

406

Conceptual Model At Coso Geothermal Area (2005) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (2005) Coso Geothermal Area (2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Conceptual Model Activity Date 2005 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop a conceptual model of the Coso area Notes Investigation of the Coso Range using seismicity, gravity, and geochemistry of rocks and fluids, supports the interpretation that the structure hosting the geothermal resource is a nascent metamorphic core complex. The structural setting is a releasing bend in a dextral strike-slip system that extends from the Indian Wells Valley northward into the Owens Valley. This tectonic setting results in NW-directed transtension, which is accommodated by normal and strike-slip faulting of the brittle upper 4-6 km of the

407

Draft Environmental Assessment Ormat Nevada Northern Nevada Geothermal Power Plant Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 FINAL ENVIRONMENTAL ASSESSMENT Ormat Nevada Northern Nevada Geothermal Power Plant Projects Department of Energy Loan Guarantee for ORMAT LLC's Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGinness Hills Geothermal Project, Lander County, Nevada U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 August 2011 NORTHERN NEVADA GEOTHERMAL POWER PLANT PROJECTS - ORMAT NEVADA AUGUST 2011 FINAL ENVIRONMENTAL ASSESSMENT i TABLE OF CONTENTS 1.0 INTRODUCTION.................................................................................................................1 1.1 SUMMARY AND LOCATION OF PROPOSED ACTION .....................................................1

408

Session: Geopressured-Geothermal  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

409

Blue Valley Energy | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Energy Blue Valley Energy Name Blue Valley Energy Address 3075 75th Street Place Boulder, Colorado Zip 80301 Sector Efficiency Product Geothermal heating and cooling systems Website http://www.bluevalleyenergy.co Coordinates 40.030298°, -105.179643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.030298,"lon":-105.179643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Geobotanical Remote Sensing for Geothermal Exploration  

DOE Green Energy (OSTI)

This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and Mammoth Mountain in California.

Pickles, W L; Kasameyer, P W; Martini, B A; Potts, D C; Silver, E A

2001-05-22T23:59:59.000Z

411

INEL Geothermal Environmental Program. Final environmental report  

DOE Green Energy (OSTI)

An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs are summarized.

Thurow, T.L.; Cahn, L.S.

1982-09-01T23:59:59.000Z

412

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

413

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

414

Final environmental statement for the geothermal leasing program  

SciTech Connect

This second of the four volumes of the Geothermal Leasing Program final impact statement contains the individual environmental statements for the leasing of federally owned geothermal resources for development in three specific areas: Clear Lake-Geysers; Mono Lake-Long Valley; and Imperial Valley, all in California. It also includes a summary of the written comments received and departmental responses relative to the Draft Environmental Impact Statement issued in 1971; comments and responses on the Draft Environmental Impact Statement; consultation and coordination in the development of the proposal and in the preparation of the Draft Environmental Statement; and coordination in the review of the Draft Environmental Statement.

1973-12-31T23:59:59.000Z

415

Exploring the Raft River geothermal area, Idaho, with the dc resistivity  

Open Energy Info (EERE)

Exploring the Raft River geothermal area, Idaho, with the dc resistivity Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Author(s): Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. Published: Geophysics, 10/12/1975 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article

416

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

417

Wabash Valley Power Association - Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wabash Valley Power Association - Residential Energy Efficiency Wabash Valley Power Association - Residential Energy Efficiency Program (Indiana) Wabash Valley Power Association - Residential Energy Efficiency Program (Indiana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 1/1/2012 Expiration Date 12/31/2012 State Indiana Program Type Utility Rebate Program Rebate Amount Heat Pump Water Heater: $400/unit Air-source Heat Pumps: $250-$1,500/unit Geothermal Heat Pumps: $1,500/unit Dual Fuel Heat Pump Rebate: $1,500 Appliance Recycling: $35 Provider Wabash Valley Power Association Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and Illinois. View the WVPA

418

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

419

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

420

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Abstract Borehole televiewer, temperature and flowmeter logs and hydraulic fracturing stress measurements conducted in six wells penetrating a geothermal reservoir associated with the Stillwater fault zone in Dixie Valley, Nevada, were used to investigate the relationship between reservoir permeability and the contemporary in situ stress field. Data from wells drilled into productive and nonproductive segments of the Stillwater fault zone indicate that permeability in all wells is dominated by a relatively

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

422

West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

423

Geothermal Heat Pump Systems in Schools: Construction, Maintenance and Operating Costs  

Science Conference Proceedings (OSTI)

Geothermal heat pumping and cooling systems are still not widely used to heat and cool buildings. They are an unknown to most architects and engineers. The electric utility industry has recognized them as being a very energy-efficient way to heat and cool buildings using electricity. The Tennessee Valley Authority (TVA) has assisted in design and installation of many geothermal systems, particularly in school buildings. With a number of geothermal heat pump systems in schools in operation in the TVA regi...

2000-12-13T23:59:59.000Z

424

Geothermal well completions: an overview of existing methods in four types of developments  

DOE Green Energy (OSTI)

Existing practices and capabilities for completing producing and injection wells for geothermal application in each of four categories of geothermal environments are discussed. Included are steam wells in hard, fractured rocks (The Geysers, California), hot water wells in sedimentary formations (Imperial Valley, California), hot, dry impermeable rocks with circulating water systems (Valles Caldera, New Mexico), and geopressured, geothermal water wells with associated hydrocarbon production on the U.S. Gulf Coast.

Snyder, R.E.

