Powered by Deep Web Technologies
Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001  

Office of Legacy Management (LM)

Grand Junction Disposal Site Grand Junction Disposal Site Uranium ore was processed at the Climax millsite at Grand Junction, Colorado, between 1951 and 1970. The milling operations created process-related waste and tailings, a sandlike material containing radioactive materials and other contaminants. The tailings were an ideal and inexpensive construction material suitable for concrete, mortar, and fill. Accordingly, the tailings were widely used in the Grand Junction area for these purposes. The U.S. Department of Energy (DOE) encapsulated the tailings and other contaminated materials from the millsite and more than 4,000 vicinity properties in the Grand Junction area in an engineered disposal cell. Part of the disposal cell was completed in 1994; the remainder of the cell remains open until it is

2

DOE/EA-1312: Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (September 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

3

EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

4

Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership  

SciTech Connect

The U.S. Department of Energy Grand Junction Office (DOE?GJO) in Grand Junction, Colorado, has played an integral role within the DOE complex for many years. GJO has a reputation for outstanding quality in the performance of complex environmental restoration projects, utilizing state-of-the-art technology. Many of the GJO missions have been completed in recent years. In 1998, DOE Headquarters directed GJO to reduce its mortgage costs by transferring ownership of the site and to lease space at a reasonable rate for its ongoing work. A local community group and GJO have entered into a sales contract; signing of the Quitclaim Deed is planned for February 16, 2001. Site transfer tasks were organized as a project with a critical-path schedule to track activities and a Site Transition Decision Plan was prepared that included a decision process flow chart, key tasks, and responsibilities. Specifically, GJO identified the end state with affected parties early on, successfully dealt with site contamination issues, and negotiated a lease-back arrangement, resulting in an estimated savings of more than 60 percent of facility maintenance costs annually. Lessons learned regarding these transition activities could be beneficial to many other sites.

none,

2001-02-01T23:59:59.000Z

5

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

6

DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/Grand Junction Office Bluewater LTSP DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii Contents Page 1.0 Introduction .........................................................................................................................................1 1.1 Purpose ................................................................................................................................1 1.2 Legal and Regulatory Requirements .................................................................................. 1 1.3 Role of the Department of Energy ..................................................................................... 2 1.4 Disposal of Mill Waste Containing Polychlorinated Biphenyls ........................................ 2 2.0 Bluewater Disposal Site .....................................................................................................................

7

Data Compendium for the Logging Test Pits at the ERDA Grand Junction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound...

8

EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30: Facility Operations at the U.S. DOE Grand Junction 30: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 8, 1996 EA-0930: Finding of No Significant Impact Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado June 8, 1996 EA-0930: Final Environmental Assessment Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand

9

EA-1037: Uranium Lease Management Program, Grand Junction, Colorado |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Uranium Lease Management Program, Grand Junction, Colorado 37: Uranium Lease Management Program, Grand Junction, Colorado EA-1037: Uranium Lease Management Program, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of domestic uranium and vanadium ores, to maintain a viable domestic mining and milling infrastructure required to produce and mill these ores, and to provide assurance of a fair monetary return to the U.S. Government. The Uranium Lease Management Program gives The Department of Energy the flexibility to continue leasing these lands. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 1995

10

City of Grand Junction, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Junction City of Grand Junction City of Place Iowa Utility Id 7486 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Demand Service Commercial Residential Eletric Residential Average Rates Residential: $0.1340/kWh Commercial: $0.1300/kWh Industrial: $0.0899/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Grand_Junction,_Iowa_(Utility_Company)&oldid=409673

11

EA-1338: Transfer of the Department of Energy Grand Junction Office to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Transfer of the Department of Energy Grand Junction Office 8: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 25, 2000 EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 25, 2000 EA-1338: Final Environmental Assessment Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership

12

U.S. Department of Energy at Grand Junction 2003 Annual Inspection⎯Monticello, Utah  

Office of Legacy Management (LM)

at Grand Junction 2003 Annual Inspection⎯Monticello, Utah at Grand Junction 2003 Annual Inspection⎯Monticello, Utah November 2003 Page 1 2003 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites Summary The Monticello site, which includes the U.S. Department of Energy (DOE) Monticello Mill Tailings Site (MMTS) and the Monticello Radioactively Contaminated Properties site, was inspected September 23-25, 2003. A follow-up inspection of the Soil and Sediment properties was conducted on October 8, 2003. The Monticello Radioactively Contaminated Properties site is also called the Monticello Vicinity Properties (MVP) and will be referred to as MVP in this report. Restoration work at MVP is complete and is nearly complete at MMTS. MVP is in good

13

DOE Grand Junction Projects Office Parkersburg LTSP  

NLE Websites -- All DOE Office Websites (Extended Search)

Parkersburg LTSP Parkersburg LTSP September 1995 Page ii Contents Page 1.0 Introduction.........................................................................................................................................1 1.1 Purpose ..........................................................................................................................................1 1.2 Background ...................................................................................................................................1 1.3 Regulatory Requirements .............................................................................................................1 2.0 Site Description and History .............................................................................................................3

14

DOE Grand Junction Projects Office Edgemont LTSP  

Office of Legacy Management (LM)

Edgemont LTSP Edgemont LTSP June 1996 Page ii Contents Page 1.0 Introduction ....................................................................................................................................... 1 1.1 Purpose ..................................................................................................................................... 1 1.2 Legal and Regulatory Requirements ........................................................................................ 1 1.3 Role of the Department of Energy ........................................................................................... 2 2.0 Final Site Conditions ......................................................................................................................... 3

15

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 2, Appendices: Final environmental impact statement  

SciTech Connect

This volume contains Appendix F--hydrology report, and Appendix G--flood plain and wetland assessment. Contents of the hydrology report include: surface water; ground water; potentially affected hydrogeologic environment-processing site; potentially affected hydrogeologic environment-Cheney reservoir site; potentially affected hydrogeologic environment-Two Road site; and conclusions-ground water.

none,

1986-12-01T23:59:59.000Z

16

Estimating commuter rail demand to Kendall Square along the Grand Junction Corridor .  

E-Print Network (OSTI)

??Since acquiring the Grand Junction Railroad in June 2010 from CSX, the Massachusetts Bay Transit Authority (MBTA) has explored the possibility of using the line (more)

Dohm, James

2012-01-01T23:59:59.000Z

17

Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monitoring of the Airport Calibration Pads at Walker Field, Grand Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) More Documents & Publications Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End Summary Report

18

DOE/EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Project Office To Non-DOE Ownership (04/25/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 F I N A L Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy * Grand Junction Office * 2597 B ¾ Road * Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final DOE/EA-1338 FINAL Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy Grand Junction Office 2597 B ¾ Road Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final i April 2000 TABLE OF CONTENTS Title Page Table of Contents ......................................................................................................................................... i List of Figures ............................................................................................................................................iii

19

Grand Junction, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Colorado: Energy Resources Junction, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0638705°, -108.5506486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0638705,"lon":-108.5506486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

LM Completes the Grand Junction, Colorado, Site Historical Wall Display  

Energy.gov (U.S. Department of Energy (DOE))

On Wednesday, October 8, a new display was unveiled at DOE Headquarters in Washington, DC, by DOE Deputy Under Secretary David Klaus. The display celebrates more than 70 years of operations at the...

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Grande  

NLE Websites -- All DOE Office Websites (Extended Search)

breaks ground on key sediment control project November 5, 2009 Structures will limit flow of sediments toward Rio Grande Los Alamos, New Mexico, November 5, 2009- Crews broke...

22

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and Abbreviations...........................................................................................................v Executive Summary...................................................................................................................... vii 1.0 Introduction.............................................................................................................................1

23

DOE/EA-1388: Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site (September 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

388 388 Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site Final September 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 This Page Intentionally Blank DOE Grand Junction Office EA of Ground Water Compliance at the Shiprock Site September 2001 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................ vii Executive Summary ....................................................................................................................... ix 1.0 Introduction .............................................................................................................................1

24

Long-Term Surveillance Plan for the Site A/Plot M Sites, Palos Forest Preserve, Cook COunty, Illinois  

Office of Legacy Management (LM)

Long-Term Surveillance Plan for the Site A/Plot M Sites Palos Forest Preserve, Cook County, Illinois September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC 99-06 Document Number S00218 DOE/Grand Junction Office Site A/Plot M LTSP September 1999 Page iii Contents 1.0 Introduction......................................................................................................................... 1- 1 1.1 Purpose....................................................................................................................... 1- 1 1.2 Legal and Regulatory Requirements.......................................................................... 1- 1

25

Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report October through December 2002  

Office of Legacy Management (LM)

700 700 GJO-2003-411-TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report October through December 2002 January 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 Task Order Number ST03-107 Document Number N0057700 Contents DOE/Grand Junction Office Northeast Site NAPL Interim Measures Progress Report January 2003 Page ii Contents Acronyms and Abbreviations ........................................................................................................ iii 1.0 Introduction ............................................................................................................................1

26

Quarterly Progress Report for the Young-Rainey STAR Center's 4.5 Acre Site  

Office of Legacy Management (LM)

600 600 GJO-2003-410-TAC GJO-PIN 25.5.1 Pinellas Environmental Restoration Project Quarterly Progress Report for the Young - Rainey STAR Center's 4.5 Acre Site October through December 2002 January 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 Task Order Number ST03-107 Document Number N0057600 Contents DOE/Grand Junction Office 4.5 Acre Site Quarterly Progress Report January 2003 Page iii Contents Acronyms and Abbreviations ..........................................................................................................v 1.0 Introduction ............................................................................................................................1

27

Comment and response document for the long-term surveillance plan for the Collins Ranch Disposal Site Lakeview, Oregon  

SciTech Connect

Twenty-nine comments from the US Nuclear Regulatory Commission and six from the Grand Junction Project Office for the long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon are documented along with their corresponding responses.

Not Available

1993-11-01T23:59:59.000Z

28

Monticello Mill Tailings Site Operable Unit I11 Remedial Investigation Addendum1  

Office of Legacy Management (LM)

Monticello Mill Tailings Site Monticello Mill Tailings Site Operable Unit I11 Remedial Investigation Addendum1 Focused Feasibility Study January 2004 Prepared by U.S. Department of Energy Grand Junction, Colorado Work performed under DOE Contract No. DE-AC1342GJ79491 DOE Task Order No. ST03-205 Document N u m b e r Q0029500 S i g t ~ a t u r e Page Signature Page Monticello Mill Tailings Site Operable Unit I11 Remedial Investigation Addendud Focused Feasibility Study January 2004 Submitted By: Arthur W. Kleinrath, Project Manager U.S. Department of Energy, Grand Junction, Colorado U.S. Department of Energyat Gmnd Junction MMTS OU 111 Remedial Investigation AddendutdFocuscd Feasibilily Study January 2004 Final iii This page intentionally left blank Document Number Q0029500 Contents U.S. Department of Energy at Grand Junction MMTS OU III Remedial Investigation Addendum/Focused Feasibility Study

29

Northeast Site Area A NAPL Remediation Final Report.doc  

Office of Legacy Management (LM)

82-TAC 82-TAC U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report September 2003 N0065200 GJO- 2003- 482- TAC GJO- PIN 13.12.10 Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report Young - Rainey STAR Center September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13- 02GJ79491 Document Number N0065200 Contents DOE/Grand Junction Office Northeast Site Area A NAPL Remediation Final Report September 2003 Page iii

30

DOE - Office of Legacy Management -- Monticello Mill Site - UT 03  

NLE Websites -- All DOE Office Websites (Extended Search)

Mill Site - UT 03 Mill Site - UT 03 FUSRAP Considered Sites Site: Monticello Mill Site (UT.03) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Monticello, Utah, Disposal and Processing Sites Documents Related to Monticello Mill Site Monticello Mill Tailings Site Operable Unit III Interim Remedial Action Progress Report July 1999-July 2000. GJO-2000-163-TAR. September 2000 U.S. Department of Energy at Grand Junction 2003 Annual Inspection Monticello, Utah November 2003 2005 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites December 2005 Office

31

DOE and Colorado Mesa University Education Agreement Expands LM's Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Colorado Mesa University Education Agreement Expands LM's and Colorado Mesa University Education Agreement Expands LM's Site Reuse Portfolio DOE and Colorado Mesa University Education Agreement Expands LM's Site Reuse Portfolio October 16, 2012 - 2:49pm Addthis Rich Bush, DOE Site Manager, explains the Grand Junction, Colorado, Disposal Site to Colorado Mesa University students. Rich Bush, DOE Site Manager, explains the Grand Junction, Colorado, Disposal Site to Colorado Mesa University students. DOE Site Manager Rich Bush explains the Enhanced Cover Assessment Project to Colorado Mesa University students while standing next to one of LM’s Systems Operation and Analysis at Remote Sites locations, which collects data remotely and transmits it to LM servers daily. DOE Site Manager Rich Bush explains the Enhanced Cover Assessment Project

32

Quarterly Progress Report for the Young-Rainey STAR Center's 4.5 Acre Site  

Office of Legacy Management (LM)

3-TAC 3-TAC GJO-PIN 25.5.1 Pinellas Environmental Restoration Project January through March 2003 Quarterly Progress Report for the Young-Rainey STAR Center's 4.5 Acre Site April 2003 Grand Junction Office U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. N0060800 GJO-2003-433-TAC GJO-PIN 25.5.1 Pinellas Environmental Restoration Project Quarterly Progress Report for the Young - Rainey STAR Center's 4.5 Acre Site January through March 2003 April 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 Task Order Number ST03-107

33

Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report-January through March 2003  

Office of Legacy Management (LM)

4-TAC 4-TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project January through March 2003 Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report April 2003 Grand Junction Office U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. N0060900 GJO-2003-434-TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report January through March 2003 April 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 Task Order Number ST03-107

34

Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site  

Office of Legacy Management (LM)

GJO-2000-177-TAR GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW-511-0017-12-000 Document Number U0066302 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Document Number U0066302 Contents DOE/Grand Junction Office Ground Water Compliance Action Plan for Old Rifle, Colorado

35

Global Structure of a Three-Way Junction in a Phi29 Packaging RNA Dimer Determined Using Site-Directed Spin Labeling  

SciTech Connect

The condensation of bacteriophage phi29 genomic DNA into its preformed procapsid requires the DNA packaging motor, which is the strongest known biological motor. The packaging motor is an intricate ring-shaped protein/RNA complex, and its function requires an RNA component called packaging RNA (pRNA). Current structural information on pRNA is limited, which hinders studies of motor function. Here, we used site-directed spin labeling to map the conformation of a pRNA three-way junction that bridges binding sites for the motor ATPase and the procapsid. The studies were carried out on a pRNA dimer, which is the simplest ring-shaped pRNA complex and serves as a functional intermediate during motor assembly. Using a nucleotide-independent labeling scheme, stable nitroxide radicals were attached to eight specific pRNA sites without perturbing RNA folding and dimer formation, and a total of 17 internitroxide distances spanning the three-way junction were measured using Double Electron-Electron Resonance spectroscopy. The measured distances, together with steric chemical constraints, were used to select 3662 viable three-way junction models from a pool of 65 billion. The results reveal a similar conformation among the viable models, with two of the helices (HT and HL) adopting an acute bend. This is in contrast to a recently reported pRNA tetramer crystal structure, in which HT and HL stack onto each other linearly. The studies establish a new method for mapping global structures of complex RNA molecules, and provide information on pRNA conformation that aids investigations of phi29 packaging motor and developments of pRNA-based nanomedicine and nanomaterial.

Zhang, Xiaojun; Tung, Chang-Shung; Sowa, Glenna; Hatmal, Ma'mon M.; Haworth, Ian S.; Qin, Peter Z.

2012-02-08T23:59:59.000Z

36

Nanotube junctions  

DOE Patents (OSTI)

The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

Crespi, Vincent Henry (Darien, IL); Cohen, Marvin Lou (Berkeley, CA); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

2003-01-01T23:59:59.000Z

37

Josephson junction  

SciTech Connect

A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

Wendt, Joel R. (Albuquerque, NM); Plut, Thomas A. (Albuquerque, NM); Martens, Jon S. (Sunnyvale, CA)

1995-01-01T23:59:59.000Z

38

Josephson junction  

SciTech Connect

A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

Wendt, J.R.; Plut, T.A.; Martens, J.S.

1995-05-02T23:59:59.000Z

39

Microsoft PowerPoint - GC webpage Site Map.ppt [Compatibility Mode]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Business Center Environmental Management Consolidated Business Center Consolidated Business Center Environmental Management Consolidated Business Center Office of Legal Services Office of Legal Services Client Sites Client Sites (Includes Environmental Management Mission Support and Legacy Management Sites) (Includes Environmental Management Mission Support and Legacy Management Sites) Arkansas SEFOR-Southwest Experimental Fast Oxide Reactor Arizona Tuba City- Tuba City Disposal Site California OAKLAND - Oakland Projects Office SLAC - Stanford Linear Accelerator Center ETEC - Energy Technology Engineering Center ETEC - Energy Technology Engineering Center GEVNC- GE Vallecitos Nuclear Center LBNL- Lawrence Berkley National Laboratory Colorado ROCKY FLATS - Rocky Flats LM- Grand Junction Office, Slick Rock Site, Rifle Sites and Rulison Site

40

DOE - Office of Legacy Management -- WNI Sherwood Site - 039  

NLE Websites -- All DOE Office Websites (Extended Search)

Sherwood Site - 039 Sherwood Site - 039 FUSRAP Considered Sites Site: WNI Sherwood Site (039) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in the State of Washington. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority milling conducted at this site was for private sale. After the owner completes NRC license termination the Department of Energy¿s Grand Junction Office will be responsible for providing stewardship for the groundwater and disposal

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE - Office of Legacy Management -- Chevron Panna Maria Site - 030  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevron Panna Maria Site - 030 Chevron Panna Maria Site - 030 FUSRAP Considered Sites Site: Chevron Panna Maria Site (030) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Texas. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The milling conducted at this site was for private sale. After the owner completes U. S. Nuclear Regulatory Commission license termination the Department of Energy¿s Grand Junction Office will be responsible for providing stewardship for the groundwater and disposal

42

DOE - Office of Legacy Management -- Hecla Durita Site - 012  

NLE Websites -- All DOE Office Websites (Extended Search)

Hecla Durita Site - 012 Hecla Durita Site - 012 FUSRAP Considered Sites Site: Hecla Durita Site (012 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hecla site is a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II site located in Durita, Colorado. UMTRCA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority of milling conducted at this site was for private sale. After the owner completes U.S. Nuclear Regulatory Commission license termination, the Department of Energy's Grand Junction Office will be responsible for providing

43

Monticello Mill Tailings Site Operable Unit III Ecological Risk  

Office of Legacy Management (LM)

Monticello Monticello Mill Tailings Site Operable Unit III Ecological Risk Assessment September 1998 Prepared by U.S. Department of Energy Grand JunctionOffice Grand Junction, Colorado Project Number MSG-035-0004-00-000 Document Number Q0002l 00 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC98-03 This page intentionally blank , ** 1 ( ( Document Number Q00021 00 Contents Contents Page Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ix Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xi 1.0 Introduction I-I 2.0 Problem Formulation : 2-1 2.1 Site Description 2-1 2.1.1 Physical Setting 2-1 2.1.2 Ecological Setting '.' 2-5 2.2 Ecological Contaminants of Concern 2-9 2.3 Contaminant Fate and Transport, Ecosystems Potentially at Risk, and Complete Exposure Pathways 2-11 i3.1

44

Junction Hilltop Wind | Open Energy Information  

Open Energy Info (EERE)

Junction Hilltop Wind Junction Hilltop Wind Jump to: navigation, search Name Junction Hilltop Wind Facility Junction Hilltop Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Community Owned Developer Tom Wind & Bill Sutton Energy Purchaser Interstate Power and Light (Alliant Energy) Location Grand Junction IA Coordinates 42.04671131°, -94.23969269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.04671131,"lon":-94.23969269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Labs and Field Site Histories | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historical Resources » Labs Historical Resources » Labs and Field Site Histories Labs and Field Site Histories Labs and Field Site Histories Note: Every effort is made to keep these links current and updated. Yet as many of the links below point to sites not under our direct control, some may stop working without warning . National Laboratories & Technology Centers Operations Offices & Field Sites Ames Laboratory (Iowa) -- History Chicago Office (Illinois) -- History Argonne National Laboratory (Illinois) -- Laboratory History and Timeline Fernald Environmental Management Project (Ohio) -- Site History Brookhaven National Laboratory (New York) -- Tour Brookhaven's History Grand Junction (Colorado) -- Site Description and History (pdf - less than 1MB) Fermi National Accelerator Laboratory (Illinois) -- History Idaho Operations Office (Idaho) -- Site History

46

Finding  

Office of Legacy Management (LM)

Junction UMTRA Project Site (Climax Uranium Millsite) September 1999 U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Finding of No Significant Impact...

47

DOE/EIS-0485 Draft Environmental Impact Statement Grande Prairie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1000 Independence Avenue SW Washington, DC 20585 Telephone: (800) 472-2756 DOE NEPA Web Site: http:energy.gov nepaoffice-nepa-policy-and-compliance ABSTRACT: Grande...

48

Solar Junction | Open Energy Information  

Open Energy Info (EERE)

Junction Jump to: navigation, search Name: Solar Junction Place: San Jose, California Zip: CA 95131 Sector: Efficiency, Solar Product: Solar Junction is developing high efficiency...

49

Savings Along the Rio Grande  

E-Print Network (OSTI)

economics team. This model calculates life-cycle costs of desalination per acre-foot and per thousand gallons. The team designed this model for economic and financial analyses of desalination facilities and the model is broadly applicable across many...- friendly framework for Rio Grande Basin Web sites, adding real-time data, query functions and other data to the water resources database. They are also developing an interactive statewide county mapping system to provide a resource geographic...

Supercinski, Danielle

2007-01-01T23:59:59.000Z

50

Holographic Josephson Junctions  

SciTech Connect

We construct a gravitational dual of a Josephson junction. Calculations on the gravity side reproduce the standard relation between the current across the junction and the phase difference of the condensate. We also study the dependence of the maximum current on the temperature and size of the junction and reproduce familiar results.

Horowitz, Gary T.; Santos, Jorge E.; Way, Benson [Department of Physics, University of California, Santa Barbara, California 93106-4030 (United States)

2011-06-03T23:59:59.000Z

51

A Holographic Josephson Junction  

E-Print Network (OSTI)

We construct a gravitational dual of a Josephson junction. Calculations on the gravity side reproduce the standard relation between the current across the junction and the phase difference of the condensate. We also study the dependence of the maximum current on the temperature and size of the junction and reproduce familiar results.

Gary T. Horowitz; Jorge E. Santos; Benson Way

2012-02-23T23:59:59.000Z

52

Summary of Weldon Spring Site Focus Area  

Office of Legacy Management (LM)

of Weldon Spring Site Focus Area of Weldon Spring Site Focus Area Work Session February 5, 2003 Weldon Spring Interpretive Center Focus Area: Monitoring and Maintenance This was the third of three work sessions that focus on specific issues addressed in the draft Long-Term Stewardship Plan for the Weldon Spring, Missouri, Site, dated August 9, 2002. At 6:00 p.m., before the start of the work session, Dan Collette, Technical Support Manager for S.M. Stoller, the U.S. Department of Energy (DOE) Grand Junction Office (GJO) contractor, gave a demonstration of the on-line document retrieval and geographic information systems. Introduction Dave Geiser, DOE Headquarters Director of the Office of Long-Term Stewardship, discussed a DOE Headquarters proposal to establish the Office of Legacy Management in fiscal year 2004.

53

LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Co-Hosts Internatonal Workshop on Uranium Legacy Sites Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites October 16, 2012 - 1:51pm Addthis LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites What does this project do? Goal 1. Protect human health and the environment The U.S. Department of Energy (DOE) Office of Legacy Management (LM) co-hosted, with the International Atomic Energy Agency (IAEA), a week of visits to DOE sites in Colorado and Utah, and a 4-day workshop in Grand Junction, Colorado. More than 30 visitors from 20 countries attended the event in August 2012. The IAEA International Workshop on Management and

54

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

55

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

56

Holographic SIS Josephson Junction  

E-Print Network (OSTI)

We construct a holographic model for the superconductor-insulator-superconductor (SIS) Josephson junction at zero temperature by considering a complex scalar field coupled with a U(1) gauge field in the four dimensional Anti de Sitter soliton background. As a result, we successfully reproduce many characteristic features of the Josephson junction in condensed matter physics, such as the sine relation between the DC current and the phase difference across the junction.

