Powered by Deep Web Technologies
Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Rio Grande Rift Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Rift Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rio Grande Rift Geothermal Region edit Details Areas (21) Power Plants (0) Projects (2)...

2

Thermomechanical models of the Rio Grande rift  

SciTech Connect

Fully two-dimensional, coupled thermochemical solutions of a continental rift and platform are used to model the crust and mantle structure of a hot, buoyant mantle diapir beneath the Rio Grande rift. The thermomechanical model includes both linear and nonlinear laws of the Weertman type relating shear stress and creep strain rate, viscosity which depends on temperature and pressure, and activation energy, temperature-dependent thermal conductivity, temperature-dependent coefficient of thermal expansion, the Boussinesq approximation for thermal bouyancy, material convection using a stress rate that is invariant to rigid rotations, an elastically deformable crust, and a free surface. The model determines the free surface velocities, solid state flow field in the mantle, and viscosity structure of lithosphere and asthenosphere. Regional topography and crustal heat flow are simulated. A suite of symmetric models, assumes continental geotherms on the right and the successively increasing rift geotherms on the left. These models predict an asthenospheric flow field which transfers cold material laterally toward the rift at > 300 km, hot, buoyant material approx. 200 km wide which ascends vertically at rates of 1 km/my between 175 to 325 km, and spreads laterally away from the rift at the base of the lithosphere. Crustal spreading rates are similar to uplift rates. The lithosphere acts as stiff, elastic cap, damping upward motion through decreased velocities of 1 km/10 my and spreading uplift laterally. A parameter study varying material coefficients for the Weertman flow law suggests asthenospheric viscosities of approx. 10/sup 22/ to 10/sup 23/ poise. Similar studies predict crustal viscosities of approx. 10/sup 25/ poise. The buoyant process of mantle flow narrows and concentrates heat transport beneath the rift, increases upward velocity, and broadly arches the lithosphere. 10 figures, 1 table.

Bridwell, R.J.; Anderson, C.A.

1980-01-01T23:59:59.000Z

3

Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico  

DOE Green Energy (OSTI)

The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

James C Witcher

2002-07-30T23:59:59.000Z

4

GEA | OpenEI Community  

Open Energy Info (EERE)

GEA GEA Home Kyoung's picture Submitted by Kyoung(155) Contributor 14 October, 2013 - 20:19 Geothermal NEPA Workshop at GRC Categorical Exclusions CX Database EA EIS FONSI GEA GRC GRR NEPA On Tuesday, October 2, the Geothermal Technology Office and the National Renewable Energy Laboratory held a 1/2-day NEPA workshop. The workshop was held at the MGM Grand in Las Vegas, in conjunction with the GEA/GRC Tradeshow and Conference. Three presentations were given, describing the NEPA database and associated analysis that had been conducted in 2013. Files: application/vnd.openxmlformats-officedocument.presentationml.presentation icon 2. NEPA History - Presentation application/vnd.openxmlformats-officedocument.presentationml.presentation icon 3. Categorical Exclusions - Presentation

5

Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) |  

Open Energy Info (EERE)

Rio Grande Rift Region (Aiken & Ander, 1981) Rio Grande Rift Region (Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Rio_Grande_Rift_Region_(Aiken_%26_Ander,_1981)&oldid=401473" Category: Exploration Activities What links here Related changes Special pages Printable version

6

Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al.,  

Open Energy Info (EERE)

Morgan, Et Al., Morgan, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al., 2010) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes San Luis Basin (south-central CO) regional study. References Paul Morgan, Peter Barkmann, Charles Kluth, Matthew Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Rio_Grande_Rift_Region_(Morgan,_Et_Al.,_2010)&oldid=401472" Category: Exploration

7

GEA Development Phases | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » GEA Development Phases Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phases The information for this page was taken directly from Geothermal Reporting Terms and Definitions: A Guide to Reporting Resource Development Progress and Results to the Geothermal Energy Association (GEA, November 2010) Gea.jpg The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development

8

GRC Annual Meeting and GEA Geothermal Energy Expo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRC Annual Meeting and GEA Geothermal Energy Expo GRC Annual Meeting and GEA Geothermal Energy Expo GRC Annual Meeting and GEA Geothermal Energy Expo September 29, 2013 12:00AM EDT to October 2, 2013 12:00PM EDT "A Global Resource, from Larderello to Las Vegas" This year's GRC Annual Meeting and GEA Geothermal Energy Expo will take place at the MGM Grand Hotel and Casino in Las Vegas, Nevada. This four-day event is industry's largest annual gathering of leading geothermal energy scientists, producers, renewable energy industry stakeholders, regulators, utilities, and key associated business leaders. Last year, it hosted representatives from more than 39 countries. Participants from six continents were present. In 2013, an even broader attendance is anticipated. The GRC Annual Meeting will offer technical, policy, and market conference

9

GEA Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Place Bochum, Germany Zip 44809 Sector Biofuels, Solar Product Bochum-based, engineering group specialising in process engineering and components for the food, pharmaceutical and petrochemical industries. GEA through its subsidiaries is involved in the solar and biofuels sector. Coordinates 51.485955°, 7.210866° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.485955,"lon":7.210866,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

SaGea | Open Energy Information  

Open Energy Info (EERE)

SaGea SaGea Jump to: navigation, search Name SaGea Place Cagliari, Italy Zip 9125 Sector Solar Product Cagliari-based PV developer that designs, installs and maintains equipment for solar energy generation for both private and corporate users. Coordinates 39.214525°, 9.110492° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.214525,"lon":9.110492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

GEA Caldemon formerly known as Caldemon Iberica | Open Energy Information  

Open Energy Info (EERE)

Caldemon formerly known as Caldemon Iberica Caldemon formerly known as Caldemon Iberica Jump to: navigation, search Name GEA Caldemon (formerly known as Caldemon Iberica) Place Spain Sector Solar Product GEA Caldemon manufacturers shell and tube heat exchangers and surface condensers, commonly used in solar thermal power plants. References GEA Caldemon (formerly known as Caldemon Iberica)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. GEA Caldemon (formerly known as Caldemon Iberica) is a company located in Spain . References ↑ "GEA Caldemon (formerly known as Caldemon Iberica)" Retrieved from "http://en.openei.org/w/index.php?title=GEA_Caldemon_formerly_known_as_Caldemon_Iberica&oldid=34572

12

Rift Zone | Open Energy Information  

Open Energy Info (EERE)

Rift Zone Rift Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rift Zone Dictionary.png Rift Zone: A divergent plate boundary within a continent Other definitions:Wikipedia Reegle Tectonic Settings List of tectonic settings known to host modern geothermal systems: Extensional Tectonics Subduction Zone Rift Zone Hot Spot Non-Tectonic Strike-Slip The Rio Grande Rift exemplifies rift zone tectonics - increased volcanic activity and the formation of graben structures (reference: science-art.com) Rift valleys occur at divergent plate boundaries, resulting in large graben structures and increased volcanism. The East African Rift is an example of a continental rift zone with increased volcanism, while the Atlantic's spreading Mid-Ocean Ridge is host to an enormous amount of geothermal

13

Geophysical study of the crust and upper mantle beneath the central Rio Grande rift and adjacent Great Plains and Colorado Plateau  

Science Conference Proceedings (OSTI)

As part of the national hot dry rock (HDR) geothermal program conducted by Los Alamos Scientific Laboratory, a regional deep magnetotelluric (MT) survey of Arizona and New Mexico was performed. The main objective of the MT project was to produce a regional geoelectric contour map of the pervasive deep electrical conductor within the crust and/or upper mantle beneath the Colorado Plateau, Basin and Range Province, and Rio Grande rift. Three MT profiles cross the Jemez lineament. Preliminary one-dimensional analysis of the data suggest the lineament is associated with anomalously high electrical conductivity very shallow in the crust. An MT/audiomagnetotelluric (AMT) study of a 161 km/sup 2/ HDR prospect was performed on the Zuni Indian Reservation, New Mexico. Two-dimensional gravity modeling of a 700-km gravity profile at 34/sup 0/30'N latitude was used to study the crust and upper mantle beneath the Rio Grande rift. Several models of each of three consecutive layers were produced using all available geologic and geophysical constraints. Two short-wavelength anomalies along the gravity profile were analyzed using linear optimization techniques.

Ander, M.E.

1981-03-01T23:59:59.000Z

14

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area (Redirected from Hualalai Northwest Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

15

Deep Production Well for Geothermal Direct-Use Heating of A Large Commercial Greenhouse, Radium Springs, Rio Grande Rift, New Mexico  

DOE Green Energy (OSTI)

Expansion of a large commercial geothermally-heated greenhouse is underway and requires additional geothermal fluid production. This report discusses the results of a cost-shared U.S. Department of Energy (DOE) and A.R. Masson, Inc. drilling project designed to construct a highly productive geothermal production well for expansion of the large commercial greenhouse at Radium Springs. The well should eliminate the potential for future thermal breakthrough from existing injection wells and the inducement of inflow from shallow cold water aquifers by geothermal production drawdown in the shallow reservoir. An 800 feet deep production well, Masson 36, was drilled on a US Bureau of Land Management (BLM) Geothermal Lease NM-3479 at Radium Springs adjacent to the A. R. Masson Radium Springs Farm commercial greenhouse 15 miles north of Las Cruces in Dona Ana County, New Mexico just west of Interstate 25 near the east bank of the Rio Grande. The area is in the Rio Grande rift, a tectonically-active region with high heat flow, and is one of the major geothermal provinces in the western United State.

James C. Witcher

2002-01-02T23:59:59.000Z

16

Evaluation of geothermal potential of Rio Grande rift and Basin and Range province, New Mexico. Final technical report, January 1, 1977-May 31, 1978  

DOE Green Energy (OSTI)

A study was made of the geological, geochemical and geophysical characteristics of potential geothermal areas in the Rio Grande rift and Basin and Range province of New Mexico. Both regional and site-specific information is presented. Data was collected by: (1) reconnaissance and detailed geologic mapping, emphasizing Neogene stratigraphy and structure; (2) petrologic studies of Neogene igneous rocks; (3) radiometric age-dating; (4) geochemical surveying, including regional and site-specific water chemistry, stable isotopic analyses of thermal waters, whole-rock and mineral isotopic studies, and whole-rock chemical analyses; and (5) detailed geophysical surveys, using electrical, gravity and magnetic techniques, with electrical resistivity playing a major role. Regional geochemical water studies were conducted for the whole state. Integrated site-specific studies included the Animas Valley, Las Cruces area (Radium Springs and Las Alturas Estates), Truth or Consequences region, the Albuquerque basin, the San Ysidro area, and the Abiquiu-Ojo Caliente region. The Animas Valley and Las Cruces areas have the most significant geothermal potential of the areas studied. The Truth or Consequences and Albuquerque areas need further study. The San Ysidro and Abiquiu-Ojo Caliente regions have less significant geothermal potential. 78 figs., 16 tabs.

Callender, J.F.

1985-04-01T23:59:59.000Z

17

Mauna Loa Northeast Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Geothermal Area Mauna Loa Northeast Rift Geothermal Area (Redirected from Mauna Loa Northeast Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Northeast Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

18

Kilauea Southwest Rift And South Flank Geothermal Area | Open Energy  

Open Energy Info (EERE)

Kilauea Southwest Rift And South Flank Geothermal Area Kilauea Southwest Rift And South Flank Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Southwest Rift And South Flank Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

19

Mauna Loa Northeast Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Geothermal Area Mauna Loa Northeast Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Northeast Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

20

Mauna Loa Southwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Southwest Rift Geothermal Area Mauna Loa Southwest Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Southwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

22

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

of California Rift Zone Geothermal Region (Redirected from Gulf of California Rift Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone...

23

Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan...  

Open Energy Info (EERE)

References Paul Morgan, Peter Barkmann, Charles Kluth, Matthew Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Retrieved from "http:...

24

Static Temperature Survey At Rio Grande Rift Region (Morgan,...  

Open Energy Info (EERE)

References Paul Morgan, Peter Barkmann, Charles Kluth, Matthew Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Retrieved from "http:...

25

Rio Grande Rift Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

26

Magnetotellurics At Rio Grande Rift Region (Aiken & Ander, 1981...  

Open Energy Info (EERE)

Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http:en.openei.orgwindex.php?titleMagnetote...

27

Structural style of the Turkana Rift, Kenya  

SciTech Connect

Multifold seismic reflection and geologic mapping in part of the eastern branch of the East African Rift system of northern Kenya reveal a major rift structure containing at least 3 km of Neogene sediment fill beneath Lake Turkana. This includes a series of half-graben basins, with centrally located quaternary volcanic centers, which are linked end-to-end by structural accommodation zones. Whereas the geometry of rifting is similar to that of the nonvolcanic western branch of the East African Rift system, the Turkana half-grabens are much smaller and may reflect extension of a thinner lithosphere or development of more closely spaced fracture patterns during rift evolution, or both.

Dunkelman, T.J.; Karson, J.A.; Rosendahl, B.R.

1988-03-01T23:59:59.000Z

28

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

Gulf of California Rift Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone Geothermal Region edit Details Areas (15)...

29

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986...  

Open Energy Info (EERE)

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Water Sampling Activity Date...

30

Grand Unified Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

Grand Unified Theory Ungelste Rtsel Grand Unified Theory Heute besteht eines der Hauptziele der Teilchenphysik darin, die verschiedenen fundamentalen Krfte in einer Grossen...

31

Aeromagnetic Survey At Kilauea Southwest Rift And South Flank...  

Open Energy Info (EERE)

appears to substantiate the presence of a thermal resource; there is a marked bipolar magnetic anomaly paralleling the rift zone from the summit to the lower rift near the coast...

32

Remote Sensing for Biodiversity Conservation of the Albertine Rift  

E-Print Network (OSTI)

183 10 Remote Sensing for Biodiversity Conservation of the Albertine Rift in Eastern Africa Samuel 2003). The rapidly developing field of remote sensing has been invaluable to biodiversity conservation...............................................................................................184 10.3 Remote Sensing of the Albertine Rift .....................................................185

Wang, Y.Q. "Yeqiao"

33

Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya  

Science Conference Proceedings (OSTI)

Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

Winn, R.D. Jr.; Steinmetz, J.C. (Marathon Oil Co., Littleton, CO (United States)); Kerekgyarto, W.L. (Marathon Oil Co., Houston, TX (United States))

1993-11-01T23:59:59.000Z

34

Structure of continental rifts: Role of older features and magmatism  

SciTech Connect

Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at [approximately]1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

Keller, G.R. (Univ. of Texas, El Paso, TX (United States))

1996-01-01T23:59:59.000Z

35

EMSL: Science: Biogeochemistry Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemistry Grand Challenge Shewanella oneidensis MR-1 growing on a hematite surface Shewanella oneidensis MR-1 growing on a hematite surface. A Grand Challenge in...

36

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...  

Open Energy Info (EERE)

Flank Area (Wyss, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...

37

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea...  

Open Energy Info (EERE)

SURVEY, 2006 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,...

38

Ground Gravity Survey At Kilauea East Rift Area (Broyles, Et...  

Open Energy Info (EERE)

Activity Details Location Kilauea East Rift Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown References M. L....

39

Modeling-Computer Simulations At Kilauea East Rift Area (Rudman...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Kilauea East Rift Area (Rudman & Epp, 1983) Exploration Activity...

40

Direct-Current Resistivity Survey At Kilauea Southwest Rift And...  

Open Energy Info (EERE)

Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct...

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift...  

Open Energy Info (EERE)

Details Location Mauna Loa Northeast Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The vertical...

42

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical  

Open Energy Info (EERE)

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Details Activities (0) Areas (0) Regions (0) Abstract: This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigations of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360°C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by

43

Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Aeromagnetic Survey At Hualalai Northwest Rift Area Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic survey data for Hualalai (Godson et al., 1981) clearly indicate an elongate northwest to southeast trending zone of extremely low total magnetic field over the summit region of Hualalai that extends into the upper northwest rift zone. It is extremely unlikely that the summit region is underlain by intrusive material old enough (greater than 700,000 years of age) to have been emplaced during a period of reversed magnetic field; therefore, the only alternative explanation possible (presuming the data are accurate) is that this region is underlain by material with very

44

Development Overview of Geothermal Resources In Kilauea East Rift Zone |  

Open Energy Info (EERE)

Development Overview of Geothermal Resources In Kilauea East Rift Zone Development Overview of Geothermal Resources In Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Overview of Geothermal Resources In Kilauea East Rift Zone Abstract This study reviews the geothermal resources associatedwith the Kilauea East Rift Zone (KERZ) of Hawaii islandby focusing on a holistic development strategy for additionalgeothermal production. A review of existing literature inthe fields of geology, drilling, power production and policychallenges, highlights critical issues for geothermalenterprises. A geological assessment of the hydrology,geochemistry, and structural features that characterize theregion is discussed. Available data are interpreted includinggeology, geochemistry, well depth and temperature.

45

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes A reexamination of all groundwater sources in the Keaau area was undertaken in an effort to confirm the chemical and temperature anomalies that formed the primary basis on which the Keaau area was identified during the preliminary assessment survey. The data generated by this survey (Table 9) determined that all of the anomalous data present in the earlier data base were spurious and that the groundwater chemistry and temperatures in this

46

Thermal and mechanical development of the East African Rift System  

E-Print Network (OSTI)

The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

Ebinger, Cynthia Joan

1988-01-01T23:59:59.000Z

47

Refraction Survey At Kilauea East Rift Area (Broyles, Et Al....  

Open Energy Info (EERE)

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Retrieved from "http:en.openei.orgwindex.php?titleRefractionSurveyAtKila...

48

An Integrated Geophysical Study Of The Northern Kenya Rift | Open Energy  

Open Energy Info (EERE)

Kenya Rift Kenya Rift Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Geophysical Study Of The Northern Kenya Rift Details Activities (0) Areas (0) Regions (0) Abstract: The Kenyan part of the East African rift is among the most studied rift zones in the world. It is characterized by: (1) a classic rift valley, (2) sheer escarpments along the faulted borders of the rift valley, (3) voluminous volcanics that flowed from faults and fissures along the rift, and (4) axial and flank volcanoes where magma flow was most intense. In northern Kenya, the rift faults formed in an area where the lithosphere was weakened and stretched by Cretaceous-Paleogene extension, and in central and southern Kenya, it formed along old zones of weakness at the

49

Mississippi Nuclear Profile - Grand Gulf  

U.S. Energy Information Administration (EIA) Indexed Site

Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

50

<GrandPrairie>  

NLE Websites -- All DOE Office Websites (Extended Search)

Grande Praire Wind Farm, O'Neill, NE Grande Praire Wind Farm, O'Neill, NE The Western Area Power Administration (Western), an agency of the Department of Energy (DOE), intends to prepare an environmental impact statement (EIS) on the proposed interconnection of the Grande Prairie Wind Farm (Project) in Holt County, near the city of O'Neill, Nebraska. Grande Prairie Wind, LLC (Grande Prairie), a subsidiary of Midwest Wind Energy Development Group, LLC, has applied to Western to interconnect their proposed Project to Western's power transmission system. Western is issuing this notice to inform the public and interested parties about Western's intent to prepare an EIS, conduct a public scoping process, and invite the public to comment on the scope, proposed action, alternatives, and other issues to be addressed in the EIS.

51

Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Rift Area (Thomas, 1986) Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the lower northeast rift of Mauna Loa tend to substantiate this conclusion as well. The lower extension of the rift zone does not exhibit any significant magnetic features that would correspond to a thermal source within the inferred trace of the rift zone. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=40242

52

Kilauea Southwest Rift And South Flank Geothermal Area | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Kilauea Southwest Rift And South Flank Geothermal Area (Redirected from Kilauea Southwest Rift And South Flank Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Southwest Rift And South Flank Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii

53

Haleakala SW Rift Zone Exploration | Open Energy Information  

Open Energy Info (EERE)

Haleakala SW Rift Zone Exploration Haleakala SW Rift Zone Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Haleakala SW Rift Zone Exploration Project Location Information Coordinates 20.63144440367°, -156.37383611407° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.63144440367,"lon":-156.37383611407,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Magnetotellurics At Kilauea East Rift Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Kilauea East Rift Area (Laney, Magnetotellurics At Kilauea East Rift Area (Laney, 2005) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea in 2003 to the use of combined SP and conductivity mapping (MT) in 2004. The beginning of 2004 saw the completions of the Kilauea MT experiment by the acquisition of an additional 45 MT stations on Kilauea. We therefore decided to use the funds available to work at the Fort Bidwell Indian reservation where characterization work could be done at relatively low cost. We decided to perform a time lapse SP survey during a flow test

55

Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Hualalai Northwest Rift Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Although not part of the current effort, two deep (approximately 2000 m) exploratory wells were drilled on the north flank of Hualalai near Puu Waawaa cinder cone. The geophysical data used for siting these wells were proprietary and hence unavailable for publication; however, the temperatures measured at the bottoms of the wells were reported to be below 20degrees C. Chemical analysis of water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

56

Intermittent upwelling of asthenosphere beneath the Gregory Rift, Kenya  

Science Conference Proceedings (OSTI)

K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of the Gregory Rift.

Tatsumi, Yoshiyuki (Univ. of Tasmania (Australia) Kyoto Univ. (Japan)); Kimura, Nobukazu (Kyoto Univ. (Japan)); Itaya, Tetsumaru (Okayama Univ. of Science (Japan)); Koyaguchi, Takehiro (Kumamoto Univ. (Japan)); Suwa, Kanenori (Nagoya Univ. (Japan))

1991-06-01T23:59:59.000Z

57

Rio Grande Compact (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rio Grande Compact (Texas) Rio Grande Compact (Texas) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

58

Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas,  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A total of seven Schlumberger soundings were performed on Hualalai. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Hualalai_Northwest_Rift_Area_(Thomas,_1986)&oldid=510528" Category: Exploration Activities What links here Related changes

59

Kilauea East Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea East Rift Geothermal Area Kilauea East Rift Geothermal Area (Redirected from Kilauea East Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea East Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (28) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.47836,"lon":-154.8883,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Neutrino Mass and Grand Unification  

E-Print Network (OSTI)

Seesaw mechanism appears to be the simplest and most appealing way to understand small neutrino masses observed in recent experiments. It introduces three right handed neutrinos with heavy masses to the standard model, with at least one mass required by data to be close to the scale of conventional grand unified theories. This may be a hint that the new physics scale implied by neutrino masses and grand unification of forces are one and the same. Taking this point of view seriously, I explore different ways to resolve the puzzle of large neutrino mixings in grand unified theories such as SO(10) and models based on its subgroup $SU(2)_L\\times SU(2)_R\\times SU(4)_c$.

R. N. Mohapatra

2004-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney,  

Open Energy Info (EERE)

Laney, Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney, 2005) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea in 2003 to the use of combined SP and conductivity mapping (MT) in 2004. The beginning of 2004 saw the completions of the Kilauea MT experiment by the acquisition of an additional 45 MT stations on Kilauea. We therefore decided to use the funds available to work at the Fort Bidwell

62

Spelunking in La Cueva Grande  

Science Conference Proceedings (OSTI)

La Cueva Grande is the 5-sided immersive facility put into place at Los Alamos National Laboratory. It was the highest-resolution stereo immersive facility in the world at the time of first use in 2005. The design and common use cases of LCG are presented, ... Keywords: projection systems, virtual reality

Laura Monroe

2008-08-01T23:59:59.000Z

63

Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area  

Open Energy Info (EERE)

Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60 m a.s.l, and located north of a prehistoric fissure, and a low-resistivity deep basement (20 m a.s.1.) to the south and east of this fissure (Figs 48, 49). These data suggest that a

64

A geochemical model of the Kilauea east rift zone | Open Energy Information  

Open Energy Info (EERE)

A geochemical model of the Kilauea east rift zone A geochemical model of the Kilauea east rift zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A geochemical model of the Kilauea east rift zone Abstract N/A Author Donald Thomas Published Journal US Geological Survey Professional Paper 1350, 1987 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for A geochemical model of the Kilauea east rift zone Citation Donald Thomas. 1987. A geochemical model of the Kilauea east rift zone. US Geological Survey Professional Paper 1350. (!) . Retrieved from "http://en.openei.org/w/index.php?title=A_geochemical_model_of_the_Kilauea_east_rift_zone&oldid=682589" Categories: Missing Required Information References Uncited References Geothermal References

65

Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) | Open  

Open Energy Info (EERE)

Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Paper states "magnetic data" - no further clarification regarding type of magnetic survey. References Stephen C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Kilauea_East_Rift_Area_(Leslie,_Et_Al.,_2004)&oldid=390100"

66

Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Southwest Rift Area (Thomas, 1986) Southwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=389751

67

A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano,  

Open Energy Info (EERE)

A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano, A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library == A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano, HawaiiThesis/Dissertation == Author Catherine King Skokan Organization Colorado School of Mines Published Publisher Not Provided, 1974 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano, Hawaii Citation [[Citation::Catherine King Skokan. 1974. A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano, Hawaii []. [ (!) ]: Colorado School of Mines.]] Retrieved from "http://en.openei.org/w/index.php?title=A_Time-Domain_Electromagnetic_Survey_of_the_East_Rift_Zone_Kilauea_Volcano,_Hawaii&oldid=682585"

68

Field Mapping At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Kilauea East Rift Area (Thomas, Field Mapping At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geologic mapping on the East Rift Zone (ERZ) conducted by Peterson (1967), J. Moore (1971), and Wright and Fiske (1971) detailed historic lava flows originating in the ERZ and developed structural models of the rift based on the locations and progressions of recorded eruptive cycles. These studies have more recently been expanded by Holcomb (1980, 1981) and R. Moore (1982, 1983) who have presented more detailed mapping of all surface flows (historic and prehistoric), fissures and faulting on the eastern flank of the Kilauea shield. The model developed from these studies is of a rift

69

Refraction Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Refraction Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Seismic refraction surveys conducted by Broyles and Furumoto (1978) and Suyenaga et al. (1978) developed a cross-sectional model of the rift zone near the present site of HGP-A that proposed a 12- 17 km wide dike complex lying at a depth of 2 to 3 km (Fig. 51). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Refraction_Survey_At_Kilauea_East_Rift_Area_(Thomas,_1986)&oldid=386690"

70

Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60 m a.s.l, and located north of a prehistoric fissure, and a low-resistivity deep basement (20 m a.s.1.) to

71

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii...  

Open Energy Info (EERE)

a complex of dikes containing solidified magma from past volcanic eruptions that provide energy for the hydrothermal processes associated with the rift zone. Analysis of gravity...

72

Ground Gravity Survey At Kilauea East Rift Area (Leslie, Et Al...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Kilauea East Rift Area (Leslie, Et Al., 2004) Exploration Activity Details...

73

Grand Challenges in Energy by Secretary Steven Chu | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Challenges in Energy by Secretary Steven Chu Grand Challenges in Energy by Secretary Steven Chu Grand Challenges in Energy by Secretary Steven Chu More Documents &...

74

The Particle Adventure | Unsolved Mysteries | Grand Unified Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

Unsolved Mysteries - Grand Unified Theory Grand Unified Theory Today, one of the major goals of particle physics is to unify the various fundamental forces in a Grand Unified...

75

PP-53 Rio Grande Electric Cooperative, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Rio Grande Electric Cooperative, Inc. PP-53 Rio Grande Electric Cooperative, Inc. Presidential Permit authorizing Rio Grande Electric Cooperative, Inc.to construct, operate, and...

76

PP-33 Rio Grande Electric Cooperative Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rio Grande Electric Cooperative Inc PP-33 Rio Grande Electric Cooperative Inc Presidential permit authorizing Grande Electric Cooperative Inc to construct, operate, and maintain...

77

EV Everywhere Grand Challenge Blueprint  

NLE Websites -- All DOE Office Websites (Extended Search)

A Message from A Message from the Assistant Secretary Every challenge presents an even greater opportunity, and the EV Everywhere Grand Challenge is no exception. The need for clean energy solutions drives the most important economic development race of the 21st century, providing opportunity for America to invent, manufacture, and export clean energy technologies. Recognizing that vehicle electrification is an essential part of our country's "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to be the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

78

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

GEA Honors Geothermal Leaders - Energy Innovation Portal  

The project would produce power and cascade the remaining energy to support an existing geothermal district heating system and future greenhouse and ...