1978-01-01T23:59:59.000Z

425

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

426

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

427

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

428

Geothermal Technologies Program: Utah  

DOE Green Energy (OSTI)

Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

Not Available

2005-06-01T23:59:59.000Z

429

Geothermal probabilistic cost study  

DOE Green Energy (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

430

Detachment Faulting and Geothermal Resources - An Innovative Integrated  

Open Energy Info (EERE)

Detachment Faulting and Geothermal Resources - An Innovative Integrated Detachment Faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Detachment Faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This program is designed to provide valuable new subsurface information about one of the Nation's arguably most promising high-temperature geothermal targets. Until now, the Emigrant Geothermal Prospect has been tested by only shallow and relatively shallow thermal-gradient boreholes and a small number of exploration wells, all of which have lacked any detailed 2-D or 3-D structural context. The applicants propose to conduct an innovative integration of detailed 2- D and 3-D structural reconstructions (structural mapping and reflection/refraction source seismology integrated with available data).

431

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) |  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

432

Compound and Elemental Analysis At International Geothermal Area, New  

Open Energy Info (EERE)

New New Zealand (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area New Zealand (Wood, 2002) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley

433

Compound and Elemental Analysis At International Geothermal Area,  

Open Energy Info (EERE)

Philippines (Wood, 2002) Philippines (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area Philippines (Wood, 2002) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley

434

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Details Activities (1) Areas (1) Regions (0) Abstract: This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1200 feet squared per day (110

435

Evaluation of the mercury soil mapping geothermal exploration techniques  

Science Conference Proceedings (OSTI)

In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrations of mercury are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Noya, Japan. Zones containing high-mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations of mercury and high-measured geothermal gradients strongly suggests that relatively low-cost soil mercury geochemical sampling can be effective in identifying drilling targets within high-temperature areas.

Matlick, J.S.; Shiraki, M.

1981-10-01T23:59:59.000Z

436

Rapid reconnaissance of geothermal prospects using shallow temperature  

Open Energy Info (EERE)

Semi-annual technical report Semi-annual technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report Details Activities (1) Areas (1) Regions (0) Abstract: Shallow (2-m) soil temperature data have been collected at 27 sites at Long Valley, California, and at 102 sites at Coso, California. These geothermal areas are locations where traditional deep reconnaissance geothermal survey bore holes have been emplaced, allowing us to compare directly our shallow temperature results with standard geothermal exploration techniques. The effects of surface roughness, albedo, soil thermal diffusivity, topography and elevation were considered in making the necessary corrections to our 2-m temperature data. The corrected data for

437

Field Mapping At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1980) Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Delineate the subsurface geology Notes The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. The Raft River geothermal system is a hot water convective system relying on deep circulation of meteoric water in a region of high geothermal gradients and open fractures near the base of the Tertiary basin fill. References Covington, H. R. (1 September 1980) Subsurface geology of the

438

Overview Of The Lake City, California Geothermal System | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Overview Of The Lake City, California Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Overview Of The Lake City, California Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: Following a spectacular mud volcano eruption in 1951, the Lake City geothermal system has been intermittently explored for 44 years. A discovery well was drilled 30 years ago. The geothermal system is associated with a two mile-long, north-south trending, abnormally complex section of the active Surprise Valley fault zone that has uplifted the

439

NREL: Geothermal Technologies - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

440

Geothermal: Promotional Video  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Promotional Video Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

Note: This page contains sample records for the topic "grass valley geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal: Site Map  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

442

Geothermal: Bibliographic Citation  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Bibliographic Citation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

443

Geothermal: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Related Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

444

Geothermal: Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Home Page Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced...

445

Geothermal: Contact Us  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Contact Us Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

446

Geothermal: Hot Documents Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

447

Geothermal: Basic Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

448

Geothermal: Educational Zone  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Educational Zone Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

449

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

450

Geothermal Resources Council's ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications...

451

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

452

Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Klusman & Landress, 1979) Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

453

Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies  

Open Energy Info (EERE)

at Dixie Valley, Nevada- Summary of Doe Studies at Dixie Valley, Nevada- Summary of Doe Studies Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir Engineering; Stanford University, Stanford, California; 39083 Published Thirty-Second Workshop on Geothermal Reservoir Engineering;, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies Citation David D. Blackwell,Richard P. Smith,Maria C. Richards. 2007. Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies. In:

454

Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

455

Commercial production of ethanol in the San Luis Valley, Colorado. Final report  

DOE Green Energy (OSTI)

The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

1983-07-01T23:59:59.000Z

456

Commercial production of ethanol in the San Luis Valley, Colorado. Final Report  

DOE Green Energy (OSTI)

The purpose of this study is to assess the commercial feasibility of producing between 76 and 189 million liters (20 and 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (KGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstock for the production of ethanol.

Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Sherwood, P.B.; Boswell, B.S.; Walter, K.M.; Hart, M.L.

1983-07-01T23:59:59.000Z

457

Geothermal energy  

SciTech Connect

Dry hot rock in the Earth's crust represents the largest and most broadly distributed reservoir of usable energy accessible to man. The engineering equipment and methods required to extract and use this energy appear to exist and are now being investigated actively at LASL. At least for deep systems in relatively impermeable rock, not close to active faults, the extraction of energy frtom dry geothermal resertvoirs should involve no significant environmental hazards. The principal environmental effects of such energy systems will be those associated with the surface facilities that use the geothermal heat; these will be visual, in land use, and in the thermal-pollution potential of low-temperature power plants. The energy extraction system itself should be clean; safe, unobtrusive, and economical. (auth)

Smith, M.C.

1973-01-01T23:59:59.000Z

458

Grass Conservation Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grass Conservation Act (Montana) Grass Conservation Act (Montana) Grass Conservation Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Institution