Wang, Yong-Qiang; Cai, Rong-Gen; Takeuchi, Shingo; Zhang, Hai-Qing

2012-01-01T23:59:59.000Z

57

News Release: 2010 UMTRCA Title I and Title II Disposal Sites Reports  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 UMTRCA Title I and Title II Disposal Sites 2010 UMTRCA Title I and Title II Disposal Sites Reports Available News Release: 2010 UMTRCA Title I and Title II Disposal Sites Reports Available February 23, 2011 - 9:51am Addthis News Contact: DOE, Rich Bush, UMTRCA Program Lead (970) 248-6073 Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs (720) 377-9672 Grand Junction, Colo. - The U.S. Department of Energy announces the availability of the 2010 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites and the 2010 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites reports. In 2010, DOE's Office of Legacy Management was responsible for providing long-term surveillance and maintenance services at 25 uranium mill tailings

58

Quantum Junction Solar Cells  

Science Journals Connector (OSTI)

Quantum Junction Solar Cells ... Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, M5S 3G4, Canada ...

Jiang Tang; Huan Liu; David Zhitomirsky; Sjoerd Hoogland; Xihua Wang; Melissa Furukawa; Larissa Levina; Edward H. Sargent

2012-08-10T23:59:59.000Z

59

Josephson junction element  

SciTech Connect

A sandwich-type josephson junction element wherein a counter electrode is made of a mo-re alloy which contains 10-90 atomic-% of re. The josephson junction element has a high operating temperature, and any deterioration thereof attributed to a thermal cycle is not noted.

Kawabe, U.; Tarutani, Y.; Yamada, H.

1982-03-09T23:59:59.000Z

60

Three-junction solar cell  

DOE Patents (OSTI)

A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

Ludowise, Michael J. (Cupertino, CA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Holographic SIS Josephson Junction  

E-Print Network (OSTI)

We construct a holographic model for the superconductor-insulator-superconductor (SIS) Josephson junction at zero temperature by considering a complex scalar field coupled with a Maxwell field in the four-dimensional anti-de Sitter soliton background. From the gravity side we reproduce the sine relation between the Josephson current and the phase difference across the junction. We also study the dependence of the maximal current on the dimension of the condensate operator and on the width of the junction, and obtain expected results.

Yong-Qiang Wang; Yu-Xiao Liu; Rong-Gen Cai; Shingo Takeuchi; Hai-Qing Zhang

2012-09-23T23:59:59.000Z

62

Monticello Mill Tailings Site Operable Unit Ill Interim Remedial Action  

Office of Legacy Management (LM)

Site Site Operable Unit Ill Interim Remedial Action Mark Perfxmed Under DOE Contrici No. DE-AC13-96CJ873.35 for th3 U.S. De[:ar!menf of Energy app~oveJioi'ptiL#ic re1ease;dCinWlionis Unlimilra' This page intentionally left blank Monticello Mill Tailings Site Operable Unit I11 Interim Remedial Action Annual Status Report August 1999 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Project Number MSG-035-0011-00-000 Document Number Q0017700 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC99-03 This page intentionally blank Document Number Q0017700 Acronyms Contents Page ACRONYMS .............................................................................................................................. V

63

Final Report Northeast Site Area B NAPL Remediation Project  

Office of Legacy Management (LM)

Northeast Site Area B Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Office of Legacy Management DOE M/1457 2007 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1457-2007 Final Report Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado

64

Long-Term Surveillance and Monitoring Program Annual Site Inspection and Monitoring Report  

Office of Legacy Management (LM)

Monitoring Program Monitoring Program Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites Annual Report for the Period January 1,1998, Through December 31,1998 February 1999 This file contains inspection data for the Shiprock Site only. Long-Term Surveillance and Monitoring Program Annual Site inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites 1998 Annual Report February 1999 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-966587335 Task Order Number MAC 99-06 Document Number SO0184 Contents Page 1.0 Introduction .......................................................... SHP-I

65

DOE/EA-1313: Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site (03/22/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1313 DOE/EA-1313 Rev. 0 Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site Final March 2005 Prepared by U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Document Number U0069700 This Page Intentionally Blank DOE Office of Legacy Management EA of Ground Water Compliance at the Monument Valley Site March 2005 Final Page iii Contents Page Acronyms and Abbreviations ....................................................................................................... vii Executive Summary.......................................................................................................................

66

Microsoft Word - 09012033_DVP.doc  

Office of Legacy Management (LM)

Grand Junction, Grand Junction, Colorado, Office Site April 2009 LMS/GJO/S00209 This page intentionally left blank U.S. Department of Energy DVP-February 2009, Grand Junction, Colorado, Office Site April 2009 RIN 09012033 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction Site, Sample Location Map ....................................................................................4 Data Assessment Summary..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

67

Modeling Schottky barrier SINIS junctions  

E-Print Network (OSTI)

: cond-mat/0001269 J. K. Freericks, Georgetown University, Josephson Junction talk, 2001 #12;Josephson). J. K. Freericks, Georgetown University, Josephson Junction talk, 2001 S I S I I V V Ic #12 University, Josephson Junction talk, 2001 S N S I I V V Ic #12;Digital Electronics and RSFQ logic · Rapid

Freericks, Jim

68

Superconductive tunnel junction integrated circuit  

SciTech Connect

Josephson Junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson Junction electrode for the Josephson Junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson Junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groundplane function and the Josephson Junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed.

Jillie, D.W. Jr.; Smith, L.N.

1984-02-07T23:59:59.000Z

69

Spin Torques in Magnetic and Superconducting Tunnel Junctions  

E-Print Network (OSTI)

Josephson Junctions . . . . . . . . . . . . . . . . . . . . .Nonlinear Dynamics in a Magnetic Josephson Junction . . . .in a magnetic Josephson junction. Phys. Rev. B, 86:

Hoffman, Silas Eli

2012-01-01T23:59:59.000Z

70

2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites  

SciTech Connect

This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

none,

2014-03-01T23:59:59.000Z

71

DOE Moab Site Cost-Effectively Eliminates 200 Million Gallons of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Site Cost-Effectively Eliminates 200 Million Gallons of Moab Site Cost-Effectively Eliminates 200 Million Gallons of Contaminated Ground Water DOE Moab Site Cost-Effectively Eliminates 200 Million Gallons of Contaminated Ground Water July 29, 2013 - 12:00pm Addthis View of the evaporation pond (right center) on the tailings pile with the forced-air evaporators running. The extraction wells are between the pile and the Colorado River, which can be seen in the lower left. View of the evaporation pond (right center) on the tailings pile with the forced-air evaporators running. The extraction wells are between the pile and the Colorado River, which can be seen in the lower left. Media Contacts Donald Metzler, donald.metzler@gjem.doe.gov (970) 257-2115 Wendee Ryan, wryan@gjemtac.doe.gov (970) 257-2145 Grand Junction, CO - The Department of Energy (DOE) announced today that

72

<GrandPrairie>  

NLE Websites -- All DOE Office Websites (Extended Search)

Grande Praire Wind Farm, O'Neill, NE Grande Praire Wind Farm, O'Neill, NE The Western Area Power Administration (Western), an agency of the Department of Energy (DOE), intends to prepare an environmental impact statement (EIS) on the proposed interconnection of the Grande Prairie Wind Farm (Project) in Holt County, near the city of O'Neill, Nebraska. Grande Prairie Wind, LLC (Grande Prairie), a subsidiary of Midwest Wind Energy Development Group, LLC, has applied to Western to interconnect their proposed Project to Western's power transmission system. Western is issuing this notice to inform the public and interested parties about Western's intent to prepare an EIS, conduct a public scoping process, and invite the public to comment on the scope, proposed action, alternatives, and other issues to be addressed in the EIS.

73

Macroscopic quantum tunneling in Josephson junctions -  

E-Print Network (OSTI)

Macroscopic quantum tunneling in Josephson junctions - a method to characterise a well-shielded low Theory 5 1. The classical theory of Josephson junctions . . . . . . . . . . . . . . . . . 9 1-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Josephson junction dynamics . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 The basics

Gross, Rudolf

74

Grand Challenge Portfolio: Driving Innovations in Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January...

75

EV Everywhere Grand Challenge Overview Presentation | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI. 2-danielson.pdf More Documents & Publications EV Everywhere Grand Challenge...

76

Moab Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Site Moab Site Moab Site Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab Two scrapers work together to excavate Mancos Shale at the Crescent Junction site to create the second portion of a disposal cell for uranium mill tailings One of two gantry cranes that load and unload tailings containers from the railcars is pictured on the hillside rail bench west of Moab

77

DOE Site HSPD-12 Card Issuance Performance Measures 10-8-10.xls  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Field Sub-Total Savannah River Operations Office / SRS Oak Ridge - ETTP Idaho Operations Office / INL Richland Operations Office / Office of River Protection / Hanford Site Strategic Petroleum Reserve Office / SPR Site National Energy Technology Laboratory Golden Field Office National Renewable Energy Laboratory EMCBC Carlsbad Field Office / Waste Isolation Pilot Plant Portsmouth / Paducah DOE Naval Petroleum Reserves LM - Grand Junction / Ohio / Morgantown / Rocky Flats % of Target Sponsored 98% 99% 100% 96% 100% 100% 100% 100% 0% 100% 100% 98% 0% 100% % of Target Enrolled 94% 98% 94% 88% 99% 93% 99% 100% 0% 97% 99% 90% 0% 100% % of Target Delivered 90% 97% 93% 80% 89% 89% 98% 100% 0% 97% 91% 90% 0% 96% % of Target Activated 88% 96% 89% 76% 87% 87% 98% 100% 0% 96% 90% 86% 0% 92% 0% 20% 40% 60% 80% 100% HSPD-12 Card Issuance -

78

Hydrogen Storage Grand Challenge Centers of Excellence  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Hydrogen Storage Grand Challenge Centers of Excellence and partners, led by NREL, SNL, and LANL

79

Josephson junction Q-spoiler  

DOE Patents (OSTI)

An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

Clarke, John (Berkeley, CA); Hilbert, Claude (Austin, TX); Hahn, Erwin L. (Berkeley, CA); Sleator, Tycho (Berkeley, CA)

1988-01-01T23:59:59.000Z

80

Josephson junction Q-spoiler  

DOE Patents (OSTI)

An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

1986-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Influences of vegetation characteristics and invertebrate abundance of Rio Grande wild turkey populations, Edwards Plateau, Texas  

E-Print Network (OSTI)

Since 1970, Rio Grande wild turkey (Meleagris gallapavo intermedia) numbers in the southern region of the Edwards Plateau of Texas have been declining. Nest-site characteristics and invertebrate abundance were hypothesized as limiting wild turkey...

Randel, Charles Jack

2005-02-17T23:59:59.000Z

82

Duality in Josephson Junction Arrays  

E-Print Network (OSTI)

Various properties of mesoscopic two-dimensional Josephson junction arrays are reviewed. Particular attention is paid to structure of the topological excitations, charges and vortices, which are shown to be dual to each other. This duality persists in the presence of external magnetic fields and offset charges, which influence vortices and charges in an equivalent way. A double-layer junction array is also considered, where an even further reaching duality is discovered.

Ya. M. Blanter; Rosario Fazio; Gerd Schoen

1997-01-30T23:59:59.000Z

83

Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes  

SciTech Connect

This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

Beach, R.; Burdick, A.

2014-03-01T23:59:59.000Z

84

Theoretical exploration of Josephson Plasma Emission in Intrinsic Josephson Junctions  

SciTech Connect

In this paper, the authors theoretically predict the best efficient way for electromagnetic wave emission by Josephson plasma excitation in intrinsic Josephson junctions. First, they briefly derive basic equations describing dynamics of phase differences inside junction sites in intrinsic Josephson junctions, and review the nature of Josephson plasma excitation modes based on the equations. Especially, they make an attention to that Josephson plasma modes have much different dispersion relations depending on the propagating directions and their different modes can be recognized as N standing waves propagating along ah-plane in cases of finite stacked systems composed of N junctions. Second, they consider how to excite their modes and point out that excitations of in-phase mode with the highest propagation velocity among their N modes are the most efficient way for electromagnetic wave emissions. Finally, they clarify that in-phase excitations over all junctions are possible by using Josephson vortex flow states. They show simulation results of Josephson vortex flow states resonating with some Josephson plasma modes and predict that superradiance of electromagnetic field may occur in rectangular vortex flow state in which spatiotemporal oscillations of electromagnetic fields are perfectly in-phase.

Tachiki, M.; Machida, M.

2000-07-18T23:59:59.000Z

85

Fernald Preserve Visitors Center Grand Opening and LEED Platinum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald Preserve Visitors Center Grand Opening and LEED Platinum Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to do three things here at Fernald: to close it, to clean it up and to give it back to the community. I'm proud to say we have fulfilled that commitment safely and ahead of schedule. Less than two years ago, I was here with Secretary Bodman as he announced the completion of a $4.4 billion clean up operation. Since then, we have

86

Fernald Preserve Visitors Center Grand Opening and LEED Platinum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald Preserve Visitors Center Grand Opening and LEED Platinum Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to do three things here at Fernald: to close it, to clean it up and to give it back to the community. I'm proud to say we have fulfilled that commitment safely and ahead of schedule. Less than two years ago, I was here with Secretary Bodman as he announced the completion of a $4.4 billion clean up operation. Since then, we have

87

Winners Announced for the NNSA Grand Challenge Competition | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

Winners Announced for the NNSA Grand Challenge Competition Winners Announced for the NNSA Grand Challenge Competition Winners Announced for the NNSA Grand Challenge Competition December 11, 2013 - 1:23pm Addthis President Carlton Brown of Clark Atlanta University pictured here with winning students junior Jules Henry (Electrical Engineering/Computer Science) and sophomore KeAndra Goodman (Electrical Engineering/Physics). President Carlton Brown of Clark Atlanta University pictured here with winning students junior Jules Henry (Electrical Engineering/Computer Science) and sophomore KeAndra Goodman (Electrical Engineering/Physics). Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact The first year of the Minority Serving Institution Partnership Program with the Department of Energy site Kansas City Plant was a fruitful one. The two

88

Electromagnetically Induced Transparency in a Double Well Atomic Josephson Junction  

E-Print Network (OSTI)

observation of these Josephson junction resonances. 2.dressed Bose condensed Josephson junction Let us consider ain a Double Well Atomic Josephson Junction J.O. Weatherall

Weatherall, J. O.; Search, C. P.

2009-01-01T23:59:59.000Z

89

EV Everywhere Grand Challenge Overview | Department of Energy  

Office of Environmental Management (EM)

2danielsoncaci.pdf More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Overview EV Everywhere Grand...

90

Microsoft Word - toc.doc  

Office of Legacy Management (LM)

CO Site Safety Supervisor Joe Slade Contractor Monticello, UT LM Records Lead Cindy Smith Contractor Grand Junction, CO LM Records Coordinator Dianna Roberts Contractor Grand...

91

u0052100_Beav.PDF  

Office of Legacy Management (LM)

312 312 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

92

Alexey Ustinov Two-level fluctuators in Josephson junctions Josephson junction as a tool to  

E-Print Network (OSTI)

Alexey Ustinov Two-level fluctuators in Josephson junctions Josephson junction as a tool;Alexey Ustinov Two-level fluctuators in Josephson junctions Outline JJ phase qubit Microwave spectroscopy. Ustinov. ArXiv:0909.3425 #12;Alexey Ustinov Two-level fluctuators in Josephson junctions Josephson tunnel

Fominov, Yakov

93

Precision measurement with an optical Josephson junction  

E-Print Network (OSTI)

We study a new type of Josephson device, the so-called "optical Josephson junction" as proposed in Phys. Rev. Lett. {\\bf 95}, 170402 (2005). Two condensates are optically coupled through a waveguide by a pair of Bragg beams. This optical Josephson junction is analogous to the usual Josephson junction of two condensates weakly coupled via tunneling. We discuss the use of this optical Josephson junction, for making precision measurements.

H. T. Ng; K. Burnett; J. A. Dunningham

2006-11-18T23:59:59.000Z

94

Precision measurement with an optical Josephson junction  

SciTech Connect

We present a theoretical study of a type of Josephson device, the so-called 'optical Josephson junction' [Y. Shin et al. Phys. Rev. Lett. 95, 170402 (2005).]. In this device, two condensates are optically coupled through a waveguide by a pair of Bragg beams. This optical Josephson junction differs from the usual Josephson junction where condensates are weakly coupled by tunneling through a barrier. We discuss the use of this optical Josephson junction, for making precision measurements.

Ng, H. T.; Burnett, K. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Dunningham, J. A. [School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom)

2007-06-15T23:59:59.000Z

95

Dynamics of Josephson-junction ladders  

SciTech Connect

We have numerically studied dynamical behaviors of Josephson-junction ladders consisting of [ital N][sub [ital p

Kim, J. (Department of Physics, Basic Science Research Institute, Pohang Institute of Science and Technology, Pohang P.O. Box 125, Kyungbuk 790-600 (Korea, Republic of) Division of Basic Science Research, Research Institute of Industrial Science and Technology, Pohang P.O. Box 135, Kyungbuk 790-600 (Korea, Republic of)); Choe, W.G.; Kim, S. (Department of Physics, Basic Science Research Institute, Pohang Institute of Science and Technology, Pohang P.O. Box 125, Kyungbuk 790-600 (Korea, Republic of)); Lee, H.J. (Department of Physics, Basic Science Research Institute, Pohang Institute of Science and Technology, Pohang P.O. Box 125, Kyungbuk 790-600 (Korea, Republic of) Division of Basic Science Research, Research Institute of Industrial Science and Technology, Pohang P.O. Box 135, Kyungbuk 790-600 (Korea, Republic of))

1994-01-01T23:59:59.000Z

96

EV Everywhere Grand Challenge Blueprint  

NLE Websites -- All DOE Office Websites (Extended Search)

A Message from A Message from the Assistant Secretary Every challenge presents an even greater opportunity, and the EV Everywhere Grand Challenge is no exception. The need for clean energy solutions drives the most important economic development race of the 21st century, providing opportunity for America to invent, manufacture, and export clean energy technologies. Recognizing that vehicle electrification is an essential part of our country's "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to be the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

97

The Lifetime of Grand Design  

E-Print Network (OSTI)

The lifetime of the structure in grand design spiral galaxies is observationally ill-determined, but is essentially set by how accurately the pattern's rotation can be characterized by a single angular pattern speed. This paper derives a generalized version of the Tremaine-Weinberg method for observationally determining pattern speeds, in which the pattern speed is allowed to vary arbitrarily with radius. The departures of the derived pattern speed from a constant then provides a simple metric of the lifetime of the spiral structure. Application of this method to CO observations of NGC 1068 reveal that the pattern speed of the spiral structure in this galaxy varies rapidly with radius, and that the lifetime of the spiral structure is correspondingly very short. If this result turns out to be common in grand-design spiral galaxies, then these features will have to be viewed as highly transient phenomena.

M. R. Merrifield; R. J. Rand; S. E. Meidt

2005-11-02T23:59:59.000Z

98

Quantum effects in nanoscale Josephson junction circuits  

E-Print Network (OSTI)

Quantum effects in nanoscale Josephson junction circuits SILVIA CORLEVI Doctoral Thesis Stockholm Josephson junction arrays with SQUID geometry. TRITA FYS 2006:31 ISSN 0280-316X ISRN KTH/FYS/­06:31­SE ISBN study on single-charge effects in nanoscale Josephson junctions and Cooper pair transistors (CPTs

Haviland, David

99

Rio Grande Wild Turkey in Texas: Biology and Management  

E-Print Network (OSTI)

). Breeding in Rio Grande wild turkeys in Texas usually begins in early spring in southern Texas and continues through July and August in central and northern Texas (Table 1). After breeding, hens seek out potential nesting sites, such as thick grass... brush cover and structure. Mechanical methods kill the tops of plants, but many brush species vigorously re-sprout from the roots. Prescribed burning or spot treatments with herbicide can lengthen the life of the original treatment. Figure 19. When...

Cathey, James; Melton, Kyle; Dreibelbis, Justin; Cavney, Bob; Locke, Shawn; DeMaso, Stephen; Schwertner, T. Wayne; Collier, Bret

2007-09-11T23:59:59.000Z

100

Josephson-junction logic device  

SciTech Connect

A Josephson-junction logic device having inductances and forming and AND circuit is described comprising: at least two superconductive loops, each having at least two Josephson-junction elements and a loop inductance connected between each of at least two Josephson-junction elements; at least two logic input signal lines, operatively connected to receive input currents, for supplying logic input signals; a bias line, operatively connected to at least two super conductive loops, for supplying a bias current to at least two superconductive loops, the bias current satisfying the condition vertical bar I/sub ml/ vertical bar > vertical bar I/sub mo/ vertical bar, where I/sub ml/ is a first threshold current, for switching the AND circuit, determined when at least two logic input signal lines receive different magnitude input currents and where I/sub mo/ is a second threshold current for switching the AND circuit, determined when at least two logic input signal lines receive the same magnitude input currents; and output terminals, operatively connected to one of at least two Josephson-junction elements, for outputting a logic output signal as a result of a logic operation performed on the logic input signals, whereby an operating margin of the AND circuit is expanded.

Suzuki, H.

1987-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Junction Diode Basic Operation  

E-Print Network (OSTI)

section of the diode. The junction is the dividing line between the n-type and p-type sides. Thermal biased diode. Figure 1(b) shows the diode with a battery connected across it. The polarity of the battery. Figure 1(c) shows the diode with the battery polarity reversed. The battery now tends to cancel out

Leach Jr.,W. Marshall

102

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Method of manufacturing Josephson junction integrated circuits  

SciTech Connect

Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed.

Jillie Jr., D. W.; Smith, L. N.

1985-02-12T23:59:59.000Z

104

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and 355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Summary The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water

105

Microsoft Word - 13025100 DVP.docx  

Office of Legacy Management (LM)

Grand Junction, Colorado, Site Grand Junction, Colorado, Site April 2013 LMS/GJO/S00213 This page intentionally left blank U.S. Department of Energy DVP-February 2013, Grand Junction, Colorado April 2013 RIN 13025100 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction Site, Sample Location Map ....................................................................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7 Laboratory Performance Assessment ..........................................................................................9

106

Grand Challenges of Enterprise Integration  

SciTech Connect

Enterprise Integration connects and combines people, processes, systems, and technologies to ensure that the right people and the right processes have the right information and the right resources at the right time. A consensus roadmap for Technologies for Enterprise Integration was created as part of an industry/government/academia partnership in the Integrated Manufacturing Technology Initiative (IMTI). Two of the grand challenges identified by the roadmapping effort will be addressed here--Customer Responsive Enterprises and Totally Connected Enterprises. Each of these challenges is briefly discussed as to the current state of industry and the future vision as developed in the roadmap.

Brosey, W.D; Neal, R.E.; Marks, D.

2001-04-01T23:59:59.000Z

107

OBSERVATION OF ZERO POINT FLUCTUATIONS IN A RESISTIVELY SHUNTED JOSEPHSON TUNNEL JUNCTION  

E-Print Network (OSTI)

resistively shunted Josephson junctions in which quantumresistively shunted Josephson junction. For measurementresistively shunted Josephson junction in the quantum limit.

Koch, Roger H.

2012-01-01T23:59:59.000Z

108

Josephson junctions and dark energy  

E-Print Network (OSTI)

In a recent paper Beck and Mackey [astro-ph/0603397] argue that the argument we gave in our paper [Phys. Lett. B 606, 77 (2005)] to disprove their claim that dark energy can be discovered in the Lab through noise measurements of Josephson junctions is incorrect. In particular, they emphasize that the measured noise spectrum in Josephson junctions is a consequence of the fluctuation dissipation theorem, while our argument was based on equilibrium statistical mechanics. In this note we show that the fluctuation dissipation relation does not depend upon any shift of vacuum (zero-point) energies, and therefore, as already concluded in our previous paper, dark energy has nothing to do with the proposed measurements.

Philippe Jetzer; Norbert Straumann

2006-04-25T23:59:59.000Z

109

Site Index - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page |Text Increase Font Size Decrease...

110

String junctions and holographic interfaces  

Science Journals Connector (OSTI)

In this paper we study half-BPS type IIB supergravity solutions with multiple AdS3S3M4 asymptotic regions, where M4 is either T4 or K3. These solutions were first constructed in [M. Chiodaroli, M. Gutperle, and D. Krym, J. High Energy Phys. 02 (2010) 066.] and have geometries given by the warped product of AdS2S2M4 over ?, where ? is a Riemann surface. We show that the holographic boundary has the structure of a star graph, i.e. n half-lines joined at a point. The attractor mechanism and the relation of the solutions to junctions of self-dual strings in six-dimensional supergravity are discussed. The solutions of [M. Chiodaroli, M. Gutperle, and D. Krym, J. High Energy Phys. 02 (2010) 066.] are constructed introducing two meromorphic and two harmonic functions defined on ?. We focus our analysis on solutions corresponding to junctions of three different conformal field theories and show that the conditions for having a solution charged only under Ramond-Ramond three-form fields reduce to relations involving the positions of the poles and the residues of the relevant harmonic and meromorphic functions. The degeneration limit in which some of the poles collide is analyzed in detail. Finally, we calculate the holographic boundary entropy for a junction of three CFTs and obtain a simple expression in terms of poles and residues.