80

Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=390060

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

82

Isotopic Analysis At Kilauea East Rift Area (Quane, Et Al., 2000) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Kilauea East Rift Area (Quane, Et Al., 2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Kilauea East Rift Area (Quane, Et Al., 2000) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References S. L. Quane, M. O. Garcia, H. Guillou, T. P. Hulsebosch (2000) Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Kilauea_East_Rift_Area_(Quane,_Et_Al.,_2000)&oldid=687735"

83

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Two separate phases of geothermal exploratory drilling have occurred on the lower East Rift. The first was essentially a wildcat venture with relatively little surface exploratory data having been gathered, whereas the second was initiated after somewhat more geoscience information had been acquired under the Hawaii Geothermal Project. The results of the successful exploratory drilling program on the Kilauea

84

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=389039"

85

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From  

Open Energy Info (EERE)

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Details Activities (2) Areas (1) Regions (0) Abstract: Two seismic refraction surveys were carried out in 1976 and 1977 on the east rift zone of Kilauea volcano as part of an exploratory program for geothermal resources. The short traverse seismic refraction survey of January 1976 delineated the upper surface structure of the east rift, revealing velocities of 2.5 km/s under the Kalapana line and 3.1 km/s under the Leilani line beneath a surface layer of low, but variable velocity. This survey was not successful in determining the depth of the

86

Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, 1986) Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

87

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Self-potential surveys conducted over the summit and flank of Hualalai (Jackson and Sako, 1982; D. B. Jackson, pers. commun., 1983) indicate an elongate self-potential anomaly extending across the summit and down the northwest rift to Kaupulehu Crater. The positively polarized anomaly extends over an area of approximately 6 km 2 and has been interpreted to be the result of one or more buried high-temperature intrusive bodies (Jackson

88

Time-Domain Electromagnetics At Kilauea Southwest Rift And South Flank Area  

Open Energy Info (EERE)

And South Flank Area And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes The assessment effort consisted of a reexamination of existing Schlumberger sounding (Hussong and Cox, 1967; Adams et al., 1970) and time-domain electromagnetic (Klein and Kauahikaua, 1975) data for the rift area (Kauahikaua and Mattice, 1981) The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60

89

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,  

Open Energy Info (EERE)

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library : Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, HawaiiInfo Graphic/Map/Chart Authors Frank A. Trusdell and Richard B. Moore Published U.S. GEOLOGICAL SURVEY, 2006 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii Citation Frank A. Trusdell,Richard B. Moore. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii. []. Place of publication not provided. U.S. GEOLOGICAL SURVEY. 2006. Available from: http://pubs.usgs.gov/imap/2614/downloads/pdf/2614map_508.pdf.

90

Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

91

Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone  

Open Energy Info (EERE)

Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Details Activities (3) Areas (1) Regions (0) Abstract: Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawaii, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early

92

Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radon emanometry data for the same locality (Fig. 61) (Cox, 1980) similarly presented a complicated pattern of radon outgassing along the lower rift zone. Even though complexities are present within the rift zone, there

93

Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

94

Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas,  

Open Energy Info (EERE)

Thomas, Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the southwest rift appears to substantiate the presence of a thermal resource; there is a marked bipolar magnetic anomaly paralleling the rift zone from the summit to the lower rift near the coast suggesting either that intense hydrothermal alteration has occurred or that subsurface temperatures exceed the Curie temperature. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

95

Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Kilauea East Rift Area (Thomas, Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The sampling network for soil mercury concentrations undertaken by Cox (1981) identified a complicated pattern of mercury concentrations throughout the lower Puna area (Fig. 60). The highest soil mercury concentrations found were generally located within the rift zone, but an analysis of the data showed that soil type and soil pH also had a marked impact on mercury concentration. Making corrections for these effects improved the correspondence between the surface geological expression of the rift zone and the mercury concentrations observed; interpretation of

96

Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Kilauea East Rift Area Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes This model was later expanded through the examination of detailed and regional gravity data (Krivoy and Eaton, 1961) and regional aeromagnetic data (Malahoff and Woollard, 1966) to a three-dimensional map of the rift zone (Furumoto, 1978b). This model projected a dike complex (presumably at high temperatures) which has a width of approximately 20 km near the summit of Kilauea that narrows to approximately 12 km at the lower quarter of the subaerial portion of the rift (Fig. 52). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

97

Kilauea East Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Kilauea East Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea East Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (28) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.47836,"lon":-154.8883,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics EV Everywhere Grand Challenge With their immense potential for increasing the...

99

Compound and Elemental Analysis At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Flank Flank Area (Coombs, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Kilauea Southwest Rift And South Flank Area (Coombs, Et Al., 2006) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References Michelle L. Coombs, Thomas W. Sisson, Peter W. Lipman (2006) Growth History Of Kilauea Inferred From Volatile Concentrations In Submarine-Collected Basalts Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Kilauea_Southwest_Rift_And_South_Flank_Area_(Coombs,_Et_Al.,_2006)&oldid=510423"

100

Microsoft Word - GrandCoulee_FONSI.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project BPA's Finding of No Significant Impact 1 Bonneville Power Administration's Finding of No Significant Impact (FONSI) for the Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project DOE/EA-1679 SUMMARY The Bonneville Power Administration (BPA) announces its environmental findings on the Bureau of Reclamation's (Reclamation) Grand Coulee Third Powerplant 500-kV Transmission Line Replacement Project. This project involves replacing the six 500-kV transmission lines of the Third Powerplant (TPP) at Grand Coulee Dam. The transmission lines are presently installed within the dam and a two-chambered tunnel that leads to a Spreader Yard about a mile west of the TPP. BPA would design and construct

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Review: Red Pedagogy: Native American Social and Political Thought by Sandy Grande  

E-Print Network (OSTI)

and Political Thought by Sandy Grande. New York: Rowman &discourse. For these reasons, Sandy Grandes (2004) text

Caldern, Dolores

2006-01-01T23:59:59.000Z

102

History and Results of Surface Exploration in the Kilauea East Rift Zone |  

Open Energy Info (EERE)

History and Results of Surface Exploration in the Kilauea East Rift Zone History and Results of Surface Exploration in the Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: History and Results of Surface Exploration in the Kilauea East Rift Zone Abstract Government-funded surveys of the Kilauea East Rift Zone have resulted in a wealth of geophysical and geochemical data from an active volcanic area. All data are clearly of academic interest; Hawaii was used as a testing ground for various geophysical methods in the early days of geothermal exploration. Some surveys, such as gravity and magnetic, are useful a regional perspective for determining broad structural trends and grossly identifying magmatic intrusions. Seismic data are currently being used for a more sitespecific purpose: to determine fault locations and geometries.

103

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes In spite of the complications discovered in this b-value analysis of Kilauea's South Flank, there are many similarities with the case histories of the other volcanoes we have studied, and the correlation of high b-value anomalies withmagma reservoirs is confirmed.

104

Self Potential At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Kilauea East Rift Area (Thomas, Self Potential At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes An extensive network of self-potential surveys have been performed over the summit and flanks of Kilauea as part of the HGP exploration surveys and in separate studies of the source mechanism for the potential anomalies observed (Zablocki, 1976, 1977). The geothermal exploration surveys were performed primarily on the lower East Rift Zone and identified four separate self-potential anomalies (Fig. 59) (Zablocki, 1977). The source mechanism for the anomalies observed was inferred to be the result of electrokinetic phenomena; thermal groundwater escaping from a geothermal

105

Micro-Earthquake At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Micro-Earthquake At Kilauea East Rift Area (Thomas, Micro-Earthquake At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes Microseismic and ground noise studies were performed along the East Rift Zone in an effort to identify areas in which earthquake activity might suggest rock fracturing as a result of cold water coming into contact with heated reservoir rocks (Furumoto, 1978a). One of the microseismic surveys utilized an array of seven seismometers to monitor earthquake activity in the vicinity of the then proposed site of the HGP-A well (Fig. 53) (Suyenaga and Furumoto, 1978). The second microearthquake study utilized only two seismometers located near the junction of the Pahoa-Kalapana and

106

Water Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Kilauea East Rift Area (Thomas, Water Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Studies of groundwater and coastal spring- sources that have identified thermal fluids on the lower East Rift Zone date back to the early part of this century (Guppy, 1906). More recent investigations of temperature and groundwater chemistry were performed for the HGP geoscience program (Macdonald, 1977; McMurtry et al., 1977; Epp and Halunen, 1979). Epp and Halunen (1979) identified several warm water wells, one having a temperature in excess of 90degrees C, and coastal springs in lower Puna; temperature profiles obtained by this study indicated that in some

107

Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas,  

Open Energy Info (EERE)

Area (Thomas, Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=510541"

108

Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island | Open  

Open Energy Info (EERE)

Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Abstract Three geophysical research organizations, working together under the auspices of the Hawaii Geothermal Project, have used several electrical and electromagnetic exploration techniques on Kilauea volcano, Hawaii to assess its geothermal resources. This volume contains four papers detailing their methods and conclusions. Keller et al. of the Colorado School of Mines used the dipole mapping and time-domain EM sounding techniques to define low resistivity areas around the summit and flanks of Kilauea. Kauahikaua and Klein of the Hawaii Institute of Geophysics then detailed the East Rift

109

Time-Domain Electromagnetics At Kilauea East Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Kilauea East Rift Time-Domain Electromagnetics At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes A series of time-domain electromagnetic (TDEM) soundings were also performed in the lower East Rift Zone as part of the HGP exploration program (Klein and Kauahikaua, 1975; Kauahikaua and Klein, 1977); this work was recently expanded to include additional TDEM and vertical electrical soundings, and the entire data set was reinterpreted (Kauahikaua, 1981b; Kauahikaua and Mattice, 1981). The resistivity model presented by Kauahikaua (1981b) suggests that moderate to high basement resistivities, corresponding to cold freshwater saturated basalts, are present north of

110

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On  

Open Energy Info (EERE)

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Details Activities (4) Areas (1) Regions (0) Abstract: Deep drilling has allowed for the first time an examination of most of the shield stage of a Hawaiian volcano when it is centered over the hotspot and most of its volume is produced. We determined the lithologies, ages, geochemical characteristics and accumulation rates of rocks from the continuously cored, ~1.7 km deep Scientific Observation Hole (SOH) 1, which was drilled into Kilauea's East Rift Zone. The uppermost ~750 m of this hole contain relatively unaltered subaerially quenched lavas; the lower

111

Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) |  

Open Energy Info (EERE)

Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Drilling of HGP-A was completed on April 28, 1976. An equilibrium temperature was not measured in HGP-A; the well was flashed before the drilling disturbance was dissipated. However, before the mud was pumped out, temperatures in the well were measured at 15, 75, 97,145, and 193 hours, and at 13, 21, and 22 days after circulation of the drilling mud stopped. These temperature data are shown in Fig. 2. Between 305 m and 914

112

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Jump to: navigation,...

113

A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea...  

Open Energy Info (EERE)

1974 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano,...

114

SunShot Grand Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home SunShot Grand Challenge SunShot Grand Challenge Addthis SunShot Grand Challenge 1 of 28...

115

EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties,...

116

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30,...

117

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

118

Grand Meadow Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Grand Meadow Wind Farm Grand Meadow Wind Farm Jump to: navigation, search Name Grand Meadow Wind Farm Facility Grand Meadow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Xcel Energy Location Dexter MN Coordinates 43.707798°, -92.654071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.707798,"lon":-92.654071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

EV Everywhere Grand Challenge - Battery Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandalow, Under Secretary of Energy (acting) and Assistant Secretary for Policy and International Affairs 8:45-8:55 AM SETTING THE STAGE FOR THE EV EVERYWHERE GRAND CHALLENGE Dr....

120

Sediment infill within rift basins: Facies distribution and effects of deformation: Examples from the Kenya and Tanganyika Rifts, East Africa  

SciTech Connect

Oil is known from lacustrine basins of the east African rift. The geology of such basins is complex and different depending on location in the eastern and western branches. The western branch has little volcanism, leading to long-lived basins, such as Lake Tanganyika, whereas a large quantity of volcanics results in the eastern branch characterized by ephemeral basins, as the Baringo-Bogoria basin in Kenya. The Baringo-Bogoria basin is a north-south half graben formed in the middle Pleistocene and presently occupied by the hypersaline Lake Bogoria and the freshwater Lake Baringo. Lake Bogoria is fed by hot springs and ephemeral streams controlled by grid faults bounding the basin to the west. The sedimentary fill is formed by cycles of organic oozes having a good petroleum potential and evaporites. On the other hand, and as a consequence of the grid faults, Lake Baringo is fed by permanent streams bringing into the basin large quantities of terrigenous sediments. Lake Tanganyika is a meromictic lake 1470 m deep and 700 km long, of middle Miocene age. It is subdivided into seven asymmetric half grabens separated by transverse ridges. The sedimentary fill is thick and formed by organic oozes having a very good petroleum potential. In contrast to Bogoria, the lateral distribution of organic matter is characterized by considerable heterogeneity due to the existence of structural blocks or to redepositional processes.

Tiercelin, J.J.; Lezzar, K.E. (Universite de Bretagne Occidentale, Brest (France)); Richert, J.P. (Elf Aquitaine, Pau (France))

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Control of Well Ks-8 in the Kilauea Lower East Rift Zone | Open Energy  

Open Energy Info (EERE)

of Well Ks-8 in the Kilauea Lower East Rift Zone of Well Ks-8 in the Kilauea Lower East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Control of Well Ks-8 in the Kilauea Lower East Rift Zone Abstract In June 1991, a well located in Hawaii kicked and unloaded at 3,476 ft (1,059 m). This well was estimatedto have a possible bottomhole temperature of 650°F (343°C)and a reservoir pressure approaching 2,300 psi 5,858 Immediate attempts to kill the well were unsuccessful, and the long processof well control was started. Besides the harsh geological and reservoir conditions encountered,the scarce availability of materials in a remote location and long distance transportation of necessary equipment figured heavily in to the time delay of the final kill procedure of the

122

Conduction Models Of The Temperature Distribution In The East Rift Zone Of  

Open Energy Info (EERE)

Conduction Models Of The Temperature Distribution In The East Rift Zone Of Conduction Models Of The Temperature Distribution In The East Rift Zone Of Kilauea Volcano Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Conduction Models Of The Temperature Distribution In The East Rift Zone Of Kilauea Volcano Details Activities (2) Areas (1) Regions (0) Abstract: Temperature variations in the 1966-meter Hawaii Geothermal Project well HGP-A are simulated by model studies using a finite element code for conductive heat flow. Three models were generated: a constant temperature source from a vertical dike; a constant heat-generating magma chamber; and a transient heat source from a tapered vertical dike. Fair correlation is obtained between the HGP-A well temperature and the tapered dike 125 years after it is injected with an initial (transient) 1200°C

123

Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Hualalai Northwest Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Three time-domain electromagnetic soundings were conducted on the middle northwest rift at elevations of 280-320 m (Fig. 40) (Kauahikaua and Mattice, 1981). These soundings penetrated to a greater depth than the Schlumberger soundings and two of them were able to resolve basement resistivities ranging from 9 to 12 ohm-m at depths of 1500 to 1800 m. One sounding detected a 9 ohm.m layer at 600 m depth that was underlain by a more resistive basement. These results suggest that thermal fluids may be responsible for the low-resistivity basement, whereas the high-resistivity

124

Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Thomas, 1986) Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes More recent aeromagnetic data (Godson et al., 1981) generally substantiate the presence of a nearly continuous rift zone from the Kilauea summit down to sea level; the apparent width of the magnetic anomaly does not appear to match that projected by Furumoto (1978a) or Broyles et al. (1979); however, to date, no detailed analysis of the more recent data has been completed (R. B. Moore, pers. commun., 1984). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

125

Rio Grande South | Open Energy Information  

Open Energy Info (EERE)

Rio Grande South Rio Grande South Facility Rio Grande South Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Gulf of Mexico TX Coordinates 26.189°, -97.053° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.189,"lon":-97.053,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Rio Grande North | Open Energy Information  

Open Energy Info (EERE)

Rio Grande North Rio Grande North Facility Rio Grande North Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from South Padre Island TX Coordinates 26.364°, -97.078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.364,"lon":-97.078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

District-heating system, La Grande, Oregon  

DOE Green Energy (OSTI)

The area suggested for district heating feasibility study encompassed slightly over 400 acres extending north and south from the geographic center of the city. This district was subdivided into 8 areas, which include the Grande Ronde Hospital, Eastern Oregon State College, La Grande school district, one institutional area, one commercial area and three residential areas. Basic space heating loads developed for the various areas after a survey by county personnel and computation using a computer program form the basis for this economic feasibility study.

Not Available

1982-01-01T23:59:59.000Z

128

SunShot Grand Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge SunShot Grand Challenge SunShot Grand Challenge Addthis SunShot Grand Challenge 1 of 28 SunShot Grand Challenge Participants gather for the plenary session at the SunShot Grand Challenge Summit and Technology Forum in Denver, Colorado. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:10 Arun Majumdar, Founding Director, ARPA-E 2 of 28 Arun Majumdar, Founding Director, ARPA-E Arun Majumdar, Founding Director, ARPA-E gives the welcoming remarks. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:16 Energy Secretary Steven Chu at SunShot Grand Challenge 3 of 28 Energy Secretary Steven Chu at SunShot Grand Challenge Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:32

129

Grand Unification with and without Supersymmetry  

Science Conference Proceedings (OSTI)

Grand Unified Theories based on the group SO(10) generically provide interesting and testable relations between the charged fermions and neutrino sector masses and mixings. In the light of the recent neutrino data, we reexamine these relations both in supersymmetric and non-supersymmetric models, and give a brief review of their present status.

Melfo, Alejandra [CFF, Universidad de Los Andes, Merida (Venezuela); Institute J. Stefan, Ljubljana (Slovenia)

2007-06-19T23:59:59.000Z

130

Anomalous subsidence on the rifted volcanic margin of Pakistan: No influence from Deccan plume  

E-Print Network (OSTI)

Anomalous subsidence on the rifted volcanic margin of Pakistan: No influence from Deccan plume, Clifton, Karachi 75600, Pakistan A B S T R A C TA R T I C L E I N F O Article history: Received 28 October

Clift, Peter

131

Wilson cycles, tectonic inheritance, and rifting of the North American Gulf of Mexico continental margin  

E-Print Network (OSTI)

Wilson cycles, tectonic inheritance, and rifting of the North American Gulf of Mexico continental during opening of the Gulf of Mexico. Unlike the Atlantic margins, where Wilson cycles were first recognized, breakup in the Gulf of Mexico did not initially focus within the orogen, but was instead

Huerta, Audrey D.

132

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah...

133

DOE - Office of Legacy Management -- Climax Uranium Co Grand...  

Office of Legacy Management (LM)

Climax Uranium Co Grand Junction Mill - CO 0-03 FUSRAP Considered Sites Site: Climax Uranium Co. (Grand Junction Mill) (CO.0-03) Designated Name: Alternate Name: Location:...

134

Energy Secretary Steven Chu to Attend Grand Opening of Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123...

135

EV Everywhere Grand Challenge Kick-Off  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Grand Challenge Kick-Off Thursday, June 21, 2012 - Hyatt Regency, Dearborn, MI Event Objective: To showcase existing DOE efforts in vehicle electrification and to obtain stakeholder input on the overall concept of the EV Everywhere Grand Challenge, the high-level strategy, and aggressive next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program 8:35-8:45 AM STRATEGIC SIGNIFICANCE OF PLUG-IN ELECTRIC VEHICLES

136

Grand Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Grand Ridge Wind Farm Facility Grand Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location La Salle County IL Coordinates 40.999966°, -88.401693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.999966,"lon":-88.401693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Rio Grande pipeline introduces LPG to Mexico  

SciTech Connect

Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

NONE

1997-06-01T23:59:59.000Z

138

Property:Plants with Unknown Planned Capacity | Open Energy Information  

Open Energy Info (EERE)

Plants with Unknown Planned Capacity Plants with Unknown Planned Capacity Jump to: navigation, search Property Name Plants with Unknown Planned Capacity Property Type String Description Number of plants with unknown planned capacity per GEA Pages using the property "Plants with Unknown Planned Capacity" Showing 21 pages using this property. A Alaska Geothermal Region + 1 + C Cascades Geothermal Region + 2 + Central Nevada Seismic Zone Geothermal Region + 9 + G Gulf of California Rift Zone Geothermal Region + 4 + H Hawaii Geothermal Region + 0 + Holocene Magmatic Geothermal Region + 0 + I Idaho Batholith Geothermal Region + 1 + N Northern Basin and Range Geothermal Region + 11 + Northern Rockies Geothermal Region + 0 + Northwest Basin and Range Geothermal Region + 9 + R Rio Grande Rift Geothermal Region + 1 +

139

Agropecuaria e Industrial Serra Grande | Open Energy Information  

Open Energy Info (EERE)

Agropecuaria e Industrial Serra Grande Agropecuaria e Industrial Serra Grande Jump to: navigation, search Name Agropecuaria e Industrial Serra Grande Place São Raimundo das Mangabeiras, Maranhao, Brazil Product Privately owned Brazil based ethanol producer, located in the state of Maranhao. References Agropecuaria e Industrial Serra Grande[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Agropecuaria e Industrial Serra Grande is a company located in São Raimundo das Mangabeiras, Maranhao, Brazil . References ↑ "[ Agropecuaria e Industrial Serra Grande]" Retrieved from "http://en.openei.org/w/index.php?title=Agropecuaria_e_Industrial_Serra_Grande&oldid=341914" Categories:

140

Evolution of oceanic margins : rifting in the Gulf of California and sediment diapirism and mantle hydration during subduction  

E-Print Network (OSTI)

This thesis investigates three processes that control the evolution of oceanic margins. Chapter 2 presents seismic images of a ~2-km-thick evaporite body in Guaymas Basin, central Gulf of California. In rifts, evaporites ...

Miller, Nathaniel Clark

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas,  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Mauna Loa Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The vertical electrical sounding surveys encountered few difficulties and were able to resolve basement resistivities in all locations. The resistivity sections derived indicated a 3000- 20,000 ohm.m surface layer underlain by a 500- 900 ohm-m cold freshwatersaturated layer and a basement layer of less than 100 ohm.m (Kauahikaua and Mattice, 1981). The depth of penetration of these soundings was estimated to be about 800 m to 900 m b.s.1. and thus the basement resistivities probably correspond to basalts

142

Modeling-Computer Simulations At Kilauea East Rift Area (Rudman & Epp,  

Open Energy Info (EERE)

Rudman & Epp, Rudman & Epp, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Kilauea East Rift Area (Rudman & Epp, 1983) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Three models were generated: a constant temperature source from a vertical dike; a constant heat-generating magma chamber; and a transient heat source from a tapered vertical dike. Fair correlation is obtained between the HGP-A well temperature and the tapered dike 125 years after it is injected with an initial (transient) 1200degrees C temperature. Results provide background information from which to evaluate the importance of water

143

EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Grande Ronde Basin Endemic Spring Chinook Salmon 3: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy Bonneville Power Administration's proposal to fund a program designed to prevent the extinction and begin the recovery of spring Chinook salmon stocks in the Grande Ronde River Basin in the Upper Grande Ronde River, Lostine River, and Catherine Creek in Northeastern Oregon. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 18, 2003 EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program

144

City of Grand Rapids - Green Building Requirements for Municipal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement...

145

DOE - Office of Legacy Management -- Grand Junction Sites  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

146

Statement by Energy Secretary Steven Chu on Today's Grand Opening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steven Chu issued the following statement on today's grand opening of the Nordex wind turbine manufacturing facility in Jonesboro. The facility was supported with funding from the...

147

SunShot Grand Challenge Highlights Ambitious Efforts along the...  

NLE Websites -- All DOE Office Websites (Extended Search)

startups. Secretary Chu also announced a nationwide competition to drive down the cost of rooftop solar energy system. The SunShot Grand Challenge: Summit and Technology Forum...

148

City of Grand Rapids- Green Building Requirements for Municipal Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement the principles...

149

Grand River Dam Authority | Open Energy Information  

Open Energy Info (EERE)

Dam Authority Dam Authority Jump to: navigation, search Name Grand River Dam Authority Place Oklahoma Utility Id 7490 Utility Location Yes Ownership S NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png general service Commercial general service commercial Commercial large general servic time of use distributional Commercial

150

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

151

Grand Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Grand Electric Coop, Inc Place South Dakota Utility Id 7484 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Heat Rate Commercial Farm and Residential Electric Heat Rate Residential Metered Security Light - 100 HPS Lighting Metered Security Light - 175 MV Lighting Metered Security Light - 250 HPS Lighting Metered Security Light - 400 MV Lighting Schedule A - Farm and Residential Residential Schedule ADF -Du al Fuel Service Residential

152

Panel on grand challenges for modeling and simulation  

Science Conference Proceedings (OSTI)

It has been a decade since the Workshop on Grand Challenge for Modeling & Simulation (M&S) was held at Dagstuhl in Germany (www.dagstuhl.de/02351). Grand challenges provide a critical focal point for research and development and can potentially create ...

Simon J. E. Taylor; Richard Fujimoto; Ernest H. Page; Paul A. Fishwick; Adelinde M. Uhrmacher; Gabriel Wainer

2012-12-01T23:59:59.000Z

153

The Particle Adventure | Unsolved Mysteries | Forces and the Grand Unified  

NLE Websites -- All DOE Office Websites (Extended Search)

Unsolved Mysteries - Forces and the Grand Unified Theory Unsolved Mysteries - Forces and the Grand Unified Theory Forces and the Grand Unified Theory Physicists hope that a Grand Unified Theory will unify the strong, weak, and electromagnetic interactions. There have been several proposed Unified Theories, but we need data to pick which, if any, of these theories describes nature. If a Grand Unification of all the interactions is possible, then all the interactions we observe are all different aspects of the same, unified interaction. However, how can this be the case if strong and weak and electromagnetic interactions are so different in strength and effect? Strangely enough, current data and theory suggests that these varied forces merge into one force when the particles being affected are at a high enough energy.

154

Grand Challenges | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Grand Challenges Grand Challenges Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Basic Research Needs Grand Challenges Science Highlights News & Events Publications Contact BES Home Research Grand Challenges Print Text Size: A A A RSS Feeds FeedbackShare Page Grand Challenge Report The Basic Energy Sciences Advisory Committee (BESAC) report, Directing Matter and Energy: Five Challenges for Science and the Imagination was the culmination of a series of BES-sponsored workshops that began in 2001. Over and over, the recommendations from these workshops described similar themes that in this new era of science, we would design, discover, and synthesize new materials and molecular assemblies through atomic scale control; probe and control photon, phonon, electron, and ion interactions

155

Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 45, Part 2, 3 No. 389, February, 1996 27 Active Rift System in the Okinawa Trough and Its Northeastern  

E-Print Network (OSTI)

Active Rift System in the Okinawa Trough and Its Northeastern Continuation By Masaaki KIMURA (Manuscript investigations have revealed that the present central rift system of the Okinawa Trough which is an active Okinawa Trough can be distinguished. The crustal thinning and thus eastward drifting of the Ryukyu Arc may

Takada, Shoji

156

Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley  

SciTech Connect

An unusual group of cherts found at saline, alkaline Lake Bogoria in the Kenya Rift differs from the Magadi-type cherts commonly associated with saline, alkaline lakes. The cherts are opaline, rich in diatoms, and formed from a siliceous, probably gelatinous, precursor that precipitated around submerged alkaline hot springs during a Holocene phase of high lake level. Silica precipitation resulted from rapid drop in the temperature of the spring waters and, possibly, pH. Lithification began before subaerial exposure. Ancient analogous cherts are likely to be localized deposits along fault lines.

Renaut, R.W.; Owen, R.B.

1988-08-01T23:59:59.000Z

157

Job 4459300 Ref.No. Prepd. CHP/GEA  

E-Print Network (OSTI)

inspection of boilers exceeding 500 kW: State Energy Inspection District heating sector Min. of Economy

158

Category:GEA Development Phases | Open Energy Information  

Open Energy Info (EERE)

Phase III - Permitting and Initial Development Phase IV - Resource Production and Power Plant Construction Retrieved from "http:en.openei.orgwindex.php?titleCategory:G...

159

EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A and PP-33-1 Rio Grande Electric Cooperative, Inc. EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. Order authorizing Rio Grande Electric Cooperative, Inc to export...