Marco Chiodaroli, Michael Gutperle, Ling-Yan Hung, and Darya Krym

2011-01-05T23:59:59.000Z

111

Photo of the Week: An Express Train to Crescent Junction | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Express Train to Crescent Junction An Express Train to Crescent Junction Photo of the Week: An Express Train to Crescent Junction January 4, 2013 - 1:53pm Addthis In the 1950s, one of the largest uranium deposits in the U.S. was found near Moab, Utah. The Department of Energy began cleaning up the uranium mill tailings from the Moab Site in April 2009, using steel containers to transport more than five million tons of tailings for safe disposal near Crescent Junction, Utah. In this May 2012 photo, one of the trains is shown on the Union Pacific Railroad in Utah, passing a butte capped by a familiar southwest U.S. rock formation known as Navajo Sandstone. | Photo courtesy of the Department of Energy. In the 1950s, one of the largest uranium deposits in the U.S. was found near Moab, Utah. The Department of Energy began cleaning up the uranium

112

Hydrogen Storage Grand Challenge Individual Projects  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Storage Grand Challenge individual projects funded for three Centers of Excellence, led by the National Renewable Energy Laboratory, Sandia National Laboratories, and Los Alamos National Laboratory

113

Grand Coulee Transmission Line Replacement Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Grand-Coulee-Transmission-Line-Replacement-Project Sign In About | Careers | Contact | Investors | bpa.gov Search Doing Business Expand Doing Business Customer Involvement Expand...

114

Olympia-Grand Coulee No. 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Line Projects Big Eddy-Knight Central Ferry Lower Monumental Grand Coulee Transmission Line Replacement Project Hooper Springs McNary-John Day Montana-to-Washington Transmission...

115

Office of Legacy Management | Department of Energy  

Energy Savers (EERE)

South Dakota, Disposal Site Edgemont, South Dakota, Disposal Site Read more DOE LM Completes the Grand Junction, Colorado, Site Historical Wall Display DOE LM Completes...

116

Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Appendix D, Addenda D1--D7  

SciTech Connect

This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation foe the US Department of Energy (DOE), Grand Junction Project Office, in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. the objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of the areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on-pile sampling was required to determine the depth of the 15-pCi/g Ra-226 interface in an area where wind and water erosion has taken place.

Ludlam, J.R.

1985-01-01T23:59:59.000Z

117

Holographic p-wave Josephson junction  

E-Print Network (OSTI)

In this work we generalized holographic model for s-wave DC Josephson junction constructed in arXiv:1101.3326[hep-th] to a holographic description for p-wave Josephson junction. By solving numerically the coupled equations of motion of Yang-Mills theory for a non-Abelian SU(2) gauge fields in (3+1)-dimensional AdS spacetimes, we shown that DC current of the p-wave Josephson junction is proportional to the sine of the phase difference across the junction like the s-wave case.

Wang, Yong-Qiang; Zhao, Zhen-Hua

2011-01-01T23:59:59.000Z

118

Holographic p-wave Josephson junction  

E-Print Network (OSTI)

In this work we generalized holographic model for s-wave DC Josephson junction constructed in arXiv:1101.3326[hep-th] to a holographic description for p-wave Josephson junction. By solving numerically the coupled equations of motion of Yang-Mills theory for a non-Abelian SU(2) gauge fields in (3+1)-dimensional AdS spacetimes, we shown that DC current of the p-wave Josephson junction is proportional to the sine of the phase difference across the junction like the s-wave case.

Yong-Qiang Wang; Yu-Xiao Liu; Zhen-Hua Zhao

2011-09-20T23:59:59.000Z

119

Microwave photonics with Josephson junction arrays  

E-Print Network (OSTI)

We introduce an architecture for a photonic crystal in the microwave regime based on superconducting transmission lines interrupted by Josephson junctions. A study of the scattering properties of a single junction in the line shows that the junction behaves as a perfect mirror when the photon frequency matches the Josephson plasma frequency. We generalize our calculations to periodic arrangements of junctions, demonstrating that they can be used for tunable band engineering, forming what we call a quantum circuit crystal. As a relevant application, we discuss the creation of stationary entanglement between two superconducting qubits interacting through a disordered media.

Zueco, David; Solano, Enrique; Garca-Ripoll, Juan Jos

2011-01-01T23:59:59.000Z

120

Microsoft Word - GrandCoulee_FONSI.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project BPA's Finding of No Significant Impact 1 Bonneville Power Administration's Finding of No Significant Impact (FONSI) for the Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project DOE/EA-1679 SUMMARY The Bonneville Power Administration (BPA) announces its environmental findings on the Bureau of Reclamation's (Reclamation) Grand Coulee Third Powerplant 500-kV Transmission Line Replacement Project. This project involves replacing the six 500-kV transmission lines of the Third Powerplant (TPP) at Grand Coulee Dam. The transmission lines are presently installed within the dam and a two-chambered tunnel that leads to a Spreader Yard about a mile west of the TPP. BPA would design and construct

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5  

SciTech Connect

This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

1984-09-01T23:59:59.000Z

122

Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography  

SciTech Connect

This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

Owen, P.T.; Michelson, D.C.; Knox, N.P.

1985-09-01T23:59:59.000Z

123

Dark energy and Josephson junctions  

SciTech Connect

It has been recently claimed that dark energy can be (and has been) observed in laboratory experiments by measuring the power spectrum S{sub I}(?) of the noise current in a resistively shunted Josephson junction and that in new dedicated experiments, which will soon test a higher frequency range, S{sub I}(?) should show a deviation from the linear rising observed in the lower frequency region because higher frequencies should not contribute to dark energy. Based on previous work on theoretical aspects of the fluctuation-dissipation theorem, we carefully investigate these issues and show that these claims are based on a misunderstanding of the physical origin of the spectral function S{sub I}(?). According to our analysis, dark energy has never been (and will never be) observed in Josephson junctions experiments. We also predict that no deviation from the linear rising behavior of S{sub I}(?) will be observed in forthcoming experiments. Our findings provide new (we believe definite) arguments which strongly support previous criticisms.

Branchina, Vincenzo [Department of Physics, University of Catania, Via Santa Sofia 64, I-95123, Catania (Italy); Liberto, Marco Di; Lodato, Ivano, E-mail: vincenzo.branchina@ct.infn.it, E-mail: madiliberto@ssc.unict.it, E-mail: ivlodato@ssc.unict.it [Scuola Superiore di Catania, Via S. Nullo 5/i, Catania (Italy)

2009-08-01T23:59:59.000Z

124

Quantum Junction Solar Cells Jiang Tang,,  

E-Print Network (OSTI)

Quantum Junction Solar Cells Jiang Tang,, Huan Liu,, David Zhitomirsky,§ Sjoerd Hoogland,§ Xihua, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada *S Supporting Information-type and p-type materials to create the first quantum junction solar cells. We present a family

125

Design of Flexible-Duct Junction Boxes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design of Flexible-duct Design of Flexible-duct Junction Boxes Robert Beach, IBACOS Duncan Prahl, IBACOS Design of Flexible-duct Junction Boxes Presentation Outline * Current Standards and Practice * Analysis Methods * Recommendations Design of Flexible-duct Junction Boxes * Detailed report is in peer review anticipated to be published T3 this year. - http://www1.eere.energy.gov/library/default.aspx?page=2&spi d=2. * Measure guide to be part of Building America Solutions Center - http://basc.pnnl.gov/ Design of Flexible-duct Junction Boxes Typical Installations As Plenum As Monster Design of Flexible-duct Junction Boxes Current Standards * ASHRAE 2012 HVAC Systems and Equipment, Box Plenum Systems Using Flexible Duct - Constrains Box Width to 2-3x Entrance Width - Constrains Box Length to 2 x Box Width

126

Delta Junction Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delta Junction Wind Farm Delta Junction Wind Farm Jump to: navigation, search Name Delta Junction Wind Farm Facility Delta Junction Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Alaska Environmental Power Developer Alaska Environmental Power Location South of Delta Junction AK Coordinates 64.069461°, -145.717661° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.069461,"lon":-145.717661,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

2014 Race to Zero Student Design Competition: Grand Winner Teams...  

Office of Environmental Management (EM)

2014 Race to Zero Student Design Competition: Grand Winner Teams 2014 Race to Zero Student Design Competition: Grand Winner Teams 2014 Race to Zero Student Design Competition:...

128

EV Everywhere Grand Challenge Kick-Off | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI framingworkshopagenda062112.pdf More Documents & Publications EV Everywhere Grand...

129

EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt...  

Energy Savers (EERE)

Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska SUMMARY DOE's Western Area...

130

Grand Challenge for Basic and Applied Research in Hydrogen Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Challenge for Basic and Applied Research in Hydrogen Storage Grand Challenge for Basic and Applied Research in Hydrogen Storage Presentation from the Hydrogen Storage...

131

'Grand Challenge' for Basic and Applied Research in Hydrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Grand Challenge' for Basic and Applied Research in Hydrogen Storage Solicitation 'Grand Challenge' for Basic and Applied Research in Hydrogen Storage Solicitation DOE is issuing a...

132

Grand Challenge for Basic and Applied Research in Hydrogen Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Challenge for Basic and Applied Research in Hydrogen Storage: Statement of Objectives Grand Challenge for Basic and Applied Research in Hydrogen Storage: Statement of...

133

EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties,...

134

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 -...

135

Grand Meadow Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Grand Meadow Wind Farm Grand Meadow Wind Farm Jump to: navigation, search Name Grand Meadow Wind Farm Facility Grand Meadow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Xcel Energy Location Dexter MN Coordinates 43.707798°, -92.654071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.707798,"lon":-92.654071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Aspects of grand unified and string phenomenology  

E-Print Network (OSTI)

Explored in this report is the essential interconnectedness of Grand Unified and String Theoretic Phenomenology. In order to extract a modeled connection to low-energy physics from the context of superstring theory, it is presently necessary...

Walker, Joel Wesley

2005-11-01T23:59:59.000Z

137

Self-consistent modeling of charge redistributions in Josephson junctions  

E-Print Network (OSTI)

Self-consistent modeling of charge redistributions in Josephson junctions J. K. Freericks, Josephson Junction talk, 2000 #12;Josephson Proximity-Effect Junctions · A Superconductor-Normal metal, Georgetown University, Josephson Junction talk, 2000 S N S I I V V Ic #12;Andreev Bound States · At an N

Freericks, Jim

138

Superconductor-Correlated metal-Superconductor Josephson junctions  

E-Print Network (OSTI)

Superconductor-Correlated metal- Superconductor Josephson junctions for high-speed digital. Freericks, Georgetown University, Josephson Junction talk, 2002 #12;Josephson Tunnel Junctions). J. K. Freericks, Georgetown University, Josephson Junction talk, 2002 S I S I I V V Ic #12

Freericks, Jim

139

Self-consistent modeling of SINIS and SNSNS Josephson junctions  

E-Print Network (OSTI)

Self-consistent modeling of SINIS and SNSNS Josephson junctions J. K. Freericks Collaborators: Paul of Naval Research. J. K. Freericks, Georgetown University, Josephson Junction talk, 2000 #12;Josephson University, Josephson Junction talk, 2000 S I S I I V V Ic #12;Josephson Proximity-Effect Junctions

Freericks, Jim

140

Tuning a short coherence length Josephson junction through a  

E-Print Network (OSTI)

Tuning a short coherence length Josephson junction through a metal-insulator transition J. K University, Josephson Junction talk, 2001 #12;Josephson Tunnel Junctions · A Superconductor maintaining nonhysteretic behavior. J. K. Freericks, Georgetown University, Josephson Junction talk, 2001 S N

Freericks, Jim

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents (OSTI)

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

Olson, J.M.; Kurtz, S.R.

1992-11-24T23:59:59.000Z

142

THE USE OF SUPERCONDUCTING JUNCTIONS IN MAGNETOMETRY By J. CLARKE,  

E-Print Network (OSTI)

-8 gauss. In the second part, we discuss the properties of a type of Josephson junction in which] junctions in parallel. A Josephson junction consists of two superconductors separated by an insulating =|03C8|ei~, where 1 03C8|2 represents the density of condensed pairs. In a Josephson junction

Boyer, Edmond

143

Strongly-coupled Josephson junction array for simulation of frustrated one-dimensional spin models  

E-Print Network (OSTI)

We study the capacitance-coupled Josephson junction array beyond the small-coupling limit. We find that, when the scale of the system is large, its Hamiltonian can be obtained without the small-coupling approximation and the system can be used to simulate strongly frustrated one-dimensional Ising spin problems. To engineer the system Hamiltonian for an ideal theoretical model, we apply a dynamical decoupling technique to eliminate undesirable couplings in the system. Using a 6-site junction array as an example, we numerically evaluate the system to show that it exhibits important characteristics of the frustrated spin model.

Liang-Hui Du; Xingxiang Zhou; Yong-Jian Han; Guang-Can Guo; Zheng-Wei Zhou

2012-12-20T23:59:59.000Z

144

Investigation of techniques for improvement of seasonal streamflow forecasts in the Upper Rio Grande  

E-Print Network (OSTI)

LIST OF FIGURES Page Figure 2-1. Maps of the Upper Rio Grande basin showing the gauging sites used in this study: (a) NWS temperature and precipitation stations and snowcourse sites (left); (b) USGS streamflow gauging stations and their drainage...-7. Map of composite average monthly temperature residuals at each station from October through September for El Ni?o (solid), neutral (dotted), La Ni?a (dashed) years??????????... 29 Figure 2-8. Map of composite average monthly total precipitation...

Lee, Song-Weon

2005-11-01T23:59:59.000Z

145

Do ridge^ridge^fault triple junctions exist on Earth? Evidence from the Aden^Owen^Carlsberg junction in  

E-Print Network (OSTI)

Transform and the East Paci¢c Rise and the Aden^ Owen^Carlsberg (AOC) triple junction between the Owen fracture zone (OFZ to the ridges. Here, we report the results of a marine geophysical survey of the AOC triple junction, which took.The AOC triple junction appears to be in a transient stage between a former triple junction of the ridge

Nicolas, Chamot-Rooke

146

Optoelectronic switching of addressable molecular crossbar junctions  

E-Print Network (OSTI)

This letter reports on the observation of optoelectronic switching in addressable molecular crossbar junctions fabricated using polymer stamp-printing method. The active medium in the junction is a molecular self-assembled monolayer softly sandwiched between gold electrodes. The molecular junctions are investigated through currentvoltage measurements at varied temperature (from 95 to 300 K) in high vacuum condition. The junctions show reversible optoelectronic switching with the highest on/off ratio of 3 orders of magnitude at 95 K. The switching behavior is independent of both optical wavelength and molecular structure, while it strongly depends on the temperature. Initial analysis indicates that the distinct binding nature of the molecule/electrode interfaces play a dominant role in the switching performance.

J. C. Li

2006-11-22T23:59:59.000Z

147

Thinfilm trilayer manganate junctions  

Science Journals Connector (OSTI)

...relation in the high temperature region between 130 K and room temperature. Figure reproduced from Sun et al. (1997...lowering of sample temperature. These junctions...caused by voltage distribution inside the base electrode...

1998-01-01T23:59:59.000Z

148

Quantum Coherence in a Superfluid Josephson Junction  

SciTech Connect

We report a new kind of experiment in which we take an array of nanoscale apertures that form a superfluid {sup 4}He Josephson junction and apply quantum phase gradients directly along the array. We observe collective coherent behaviors from aperture elements, leading to quantum interference. Connections to superconducting and Bose-Einstein condensate Josephson junctions as well as phase coherence among the superfluid aperture array are discussed.

Narayana, Supradeep; Sato, Yuki [Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142 (United States)

2011-02-04T23:59:59.000Z

149

Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.  

SciTech Connect

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old project that will protect an additional 1.3 miles of stream and 298.3 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Improving fish passage in Bear Creek to restore tributary and mainstem access; (4) Planting and seeding 6.7 stream miles with 7,100 plants and 365 lbs. of seed; (5) Establishing 18 new photopoints and retaking 229 existing photopoint pictures; (6) Monitoring stream temperatures at 12 locations on 6 streams; (7) completing riparian fence, water gap and other maintenance on 98.7 miles of project fences. Since initiation of the project in 1984 over 62 miles of anadromous fish bearing streams and 1,910 acres of habitat have been protected, enhanced and maintained.

McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

2001-04-01T23:59:59.000Z

150

Thermodynamic Signatures of Half-Quantum Vortices in p+ip Josephson Junction Arrays  

E-Print Network (OSTI)

bind a Majorana Fermion . . 3 Josephson Junction Arrays 3.14 p + ip Josephson Junction Arrays 4.1Bind a Majorana Fermion . . . . . . . . . Josephson Junction

Krahn, Graham Joel

2012-01-01T23:59:59.000Z

151

Temporal stability of Y Ba Cu O nano Josephson junctions from ion irradiation  

E-Print Network (OSTI)

planar high temperature Josephson junctions fabricated usingYBa 2 Cu 3 O 7-? Josephson junctions via nanolithography andsuperconductor Josephson junctions, J. Vac. Sci. Technol.

Cybart, Shane A.

2014-01-01T23:59:59.000Z

152

Rio Grande North | Open Energy Information  

Open Energy Info (EERE)

Rio Grande North Rio Grande North Facility Rio Grande North Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from South Padre Island TX Coordinates 26.364°, -97.078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.364,"lon":-97.078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Rio Grande South | Open Energy Information  

Open Energy Info (EERE)

Rio Grande South Rio Grande South Facility Rio Grande South Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Gulf of Mexico TX Coordinates 26.189°, -97.053° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.189,"lon":-97.053,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Rio Grande sediment study -- Supply and transport  

SciTech Connect

The 1992 New Mexico State Legislature directed the Interstate Stream Commission (ISC) to study the feasibility of clearing and deepening the channel of the Rio Grande between Albuquerque and Elephant Butte to improve water conveyance and water conservation. The ISC requested the US Army Corps of Engineers-Albuquerque District (COE) to undertake this study under the Planning Assistance to States Program. The study was divided into two phases. Phase 1 consisted of an analysis of the sediment contribution to the Rio grande from the tributaries and an evaluation of the existing US Geological Survey (USGS) sediment gage data. Phase 2 will be an analysis, through the use of an HEC-6, Scour and Deposition in Rivers and Reservoirs, computer model, to determine the long-term performance of any Rio Grande channel improvements. This narrative presents the Phase 1 methods and results.

Diniz, E. [Resource Technology, Inc., Albuquerque, NM (United States); Eidson, D.; Bourgeois, M. [Army Corps of Engineers, Albuquerque, NM (United States)

1995-12-31T23:59:59.000Z

155

Annual report on the U.S. Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1995--September 1996  

SciTech Connect

This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1995 through September 30, 1996. The inactive uranium mill tailings sites in Colorado are at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of understanding (PMOU). This PMOU requires the DOE to fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report provides the state of Colorado with an annual report on the cultural resource activities performed for all UMTRA Project sites in Colorado. Due to the completion of surface activities at the UMTRA Project sites, this will be the last annual report to the state of Colorado. Cultural resources activities subsequent to this report will be reported to the state through site-specific correspondence.

NONE

1996-09-01T23:59:59.000Z

156

SunShot Grand Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge SunShot Grand Challenge SunShot Grand Challenge Addthis SunShot Grand Challenge 1 of 28 SunShot Grand Challenge Participants gather for the plenary session at the SunShot Grand Challenge Summit and Technology Forum in Denver, Colorado. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:10 Arun Majumdar, Founding Director, ARPA-E 2 of 28 Arun Majumdar, Founding Director, ARPA-E Arun Majumdar, Founding Director, ARPA-E gives the welcoming remarks. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:16 Energy Secretary Steven Chu at SunShot Grand Challenge 3 of 28 Energy Secretary Steven Chu at SunShot Grand Challenge Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:32

157

Soybean Production in the Rio Grande Valley  

E-Print Network (OSTI)

chlorosis or being high in chlorides, then it would be wise to #27;nd a variety that is less sensitive to iron chlorosis or to high chloride levels. In the Rio Grande Valley, soybean yields have been acceptable as long as supplemental water (irrigation... Grande Valley compensate for variation in plant populations. At low populations, soybean plants usually are bushy and set pods on long lateral branches near the ground. As populations increase, pods are set closer to the plant?s main stem and higher...

Fromme, D. D.; Isakeit, T.; Falconer, L.

158

Abrikosov vortices in long Josephson junctions  

Science Journals Connector (OSTI)

We have developed a theory of the critical current Ic of a long Josephson junction in the presence of a finite density of Abrikosov vortices trapped in the electrodes in the immediate vicinity of the plane of the junction. We show that under these conditions the Josephson phase difference can be finite even well inside the junction in such a way as to result in a nonmonotonous dependence of Ic on the concentration of the perturbing vortices, a behavior at variance with that of a short junction. As the average distance between the vortices decreases, Ic reaches a maximum. The location, magnitude, and sharpness of this feature are strongly dependent on the ratio ??J/r0, where r0 and ? are respectively the range and the strength of the effective interaction between the Abrikosov vortices and the Josephson fluxons while ?J is the Josephson penetration length. The results obtained are used to discuss the behavior of the critical current recently observed in Josephson junctions based on Nb films.

Mikhail V. Fistul and Gabriele F. Giuliani

1998-10-01T23:59:59.000Z

159

Rio Grande rift: problems and perspectives  

SciTech Connect

Topics and ideas addressed include: (1) the regional extent of the Rio Grande rift; (2) the structure of the crust and upper mantle; (3) whether the evidence for an axile dike in the lower crust is compelling; (4) the nature of faulting and extension in the crust; and (5) the structural and magmatic development of the rift. 88 references, 5 figures.

Baldridge, W.S.; Olsen, K.H.; Callender, J.F.

1984-01-01T23:59:59.000Z

160

Grand unified strings and galaxy formation  

Science Journals Connector (OSTI)

The possibility that topologically stable strings formed at a grand unification phase transition led to galaxy formation is discussed. A large class of solutions describing non-self-intersecting loops is presented. The gravitational field and power radiated from a simple class of oscillating configurations of string is calculated, and the possibility of its detection discussed. Unique features of the string scenario are emphasized.

Neil Turok

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Numerical Investigation of Josephson Junction Structures  

SciTech Connect

Multilayered long Josephson Junction Structures form an interesting physical system where both nonlinearity and interaction between subsystems play an important role. Such systems allow to study physical effects that do not occur in single Josephson junction.The Sakai-Bodin-Pedersen model--a system of perturbed sine-Gordon equations--is used to study the dynamic states of stacks of inductively coupled long Josephson Junctions (LJJs). The corresponding static problem is numerically investigated as well. In order to study the stability of possible static solutions a Sturm-Liouville problem is generated and solved.The transitions from static to dynamic state and the scenario of these transitions are analyzed depending on the model parameters. Different physical characteristics--current-voltage characteristics, individual instant voltages and internal magnetic fields, are calculated and interpreted.

Hristov, I.; Dimova, S.; Boyadjiev, T. [Faculty of Mathematics and Informatics, Sofia University 5 James Bourchier Blvd., 1164 Sofia (Bulgaria)

2009-10-29T23:59:59.000Z

162

Decoherence in a Josephson junction qubit  

E-Print Network (OSTI)

The zero-voltage state of a Josephson junction biased with constant current consists of a set of metastable quantum energy levels. We probe the spacings of these levels by using microwave spectroscopy to enhance the escape rate to the voltage state. The widths of the resonances give a measurement of the coherence time of the two states involved in the transitions. We observe a decoherence time shorter than that expected from dissipation alone in resonantly isolated 20 um x 5 um Al/AlOx/Al junctions at 60 mK. The data is well fit by a model including dephasing effects of both low-frequency current noise and the escape rate to the continuum voltage states. We discuss implications for quantum computation using current-biased Josephson junction qubits, including the minimum number of levels needed in the well to obtain an acceptable error limit per gate.

A. J. Berkley; H. Xu; M. A. Gubrud; R. C. Ramos; J. R. Anderson; C. J. Lobb; F. C. Wellstood

2003-03-01T23:59:59.000Z

163

Dynamical properties of high-temperature-superconductor granular bridge junctions: Inhomogeneous Josephson-junction-array model  

SciTech Connect

As an attempt to understand the dynamical behavior of the high-temperature-superconductor (HTSC) granular bridge junction, we model the granular HTSC bridge junction consisting of many small grains inside by an inhomogeneous Josephson junction array, i.e., randomly arranged Josephson junction arrays (JJA). To describe randomly distributed critical currents between the grains inside the HTSC granular bridge junction, we chose various possible configurations in {l_brace}{ital I}{sub {ital ij}}{sup {ital c}}{r_brace} and {l_brace}{ital R}{sub {ital ij}}{r_brace} for the one-dimensional (1D) and 2D inhomogeneous Josephson junctions, and calculated the current-voltage ({ital IV}) characteristics and self-radiation spectral densities of the 1D and 2D inhomogeneous Josephson junctions. As a result, depending upon the distribution of critical currents and shunted resistances, it is found that there are large variations of {ital IV} characteristics. In contrast to the appearance of giant Shapiro steps in the regular ordered array, such Shapiro steps disappear in the case of the disordered JJA due to the increased randomness in the distribution of critical currents. On the contrary, however, when there exists a correlation between critical currents and resistances, i.e., a constant Josephson voltage, {ital I}{sub {ital ij}}{sup {ital c}}{ital R}{sub {ital ij}}={ital V}{sub {ital J}} (constant), the fundamental Shapiro step emerges despite the disordered distribution of {ital I}{sub {ital ij}}{sup {ital c}}. The relevance of this model to the HTSC granular bridge junctions is discussed. In particular, experimentally observed dynamical behaviors of the HTSC granular bridge junctions are shown to be closely related to the case of the correlated distribution with constant Josephson voltage. {copyright} {ital 1996 The American Physical Society.}

Lee, J.; Lee, S.; Yu, J.; Park, G. [Department of Physics, Sogang University, Seoul 121-742 (Korea)] [Department of Physics, Sogang University, Seoul 121-742 (Korea)

1996-02-01T23:59:59.000Z

164

Axion physics in a Josephson junction environment  

E-Print Network (OSTI)

We show that recent experiments based on Josephson junctions, SQUIDS, and coupled Josephson qubits have a cosmological interpretation in terms of axionic dark matter physics, in the sense that they allow for analogue simulation of early-universe axion physics. We propose new experimental setups in which SQUID-like axionic interactions in a resonant Josephson junction environment can be tested, similar in nature to recent experiments that test for quantum entanglement of two coupled Josephson qubits. We point out that the parameter values relevant for early-universe axion cosmology are accessible with present day's achievements in nanotechnology.

Christian Beck

2011-11-23T23:59:59.000Z

165

Complementary junction heterostructure field-effect transistor  

DOE Patents (OSTI)

A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

1995-12-26T23:59:59.000Z

166

EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plug-in Electric Vehicles & Batteries EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles EV Everywhere Grand Challenge: DOE's 10-Year Vision for...

167

Video: Mira Loma High School Named Science Bowl Grand Champion...  

Energy Savers (EERE)

Mira Loma High School Named Science Bowl Grand Champion Video: Mira Loma High School Named Science Bowl Grand Champion April 28, 2014 - 6:03pm Addthis Secretary Moniz speaks at the...

168

SunShot Grand Challenge Summit Breakout Sessions Announced  

Energy.gov (U.S. Department of Energy (DOE))

The 2014 SunShot Grand Challenge Summit is only six weeks away! SunShot is excited to announce our thought-provoking lineup of Grand Challenge Breakout Sessions.

169

2014 Race to Zero Student Design Competition: Grand Winner Teams  

Energy.gov (U.S. Department of Energy (DOE))

2014 Race to Zero Student Design Competition: Grand Winner Teams, from the U.S. Department of Energy.

170

Holographic Josephson Junction in 3+1 dimensions  

E-Print Network (OSTI)

In arXiv:1101.3326[hep-th], a (2+1)-dimensional holographic Josephson junction was constructed, and it was shown that the DC Josephson current is proportional to the sine of the phase difference across the junction. In this paper, we extend this study to a holographic description for the (3+1)-dimensional holographic DC Josephson junction. By solving numerically the coupled differential equations, we also obtain the familiar characteristics of Josephson junctions.

Yong-Qiang Wang; Yu-Xiao Liu; Zhen-Hua Zhao

2011-04-21T23:59:59.000Z

171

Holographic Josephson Junction in 3+1 dimensions  

E-Print Network (OSTI)

In arXiv:1101.3326[hep-th], a (2+1)-dimensional holographic Josephson junction was constructed, and it was shown that the DC Josephson current is proportional to the sine of the phase difference across the junction. In this paper, we extend this study to a holographic description for the (3+1)-dimensional holographic DC Josephson junction. By solving numerically the coupled differential equations, we also obtain the familiar characteristics of Josephson junctions.

Wang, Yong-Qiang; Zhao, Zhen-Hua

2011-01-01T23:59:59.000Z

172

Phase Transition in Compact QED(3) and the Josephson Junction  

E-Print Network (OSTI)

We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago by Hosotani. Phase transition in compact QED is well studied and we employ the `duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.

Vakif K. Onemli; Murat Tas; Bayram Tekin

2001-08-22T23:59:59.000Z

173

Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE supported the development of Solar Junction's concentrated photovoltaic technology that set a world record for conversion efficiency.

174

Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.  

SciTech Connect

Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

2004-01-01T23:59:59.000Z

175

Microsoft Word - IR-03-02-11.doc  

Office of Legacy Management (LM)

Grand Junction, Colorado, Site Grand Junction, Colorado, Site March 2011 Page 1 2011 Annual Inspection Report for the Grand Junction, Colorado, Site Summary The Grand Junction, Colorado, Site, inspected on February 15, 2011, was in excellent condition. Physical and institutional controls enacted at the site continue to be effective in preventing exposure to contamination remaining on the property. No cause for a follow-up inspection was identified. 1.0 Introduction This report presents the results of the annual U.S. Department of Energy (DOE) inspection of the Grand Junction, Colorado, Site. R. Johnson (Inspector) of S.M. Stoller Corporation, the DOE Office of Legacy Management (LM) contractor at Grand Junction, Colorado, conducted the inspection on February 15, 2011. M. Cosby of the Colorado Department of Public Health and

176

Superconductor-Correlated metal-Superconductor Josephson junctions  

E-Print Network (OSTI)

Superconductor-Correlated metal- Superconductor Josephson junctions for high-speed digital. Freericks, Georgetown University, Josephson Junction talk, 2002 #12;Digital Electronics and RSFQ logic, Georgetown University, Josephson Junction talk, 2002 X X Binary 0, no flux Binary 1, one flux quantum #12

Freericks, Jim

177

Localized mode interactions in 0-Josephson junctions Hadi Susanto1  

E-Print Network (OSTI)

Localized mode interactions in 0- Josephson junctions Hadi Susanto1 and Gianne Derks2 1 School of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, UK A long Josephson junction containing regions in the system, it is shown that Josephson junctions with phase-shift can be an ideal setting for studying

Wirosoetisno, Djoko

178

Superconductor-Correlated metal-Superconductor Josephson junctions  

E-Print Network (OSTI)

Superconductor-Correlated metal- Superconductor Josephson junctions for high-speed digital. Freericks, Georgetown University, Josephson Junction talk, 2003 #12;Digital Electronics and RSFQ logic, Georgetown University, Josephson Junction talk, 2003 X X Binary 0, no flux Binary 1, one flux quantum #12

Freericks, Jim

179

Multi-Scroll and Hypercube Attractors from Josephson Junctions  

E-Print Network (OSTI)

Multi-Scroll and Hypercube Attractors from Josephson Junctions M¨us¸tak E. Yalc¸in Istanbul Leuven, Belgium Email: Johan.Suykens@esat.kuleuven.ac.be Abstract-- In this paper Josephson junctions of the Josephson junction in a general Jerk circuit in such a way that there is no need for synthesizing

180

SOME CHARACTERISTICS OF JOSEPHSON JUNCTIONS AS RADIATION DETECTORS  

E-Print Network (OSTI)

125 SOME CHARACTERISTICS OF JOSEPHSON JUNCTIONS AS RADIATION DETECTORS Yu. Ya. DIVIN, F. Ya. NAD les microponts. Abstract. 2014 The V-I characteristic of Josephson junction with an external parallel admittance, the high frequency impedance and high frequency response of a Josephson junction to small

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PARAMETRIC EXCITATION OF PLASMA OSCILLATIONS IN JOSEPHSON JUNCTIONS  

E-Print Network (OSTI)

223 PARAMETRIC EXCITATION OF PLASMA OSCILLATIONS IN JOSEPHSON JUNCTIONS N. F. PEDERSEN, M. R'équation différentielle de Mathieu. Abstract. 2014 Experiments on a Josephson junction analog showed a parametric in Josephson junctions at finite voltages have been discussed earlier [1]-[4]. In this communication we report

Boyer, Edmond

182

Dependence of single molecule junction conductance on molecular conformation  

E-Print Network (OSTI)

1 Dependence of single molecule junction conductance on molecular conformation Latha Venkataraman1 of a single metal-molecule-metal junction depends not only on the chemical nature of the molecule used in unimolecular devices. Here, using amine link groups13 to form single molecule junctions, we show a clear

Hone, James

183

Fast algorithms for triangular Josephson junction arrays  

SciTech Connect

We develop fast algorithms for the numerical study of two-dimensional triangular Josephson junction arrays. The Dirac bra-ket formalism is introduced in the context of such arrays. We note that triangular arrays can have both hexagonal and rectangular periodicity and develop algorithms for each. Boundaries are next introduced and fast algorithms for finite arrays are developed. 40 refs., 4 figs.

Datta, S.; Sahdev, D. [Indian Institute of Technology, Kanpur (India)] [Indian Institute of Technology, Kanpur (India)

1997-04-01T23:59:59.000Z

184

Measuring Vacuum Polarization with Josephson Junctions  

SciTech Connect

We argue that the vacuum polarization by the virtual electron-positron pairs can be measured by studying a Josephson junction in a strong magnetic field. The vacuum polarization results in a weak dependence of the Josephson constant on the magnetic field strength which is within the reach of the existing experimental techniques.

Penin, Alexander A. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada) and Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow (Russian Federation)

2010-03-05T23:59:59.000Z

185

Axion mass estimates from resonant Josephson junctions  

E-Print Network (OSTI)

Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass [C. Beck, PRL 111, 231801 (2013)]. Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electric current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of $(110 \\pm 2)\\mu $eV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.

Christian Beck

2014-06-10T23:59:59.000Z

186

Topological Order in Frustrated Josephson Junction Arrays  

E-Print Network (OSTI)

We show that electrically and magnetically frustrated Josephson junction arrays (JJAs) realize topological order with a non-trivial ground state degeneracy on manifolds with non-trivial topology. The low-energy theory has the same gauge dynamics of the unfrustrated JJAs but for different, "fractional" degrees of freedom, a principle reminescent of Jain's composite electrons in the fractional quantum Hall effect.

M. C. Diamantini; P. Sodano; C. A. Trugenberger

2008-06-02T23:59:59.000Z

187

Superconducting Topological Fluids in Josephson Junction Arrays  

E-Print Network (OSTI)

We argue that the frustrated Josephson junction arrays may support a topologically ordered superconducting ground state, characterized by a non-trivial ground state degeneracy on the torus. This superconducting quantum fluid provides an explicit example of a system in which superconductivity arises from a topological mechanism rather than from the usual Landau-Ginzburg mechanism.

M. Cristina Diamantini; Pasquale Sodano; Carlo A. Trugenberger

2006-04-21T23:59:59.000Z

188

Millimeter-Wave Mixing with Josephson Junctions  

Science Journals Connector (OSTI)

Experiments are reported in which two millimeter-wave signals incident on point-contact Josephson junctions produced changes in the junction dc voltage versus current characteristic and an intermediate frequency output whose amplitude depended sensitively on both junction bias and applied power. Equations are derived, based on Josephson's phenomenological equations, for the Josephson current in a junction exposed to two applied rf signals. When the applied signals differ appreciably in frequency, additional constant-voltage steps in the V-I curve are predicted which are spaced at the difference frequency. These steps have been observed in experiments employing sources at 64 and 72 Gc/sec. Results of mixing experiments utilizing two sources nearly equal in frequency are reported at 23 and at 72 Gc/sec. In this case the two waves beat together and are equivalent in their effect to a single signal amplitude modulated at the difference frequency. Also explained on the same basis are experiments in which the third harmonic of a signal at 24 Gc/sec mixed with a signal at 72 Gc/sec. These results demonstrate the existence of the Josephson mixing mechanism as opposed to classical nonlinear mixing, and they show that it is operative at microwave and millimeter-wave frequencies over a wide range of power.

C. C. Grimes and Sidney Shapiro

1968-05-10T23:59:59.000Z

189

Gallium nitride junction field-effect transistor  

DOE Patents (OSTI)

An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

Zolper, John C. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

190

Axion mass estimates from resonant Josephson junctions  

E-Print Network (OSTI)

Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass [C. Beck, PRL 111, 231801 (2013)]. Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electric current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of $(110 \\pm 2)\\mu $eV. This mass value is com...

Beck, Christian

2014-01-01T23:59:59.000Z

191

Gallium nitride junction field-effect transistor  

DOE Patents (OSTI)

An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

Zolper, J.C.; Shul, R.J.

1999-02-02T23:59:59.000Z

192

Grand Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Grand Ridge Wind Farm Facility Grand Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location La Salle County IL Coordinates 40.999966°, -88.401693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.999966,"lon":-88.401693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

EV Everywhere Grand Challenge Kick-Off  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Grand Challenge Kick-Off Thursday, June 21, 2012 - Hyatt Regency, Dearborn, MI Event Objective: To showcase existing DOE efforts in vehicle electrification and to obtain stakeholder input on the overall concept of the EV Everywhere Grand Challenge, the high-level strategy, and aggressive next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program 8:35-8:45 AM STRATEGIC SIGNIFICANCE OF PLUG-IN ELECTRIC VEHICLES

194

Grand Gulf-prioritization of regulatory requirements  

SciTech Connect

As cost pressures mount, Grand Gulf nuclear station (GGNS) is relying increasingly on various prioritization approaches to implement, modify, eliminate, or defer regulatory requirements. Regulatory requirements can be prioritized through the use of three measures: (1) safety (or risk) significance; (2) cost; and (3) public policy (or political) significance. This paper summarizes GGNS' efforts to implement solutions to regulatory issues using these three prioritization schemes to preserve a balance between cost and safety benefit.

Meisner, M.J. (Entergy Operations Inc., Port Gibson, MS (United States))

1993-01-01T23:59:59.000Z

195

Agropecuaria e Industrial Serra Grande | Open Energy Information  

Open Energy Info (EERE)

Agropecuaria e Industrial Serra Grande Agropecuaria e Industrial Serra Grande Jump to: navigation, search Name Agropecuaria e Industrial Serra Grande Place São Raimundo das Mangabeiras, Maranhao, Brazil Product Privately owned Brazil based ethanol producer, located in the state of Maranhao. References Agropecuaria e Industrial Serra Grande[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Agropecuaria e Industrial Serra Grande is a company located in São Raimundo das Mangabeiras, Maranhao, Brazil . References ↑ "[ Agropecuaria e Industrial Serra Grande]" Retrieved from "http://en.openei.org/w/index.php?title=Agropecuaria_e_Industrial_Serra_Grande&oldid=341914" Categories:

196

Hanford Site Tours - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Tours Hanford Site Tours Hanford Tour Restrictions Hanford Site Tours Hanford Tours for Governmental Officials Hanford Tours for Tribal Affairs Hanford Private Tours Media...

197

Heat flow in nonlinear molecular junctions  

E-Print Network (OSTI)

We investigate the heat conduction properties of molecular junctions comprising anharmonic interactions. We find that nonlinear interactions can lead to novel phenomena: it negative differential thermal conductance and heat rectification. Based on analytically solvable models we derive an expression for the heat current that clearly reflects the interplay between anharmonic interactions, strengths of coupling to the thermal reservoirs, and junction asymmetry. This expression indicates that negative differential thermal conductance shows up when the molecule is strongly coupled to the thermal baths, even in the absence of internal molecular nonlinearities. In contrast, diode like behavior is expected for a highly anharmonic molecule with an inherent structural asymmetry. Anharmonic interactions are also necessary for manifesting Fourier type transport. We briefly present an extension of our model system that can lead to this behavior.

Dvira Segal

2005-12-22T23:59:59.000Z

198

Defect formation in long Josephson junctions  

SciTech Connect

We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according to the power law with the exponent of either 0.25 or 0.5 depending on the temperature variation in the critical current density.

Gordeeva, Anna V. [Institute for Physics of Microstructures, RAS, GSP-105, Nizhny Novgorod 603950 (Russian Federation); Department of Physics, B309, Technical University of Denmark, DK-2800 Lyngby (Denmark); Pankratov, Andrey L. [Institute for Physics of Microstructures, RAS, GSP-105, Nizhny Novgorod 603950 (Russian Federation)

2010-06-01T23:59:59.000Z

199

Quantum dynamics in the bosonic Josephson junction  

SciTech Connect

We employ a semiclassical picture to study dynamics in a bosonic Josephson junction with various initial conditions. Phase diffusion of coherent preparations in the Josephson regime is shown to depend on the initial relative phase between the two condensates. For initially incoherent condensates, we find a universal value for the buildup of coherence in the Josephson regime. In addition, we contrast two seemingly similar on-separatrix coherent preparations, finding striking differences in their convergence to classicality as the number of particles increases.

Chuchem, Maya; Cohen, Doron [Department of Physics, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105 (Israel); Smith-Mannschott, Katrina [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States); MPI for Dynamics and Self-Organization, Bunsenstrasse 10, D-37073 Goettingen (Germany); Hiller, Moritz [Physikalisches Institut, Albert-Ludwigs-Universitaet, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Kottos, Tsampikos [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States); Vardi, Amichay [Department of Chemistry, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105 (Israel); Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States)

2010-11-15T23:59:59.000Z

200

Screening current effects in Josephson junction arrays  

E-Print Network (OSTI)

The purpose of this work is to compare the dynamics of arrays of Josephson junctions in presence of magnetic field in two different frameworks: the so called XY frustrated model with no self inductance and an approach that takes into account the screening currents (considering self inductances only). We show that while for a range of parameters the simpler model is sufficiently accurate, in a region of the parameter space solutions arise that are not contained in the XY model equations.

A. Petraglia; G. Filatrella; G. Rotoli

1995-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

q-deformed dynamics and Josephson junction  

E-Print Network (OSTI)

We define a generalized rate equation for an observable in quantum mechanics, that involves a parameter q and whose limit $q\\to 1$ gives the standard Heisenberg equation. The generalized rate equation is used to study dynamics of current biased Josephson junction. It is observed that this toy model incorporates diffraction like effects in the critical current. Physical interpretation for q is provided which is also shown to be q-deformation parameter.

Ramandeep S. Johal

2000-10-04T23:59:59.000Z

202

Peltier Junction heats and cools car seat  

SciTech Connect

Electrically heated seats may soon become heated and cooled seats. The design called the CCS module exploits the heat-pump capability of a class of semiconductor thermoelectric devices (TEDs) known as Peltier Junction. Every CCS module contain two TEDs. Heating and cooling occurs through convection and conduction. The heart of the system is the thermoelectric heat pump. This is originally conceived as the sole heating/cooling options for a prototype electric vehicle.

Gottschalk, M.A.

1994-10-10T23:59:59.000Z

203

Magnetism in Thiolated Gold Model Junctions  

Science Journals Connector (OSTI)

Magnetism in Thiolated Gold Model Junctions ... Nanoparticles revealing magnetism and their assemblies are of importance in nanotechnology and spintronics,(26, 27) in fundamental quantum-mechanical experiments,(28) and potentially in quantum computing. ... (47) Even though the magnetism has not yet been explicitly demonstrated in pure, neutral, and small thiolated AuNPs, it may be readily promoted by transition-metal doping of AuNP cores. ...

Mat Dubeck; Haibin Su

2012-07-24T23:59:59.000Z

204

Grand valley irrigation return flow case study  

SciTech Connect

Irrigation water supply is furnished annually to about 71,500 acres of land in the Grand Valley of western Colorado. Return flows from that irrigation contribute about 780,000 tpy of salt to the Colorado River, causing an increase of 77 mg/l in the salinity concentration at Imperial Dam. A case study of water quality in this region is focused on: water quality data for irrigation and return flows/ identification of regulations that affect irrigation and return flows/ and a proposed program for controlling salinity levels. (1 map, 9 references, 8 tables)

Keys, J.W.

1981-06-01T23:59:59.000Z

205

Urban Water Conservation along the Rio Grande  

E-Print Network (OSTI)

Use by Cate- gories in New Mexico Counties, River Basins and Irrigated Acreage in 2000 and the NMOSE An- nual Report. 5,6 Data were derived from water supply or utility companies as opposed to city figures. These numbers may reflect some rural... Urban Water Conservation along the Rio Grande THE TEXAS A&M UNIVERSITY SYSTEM NEW MEXICO STATE UNIVERSITY An Inventory of Water Conservation Programs TR 269 SP 201 Valeen Silvy, 1 Ronald Kaiser, 2 Bruce Lesikar 3 and Craig Runyan...

Silvey, Valeen; Kaiser, Ronald; Lesikar, Bruce; Runyan, Craig

2004-01-01T23:59:59.000Z

206

Josephson junction in a thin film  

SciTech Connect

The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

2001-04-01T23:59:59.000Z

207

Finding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding Finding of No Significant Impact Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) September 1999 U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Finding of No Significant Impact Environmental Assessment The U.S. Department of Energy (DOE) proposes a strategy to achieve ground water compliance at the Grand Junction, Colorado, LJMTRA project site, formerly known as the Climax Uranium Millsite. The proposed compliance strategy is no remediation and the application of supplemental standards. This proposed action and a no-action alternative are described in the Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (see attached DOE/EAB 1312). The Environmental Assessment analyzes the relevant environmental issues at the Grand Junction site,

208

EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Grande Ronde Basin Endemic Spring Chinook Salmon 3: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy Bonneville Power Administration's proposal to fund a program designed to prevent the extinction and begin the recovery of spring Chinook salmon stocks in the Grande Ronde River Basin in the Upper Grande Ronde River, Lostine River, and Catherine Creek in Northeastern Oregon. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 18, 2003 EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program

209

Ecosystem level assessment of the Grand Calumet Lagoons, Indiana Dunes National Lakeshore  

SciTech Connect

The Grand Calumet Lagoons make up the eastern section of the Grand Calumet River (GCR), Indiana Harbor and Ship Canal and nearshore Lake Michigan Area of Concern (AOC). The GCR AOC is the only one of the 42 Great Lakes Areas of Concern identified by the International Joint Commission with all 14 designated uses classified as impaired. Included within the boundaries of the Indiana Dunes National Lakeshore (INDU), is the central section of the Grand Calumet Lagoons. A number of biotic and abiotic factors were tested to determine the effects of an industrial landfill that borders the lagoons to assess the potential impact on park resources. Analysis included water quality testing, assessments of macroinvertebrate, fish, algae and aquatic plant communities and contaminant concentrations in water, sediment and plant and fish tissue. Surface water testing found very few contaminants, but significantly higher nutrient levels were found in the water column closest to the landfill. Macroinvertebrate, aquatic plant and fish communities all showed significant impairment in relationship to their proximity to the landfill. Aquatic plant growth habit became limited next to the landfill with certain growth habits disappearing entirely. Aquatic plants collected close to the landfill had high concentrations of several heavy metals in their stems and shoots. Using the index of biotic integrity (IBI), fish community assessment indicated impairment in the areas adjacent to the landfill. Sediments tested at one site had over 12% polycyclic aromatic hydrocarbons (PAH) and carp (Cyprinus carpio) collected from this site had whole fish tissue concentrations over 1 mg/kg PAH.

Stewart, P.M. [National Biological Service, Porter, IN (United States)

1995-12-31T23:59:59.000Z

210

Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.  

SciTech Connect

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No.199202601). Work undertaken during 2007 included: (1) Starting 1 new fencing project in the NFJD subbasin that will protect an additional 1.82 miles of stream and 216.2 acres of habitat; (2) Constructing 0.47 miles of new channel on the Wallowa River to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) Planting 22,100 plants along 3 streams totaling 3.6 stream miles; (4) Establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) Monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) Completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; (7) Initiated writing of a comprehensive project summary report that will present a summary of conclusions of the benefits to focal species and management recommendations for the future. Since initiation of this program 56 individual projects have been implemented, monitored and maintained along 84.8 miles of anadromous fish bearing streams that protect and enhance 3,501 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H.

2008-12-30T23:59:59.000Z

211

Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.  