160

FAR-ULTRAVIOLET OBSERVATION OF THE AQUILA RIFT WITH FIMS/SPEAR  

Science Conference Proceedings (OSTI)

We present the results of far ultraviolet (FUV) observations of the broad region around the Aquila Rift including the Galactic plane. As compared with various wavelength data sets, dust scattering is found to be the major origin of the diffuse FUV continuum in this region. The FUV intensity clearly correlates with the dust extinction level for E(B - V) 0.2 due to heavy dust extinction combined with the effect of nonuniform interstellar radiation fields. The FUV intensity also correlates well with H{alpha} intensity, implying that at least some fraction of the observed H{alpha} emission could be the dust-scattered light of H{alpha} photons originating elsewhere in the Galaxy. Most of the Aquila Rift region is seen devoid of diffuse FUV continuum due to heavy extinction while strong emission is observed in the surrounding regions. Molecular hydrogen fluorescent emission lines are clearly seen in the spectrum of 'Aquila-Serpens', while 'Aquila-East' does not show any apparent line features. CO emission intensity is also found to be higher in the 'Aquila-Serpens' region than in the 'Aquila-East' region. In this regard, we note that regions of star formation have been found in 'Aquila-Serpens' but not in 'Aquila-East'.

Park, S.-J.; Min, K.-W. [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Seon, K.-I.; Han, W.; Lee, D.-H. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Edelstein, J., E-mail: einpark75@kaist.ac.kr [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

2012-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Data Compendium for the Logging Test Pits at the ERDA Grand Junction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound...

162

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

163

Grand Blanc Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grand Blanc Generating Station Biomass Facility Grand Blanc Generating Station Biomass Facility Jump to: navigation, search Name Grand Blanc Generating Station Biomass Facility Facility Grand Blanc Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

EA-1037: Uranium Lease Management Program, Grand Junction, Colorado |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Uranium Lease Management Program, Grand Junction, Colorado 37: Uranium Lease Management Program, Grand Junction, Colorado EA-1037: Uranium Lease Management Program, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of domestic uranium and vanadium ores, to maintain a viable domestic mining and milling infrastructure required to produce and mill these ores, and to provide assurance of a fair monetary return to the U.S. Government. The Uranium Lease Management Program gives The Department of Energy the flexibility to continue leasing these lands. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 1995

165

Microsoft Word - GrandCoulee_FinalEA_CommentResponses.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant Grand Coulee's Third Powerplant 500-kilovolt Transmission Line Replacement Project Revision Sheet for the Environmental Assessment Finding of No Significant Impact Mitigation Action Plan DOE/EA-1679 December 2011 Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Revision Sheet for the Environmental Assessment 2 SUMMARY This revision sheet documents the changes to be incorporated into the Grand Coulee's Third Powerplant 500-kilovolt (kV) Transmission Line Replacement Project Preliminary Environmental Assessment (EA). With the addition of these changes, the Preliminary EA will not be reprinted and will serve as the Final EA. On May 2, 2011, the Preliminary EA was sent to agencies and interested parties.

166

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

167

SunShot Grand Challenge Summit 2014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge Summit 2014 SunShot Grand Challenge Summit 2014 SunShot Grand Challenge Summit 2014 May 19, 2014 8:00AM PDT to May 22, 2014 5:00PM PDT Anaheim, California Hilton Anaheim The DOE SunShot Initiative Grand Challenge Summit 2014 will bring together more than 800 members of the solar community including SunShot-funded project teams, industry leaders, innovative researchers and scientists, and local, state and federal government policymakers to review the progress made and discuss the challenges ahead to make solar energy more affordable and widespread across America. The event will include activities that celebrate the accomplishments across more than 250 SunShot-funded projects and discuss the path forward for the U.S. solar energy industry. Plenary Sessions and Keynote Speakers - Top leaders from business,

168

Saft America Advanced Batteries Plant Celebrates Grand Opening in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saft America Advanced Batteries Plant Celebrates Grand Opening in Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida, factory, which will produce advanced lithium-ion batteries to power electric vehicles and other applications. Saft America estimates it will create nearly 280 permanent jobs at the factory, and the city of Jacksonville expects an additional 800 indirect jobs to be created within its community. The project has created or preserved an estimated 300

169

Alpine Extensional Detachment Tectonics In The Grande Kabylie Metamorphic  

Open Energy Info (EERE)

Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alpine Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Details Activities (0) Areas (0) Regions (0) Abstract: The Maghrebides are part of the peri-Mediterranean Alpine orogen. They expose in their inner zone inliers of high-grade crystalline rocks surrounded by Oligo-Miocene and younger Miocene cover. Detailed mapping coupled with structural and petrological investigations in the Grande Kabylie massif, and the reinterpretation of the available geochronological data, allow us to refute the traditional concept of rigid behaviour of this

170

Empowering First Year Students by Immersion in a 'Grand Challenges'  

Science Conference Proceedings (OSTI)

Apr 19, 2010 ... Interestingly, this preceded the National Academy of Engineering Grand ... Within their lifetime they will witness burgeoning needs in energy resources, ... to statistics, environmental studies, to history and philosophyin...

171

SunShot Grand Challenge Highlights Ambitious Efforts along the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu also announced a nationwide competition to drive down the cost of rooftop solar energy system. The SunShot Grand Challenge: Summit and Technology Forum kicked off in...

172

Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's 10-Year Vision for Plug-in Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in...

173

Wintertime Boundary Layer Structure in the Grand Canyon  

Science Conference Proceedings (OSTI)

Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during ...

C. David Whiteman; Shiyuan Zhong; Xindi Bian

1999-08-01T23:59:59.000Z

174

Cambridge Grand Junction transit implementation : alternatives, scheduling, cost, and performance  

E-Print Network (OSTI)

The Grand Junction railroad lies at the heart of East Cambridge adjacent to the Kendall Square business district and the Massachusetts Institute of Technology campus. Over the last one hundred years the railroad has gone ...

Iglesias Cuervo, Jesus

2012-01-01T23:59:59.000Z

175

EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30: Facility Operations at the U.S. DOE Grand Junction 30: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 8, 1996 EA-0930: Finding of No Significant Impact Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado June 8, 1996 EA-0930: Final Environmental Assessment Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand

176

Remote sensing studies and morphotectonic investigations in an arid rift setting, Baja California, Mexico  

E-Print Network (OSTI)

The Gulf of California and its surrounding land areas provide a classic example of recently rifted continental lithosphere. The recent tectonic history of eastern Baja California has been dominated by oblique rifting that began at ~12 Ma. Thus, extensional tectonics, bedrock lithology, long-term climatic changes, and evolving surface processes have controlled the tectono-geomorphological evolution of the eastern part of the peninsula since that time. In this study, digital elevation data from the Shuttle Radar Topography Mission (SRTM) from Baja California were corrected and enhanced by replacing artifacts with real values that were derived using a series of geostatistical techniques. The next step was to generate accurate thematic geologic maps with high resolution (15-m) for the entire eastern coast of Baja California. The main approach that we used to clearly represent all the lithological units in the investigated area was objectoriented classification based on fuzzy logic theory. The area of study was divided into twenty-two blocks; each was classified independently on the basis of its own defined membership function. Overall accuracies were 89.6 %, indicating that this approach was highly recommended over the most conventional classification techniques. The third step of this study was to assess the factors that affected the geomorphologic development along the eastern side of Baja California, where thirty-four drainage basins were extracted from a 15-m-resolution absolute digital elevation model (DEM). Thirty morphometric parameters were extracted; these parameters were then reduced using principal component analysis (PCA). Cluster analysis classification defined four major groups of basins. We extracted stream length-gradient indices, which highlight the differential rock uplift that has occurred along fault escarpments bounding the basins. Also, steepness and concavity indices were extracted for bedrock channels within the thirty-four drainage basins. The results were highly correlated with stream length-gradient indices for each basin. Nine basins, exhibiting steepness index values greater than 0.07, indicated a strong tectonic signature and possible higher uplift rates in these basins. Further, our results indicated that drainage basins in the eastern rift province of Baja California could be classified according to the dominant geomorphologic controlling factors (i.e., faultcontrolled, lithology-controlled, or hybrid basins).

El-Sobky, Hesham Farouk

2007-08-01T23:59:59.000Z

177

Isotopic evidence for neogene hominid paleoenvironments in the Kenya Rift Valley  

Science Conference Proceedings (OSTI)

Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition ([delta][sup 13]C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed [delta][sup 13]C values offer no evidence for a shift from more-closed C3 environments to C4 grasslands habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

Kingston, J.D.; Hill, A. (Yale Univ., New Haven, CT (United States)); Marino, B.D. (Harvard Univ., Cambridge, MA (United States))

1994-05-13T23:59:59.000Z

178

Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO2 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Rift Basin for Source Proximal CO 2 Storage Michael G. Waddell and John M. Shafer Earth Sciences and Resources Institute University of South Carolina - Columbia Carbon Storage Program Infrastructure Annual Review Meeting Pittsburgh, PA November 15-17, 2011 Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011 Research Team Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011 John Shafer and Michael Waddell James Knapp and Camelia Knapp Lee Kurtzweil and Phil VanHollebeke C.W. "Bill" Clendenin Richard Berg James Rine Integrated Services Contract for Drilling/Coring/Logging - TBD Study Area Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011

179

The origin of hydrothermal and other gases in the Kenya Rift Valley  

SciTech Connect

The Kenya Rift Valley (KRV) is part of a major continental rift system from which much outgassing is presently occurring. Previous research on gases in the KRV has tended to concentrate on their geothermal implications; the present paper is an attempt to broaden the interpretation by consideration of new data including helium and carbon isotope analyses from a wide cross-section of sites. In order to do this, gases have been divided into categories dependent on origin. N{sub 2} and noble gases are for the most part atmospherically derived, although their relative concentrations may be altered from ASW ratios by various physical processes. Reduced carbon (CH{sub 4} and homologues) appears to be exclusively derived from the shallow crust, with thermogenic {delta}{sup 13}C values averaging -25{per_thousand} PDB for CH{sub 4}. H{sub 2} is likely also to be crustally formed. CO{sub 2}, generally a dominant constituent, has a narrow {delta}{sup 13}C range averaging -3.7{per_thousand} PDB, and is likely to be derived with little modification from the upper mantle. Consideration of the ratio C/{sup 3}He supports this view in most cases. Sulphur probably also originates there. Ratios of {sup 3}He/{sup 4}He reach a MORB-like maximum of 8.0 R/R{sub A} and provide the best indication of an upper mantle source of gases beneath the KRV. A correlation between {sup 3}He/{sup 4}He and the hydrocarbon parameter log (C{sub 1}/{Sigma}C{sub 2-4}) appears to be primarily temperature related. The highest {sup 3}He/{sup 4}He ratios in spring waters are associated with basalts, perhaps because of the leaching of basalt glasses. There may be a structural control on {sup 3}He/{sup 4}He ratios in the KRV as a whole.

Darling, W.G. [British Geological Survey, Wallingford (United Kingdom)] [British Geological Survey, Wallingford (United Kingdom); Griesshaber, E. [Max-Planck Institut fuer Chemie, Mainz (Germany)] [Max-Planck Institut fuer Chemie, Mainz (Germany); Andrews, J.N. [Univ. of Reading (United Kingdom)] [and others] [Univ. of Reading (United Kingdom); and others

1995-06-01T23:59:59.000Z

180

Analysis of Convective Activity and Its Relationship to the Rainfall over the Rift Valley Lakes of East Africa during 198390 Using the Meteosat Infrared Channel  

Science Conference Proceedings (OSTI)

The convective activity over the Rift Valley lakes of East Africa, as deduced from cloud tops colder than a predefined threshold, is examined. Relationships between satellite-derived convective indices and rainfall measurements are also examined. ...

Mamoudou B. Ba; Sharon E. Nicholson

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Microsoft Word - CX-GrandCoulee-Creston_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Robert Keudell Robert Zeller Lineman Foreman III - TFWK-Grand Coulee Lineman Foreman I - TFWK-Grand Coulee Proposed Action: Selected wood pole replacement and minor access road maintenance along the Grand Coulee-Creston transmission line at miles 14, 15, 21 and 28. PP&A Project No: 1828 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities...for structures, rights of way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures... in a condition suitable for a facility to be used for its designed purpose.

182

Winners Announced for the NNSA Grand Challenge Competition | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

Winners Announced for the NNSA Grand Challenge Competition Winners Announced for the NNSA Grand Challenge Competition Winners Announced for the NNSA Grand Challenge Competition December 11, 2013 - 1:23pm Addthis President Carlton Brown of Clark Atlanta University pictured here with winning students junior Jules Henry (Electrical Engineering/Computer Science) and sophomore KeAndra Goodman (Electrical Engineering/Physics). President Carlton Brown of Clark Atlanta University pictured here with winning students junior Jules Henry (Electrical Engineering/Computer Science) and sophomore KeAndra Goodman (Electrical Engineering/Physics). Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact The first year of the Minority Serving Institution Partnership Program with the Department of Energy site Kansas City Plant was a fruitful one. The two

183

Grand Ridge Elementary Wind Project | Open Energy Information  

Open Energy Info (EERE)

Grand Ridge Elementary Wind Project Grand Ridge Elementary Wind Project Facility Grand Ridge Elementary Sector Wind energy Facility Type Community Wind Location WA Coordinates 47.545883°, -122.005714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.545883,"lon":-122.005714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Fernald Preserve Visitors Center Grand Opening and LEED Platinum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald Preserve Visitors Center Grand Opening and LEED Platinum Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to do three things here at Fernald: to close it, to clean it up and to give it back to the community. I'm proud to say we have fulfilled that commitment safely and ahead of schedule. Less than two years ago, I was here with Secretary Bodman as he announced the completion of a $4.4 billion clean up operation. Since then, we have

185

Grand Marais PUC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount CFLs: $2/bulb or up to 50% of cost LEDs: $10 - $15/bulb Lighting Fixtures: $15 - $20/fixture Refrigerators: $25, plus $50 for recycling an old, working unit Freezers: $25, plus $50 for recycling an old, working unit Dishwashers: $25 Clothes Washers: $50 Dehumidifiers: $65 Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings

186

GreenHunter Biodiesel Refinery Grand Opening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer Today, Acting Deputy Secretary Jeffrey Kupfer delivered remarks at the launch of GreenHunter Energy's biodiesel refinery, which will be the nation's single largest biodiesel refinery, producing 105 million gallons of "white-water" B100 biodiesel per year. Thank you Gary. I'm pleased to join with Governor Perry, Congressmen Green and Lampson, and Mayor Garcia in celebrating this important occasion. Today, as we open the nation's largest biodiesel refinery, we reach another milestone in our effort to make America more energy secure. As you know, global energy demand is surging. We must act swiftly and aggressively to

187

Fernald Preserve Visitors Center Grand Opening and LEED Platinum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald Preserve Visitors Center Grand Opening and LEED Platinum Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to do three things here at Fernald: to close it, to clean it up and to give it back to the community. I'm proud to say we have fulfilled that commitment safely and ahead of schedule. Less than two years ago, I was here with Secretary Bodman as he announced the completion of a $4.4 billion clean up operation. Since then, we have

188

Moreau-Grand Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Moreau-Grand Electric Coop Inc Moreau-Grand Electric Coop Inc Jump to: navigation, search Name Moreau-Grand Electric Coop Inc Place South Dakota Utility Id 12915 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Industrial Small General Service Single Phase Commercial Small General Service Single Phase Well Commercial Small General Service Three Phase Commercial Average Rates Residential: $0.1090/kWh Commercial: $0.0798/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

189

City of Grand Junction, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Junction City of Grand Junction City of Place Iowa Utility Id 7486 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Demand Service Commercial Residential Eletric Residential Average Rates Residential: $0.1340/kWh Commercial: $0.1300/kWh Industrial: $0.0899/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Grand_Junction,_Iowa_(Utility_Company)&oldid=409673

190

Mutagenic potential of sediments from the Grand Calumet River  

Science Conference Proceedings (OSTI)

The Grand Calumet River/Indiana Harbor Canal is one of the International Joint Commission's Great Lakes Areas of Concern (AOC). Like many other AOCs, the Grand Calumet River is in a heavily industrialized area and has a history of chemical contamination. Many of the chemicals found in the industrial and municipal wastes that enter the waterway end up in sediment where they are concentrated to high levels. In order to assess the potential genotoxicity of sediments from the Grand Calumet River, the authors determined the mutagenic potential of organic extracts of sediments. The sediment extracts were assayed in the Salmonella/microsome mutagenicity test. In the Ames test, all ten sediment samples assayed were found to be mutagenic. In general, chemicals found in the sediments required metabolic activation before a positive mutagenic response was observed.

Maccubbin, A.E.; Ersing, N. (Roswell Park Cancer Inst., Buffalo, NY (United States))

1991-08-01T23:59:59.000Z

191

Grand Symmetry, Spectral Action, and the Higgs mass  

E-Print Network (OSTI)

In the context of the spectral action and the noncommutative geometry approach to the standard model, we build a model based on a larger symmetry. The latter satisfies all the requirements to have a noncommutative manifold, and mixes gauge and spin degrees of freedom without introducing extra fermions. With this "grand symmetry" it is natural to have the scalar field necessary to obtain the Higgs mass in the vicinity of 126 GeV. Requiring the noncommutative space to be an almost commutative geometry (i.e. the product of manifold by a finite dimensional internal space) gives conditions for the breaking of this grand symmetry to the standard model.

Agostino Devastato; Fedele Lizzi; Pierre Martinetti

2013-04-01T23:59:59.000Z

192

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

193

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area (Redirected from San Juan Volcanic Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

194

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

195

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

196

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

197

Fenton Hill Hdr Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area Fenton Hill Hdr Geothermal Area (Redirected from Fenton Hill Hdr Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fenton Hill Hdr Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (26) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

198

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

199

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

200

Fenton Hill Hdr Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area Fenton Hill Hdr Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fenton Hill Hdr Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (26) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

202

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

203

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

204

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

205

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

206

The verifying compiler: A grand challenge for computing research  

Science Conference Proceedings (OSTI)

This contribution proposes a set of criteria that distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn ...

Tony Hoare

2003-01-01T23:59:59.000Z

207

The verifying compiler: a grand challenge for computing research  

Science Conference Proceedings (OSTI)

I propose a set of criteria which distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn from Computer Science, ...

Tony Hoare

2003-04-01T23:59:59.000Z

208

Workshop and conference on Grand Challenges applications and software technology  

SciTech Connect

On May 4--7, 1993, nine federal agencies sponsored a four-day meeting on Grand Challenge applications and software technology. The objective was to bring High-Performance Computing and Communications (HPCC) Grand Challenge applications research groups supported under the federal HPCC program together with HPCC software technologists to: discuss multidisciplinary computational science research issues and approaches, identify major technology challenges facing users and providers, and refine software technology requirements for Grand Challenge applications research. The first day and a half focused on applications. Presentations were given by speakers from universities, national laboratories, and government agencies actively involved in Grand Challenge research. Five areas of research were covered: environmental and earth sciences; computational physics; computational biology, chemistry, and materials sciences; computational fluid and plasma dynamics; and applications of artificial intelligence. The next day and a half was spent in working groups in which the applications researchers were joined by software technologists. Nine breakout sessions took place: I/0, Data, and File Systems; Parallel Programming Paradigms; Performance Characterization and Evaluation of Massively Parallel Processing Applications; Program Development Tools; Building Multidisciplinary Applications; Algorithm and Libraries I; Algorithms and Libraries II; Graphics and Visualization; and National HPCC Infrastructure.

1993-12-31T23:59:59.000Z

209

EA-1338: Transfer of the Department of Energy Grand Junction Office to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Transfer of the Department of Energy Grand Junction Office 8: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 25, 2000 EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 25, 2000 EA-1338: Final Environmental Assessment Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership

210

Estimating commuter rail demand to Kendall Square along the Grand Junction Corridor  

E-Print Network (OSTI)

Since acquiring the Grand Junction Railroad in June 2010 from CSX, the Massachusetts Bay Transit Authority (MBTA) has explored the possibility of using the line for commuter rail service. In addition the Grand Junction ...

Bockelie, Adam

2012-01-01T23:59:59.000Z

211

PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1 and EA-33-A Rio Grande Electric Cooperative Inc PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc Rescission of Presidential Permit and Electricity Export Authorization...

212

Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar  

DOE Green Energy (OSTI)

Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

Suzanne McSawby, Project Director

2008-12-31T23:59:59.000Z

213

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline  

E-Print Network (OSTI)

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline D.W. (Don) Wilson, Director, North Atlantic Pipeline Partners, L.P. NOIA 2000 Conference June, 2000 #12;Grand Banks Multi-Purpose Pipeline Route January 2000 Grand Banks of Newfoundland Newfoundland Come by Chance St. John's Argentia 50o

Bruneau, Steve

214

A New Species of Parodia (Cactaceae, Notocacteae) from Rio Grande do Sul, Brazil  

E-Print Network (OSTI)

A New Species of Parodia (Cactaceae, Notocacteae) from Rio Grande do Sul, Brazil Marlon C. Machado Grande do Sul, Brazil. jlarocca@unisinos.br ABSTRACT . A new species, Parodia gaucha M. Machado & Larocca (Cactaceae, Notocacteae), from Encruzilhada do Sul, Rio Grande do Sul, Brazil, is described and illustrated

Zürich, Universität

215

Grand Forks, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grand Forks, North Dakota: Energy Resources Grand Forks, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9252568°, -97.0328547° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.9252568,"lon":-97.0328547,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

GIS Data from LANL's Cerro Grande Rehabilitation Project (CGRP)  

DOE Data Explorer (OSTI)

The Los Alamos National Laboratorys Cerro Grande Rehabilitation Project (CGRP) involves many subprojects. One of them is a geographic information system for electronically storing and displaying geographically-related data about the fires effects. The data are used for research, planning, emergency response, and for informing the public. This website provides access to geospatial data relating to the May 2000 Cerro Grande Fire. This includes data generated by the Burned Area Emergency Rehabilitation (BAER) Team during and shortly after the fire as well as data resulting from the ongoing environmental monitoring programs related to the fire. These data are available from a data catalog in two forms: (i) direct download of individual geospatial files and (ii) image files.

217

Chattanooga Eagle Ford Rio Grande Embayment Texas- Louisiana-  

U.S. Energy Information Administration (EIA) Indexed Site

Rio Grande Rio Grande Embayment Texas- Louisiana- Mississippi Salt Basin Uinta Basin Appa lachia n Basin Utica Marcellus Devonian (Ohio) Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville Hermosa Mancos Pierre Conasauga Woodford- Caney Pearsall- Eagle Ford Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Maverick Sub-Basin Montana Thrust Belt Marfa Basin Valley and Ridge Province Arkoma Basin Forest City Basin Piceance Basin Shale Gas Plays, Lower 48 States 0 200 400 100 300 Miles ± Source: Energy Information Administration based on data from various published studies

218

East Grand St Bridge Snowmelt Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bridge Snowmelt Low Temperature Geothermal Facility Bridge Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name East Grand St Bridge Snowmelt Low Temperature Geothermal Facility Facility East Grand St Bridge Sector Geothermal energy Type Snowmelt Location Laramie, Wyoming Coordinates 41.3113669°, -105.5911007° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

219

Grand Ridge II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Grand Ridge II Wind Farm Facility Grand Ridge II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

City of Grand Island, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Island City of Grand Island City of Place Nebraska Utility Id 40606 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Flood Lighting Lighting Commercial Rate- Single Phase Commercial Commercial Rate- Three Phase Commercial Residential Rate Residential Three Phase Power Service Industrial

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

City of Grand Haven, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Haven Grand Haven Place Michigan Utility Id 7483 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Space Lighting Service - 100 Watt Lighting Area Space Lighting Service - 1000 Watt Lighting Area Space Lighting Service - 175 Watt Mercury Vapor Lighting Area Space Lighting Service - 400 Watt Mercury Vapor Lighting Area Space Lighting Service - Metal Halide 175 Watt Lighting

222

Arroyo Grande, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arroyo Grande, California: Energy Resources Arroyo Grande, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1185868°, -120.5907252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1185868,"lon":-120.5907252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Rio Grande Electric Coop, Inc (New Mexico) | Open Energy Information  

Open Energy Info (EERE)

New Mexico) New Mexico) Jump to: navigation, search Name Rio Grande Electric Coop, Inc Place New Mexico Utility Id 16057 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1560/kWh Commercial: $0.1630/kWh Industrial: $0.1170/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Rio_Grande_Electric_Coop,_Inc_(New_Mexico)&oldid=412780" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

224

City of Grand Rapids Building Solar Roof Demonstration  

SciTech Connect

Grand Rapids, Michigan is striving to reduce it environmental footprint. The municipal government organization has established environmental sustainability policies with the goal of securing 100% of its energy from renewable sources by 2020. This report describes the process by which the City of Grand Rapids evaluated, selected and installed solar panels on the Water/Environmental Services Building. The solar panels are the first to be placed on a municipal building. Its new power monitoring system provides output data to assess energy efficiency and utilization. It is expected to generate enough clean solar energy to power 25 percent of the building. The benefit to the public includes the economic savings from reduced operational costs for the building; an improved environmentally sustainable area in which to live and work; and increased knowledge about the use of solar energy. It will serve as a model for future energy saving applications.

DeClercq, Mark; Martinez, Imelda

2012-08-31T23:59:59.000Z

225

Volume terms for charged colloids: a grand-canonical treatment  

E-Print Network (OSTI)

We present a study of thermodynamic properties of suspensions of charged colloids on the basis of linear Poisson-Boltzmann theory. We calculate the effective Hamiltonian of the colloids by integrating out the ionic degrees of freedom grand-canonically. This procedure not only yields the well-known pairwise screened-Coulomb interaction between the colloids, but also additional volume terms which affect the phase behavior and the thermodynamic properties such as the osmotic pressure. These calculations are greatly facilitated by the grand-canonical character of our treatment of the ions, and allow for relatively fast computations compared to earlier studies in the canonical ensemble. Moreover, the present derivation of the volume terms are relatively simple, make a direct connection with Donnan equilibrium, yield an explicit expression for the effective screening constant, and allow for extensions to include, for instance, nonlinear effects.

Bas Zoetekouw; Rene van Roij

2005-10-10T23:59:59.000Z

226

Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley  

SciTech Connect

Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renault, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

1998-09-01T23:59:59.000Z

227

Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii  

DOE Green Energy (OSTI)

A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

1992-01-01T23:59:59.000Z

228

Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado  

SciTech Connect

The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1996-06-01T23:59:59.000Z

229

UMTRA project water sampling and analysis plan, Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

Not Available

1994-07-01T23:59:59.000Z

230

Gravitational Collapse and Radiation of Grand Unified Theory  

E-Print Network (OSTI)

The infinite gravitational collapse of any supermassive stars should pass through an energy scale of the grand unified theory (GUT). After nucleon-decays, the supermassive star will convert nearly all its mass into energy, and produce the radiation of GUT. It may probably explain some ultrahigh energy puzzles in astrophysics, for example, quasars and gamma-ray bursts (GRB), etc. This is similar with a process of the Big Bang Universe with a time-reversal evolution in much smaller space scale and mass scale. In this process the star seems be a true white hole.

Yi-Fang Chang

2007-10-02T23:59:59.000Z

231

Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old project that will protect an additional 1.3 miles of stream and 298.3 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Improving fish passage in Bear Creek to restore tributary and mainstem access; (4) Planting and seeding 6.7 stream miles with 7,100 plants and 365 lbs. of seed; (5) Establishing 18 new photopoints and retaking 229 existing photopoint pictures; (6) Monitoring stream temperatures at 12 locations on 6 streams; (7) completing riparian fence, water gap and other maintenance on 98.7 miles of project fences. Since initiation of the project in 1984 over 62 miles of anadromous fish bearing streams and 1,910 acres of habitat have been protected, enhanced and maintained.

McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

2001-04-01T23:59:59.000Z

232

Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.  

DOE Green Energy (OSTI)

Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by the construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass Creek, an extirpated area, will be stocked (smolts and adults) with Catherine Creek origin salmon to initiate natural production in unseeded habitat, and to initiate future harvest opportunities. The current production levels have been incorporated into the U.S. v. Oregon Interim Management Agreement. The purpose of this contract is to integrate Bonneville Power Administration (BPA) efforts with the Lower Snake River Compensation Plan (LSRCP) program utilizing Lookingglass Hatchery as the primary rearing facility. BPA constructed an adult holding and spawning structure on the hatchery grounds; however, maintenance of this infrastructure was discontinued due to funding limitation and transferred to the LSRCP program in 2007. These integrated efforts focus on holding and spawning adults, rearing juveniles, fish health, and monitoring natural production (Redd counts) for Catherine Creek, Lostine River, and Upper Grande Ronde stocks.