SciTech Connect

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fish production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No. 199202601). Work undertaken during 2008 included: (1) completing 1 new fencing project in the North Fork John Day subbasin that protects 1.82 miles of stream and 216.2 acres of habitat, and 1 fencing project in the Wallowa subbasin that protects an additional 0.59 miles of stream and 42.5 acres of habitat; (2) constructing 0.47 miles of new channel on the Wallowa river to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) planting 10,084 plants along 0.5 miles of the Wallowa Riverproject; (4) establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; and (7) completed a comprehensive project summary report to the Independent Scientific Review panel (ISRP) that provided our conclusions regarding benefits to focal species, along with management recommendations for the future. Since initiation of this program 57 individual projects have been implemented, monitoring and maintained along 84.9 miles of anadromous fish bearing streams, that protect and enhance 3,564 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H. [Oregon Department of Fish and Wildlife] [Oregon Department of Fish and Wildlife

2009-07-01T23:59:59.000Z

212

Single P-N junction tandem photovoltaic device  

DOE Patents (OSTI)

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

2012-03-06T23:59:59.000Z

213

Single P-N junction tandem photovoltaic device  

DOE Patents (OSTI)

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

2011-10-18T23:59:59.000Z

214

EV Everywhre Grand Challenge - Battery Status and Cost Reduction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Everywhere Grand Challenge Battery Status and Cost Reduction Prospects July 26, 2012 David Howell Team Lead, Hybrid & Electric Systems Vehicle Technologies Program U.S....

215

Highlights from the 2014 SunShot Grand Challenge Summit  

Energy.gov (U.S. Department of Energy (DOE))

Sharing key moments from the SunShot Grand Challenge Summit -- an event that brings together hundreds of leaders across the solar community.

216

EV Everywhere Grand Challenge - Electric Motors and Critical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge...

217

EV Everywhere Grand Challenge- Battery Workshop attendees list  

Energy.gov (U.S. Department of Energy (DOE))

Attendance list for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

218

Arroyo Grande, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Arroyo Grande, CA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1185868, -120.5907252 Loading map... "minzoom":false,"mappingservice":"go...

219

City of Grand Rapids- Green Building Requirements for Municipal Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement the principles...

220

EV Everywhere Grand Challenge Introduction for Electric Drive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Introduction for Electric Drive Workshop Presentation given by EERE Assistant Secretary David Danielson at...

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EV Everywhere Grand Challenge- Battery Status and Cost Reduction Prospects  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by technology manager David Howell at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

222

Grand Opening for Project LIBERTY: Nation's First Plant to Use...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

its grand opening September 3, 2014, becoming the first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock. Developed through a joint venture between...

223

Pseudospherical Junctions or Josephson Effect, Backlund Transformations, and Fine Structure Coupling  

E-Print Network (OSTI)

, that the geometric phase evolution within M circularly and toroidally arranged virtual Josephson junctions (coupled by a special arrangement of Josephson junctions. In this con- text "virtual junction" means simply a scalar impedance will represent in this paper a "virtual Josephson junction". The Josephson junctions

Binder, Bernd

224

Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers  

DOE Patents (OSTI)

This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

Chang, Y. Austin (Middleton, WI); Yang, Jianhua Joshua (Madison, WI)

2008-11-11T23:59:59.000Z

225

Guneafinal-for laser printer.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11900 11900 DOE/EA-1399 Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site Final July 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed Under DOE Contract No. DE-AC13-96GJ87355 DOE Grand Junction Office EA of Ground Water Compliance at the Gunnison Site July 2002 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................... v Executive Summary .......................................................................................................................vii 1.0 Introduction.............................................................................................................................1

226

Guneafinal-for laser printer.doc  

Office of Legacy Management (LM)

11900 11900 DOE/EA-1399 Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site Final July 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed Under DOE Contract No. DE-AC13-96GJ87355 DOE Grand Junction Office EA of Ground Water Compliance at the Gunnison Site July 2002 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................... v Executive Summary .......................................................................................................................vii 1.0 Introduction.............................................................................................................................1

227

Microsoft Word - 11084030 DVP  

Office of Legacy Management (LM)

1 1 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site November 2011 LMS/GRJ/S00811 This page intentionally left blank U.S. Department of Energy DVP-August 2011, Grand Junction, Colorado November 2011 RIN 11084030 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

228

Microsoft Word - RIN 12084759 DVP  

Office of Legacy Management (LM)

Sampling at the Sampling at the Grand Junction, Colorado, Disposal Site October 2012 LMS/GRJ/S00812 This page intentionally left blank U.S. Department of Energy DVP-August 2012, Grand Junction, Colorado October 2012 RIN 12084759 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

229

Microsoft Word - RIN 12014285 DVP  

Office of Legacy Management (LM)

2 2 Water Sampling at the Grand Junction, Colorado, Office Site March 2012 LMS/GJO/S00112 This page intentionally left blank U.S. Department of Energy DVP-January 2012, Grand Junction, Colorado March 2012 RIN 12014285 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction Site, Sample Location Map ....................................................................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

230

Microsoft Word - 10123525 DVP  

Office of Legacy Management (LM)

and Surface Water and Surface Water Sampling at the Grand Junction, Colorado, Processing Site March 2011 LMS/GJT/S00111 This page intentionally left blank U.S. Department of Energy DVP-January 2011, Grand Junction, Colorado March 2011 RIN 10123525 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Processing Site, Sample Location Map ................................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

231

Microsoft Word - U0163300.doc  

Office of Legacy Management (LM)

EA-1458 EA-1458 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left blank DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and Abbreviations ..........................................................................................................v Executive Summary ...................................................................................................................... vii

232

Microsoft Word - 10073245 DVP.doc  

Office of Legacy Management (LM)

0 0 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2010 LMS/GRJ/S00810 This page intentionally left blank U.S. Department of Energy DVP-August 2010, Grand Junction, Colorado October 2010 RIN 10073245 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment Summary..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

233

Microsoft Word - 11013578 DVP  

Office of Legacy Management (LM)

1 1 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Office Site April 2011 LMS/GJO/S00211 This page intentionally left blank U.S. Department of Energy DVP-February 2011, Grand Junction, Colorado April 2011 RIN 11013578 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction Site, Sample Location Map ....................................................................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

234

Classical phase diffusion in small hysteretic Josephson junctions  

SciTech Connect

The existence of classical phase diffusion in hysteretic junctions is demonstrated by quantitative agreement between experimental and simulated {ital I}-{ital V} curves. The simulations are based on a circuit that accurately models both the junction and its external shunting impedance at microwave frequencies. We show that the bias current at which the junction switches from the phase diffusion state to the voltage state is sensitive to dissipation at microwave frequencies.

Martinis, J.M.; Kautz, R.L. (National Institute of Standards and Technology, Boulder, Colorado 80303 (US))

1989-10-02T23:59:59.000Z

235

A Josephson Junction Microscope for Low-frequency Fluctuators  

E-Print Network (OSTI)

The high-Q harmonic oscillator mode of a Josephson junction can be used as a novel probe of spurious two-level systems (TLSs) inside the amorphous oxide tunnel barriers of the junction. In particular, we show that spectroscopic transmission measurements of the junction resonator mode can reveal how the coupling magnitude between the junction and the TLSs varies with an external magnetic field applied in the plane of the tunnel barrier. The proposed experiments offer the possibility of clearly resolving the underlying coupling mechanism for these spurious TLSs, an important decoherence source limiting the quality of superconducting quantum devices.

L. Tian; R. W. Simmonds

2007-05-10T23:59:59.000Z

236

Quantum manipulation and simulation using Josephson junction arrays  

E-Print Network (OSTI)

We discuss the prospect of using quantum properties of large scale Josephson junction arrays for quantum manipulation and simulation. We study the collective vibrational quantum modes of a Josephson junction array and show that they provide a natural and practical method for realizing a high quality cavity for superconducting qubit based QED. We further demonstrate that by using Josephson junction arrays we can simulate a family of problems concerning spinless electron-phonon and electron-electron interactions. These protocols require no or few controls over the Josephson junction array and are thus relatively easy to realize given currently available technology.

Xingxiang Zhou; Ari Mizel

2006-05-01T23:59:59.000Z

237

High-frequency rolloff in the response of junction detectors  

Science Journals Connector (OSTI)

A model is developed for junction detectors based on the antisymmetric electromagnetic-structure mode for two high-free-carrier-density regions separated by a slightly conductive...

Haas, David R; Yu, Theodore; Wurl, Jon G; Gustafson, T K

1985-01-01T23:59:59.000Z

238

Organic-Inorganic Hetero Junction White Light Emitting Diode.  

E-Print Network (OSTI)

?? The purpose of this thesis work is to design and fabricates organic-inorganic hetero junction White Light Emitting Diode (WLED). In this WLED, inorganic material (more)

Lubuna Beegum, Shafeek

2008-01-01T23:59:59.000Z

239

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

240

Grand Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Grand Electric Coop, Inc Place South Dakota Utility Id 7484 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Heat Rate Commercial Farm and Residential Electric Heat Rate Residential Metered Security Light - 100 HPS Lighting Metered Security Light - 175 MV Lighting Metered Security Light - 250 HPS Lighting Metered Security Light - 400 MV Lighting Schedule A - Farm and Residential Residential Schedule ADF -Du al Fuel Service Residential

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Grand River Dam Authority | Open Energy Information  

Open Energy Info (EERE)

Dam Authority Dam Authority Jump to: navigation, search Name Grand River Dam Authority Place Oklahoma Utility Id 7490 Utility Location Yes Ownership S NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png general service Commercial general service commercial Commercial large general servic time of use distributional Commercial

242

Seismic amplitude anomalies at Mestena Grande field  

SciTech Connect

Mestena Grande field is located in northeast Jim Hogg County, Texas. Gas and condensate are produced from the middle lobe of the middle Eocene Queen City Formation. The Queen City is approximately 100 ft thick and the middle lobe, the main reservoir, is only 30 ft thick, which is well below tuning thickness. Porosities in the producing sands are generally 15-25% and permeabilities are usually 15-25 md, the maximum being about 80 md. The most recent seismic data exhibit amplitude anomalies that have some correspondence with the production. The strongest amplitudes are from the vicinity of the better wells and increase with offset. Most of the dry holes are on weak amplitudes that decrease with offset. Modeling the AVO response of a productive well, however, has predicted an amplitude decrease with offset. This disagreement is attributed to the lack of accurate shear wave velocities and the very thinly laminated sands.

Burnett, R. (Union Texas Petroleum, Houston, TX (USA))

1989-09-01T23:59:59.000Z

243

Non-relativistic Josephson Junction from Holography  

E-Print Network (OSTI)

We construct a Josephson junction in non-relativistic case with a Lifshitz geometry as the dual gravity. We investigate the effect of the Lifshitz scaling in comparison with its relativistic counterpart. The standard sinusoidal relation between the current and the phase difference is found for various Lifshitz scalings characterised by the dynamical critical exponent. We also find the exponential decreasing relation between the condensate of the scalar operator within the barrier at zero current and the width of the weak link, as well as the relation between the critical current and the width. Nevertheless, the coherence lengths obtained from two exponential decreasing relations generically have discrepancies for non-relativistic dual.

Huai-Fan Li; Li Li; Yong-Qiang Wang; Hai-Qing Zhang

2014-12-09T23:59:59.000Z

244

Non-relativistic Josephson Junction from Holography  

E-Print Network (OSTI)

We construct a Josephson junction in non-relativistic case with a Lifshitz geometry as the dual gravity. We investigate the effect of the Lifshitz scaling in comparison with its relativistic counterpart. The standard sinusoidal relation between the current and the phase difference is found for various Lifshitz scalings characterised by the dynamical critical exponent. We also find the exponential decreasing relation between the condensate of the scalar operator within the barrier at zero current and the width of the weak link, as well as the relation between the critical current and the width. Nevertheless, the coherence lengths obtained from two exponential decreasing relations generically have discrepancies for non-relativistic dual.

Li, Huai-Fan; Wang, Yong-Qiang; Zhang, Hai-Qing

2014-01-01T23:59:59.000Z

245

Synchronized Andreev transmission in SNS junction arrays.  

SciTech Connect

We construct a nonequilibrium theory for the charge transfer through a diffusive array of alternating normal (N) and superconducting (S) islands comprising an SNSNS junction, with the size of the central S island being smaller than the energy relaxation length. We demonstrate that in the nonequilibrium regime the central island acts as Andreev retransmitter with the Andreev conversions at both NS interfaces of the central island correlated via above-the-gap transmission and Andreev reflection. This results in a synchronized transmission at certain resonant voltages which in experiments is seen as a sequence of spikes in the differential conductivity.

Chtchelkatchev, N. M.; Baturina, T. I.; Glatz, A.; Vinokur, V. M.; Materials Science Division; Russian Academy of Sciences; Moscow Inst. of Physics and Technology; Inst. Semiconductor Physics

2010-07-29T23:59:59.000Z

246

Quantum breathers in capacitively coupled Josephson junctions: Correlations, number conservation, and entanglement  

E-Print Network (OSTI)

Quantum breathers in capacitively coupled Josephson junctions: Correlations, number conservation coupled Josephson junctions. In the classical case the equations of motion admit discrete breather by employing the already developed tech- niques for quantum information processing using Josephson junctions

Flach, Sergej

247

Grand Challenge: Scalable Stateful Stream Processing for Smart Grids  

E-Print Network (OSTI)

to the ACM DEBS Grand Challenge 2014, which evaluates event-based systems for smart grid analytics. OurGrand Challenge: Scalable Stateful Stream Processing for Smart Grids Raul Castro Fernandez for event queries. The 2014 edition of the challenge [15] focuses on smart grid analytics and is based

Pietzuch, Peter

248

The Particle Adventure | Unsolved Mysteries | Forces and the Grand Unified  

NLE Websites -- All DOE Office Websites (Extended Search)

Unsolved Mysteries - Forces and the Grand Unified Theory Unsolved Mysteries - Forces and the Grand Unified Theory Forces and the Grand Unified Theory Physicists hope that a Grand Unified Theory will unify the strong, weak, and electromagnetic interactions. There have been several proposed Unified Theories, but we need data to pick which, if any, of these theories describes nature. If a Grand Unification of all the interactions is possible, then all the interactions we observe are all different aspects of the same, unified interaction. However, how can this be the case if strong and weak and electromagnetic interactions are so different in strength and effect? Strangely enough, current data and theory suggests that these varied forces merge into one force when the particles being affected are at a high enough energy.

249

Grand Challenges | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Grand Challenges Grand Challenges Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Basic Research Needs Grand Challenges Science Highlights News & Events Publications Contact BES Home Research Grand Challenges Print Text Size: A A A RSS Feeds FeedbackShare Page Grand Challenge Report The Basic Energy Sciences Advisory Committee (BESAC) report, Directing Matter and Energy: Five Challenges for Science and the Imagination was the culmination of a series of BES-sponsored workshops that began in 2001. Over and over, the recommendations from these workshops described similar themes that in this new era of science, we would design, discover, and synthesize new materials and molecular assemblies through atomic scale control; probe and control photon, phonon, electron, and ion interactions

250

Dynamics of domain wall networks with junctions  

SciTech Connect

We use a combination of analytic tools and an extensive set of the largest and most accurate three-dimensional field theory numerical simulations to study the dynamics of domain wall networks with junctions. We build upon our previous work and consider a class of models which, in the limit of large number N of coupled scalar fields, approaches the so-called ''ideal'' model (in terms of its potential to lead to network frustration). We consider values of N between N=2 and N=20, and a range of cosmological epochs, and we also compare this class of models with other toy models used in the past. In all cases we find compelling evidence for a gradual approach to scaling, strongly supporting our no-frustration conjecture. We also discuss the various possible types of junctions (including cases where there is a hierarchy of them) and their roles in the dynamics of the network. Finally, we provide a cosmological Zel'dovich-type bound on the energy scale of this kind of defect network: it must be lower than 10 keV.

Avelino, P. P.; Oliveira, J. C. R. E. [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Martins, C. J. A. P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto (Portugal); DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Menezes, J. [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Centro de Astrofisica da Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto (Portugal); Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970 Joao Pessoa, Paraiba (Brazil); Menezes, R. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970 Joao Pessoa, Paraiba (Brazil)

2008-11-15T23:59:59.000Z

251

A fourier spectrometer for studying the radiation from Josephson Junctions  

SciTech Connect

The paper describes a Fourier spectrometer designed to study the radiation generated by a Josephson junction in the millimeter and FIR bands with a resolution of {approx}2 GHz in the two-pass mode and {approx}1 GHz in the multipass mode. A feature is that one Josephson junctions operates as both generator and detector at the same time.

Verevkin, A.A.; Il`in, V.A.; Lipatov, A.P. [V.I. Lenin Moscow Pedagogical State Univ., Moscow (Russian Federation)

1995-06-01T23:59:59.000Z

252

Conditions for synchronization in Josephson-junction arrays  

SciTech Connect

An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

Chernikov, A.A.; Schmidt, G. [Stevens Institute of Technology, Hoboken, NJ (United States)

1995-12-31T23:59:59.000Z

253

Josephson junctions in high-T/sub c/ superconductors  

DOE Patents (OSTI)

The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

Falco, C.M.; Lee, T.W.

1981-01-14T23:59:59.000Z

254

Intermittency and low frequency noise in a Josephson junction  

SciTech Connect

The bifurcation, chaos, and intermittency in the {ital f}-biased Josephson junction are investigated by numerically integrating the equation of the Stewart-McCumber model with an interference {epsilon} cos {phi}'' term. In addition, the relationship between the low frequency noise and the routes to chaos in a Josephson junction is discussed.

Xiao Wanru (Physics Division, Nanjing Architectural Institute (CN)); Yao Xixian (Department of Physics, Nanjing University (CN))

1990-01-01T23:59:59.000Z

255

Conditions for synchronization in Josephson-junction arrays  

SciTech Connect

An effective perturbation theoretical method has been developed to study the dynamics of Josephson-junction series arrays. It is shown that the inclusion of junction capacitances, which is often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

Chernikov, A.A.; Schmidt, G. [Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States)] [Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States)

1995-10-01T23:59:59.000Z

256

Profiling the Thermoelectric Power of Semiconductor Junctions with  

E-Print Network (OSTI)

sources realize energy conversion between heat and electricity without the use of moving me- chanical the thermoelectric power, band struc- tures, and carrier concentrations of semiconductor junctions that constitute S is governed by local carrier statistics, SThEM allows us to profile precise elec- tronic junction locations

257

E-Print Network 3.0 - adhering junctions connecting Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

S... . P. Benz, and J. E. Bonevich Abstract--The authors have made tall, uniform stacked Josephson junction... bar- rier of our niobium Josephson junctions and obtain working...

258

The electronic structure of an S-pair in barrier-less metal/silicon junctions  

SciTech Connect

With S atoms doping into a bulk Si, it is revealed through first principles calculations that the highly S concentrated bulk Si is metallic. S atoms can be highly doped in the bulk Si because an S-pair located face to face in adjacent Si lattice sites gains a large energy and forms sp{sup 2} + p{sub z} electronic configurations and extra donor electrons. Schottky junction will be thus barrier-less by the Si metallization, well agreeing with experimental analyses.

Kato, K.; Nishi, Y.; Marukame, T.; Mitani, Y. [Advanced LSI Technology Laboratory, Toshiba Corporate R and D Center (Japan)

2013-12-04T23:59:59.000Z

259

Methane generation at Grand Gulf Nuclear Station  

SciTech Connect

The methane generation at Grand Gulf has been brought to light twice. The initial event occurred in February 1990 and the second in December 1993. Both events involved the receipt of a cask at Barnwell Waste Management Facility that when opened indicated a gas escaping. The gas was subsequently sampled and indicated a percentage of explosive gas. Both events involved powdered resin and indicated that the generation was from a bacterial attack of the organic materials (cellulose in the powdered resin mixture). The first event occurred and was believed to be isolated in a particular waste stream. The situation was handled and a biocide was found to be effective in treatment of liners until severe cross contamination of another waste stream occurred. This allowed the shipment of a liner that was required to be sampled for explosive gases. The biocide used by GGNS was allowed reintroduction into the floor drains and this allowed the buildup of immunity of the bacterial population to this particular biocide. The approval of a new biocide has currently allowed GGNS to treat liners and ship them offsite.

Carver, M.L. [Entergy Operations, Inc., Grand Gulf Nuclear Station, Port Gibson, MS (United States)

1995-09-01T23:59:59.000Z

260

Microsoft Word - cover.doc  

Office of Legacy Management (LM)

1999-90-TAR 1999-90-TAR MAC-GWGRJ 1.9 Ground Water Compliance Action Plan for the Grand Junction, Colorado, UMTRA Project Site May 2001 GJO-1999-90-TAR MAC-GWGRJ 1.9 Ground Water Compliance Action Plan for the Grand Junction, Colorado, UMTRA Project Site May 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW-511-0008-09-000 Document Number U0050100 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Document Number U0050100 Contents DOE/Grand Junction Office Ground Water Compliance Action Plan for Grand Junction, Colorado May 2001 Page ii Contents 1.0 Introduction.........................................................................................................................

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Completed Sites  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Environmental Management (EM) has been or is currently responsible for cleaning up sites across the United States. These sites were associated with the legacy of the nations nuclear...

262

TRACKING SITE  

Energy Science and Technology Software Center (OSTI)

003235MLTPL00 AASG Geothermal Data submissions tracking application and site. https://github.com/usgin/aasgtrack

263

Quantum computing with atomic Josephson junction arrays  

SciTech Connect

We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off-resonant optical lattice. Raman lasers provide the 'Josephson' tunneling, and the collision interaction between atoms represent the 'capacitive' couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the superconducting flux qubit. Single-qubit quantum logic gates are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoherence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate operation time.

Tian Lin; Zoller, P. [Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

2003-10-01T23:59:59.000Z

264

Advanced Concepts in Josephson Junction Reflection Amplifiers  

E-Print Network (OSTI)

Low-noise amplification atmicrowave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature $T_{q} = \\hbar {\\omega}/2k_{B}$. Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at $2\\omega$ pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at $\\omega$.

Pasi Lhteenmki; Visa Vesterinen; Juha Hassel; G. S. Paraoanu; Heikki Sepp; Pertti Hakonen

2014-05-20T23:59:59.000Z

265

Quantum Fluctuations in Josephson Junction Comparators  

E-Print Network (OSTI)

We have developed a method for calculation of quantum fluctuation effects, in particular of the uncertainty zone developing at the potential curvature sign inversion, for a damped harmonic oscillator with arbitrary time dependence of frequency and for arbitrary temperature, within the Caldeira-Leggett model. The method has been applied to the calculation of the gray zone width Delta Ix of Josephson-junction balanced comparators driven by a specially designed low-impedance RSFQ circuit. The calculated temperature dependence of Delta Ix in the range 1.5 to 4.2K is in a virtually perfect agreement with experimental data for Nb-trilayer comparators with critical current densities of 1.0 and 5.5 kA/cm^2, without any fitting parameters.

Thomas J. Walls; Timur V. Filippov; Konstantin K. Likharev

2002-07-15T23:59:59.000Z

266

Quantum Computing with Atomic Josephson Junction Arrays  

E-Print Network (OSTI)

We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off resonant optical lattice. Raman lasers provide the "Josephson" tunneling, and the collision interaction between atoms represent the "capacitive" couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the superconducting flux qubit. Single qubit quantum logic gates are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoherence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate operation time.

Lin Tian; P. Zoller

2003-06-12T23:59:59.000Z

267

The World as a Dual Josephson Junction  

E-Print Network (OSTI)

We examine some of the implications of the field-theoretical mechanism for the localization of gauge fields on hypersurfaces in higher-dimensional bulk space-time. This mechanism exploits the analogy between confinement and dual superconductivity. In the simplest case of a photon localized on a (2+1)-dimensional surface in a (3+1)-dimensional bulk, we argue that the system behaves like a dual Josephson junction. This implies that the effective gauge theory on the surface is not free, but displays weak confinement with a linear potential. We comment on the relevance of our results for the realistic case of a (3+1)-dimensional surface in a space-time with one or more extra dimensions.

N. Tetradis

2000-02-24T23:59:59.000Z

268

Gauge Theories of Josephson Junction Arrays  

E-Print Network (OSTI)

We show that the zero-temperature physics of planar Josephson junction arrays in the self-dual approximation is governed by an Abelian gauge theory with periodic mixed Chern-Simons term describing the charge-vortex coupling. The periodicity requires the existence of (Euclidean) topological excitations which determine the quantum phase structure of the model. The electric-magnetic duality leads to a quantum phase transition between a superconductor and a superinsulator at the self-dual point. We also discuss in this framework the recently proposed quantum Hall phases for charges and vortices in presence of external offset charges and magnetic fluxes: we show how the periodicity of the charge-vortex coupling can lead to transitions to anyon superconductivity phases. We finally generalize our results to three dimensions, where the relevant gauge theory is the so-called BF system, with an antisymmetric Kalb-Ramond gauge field.

M. C. Diamantini; P. Sodano; C. A. Trugenberger

1995-11-23T23:59:59.000Z

269

Structural organization of gap junction channels  

Science Journals Connector (OSTI)

Gap junctions were initially described morphologically, and identified as semi-crystalline arrays of channels linking two cells. This suggested that they may represent an amenable target for electron and X-ray crystallographic studies in much the same way that bacteriorhodopsin has. Over 30 years later, however, an atomic resolution structural solution of these unique intercellular pores is still lacking due to many challenges faced in obtaining high expression levels and purification of these structures. A variety of microscopic techniques, as well as NMR structure determination of fragments of the protein, have now provided clearer and correlated views of how these structures are assembled and function as intercellular conduits. As a complement to these structural approaches, a variety of mutagenic studies linking structure and function have now allowed molecular details to be superimposed on these lower resolution structures, so that a clearer image of pore architecture and its modes of regulation are beginning to emerge.

Gina E. Sosinsky; Bruce J. Nicholson

2005-01-01T23:59:59.000Z

270

Josephson-junction arrays with long-range interactions  

SciTech Connect

We calculate the current-voltage (IV) characteristics of a Josephson-junction array with long-range interactions. The array consists of two sets of equally spaced parallel superconducting wires placed at right angles. A Josephson junction is formed at every point wherever the wires cross. We treat each such junction as an overdamped resistively shunted junction, and each wire segment between two junctions as a similar resistively shunted junction with a much higher critical current. The IV characteristics are obtained by solving the coupled Josephson equations numerically. We find that, for a sufficiently large number of wires, the critical current saturates at a finite value because of the wire inductance, in excellent agreement with experiment. The calculated IV characteristics also show a striking hysteresis, even though each of the individual junctions is {ital nonhysteretic}. The hysteresis results from a global redistribution of current flow on the upper and lower voltage branches, and is also in excellent agreement with experiment. {copyright} {ital 1997} {ital The American Physical Society}

Harbaugh, J.K.; Stroud, D. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)] [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)

1997-10-01T23:59:59.000Z

271

1  

Office of Legacy Management (LM)

300 300 GJO-2003-431-TAC GJO-GWSHP 13.2-1 UMTRA Ground Water Project Baseline Performance Report for the Shiprock, New Mexico, UMTRA Project Site September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 This page intentionally left blank Document Number U0179300 Contents DOE/Grand Junction Office Baseline Performance Report, Shiprock, New Mexico

272

Dissipative dynamics of a Josephson junction in the Bose gases  

SciTech Connect

The dissipative dynamics of a Josephson junction in Bose gases is considered within the framework of the model of a tunneling Hamiltonian. The effective action that describes the dynamics of the phase difference across the junction is derived using the functional integration method. The dynamic equation obtained for the phase difference across the junction is analyzed for the finite temperatures in the low-frequency limit involving the radiation terms. The asymmetric case of the Bose gases with the different order parameters is calculated as well.

Barankov, R.A. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Burmistrov, S.N. [RRC 'Kurchatov Institute', Kurchatov Sq.1, 123182 Moscow (Russian Federation)

2003-01-01T23:59:59.000Z

273

Junction Temperature Measurement of IGBTs Using Short Circuit Current  

SciTech Connect

In this paper, a method is proposed to measure the junction temperatures of IGBT discrete devices and modules using short circuit current. Experimental results show that the short circuit current has good sensitivity, linearity and selectivity, which is suitable to be used as temperature sensitive electrical parameters (TSEP). Test circuit and hardware design are proposed for junction temperature measurement in single phase and three phase convertes. By connecting a temperature measurement unit to the converter and giving a short circuit pulse, the IGBT junction temperature can be measured.

Wang, Fei [ORNL; Xu, Zhuxian [ORNL; Ning, Puqi [ORNL

2012-01-01T23:59:59.000Z

274

BPS domain wall junctions in infinitely large extra dimensions  

Science Journals Connector (OSTI)

We consider models of scalar fields coupled to gravity which are higher-dimensional generalizations of four dimensional supergravity. We use these models to describe domain wall junctions in an antide Sitter background. We derive Bogomolnyi equations for the scalar fields from which the walls are constructed and for the metric. From these equations a BPS-like formula for the junction energy can be derived. We demonstrate that such junctions localize gravity in the presence of more than one uncompactified extra dimension.

Sean M. Carroll; Simeon Hellerman; Mark Trodden

2000-07-27T23:59:59.000Z

275

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

276

SunShot Grand Challenge Summit 2014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge Summit 2014 SunShot Grand Challenge Summit 2014 SunShot Grand Challenge Summit 2014 May 19, 2014 8:00AM PDT to May 22, 2014 5:00PM PDT Anaheim, California Hilton Anaheim The DOE SunShot Initiative Grand Challenge Summit 2014 will bring together more than 800 members of the solar community including SunShot-funded project teams, industry leaders, innovative researchers and scientists, and local, state and federal government policymakers to review the progress made and discuss the challenges ahead to make solar energy more affordable and widespread across America. The event will include activities that celebrate the accomplishments across more than 250 SunShot-funded projects and discuss the path forward for the U.S. solar energy industry. Plenary Sessions and Keynote Speakers - Top leaders from business,

277

Saft America Advanced Batteries Plant Celebrates Grand Opening in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saft America Advanced Batteries Plant Celebrates Grand Opening in Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida, factory, which will produce advanced lithium-ion batteries to power electric vehicles and other applications. Saft America estimates it will create nearly 280 permanent jobs at the factory, and the city of Jacksonville expects an additional 800 indirect jobs to be created within its community. The project has created or preserved an estimated 300

278

Alpine Extensional Detachment Tectonics In The Grande Kabylie Metamorphic  

Open Energy Info (EERE)

Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alpine Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Details Activities (0) Areas (0) Regions (0) Abstract: The Maghrebides are part of the peri-Mediterranean Alpine orogen. They expose in their inner zone inliers of high-grade crystalline rocks surrounded by Oligo-Miocene and younger Miocene cover. Detailed mapping coupled with structural and petrological investigations in the Grande Kabylie massif, and the reinterpretation of the available geochronological data, allow us to refute the traditional concept of rigid behaviour of this

279

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

280

Grand Blanc Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grand Blanc Generating Station Biomass Facility Grand Blanc Generating Station Biomass Facility Jump to: navigation, search Name Grand Blanc Generating Station Biomass Facility Facility Grand Blanc Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SunShot Grand Challenge Highlights Ambitious Efforts along the...  

Office of Environmental Management (EM)

Solar Spectrum SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum June 13, 2012 - 5:30pm Addthis Energy Secretary Steven Chu gives the...

282

Grande Ronde Basin Fish Habitat Enhancement Project : 1998 Annual Report.  

SciTech Connect

The primary goal of ''The Grande Ronde Basin Fish Habitat Improvement Project'' is to access, create, improve, protect, and restore reparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin.

McGowan, Vance R.; Powell, Russ M.

1999-05-01T23:59:59.000Z

283

Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...  

Office of Environmental Management (EM)

its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic...

284

EV Everywhere Grand Challenge- Charging Infrastructure Enabling Flexible EV Design  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Vehicle Technologies Office technology manager Lee Slezak at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

285

EV Everywhere Grand Challenge Introduction for Electric Drive Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

286

Winning the Future: Grand Ronde Solar Projects Reduce Pollution...  

Office of Environmental Management (EM)

carport. Photo from GRTHA, NREL 31797 Challenge: Situated on nearly 12,000 acres in the heart of Western Oregon's scenic coastal range, the Confederated Tribes of the Grand Ronde...

287

DEPARTMENT OF UROLOGIC SCIENCES GRAND ROUNDS FOR 2014-2015  

E-Print Network (OSTI)

Tempany-Afdhal, Professor of Radiology, Harvard Medical School #12;DEPARTMENT OF UROLOGIC SCIENCES GRAND Resident PGY-4 April 1 Urology Faculty, Dr. Joel Teichman 8 Dr. Phyllis Kisa, Pediatric Surgery Fellow 15

Ollivier-Gooch, Carl

288

Microsoft Word - GrandCoulee_FinalEA_CommentResponses.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant Grand Coulee's Third Powerplant 500-kilovolt Transmission Line Replacement Project Revision Sheet for the Environmental Assessment Finding of No Significant Impact Mitigation Action Plan DOE/EA-1679 December 2011 Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Revision Sheet for the Environmental Assessment 2 SUMMARY This revision sheet documents the changes to be incorporated into the Grand Coulee's Third Powerplant 500-kilovolt (kV) Transmission Line Replacement Project Preliminary Environmental Assessment (EA). With the addition of these changes, the Preliminary EA will not be reprinted and will serve as the Final EA. On May 2, 2011, the Preliminary EA was sent to agencies and interested parties.

289

High performance computing and communications grand challenges program  

SciTech Connect

The so-called protein folding problem has numerous aspects, however it is principally concerned with the {ital de novo} prediction of three-dimensional (3D) structure from the protein primary amino acid sequence, and with the kinetics of the protein folding process. Our current project focuses on the 3D structure prediction problem which has proved to be an elusive goal of molecular biology and biochemistry. The number of local energy minima is exponential in the number of amino acids in the protein. All current methods of 3D structure prediction attempt to alleviate this problem by imposing various constraints that effectively limit the volume of conformational space which must be searched. Our Grand Challenge project consists of two elements: (1) a hierarchical methodology for 3D protein structure prediction; and (2) development of a parallel computing environment, the Protein Folding Workbench, for carrying out a variety of protein structure prediction/modeling computations. During the first three years of this project, we are focusing on the use of two proteins selected from the Brookhaven Protein Data Base (PDB) of known structure to provide validation of our prediction algorithms and their software implementation, both serial and parallel. Both proteins, protein L from {ital peptostreptococcus magnus}, and {ital streptococcal} protein G, are known to bind to IgG, and both have an {alpha} {plus} {beta} sandwich conformation. Although both proteins bind to IgG, they do so at different sites on the immunoglobin and it is of considerable biological interest to understand structurally why this is so. 12 refs., 1 fig.

Solomon, J.E.; Barr, A.; Chandy, K.M.; Goddard, W.A., III; Kesselman, C.

1994-10-01T23:59:59.000Z

290

Microwave Photon Counter Based on Josephson Junctions Y.-F. Chen,1,* D. Hover,1  

E-Print Network (OSTI)

Microwave Photon Counter Based on Josephson Junctions Y.-F. Chen,1,* D. Hover,1 S. Sendelbach,1 L on the current-biased Josephson junction. The junction is tuned to absorb single microwave photons from optical photon counters, it is natural to consider the Josephson junction--a nonlinear, nondissipative

Saffman, Mark

291

Supercurrent-Induced Temperature Gradient across a Nonequilibrium SNS Josephson Junction M. S. Crosser,1  

E-Print Network (OSTI)

Supercurrent-Induced Temperature Gradient across a Nonequilibrium SNS Josephson Junction M. S direction. The feature represents an effective temperature gradient across the SNS Josephson junction Josephson junction (SNS JJ) into a `` junction'' by driving the electron energy distribution far from

Birge, Norman

292

Asymmetric noise probed with a Josephson junction Q. Le Masne,1  

E-Print Network (OSTI)

Asymmetric noise probed with a Josephson junction Q. Le Masne,1 H. Pothier,1, Norman O. Birge,2 C are measured using a Josephson junction. The current noise adds to the bias current of the Josephson junction], consists in using a Josephson junction (JJ) as a large bandwidth on-chip noise detector [7, 8, 9]. It has

Boyer, Edmond

293

Cooper pair transport and Coulomb blockade in one dimensional Josephson junction arrays  

E-Print Network (OSTI)

Cooper pair transport and Coulomb blockade in one dimensional Josephson junction arrays Peter š?ogskoletryckeriet, Stockholm, 2000 #12; Abstract One dimensional Josephson junction arrays have been fabricated, measured small capacitance Josephson junction is described using a Serial Resistive and Inductive Junction (SRLJ

Haviland, David

294

Asymmetric Noise Probed with a Josephson Junction Q. Le Masne,1  

E-Print Network (OSTI)

Asymmetric Noise Probed with a Josephson Junction Q. Le Masne,1 H. Pothier,1,* Norman O. Birge,2 C of the current through a tunnel junction are measured using a Josephson junction. The current noise adds to the bias current of the Josephson junction and affects its switching out of the supercurrent branch

Birge, Norman

295

Manipulating Josephson junctions in thin-films by nearby vortices  

SciTech Connect

It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

Kogan, V.G.; Mints, R.G.

2014-07-01T23:59:59.000Z

296

Power dissipation in a single molecule junction: Tracking energy levels  

E-Print Network (OSTI)

Motivated by recent work [Lee et al. Nature {\\bf 489}, 209 (2013)], on asymmetry features of heat dissipation in the electrodes of molecular junctions, we put forward an idea as a result of heat dissipation in the electrodes. Based on tight-binding model and a generalized Green's function formalism, we describe the conditions under which heat dissipation shows symmetry characteristic and does not depend on the bias polarity. We also show the power dissipated in the junction can be used to detect which energy levels of molecule junction play more or less role in the transmission process. We present this idea by studying a simple toy model and Au-$C_{60}$-Au junction.

Yaghoob Naimi; Javad Vahedi

2014-12-05T23:59:59.000Z

297

Heterojunction for Multi-Junction Solar Cells - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

for use in forming a photodetector that has applications for use in a multi-junction solar cell and detecting light at an energy greater than 0.95-1.2 eV. DescriptionThis...

298

From Josephson junction metamaterials to tunable pseudo-cavities  

E-Print Network (OSTI)

The scattering through a Josephson junction interrupting a superconducting line is revisited including power leakage. We discuss also how to make tunable and broadband resonant mirrors by concatenating junctions. As an application, we show how to construct cavities using these mirrors, thus connecting two research fields: JJ quantum metamaterials and coupled cavity arrays. We finish by discussing the first non-linear corrections to the scattering and their measurable effects.

D. Zueco; C. Fernndez-Juez; J. Yago; U. Naether; B. Peropadre; J. J. Garca-Ripoll; J. J. Mazo

2013-05-21T23:59:59.000Z

299

High-frequency wave sources using Josephson-junction arrays  

SciTech Connect

Results from Josephson-junction arrays used as high-frequency wave sources are presented. Phase-locked Josephson-junction arrays having a large number of junctions were developed to meet the need for compact submillimeter-wave sources for use in such applications as satellite communications are receivers for radioastronomical observations. The design, fabrication processes, and measurement are discussed. Distributed arrays of 40 junctions in which all Josephson junctions are placed at wavelength intervals were fabricated and tested. Such arrays can deliver about 1 [mu]W of power into a 20-60 [Omega] load resistor in the frequency ranger from 100 to 500 GHz, the upper limit being set by the large loss of the superconducting microstrip. Compact arrays were designed and fabricated to eliminate the loss of the superconducting microstrip. Those arrays have also demonstrated an output power level about 1 [mu]W into a 15 [Omega] load from 100 GHz up to 620 GHz. Characteristics of the Josephson junction source, including the power level, impedance matching, the tunability, the radiation linewidth, and tuning rate (or frequency-modulation) are discussed.

Wan, Kelin.

1991-01-01T23:59:59.000Z

300

Microsoft Word - S02013_LTS&MP.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Grand Junction, Colorado, Site Grand Junction, Colorado, Site June 2006 Office of Legacy Management DOE M/GJ -2006 -L 1164 Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy DOE-LM/GJ1164-2006 Long-Term Surveillance and Maintenance Plan for the Grand Junction, Colorado, Site June 2006 Work Performed by S. M. Stoller Under DOE Contract Number DE-AC01-02GJ79491 for the U. S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Grand Junction Site LTS&MP June 2006 Doc. No. S0201300 Page iii Contents

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Microstructure of Josephson junctions: Effect on supercurrent transport in YBCO grain boundary and barrier layer junctions  

SciTech Connect

The electric transport of high-temperature superconductors, such as YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO), can be strongly restricted by the presence of high-angle grain boundaries (GB). This weak-link behavior is governed by the macroscopic GB geometry and the microscopic grain boundary structure and composition at the atomic level. Whereas grain boundaries present a considerable impediment to high current applications of high T{sub c} materials, there is considerable commercial interest in exploiting the weak-link-nature of grain boundaries for the design of microelectronic devices, such as superconducting quantum interference devices (SQUIDs). The Josephson junctions which form the basis of this technology can also be formed by introducing artificial barriers into the superconductor. The authors have examined both types of Josephson junctions by EM techniques in an effort to understand the connection between microstructure/chemistry and electrical transport properties. This knowledge is a valuable resource for the design and production of improved devices.

Merkle, K.L.; Huang, Y.

1998-01-01T23:59:59.000Z

302

Elongated nanostructures for radial junction solar cells  

Science Journals Connector (OSTI)

In solar cell technology, the current trend is to thin down the active absorber layer. The main advantage of a thinner absorber is primarily the reduced consumption of material and energy during production. For thin film silicon (Si) technology, thinning down the absorber layer is of particular interest since both the device throughput of vacuum deposition systems and the stability of the devices are significantly enhanced. These features lead to lower cost per installed watt peak for solar cells, provided that the (stabilized) efficiency is the same as for thicker devices. However, merely thinning down inevitably leads to a reduced light absorption. Therefore, advanced light trapping schemes are crucial to increase the light path length. The use of elongated nanostructures is a promising method for advanced light trapping. The enhanced optical performance originates from orthogonalization of the light's travel path with respect to the direction of carrier collection due to the radial junction, an improved anti-reflection effect thanks to the three-dimensional geometric configuration and the multiple scattering between individual nanostructures. These advantages potentially allow for high efficiency at a significantly reduced quantity and even at a reduced material quality, of the semiconductor material. In this article, several types of elongated nanostructures with the high potential to improve the device performance are reviewed. First, we briefly introduce the conventional solar cells with emphasis on thin film technology, following the most commonly used fabrication techniques for creating nanostructures with a high aspect ratio. Subsequently, several representative applications of elongated nanostructures, such as Si nanowires in realistic photovoltaic (PV) devices, are reviewed. Finally, the scientific challenges and an outlook for nanostructured PV devices are presented.

Yinghuan Kuang; Marcel Di Vece; Jatindra K Rath; Lourens van Dijk; Ruud E I Schropp

2013-01-01T23:59:59.000Z

303

Grand Ridge Elementary Wind Project | Open Energy Information  

Open Energy Info (EERE)

Grand Ridge Elementary Wind Project Grand Ridge Elementary Wind Project Facility Grand Ridge Elementary Sector Wind energy Facility Type Community Wind Location WA Coordinates 47.545883°, -122.005714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.545883,"lon":-122.005714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Grand Marais PUC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount CFLs: $2/bulb or up to 50% of cost LEDs: $10 - $15/bulb Lighting Fixtures: $15 - $20/fixture Refrigerators: $25, plus $50 for recycling an old, working unit Freezers: $25, plus $50 for recycling an old, working unit Dishwashers: $25 Clothes Washers: $50 Dehumidifiers: $65 Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings

305

GreenHunter Biodiesel Refinery Grand Opening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer Today, Acting Deputy Secretary Jeffrey Kupfer delivered remarks at the launch of GreenHunter Energy's biodiesel refinery, which will be the nation's single largest biodiesel refinery, producing 105 million gallons of "white-water" B100 biodiesel per year. Thank you Gary. I'm pleased to join with Governor Perry, Congressmen Green and Lampson, and Mayor Garcia in celebrating this important occasion. Today, as we open the nation's largest biodiesel refinery, we reach another milestone in our effort to make America more energy secure. As you know, global energy demand is surging. We must act swiftly and aggressively to

306

Moreau-Grand Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Moreau-Grand Electric Coop Inc Moreau-Grand Electric Coop Inc Jump to: navigation, search Name Moreau-Grand Electric Coop Inc Place South Dakota Utility Id 12915 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Industrial Small General Service Single Phase Commercial Small General Service Single Phase Well Commercial Small General Service Three Phase Commercial Average Rates Residential: $0.1090/kWh Commercial: $0.0798/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

307

Microsoft Word - CX-GrandCoulee-Creston_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Robert Keudell Robert Zeller Lineman Foreman III - TFWK-Grand Coulee Lineman Foreman I - TFWK-Grand Coulee Proposed Action: Selected wood pole replacement and minor access road maintenance along the Grand Coulee-Creston transmission line at miles 14, 15, 21 and 28. PP&A Project No: 1828 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities...for structures, rights of way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures... in a condition suitable for a facility to be used for its designed purpose.

308

Mutagenic potential of sediments from the Grand Calumet River  

SciTech Connect

The Grand Calumet River/Indiana Harbor Canal is one of the International Joint Commission's Great Lakes Areas of Concern (AOC). Like many other AOCs, the Grand Calumet River is in a heavily industrialized area and has a history of chemical contamination. Many of the chemicals found in the industrial and municipal wastes that enter the waterway end up in sediment where they are concentrated to high levels. In order to assess the potential genotoxicity of sediments from the Grand Calumet River, the authors determined the mutagenic potential of organic extracts of sediments. The sediment extracts were assayed in the Salmonella/microsome mutagenicity test. In the Ames test, all ten sediment samples assayed were found to be mutagenic. In general, chemicals found in the sediments required metabolic activation before a positive mutagenic response was observed.

Maccubbin, A.E.; Ersing, N. (Roswell Park Cancer Inst., Buffalo, NY (United States))

1991-08-01T23:59:59.000Z

309

grandjunction.cdr  

Office of Legacy Management (LM)

Grand Junction, Colorado. These sites are managed by Grand Junction, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The former Grand Junction processing site, historically known as the Climax uranium mill, occupies 114 acres at an elevation of about 4,600 feet above sea level in the broad, arid Grand Valley in west central Colorado. The former mill site is located on land owned by the City of Grand Junction in an industrial area along the north bank of the west-flowing Colorado River. The facility began in 1899 as a sugar beet mill. In 1950, the Climax Uranium Company reconfigured the original site and operated the facility as a uranium and vanadium mill until 1970. During 19 years of operation, the mill produced 2.2 million tons of radioactive tailings, a

310

Microwave coupling of frequency-locked Josephson junction arrays  

SciTech Connect

A high temperature superconducting YBa{sub 2}Cu{sub 3}O{sub y} array of five Josephson junctions designed with additional coupling lines has been developed to demonstrate the effects of frequency locking and impedance matching for applications such as oscillators, mixers, and detectors. The Josephson self-radiation power was directly detected by a superheterodyne receiver, and Shapiro steps were also measured. The Josephson self-radiation properties reveal good quality of phase locking and microwave coupling with external circuits. The maximum self-radiation power of our array is about 50 pW which is several ten times higher than that of a single Josephson junction, and its peak point exactly satisfies the Josephson current-voltage relation. The Shapiro-step measurements show that the behavior of current-voltage curve depends on the effective inductance of coupling lines which affects the total impedance of Josephson junction array and microwave coupling. The Josephson oscillation frequency was obtained up to about 880 GHz which is 73{percent} of the maximum available frequency calculated from the characteristic voltage of the Josephson junctions. Experimental results show that this type of Josephson junction array can improve the Josephson self-radiation power and increase the maximum detectable frequency. {copyright} {ital 1997 American Institute of Physics.}

Song, I.; Eom, Y.; Park, G. [Department of Physics, Sogang University, Seoul 100-611 (Korea)] [Department of Physics, Sogang University, Seoul 100-611 (Korea); Lee, E.; Park, S. [Electronic Materials Laboratory, Samsung Advanced Institute of Technology, Suwon (Korea)] [Electronic Materials Laboratory, Samsung Advanced Institute of Technology, Suwon (Korea)

1997-06-01T23:59:59.000Z

311

Interference effects in isolated Josephson junction arrays with geometric symmetries  

E-Print Network (OSTI)

As the size of a Josephson junction is reduced, charging effects become important and the superconducting phase across the link turns into a periodic quantum variable. Isolated Josephson junction arrays are described in terms of such periodic quantum variables and thus exhibit pronounced quantum interference effects arising from paths with different winding numbers (Aharonov-Casher effects). These interference effects have strong implications for the excitation spectrum of the array which are relevant in applications of superconducting junction arrays for quantum computing. The interference effects are most pronounced in arrays composed of identical junctions and possessing geometric symmetries; they may be controlled by either external gate potentials or by adding/removing charge to/from the array. Here we consider a loop of N identical junctions encircling one half superconducting quantum of magnetic flux. In this system, the ground state is found to be non-degenerate if the total number of Cooper pairs on the array is divisible by N, and doubly degenerate otherwise (after the stray charges are compensated by the gate voltages).