Patterson, Scott

2009-04-10T23:59:59.000Z

233

A Grand Delta(96) x SU(5) Flavour Model  

E-Print Network (OSTI)

Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of theta_13 approximately 9 degrees. This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on Delta(96) x SU(5), together with a U(1) x Z3 symmetry, including a full discussion of Delta(96) in a convenient basis. The Grand Delta(96) x SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: theta_23=36...

King, Stephen F; Stuart, Alexander J

2012-01-01T23:59:59.000Z

234

A Grand Delta(96) x SU(5) Flavour Model  

E-Print Network (OSTI)

Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of theta_13 approximately 9 degrees. This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on Delta(96) x SU(5), together with a U(1) x Z3 symmetry, including a full discussion of Delta(96) in a convenient basis. The Grand Delta(96) x SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: theta_23=36.9 degrees, theta_12=32.7 degrees and theta_13=9.6 degrees, in good agreement with recent global fits, and a zero Dirac CP phase delta~0.

Stephen F. King; Christoph Luhn; Alexander J. Stuart

2012-07-24T23:59:59.000Z

235

Geomorphology of plutonium in the Northern Rio Grande  

Science Conference Proceedings (OSTI)

Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography] Arizona Univ., Tempe, AZ (United States). Dept., of Geography

1993-03-01T23:59:59.000Z

236

Earth and Planetary Science Letters 134 (1995) 527-544 The effect of rift shoulder erosion on strata1 patterns at passive  

E-Print Network (OSTI)

displays a characteristic offlap pattern. When the rift shoulder is largely eroded, onlap Parameters for ail models PElIax 1i-sed If-bas Kdiff-bas Kdirr-sed,area! Kdirr-sed,marine 3.0 50 km 5km 1 m

van der Beek, Peter

237

SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge Highlights Ambitious Efforts along the SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum June 13, 2012 - 5:30pm Addthis Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program What are the key facts? Today at the SunShot Grand Challenge Summit Energy Secretary Chu announced up to $8 million to support clean energy startups. Secretary Chu also announced a nationwide competition to drive down

238

Regional seismic reflection line, southern Illinois Basin, provides new data on Cambrian rift geometry, Hicks Dome genesis, and the Fluorspar Area Fault Complex  

SciTech Connect

Detailed studies of the subsurface structure of the Cambrian Reelfoot rift (RFR) in the Midwestern US provide important insights into continental rifting processes and into the structural fabric of a zone of modern intracratonic seismicity (New Madrid zone). High-quality oil industry seismic reflection data show that in the area of transition between the RFR and the Rough Creek Graben (RCG) the geometry of the Cambrian rift system is that of a half-graben that thickens to the southeast. This contrasts with the northward-thickening half-graben observed to the east in the RCG and with the more symmetric graben to the south in the RFR. An 82.8-km segment of a northwest-southeast seismic reflection profile in southeastern Illinois and western Kentucky shows that near Hicks Dome, Illinois, Middle and Lower Cambrian syn-rift sedimentary rocks occupy about 0.35 s (two-way travel time) on the seismic reflection section (corresponding to a thickness of about 970 m). This stratigraphic interval occupies about 0.45 s (1,250 m) near the Ohio river and is thickest against the Tabb Fault System (TFS) in Kentucky, where it occupies 0.7 s (1,940 m). The seismic data show that in this part of the Cambrian rift the master fault was part of the TFS and that normal displacement on the TFS continued through middle Paleozoic time. The seismic data also provide new information on the late Paleozoic development of Hicks-Dome and the surrounding Fluorspar Area Fault Complex (FAFC) in southeastern Illinois and western Kentucky. A series of grabens and horsts in the FAFC document a late Paleozoic reactivation of the RFR. Comparison of the reflection data with surface mineralization patterns shows that in most cases mineralized graben-bounding faults clearly cut basement or are splays from faults that cut basement.

Potter, C.J.; Goldhaber, M.B.; Taylor, C.D. (U.S. Geological Survey, Denver, CO (United States)); Heigold, P.C. (Illinois State Geological Survey, Champaign, IL (United States))

1992-01-01T23:59:59.000Z

239

2011 Annual Planning Summary for Office of Legacy Management (LM), Grand Junction (See LM APS)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Office of Legacy Management (LM), Grand Junction (See LM APS).

240

EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE's...

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33  

E-Print Network (OSTI)

This thesis integrated geology, geophysics, and petroleum engineering data to build a detailed reservoir characterization models for three gas pay sands in the Grand Isle 33 & 43 fields, offshore Louisiana. The reservoirs are Late Miocene in age and include the upper (PM), middle (QH), and lower (RD) sands. The reservoir models address the stratigraphy of the upper (PM) sand and help delineate the lower (RD) reservoir. In addition, this research addresses the partially depleted QH-2 reservoir compartment. The detailed models were constructed by integrating seismic, well log, and production data. These detailed models can help locate recoverable oil and gas that has been left behind. The upper PM model further delineated that the PM sand has several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand was partially depleted in the QH-2 reservoir compartment by a series of development wells. Bottom hole pressure data from wells in Grand Isle 32 & 33 reveal that the two QH fault compartments are in communication across a leaking fault. Production wells in the QH-1 compartment produced reserves from the QH-2 compartment. The lower RD sand model helped further delineate the reservoir in the RD-2 compartment and show that this compartment has been depleted. The RD model also shows the possible presence of remaining recoverable hydrocarbons in the RD-1 compartment. It is estimated that about 6.7 billion cubic feet of gas might remain within this reservoir waiting to be recovered. A seismic amplitude anomaly response from the QH and RD sands is interpreted to be a lithologic indicator rather than the presence of hydrocarbons. Amplitude response from the PM level appears to be below the resolution of the seismic data. A synthetic seismogram model was generated to represent the PM and surrounding sands. This model shows that by increasing the frequency of the seismic data from 20 Hz to a dominant frequency of 30 Hz that the PM and surrounding sands could be seismically resolvable. Also the PM-1 compartment has possible recoverable hydrocarbons of 1.5 billion cubic feet of gas remaining.

Casey, Michael Chase

2011-05-01T23:59:59.000Z

242

An inventory survey at the site of the proposed Kilauea Middle East Rift Zone (KMERZ), Well Site No. 2  

DOE Green Energy (OSTI)

At the request of True Mid Pacific Geothermal, Archaeological Consultants of Hawaii, Inc. has conducted an inventory survey at the site of the proposed Kilauea Middle East Rift Zone (KMERZ), Well Site No.2, TMK: 1-2-10:3. The Principal Investigator was Joseph Kennedy M.A., assisted by Jacob Kaio, Field Supervisor and field crew Mark Borrello B.A., Michael O'Shaughnessy B.A., and Randy Adric. This report supercedes all previous reports submitted to the Historic Presentation Section of the Department of Land and Natural Resources. In addition to 100% surface coverage of the 400 x 400 foot well pad itself, 100% surface coverage of a substantial buffer zone was also completed. This buffer zone was established by the Department of Land and Natural Resources, Historic Preservation personnel and extends 1000 feet east and west of the well site and 500 feet north and south of the well site.

Kennedy, Joseph

1991-03-01T23:59:59.000Z

243

Grand Ridge III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Grand Ridge III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Grand Rapids Public Util Comm | Open Energy Information  

Open Energy Info (EERE)

Rapids Public Util Comm Rapids Public Util Comm Jump to: navigation, search Name Grand Rapids Public Util Comm Place Minnesota Utility Id 7489 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CITY COMMERCIAL Commercial CITY LIGHT & POWER Lighting CITY RESIDENTIAL Residential CONTROLLED WATER HEATING (CITY) Commercial CONTROLLED WATER HEATING (RURAL) Commercial ENTERTAINMENT LIGHTING RATE (CITY) Lighting ENTERTAINMENT LIGHTING RATE (RURAL) Lighting INDUSTRIAL (CITY) Industrial

245

City of Grand Marais, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Marais, Minnesota (Utility Company) Marais, Minnesota (Utility Company) Jump to: navigation, search Name City of Grand Marais Place Minnesota Utility Id 7487 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL - SINGLE PHASE Commercial COMMERCIAL - THREE PHASE Commercial DUAL FUEL(Single Phase) DUAL FUEL(Three Phase) RESIDENTIAL - SINGLE PHASE Residential RESIDENTIAL - THREE PHASE Residential YARD LIGHT METERED Lighting YARD LIGHT UNMETERED Lighting

246

Grand Valley Rrl Pwr Line, Inc | Open Energy Information  

Open Energy Info (EERE)

Pwr Line, Inc Pwr Line, Inc Jump to: navigation, search Name Grand Valley Rrl Pwr Line, Inc Place Colorado Utility Id 7563 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Power Service, Three Phase Schedule (25)-CSP-1 Commercial Farm and Home (Residential) Service Schedule (10)-FH-1 Residential Industrial Service Schedule (50) -IND-1 Industrial Irrigation Service Schedule (40)-I-1 Commercial Large Power Service Schedule (30) -LP-1 Industrial Nonresidential - General Schedule (20)-NRG-1 Commercial

247

City of East Grand Forks, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Minnesota (Utility Company) Minnesota (Utility Company) Jump to: navigation, search Name East Grand Forks City of Place Minnesota Utility Id 5575 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Off Peak Rates Commercial Residential Electric Heat Residential Residential General Electric Residential Small Commercial Rate Residential Average Rates Residential: $0.0943/kWh Commercial: $0.0740/kWh Industrial: $0.0789/kWh

248

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

249

Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No.199202601). Work undertaken during 2007 included: (1) Starting 1 new fencing project in the NFJD subbasin that will protect an additional 1.82 miles of stream and 216.2 acres of habitat; (2) Constructing 0.47 miles of new channel on the Wallowa River to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) Planting 22,100 plants along 3 streams totaling 3.6 stream miles; (4) Establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) Monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) Completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; (7) Initiated writing of a comprehensive project summary report that will present a summary of conclusions of the benefits to focal species and management recommendations for the future. Since initiation of this program 56 individual projects have been implemented, monitored and maintained along 84.8 miles of anadromous fish bearing streams that protect and enhance 3,501 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H.

2008-12-30T23:59:59.000Z

250

Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fish production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No. 199202601). Work undertaken during 2008 included: (1) completing 1 new fencing project in the North Fork John Day subbasin that protects 1.82 miles of stream and 216.2 acres of habitat, and 1 fencing project in the Wallowa subbasin that protects an additional 0.59 miles of stream and 42.5 acres of habitat; (2) constructing 0.47 miles of new channel on the Wallowa river to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) planting 10,084 plants along 0.5 miles of the Wallowa Riverproject; (4) establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; and (7) completed a comprehensive project summary report to the Independent Scientific Review panel (ISRP) that provided our conclusions regarding benefits to focal species, along with management recommendations for the future. Since initiation of this program 57 individual projects have been implemented, monitoring and maintained along 84.9 miles of anadromous fish bearing streams, that protect and enhance 3,564 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H. [Oregon Department of Fish and Wildlife

2009-07-01T23:59:59.000Z

251

SU(5) x Z{sub 13} grand unification model  

SciTech Connect

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at M{sub Z}, of {alpha}, {alpha}{sub s}, and sin{sup 2}{theta}{sub W}. A discrete, anomalous, Z{sub 13} symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semiclassical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the Z{sub 13} symmetry.

Dias, Alex G. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, 09210-170, Santo Andre, SP (Brazil); Franco, Edison T.; Pleitez, Vicente [Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, Sao Paulo, SP (Brazil)

2007-12-01T23:59:59.000Z

252

An SU(5)$\\otimes$Z_{13} Grand Unification Model  

E-Print Network (OSTI)

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at $M_Z$, of $\\alpha$, $\\alpha_s$, and $\\sin^2\\theta_W$. A discrete, anomalous, $Z_{13}$ symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semi-classical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the $Z_{13}$ symmetry.

Alex G. Dias; Edison T. Franco; Vicente Pleitez

2007-08-07T23:59:59.000Z

253

A Graphical representation of the grand canonical partition function  

E-Print Network (OSTI)

In this paper we consider a stochastic partial differential equation defined on a Lattice $L_\\delta$ with coefficients of non-linearity with degree $p$. An analytic solution in the sense of formal power series is given. The obtained series can be re-expressed in terms of rooted trees with two types of leaves. Under the use of the so-called Cole-Hopf transformation and for the particular case $p=2$, one thus get the generalized Burger equation. A graphical representation of the solution and its logarithm is done in this paper. A discussion of the summability of the previous formal solutions is done in this paper using Borel sum. A graphical calculus of the correlation function is given. The special case when the noise is of L\\'evy type gives a simplified representations of the solution of the generalized Burger equation. From the previous results we recall a graphical representation of the grand canonical partition function.

Boubaker Smii

2010-01-07T23:59:59.000Z

254

Higgs-boson effects in grand unified theories  

DOE Green Energy (OSTI)

It is argued that fine tuning of a minimal set of parameters, needed to fix the hierarchy of gauge-boson masses and a knowledge of intermediate symmetry groups, leads to ''natural'' mass scales for physical Higgs bosons in grand unified theories. This is applied to ..delta..B = 2 transitions in models based on SU(5), SO(10), SU(16), and (SU(2N))/sup 4/. It turns out that the Higgs bosons which mediate ..delta..B = 2 neutron-antineutron and hydrogen-antihydrogen oscillations become superheavy, and so such transitions can be observable only in theories with low unification scales, such as SU(16) and (SU(8))/sup 4/, if we adhere to the hypothesis of minimal fine tuning.

Mohapatra, R.N.; Senjanovic, G.

1983-04-01T23:59:59.000Z

255

Heating facilities for the MGM Grand Hotel, Reno, Nevada  

SciTech Connect

The MGM Grand Hotel-Reno is located adjacent to an area with a well-documented geothermal resource. Currently, there is a number of entities seeking to determine the exact nature of the resource at the MGM site. This report concerns itself with identifying current natural gas loads within the MGM complex which could be met by geothermal should a source become available. The two principle assumptions upon which the following material is based are (1) that a source of 190/sup 0/F or higher temperature water is available and (2) all systems discussed would be installed in parallel with existing systems. That is, existing systems would remain in place providing 100 percent backup for the geothermal systems.

1981-09-01T23:59:59.000Z

256

Is there a grand challenge or X-prize for data mining?  

Science Conference Proceedings (OSTI)

This panel will discuss possible exciting and motivating Grand Challenge problems for Data Mining, focusing on bioinformatics, multimedia mining, link mining, text mining, and web mining. Keywords: X-prize, bioinformatics, data mining, grand challenge, image mining, link mining, multimedia mining, text mining, video mining, web mining

Gregory Piatetsky-Shapiro; Robert Grossman; Chabane Djeraba; Ronen Feldman; Lise Getoor; Mohammed Zaki

2006-08-01T23:59:59.000Z

257

An applied paleoecology case study: Bahia Grande, Texas prior to construction of the Brownsville Ship Channel  

E-Print Network (OSTI)

Bahia Grande is a large lagoon located within Laguna Atascosa National Wildlife Refuge in Cameron County, Texas. When the Brownsville Ship Channel was built along the southern end of the lagoon in 1936, Bahia Grande was cut off from the marine water of Laguna Madre. Since that time, Bahia Grande has been primarily dry with only ephemeral fresh water coming from heavy rainfall events, resulting in a severe decline in biological productivity. A restoration project led by the U.S. Fish and Wildlife Service has proposed to cut new channels between Bahia Grande and the Ship Channel to restore the connection with Laguna Madre. This is a large-scale project with major implications for the water quality, surrounding ecology, and associated biota in the region. Unfortunately, because very little is known about Bahia Grande prior to isolation, it is difficult to predict whether the results of the restoration will be comparable to the pre-Ship Channel environment. Paleoecological data provide the best opportunity to understand what Bahia Grande was like in the past. This study uses statistical analyses of the molluscan death assemblages from Bahia Grande to gain a better understanding of the environmental conditions in the lagoon before it was isolated. The first question addressed is how does Bahia Grande relate to other water bodies on the Texas coast? This may provide a modern analog to the past conditions in Bahia Grande. The second question inquires whether there are any local patterns or variations within Bahia Grande and several smaller surrounding lagoons. These results provide an important baseline for comparison with the restored lagoon. The results of this investigation show that, in a regional context, Bahia Grande was most similar to Alazan Bay and Baffin Bay, which are mostly enclosed shallow bays with high salinities due to the arid climate and limited freshwater inflow. Within Bahia Grande, there are several distinct molluscan assemblages. Salinity and water coverage are the most likely environmental factors responsible for the differences within Bahia Grande. Additionally, data from surrounding lagoons strongly indicate that some connections with Bahia Grande existed in the past.

Lichlyter, Stephen Alvah

2003-05-01T23:59:59.000Z

258

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Deliver Keynote on EV Everywhere Grand Challenge to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30, 2013 - 1:37pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Tomorrow, Thursday, January 31, 2013, Secretary Chu will deliver the government keynote address at the Washington Auto Show's Public Policy Day. His remarks will focus on the Energy Department's EV Everywhere Grand Challenge, including progress to date and a new initiative to strengthen American leadership in this rapidly growing global industry. Launched by President Obama in March 2012, EV-Everywhere is the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time. The EV

259

Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monitoring of the Airport Calibration Pads at Walker Field, Grand Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) More Documents & Publications Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End Summary Report

260

EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

79: Grand Coulee's Third Powerplant 500-kV Transmission Line 79: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington Summary This EA evaluates potential environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE's Bonneville Power Administration (BPA), a cooperating agency, was asked by the U. S. Department of the Interior's Bureau of Reclamation to design and construct the proposed new transmission lines. A Finding of No Significant Impact was issued by BPA in December 2011. BPA website: http://efw.bpa.gov/environmental_services/Document_Library/Grand_Coulee/

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001  

Office of Legacy Management (LM)

Grand Junction Disposal Site Grand Junction Disposal Site Uranium ore was processed at the Climax millsite at Grand Junction, Colorado, between 1951 and 1970. The milling operations created process-related waste and tailings, a sandlike material containing radioactive materials and other contaminants. The tailings were an ideal and inexpensive construction material suitable for concrete, mortar, and fill. Accordingly, the tailings were widely used in the Grand Junction area for these purposes. The U.S. Department of Energy (DOE) encapsulated the tailings and other contaminated materials from the millsite and more than 4,000 vicinity properties in the Grand Junction area in an engineered disposal cell. Part of the disposal cell was completed in 1994; the remainder of the cell remains open until it is

262

Grand Challenges Grand Challenges  

Science Conference Proceedings (OSTI)

... adversely impact oceans, groundwater systems, streams ... Vulnerability of Interdependent ... interdependent systems, additional vulnerabilities can be ...

2007-03-01T23:59:59.000Z

263

Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island  

DOE Green Energy (OSTI)

The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

1994-07-01T23:59:59.000Z

264

Sheldon Glashow, the Electroweak Theory, and the Grand Unified Theory  

Office of Scientific and Technical Information (OSTI)

Sheldon Glashow and the Electroweak Theory Sheldon Glashow and the Electroweak Theory Resources with Additional Information Sheldon Glashow Courtesy AIP Emilio Segrè Visual Archives, Segrè Collection [Sheldon] 'Glashow shared the 1979 Nobel Prize for physics with Steven Weinberg and Abdus Salam for unifying the theories of weak and electromagnetic forces. The new "electroweak" theory underlies all of particle physics and provides a framework for understanding how the early universe evolved and how the chemical elements were created. ... "Glashow's work has been instrumental in our understanding of how our universe came into being," says Lawrence R. Sulak, chairman of the Boston University physics department. "In the years since winning the prize, Glashow has helped develop the Grand Unified Theory of all particles and all forces. Its predictions led to the construction of massive underground detectors, the refinement of the unification models, the first observation of neutrinos from a supernova, and the recent discovery that neutrinos have mass. Glashow has fueled an ongoing search for rare events and exotic effects that may shed further light on the evolution of the early universe."1

265

Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998  

SciTech Connect

The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

NONE

1998-04-01T23:59:59.000Z

266

Single-crystal sup 40 Ar/ sup 39 Ar dating of the Olorgesailie Formation, southern Kenya rift  

SciTech Connect

Single-crystal laser fusion {sup 40}Ar/{sup 39}Ar analyses and several conventional bulk fusion {sup 40}K- {sup 40}Ar dates have been used to determine the age of volcaniclastic strata within the Olorgesailie Formation and of associated volcanic and sedimentary units of the southern Kenya rift. In the principal exposures along the southern edge of the Legemunge Plain, the formation spans the interval from approximately 500 to 1,000 ka. Deposition continued to the east along the Ol Keju Nyiro river where a tuff near the top of the formation has been dated at 215 ka. In these exposures, the formation is unconformably overlain by sediments dated at 49 ka. A possible source for the Olorgesailie tephra, the Ol Doinyo Nyokie volcanic complex, contains as ash flow dated at {approximately} 1 Ma, extending the known age range of this complex to encompass that of virtually the entire Olorgesailie Formation in the Legemunge Plain. These geologic examples illustrate the importance of the single-crystal {sup 40}Ar/{sup 39}Ar dating technique whereby contaminant, altered, or otherwise aberrant grains can be identified and eliminated from the determination of eruptive ages for reworked or altered pyroclastic deposits. The authors have presented a computer-modeling procedure based on an inverse-isochron analysis that promotes a more objective approach to trimming {sup 40}Ar/{sup 39}Ar isotope data sets of this type.

Deino, A. (Geochronology Center of the Inst. of Human Origins, Berkeley, CA (United States)); Potts, R. (Smithsonian Institution, Washington, DC (United States))

1990-06-10T23:59:59.000Z

267

SunShot Shoots for the Moon with First Grand Challenge Event | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Shoots for the Moon with First Grand Challenge Event SunShot Shoots for the Moon with First Grand Challenge Event SunShot Shoots for the Moon with First Grand Challenge Event May 23, 2012 - 11:40am Addthis The Energy Department's SunShot Initiative focuses on making solar electricity cost-competitive by the end of the decade. | Photo courtesy of Dennis Schroeder/NREL. The Energy Department's SunShot Initiative focuses on making solar electricity cost-competitive by the end of the decade. | Photo courtesy of Dennis Schroeder/NREL. Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program How can I participate? The SunShot Initiative Grand Challenge: Summit and Technology Forum , taking place June 13 -14 in Denver, will focus on the progress made and challenges ahead for driving down the cost of solar technologies.

268

The SO2 Allowance Trading System: The Ironic History of a Grand Policy Experiment  

E-Print Network (OSTI)

Two decades have passed Two decades have passed since the Clean Air Act Amendments of 1990 launched a grand experiment in market-based environmental policy: the SO2 cap-and-trade system. That system performed well but ...

Schmalensee, Richard

269

Sierra Grande Lodge Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Grande Lodge Pool & Spa Low Temperature Geothermal Facility Grande Lodge Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sierra Grande Lodge Pool & Spa Low Temperature Geothermal Facility Facility Sierra Grande Lodge Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

270

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and 355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Summary The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water

271

Microsoft Word - CX-GrandCoulee-Bell3WestsideInsulatorRepAccessImprov_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark Kjelland Mark Kjelland Project Manager - TEP-TPP-2 Proposed Action: Grand Coulee-Bell No. 3/Grand Coulee-Westside No. 1 double circuit 230-kV transmission line insulator replacement and access improvement project Budget Information: Work Order #00255064 PP&A Project No.: PP&A 1946 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment... routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designated purpose. Proposed by: Bonneville Power Administration (BPA) Location: The proposed Grand Coulee-Bell No. 3/Grand Coulee-Westside No. 1 double circuit

272

A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand  

Open Energy Info (EERE)

Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Details Activities (4) Areas (1) Regions (0) Abstract: Erosion in the Grand Canyon of the Yellowstone River, Yellowstone Caldera (640 ka), Wyoming, has exposed a cross section of older hydrothermal alteration in the canyon walls. The altered outcrops of the post-collapse tuff of Sulphur Creek (480 ka) extend from the canyon rim to more than 300 m beneath it. The hydrothermal minerals are zoned, with an advanced argillic alteration consisting of an association of quartz (opal)

273

The systemic and ideological sources of grand strategic doctrine : American foreign policy in the twentieth century  

E-Print Network (OSTI)

What explains the puzzling variation in America's foreign policy posture? This study proposes and tests a theory of American grand strategy that places an emphasis on two key variables: the ideological content of American ...

Green, Brendan Rittenhouse

2011-01-01T23:59:59.000Z

274

Transport of a Power Plant Tracer Plume over Grand Canyon National Park  

Science Conference Proceedings (OSTI)

Meteorological and air-quality data, as well as surface tracer concentration values, were collected during 1990 to assess the impacts of Navajo Generating Station (NGS) emissions on Grand Canyon National Park (GCNP) air quality. These data have ...

Jun Chen; Robert Bornstein; Charles G. Lindsey

1999-08-01T23:59:59.000Z

275

Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 1999 Annual Report.  

DOE Green Energy (OSTI)

This project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Folk John Day and Grande Ronde Rivers, for five years.

Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

2000-01-01T23:59:59.000Z

276

SunShot Shoots for the Moon with First Grand Challenge Event...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home SunShot Shoots for the Moon with First Grand Challenge Event SunShot Shoots for the Moon with...

277

The great american navel : le grand roman amricain et le langage appropri.  

E-Print Network (OSTI)

??Ce mmoire a pour objectif d'analyser le phnomne du Grand Roman Amricain comme reprsentation de l'imaginaire national, en en faisant l'archologie. Je propose, partir (more)

Grenier, Daniel

2009-01-01T23:59:59.000Z

278

Observations of Silver Iodide Plumes over the Grand Mesa of Colorado  

Science Conference Proceedings (OSTI)

A series of wintertime airborne tracing experiments was examined to determine some characteristics of the plumes of silver iodide smoke released either from the ground or from an aircraft over the Grand Mesa of Colorado. The plumes were ...

Edmond W. Holroyd III; Jack T. McPartland; Arlin B. Super

1988-10-01T23:59:59.000Z

279

Aspects of the Load Circulation at the Grand Canyon during the Fall Season  

Science Conference Proceedings (OSTI)

The atmosphere and circulation of air within, above, and around the Grand Canyon of the Colorado River was studied from an instrumented aircraft and from ground-based instruments in September and October 1984. Several patterns were identified. ...

L. P. Stearns

1987-10-01T23:59:59.000Z

280

Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel  

E-Print Network (OSTI)

Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San towards these two goals utilizing a minimal 3-CMG array to provide 646% singularity-free momentum

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Views from the River Front: Rio Grande Decision Makers Rank Water Conservation Strategies  

E-Print Network (OSTI)

This publication details the results of a survey of elected city officials and water managers in the Rio Grande River Basin of Texas and New Mexico. The participants ranked water conservation strategies for their communities.

Silvy, Valeen; Lesikar, Bruce J.

2005-10-18T23:59:59.000Z

282

DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/Grand Junction Office Bluewater LTSP DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii Contents Page 1.0 Introduction .........................................................................................................................................1 1.1 Purpose ................................................................................................................................1 1.2 Legal and Regulatory Requirements .................................................................................. 1 1.3 Role of the Department of Energy ..................................................................................... 2 1.4 Disposal of Mill Waste Containing Polychlorinated Biphenyls ........................................ 2 2.0 Bluewater Disposal Site .....................................................................................................................

283

Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.  