D. A. Ivanov; L. B. Ioffe; V. B. Geshkenbein; G. Blatter

2001-02-13T23:59:59.000Z

312

Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy A. E. Miroshnichenko, S. Flach, and M. V. Fistul  

E-Print Network (OSTI)

Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy A. E localized states discrete breathers and linear electromagnetic excitations EE's in Josephson junction lattices 6 , and localized resistive states in Josephson junction arrays 7­10 . The latter systems

Flach, Sergej

313

gjpip.PDF  

Office of Legacy Management (LM)

GWGRJ 7.1 GWGRJ 7.1 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Grand Junction Uranium Mill Tailings Remedial Action (UMTRA) Project Site (Climax Uranium Millsite) July 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed under DOE Contract No. DE-AC13-96GJ8733 Public Involvement Plan July 1999 Page 1 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Grand Junction, Colorado, Uranium Mill Tailings Site This Public Involvement Plan is tiered to the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project Public Participation Plan dated October 1997. This public involvement plan is specific to the Grand Junction, Colorado, site and describes the activities that will meet

314

Microsoft Word - S00722  

Office of Legacy Management (LM)

DOE/Grand Junction Office Second Five-Year Report for MVP DOE/Grand Junction Office Second Five-Year Report for MVP June 2002 Page ii Five-Year Review Report Table of Contents List of Acronyms ............................................................................................................. iv Executive Summary......................................................................................................... v Five-Year Review Summary Form.................................................................................. vi I. Introduction .........................................................................................................1 II. Site Chronology ..................................................................................................2 III. Background .........................................................................................................2

315

NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Triple-Junction Terrestrial Concentrator Solar Cell Triple-Junction Terrestrial Concentrator Solar Cell Developers: Dr. Jerry Olson, Dr. Sarah Kurtz, Dr. Daniel Friedman, Alan Kibbler, and Charlene Karmer, National Renewable Energy Laboratory; Dr. Richard King, Jim Ermer, Dmitri D. Krut, Hector Cotal, Peter Colter, Hojun Yoon, Nassar Karam, and Gregory S. Glenn, Spectrolab, Inc. The triple-junction solar cell - or TJ solar cell - generates a lot of energy from just a very little amount of material. How much energy? A 1-cm2 cell can generate as much as 35 W of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity to power the typical American household. This cell can do this, first, because it

316

Bloch Inductance in Small-Capacitance Josephson Junctions  

SciTech Connect

We show that the electrical impedance of a small-capacitance Josephson junction also includes, in addition to the capacitive term -i/{omega}C{sub B}, an inductive term i{omega}L{sub B}. Similar to the known Bloch capacitance C{sub B}(q), the Bloch inductance L{sub B}(q) also depends periodically on the quasicharge, q, and its maximum value achieved at q=e(mod 2e) always exceeds the value of the Josephson inductance of this junction L{sub J}({phi}) at fixed {phi}=0. The effect of the Bloch inductance on the dynamics of a single junction and a one-dimensional array is described.

Zorin, A.B. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

2006-04-28T23:59:59.000Z

317

Physical understanding of cryogenic implant benefits for electrical junction stability  

SciTech Connect

We investigate the effect of cryogenic temperature implants on electrical junction stability for ultra shallow junction applications for sub-32 nm technology nodes and beyond. A comprehensive study was conducted to gain physical understanding of the impact of cryogenic temperature implants on dopant-defect interactions. Carborane (C{sub 2}B{sub 10}H{sub 12}) molecule, a potential alternative to monomer boron was implanted in carbon preamorphized silicon substrates at cryogenic implant temperatures. Results indicate implants at cryogenic temperatures increase dopant activation with reduced diffusion, resulting in lower sheet resistance for a lower junction depth. Further, this study emphasizes the benefits of co-implants performed at cryogenic temperatures as alternative to traditional preamorphizing implants.

Adeni Khaja, Fareen; Colombeau, Benjamin; Thanigaivelan, Thirumal; Ramappa, Deepak; Henry, Todd [Applied Materials-Varian Semiconductor Equipment, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

2012-03-12T23:59:59.000Z

318

Escape Time of Josephson Junctions for Signal Detection  

E-Print Network (OSTI)

In this Chapter we investigate with the methods of signal detection the response of a Josephson junction to a perturbation to decide if the perturbation contains a coherent oscillation embedded in the background noise. When a Josephson Junction is irradiated by an external noisy source, it eventually leaves the static state and reaches a steady voltage state. The appearance of a voltage step allows to measure the time spent in the metastable state before the transition to the running state, thus defining an escape time. The distribution of the escape times depends upon the characteristics of the noise and the Josephson junction. Moreover, the properties of the distribution depends on the features of the signal (amplitude, frequency and phase), which can be therefore inferred through the appropriate signal processing methods. Signal detection with JJ is interesting for practical purposes, inasmuch as the superconductive elements can be (in principle) cooled to the absolute zero and therefore can add (in practi...

Addesso, P; Pierro, V

2014-01-01T23:59:59.000Z

319

Comparison of measurements and simulations of series-parallel incommensurate area SQUID arrays fabricated from Y Ba Cu O ion damage Josephson junctions  

E-Print Network (OSTI)

3 O 7?? ion damage Josephson junctions Shane A. Cybart, 1,2 Cu 3 O 7?? thin ?lm ion damage Josephson junctions. Theconsisted of a grid of Josephson junctions with 28 junctions

Cybart, Shane A.

2014-01-01T23:59:59.000Z

320

Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Home » Site Map Home » Site Map Site Map Home About Overview NERSC Mission Contact us Staff Center Leadership Sudip Dosanjh Select Publications Jeff Broughton Katie Antypas John Shalf Francesca Verdier Center Administration James Craw Norma Early Jeff Grounds Betsy MacGowan Zaida McCunney Lynn Rippe Suzanne Stevenson David Tooker Center Communications Jon Bashor Linda Vu Margie Wylie Kathy Kincade Advanced Technologies Group Nicholas Wright Brian Austin Research Projects Matthew Cordery Christopher Daley Analytics Group Peter Nugent David Camp Hank Childs Harinarayan Krishnan Burlen Loring Joerg Meyer Prabhat Oliver Ruebel Daniela Ushizima Gunther Weber Yushu Yao Computational Systems Group Jay Srinivasan James Botts Scott Burrow Tina Butler Nick Cardo Tina Declerck Ilya Malinov David Paul Larry Pezzaglia Iwona Sakrejda

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The verifying compiler: A grand challenge for computing research  

Science Journals Connector (OSTI)

This contribution proposes a set of criteria that distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn ...

Tony Hoare

2003-01-01T23:59:59.000Z

322

Ouverture des portes : Plonge dans le Grand Bleu... Activits libres  

E-Print Network (OSTI)

Ouverture des portes : Plongée dans le Grand Bleu... Activités libres : · Présentations de nos ... Fermeture des portes 10h En Continu 17h 10h - 12h 14h - 15h 17h 15h - 17h Samedi 10 mai 2014 Portes ouvertes

323

SEDIMENT FLUX THROUGH THE RIO GRANDE RIVER: A MONSOONAL EFFECT  

E-Print Network (OSTI)

SEDIMENT FLUX THROUGH THE RIO GRANDE RIVER: A MONSOONAL EFFECT Troy C.Hiatt A thesis submitted University August 2010 Copyright © 2010 Troy C. Hiatt All Rights Reserved #12;ABSTRACT Sediment Flux through Climate has historically been recognized as an influence on sediment flux and deposition. The North

Seamons, Kent E.

324

Creativity Support Tools: A Grand Challenge for HCI Researchers  

E-Print Network (OSTI)

the innovations from engineering, software development, and user interface design. Finally, creativity manifestsCreativity Support Tools: A Grand Challenge for HCI Researchers Ben Shneiderman Department can play a key role in design- ing, implementing, and evaluating a new generation of creativity

Shneiderman, Ben

325

SunShot Grand Challenge Summit and Peer Review 2014  

Energy.gov (U.S. Department of Energy (DOE))

The 2014 SunShot Grand Challenge Summit and Peer Review brought together more than 800 members of the solar community to review the progress made toward the SunShot goal and discuss the challenges ahead to make solar energy more affordable and widespread across America. Download the Summit conference presentations here.

326

Data Mining: Data Analysis on a Grand Scale? Padhraic Smyth  

E-Print Network (OSTI)

Data Mining: Data Analysis on a Grand Scale? Padhraic Smyth Information and Computer Science for Statistical Methods in Medical Research, September 2000 1 #12;Abstract Modern data mininghas evolvedlargelyas aresult ofe orts bycomputer scientists to address the needs of data owners" in extracting useful

Smyth, Padhraic

327

GJO.cdr  

Office of Legacy Management (LM)

Grand Junction, Colorado, Site Grand Junction, Colorado, Site Site Description and History The Grand Junction site is located in the city of Grand Junction, in west-central Colorado about 25 miles from the Utah border. The Gunnison River flows along the west and north boundaries of the site and flows into the Colorado River about 0.5 mile north of the site. The U.S. War Department acquired the 54-acre property in 1943 for use by the Manhattan Engineer District, which operated a refinery on site from 1943 to 1946 to concentrate uranium oxide. The refinery produced an estimated 2.36 million pounds of uranium oxide and a comparable amount of vanadium oxide, which were shipped off site for further processing. The U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), operated a

328

Microsoft Word - TR05-09.doc  

Office of Legacy Management (LM)

5-Year Inspection - Grand Junction, Colorado, Processing Site 5-Year Inspection - Grand Junction, Colorado, Processing Site May 2011 Page 1 2011 5-Year Inspection and Site Status Report for the Grand Junction, Colorado, UMTRCA Title I Processing Site Summary The Grand Junction, Colorado, Processing Site was inspected on March 30, 2011. The site was in excellent condition. Construction of the Riverside Parkway through the site was completed since the last inspection in 2006. There was no evidence of unapproved groundwater extraction or exposure. Institutional controls were checked and found to be effective. No cause for a follow-up or contingency inspection was identified. Surface and groundwater samples were collected in January 2011 and analyzed to monitor groundwater quality and determine if site-related contaminants affect water quality of the

329

Microsoft Word - S0106300-December2004.DOC  

Office of Legacy Management (LM)

PlanSite A and Plot M December 2004 Doc. No. S0106300 Page B-1 U.S. Department of Energy, Office of Legacy Management Grand Junction, Colorado, Office 2004 SITE SUMMARY AND...

330

Exact Quantum Dynamics of a Bosonic Josephson Junction  

SciTech Connect

The quantum dynamics of a one-dimensional bosonic Josephson junction is studied by solving the time-dependent many-boson Schroedinger equation numerically exactly. Already for weak interparticle interactions and on short time scales, the commonly employed mean-field and many-body methods are found to deviate substantially from the exact dynamics. The system exhibits rich many-body dynamics such as enhanced tunneling and a novel equilibration phenomenon of the junction depending on the interaction, which is attributed to a quick loss of coherence.

Sakmann, Kaspar; Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S. [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

2009-11-27T23:59:59.000Z

331

Exact quantum dynamics of a bosonic Josephson junction  

E-Print Network (OSTI)

The quantum dynamics of a one-dimensional bosonic Josephson junction is studied by solving the time-dependent many-boson Schr\\"odinger equation numerically exactly. Already for weak interparticle interactions and on short time scales, the commonly-employed mean-field and many-body methods are found to deviate substantially from the exact dynamics. The system exhibits rich many-body dynamics like enhanced tunneling and a novel equilibration phenomenon of the junction depending on the interaction, attributed to a quick loss of coherence.

Kaspar Sakmann; Alexej I. Streltsov; Ofir E. Alon; Lorenz S. Cederbaum

2009-05-06T23:59:59.000Z

332

Observation of negative absolute resistance in a Josephson junction  

E-Print Network (OSTI)

We experimentally demonstrate the occurrence of negative absolute resistance (NAR) up to about $-1\\Omega$ in response to an externally applied dc current for a shunted Nb-Al/AlO$_x$-Nb Josephson junction, exposed to a microwave current at frequencies in the GHz range. The realization (or not) of NAR depends crucially on the amplitude of the applied microwave current. Theoretically, the system is described by means of the resistively and capacitively shunted junction model in terms of a moderately damped, classical Brownian particle dynamics in a one-dimensional potential. We find excellent agreement of the experimental results with numerical simulations of the model.

J. Nagel; D. Speer; T. Gaber; A. Sterck; R. Eichhorn; P. Reimann; K. Ilin; M. Siegel; D. Koelle; R. Kleiner

2008-01-28T23:59:59.000Z

333

Testing axion physics in a Josephson junction environment  

E-Print Network (OSTI)

We suggest that experiments based on Josephson junctions, SQUIDS, and coupled Josephson qubits can be used to construct a resonant environment for dark matter axions. We propose experimental setups in which axionic interaction strengths in a Josephson junction environment can be tested, similar in nature to recent experiments that test for quantum entanglement of two coupled Josephson qubits. We point out that the parameter values relevant for early-universe axion cosmology are accessible with present day's achievements in nanotechnology. We work out how typical dark matter and dark energy signals would look like in a novel detector that exploits this effect.

Beck, Christian

2011-01-01T23:59:59.000Z

334

Averaged equations for Josephson junction series arrays with LRC load  

E-Print Network (OSTI)

We derive the averaged equations describing a series array of Josephson junctions shunted by a parallel inductor-resistor-capacitor load. We assume that the junctions have negligable capacitance ($\\beta = 0$), and derive averaged equations which turn out to be completely tractable: in particular the stability of both in-phase and splay states depends on a single parameter, $\\del$. We find an explicit expression for $\\delta$ in terms of the load parameters and the bias current. We recover (and refine) a common claim found in the technical literature, that the in-phase state is stable for inductive loads and unstable for capacitive loads.

Kurt Wiesenfeld; James W. Swift

1994-08-26T23:59:59.000Z

335

Testing axion physics in a Josephson junction environment  

E-Print Network (OSTI)

We suggest that experiments based on Josephson junctions, SQUIDS, and coupled Josephson qubits can be used to construct a resonant environment for dark matter axions. We propose experimental setups in which axionic interaction strengths in a Josephson junction environment can be tested, similar in nature to recent experiments that test for quantum entanglement of two coupled Josephson qubits. We point out that the parameter values relevant for early-universe axion cosmology are accessible with present day's achievements in nanotechnology. We work out how typical dark matter and dark energy signals would look like in a novel detector that exploits this effect.

Christian Beck

2011-11-17T23:59:59.000Z

336

Three-dimensional Josephson-junction arrays: Static magnetic response  

SciTech Connect

In this work we present a simple three-dimensional Josephson-junction array model: a cube with twelve junctions, one on each edge. The low-field magnetic response of the system is studied numerically for arbitrary directions of the applied field. In this model the magnetic energy of the circulating currents is taken into account by introducing an effective mutual inductance matrix. The lower threshold field for flux penetration is determined in a closed analytic form for field directions perpendicular to one cube side. {copyright} {ital 1998} {ital The American Physical Society}

De Luca, R.; Di Matteo, T. [INFM-Dipartimento di Fisica, Universita degli Studi di Salerno, I-84081 Baronissi (Salerno) (Italy)] [INFM-Dipartimento di Fisica, Universita degli Studi di Salerno, I-84081 Baronissi (Salerno) (Italy); Tuohimaa, A.; Paasi, J. [Laboratory of Electricity and Magnetism, Tampere University of Technology, FIN-33101 Tampere (Finland)] [Laboratory of Electricity and Magnetism, Tampere University of Technology, FIN-33101 Tampere (Finland)

1998-01-01T23:59:59.000Z

337

Peltier cooling stage utilizing a superconductor-semiconductor junction  

SciTech Connect

This paper describes a Peltier cooling stack. It comprises: a first electrode; a superconducting layer electrically coupled to the first electrode; a semiconducting layer electrically coupled to the superconducting layer; and a second superconducting layer electrically coupled to the semiconductor layer; and a second electrode electrically coupled to the second superconducting layer, electrons flowing under an applied voltage from the first electrode through the first superconducting layer, semiconductor layer, second superconducting layer and second electrode, the electrical junction between the first superconducting layer and semiconductor providing Peltier cooling while the electrical junction between the semiconductor layer and the second superconducting layer providing Peltier heating, whereby a cryogenic Peltier cooling stack is provided.

Skertic, M.M.

1991-04-09T23:59:59.000Z

338

Annexin A2 is Required for Endothelial Cell Junctional Response to S1P  

E-Print Network (OSTI)

Endothelial cell (EC) junctions are critical for angiogenesis, the sprouting and growth of new blood vessels from existing vessels. Sphingosine 1-phosphate (S1P) is a proangiogenic factor that potently stimulates sprouting, fortifies EC junctions...

Smith, Rebecca

2014-01-14T23:59:59.000Z

339

Interaction of Josephson Junction and Distant Vortex in Narrow Thin-Film Superconducting Strips  

SciTech Connect

The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010)], who showed that the vortex may turn the junction into ? type. It is shown here that even if the vortex is far away from the junction, it still changes the 0 junction to a ? junction when situated close to the strip edges. Within the approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology of the vortex phase which extends to macroscopic distances of superconducting coherence.

Kogan, V. G. [Ames Laboratory; Mints, R. G. [Tel Aviv University

2014-01-31T23:59:59.000Z

340

E-Print Network 3.0 - alter tight junction Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

if the read-out junction is in the underdamped phase... cheerful atmosphere in the Josephson junctions ii tel-00586075,version1-14Apr2011 12;iii group and thank......

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - altered tight junction Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

if the read-out junction is in the underdamped phase... cheerful atmosphere in the Josephson junctions ii tel-00586075,version1-14Apr2011 12;iii group and thank......

342

Low-Resolution Reconstruction of a Synthetic DNA Holliday Junction Marcelo Nollmann,*y  

E-Print Network (OSTI)

Low-Resolution Reconstruction of a Synthetic DNA Holliday Junction Marcelo No¨llmann,*y W. Marshall

Nollmann, Marcelo

343

Optimized Triple-Junction Solar Cells Using Inverted Metamorphic Approach (Presentation)  

SciTech Connect

Record efficiencies with triple-junction inverted metamorphic designs, modeling useful to optimize, and consider operating conditions before choosing design.

Geisz, J. F.

2008-11-01T23:59:59.000Z

344

Solar Community Comes Out in Full Force for SunShot Grand Challenge...  

Office of Environmental Management (EM)

Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit May 22, 2014 - 9:58am Addthis...

345

Charging Up For Formula Sun Grand Prix By Jonathan Nutzmann, Project Manager  

E-Print Network (OSTI)

Charging Up For Formula Sun Grand Prix By Jonathan Nutzmann, Project Manager The team is currently busy with training for our next race, Formula Sun Grand Prix, which is com- ing up May 2nd-7th

Janssen, Michel

346

PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Permit and Electricity Export Authorization for Rio Grande Electric Cooperative to Export electricity to Mexico. PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc More...

347

Interplay between coherence and entanglement in macroscopic cat states of a bosonic Josephson junction  

E-Print Network (OSTI)

We study the interplay between coherence and entanglement in macroscopic Schr\\"odinger-cat states of a bosonic Josephson junction made of $N$ ultracold and dilute atoms confined in a quasi-one-dimensional double-well optical trap. We characterize the presence of macroscopic Schr\\"odinger-cat states by using the Fisher information $F$, the coherence by using the visibility $\\alpha$ of the interference fringes in the momentum distribution, and the entanglement of the ground-state by using the entanglement entropy $S$. Within the two-site Bose-Hubbard model framework these quantities are calculated by changing the inter-atomic interaction strength from the strongly attractive regime to the strongly repulsive one. In this way we investigate the crossover from a macroscopic Schr\\"odinger-cat state across an atomic coherent state to a pure Fock state.

Mazzarella, Giovanni; Parola, Alberto; Toigo, Flavio

2011-01-01T23:59:59.000Z

348

Noise and microresonance of critical current in Josephson junction induced by Kondo trap states  

E-Print Network (OSTI)

We analyze the impact of trap states in the oxide layer of a superconducting tunnel junctions, on the fluctuation of the Josephson critical current, thus on coherence in superconducting qubits. Two mechanisms are usually considered: the current blockage due to repulsion at the occupied trap states, and the noise from electrons hopping across a trap. We extend previous studies of noninteracting traps to the case where the traps have on-site electron repulsion inside one ballistic channel. The repulsion not only allows the appropriate temperature dependence of 1/f noise, but also is a control to the coupling between the computational qubit and the spurious two-level systems inside the oxide dielectric. We use second order perturbation theory which allows to obtain analytical formulae for the interacting bound states and spectral weights, limited to small and intermediate repulsions. Remarkably, it still reproduces the main features of the model as identified from the Numerical Renormalization Group. We present ...

Ansari, Mohammad H

2011-01-01T23:59:59.000Z

349

Novel InGaAsN pn Junction for High-Efficiency Multiple-Junction Solar Cells  

SciTech Connect

We report the application of a novel material, InGaAsN, with bandgap energy of 1.05 eV as a junction in an InGaP/GaAs/InGaAsN/Ge 4-junction design. Results of the growth and structural, optical, and electrical properties were demonstrated, showing the promising perspective of this material for ultra high efficiency solar cells. Photovoltaic properties of an as-grown pn diode structure and improvement through post growth annealing were also discussed.

Allerman, A.A.; Chang, P.C.; Gee, J.M.; Hammons, B.E.; Hou, H.Q.; Jones, E.D.; Kurtz, S.R.; Reinhardt, K.C.

1999-03-26T23:59:59.000Z

350

Quantum Monte Carlo study of a disordered 2D Josephson junction array  

E-Print Network (OSTI)

Quantum Monte Carlo study of a disordered 2D Josephson junction array W.A. Al-Saidi *, D. Stroud reserved. PACS: 74.25.Dw; 05.30.Jp; 85.25.Cp Keywords: Josephson junctions; Quantum Monte Carlo; Disorder 1. Introduction A Josephson junction array (JJA) consists of a collection of superconducting islands connected

Stroud, David

351

The chaotic oscillations of a Josephson junction with external magnetic field  

SciTech Connect

Using the Melnikov Method the oscillation of a single Josephson junction with external magnetic field and DC bias is analyzed. Under the external magnetic field the junction can operate in chaos even if there is no bias. The numerical results show that in dependence on some parameters the Josephson junction with external magnetic field will go from stable periodic states to chaotic states.