DOE Green Energy (OSTI)

The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resulted in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the index survey areas in 1995 from as high as 1,205 redds in the same area in 1969 (Table 1). All streams reached low points (0-6 redds in the index areas) in the 1990's, except those in which no redds were found for several years and surveys were discontinued, such as Spring, Sheep and Indian creeks which had a total of 109 redds in 1969. The Minam and Wenaha rivers are tributaries of the Grande Ronde River located primarily in wilderness areas. Chinook salmon numbers in these two streams (based on redd counts) also decreased dramatically beginning in the early 1970's (Table 1). Since then there have been a few years of increasing numbers of redds but counts have generally been 25-40% of the number seen in the 1960's. No hatchery fish have been released into either of these streams and we monitor them during spawning ground surveys for the presence of hatchery strays. These populations will be used as a type of control for evaluating our supplementation efforts in Catherine Creek, upper Grande Ronde River and Lostine River. In this way, we can attempt to filter out the effects of downstream variables, over which we have no control, when we interpret the results of the captive broodstock program as the F1 and F2 generations spawn and complete their life cycles in the wild. The Grande Ronde Basin Captive Broodstock Program was initiated because these chinook salmon populations had reached critical levels where dramatic and unprecedented efforts were needed to prevent extinction and preserve any future options for use of endemic fish for artificial propagation programs for recovery and mitigation. This program was designed to quickly increase numbers of returning adults, while maintaining the genetic integrity of each endemic population.

Hoffnagle, Timothy; Carmichael, Richard; Noll, William

2003-12-01T23:59:59.000Z

284

Bonneville Power Administration Grand Coulee-Bell 500-kV Transmission Line Project Record of Decision  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee-Bell 500-kV Transmission Line Project Grand Coulee-Bell 500-kV Transmission Line Project Record of Decision Decision The Bonneville Power Administration (BPA) has decided to construct the proposed Grand Coulee-Bell 500-kV Transmission Line Project in Douglas, Grant, Lincoln, and Spokane Counties, Washington. BPA has decided to implement the proposed action identified in the Grand Coulee-Bell 500-kV Transmission Line Project Final Environmental Impact Statement (DOE/EIS-0344, December 2002). The proposed action consists of constructing a new 500- kilovolt (kV) transmission line between the Bureau of Reclamation's (BOR) Grand Coulee 500- kV Switchyard near Grand Coulee, Washington, and BPA's Bell Substation near Spokane, a distance of 84 miles. The proposed action involves removing an existing 115-kV transmission

285

US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

286

A Small City's Big Scandal: Municipal Corruption, Progressive Reform, and the Grand Rapids, Michigan Water Scandal, 1900-1906.  

E-Print Network (OSTI)

??At the turn of century the city of Grand Rapids, Michigan began debating plans for expanding its water supply. These debates quickly spawned corrupt dealings, (more)

Sarnacki, Brian F.

2011-01-01T23:59:59.000Z

287

Microsoft Word - CX-GrandCoulee-OkanoganWP-AR-Landing_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Cleareance Memorandum Jim Semrau Robert Keudell Road Engineer - TELF-TPP-3 Line Foreman III - TFWK-Grand Coulee Todd Wehner Robert Zellar Road Engineer - TELF-TPP-3 Line Foreman I - TFWK-Grand Coulee Proposed Action: Wood pole replacement, equipment landing construction and access road construction/maintenance along the Grand Coulee-Okanogan #2 115-kV transmission line right-of-way (ROW). PP&A Project No: 1776 Work Order No.: 275584 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):  B1.13 Construction, acquisition, and relocation of onsite pathways and short onsite access roads and railroads.  B1.3 Routine maintenance activities...for structures, rights-of-way, infrastructures such

288

Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attend Grand Opening of Recovery Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant September 10, 2010 - 12:00am Addthis Washington D.C. - This Monday, U.S. Energy Secretary Steven Chu will speak at the dedication ceremony for the largest lithium-ion automotive battery production facility in North America. Funded in part by $249 million from the Recovery Act, the A123 Systems battery plant is expected to create 3,000 jobs in Michigan by 2012 and help to establish the U.S. as a global leader in the manufacturing of electric vehicles. Following his speech, the Secretary will tour the production facility and participate in a media availability with elected officials and representatives from A123 Systems.

289

UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6  

Science Conference Proceedings (OSTI)

This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years.

NONE

1995-09-01T23:59:59.000Z

290

EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

50: Grand Coulee-Creston Transmission Line Rebuild; Grant and 50: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington SUMMARY Bonneville Power Administration is preparing this EA to assess the potential environmental impacts of the proposed rebuild of approximately 28 miles of transmission line between the cities of Coulee Dam in Grant County and Creston in Lincoln County, Washington. The proposed project would include replacing all wood pole structures and conductor, improving existing access roads, and developing temporary access roads. Additional information is available at the project website: http://www.bpa.gov/goto/CouleeCrestonRebuild. PUBLIC COMMENT OPPORTUNITIES Draft EA: Comment Period Ends 2/3/14.

291

Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steven Chu to Attend Grand Opening of Recovery Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant September 10, 2010 - 12:00am Addthis Washington D.C. - This Monday, U.S. Energy Secretary Steven Chu will speak at the dedication ceremony for the largest lithium-ion automotive battery production facility in North America. Funded in part by $249 million from the Recovery Act, the A123 Systems battery plant is expected to create 3,000 jobs in Michigan by 2012 and help to establish the U.S. as a global leader in the manufacturing of electric vehicles. Following his speech, the Secretary will tour the production facility and participate in a media availability with elected officials and representatives from A123 Systems.

292

Microsoft Word - CX-GrandCoulee-ChiefJoseph_ARandWood Poles_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Cleareance Memorandum Todd Wehner Road Engineer - TELF-TPP-3 Robert Keudell Line Foreman III - TFWK-Grand Coulee Robert Zellar Line Foreman I - TFWK-Grand Coulee Proposed Action: Wood pole replacement, equipment landing construction and access road construction/maintenance along portions of the Grand Coulee-Chief Joseph #1 and #2 230-kV transmission line rights-of-way. PP&A Project No: 1777 Work Order No.: 275582 and 275583 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):  B1.13 Construction, acquisition, and relocation of onsite pathways and short onsite access roads and railroads.  B1.3 Routine maintenance activities...for structures, rights-of-way, infrastructures such

293

Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.  

DOE Green Energy (OSTI)

Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

2004-01-01T23:59:59.000Z

294

Solid-State Lighting at Sandia National Laboratory - Grand Challenge LDRD  

NLE Websites -- All DOE Office Websites (Extended Search)

| | Sandia Press Releases & News Coverage | GRAND CHALLENGE LDRD PROJECT 6images of light To accelerate the development of the science and technology underlying Solid State Lighting, Sandia initiated, in October 2000, a multi-year Grand Challenge Laboratory Directed Research and Development (GCLDRD) project, " A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-State Lighting." This project is considered one of Sandia's most successful GCLDRDs. One way in which the SSL GCLDRD was different from others was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and

295

Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report  

DOE Green Energy (OSTI)

This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

Jenkins, H. II; Giddings, M.; Hanson, P.

1982-09-01T23:59:59.000Z

296

Northeast Oregon Hatchery Program Grande Ronde … Imnaha Spring Chinook Hatchery Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Oregon Hatchery Program Northeast Oregon Hatchery Program Grande Ronde - Imnaha Spring Chinook Hatchery Project Final Environmental Impact Statement Bonneville Power Administration July 2004 Northeast Oregon Hatchery Program -- Grande Ronde-Imnaha Spring Chinook Project i Table of Contents Page Chapter 1: Updated Summary and Project Description 1.1 Introduction..............................................................................................................1-1 1.2 Purpose and Need for the Proposed Action .............................................................1-2 1.3 Decisions to be Made and Responsible Officials ....................................................1-3 1.4 Summary of Public Involvement, Consultation, and Coordination.........................1-3

297

Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.  

DOE Green Energy (OSTI)

This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

Merker, Christopher

1993-04-01T23:59:59.000Z

298

RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA  

SciTech Connect

A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).

Blount, G.; Millings, M.

2011-08-01T23:59:59.000Z

299

DOE/EA-1312: Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (September 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

300

Into the Teeth of the Gale: The Remarkable Advance of a Cold Front at Grand Manan  

Science Conference Proceedings (OSTI)

The afternoon of 30 December 1962 saw the nearly simultaneous arrival at Grand Manan (an island in the Bay of Fundy) of an intense cold front, accompanied by northwesterly gales and snow, and an intense small cyclonic vortex, producing a mild ...

Robert M. Cunningham; Frederick Sanders

1987-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Using hydrodynamic modeling for estimating flooding and water depths in grand bay, alabama  

Science Conference Proceedings (OSTI)

This paper presents a methodology for using hydrodynamic modeling to estimate inundation areas and water depths during a hurricane event. The Environmental Fluid Dynamic Code (EFDC) is used in this research. EFDC is one of the most commonly applied models ... Keywords: EFDC, flooding, grand bay, grid generation, hydrodynamics, inundation, modeling

Vladimir J. Alarcon; William H. McAnally

2012-06-01T23:59:59.000Z

302

Wind-Flow Patterns in the Grand Canyon as Revealed by Doppler Lidar  

Science Conference Proceedings (OSTI)

Many interesting flow patterns were found in the Grand Canyon by a scanning Doppler lidar deployed to the south rim during the 1990 Wintertime Visibility Study. Three are analyzed in this study: 1) flow reversal in the canyon, where the flow in ...

Robert M. Banta; Lisa S. Darby; Pirmin Kaufmann; David H. Levinson; Cui-Juan Zhu

1999-08-01T23:59:59.000Z

303

EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska  

Energy.gov (U.S. Department of Energy (DOE))

DOEs Western Area Power Administration is preparing this EIS to evaluate the environmental impacts of interconnecting the proposed Grande Prairie Wind Farm, in Holt County, near the city of ONeill, Nebraska, to Westerns power transmission system. The proposed wind energy generation project would include up to 266 wind turbines.

304

Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.  

DOE Green Energy (OSTI)

The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

Ashley, Paul

1992-06-01T23:59:59.000Z

305

Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona  

E-Print Network (OSTI)

Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona Brian J Canyon, Arizona, transport coarse-grained sediment onto debris fans adjacent to the Colorado River and Monument Creeks using photogrammetry of aerial photography taken from 1965 to 2000 and supplemented

306

THE RISE AND FALL OF OPEN SOLAR FLUX DURING THE CURRENT GRAND SOLAR MAXIMUM  

Science Conference Proceedings (OSTI)

We use geomagnetic activity data to study the rise and fall over the past century of the solar wind flow speed V{sub SW}, the interplanetary magnetic field strength B, and the open solar flux F {sub S}. Our estimates include allowance for the kinematic effect of longitudinal structure in the solar wind flow speed. As well as solar cycle variations, all three parameters show a long-term rise during the first half of the 20th century followed by peaks around 1955 and 1986 and then a recent decline. Cosmogenic isotope data reveal that this constitutes a grand maximum of solar activity which began in 1920, using the definition that such grand maxima are when 25-year averages of the heliospheric modulation potential exceeds 600 MV. Extrapolating the linear declines seen in all three parameters since 1985, yields predictions that the grand maximum will end in the years 2013, 2014, or 2027 using V{sub SW}, F{sub S}, or B, respectively. These estimates are consistent with predictions based on the probability distribution of the durations of past grand solar maxima seen in cosmogenic isotope data. The data contradict any suggestions of a floor to the open solar flux: we show that the solar minimum open solar flux, kinematically corrected to allow for the excess flux effect, has halved over the past two solar cycles.

Lockwood, M.; Rouillard, A. P. [Space Environment Physics, School of Physics and Astronomy, Southampton University, Highfield, Southampton SO17 1BJ (United Kingdom); Finch, I. D. [Space Science and Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: mike.lockwood@stfc.ac.uk

2009-08-01T23:59:59.000Z

307

Storm-Forced Baroclinic Near-Inertial Currents on the Grand Bank  

Science Conference Proceedings (OSTI)

Current meter data for six mouths from the Grand Bank are analyzed to study inertial currents generated by moving storms. It is found that during periods of strong winds, but no well-defined storm system, the inertial motion exhibits no simple ...

Brad De Young; C. L. Tang

1990-11-01T23:59:59.000Z

308

Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel  

E-Print Network (OSTI)

Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San can supply. For a DES, commonly applied performance metrics include average system time, utilization and operate the system or the resources that the system utilizes, such as communication channels, space, time

Cassandras, Christos G.

309

SICE Annual Conference 2010 August 18-21, 2010, The Grand Hotel, Taipei, Taiwan  

E-Print Network (OSTI)

SICE Annual Conference 2010 August 18-21, 2010, The Grand Hotel, Taipei, Taiwan ¥400 © 2010 SICE. Thus, the proposed system can potentially be utilized in the legged robots where the COM moves due utilized in various applications, including navigation (robots, vehicles, rockets, and etc) [2-4], state

Lin, Pei-Chun

310

Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel  

E-Print Network (OSTI)

Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San describing the left and right turn minimum radius paths of the vehicle. Utilizing this construction, a weak then be utilized to plan shortest path segments in the presence of obstacles in future work. In order to avoid

Barth, Eric J.

311

Current System South and East of the Grand Banks of Newfoundland  

Science Conference Proceedings (OSTI)

During AprilJune 1972 three ships conducted a survey of the region between the Grand Banks and the Mid-Atlantic Ridge, including a grid of hydrographic stations, and two long lines of near-bottom current-meter moorings across the Gulf Stream and ...

R. Allyn Clarke; Harry W. Hill; Robert F. Reiniger; Bruce A. Warren

1980-01-01T23:59:59.000Z

312

Granby Pumping Plant Switchyard - Windy Gap Substation Transmission Line Rebuild, Grand County, Colorado: Final Environmental Impact Statement Appendices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PUMPING PLANT SWITCHYARD - WINDY GAP PUMPING PLANT SWITCHYARD - WINDY GAP SUBSTATION TRANSMISSION LINE REBUILD, GRAND COUNTY, COLORADO DOE/EIS-0400 Final Environmental Impact Statement Appendices Grand County, Colorado June 2013 Appendix A EIS Scoping Report GRANBY PUMPING PLANT - WINDY GAP TRANSMISSION LINE REBUILD PROJECT ENVIRONMENTAL IMPACT STATEMENT SCOPING SUMMARY REPORT December 4, 2007

313

Microsoft Word - CX-GrandCouleeDistrictWoodPoleReplacementsAccessRoadsFY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Todd Wehner Civil Design/Access Roads - TELF-TPP-3 James Semrau Project Manager - TEP-TPP-1 Proposed Action: Wood pole replacement, equipment landing construction, and access road improvements along various transmission lines in Bonneville Power Administration's (BPA) Grand Coulee District. PP&A Project No.: 2152 (Grand Coulee-Chief Joseph No. 1), 2151 (Grand Coulee-Chief Joseph No. 2), 2121 (Grand Coulee-Foster Creek No. 1) and 1776 (Grand Coulee-Okanogan No. 2) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Douglas and Okanogan counties, Washington. Refer to table below for project locations: Line Name Structure Township Range Section County

314

DOE/EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Project Office To Non-DOE Ownership (04/25/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 F I N A L Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy * Grand Junction Office * 2597 B ¾ Road * Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final DOE/EA-1338 FINAL Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy Grand Junction Office 2597 B ¾ Road Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final i April 2000 TABLE OF CONTENTS Title Page Table of Contents ......................................................................................................................................... i List of Figures ............................................................................................................................................iii

315

US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Krabacher, J.E.

1996-08-01T23:59:59.000Z

316

EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Drive (Power Electric Drive (Power Electronics and Electric Machines) Workshop Tuesday, July 24, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the Power Electronics and Electric Machines (PEEM) goals of the EV Everywhere Grand Challenge. This input will advise the aggressive next-generation technology research and development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. The EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric Machines) Workshop was attended by senior officials of the Department of Energy and representatives from the following

317

EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

- 7/20/2012 - 7/20/2012 EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Tuesday, July 24, 2012 - Doubletree O'Hare, Chicago, IL Event Objective: DOE aims to obtain stakeholder input on the Power Electronics and Electric Machines (PEEM) goals of the EV Everywhere Grand Challenge. This input will advise the aggressive next- generation technology research and development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CONTINENTAL BREAKFAST 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program

318

U.S. Department of Energy at Grand Junction 2003 Annual Inspection⎯Monticello, Utah  

Office of Legacy Management (LM)

at Grand Junction 2003 Annual Inspection⎯Monticello, Utah at Grand Junction 2003 Annual Inspection⎯Monticello, Utah November 2003 Page 1 2003 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites Summary The Monticello site, which includes the U.S. Department of Energy (DOE) Monticello Mill Tailings Site (MMTS) and the Monticello Radioactively Contaminated Properties site, was inspected September 23-25, 2003. A follow-up inspection of the Soil and Sediment properties was conducted on October 8, 2003. The Monticello Radioactively Contaminated Properties site is also called the Monticello Vicinity Properties (MVP) and will be referred to as MVP in this report. Restoration work at MVP is complete and is nearly complete at MMTS. MVP is in good

319

Microsoft Word - Grand Coulee Transmission Line Replacement Project Prelim EA.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant 500-kilovolt Transmission Line Replacement Project Preliminary Environmental Assessment May 2011 DOE/EA-1679 Agency Proposing Action. U.S. Bureau of Reclamation is the lead NEPA agency. The Bonneville Power Administration is assisting Reclamation through project design, environmental review and construction, if the Proposed Action is taken. Action. Reclamation is proposing to replace the six, 500- kV transmission lines of the Third Powerplant (TPP) at Grand Coulee Dam. The transmission lines are presently installed within the dam and a two-chambered tunnel that leads to a Spreader Yard about a mile away. Purpose and Need. The TPP's six generators and transmission lines are critical to the regional power supply.

320

Microsoft Word - CX-GrandRonde-Boyer-ImpairmentEmergency-FY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 REPLY TO ATTN OF: KEP-Alvey SUBJECT: Environmental Clearance Memorandum Jim Semrau Civil Engineer - TEP-TPP-1 Proposed Action: Wood pole replacement PP&A Project No.: 2760 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Structures 4/5 and 4/6 of Bonneville Power Administration's (BPA) 115-kilovolt Grand Ronde-Boyer No. 1 transmission line located in Polk County, Oregon (Willamette Meridian, T6S, R8W, section 8, se ¼ of se ¼). Proposed by: BPA Description of the Proposed Action: BPA proposes to fix two ground impairments between structures 4/5 and 4/6 on the Grand Ronde-Boyer No. 1 line. The impairments are required to be fixed within 30 days of detection due to concerns for public safety. The conductor on a typical

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

7/26/2012 7/26/2012 EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Monday, July 30, 2012 - LAX Marriott, Los Angeles, CA Event Objective: DOE aims to obtain stakeholder input on the consumer acceptance and charging infrastructure barriers associated with the EV Everywhere Grand Challenge. This input will help guide the Challenge and the next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles - and to do so within the next 10 years. 8:00-8:30AM CONTINENTAL BREAKFAST 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program

322

DOE/EIS-0340; Grand Ronde … Imnaha Spring Chinook Hatchery Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 NORTHEAST OREGON HATCHERY PROGRAM GRANDE RONDE - IMNAHA SPRING CHINOOK HATCHERY PROJECT DOE/EIS-0340 Draft Environmental Impact Statement Northeast Oregon Hatchery Program Grande Ronde - Imnaha Spring Chinook Hatchery Project Draft Environmental Impact Statement (DOE/EIS-0340) Responsible Agency: U.S. Department of Energy, Bonneville Power Administration (BPA) Cooperating Federal Agencies: U.S. Department of Interior, Fish and Wildlife Service (USFWS); U.S. Department of Commerce, National Oceanic and Atmospheric Administration National Marine Fisheries Service (NOAA Fisheries); U.S. Department of Agriculture, Forest Service Cooperating Tribes: Nez Perce Tribe (NPT), Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Cooperating State Agencies: Oregon Department of Fish and Wildlife (ODFW)

323

Microsoft Word - CX-GrandCouleeBellNo3-WestsideAgLand_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Mark Kjelland Project Manager - TEP-TPP-2 Proposed Action: Insulator replacement in agricultural lands along the Grand Coulee-Bell No. 3/Grand Coulee-Westside No. 1 double circuit 230-kV transmission line Budget Information: Work Order #00255064 PP&A Project No.: PP&A 1909 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment... routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designed purpose. Proposed by: Bonneville Power Administration (BPA)

324

Microsoft Word - CX-GrandCoulee-BellNo3ReconductoringFY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 SUBJECT: Environmental Clearance Memorandum Frank Weintraub Project Manager - TEP-TPP-1 Proposed Action: Grand Coulee-Bell No. 3 double circuit 230-kV transmission line reconductoring project Budget Information: Work Order #00280243 PP&A Project No.: PP&A 1946 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance Proposed by: Bonneville Power Administration (BPA) Location: The proposed Grand Coulee-Bell No. 3 Double Circuit 230-kV Transmission Line Reconductoring Project is located in Grant, Lincoln, and Spokane counties, Washington, in BPA's Spokane Operations and Maintenance District. Townships, Ranges, and Sections crossed by the proposed project listed below (Table 1).

325

Microsoft Word - CX-GrandCoulee-BellNo5InsultatorFY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Stacie Hensley Project Manager - TEP-TPP-4 Proposed Action: Grand Coulee-Bell No. 5 Dead End Insulator Replacement Project Budget Information: Work Order #00339638 PP&A Project No.: 2699 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance Proposed by: Bonneville Power Administration (BPA) Location: Grant and Lincoln counties, Washington, in BPA's Spokane Operations and Maintenance District. Townships, Ranges, and Sections crossed by the proposed project are listed below (Table 1). Table 1. Townships, Ranges, and Sections for the Grand Coulee-Bell No.5 Dead End Insulator Replacement Project. Township Range Sections

326

Efficient Irrigation for Water Conservation in the Rio Grande Basin: 2010/2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative-known as the Rio Grande Basin Initiative (RGBI)-has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B. L.; Runyan, C.; DeMouche, L.

2011-06-01T23:59:59.000Z

327

Efficient Irrigation for Water conservation in the Rio Grande Basin: 2010-2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative known as the Rio Grande Basin Initiative (RGBI)has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B.L.; Runyan, C.; DeMouche, L.

2011-06-21T23:59:59.000Z

328

Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.  

DOE Green Energy (OSTI)

The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

1999-07-01T23:59:59.000Z

329

Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay  

DOE Green Energy (OSTI)

This report documents the fourth year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

Johnson, Robert L.; Simmons, Mary Ann; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

2005-02-25T23:59:59.000Z

330

Study of the effects of a disaster at Grand Coulee Dam upon the Hanford Works  

SciTech Connect

Declassified 23 Nov 1973. It is assumed that the Grand Coulee Dam would be destroyed by one direct hit following detonation of an atomic bomb. Major effects of the explosion include flooding and isolation of Richland, flooding of Midway Substation, and flooding of surrounding areas. Maximum water elevations following a direct hit and indirect hits are estimated. Data are presented for flow through openings and flow through dam failure. (HLW)

Kramer, H.A.

1950-02-01T23:59:59.000Z

331

Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay  

SciTech Connect

This report documents the third year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

2004-01-01T23:59:59.000Z

332

Site observational work plan for the UMTRA project site at Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

This site observational work plan (SOWP) is one of the first Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement. This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The US Department of Energy (DOE) goal is to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation with the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards. The conceptual model demonstrates that the uranium processing-related contamination at the site has affected the unconfined alluvial aquifer, but not the deeper confined aquifer.

NONE

1996-01-01T23:59:59.000Z

333

Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

334

Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

335

Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

336

Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport (Partnerships in Computational Science)  

SciTech Connect

The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the University of South Carolina component of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997. Seven institutions were primarily involved in this project: Brookhaven National Laboratory, Oak Ridge National Laboratory, Princeton University, SUNY at Stony Brook, Texas A&M University, The University of South Carolina, and the University of Texas at Austin, with contributing efforts from the Westinghouse Savannah River Technology Center. Each institution had primary responsibility for specific research components, but strong collaboration among all institutions was essential for the success of the project and in producing the final deliverables. PICS deliverables include source code for the suite of research simulators and auxiliary HPC tools, associated documentation, and test problems. These materials will be available as indicated from each institution's web page or from the Center for Computational Sciences Oak Ridge National Laboratory in January 1998.

Sharpley, Robert C.

1997-12-01T23:59:59.000Z

337

Microsoft Word - NEPA_CX_Acquisition_of_OTEC_Disconnect_Switch_LaGrand_Substation_05-08-2012.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kelly Miller Kelly Miller Project Manager - TG-DITT-2 Proposed Action: BPA Acquisition of OTEC Disconnect Switch at the BPA LaGrande Substation Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): Appendix B 1.24 Property Transfer Location: BPA LaGrande Substation, in the City of LaGrande, Union County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to purchase the 230-kilovolt (kV) main bus disconnect switch (MB A-270) that is currently installed and operating within the BPA LaGrande Substation. The disconnect switch is owned by the Oregon Trail Electric Cooperative (OTEC). On October 7, 2011, the manager of engineering for OTEC requested that BPA purchase the disconnect switch. The disconnect switch is the only piece of equipment within

338

Granby Pumping Plant Switchyard - Windy Gap Substation Transmission Line Rebuild, Grand County, Colorado: Final Environmental Impact Statement Executive Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PUMPING PLANT SWITCHYARD - WINDY GAP PUMPING PLANT SWITCHYARD - WINDY GAP SUBSTATION TRANSMISSION LINE REBUILD, GRAND COUNTY, COLORADO DOE/EIS-0400 Final Environmental Impact Statement Executive Summary Grand County, Colorado June 2013 Granby Pumping Plant-Windy Gap Substation Transmission Line Rebuild Project FEIS Executive Summary ES-1 EXECUTIVE SUMMARY Introduction Western Area Power Administration (Western), a power marketing administration within the U.S. Department of Energy (DOE), is proposing to rebuild and upgrade the Granby Pumping Plant Switchyard-Windy Gap Substation transmission line in Grand County, Colorado (Grand County). This Environmental Impact Statement (EIS) analyzes the impacts associated with the proposal to remove approximately 13.6 miles of 69-kilovolt (kV) transmission line, construct approximately

339

Meteorological Processes Affecting the Transport of Emissions from the Navajo Generating Station to Grand Canyon National Park  

Science Conference Proceedings (OSTI)

During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex ...

Charles G. Lindsey; Jun Chen; Timothy S. Dye; L. Willard Richards; Donald L. Blumenthal

1999-08-01T23:59:59.000Z

340

Proceedings of the 45th IEEE Conference on Decision & Control ThAl8.6 Manchester Grand Hyatt Hotel  

E-Print Network (OSTI)

Proceedings of the 45th IEEE Conference on Decision & Control ThAl8.6 Manchester Grand Hyatt Hotel that the energy efficiency of wireless networks can be greatly improved by utilizing transmission control

Cassandras, Christos G.

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Early life history study of Grande Ronde River Basin chinook salmon. Annual progress report, September 1, 1994--August 31, 1995  

DOE Green Energy (OSTI)

The Grande Ronde River originates in the Blue Mountains in northeast Oregon and flows 334 kilometers to its confluence with the Snake River near Rogersburg, Washington. Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde basin also have been declining steadily and are substantially depressed from estimates of historic levels. It is estimated that prior to the construction of the Columbia and Snake River dams, more than 20,000 adult spring chinook salmon returned to spawn in the Grande Ronde River basin. A spawning escapement of 12,200 adults was estimated for the Grande Ronde River basin in 1957. Recent population estimates have been variable year to year, yet remain a degree of magnitude lower than historic estimates. In 1992, the escapement estimate for the basin was 1,022 adults (2.4 {times} number of redds observed). In addition to a decline in population abundance, a constriction of spring chinook salmon spawning distribution is evident in the Grande Ronde basin. Historically, 21 streams supported spawning chinook salmon, yet today the majority of production is limited to eight tributary streams and the mainstem upper Grande Ronde River. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. More than 80% of anadromous fish habitat in the upper Grande Ronde River is considered to be degraded.

Keefe, M.; Anderson, D.J.; Carmichasel, R.W.; Jonasson, B.C.

1996-06-01T23:59:59.000Z

342

Improving the sampling efficiency of the Grand Canonical Simulated Quenching approach  

SciTech Connect

Most common atomistic simulation techniques, like molecular dynamics or Metropolis Monte Carlo, operate under a constant interatomic Hamiltonian with a fixed number of atoms. Internal (atom positions or velocities) or external (simulation cell size or geometry) variables are then evolved dynamically or stochastically to yield sampling in different ensembles, such as microcanonical (NVE), canonical (NVT), isothermal-isobaric (NPT), etc. Averages are then taken to compute relevant physical properties. At least two limitations of these standard approaches can seriously hamper their application to many important systems: (1) they do not allow for the exchange of particles with a reservoir, and (2) the sampling efficiency is insufficient to allow the obtention of converged results because of the very long intrinsic timescales associated with these quantities. To fix ideas, one might want to identify low (free) energy configurations of grain boundaries (GB). In reality, grain boundaries are in contact the grains which act as reservoirs of defects (e.g., vacancies and interstitials). Since the GB can exchange particles with its environment, the most stable configuration cannot provably be found by sampling from NVE or NVT ensembles alone: one needs to allow the number of atoms in the sample to fluctuate. The first limitation can be circumvented by working in the grand canonical ensemble (TV ) or its derivatives (such as the semi-grand-canonical ensemble useful for the study of substitutional alloys). Monte Carlo methods have been the first to adapt to this kind of system where the number of atoms is allowed to fluctuate. Many of these methods are based on the Widom insertion method [Widom63] where the chemical potential of a given chemical species can be inferred from the potential energy changes upon random insertion of a new particle within the simulation cell. Other techniques, such as the Gibbs ensemble Monte Carlo [Panagiotopoulos87] where exchanges of particles are attempted to equilibrate the chemical potential between two cells and hence allow for the calculation of coexistence curves, exploit the same idea: particle insertion (or exchange) is attempted and accepted with a Metropolis-like rule that depends exponentially on the energy change upon insertion. A well known limitation of this kind of approach is that the probability of accepting such a move decreases extremely rapidly with increasing density, due to the extremely large short-range repulsion between atoms. In response to these difficulties it became apparent that a solution to the problem might be to avoid abrupt insertions but instead to proceed gradually, so as to allow the system to react and make way for the incoming particle. In this view of things, the 'occupation' of a certain atomic site can be viewed as a continuous variable, ranging between 0 and 1, representing 'how much' of the particle is present at any given time. These ideas proved ideal in Molecular Dynamics (MD) settings because equations of motions for these occupation variables can sometimes be obtained. For example, in the case of Grand Canonical Molecular Dynamics [Cagin91], one special particle is allowed to have a fractional occupation. This can lead to either its destruction (occupation = 0) or its complex creation (occupation = 1) so as to enforce a given chemical potential. These approaches proved useful, but mostly in the liquid state where the probability of successfully inserting a new particle is sufficiently high. At higher densities, convergence proved to be hampered by very inefficient sampling. In this work, we explore the use of a related MD-based grand canonical technique, the Grand Canonical Simulated Quenching (GCSQ) of Phillpot and Rickman [Phillpot92,Phillpot94], and explore its application to the grand canonical sampling of solid state systems. We show that, in conjunction with advanced sampling techniques, GCSQ can be a useful tool to sample conformations of complex systems, such as GBs, and assist in the identification of their most stable states and/or most likely d

Perez, Danny [Los Alamos National Laboratory; Vernon, Louis J. [Los Alamos National Laboratory

2012-04-04T23:59:59.000Z

343

Grande Ronde Subbasin Gauging Station Operations, 2007-2008 Reporting Period.  

DOE Green Energy (OSTI)

The Grande Ronde Basin (GRB) in Northeast Oregon is a moderately dry climate receiving between 10 and 20 inches of precipitation per year with surrounding mountains accumulating up to 100 inches. Irrigated agriculture is a major part of the economy with water being diverted or pumped from surface and ground sources from April through October. Several ESA listed species exist in the basin including Chinook, steelhead, and bulltrout. Agriculture and ESA (Endangered Species Act) listed aquatic species combined with a dry climate demonstrate the need for a network of stream gauges. The GRB covers over 5,000 square miles and includes several thousand miles of perennial flowing streams. This project is in place to operate 12 existing stream gauges in combination with USGS (4 gauges) and OWRD (one gauge) who, independent of this project, operate five additional gauges (Grande Ronde at Troy, Imnaha R. at Imnaha, Minam R. at Minam, Lookingglass Creek, and Upper Catherine Cr.) to characterizes flow in both the Grande Ronde and Imnaha subbasins. These gauges are intended to assist in irrigation water management, fisheries management, long term flow and trend analysis, TMDL and SB1010 water quality management plan effectiveness, subbasin plan implementation, and provide essential information regarding cumulative effects response to conservation in the GRB. Headwater characteristics, land management influence, and basin outlet data are all selectively collected in this network of 17 flow gauges. Prior to the 2007 water year there were three separate stream gauging programs with similar objectives, protocol, and funding sources in the GRB. Each of these programs for the past ten years has operated under separate administration consuming more time and administrative money than is necessary to accomplish stated objectives. By combining all programs into one project costs have been reduced, each funding source has one contract instead of three, and the same amount of work has been done accomplishing the same objectives. This objective has been continued and realized in the 2008 water year.

Menton, R. Coby [Grande Ronde Model Watershed

2008-11-10T23:59:59.000Z

344

Dynamic characterization and damage detection in the I-40 bridge over the Rio Grande  

Science Conference Proceedings (OSTI)

In the 1960`s and 1970`s over 2500 bridges were built in the U.S. with a design similar to those on Interstate 40 over the Rio Grande in Albuquerque, New Mexico. These bridges were built without structural redundancy and typically have only two plate girders carrying the entire dead and live loads. Failure of either girder is assumed to produce catastrophic failure of the bridge, hence these bridges are referred to as fracture-critical bridges. The Federal Highway Administration (FHWA) and the National Science Foundation (NSF) have provided funds to New Mexico State University (NMSU) through the New Mexico State Highway and Transportation Department (NMSH&TD) and The Alliance For Transportation Research (ATR) for evaluation and testing of the existing fracture critical bridges over the Rio Grande. Because the 1-40 bridges over the Rio Grande were to be razed during the summer of 1993, the investigators were able to introduce simulated fatigue cracks, similar to those observed in the field, into the structure in order to test various damage identification methods and to observe the changes in load paths through the structure caused by the cracking. To support this research effort, NMSU contracted Los Alamos National Laboratory (LANL) to perform experimental modal analyses, and to develop experimentally verified numerical models of the bridge. Scientists from the LANL`s Condensed Matter and Thermal Physics Group (P-10) applied state-of-the-art sensors and data acquisition software to the modal tests. Engineers from the LANL`s Advanced Engineering Technology Group (MEE-13) conducted ambient and forced vibration tests to verify detailed and simplified finite element models of the bridge. Forced vibration testing was done in conjunction with engineers from Sandia National Laboratory (SNL) who provided and operated a hydraulic shaker.

Farrar, C.R.; Baker, W.E.; Bell, T.M.; Cone, K.M.; Darling, T.W.; Duffey, T.A.; Eklund, A.; Migliori, A.

1994-06-01T23:59:59.000Z

345

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney Disposal Site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-07-01T23:59:59.000Z

346

Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado  

SciTech Connect

This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-08-01T23:59:59.000Z

347

Select Economic Implications for the Biological Control of Arundo donax along the Rio Grande  

E-Print Network (OSTI)

Arundo donax, or giant reed, is a large, bamboo-like plant native to Spain that has invaded several thousand acres of the Rio Grande riparian in Texas. The plant grows to 18-24 feet, consuming large quantities of water per acre per year. With concern of increased water demands in the Texas Lower Rio Grande Valley region, the United States Department of Agriculture-Agricultural Research Service (USDA)ARS) is investigating four herbivorous insects as potential biological control agents for Arundo donax to facilitate increased water supply. This study examines select economic implications for agricultural water users in the United States of applying these biological control agents along the Rio Grande. The research includes (a) estimating the value of the water saved due to the reduction of Arundo donax, (b) a benefit-cost analysis, (c) regional economic impact analysis, and (d) an estimate of the per-unit cost of water saved over a 50-year planning horizon (2009 through 2058). The model ArundoEcon is used to perform a deterministic analyses using low- and high-marginal-composite acre values. Regional results indicate present values of farmlevel benefits ranging from $97.80 to $159.87 million. Benefit-cost ratios are calculated with normalized prices and range from 4.38 to 8.81. Sensitivity analyses provide a robust set of results for Arundo water use, replacement species water use, Arundo expansion rate after control, value of water, and the cost of the program. The pre-production processes and farm-gate economic impact analysis is estimated using multipliers from the IMPLAN model. Regional results reveal a range of $8.90 to $17.94 million annually in economic output and 197 to 351 new jobs for the year 2025. Further results show the cost per acre-foot of water saved is $44.08. This amount is comparable to other projects designed to conserve water in the region. The USDA)ARS, Weslaco, Texas Arundo donax biological control project realizes positive results for the benefit-cost ratios, economic impact analyses, and competitive results for the per-unit cost of saving water. These positive results indicate this project will have positive economic implications for the U.S. and the Texas Lower Rio Grande Valley.

Seawright, Emily Kaye

2009-08-01T23:59:59.000Z

348

Toward Net Energy Buildings: Design, Construction, and Performance of the Grand Canyon House  

DOE Green Energy (OSTI)

The Grand Canyon house is a joint project of the DOE's National Renewable Energy Laboratory and the U.S. National Park Service and is part of the International Energy Agency Solar Heating and Cooling Programme Task 13 (Advanced Solar Low-Energy Buildings). Energy consumption of the house, designed using a whole-building low-energy approach, was reduced by 75% compared to an equivalent house built in accordance with American Building Officials Model Energy Code and the Home Energy Rating System criteria.

Balcomb, J. D.; Hancock, C. E.; Barker, G.

1999-06-23T23:59:59.000Z

349

Results of the radiological survey at Diebold Safe Company, 1550 Grand Boulevard, Hamilton, Ohio (HO001)  

SciTech Connect

At the request of the US Department of Energy (DOE), a group from Oak Ridge National Laboratory conducted investigative radiological surveys at Diebold Safe Company, 1550 Grand Boulevard, Hamilton, Ohio in 1988 and 1989. The purpose of the surveys was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U. The surveys included gamma scans; direct and transferable measurements of alpha, beta, and gamma radiation levels; and dust, debris, air, and soil sampling for radionuclide analyses. 6 refs., 6 figs., 5 tabs.

Foley, R.D.; Floyd, L.M.

1990-02-01T23:59:59.000Z

350

Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 2008 Annual Report.  

DOE Green Energy (OSTI)

The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program is designed to rapidly increase numbers of Chinook salmon in stocks that are in imminent danger of extirpation in Catherine Creek (CC), Lostine River (LR) and upper Grande Ronde River (GR). Natural parr are captured and reared to adulthood in captivity, spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. Presmolt rearing was initially conducted at Lookingglass Fish Hatchery (LFH) but parr collected in 2003 and later were reared at Wallowa Fish Hatchery (WFH). Post-smolt rearing is conducted at Bonneville Fish Hatchery (BOH - freshwater) and at Manchester Research Station (MRS - saltwater). The CC and LR programs are being terminated, as these populations have achieved the goal of a consistent return of 150 naturally spawning adults, so the 2005 brood year was the last brood year collected for theses populations. The Grande Ronde River program continued with 300 fish collected each year. Currently, we are attempting to collect 150 natural parr and incorporate 150 parr collected as eggs from females with low ELISA levels from the upper Grande Ronde River Conventional Hatchery Program. This is part of a comparison of two methods of obtaining fish for a captive broodstock program: natural fish vs. those spawned in captivity. In August 2007, we collected 152 parr (BY 2006) from the upper Grande Ronde River and also have 155 Grande Ronde River parr (BY 2006) that were hatched from eyed eggs at LFH. During 2008, we were unable to collect natural parr from the upper Grande Ronde River. Therefore, we obtained 300 fish from low ELISA females from the upper Grande Ronde River Conventional Program. In October 2008 we obtained 170 eyed eggs from the upper Grande Ronde river Conventional Hatchery Program. We will attempt to collect natural parr in August 2009. This year 752 fish were removed from the captive population: 629 fish survived to gamete production and 123 fish died from various causes prior to spawning. Growth of the Captive Broodstock fish was similar to previous years. The saltwater fish have grown more slowly than those reared in freshwater. A total of 720 fish were sorted as maturing and 629 (87.4%) of them survived to spawn. We collected gametes from 273 females and 350 males from the 2002-2006 brood years in 2008, using 111 spawning matrices and collected 474,187 green eggs (1,737 eggs/female). All ripe males were spawned and no semen was collected for cryo-preservation. Of the 474,187 eggs collected for the BY 2008 F1 generation, 448,373 (94.6%) survived to the eyed stage. 68,612 (15.3%) were culled from females with high ELISA OD values for BKD prevention. For BY 2007, we collected a total of 477,048 eggs from all three populations and 407,369 (85.4%) reached the eyed stage, while 95,024 eyed eggs (23.3%) were culled for BKD prevention. Eyed eggs were hatched at Lookingglass Fish Hatchery, producing 267,131 fry. As parr, 153,371 fish were coded-wire tagged (CWT). For the 2006 F1 brood year, we collected 177,890 eggs and 149,073 (83.8%) reached the eyed stage. 83,826 eyed eggs (56.2%) were culled at the eyed stage for BKD prevention. 61,044 fry were produced (93.6%), 53,688 (88 %) survived to smolt. There were 54 bacterial kidney disease (BKD) mortalities at BOH and MRS, combined in this reporting period. Overall, there were fewer BKD mortalities in 2008 due to a reduced number of fish coming into the Captive Broodstock Program and a shift away from collecting wild parr to using eyed eggs from low ELISA females from the Conventional Hatchery Program. Unknown causes of death accounted for 32 deaths at MRS and BOH, combined in 2008. We continually examine and modify the operations of the Captive Broodstock Program to make improvements wherever possible. We continue to have difficulty with prevention and treatment of BKD outbreak

Hoffnagle, Timothy L.; Hair, Donald; Gee, Sally

2009-03-31T23:59:59.000Z

351

PCB usage at the Grand Junction Area Office Facility. Final report  

Science Conference Proceedings (OSTI)

The development, implementation, and results of the polychlorinated biphenyl (PCB) identification project at the Grand Junction Area Office (GJAO) are summarized. Methodology for the PCB analysis is described, and results are tabulated. Of the 51 transformers and disconnects in use at GJAO, 15 unites were determined to be PCB-contaminated or filled with PCBs. This number falls within EPA's estimate of 25 to 40 percent of all transformers in use being at least contaminated. Approximately 324 gallons of PCBs and 515 gallons of PCB-contaminated fluids are being used currently. No contaminated transformers or disconnects are in a position to contaminate food or feed products at the facility.

Miller, M.E.; Donivan, S.

1982-06-01T23:59:59.000Z

352

Network discovery, characterization, and prediction : a grand challenge LDRD final report.  

SciTech Connect

This report is the final summation of Sandia's Grand Challenge LDRD project No.119351, 'Network Discovery, Characterization and Prediction' (the 'NGC') which ran from FY08 to FY10. The aim of the NGC, in a nutshell, was to research, develop, and evaluate relevant analysis capabilities that address adversarial networks. Unlike some Grand Challenge efforts, that ambition created cultural subgoals, as well as technical and programmatic ones, as the insistence on 'relevancy' required that the Sandia informatics research communities and the analyst user communities come to appreciate each others needs and capabilities in a very deep and concrete way. The NGC generated a number of technical, programmatic, and cultural advances, detailed in this report. There were new algorithmic insights and research that resulted in fifty-three refereed publications and presentations; this report concludes with an abstract-annotated bibliography pointing to them all. The NGC generated three substantial prototypes that not only achieved their intended goals of testing our algorithmic integration, but which also served as vehicles for customer education and program development. The NGC, as intended, has catalyzed future work in this domain; by the end it had already brought in, in new funding, as much funding as had been invested in it. Finally, the NGC knit together previously disparate research staff and user expertise in a fashion that not only addressed our immediate research goals, but which promises to have created an enduring cultural legacy of mutual understanding, in service of Sandia's national security responsibilities in cybersecurity and counter proliferation.

Kegelmeyer, W. Philip, Jr.

2010-11-01T23:59:59.000Z

353

Grand Junction Projects Office site environmental report for calendar year 1992  

SciTech Connect

This report presents information pertaining to environmental activities conducted during calendar year 1992 at the US Department of Energy Grand Junction Projects Office (DOE-GJPO) facility in Colorado. Environmental activities conducted at the GJPO facility during 1992 included those associated with environmental compliance, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. Four phases of the on-site Grand Junction Projects Office Remedial Action Project were completed in 1992. Remediation activities, which included the removal of 161,589 tons of uranium-mill-tailings-contaminated material from the facility, were conducted in compliance with all applicable permits. Off-site dose modeling for the GJPO was conducted to determine compliance with current National Emission Standards for Hazardous Air Pollutants, Subpart H, and applicable DOE Orders (5400.1 and 5400.5). The total off-site EDE to the public from all sources of radiation emanating from the facility (radon, air particulates, gamma) was calculated as 9 mrem/yr, which is well below the DOE dose limit of 100 mrem/yr above background. The radiological and nonradiological monitoring program at the GJPO facility included monitoring of activities that generate potentially hazardous or toxic wastes and monitoring of ambient air, surface water, and ground water.

Not Available

1993-05-01T23:59:59.000Z

354

Characterization of Pump Flow at the Grand Coulee Pumping Station for Fish Passage, 2004  

DOE Green Energy (OSTI)

This report describes a study conducted by PNNL for the Bonneville Power Administration to characterized the conditions fish experience when entrained in pump flow at the Grand Coulee Dam. PNNL used the Sensor Fish to measure the acceleration and pressure conditions that might be experienced by fish who are pulled through the pumps and turbines at Grand Coulee Dam's pump generation station and transported up into the feeder canal leading to Banks Lake. The probability that fish would be struck by the pump generating plant's new 9-bladed turbines was also calculated using Monte Carlo simulations. Our measurements showed relatively low turbulence except in the immediate vicinity of the runner environment. The highest pressure experienced by the Sensor Fish was estimated at 157 psi (the pressure gauge saturated at 155 psi). The probability of strike was also calculated, based on the average length of hatchery-reared juvenile kokanee (land-locked sockeye). Strike probabilities ranged from 0.755 for 2.36-inch fish to 0.3890 for 11.8-inch fish. The probability of strike estimates indicate that the majority (77%) of kokanne would be carried through the pump without being struck and most likely without injury resulting from pressure and turbulence exposure. Of the 23% that might be struck it is expected that 60% would arrive in Banks Lake without visible external injuries. Thus more than 90% of entrained fish would be expected to arrive in Banks Lake without injury.

Carlson, Thomas J.; Duncan, Joanne P.; Johnson, Robert L.

2005-03-31T23:59:59.000Z

355

KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays  

E-Print Network (OSTI)

The KASCADE-Grande experiment, located at KIT-Karlsruhe, Germany, consists of a large scintillator array for measurements of charged particles, N_ch, and of an array of shielded scintillation counters used for muon counting, N_mu. KASCADE-Grande is optimized for cosmic ray measurements in the energy range 10 PeV to 1000 PeV, thereby enabling the verification of a knee in the iron spectrum expected at approximately 100 PeV. Exploring the composition in this energy range is of fundamental importance for understanding the transition from galactic to extragalactic cosmic rays. Following earlier studies of elemental spectra reconstructed in the knee energy range from KASCADE data, we have now extended these measurements to beyond 100 PeV. By analysing the two-dimensional shower size spectrum N_ch vs. N_mu, we reconstruct the energy spectra of different mass groups by means of unfolding methods. The procedure and its results, giving evidence for a knee-like structure in the spectrum of iron nuclei, will be presente...

Fuhrmann, D; Arteaga-Velazquez, J C; Bekk, K; Bertaina, M; Bluemer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Cossavella, F; Curcio, C; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Engler, J; Fuchs, B; Gils, H J; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hoerandel, J R; Huber, D; Huege, T; Kampert, K -H; Kang, D; Klages, H O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Melissas, M; Milke, J; Mitrica, B; Morello, C; Oehlschlaeger, J; Ostapchenko, S; Palmieri, N; Petcu, M; Pierog, T; Rebel, H; Roth, M; Schieler, H; Schoo, S; Schroeder, F G; Sima, O; Toma, G; Trinchero, G C; Ulrich, H; Weindl, A; Wochele, D; Wochele, J

2013-01-01T23:59:59.000Z

356

China Papers No. 6 Canada in Chinas Grand Strategy  

E-Print Network (OSTI)

www.conseilinternationalducanada.org China Papers No. 6 The twisted course of Sino-Canadian relations since the Harper Conservative government acceded to power in January 2006 has rightly focused attention on the foundations of our bilateral relationship. This paper ventures a look at the basis of the bilateral relationship from the Chinese perspective. It looks at the overall objectives of Chinas political and diplomatic strategy, how Chinese policy is made and the explicit and implicit place allotted to Canada within Chinas overall foreign policy. Canadas place in Chinas grand strategy will be approached from two directions: the role assigned to bilateral relations with Canada as found in various Chinese foreign policy announcements and the potential role for Canada within the overall objectives of Chinas grand strategy. The paper also looks at the scale of cooperation under present conditions versus the scope for cooperation that could be articulated as compatible with Chinas overall foreign policy objectives consistent with Canadian foreign policy goals and objectives. The Canadian experience is offset by brief comparisons with France and Australia and some suggestions are offered on how to anchor the bilateral relationship on a sounder and more stable framework that takes into account Canadas unique opportunities given Chinas changing place in the global balance.

Jeremy Paltiel

2010-01-01T23:59:59.000Z

357

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects  

SciTech Connect

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

Spane, Frank A.

2013-04-29T23:59:59.000Z

358

Supplement Analysis for the Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program EA (DOE/EA-1173/SA-01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 18, 2003 December 18, 2003 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program EA (DOE/EA-1173/SA-01) Ken Kirkman - KEWU-4 TO: Fish and Wildlife Project Manager Proposed Action: Monitoring and Evaluation of Supplemented Spring Chinook Salmon and Life Histories of Wild Summer Steelhead in the Grande Ronde Basin Project No: 1998-007-03 Location: Union County, Oregon Proposed by: Bonneville Power Administration (BPA), Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW). Description of the Proposed Action: The CTUIR and ODFW propose to expand their monitoring and evaluation for the Grande Ronde spring chinook supplementation program to

359

Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement  

Science Conference Proceedings (OSTI)

BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length. Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability standards that minimize risks to public safety and to equipment. BPA is considering two construction alternatives, the Agency Proposed Action and the Alternative Action. The Alternative Action would include all the components of the Preferred Action except a double-circuit line would be constructed in the Spokane area between a point about 2 miles west of the Spokane River and Bell Substation, a distance of about 9 miles. BPA is also considering the No Action Alternative.

N /A

2002-08-09T23:59:59.000Z

360

Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22.9 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Planting 31,733 plants along 3.7 stream miles, (4) Establishing 71 new photopoints and retaking 254 existing photopoint pictures; (5) Monitoring stream temperatures at 12 locations on 6 streams; (6) Completing riparian fence, water gap and other maintenance on 100.5 miles of project fences. Since initiation of the project in 1984 over 68.7 miles of anadromous fish bearing streams and 1,933 acres of habitat have been protected, enhanced and maintained.

McGowan, Vance

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Geomorphological Assessment of Armored Deposits Along the Southern Flanks of Grand Mesa, CO, USA  

E-Print Network (OSTI)

A series of deposits, located along the southern flanks of Grand Mesa, Colorado, and extending to the south, are problematic, and the processes related to emplacement are not understood. The overall area is dominated by two landform systems, Grand Mesa, which supported a Pleistocene ice cap, and the North Fork Gunnison River drainage. Thus, one has to ask: Are these deposits the result of the melting of the ice cap or are they fluvial terraces associated with the evolution of the ancestral Gunnison River? The goal of this research was to map the areal extent of the deposits and to interpret the formation and climatic significance in understanding the evolution of the Pleistocene landscape in the region. An extensive exposure, parallel to State Highway 65 near Cory Grade, was used for detailed description and sampling. Three additional exposures, ~10 to 20 km (~6 to 12 mi) were used to extend the areal extent of sampling. The study area was mapped using aerial photography and traditional field mapping aided by GPS. From the field work, a detailed stratigraphic column, including lithology and erodability, was constructed. Vertical exposures of the deposits were described, mapped, and recorded in the field and using detailed photo mosaics. Samples were collected from each stratum of the deposits for grain-size, shape, and sorting analyses. Five distinct depositional facies were identified. Sieve analysis on collected samples shows that four distinct grain-sizes occur in the outcrops; coarse sand, very-coarse sand, granule, and pebble and boulder. Mean grain-sizes range from 0.0722 to 0.9617, -0.0948 to -0.9456, -1.0566 to -1.9053, and -2.0050 to -3.4643, respectively. Glacio-fluvial depositional environments were identified and supported with observations of sedimentary structures and clast composition. Two major environments of deposition are recorded in the deposits; fluvial deposits from glacial outburst floods, and debris flow deposits. Imbrication of clasts in the strata suggests the flow came from the direction of Grand Mesa to the north. Facies and subsequent sequences were constructed to portray evidence that supports the glacio-fluvial mode of deposition.

Brunk, Timothy J.

2010-05-01T23:59:59.000Z

362

Impacts of the Cerro Grande fire on Homestead era and Manhattan Project properties at Los Alamos National Laboratory.  

SciTech Connect

In May of 2000, the Cerro Grande Fire burned approximately 8,000 acres of Department of Energy (DOE) managed land at the Los Alamos National Laboratory (LANL). Although the fire was generally of low intensity, it impacted a significant number of LANL's cultural resources. Historic wooden properties were affected more heavily than prehistoric archaeological sites. This paper will provide an overview of the Homestead and Manhattan Project Periods at LANL and will discuss the effects of the Cerro Grande Fire on historic wooden properties. Post-fire cultural resource management issues will also be discussed.

McGehee, E. D. (Ellen D.); Isaacson, J. (John)

2001-01-01T23:59:59.000Z

363

Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale - February 2-4, 2010, Washington, D.C.  

SciTech Connect

The goal of the "Scientific Grand Challenges - Crosscutting Technologies for Computing at the Exascale" workshop in February 2010, jointly sponsored by the U.S. Department of Energys Office of Advanced Scientific Computing Research and the National Nuclear Security Administration, was to identify the elements of a research and development agenda that will address these challenges and create a comprehensive exascale computing environment. This exascale computing environment will enable the science applications identified in the eight previously held Scientific Grand Challenges Workshop Series.

Khaleel, Mohammad A.

2011-02-06T23:59:59.000Z

364

Impacts of the Cerro Grande fire on Homestead era and Manhattan Project properties at Los Alamos National Laboratory.  

SciTech Connect

In May of 2000, the Cerro Grande Fire burned approximately 8,000 acres of Department of Energy (DOE) managed land at the Los Alamos National Laboratory (LANL). Although the fire was generally of low intensity, it impacted a significant number of LANL's cultural resources. Historic wooden properties were affected more heavily than prehistoric archaeological sites. This paper will provide an overview of the Homestead and Manhattan Project Periods at LANL and will discuss the effects of the Cerro Grande Fire on historic wooden properties. Post-fire cultural resource management issues will also be discussed.

McGehee, E. D. (Ellen D.); Isaacson, J. (John)

2001-01-01T23:59:59.000Z

365

l!Jm~~Ut~'1CV GrandChalienge",regardiessexl,'Cpt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

,;,,,,,..<:,,) ,;,,,,,..<:,,) l!Jm~~Ut~'1CV GrandChalienge",regardiessexl,'Cpt tiide'rnJtlrsuant toP.,L 96-511,'asamended, and Natiunal i11lcnsifi.catiol1 capabHffies which yield.amatic cn~gf to a wide range chemical producti()n~ iB) High,. of stich inod refining, non.cmctallic.materials ·IKi[tHtle!tm4;ti. l't.~"<.4 u.an'~:1:;f:) .1.'<1 conventi onal hi gh jeat.!,\iltnillnl·l'AiJ1l~illl~t!l Recvvery - .... ,·"", :l~IWtlra.,;:c~ftjcjtl\tl'tsteaJn.PJtlfYd!uctio}jti!hilgh perr~lanceJllmacesand 5ustainability7 reduced ""liter and a carbQn t(lOtprint li)f indt.t,'}try; (D) Sustainable Manufacturing

366

Necessary conditions of the equivalence of canonical and grand canonical ensembles in Coulomb system thermodynamics  

SciTech Connect

It was found that the equivalence of the grand canonical and canonical ensembles for the Coulomb systems is possible only when charged particles of different types in calculating the physical quantities are considered as formally 'independent' ones, and the quasi-neutrality condition is used in the final stage of calculations. The phase equilibrium condition is obtained and the expression is derived for the isothermal compressibility of matter as a two-component Coulomb system, which corresponds to the known limit relations for static structure factors. On this basis, it is demonstrated that the critical point of matter, considering as the Coulomb system is determined from the condition of vanishing mean square of fluctuations of the total charge per unit volume.

Bobrov, V. B. [Joint Institute for High Temperatures, Russian Academy of Sciences, 13/19, Izhorskaia Str., Moscow 125412 (Russian Federation); Sokolov, I. M. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany); Trigger, S. A. [Joint Institute for High Temperatures, Russian Academy of Sciences, 13/19, Izhorskaia Str., Moscow 125412 (Russian Federation); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany)

2012-06-15T23:59:59.000Z

367

Assessment of cover systems at the Grand Junction, Colorado, uranium mill tailings pile: 1987 field measurements  

SciTech Connect

Four Pacific Northwest Laboratory (PNL) scientists and a technician conducted an onsite evaluation of radon gas exhalation, water content profiles, and plant and animal intrusion for a series of cover systems located on the uranium mill tailings pile at Grand Junction, Colorado. These six plots were sampled extensively down to the radon control layer (e.g., asphalt or wet clay) for soil moisture content and permeability. Radon gas emission through the surface was measured. Soil samples were collected and analyzed in the lab for particle-size distribution, particle density, bulk density, and ambient water content. Prairie dog burrows were excavated to discover the extent to which they penetrated the barriers. Plant type, density, and cover characteristics were measured.

Gee, G.W.; Campbell, M.D.; Freeman, H.D.; Cline, J.F.

1989-02-01T23:59:59.000Z

368

Are Uranus & Neptune responsible for Solar Grand Minima and Solar Cycle Modulation?  

E-Print Network (OSTI)

Detailed solar Angular Momentum (AM) graphs produced from the Jet Propulsion Laboratory (JPL) DE405 ephemeris display cyclic perturbations that show a very strong correlation with prior solar activity slowdowns. These same AM perturbations also occur simultaneously with known solar path changes about the solar system barycentre (SSB). The AM perturbations can be measured and quantified allowing analysis of past solar cycle modulations along with the 11,500 year solar proxy records (C14 & 10Be). The detailed AM information also displays a recurring wave of modulation that aligns very closely with the observed sunspot record since 1650. The AM perturbation and modulation is a direct product of the outer gas giants (Uranus & Neptune), this information gives the opportunity to predict future grand minima along with normal solar cycle strength with some confidence. A proposed a mechanical link between solar activity and planetary influence via a discrepancy found in solar/planet AM along with current AM pe...

Sharp, Geoff

2010-01-01T23:59:59.000Z

369

A Pedagogical Study of the Grand Unification Theorem with Realization of Some Standard Equations  

E-Print Network (OSTI)

The God Almighty Grand Unification Theory proposed by Oyibo to unify all known forces in nature and other possibly unknown force fields has remained controversial not just because of its ambitious claims but also because of its unconventional mathematical approach. He has adopted the mathematical approach from his experience at solving the Navier Stokes equations in fluid mechanics using invariance of an arbitrary function under a group of conformal transformations. However, this esoteric approach resulted in a sound mathematical formulation for the modelling philosophy of his theorem which is that since the fundamental characteristic of the universe is motion and motion can only be provided by force, then the universe could be viewed as a large force field. He then represented the conservation of this large force field at a given space time point in the universe by a set of generic equations from which he obtained his generic solutions whose specific applications depend on the initial/boundary conditions and other physical constraint conditions. An important achievement of the theorem methodology is that modelling with it is reduced to algebraic operations rather than differential equations for the most parts in previous methodologies. With this understanding from pedagogically studying the modelling philosophy and mathematics of the theorem, we have been able to recover from it simple standard equations such as in the Fermat principle for geometric optics. This is encouraging and therefore supports the possibility to recover more results and also to provide new ones, thereby supporting the theorem as a potential candidate for a grand unification theory.

Godfrey E. Akpojotor; Myron W. Echenim

2013-06-05T23:59:59.000Z

370

Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.  

Science Conference Proceedings (OSTI)

Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

Meixner, Tom (University of Arizona, Tucson, AZ); Tidwell, Vincent Carroll; Oelsner, Gretchen (University of Arizona, Tucson, AZ); Brooks, Paul (University of Arizona, Tucson, AZ); Roach, Jesse D.

2008-08-01T23:59:59.000Z

371

Model Performance of Downscaling 19992004 Hydrometeorological Fields to the Upper Rio Grande Basin Using Different Forcing Datasets  

Science Conference Proceedings (OSTI)

This study downscaled more than five years of data (19992004) for hydrometeorological fields over the upper Rio Grande basin (URGB) to a 4-km resolution using a regional model [fifth-generation Pennsylvania State UniversityNational Center for ...

J. Li; X. Gao; S. Sorooshian

2008-08-01T23:59:59.000Z

372

Submitted to HuffingtonPost.com Obama's Iran Nuclear Deadline: A Grand Bargain is Still Possible if Both Sides  

E-Print Network (OSTI)

nuclear program. Why then? For comparison sake, consider Pakistan and North Korea, two other states that recently developed nuclear weapons. Iran does not find itself in a situation like Pakistan, which, afterSubmitted to HuffingtonPost.com Obama's Iran Nuclear Deadline: A Grand Bargain is Still Possible

O'Donnell, Tom

373

Grand Challenges for Biological and Environmental Research: A Long-Term Vision  

SciTech Connect

The interactions and feedbacks among plants, animals, microbes, humans, and the environment ultimately form the world in which we live. This world is now facing challenges from a growing and increasingly affluent human population whose numbers and lifestyles are driving ever greater energy demand and impacting climate. These and other contributing factors will make energy and climate sustainability extremely difficult to achieve over the 20-year time horizon that is the focus of this report. Despite these severe challenges, there is optimism that deeper understanding of our environment will enable us to mitigate detrimental effects, while also harnessing biological and climate systems to ensure a sustainable energy future. This effort is advanced by scientific inquiries in the fields of atmospheric chemistry and physics, biology, ecology, and subsurface science - all made possible by computing. The Office of Biological and Environmental Research (BER) within the Department of Energy's (DOE) Office of Science has a long history of bringing together researchers from different disciplines to address critical national needs in determining the biological and environmental impacts of energy production and use, characterizing the interplay of climate and energy, and collaborating with other agencies and DOE programs to improve the world's most powerful climate models. BER science focuses on three distinct areas: (1) What are the roles of Earth system components (atmosphere, land, oceans, sea ice, and the biosphere) in determining climate? (2) How is the information stored in a genome translated into microbial, plant, and ecosystem processes that influence biofuel production, climate feedbacks, and the natural cycling of carbon? (3) What are the biological, geochemical, and physical forces that govern the behavior of Earth's subsurface environment? Ultimately, the goal of BER science is to support experimentation and modeling that can reliably predict the outcomes and behaviors of complex biological and environmental systems, leading to robust solutions for DOE missions and strategic goals. In March 2010, the Biological and Environmental Research Advisory Committee held the Grand Challenges for Biological and Environmental Research: A Long-Term Vision workshop to identify scientific opportunities and grand challenges for BER science in the coming decades and to develop an overall strategy for drafting a long-term vision for BER. Key workshop goals included: (1) Identifying the greatest scientific challenges in biology, climate, and the environment that DOE will face over a 20-year time horizon. (2) Describing how BER should be positioned to address those challenges. (3) Determining the new and innovative tools needed to advance BER science. (4) Suggesting how the workforce of the future should be trained in integrative system science. This report lays out grand research challenges for BER - in biological systems, climate, energy sustainability, computing, and education and workforce training - that can put society on a path to achieve the scientific evidence and predictive understanding needed to inform decision making and planning to address future energy needs, climate change, water availability, and land use.

Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

2010-12-01T23:59:59.000Z

374

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2000 Annual Report.  

DOE Green Energy (OSTI)

The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, commonly known as the Joint Stock Assessment Project (JSAP) is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (blocked area). The three-phase approach of this project will enhance the fisheries resources of the blocked area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information housed in a central location will allow managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP (NWPPC program measure 10.8B.26) is designed and guided jointly by fisheries managers in the blocked area and the Columbia Basin blocked area management plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of blocked area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the blocked area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. The use of common collection and analytical tools is essential to the process of streamlining joint management decisions. In 1999 and 2000 the project began to address some of the identified data gaps, throughout the blocked area, with a variety of newly developed sampling projects, as well as, continuing with ongoing data collection of established projects.

Crossley, Brian (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA); Lockwood, Jr., Neil W. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA)

2001-01-01T23:59:59.000Z

375

Wildlife Protection, Mitigation and Enhancement Planning for Grand Coulee Dam, Final Report.  

SciTech Connect

The development and operation of Grand Coulee Dam inundated approximately 70,000 acres of wildlife habitat under the jurisdictions of the Colville Confederated Tribes, the Spokane Tribe, and the State of Washington. Under the provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, this study reviews losses to wildlife and habitat, and proposes mitigation for those losses. Wildlife loss estimates were developed from information available in the literature. Habitat losses and potential habitat gains through mitigation were estimated by a modified Habitat Evaluation Procedure. The mitigation plan proposes (1) acquisition of sufficient land or management rights to land to protect Habitat Units equivalent to those lost (approximately 73,000 acres of land would be required), (2) improvement and management of those lands to obtain and perpetuate target Habitat Units, and (3) protection and enhancement of suitable habitat for bald eagles. Mitigation is presented as four actions to be implemented over a 10-year period. A monitoring program is proposed to monitor mitigation success in terms of Habitat Units and wildlife population trends.

Creveling, Jennifer

1986-08-01T23:59:59.000Z

376

Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

Eberhart, Craig

2010-08-01T23:59:59.000Z

377

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-04-01T23:59:59.000Z

378

The integral formalism and the generating function of grand confluent hypergeometric function  

E-Print Network (OSTI)

Biconfluent Heun function, a confluent form of Heun function [1,2], is the special case of Grand Confluent Hypergeometric (GCH) function [4] replacing $\\mu$ and $\\varepsilon \\omega $ by 1 and -q: this has a regular singularity at x=0, and an irregular singularity at infinity of rank 2 (see (50) in Ref.[21]). In this paper I will apply three term recurrence formula [3] to the integral formalism of GCH function including all higher terms of A_n's and the generating function of GCH polynomial in which makes B_n term terminated. I show how to transform power series expansion in closed forms of GCH function to integral formalism analytically. This paper is 10th out of 10 in series "Special functions and three term recurrence formula (3TRF)". See section 6 for all the papers in the series. The previous paper in the series describes the power series expansion in closed forms of GCH function and its asymtotic behaviours [26].

Yoon Seok Choun

2013-03-04T23:59:59.000Z

379

Assessing the local wind field at Sierra Grande Mountain in New Mexico with instrumentation  

DOE Green Energy (OSTI)

Six systems were installed on top of Sierra Grande, a nearly symmetrical mountain in New Mexico about halfway between Raton and Clayton, with a peak of 2659 m (8720 ft msl) standing over a wide mesa of approximately 1829 m (6000 ft msl). Two systems were on the peak, one at 10 m (33 ft) above the surface and the other at 20 m (66 ft) because the peak is often the most probable spot for the greatest wind energy. The two levels were needed to measure variations of speed with height. Four other systems with instruments at 10-m (33 ft) were located roughly north, east, south, and west from the center on secondary ridge lines to measure certain horizontal variations of the wind. The wind direction and speed were measured every 6 minutes, a time interval considerably shorter than the traditional 1 hour but long enough so that all WECS power outputs are expected to respond to these wind speed variations. All six systems were operated for a period of six months between 6 June 1979-5 December 1979.

Barnett, K.M.; Reynolds, R.D.

1981-05-01T23:59:59.000Z

380

Superfund Record of Decision (EPA Region 2): Grand Street Mercury Site, Hoboken, NJ, September 30, 1997  

SciTech Connect

This Record of Decision presents the selected remedial action for the Grand Street Mercury Site. The major components of the selected remedy include: permanent relocation of the former residents of the Site; continuation of temporary relocation of the former residents until permanent relocation has been implemented; historic preservation mitigation measures for the buildings at the Site, as appropriate; gross mercury decontamination of the buildings at the Site including recovery of available mercury, whenever possible; identification and abatement of asbestos in the buildings at the Site; removal and recovery of reusable fixtures, appliances, and recyclable scrap metal and other building components; demolition of the two buildings at the Site using measures to minimize releases of mercury into the environment; removal and off-site disposal of all demolition debris at EPA-approved facilities; sampling of soils at the Site; excavation and off-site disposal of contaminated soils at EPA-approved facilities; sampling of soils at off-site adjacent locations; sampling of groundwater at the Site; and assessment of off-site soil and groundwater data to evaluate the need for future remedial action.

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New capabilities in the HENP grand challenge storage access systemand its application at RHIC  

SciTech Connect

The High Energy and Nuclear Physics Data Access GrandChallenge project has developed an optimizing storage access softwaresystem that was prototyped at RHIC. It is currently undergoingintegration with the STAR experiment in preparation for data taking thatstarts in mid-2000. The behavior and lessons learned in the RHIC MockData Challenge exercises are described as well as the observedperformance under conditions designed to characterize scalability. Up to250 simultaneous queries were tested and up to 10 million events across 7event components were involved in these queries. The system coordinatesthe staging of "bundles" of files from the HPSS tape system, so that allthe needed components of each event are in disk cache when accessed bythe application software. The caching policy algorithm for thecoordinated bundle staging is described in the paper. The initialprototype implementation interfaced to the Objectivity/DB. In this latestversion, it evolved to work with arbitrary files and use CORBA interfacesto the tag database and file catalog services. The interface to the tagdatabase and the MySQL-based file catalog services used by STAR aredescribed along with the planned usage scenarios.

Bernardo, L.; Gibbard, B.; Malon, D.; Nordberg, H.; Olson, D.; Porter, R.; Shoshani, A.; Sim, A.; Vaniachine, A.; Wenaus, T.; Wu, K.; Zimmerman, D.

2000-04-25T23:59:59.000Z

382

Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report  

SciTech Connect

Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.

Morris, R.

1996-05-01T23:59:59.000Z

383

Technical basis for radiological release of Grand Junction Office Building 2. Volume 1, dose assessment  

SciTech Connect

Building 2 on the US Department of Energy (DOE) Grand Junction Office (GJO) site is part of the GJO Remedial Action Program (GJORAP). During evaluation of Building 2 for determination of radiological release disposition, some inaccessible surface contamination measurements were detected to be greater than the generic surface contamination guidelines of DOE Order 5400.5 (which are functionally equivalent to US Nuclear Regulatory Commission [NRC] Regulatory Guide 1.86). Although the building is nominal in size, it houses the site telecommunications system, that is critical to continued GJO operations, and demolition is estimated at $1.9 million. Because unrestricted release under generic surface contamination guidelines is cost-prohibitive, supplemental standards consistent with DOE Order 5400.5 are being pursued. This report describes measurements and dose analysis modeling efforts to evaluate the radiation dose to members of the public who might occupy or demolish Building 2, a 2,480 square-foot (ft) building constructed in 1944. The north portion of the building was used as a shower facility for Manhattan Project uranium-processing mill workers and the south portion was a warehouse. Many originally exposed surfaces are no longer accessible for contamination surveys because expensive telecommunications equipment have been installed on the floors and mounted on panels covering the walls. These inaccessible surfaces are contaminated above generic contamination limits.

Morris, R.; Warga, J.; Thorne, D.

1997-07-01T23:59:59.000Z

384

Microsoft Word - CX-Olympia-GrandCoulee85-5RelocationFY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2012 9, 2012 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Amanda Williams Project Manager - TEP-TPP-1 Proposed Action: Olympia-Grand Coulee Structure 85/5 Relocation Project Budget Information: Work Order #00291628 PP&A Project No.: PP&A 1984 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance Proposed by: Bonneville Power Administration (BPA) Location: The proposed Olympia-Grand Coulee Structure 85/5 Relocation Project is located in King County, Washington, within the Mt. Baker-Snoqualmie National Forest (MBS), in BPA's Covington Operations and Maintenance District. Township, Range, and Section crossed by the proposed project are listed below:

385

peu de radium D. En outre, la liqueur contient encore la plus grande partie du radium D ;  

E-Print Network (OSTI)

ajoute ensuite un peu d'eau oxygénée. Au bout d'une heurte on a déjà un léger précipité dhy peroxyde d'uranium déter- mine sont déplacées aussi bien vers les petites que vers les grandes longueurs d'onde. Au

Paris-Sud XI, Université de

386

Final report of the radiological release survey of Building 30B at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 30B and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Krauland, P.A.; Corle, S.G.

1997-09-01T23:59:59.000Z

387

Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

388

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2006-02-01T23:59:59.000Z

389

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2002 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); Butler, Chris (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA)

2003-09-01T23:59:59.000Z

390

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Olympia, WA); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2005-11-01T23:59:59.000Z

391

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2001 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power Planning Council (NPPC). The NPPC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPPC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area and the Columbia Basin Blocked Area Management Plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of seven streams and four lakes on the Spokane Indian Reservation were completed by 2000. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in southern Pend Oreille County, and water bodies within and near the Spokane Indian Reservation were conducted in 2001. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispell Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); O'Connor, Dick (Washington Department of Fish and Wildlife, Olympia, WA)

2003-01-01T23:59:59.000Z

392

Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.  

DOE Green Energy (OSTI)

Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

Goulet, C. T.; LaGory, K. E.; Environmental Science Division

2009-10-05T23:59:59.000Z

393

Energy from renewable sources for rural communities of the state of Rio Grande Do Sul, Brazil  

SciTech Connect

Rural communities of the state of Rio Grande do Sul developed on the basis of various ethenic origin, and distinctly took root in the regions of different topography. On the south and the west nearly half of the state is mainly flat land, where the inhabitants are racially heterogenous and live pricipally in small towns with large farm lands around. The rest of the state consists of high lands that gradually rise from the northwest to maximum 1200m altitude at the northeast. In the foothills, industrial base was developed by the German settelers, whereas the Italian immigrants settled on the hills. The hilly region is composed of small rural properties with area varying from 10 to 50 hectares. They are scattered all over the region, which make it economically unfeasable to distribute electricity from the main grid, due to high investment cost unlikely to be paid off by the energy consumption rate of the rural properietors. It could be verified from the fact that till to-date the local federation of the cooperatives of rural electrification achieved to supply electricity to only 15% of the total area and its future expansion is getting limited. This paper describes a pilot project initiated in the county 'Tres Coroa' of this region, that is being developed under the guidance of the energy group of the Federal University of RGS, coordinated with balanced technical, agronomical, economical and ecilogical activities to meet its energy demand, that could be supplied with the locally available resources. It is aimed in this project to provide the rural habitants adequate energy for a decent living i.e., electricity for lights, TV and small domestic appliances, thermal energy for hot water supply and fuel to run the agricultural machineries. In future, other nearby counties could follow this experiment with proper and adequate modifications to suite the need and the type of resources available there.

Bristotti, A.; Sadhu, D.

1983-12-01T23:59:59.000Z

394

A simulation model of Rio Grande wild turkey dynamics in the Edwards Plateau of Texas  

E-Print Network (OSTI)

I investigated the effect of precipitation and predator abundance on Rio Grande wild turkey (Meleagris gallopavo; RGWT) in Texas. My results suggested that RGWT production was strongly correlated with cumulative winter precipitation over the range of the RGWT in Texas. However, I found no evidence that predator abundance influenced RGWT production, although spatial-asynchrony of predator populations at multiple spatial scales might have masked broad-scale effects. Using the results of these analyses, as well as empirical data derived from the literature and from field studies in the southern Edwards Plateau, I developed a stochastic, density-dependent, sex- and agespecific simulation model of wild turkey population dynamics. I used the model to evaluate the effect of alternative harvest management strategies on turkey populations. Sensitivity analysis of the model suggested that shape of the density-dependence relationship, clutch size, hatchability, juvenile sex ratio, poult survival, juvenile survival, and nonbreeding hen mortality most strongly influenced model outcome. Of these, density-dependence, sex ratio, and juvenile survival were least understood and merit further research. My evaluation of fall hen harvest suggested that current rates do not pose a threat to turkey populations. Moreover, it appears that hen harvest can be extended to other portions of the RGWT range without reducing turkey abundance, assuming that population dynamics and harvest rates are similar to those in the current fall harvest zone. Finally, simulation of alternative hen harvest rates suggested that rates ?5% of the fall hen population resulted in significant declines in the simulated population after 25 years, and rates ?15% resulted in significant risk of extinction to the simulated population.

Schwertner, Thomas Wayne

2003-05-01T23:59:59.000Z

395

Comments and responses on the Remedial Action Plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Grand Junction, Colorado. Revision 1  

SciTech Connect

This report contains information concerning public comments and responses on the remedial action plan and site design for stabilization of the inactive uranium mill tailings site in Grand Junction, Colorado.

NONE

1994-01-01T23:59:59.000Z

396

Seismic exploration for shallow magma bodies in the vicinity of Socorro, New Mexico. Final report, January 1, 1977-December 31, 1977  

DOE Green Energy (OSTI)

This report contains the following articles: Characteristics of Rio Grande rift in vicinity of Socorro, New Mexico, from geophysical studies; Exploration framework of the Socorro Geothermal Area, New Mexico; a study of Poisson's ratio in the upper crust in the Socorro, New Mexico, Area; and Microearthquake frequency attenuation of S phases in the Rio Grande rift near Socorro. (ACR)

Sanford, A.R.; Schlue, J.

1980-11-01T23:59:59.000Z

397

Interim Report on SNP analysis and forensic microarray probe design for South American hemorrhagic fever viruses, tick-borne encephalitis virus, henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever viruses, Rift Valley fever  

SciTech Connect

The goal of this project is to develop forensic genotyping assays for select agent viruses, enhancing the current capabilities for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the whole genome wide SNP analysis and microarray probe design for forensics characterization of South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.

Jaing, C; Gardner, S

2012-06-05T23:59:59.000Z

398

Survival and mammalian predation of Rio Grande Turkeys on the Edwards Plateau, Texas.  

E-Print Network (OSTI)

Trends in Rio Grande wild turkey (Meleagris gallopavo intermedia) abundance on the Edwards Plateau (EP), Texas, have been either stable or in decline since the 1970s. Four study areas, 2 each within stable (Stable Area A, SAA; Stable Area B, SAB) and declining regions (Declining Area A, DAA; Declining Area B, DAB), were delineated to examine (1) both annual and seasonal survival, (2) relative mammalian predator mean abundance (RMA), and (3) potential effects of lunar phase on scent-station visitation. During February 2001-March 2003, 257 turkeys were captured and instrumented with radio transmitters. Survival probabilities were generated using a Kaplan-Meier product limit estimator; a log-rank test tested for differences among sites. Annual survival was statistically different between regions (stable 0.566 0.081; declining 0.737 0.094; X2 = 3.68, P = 0.055) in 2002. Seasonal survival differed between regions (stable 0.812 0.103; declining 0.718 0.130; X2 = 3.88, P = 0.049) in spring 2003. Annual survival results during 2002 were counterintuitive with turkey trend data. Scent-station transects were established on non-paved ranch roads within study regions. Scent-station indices revealed higher (H = 19.653, P ? 0.001) RMA of opossum (Didelphis virginiana) and skunk (eastern spotted [Spilogale putorius], striped [Mephitis mephitis], or western spotted [S. gracilis]) (SAA, x? = 0.0148; SAB, x? = 0.0151; DAA, x? = 0.0042; DAB, x? = 0.0065) on stable areas. Higher RMA of coyotes (Canis latrans) on declining areas (SAA, x? = 0.0067; SAB, x? = 0.0022; DAA x? = 0.0234; DAB x? = 0.0434) suggested a possible causative factor of the decline, but abundance indices were not verified by empirical data though. Lunar phase was not a significant (T = -0.225, P = 0.822) covariate in scent-station visits by raccoons, opossums (new, x? = 0.0111; full, x? = 0.0324), or unidentified tracks (new, x? = 0.0649; full, x? = 0.0375). Nightly precipitation and wind speed probably influence mammalian use of scent stations more so than lunar illumination.

Willsey, Beau Judson

2003-12-01T23:59:59.000Z

399

Structural fabric of the Palisades Monocline: a study of positive inversion, Grand Canyon, Arizona  

E-Print Network (OSTI)

A field study of positive inversion is conducted to describe associated structural fabrics and to infer kinematic development of the Palisades Monocline, Grand Canyon, Arizona. These features are then compared to sand, clay and solid rock models of positive inversion to test model results and improve understanding of inversion processes. The N40W 90 oriented Palisades fault underlying the monocline has experienced northeast-southwest Precambrian extension and subsequent northeastsouthwest Laramide contraction. The magnitude of inversion is estimated to be 25% based on vertical offset across the fault, although this does not account for flexure or horizontal shortening. The preferred N50W 90 joint and vein orientation and N50W 68 NE and SW conjugate normal faults are consistent with the Palisades fault and northeastsouthwest extension. The N45E 90 joint orientation and approximately N40W 28 NE and SW conjugate thrust faults are consistent with northeast-southwest contraction. The deformation is characterized by three domains across the fault zone: 1) the hanging wall, 2) the footwall, and 3) an interior, fault-bounded zone between the hanging wall and footwall. Extensional features are preserved and dominate the hanging wall, contractional features define footwall deformation, and the interior, fault-bounded zone is marked by the co-existence of extensional and contractional features. Extension caused a master normal fault and hanging wall roll-over with distributed joints, veinsand normal faults. During inversion, contraction induced reverse reactivation of existing hanging wall faults, footwall folding and footwall thrust-faulting. Precambrian normal slip along the master normal fault and subsequent Laramide reverse slip along the new footwall bounding fault created an uplifted domain of relatively oldest strata between the hanging wall and footwall. Physical models of co-axial inversion suggest consistent development of the three domains of deformation described at the Palisades fault, however the models often require magnitudes of inversion greater than 50%. Although vertical block motion during horizontal compression is not predicted directly by the Mohr-Coulomb criterion, physical models and analytical solutions (incorporating Mohr- Coulomb criterion) suggest maximum stress trajectories and near vertical failure above high angle basement faults that compare favorably with the Palisades fault zone.

Orofino, James Cory

2006-05-01T23:59:59.000Z

400

Grande Ronde Model Watershed Project; Dark Canyon Riparian Exclosure, Completion Report 2002.  

DOE Green Energy (OSTI)

The Baker Field Office, Vale District Bureau of Land Management (BLM) submitted a project proposal for funding in 2002 through the Grande Ronde Model Watershed Program (GRMWP). The project consisted of constructing two riparian exclosures to prevent livestock grazing in the riparian areas of Dark Canyon and Meadow Creek. The BLM completed the NEPA documentation and supplied the fencing materials. Funding from BPA through the GRMWP was used to complete the construction of the two exclosures. This project was completed in the fall of 2002. The project area is located in Union County, Oregon on BLM managed land adjacent to Dark Canyon and Meadow Creek, T. 3. S., R. 35 E., Section 24 and 25. Section 24 is along Dark Canyon Creek and section 25 is along Meadow Creek. Approximately 0.4 miles of stream would be protected from grazing with the construction of the two exclosures. A two person crew was hired to construct a four-strand barbed wire fence. The fence enclosed the riparian area on both sides of each creek so that no grazing would occur within the riparian area on BLM managed land. Total fence length is approximately 1.25 miles. Materials consisted of metal fence posts, barbed wire, rockjacks, fence stays, and 2 x 4's. The fence was constructed in the fall of 2002. The riparian area is effectively excluded from livestock grazing at this time. The construction of the exclosures should enhance riparian vegetation, increase bank stability, and improve riparian and in-stream habitat by exclusion of livestock in the riparian areas. Monitoring will ensure that the exclosures continues to be effective. Annual monitoring will include photo-points and compliance checks during the grazing season by BLM personnel. The BLM will submit a monitoring report, which includes the results of the annual monitoring, to the GRMWP in years 2005 and 2007. The exclosures do cross the creeks so maintenance may be needed on occasion, especially after high flow events in the creeks. Material such as logs which are mobilized during high stream flows may damage the exclosures requiring maintenance to keep cattle from grazing in the riparian areas. The BLM spent approximately $4,000 on fencing materials and $1,375 on NEPA compliance. In addition, the estimated cost of the monitoring over five years is expected to be approximately $1,600. The $5,050 that the BLM received from the BPA for the project was used to hire two temporary employees to construct the exclosures.

Kuck, Todd

2003-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vegetation, soils, and surface hydrology of playa landforms in the Rio Grande Plains, Texas  

E-Print Network (OSTI)

Playas in the Rio Grande Plains of southern Texas were compared with respect to their: 1) size, shape, soil properties, and microtopography, 2) vegetation composition and structure, 3) surface water accumulation potential, and 4) disturbance history. Transitions from playa to drainage woodlands were also quantified with respect to soils and vegetation. Playas were typically oval shaped basins ranging from 0.14 to 3.81 ha in size. Physiognomy ranged from grassland (treeless) to savanna (woody basal area 70 m/ha). When trees were present, Prosopis glandulosa or Acacia smallii were typically dominant or co-dominant. Neighboring woodlands on sandy loam drainage landforms had a greater overstory woody density (255 [] 58 stems/ha) than playas (18 [] 3.6 stems/ha); however, overstory woody basal area was not significantly different between the landforms. Three woody species (Acacia smallii, Sesbania drummondii, and Parkinsonia aculeata) were unique to playas. Herbaceous standing crop biomass was statistically different between playas (81 [] 24.4 to 198 [] 29.8 g/m) and inversely correlated with tree basal area (r = 0.36), with the contribution of grasses to total biomass ranging from 55% to 92%. Playa soils were Vertisols or vertic Mollisols consisting of clayey surfaces with shrink-swell properties. Mean surface pH values (6.5 [] 0.1), EC (0.231 [] 0.03 and 0.350 [] 0.05 dS/m), clay content (~ 40%), and bulk densities (1.8 [] 0.02 g/m) for both subgroup classifications were not comparable. Thus, there was no apparent edaphic basis for the observed differences in vegetation. The extent and duration of inundation varied among playas, depending on basin microtopography. Despite anaerobic conditions associated with inundation, woody plant cover has increased in five of the eight playas in the past 44 years. Decreases in woody density occurred in two playas subjected to prescribed fire and herbicide treatments. The third basin has been grass-dominated and treeless since 1950, apparently owing to its retention of standing water for extended periods. With the exception of this deep playa basin, disturbance (e.g. fire, herbiciding, and chaining) appears to have been more important than topographic factors in shaping vegetation structure and composition in playas.

Farley, Andrea Lee

2000-01-01T23:59:59.000Z

402

"1. Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" Washington" "1. Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 "2. Chief Joseph","Hydroelectric","USCE-North Pacific Division",2456 "3. Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1596 "4. Rocky Reach","Hydroelectric","PUD No 1 of Chelan County",1254 "5. Columbia Generating Station","Nuclear","Energy Northwest",1097 "6. Wanapum","Hydroelectric","PUD No 2 of Grant County",1059 "7. Boundary","Hydroelectric","Seattle City of",1040 "8. Priest Rapids","Hydroelectric","PUD No 2 of Grant County",932

403

Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

404

Final report of the decontamination and decommissioning of Building 18 at the Grand Junction Projects Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. The soil beneath Building 18 was found to be radiologically contaminated; the building was not contaminated. The soil was remediated in accordance with identified standards. Building 18 and the underlying soil can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

405

Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report  

DOE Green Energy (OSTI)

A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

1980-05-01T23:59:59.000Z

406

Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Krabacher, J.E.

1996-07-01T23:59:59.000Z

407

Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-07-01T23:59:59.000Z

408

Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-07-01T23:59:59.000Z

409

Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soil beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-07-01T23:59:59.000Z

410

DOE/EIS-0340-SA-01: Supplement Analysis for NEOH Grande Ronde-Imnaha Spring Chinook Hatchery Project (03/23/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2006 3, 2006 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for NEOH Grande Ronde - Imnaha Spring Chinook Hatchery Project (DOE/EIS-0340-SA-01) Ken Kirkman - KEWU-4 Project Manager Proposed Action: Grande Ronde - Imnaha Spring Chinook Hatchery Project Modifications Resulting from Final Design Project No.: 1988-053-01 Location: Wallowa County, Oregon Proposed By: Bonneville Power Administration (BPA) and Nez Perce Tribe Introduction: BPA, in its March 11, 2005 Record of Decision (ROD) on the Grande Ronde - Imnaha Spring Chinook Hatchery Project, decided to fund value engineering, land acquisition and final design of fish production facilities to support an ongoing program of Snake River spring chinook propagation for conservation and recovery of the species. BPA analyzed the

411

Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collection in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007, acclimation of Lostine River spring Chinook salmon smolts occurred from 3/5/07 through to 4/17/07 and a total of 230,010 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2005 egg source and included captive brood (24,604) and conventional (205,406) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2007 began May 14th. The first Chinook was captured on June 2, 2007 and the last Chinook was captured on September 25, 2007. The weir and trap were removed on October 1, 2007. A total of 637 adult Chinook, including jacks, were captured during the season. The composition of the run included 240 natural origin fish and 397 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 41 natural and 81 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 403 adult Chinook were passed or transported above the weir to spawn naturally, and only hatchery origin jack Chinook were transported and outplanted in the Wallowa River and Bear Creek in underseeded habitat. Of the 122 adult fish retained for broodstock, 20 natural females and 40 supplementation females were represented in spawning. The eggs from these females produced a total of 267,350 eggs at fertilization. Eye-up was 86.73% which yielded a total of 231,882 conventional program eyed eggs. The fecundity averaged 4,456 eggs per female. These eggs will be incubated and reared at Lookingglass Hatchery until they are smolts in the spring of 2009. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2009. Due to the success of the 2007 egg collection, the number of fish produced exceeded program needs and facility capabilities. As a result, there are plans to outplant fry in 2008 and parr in early 2009 to underseeded habitat in the Wallowa River.

Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

2009-03-31T23:59:59.000Z

412

Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collection in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006, acclimation of Lostine River spring Chinook salmon smolts occurred from February 27, 2006 through to April 10, 2006 and a total of 240,568 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2004 egg source and included captive brood (40,982) and conventional (199,586) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2006 began May 15th, the first Chinook was captured on June 14, 2006 and the last Chinook was captured on September 27, 2006. The weir and trap were removed on October 1, 2006. A total of 534 adult Chinook, including jacks, were captured during the season. The composition of the run included 205 natural origin fish and 329 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 33 natural and 120 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning and 397 adult Chinook were passed or transported above the weir to spawn naturally. In 2006, no hatchery origin adult Chinook were transported and out planted in the Wallowa River and Bear Creek to spawn in under seeded habitat. In order to meet egg take goals for the conventional portion of the program, a determination was made that approximately 147 adults were needed for broodstock. As a result 16 (8 males and 8 females) of the 153 fish collected for broodstock were returned to the Lostine River to spawn naturally. Females that were spawned and provided the brood source were made up of 12 natural females and 45 supplementation females. One of these females tested positive for high levels of Bacterial Kidney Disease and consequently this females eggs were destroyed. The remaining females produced a total of 241,372 eggs at fertilization. Eye-up was 85.47% which yielded a total of 206,309 conventional program eyed eggs. The fecundity averaged 4,162 eggs per female. The brood year 2006 eggs will be incubated and reared at Lookingglass Hatchery until

Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

2009-03-31T23:59:59.000Z

413

Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of Lostine River spring Chinook salmon smolts occurred from March 3, 2003 through to April 14, 2003 and a total of 242,776 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2001 egg source and included captive broodstock (141,860) and conventional broodstock (100,916) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2003 began April 30th, the first Chinook was captured on May 16, 2003 and the last Chinook was captured on September 21, 2003. The weir and trap were removed on October 1, 2003. A total of 464 adult Chinook, including jacks, were captured during the season. The composition of the run included 239 natural origin fish and 225 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 45 natural and 4 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 366 adult Chinook were passed or transported above the weir to spawn naturally, and 49 hatchery origin adult jack Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 49 adults retained for broodstock at Lookingglass Hatchery, 21 natural females and no hatchery origin females were represented in spawning. These females produced a total of 106,609 eggs at fertilization. Eye-up was 95.50% which yielded a total of 101,811 conventional program eyed eggs. The fecundity averaged 5,077 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage. At eye they were transferred to Oxbow Hatchery where they were reared to the fingerling state at which time they were transported back to LGH until they were smolts in the spring of 2005. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2005.

Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

2009-03-31T23:59:59.000Z

414

Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004, acclimation of Lostine River spring Chinook salmon smolts occurred from March 1, 2004 through to April 14, 2004 and a total of 250,249 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2002 egg source and included captive brood (133,781) and conventional (116,468) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2004 began May 10, the first Chinook was captured on May 19, 2004 and the last Chinook was captured on September 16, 2004. The weir and trap were removed on October 1, 2004. A total of 1,091 adult Chinook, including jacks, were captured during the season. The composition of the run included 299 natural origin fish and 792 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 46 natural and 69 hatchery supplementation adults were retained for broodstock and transported to Lookingglass Hatchery for holding and spawning, 537 adult Chinook were passed or transported above the weir to spawn naturally, and 447 hatchery origin adult Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 107 adults retained (eight additional hatchery females were collected and then later returned to the Lostine River to spawn naturally) for broodstock at Lookingglass Hatchery, 22 natural females and 30 supplementation females were represented in spawning. These females produced a total of 221,889 eggs at fertilization. Eye-up was 94.9% which yielded a total of 210,661 conventional program eyed eggs. The fecundity averaged 4,267 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage and then transferred to Oxbow Hatchery where they will be reared to the fingerling stage. They will then be transported back to LGH and reared to the smolt stage and then transported to the Lostine acclimation facility for release in the spring of 2006. Captive brood program eggs/fish will be added to

Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

2009-03-31T23:59:59.000Z

415

Grand Challenges of Advanced Computing for Energy Innovation Report from the Workshop Held July 31-August 2, 2012  

SciTech Connect

On July 31-August 2 of 2012, the U.S. Department of Energy (DOE) held a workshop entitled Grand Challenges of Advanced Computing for Energy Innovation. This workshop built on three earlier workshops that clearly identified the potential for the Department and its national laboratories to enable energy innovation. The specific goal of the workshop was to identify the key challenges that the nation must overcome to apply the full benefit of taxpayer-funded advanced computing technologies to U.S. energy innovation in the ways that the country produces, moves, stores, and uses energy. Perhaps more importantly, the workshop also developed a set of recommendations to help the Department overcome those challenges. These recommendations provide an action plan for what the Department can do in the coming years to improve the nations energy future.

Larzelere, Alex R.; Ashby, Steven F.; Christensen, Dana C.; Crawford, Dona L.; Khaleel, Mohammad A.; John, Grosh; Stults, B. Ray; Lee, Steven L.; Hammond, Steven W.; Grover, Benjamin T.; Neely, Rob; Dudney, Lee Ann; Goldstein, Noah C.; Wells, Jack; Peltz, Jim

2013-03-06T23:59:59.000Z

416

PURDUE UNIVERSITY LEADERSHIP IN ENERGY RESEARCH Recognizing the grand-challenge problems of global energy demands with evidence of climate change  

E-Print Network (OSTI)

PURDUE UNIVERSITY LEADERSHIP IN ENERGY RESEARCH Recognizing the grand-challenge problems of global energy demands with evidence of climate change and broader environmental impacts, Purdue is building of energy including fossil fuels, nuclear, solar, wind and bioenergy. The activities incorporate socio

417

Microphysical Effects of Wintertime Cloud Seeding with Silver Iodide over the Rocky Mountains. Part III: Observations over the Grand Mesa, Colorado  

Science Conference Proceedings (OSTI)

During March 1986, several airborne and ground-based silver iodide (AgI) seeding experiments were conducted over the Grand Mesa, Colorado, during a three-day period of northerly flow and shallow orographic cloud. While little natural snowfall was ...

Arlin B. Super; Bruce A. Boe

1988-10-01T23:59:59.000Z

418

Polychlorinated Biphenyls (PCBs) in Catfish and Carp Collected from the Rio Grande Upstream and Downstream of Los Alamos National Laboratory: Revision 1  

Science Conference Proceedings (OSTI)

Concern has existed for years that the Los Alamos National Laboratory (LANL), a complex of nuclear weapons research and support facilities, has released polychlorinated biphenyls (PCBs) to the environment that may have reached adjacent bodies of water through canyons that connect them. In 1997, LANL's Ecology Group began measuring PCBs in fish in the Rio Grande upstream and downstream of ephemeral streams that cross LANL and later began sampling fish in Abiquiu and Cochiti reservoirs, which are situated on the Rio Chama and Rio Grande upstream and downstream of LANL, respectively. In 2002, we electroshocked channel catfish (Ictalurus punctatus) and common carp (Carpiodes carpio) in the Rio Grande upstream and downstream of LANL and analyzed fillets for PCB congeners. We also sampled soils along the Rio Chama and Rio Grande drainages to discern whether a background atmospheric source of PCBs that could impact surface water adjacent to LANL might exist. Trace concentrations of PCBs measured in soil (mean = 4.7E-05 {micro}g/g-ww) appear to be from background global atmospheric sources, at least in part, because the bimodal distribution of low-chlorinated PCB congeners and mid-chlorinated PCB congeners in the soil samples is interpreted to be typical of volatilized PCB congeners that are found in the atmosphere and dust from global fallout. Upstream catfish (n = 5) contained statistically (P = 0.047) higher concentrations of total PCBs (mean = 2.80E-02 {micro}g/g-ww) than downstream catfish (n = 10) (mean = 1.50E-02 {micro}g/g-ww). Similarly, upstream carp (n = 4) contained higher concentrations of total PCBs (mean = 7.98E-02 {micro}g/g-ww) than downstream carp (n = 4) (3.07E-02 {micro}g/g-ww); however, the difference was not statistically significant (P = 0.42). The dominant PCB homologue in all fish samples was hexachlorobiphenyls. Total PCB concentrations in fish in 2002 are lower than 1997; however, differences in analytical methods and other uncertainties exist. A review of historical quantitative PCB data for fish from the Rio Grande and Abiquiu and Cochiti reservoirs does not indicate a distinct contribution of PCBs from LANL to fish in the Rio Grande or Cochiti. Analysis of homologue patterns for fish does not provide sufficient evidence of a LANL contribution. Nevertheless, concentrations of PCBs in fillets of fish sampled from the Rio Grande are indicative of potential adverse chronic health impact from consumption of these fish on a long-term basis.

Gilbert J. Gonzales Philip R. Fresquez

2008-05-12T23:59:59.000Z

419

Geographic Information System (GIS) Emergency Support for the May 2000 Cerro Grande Wildfire, Los Alamos, New Mexico, USA  

Science Conference Proceedings (OSTI)

In May 2000 the Cerro Grande wildfire swept through Los Alamos, New Mexico, burning approximately 17,400 ha (43,000 acres) and causing evacuation of Los Alamos National Laboratory (LANL) and the communities of Los Alamos and White Rock. An integral part of emergency response during the fire was the use of geographic information system (GIS) technology, which continues to be used in support of post-fire restoration and environmental monitoring. During the fire Laboratory GIS staff and volunteers from other organizations worked to produce maps and provide support for emergency managers, including at an emergency GIS facility in Santa Fe. Subsequent to the fire, Laboratory GIS teams supported the multiagency Burned Area Emergency Rehabilitation (BAER) team to provide GIS data and maps for planning mitigation efforts. The GIS teams continue to help researchers, operations personnel, and managers deal with the tremendous changes caused by the fire. Much of the work is under the auspices of the Cerro Grande Rehabilitation Project (CGRP) to promote recovery from fire damage, improve information exchange, enhance emergency management, and conduct mitigation activities. GIS efforts during the fire provided important lessons about institutional matters, working relationships, and emergency preparedness. These lessons include the importance of (1) an integrated framework for assessing natural and human hazards in a landscape context; (2) a strong GIS capability for emergency response; (3) coordinated emergency plans for GIS operations; (4) a method for employees to report their whereabouts and receive authoritative information during an evacuation; (5) GIS data that are complete, backed-up, and available during an emergency; (6) adaptation of GIS to the circumstances of the emergency; (7) better coordination in the GIS community; (8) better integration of GIS into LANL operations; and (9) a central data warehouse for data and metadata. These lessons are important for planning future directions of GIS at LANL. Growing maturity of GIS is expected to lead to standardization and a better-integrated, more-coordinated approach to data sharing and emergency management at LANL, and within DOE, in accord with the federal government's increasing focus on electronic communication for its organizational and public interactions.

C.R.Mynard; G.N.Keating; P.M.Rich; D.R. Bleakly

2003-05-01T23:59:59.000Z

420

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "grande rift gea" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

422

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

423

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

424

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

425

P450 aromatase alterations and DNA damage as avian pollution biomarkers in cliff and cave swallow breeding near the Rio Grande region, Texas  

E-Print Network (OSTI)

The endocrine system, specifically relating to sex hormones, and genetic material can be targets of environmental contaminants. Environmental contaminants in the Rio Grande region may originate from industrial or agricultural processes and growing populations lacking proper water and sewage infrastructure. Cliff (Petrochelidon pyrrhonota) and cave (P. fulva) swallows breeding near the Rio Grande were selected to monitor aromatase activity alterations and DNA damage. Swallows were sampled at six sites along the Rio Grande from Brownsville to Laredo, and a reference site (Somerville) 350 miles north of the Rio Grande. DNA damage, based on nuclear DNA content, was determined by flow cytometry. A significantly larger mean half peak coefficient of variation (HPCV) of DNA content in contaminated sites compared to a reference site reflects possible chromosomal damage. No detectable HPCV differences were observed in cave swallows among locations, notwithstanding the presence of mutagenic contaminants. Selenium may provide a protective role against genetic damage. However, cliff swallows from Laredo had significantly higher HPCV values than those from Somerville. DNA damage could be attributed to metals and polycyclic aromatic hydrocarbons released near Laredo. Brains and gonads, two estrogen-dependent organs, were tested for aromatase activity with a tritiated water method. Brain aromatase activity was higher, though not always statistically, for male cave and male and female cliff swallows. Dichlorodiphenyldichloroethylene (DDE) may play a role in the increased activity. Female cave swallows in Llano Grande appeared to have a greatly depressed brain aromatase activity, possibly attributed to past human use of toxaphene. Testicular and ovarian aromatase activity in cliff and cave swallows from Rio Grande was higher than in those from Somerville, though not always significantly. DDE, atrazine, sewage treatment plant contaminants (phthalates, alkylphenols, ethynylestradiol), metals, or other pollutants could play a role in the increased gonadal activity. Increased aromatase activity, in association with contaminants, may be easier to detect in testes of male birds which normally exhibit low levels of estrogen. Siterelated contaminants may be playing a role in DNA damage and aromatase alterations. This is the first known study which uses aromatase activity as an endocrine disruptor indicator in wild birds.

Sitzlar, Megan Annette

2005-12-01T23:59:59.000Z

426

Work plan for phase 1A paleochannel studies at the Cheney disposal cell, Grand Junction, Colorado: Draft  

Science Conference Proceedings (OSTI)

This document will serve as a Work Plan for continuing paleochannel characterization activities at the Cheney disposal site near Grand Junction, Colorado. Elevated levels of nitrate were encountered in ground water from two monitor wells installed in alluvial paleochannels near the Cheney disposal cell in 1994. This triggered a series of investigations (Phase 1) designed to determine the source of nitrate and other chemical constituents in ground water at the site. A comprehensive summary of the Phase 1 field investigations (limited to passive monitoring and modeling studies) conducted by the Remedial Action Contractor (RAC) and Technical Assistance Contractor (TAC) to date is provided in Section 2.0 of this document. Results of Phase 1 were inconclusive regarding the potential interaction between the disposal cell and the paleochannels, so additional Phase 1A investigations are planned. Recommendations for Phase 1A tasks and possible future activities are discussed in Section 3.0. Detailed information on the implementation of the proposed Phase 1A tasks appears in Section 4.0 and will provide the basis for Statements of Work (SOW) for each of these tasks. A detailed sampling plan is provided to ensure quality and a consistency with previous data collection efforts.

NONE

1996-11-01T23:59:59.000Z

427

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Chapters 1-11 U.S. Department of Energy Office of Environmental Management COVER SHEET Lead Agency: U.S. Department of Energy Cooperating Agencies: * National Park Service * Bureau of Land Management * U.S. Nuclear Regulatory Commission * U.S. Army Corps of Engineers * U.S. Fish and Wildlife Service * State of Utah * U.S. Environmental Protection Agency * Ute Mountain Ute Tribe * San Juan County * Grand County * City of Blanding * Community of Bluff Title: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (DOE/EIS-0355). Contact: For further information about this Environmental Impact Statement, contact: Don Metzler Moab Federal Project Director U.S. Department of Energy

428

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Summary U.S. Department of Energy Office of Environmental Management COVER SHEET Lead Agency: U.S. Department of Energy Cooperating Agencies: * National Park Service * Bureau of Land Management * U.S. Nuclear Regulatory Commission * U.S. Army Corps of Engineers * U.S. Fish and Wildlife Service * State of Utah * U.S. Environmental Protection Agency * Ute Mountain Ute Tribe * San Juan County * Grand County * City of Blanding * Community of Bluff Title: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (DOE/EIS-0355). Contact: For further information about this Environmental Impact Statement, contact: Don Metzler Moab Federal Project Director U.S. Department of Energy 2597 B ¾ Road

429

(DOE/EIS-0285/SA-99): Supplement Analysis for the Transmission System Vegetation Management Program FEIS -Olympia-Grand Coulee No.1 8/29/02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 9, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-99-Olympia-Grand Coulee No. 1 Don Atkinson - TFN/Snohomish Proposed Action: Vegetation Management along the Olympia-Grand Coulee No. 1, 287 kV transmission line from structure 53/4 through structure 64/1. Corridor width is 125 feet. Location: The project area is located within King County, Washington. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of-way, access roads and around tower structures along the subject transmission line corridor. Approximately 163 acres will be treated using selective and non-selective methods that include hand cutting, mowing and herbicide treatments. Vegetation management is required for unimpeded

430

Comparison of the Halpha equivalent width of HII regions in a flocculent and a grand design galaxy: possible evidences for IMF variations  

E-Print Network (OSTI)

We present here a study of the Halpha equivalent widths of the flocculent galaxy NGC 4395 and the grand design galaxy NGC 5457. A difference between the mean values of the Halpha equivalent widths for the two galaxies has been found. Several hypotheses are presented in order to explain this difference: differences in age, metallicity, star formation rate, photon leakage and initial mass function. Various tests and Monte Carlo models are used to find out the most probable cause of this difference. The resultsshow that the possible cause for the difference could be a variation in the initial mass function. This difference is such that it seems to favor a fraction of more massive stars in the grand design galaxy when compared with the flocculent galaxy. This could be due to a change of the environmental conditions due to a density wave.

Cedres, B; Tomita, A; Cedres, Bernabe; Cepa, Jordi; Tomita, Akihiko

2005-01-01T23:59:59.000Z

431

Comparison of the Halpha equivalent width of HII regions in a flocculent and a grand design galaxy: possible evidences for IMF variations  

E-Print Network (OSTI)

We present here a study of the Halpha equivalent widths of the flocculent galaxy NGC 4395 and the grand design galaxy NGC 5457. A difference between the mean values of the Halpha equivalent widths for the two galaxies has been found. Several hypotheses are presented in order to explain this difference: differences in age, metallicity, star formation rate, photon leakage and initial mass function. Various tests and Monte Carlo models are used to find out the most probable cause of this difference. The resultsshow that the possible cause for the difference could be a variation in the initial mass function. This difference is such that it seems to favor a fraction of more massive stars in the grand design galaxy when compared with the flocculent galaxy. This could be due to a change of the environmental conditions due to a density wave.

Bernabe Cedres; Jordi Cepa; Akihiko Tomita

2005-08-23T23:59:59.000Z

432

Geothermal investigations in Idaho. Part IV. Isotopic and geochemical analyses of water from the Bruneau-Grand View and Weiser areas, southwest Idaho  

DOE Green Energy (OSTI)

Variations of deuterium and oxygen-18 concentrations in thermal ground waters and local nonthermal springs have been used to aid in describing the source of recharge in the Bruneau-Grand View and Weiser areas, southwest Idaho. Isotope and geochemical data for the Bruneau-Grand View area suggest that recharge to the area may not be entirely from sources within the local surface-drainage area, but possibly from the areas of higher altitude of the Bruneau River drainage to the southeast; or that the hot water that wells and springs are discharging is water that was recharged at a time when the regional climate was much colder than the present climate. Recharge to the Weiser area is probably from areas of higher altitude to the north and northeast of the local drainage area. However, ''local'' precipitation does influence both the chemical and isotopic compositions of the waters in each area.

Rightmire, C.T.; Young, H.W.; Whitehead, R.L.

1976-01-01T23:59:59.000Z

433

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Grand Coulee-Creston  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Grand Coulee-Creston Transmission Line Rebuild Project Draft Environmental Assessment December 2013 DOE/EA-1950 Grand Coulee-Creston Transmission Line Rebuild Project Draft Environmental Assessment December 2013 DOE/EA-1950 This page left intentionally blank. Grand Coulee-Creston Transmission Line Rebuild Project i

434

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volumes IV Volumes IV Chapters 4 -5 Comment Responses U.S. Department of Energy Office of Environmental Management Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Final Environmental Impact Statement i Contents Volume IV 4.0 Responses............................................................................................................................4-1 4.1 Response Index Tables ..............................................................................................4-1 4.2 Responses to Comments ..........................................................................................4-70 5.0 References...........................................................................................................................5-1

435

BWRVIP-274: BWR Vessel and Internals Project, Evaluation of On-Line NobleChemTM Platinum Deposition on Grand Gulf Dry Tubes  

Science Conference Proceedings (OSTI)

Grand Gulf Nuclear Station (GGNS) removed nuclear instrumentation detector dry tubes from the reactor during their 2012 refueling outage due to cracks in the plunger tubes. The report describes the results from three tubes that were scraped on site in October 2012 to obtain samples of the platinum (Pt) deposition resulting from On-Line NobleChemTM (OLNC) applications done in 2010 and 2011.BackgroundOLNC along with hydrogen injection is used by ...

2013-05-09T23:59:59.000Z

436

Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Summary of results. Volume 1  

SciTech Connect

During 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to examine the potential risks during low power and shutdown operations. Two plants, Surry and Grand Gulf, were selected as the plants to be studied by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). This report documents the work performed during the analysis of the Grand Gulf plant. A phased approach was used for the overall study. In Phase 1, the objectives were to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenario frequencies and risks, and to provide a foundation for a detailed Phase 2 analysis. It was in Phase 1 that the concept of plant operational states (POSs) was developed to allow the analysts to better represent the plant as it transitions from power operation to nonpower operation than was possible with the traditional technical specification divisions of modes of operation. This phase consisted of a coarse screening analysis performed for all POSs, including seismic and internal fire and flood for some POSs. In Phase 2, POS 5 (approximately cold shutdown as defined by Grand Gulf Technical Specifications) during a refueling outage was selected as the plant configuration to be analyzed based on the results of the Phase 1 study. The scope of the Level 1 study includes plant damage state analysis and uncertainty analysis and is documented in a multi-volume NUREG/CR report (i.e., NUREG/CR-6143). The internal events analysis is documented in Volume 2. Internal fire and internal flood analyses are documented in Volumes 3 and 4, respectively. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. The Level 2/3 study of the traditional internal events is documented in Volume 6, and a summary of the results for all analyses is documented in Volume 1.

Whitehead, D.W. [ed.; Staple, B.D.; Daniel, S.L. [and others

1995-07-01T23:59:59.000Z

437

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado  

SciTech Connect

This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

Not Available

1994-06-01T23:59:59.000Z

438

Geothermal investigations in Idaho. Part 2. An evaluation of thermal water in the Bruneau-Grand View area, southwest Idaho  

DOE Green Energy (OSTI)

The Bruneau-Grand View area occupies about 1,100 square miles in southwest Idaho and is on the southern flank of the large depression in which lies the western Snake River Plain. The igneous and sedimentary rocks in the area range in age from Late Cretaceous to Holocene. The aquifers in the area have been separated into two broad units: (1) the v