Ma, J.G.; Wolff, I. [Duisburg Univ. (Germany). Dept. of Electrical Engineering

1996-05-01T23:59:59.000Z

352

Washing out of the 0-transition in Josephson junctions R. Avriller1  

E-Print Network (OSTI)

Washing out of the 0- transition in Josephson junctions R. Avriller1 and F. Pistolesi1 1 Univ: July 21, 2014) We consider a Josephson junction formed by a quantum dot connected to two bulk numbers: 73.23.-b, 74.25.F-, 74.50.+r, 74.45.+c Introduction.-- The Josephson junction is a fun- damental

Boyer, Edmond

353

Fluxon Dynamics and Radiation Emission in Twofold Long Josephson Junction Stacks  

E-Print Network (OSTI)

Fluxon Dynamics and Radiation Emission in Twofold Long Josephson Junction Stacks Andreas Wallraff¨ulich (KFA) January 27, 1997 #12;#12; Contents Introduction 1 1 Basic properties of Josephson junctions 5 2 Electrodynamics in long Josephson junctions 11 3 Radiation emission by stacked flux­flow oscillators 29 1

Leonardo, Degiorgi

354

Collapse of superconductivity in a hybrid tin-graphene Josephson junction array  

E-Print Network (OSTI)

1 Collapse of superconductivity in a hybrid tin-graphene Josephson junction array Zheng Han1 of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity, models involving specific types of Josephson junction arrays in which superconducting disks are coupled

Boyer, Edmond

355

Resonant plasmon scattering by discrete breathers in Josephson junction ladders A. E. Miroshnichenko,1  

E-Print Network (OSTI)

Resonant plasmon scattering by discrete breathers in Josephson junction ladders A. E scattering by discrete breathers in Josephson junction ladders. DOI: 10.1103/PhysRevB.71.174306 PACS number Josephson junction systems,2 coupled nonlinear optical waveguides,3 lattice vi- brations in crystals,4

Flach, Sergej

356

Andreev-level spectroscopy and Josephson-current switching in a three-terminal Josephson junction  

E-Print Network (OSTI)

Andreev-level spectroscopy and Josephson-current switching in a three-terminal Josephson junction H held in thermodynamic equilibrium with the two superconducting contacts of a Josephson junction. When levels. The additional normal-metal probe coupled to the Josephson junction, shown in Fig. 1, models

Demir, Hilmi Volkan

357

Resonant plasmon scattering by discrete breathers in Josephson junction ladders A. E. Miroshnichenko,1  

E-Print Network (OSTI)

Resonant plasmon scattering by discrete breathers in Josephson junction ladders A. E in Josephson junction ladders. We predict the existence of Fano resonances, and find them by computing in the plasmon scattering by discrete breathers in Josephson junction ladders. DOI: 10.1103/PhysRevB.71

358

Pinned fluxons in a Josephson junction with a finite-length inhomogeneity  

E-Print Network (OSTI)

Pinned fluxons in a Josephson junction with a finite-length inhomogeneity Gianne Derks , Arjen Doelman Christopher J.K. Knight§ , Hadi Susanto¶ July 5, 2011 Abstract We consider a Josephson junction as limits of our results on microresonators. Keywords: Josephson junction, inhomogeneous sine

Wirosoetisno, Djoko

359

Magnetic field penetration in a long Josephson junction imbedded in a wide stripline  

E-Print Network (OSTI)

Magnetic field penetration in a long Josephson junction imbedded in a wide stripline Andreas Franz The dependence of the first critical field of long linear and annular Josephson junctions on the width A Josephson junction is formed by two superconductors separated by a thin oxide layer allowing the tunneling

Wallraff, Andreas

360

Quantum Coherence in a Superfluid Josephson Junction Supradeep Narayana and Yuki Sato  

E-Print Network (OSTI)

Quantum Coherence in a Superfluid Josephson Junction Supradeep Narayana and Yuki Sato The Rowland in which we take an array of nanoscale apertures that form a superfluid 4He Josephson junction and apply Josephson junctions as well as phase coherence among the superfluid aperture array are discussed. DOI: 10

Sato, Yuki

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Pinned fluxons in a Josephson junction with a finite-length inhomogeneity  

E-Print Network (OSTI)

Pinned fluxons in a Josephson junction with a finite-length inhomogeneity Gianne Derks , Arjen as limits of our results on microresonators. Keywords: Josephson junction, inhomogeneous sine Josephson junction tt = xx - D sin() + - t, (1) where x and t are the spatial and temporal variable

Doelman, Arjen

362

Three-dimensional Josephson junction networks with coupling inhomogeneities in magnetic fields  

E-Print Network (OSTI)

Three-dimensional Josephson junction networks with coupling inhomogeneities in magnetic fields A on the static magnetic response of a three-dimensional 8 · 8 · 8 network of Josephson junctions is studied of one-dimensional and two-dimensional Josephson junction networks (1D, 2D-JJNs) has been extensively

Di Matteo, Tiziana

363

Direct Observation of Dynamical Bifurcation in a Superfluid Josephson Junction Supradeep Narayana and Yuki Sato  

E-Print Network (OSTI)

Direct Observation of Dynamical Bifurcation in a Superfluid Josephson Junction Supradeep Narayana Josephson junction. We excite the superfluid plasma resonance into a nonlinear regime by driving below.205302 PACS numbers: 67.25.dg, 07.60.Ly, 47.20.Ky, 85.25.Cp A superfluid Josephson junction is formed

Sato, Yuki

364

Nanomechanical-resonator-induced synchronization in Josephson junction arrays B. R. Trees* and S. Natu  

E-Print Network (OSTI)

, and an interaction energy due to the piezo- electric effect between the NEM and the junctions. Phase lockingNanomechanical-resonator-induced synchronization in Josephson junction arrays B. R. Trees* and S that includes the following effects: the charging and Josephson energies of the junctions, dissipation

Stroud, David

365

Josephson-junction arrays with long-range interactions J. Kent Harbaugh and D. Stroud  

E-Print Network (OSTI)

Josephson-junction arrays with long-range interactions J. Kent Harbaugh and D. Stroud Department-voltage (IV) characteristics of a Josephson-junction array with long-range inter- actions. The array consists of two sets of equally spaced parallel superconducting wires placed at right angles. A Josephson junction

Stroud, David

366

Quantum phase transitions and persistent currents in Josephson-junction ladders Minchul Lee  

E-Print Network (OSTI)

Quantum phase transitions and persistent currents in Josephson-junction ladders Minchul Lee- dimensional Josephson-junction arrays. We will focus particularly on the roles of excitonlike pairs.40.Db, 73.23.Hk I. INTRODUCTION Systems of Josephson junctions between small supercon- ducting grains

Choi, Mahn-Soo

367

Depinning of kinks in a Josephson-junction ratchet array E. Trias,1  

E-Print Network (OSTI)

Depinning of kinks in a Josephson-junction ratchet array E. Tri´as,1 J. J. Mazo,1,2 F. Falo,2 and T kinks in a ratchet potential using a fabricated circular array of Josephson junctions. Our ratchet . Josephson junctions are solid state realizations of a simple pendulum. By coupling them, it is possible

Orlando, Terry P.

368

Switching current measurements of large area Josephson tunnel junctions A. Wallraff,a)  

E-Print Network (OSTI)

the potential. This corresponds to a transition of the Josephson junction from a superconducting zero the system is coupled. Thermal activation TA in a current-biased Josephson junction has been studied both damping.11,12 At low temperatures the quantum mechanical properties of Josephson junctions have been

Wallraff, Andreas

369

Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.  

SciTech Connect

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22.9 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Planting 31,733 plants along 3.7 stream miles, (4) Establishing 71 new photopoints and retaking 254 existing photopoint pictures; (5) Monitoring stream temperatures at 12 locations on 6 streams; (6) Completing riparian fence, water gap and other maintenance on 100.5 miles of project fences. Since initiation of the project in 1984 over 68.7 miles of anadromous fish bearing streams and 1,933 acres of habitat have been protected, enhanced and maintained.

McGowan, Vance

2003-08-01T23:59:59.000Z

370

Alkali attack on a mullite refractory in the Grand Forks Energy Technology Center slagging gasifier  

Science Journals Connector (OSTI)

A mullite refractory lining in the Grand Forks Energy Technology Center slagging gasifier cracked and spoiled after intermittent exposure to...

C. R. Kennedy

1981-06-01T23:59:59.000Z

371

Grand Challenge for Basic and Applied Research in Hydrogen Storage: Statement of Objectives  

Energy.gov (U.S. Department of Energy (DOE))

Statement of objectives for the Grand Challenge for Basic and Applied Research in Hydrogen Storage issued in 2003.

372

Determination of the current density distribution in Josephson junctions.  

SciTech Connect

A technique is described for recovering the missing phase information for a set of critical current measurements as a function of an applied magnetic field I{sub c}(B). In many cases the current density j(x) across the boundary for a Josephson junction can be determined.

Carmody, M; Landree, E.; Marks, L. D.; Merkle, K. L.; Northwestern Univ.

1999-01-01T23:59:59.000Z

373

Tunneling Qubit Operation on a Protected Josephson Junction Array  

E-Print Network (OSTI)

We discuss a protected quantum computation process based on a hexagon Josephson junction array. Qubits are encoded in the punctured array, which is topologically protected. The degeneracy is related to the number of holes. The topological degeneracy is lightly shifted by tuning the flux through specific hexagons. We also show how to perform single qubit operation and basic quantum gate operations in this system.

Zhi Yin; Sheng-Wen Li; Yi-Xin Chen

2010-01-29T23:59:59.000Z

374

Topological order in Josephson junction ladders with Mobius boundary conditions  

E-Print Network (OSTI)

We propose a CFT description for a closed one-dimensional fully frustrated ladder of quantum Josephson junctions with Mobius boundary conditions, in particular we show how such a system can develop topological order. Such a property is crucial for its implementation as a "protected" solid state qubit.

G. Cristofano; V. Marotta; A. Naddeo

2005-03-22T23:59:59.000Z

375

Critical current of a lateral Josephson junction for layered superconductors  

Science Journals Connector (OSTI)

We have studied the effect of an applied magnetic field Hext on the critical current Ic of a lateral superconducting-insulating-superconducting (S-I-S) Josephson junction between two layered superconductors. In this configuration the layering direction of the superconducting electrodes is parallel to the plane of the junction. We find that the behavior of Ic(Hext) is determined by the parameter ?=jcd0/??j?, where ?? and j? are, respectively, the penetration depth and the interlayer critical current characterizing the bulk superconductors. Also jc is the critical current density between layers on opposite sides of the junction, while d0 is the layer thickness. For ??1 the length scale for field penetration along the direction of the junction is given by ??, leading to the usual Fraunhofer dependence for Ic(Hext). The scenario is vastly different for ??1. In this case the intraelectrode layer couplings are relatively weak and Josephson vortex penetration is found to occur between the layers. The physics of this situation is determined by the standard map. We find that in the absence of an external field Josephson vortices penetrate the structure and form an ordered array. This leads to a value of Ic(0) proportional to the number of layers N. This situation is however upset by a small external field. In this case the vortex distribution acquires an interesting chaotic character which leads to a sizable decrease of the critical current to a value Ic(Hext)? ?N .

Mikhail V. Fistul and Gabriele F. Giuliani

1994-09-01T23:59:59.000Z

376

Particle pulses from superconducting aluminum tunnel junction detectors  

SciTech Connect

Superconducting aluminum tunnel junctions have been developed for use as particle detectors. This paper presents results on static characteristics of these devices. We also present results from tests of these detectors with 6-keV X-rays. An extrapolation of the properties of these detectors to one suitable for dark-matter detectors is discussed.

Stricker, D.A.; Bing, D.D.; Bland, R.W.; Dickson, S.C.; Dignan, T.; Johnson, R.T.; Lockhart, J.M.; Laws, K.; Simon, M.W.; Watson, R. (San Francisco State Univ., Physics and Astronomy Dept. San Francisco, CA (US))

1991-03-01T23:59:59.000Z

377

Nonequilibrium electron tunneling in metal-insulator-metal junctions  

Science Journals Connector (OSTI)

The small structure in the conductance curve near zero bias of metal-insulator-metal tunnel junctions has been studied extensively. These experiments are analyzed in detail in a nonequilibrium model. It is shown that this type of zero-bias anomaly can be accounted for entirely by an electron bottleneck arising from the blocking of tunneling states due to nonzero electron relaxation times.

J. G. Adler; H. J. Kreuzer; J. Straus

1975-04-15T23:59:59.000Z

378

Site C  

Office of Legacy Management (LM)

' ' u. s. A r my Corps or Engineers Kurfal.. Ilisfr ifl om« 1776 N1 . ~lI rll Sfred , lIu fflll" , New v ur k. 14207 Site C loseout Report for th e Ashland I (Includlng Seaway Arca D), Ashland 2 and Rattlesnake Creek FUS RAP Sites To nawanda . New Yor k F ina l - Octo ber 2006 Formerl y Ut ilized Sites Remedi al Actiun Program Dt:CLAlUlfiO lO OF RF ~ I'O""" A <:n o .. ('oMnLflOI'O '" 1 S-~1 1 A "n· nvnn: S Ill: C'lO'iU 'U l RtrUlIT f OR A SlIu x u l (I "ICLU I ING S t:A" ·,H A RU D j, AS H I .A ~O 2 A."n RAnU:M'AKf eRU" ~ rn~ I!d'on at A.hland 1 (Ind udonl Seaway Area DJ. Ashland 2 and kan~snak c Creek is Wi,...... 1c in acwr.hnu willi ~ Rcconl or Oecisim (ROD) . igned 00> April 20. 1998 and l'.1pbIWlOII <;If

379

GAO Report Reflects Success Story for EM Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GAO Report Reflects Success Story for EM Sites GAO Report Reflects Success Story for EM Sites GAO Report Reflects Success Story for EM Sites March 28, 2013 - 12:00pm Addthis Scrapers excavate the Crescent Junction disposal cell 25 feet below ground surface. Scrapers excavate the Crescent Junction disposal cell 25 feet below ground surface. In a report released earlier this year, the U.S. Government Accountability Office (GAO) said it recognized progress on EM projects of $750 million or less and was shifting the focus of EM's high-risk designation more to major contracts and projects greater than $750 million. This progress is evident at several EM sites. In 2009, workers completed significant infrastructure construction at EM's Moab site at a cost of about $39.3 million, under the estimated budget of $40.7 million, and within schedule.

380

Aluminum tunnel junction detector operation in an adiabatic demagnetization refrigerator  

SciTech Connect

Superconducting tunnel junction detectors are being developed as both particle and X-ray detectors. Aluminum junctions are desirable for detectors because of their strong native oxide barriers, and because the small energy gap of aluminum is a good match to ballistic phonons generated by particle interactions in single crystals of silicon or other low acoustic-loss insulating crystals. Aluminum tunnel junction detectors must be operated near 0.1 T{sub C} which is 110 mK for aluminum. To operate detectors at these temperatures, we have developed adiabatic demagnetization refrigerators (ADRs) for the laboratory and prototype ADRs for space based operation. These cryogenic systems are simpler, more convenient and more portable than most dilution refrigerators. We have demonstrated that the magnetic field of the ADR need not compromise the performance of aluminum tunnel junctions. We have recently initiated a program to develop superconducting tunnel junctions (STJs) as high resolution X-ray detectors and low energy threshold particle detectors. This complements our existing program in which we are developing high resolution X-ray microcalorimeter detectors. One of our goals for both of these cryogenic detector development efforts is to observe X-ray emission from cosmic sources. This requires a refrigeration system that can operate under zero gravity space flight conditions. For the microcalorimeter project, temperatures of 100 mK and below are required to sufficiently reduce the heat capacity of the device. We have therefore developed an adiabatic demagnetization refrigerator (ADR) system which can be configured for space flight.

Labov, S.; Silver, E.; Le Gros, M. (Lawrence Livermore National Lab., CA (United States)); Bland, R.W.; Dickson, S.C.; Dignan, T.G.; Laws, K.; Johnson, R.T.; Simon, M.W.; Stricker, D.A.; Watson, R.M. (San Francisco State Univ., CA (United States)); Madden, N.; Landis, D. (Lawrence Berkeley Lab., CA (United States))

1992-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Quantum efficiency of a microwave photon detector based on a current-biased Josephson junction  

E-Print Network (OSTI)

We analyze the quantum efficiency of a microwave photon detector based on a current-biased Josephson junction. We consider the Jaynes-Cummings Hamiltonian to describe coupling between the photon field and the junction. We then take into account coupling of the junction and the resonator to the environment. We solve the equation of motion of the density matrix of the resonator-junction system to compute the quantum efficiency of the detector as a function of detection time, bias current, and energy relaxation time. Our results indicate that junctions with modest coherence properties can provide efficient detection of single microwave photons, with quantum efficiency in excess of 80%.

Poudel, Amrit; Vavilov, Maxim G

2012-01-01T23:59:59.000Z

382

East Grand St Bridge Snowmelt Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bridge Snowmelt Low Temperature Geothermal Facility Bridge Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name East Grand St Bridge Snowmelt Low Temperature Geothermal Facility Facility East Grand St Bridge Sector Geothermal energy Type Snowmelt Location Laramie, Wyoming Coordinates 41.3113669°, -105.5911007° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

383

Grand Ridge II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Grand Ridge II Wind Farm Facility Grand Ridge II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

City of Grand Island, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Island City of Grand Island City of Place Nebraska Utility Id 40606 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Flood Lighting Lighting Commercial Rate- Single Phase Commercial Commercial Rate- Three Phase Commercial Residential Rate Residential Three Phase Power Service Industrial

385

City of Grand Haven, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Haven Grand Haven Place Michigan Utility Id 7483 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Space Lighting Service - 100 Watt Lighting Area Space Lighting Service - 1000 Watt Lighting Area Space Lighting Service - 175 Watt Mercury Vapor Lighting Area Space Lighting Service - 400 Watt Mercury Vapor Lighting Area Space Lighting Service - Metal Halide 175 Watt Lighting

386

Arroyo Grande, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arroyo Grande, California: Energy Resources Arroyo Grande, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1185868°, -120.5907252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1185868,"lon":-120.5907252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Rio Grande Electric Coop, Inc (New Mexico) | Open Energy Information  

Open Energy Info (EERE)

New Mexico) New Mexico) Jump to: navigation, search Name Rio Grande Electric Coop, Inc Place New Mexico Utility Id 16057 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1560/kWh Commercial: $0.1630/kWh Industrial: $0.1170/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Rio_Grande_Electric_Coop,_Inc_(New_Mexico)&oldid=412780" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

388

Grand Forks, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grand Forks, North Dakota: Energy Resources Grand Forks, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9252568°, -97.0328547° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.9252568,"lon":-97.0328547,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

City of Grand Rapids Building Solar Roof Demonstration  

SciTech Connect

Grand Rapids, Michigan is striving to reduce it environmental footprint. The municipal government organization has established environmental sustainability policies with the goal of securing 100% of its energy from renewable sources by 2020. This report describes the process by which the City of Grand Rapids evaluated, selected and installed solar panels on the Water/Environmental Services Building. The solar panels are the first to be placed on a municipal building. Its new power monitoring system provides output data to assess energy efficiency and utilization. It is expected to generate enough clean solar energy to power 25 percent of the building. The benefit to the public includes the economic savings from reduced operational costs for the building; an improved environmentally sustainable area in which to live and work; and increased knowledge about the use of solar energy. It will serve as a model for future energy saving applications.

DeClercq, Mark; Martinez, Imelda

2012-08-31T23:59:59.000Z

390

Chattanooga Eagle Ford Rio Grande Embayment Texas- Louisiana-  

U.S. Energy Information Administration (EIA) Indexed Site

Rio Grande Rio Grande Embayment Texas- Louisiana- Mississippi Salt Basin Uinta Basin Appa lachia n Basin Utica Marcellus Devonian (Ohio) Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville Hermosa Mancos Pierre Conasauga Woodford- Caney Pearsall- Eagle Ford Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Maverick Sub-Basin Montana Thrust Belt Marfa Basin Valley and Ridge Province Arkoma Basin Forest City Basin Piceance Basin Shale Gas Plays, Lower 48 States 0 200 400 100 300 Miles ± Source: Energy Information Administration based on data from various published studies

391

Grand Challenges for Life-Cycle Assessment of Biofuels  

Science Journals Connector (OSTI)

Grand Challenges for Life-Cycle Assessment of Biofuels ... Both advocates and critics of biofuels often focus on a restricted set of scenarios that appear to reinforce their a priori beliefs about how biofuel production and use might function. ... Converting rain forest, peatland, savanna, or grassland to produce food crop-based biofuels in Brazil, southeast Asia, and the US creates a biofuel C debt by releasing 17-420 times more CO2 than the annual greenhouse gas (GHG) redns. ...

T. E. McKone; W. W. Nazaroff; P. Berck; M. Auffhammer; T. Lipman; M. S. Torn; E. Masanet; A. Lobscheid; N. Santero; U. Mishra; A. Barrett; M. Bomberg; K. Fingerman; C. Scown; B. Strogen; A. Horvath

2011-01-25T23:59:59.000Z

392

Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.  

SciTech Connect

The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

2003-03-01T23:59:59.000Z

393

Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.  

SciTech Connect

The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

2003-03-01T23:59:59.000Z

394

Evolution of Irrigation Districts and Operating Institutions: Texas, Lower Rio Grande Valley  

E-Print Network (OSTI)

2002). From El Paso, the Rio Grande serves as the 1,200 mile boundary between the U.S. and the Republic of Mexico, with four Mexican States (i.e., Chihuahua, Coahuila, Nuevo Leon, and Tamaulipas) having the river in common with the State of Texas... Location of the Rio Grande Basin. Source: U.S. Section, IBWC 2002. Legend Outline of Rio Grande Basin boundary Rio Grande River Tributaries 4 FIGURE 2. Detailed Map of the Rio Grande Basin. Source: Freese and Nichols. Legend...

Fernandez, Linda; Robinson, John R.C.; Lacewell, Ronald D.; Rister, M. Edward; Ellis, John R.; Sturdivant, Allen W.; Stubbs, Megan J.

395

Mutual synchronization of two stacks of intrinsic Josephson junctions in cuprate superconductors  

SciTech Connect

Certain high-T{sub c} cuprate superconductors, which naturally realize a stack of Josephson junctions, thus can be used to generate electromagnetic waves in the terahertz region. A plate-like single crystal with 10{sup 4} junctions without cavity resonance was proposed to achieve strong radiation. For this purpose, it is required to synchronize the Josephson plasma oscillation in all junctions. In this work, we propose to use two stacks of junctions shunted in parallel to achieve synchronization. The two stacks are mutually synchronized in the whole IV curve, and there is a phase shift between the plasma oscillation in the two stacks. The phase shift is nonzero when the number of junctions in different stacks is the same, while it can be arbitrary when the number of junctions is different. This phase shift can be tuned continuously by applying a magnetic field when all the junctions are connected by superconducting wires.

Lin, Shi-Zeng [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-05-07T23:59:59.000Z

396

Quantum Dissociation of a Vortex-Antivortex Pair in a Long Josephson Junction M.V. Fistul,1  

E-Print Network (OSTI)

Quantum Dissociation of a Vortex-Antivortex Pair in a Long Josephson Junction M.V. Fistul,1 A VAV pair manifests itself in a switching of the Josephson junction from the superconducting biased single Josephson junctions (JJs), various SQUIDs, and small Josephson junction arrays, contain

Wallraff, Andreas

397

PHYSICAL REVIEW B 87, 214511 (2013) Linewidth of the electromagnetic radiation from Josephson junctions near cavity resonances  

E-Print Network (OSTI)

emission from intrinsic Josephson junctions in high-Tc cuprate superconductors has been detected recently for a single Josephson junction nor for a stack of the intrinsic Josephson junctions realized in cuprateRevB.87.214511 PACS number(s): 74.50.+r, 74.25.Gz, 85.25.Cp In a Josephson junction (JJ) biased by a dc

Alexei, Koshelev

398

DOE/EA-1261 Rev.  

Office of Legacy Management (LM)

1 1 Rev. 0 Environmental Assessment of Ground Water Compliance at the Riverton, Wyoming, Uranium Mill Tailings Site Final September 1998 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13 -96GJ87335 for the U.S. Department of Energy This page intentionally left blank DOE Grand Junction Office Page iii EA of Ground Water Compliance at Riverton Final September 1998 Contents Page Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Site Location and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Site Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.0 Need for DOE Compliance Action . . . . . .

399

DOE Issues Final Environmental Impact Statement for Moab, Utah Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for Moab, Utah Site Environmental Impact Statement for Moab, Utah Site DOE Issues Final Environmental Impact Statement for Moab, Utah Site July 25, 2005 - 2:27pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued its final environmental impact statement (EIS) for the Moab Uranium Mill Tailings Remedial Action Project Site, located on the bank of the Colorado River. The EIS details the preferred option of removal of the tailings pile and contaminated materials, along with ground water remediation. The tailings will be moved, predominately by rail, to the proposed Crescent Junction, Utah, site, more than 30 miles from the Colorado River. "Taking all facts into account, we believe the recommendations issued today provide the best solution to cleaning up Moab and protecting the River,"

400

Princeton Junction, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, New Jersey: Energy Resources Junction, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3173301°, -74.6198791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3173301,"lon":-74.6198791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Iron Junction, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Minnesota: Energy Resources Junction, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.416427°, -92.60665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.416427,"lon":-92.60665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Monmouth Junction, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, New Jersey: Energy Resources Junction, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3789957°, -74.5465436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3789957,"lon":-74.5465436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Biggs Junction, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biggs Junction, Oregon: Energy Resources Biggs Junction, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.669846°, -120.8328408° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.669846,"lon":-120.8328408,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Pacific Junction, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Iowa: Energy Resources Junction, Iowa: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0186105°, -95.7991734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0186105,"lon":-95.7991734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Essex Junction, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Vermont: Energy Resources Junction, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4906054°, -73.1109604° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4906054,"lon":-73.1109604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Chiral Edge Currents in a Holographic Josephson Junction  

E-Print Network (OSTI)

We discuss the Josephson effect and the appearance of dissipationless edge currents in a holographic Josephson junction configuration involving a chiral, time-reversal breaking, superconductor in 2+1 dimensions. Such a superconductor is expected to be topological, thereby supporting topologically protected gapless Majorana-Weyl edge modes. Such modes manifest themselves in chiral dissipationless edge currents, which we exhibit and investigate in the context of our construction. The physics of the Josephson current itself, though expected to be unconventional in some non-equilibrium settings, is shown to be conventional in our setup which takes place in thermal equilibrium. We comment on various ways in which the expected Majorana nature of the edge excitations, and relatedly the unconventional nature of topological Josephson junctions, can be verified in the holographic context.

Rozali, Moshe

2013-01-01T23:59:59.000Z

407

Josephson Junction Arrays with Bose-Einstein Condensates  

E-Print Network (OSTI)

We report on the direct observation of an oscillating atomic current in a one-dimensional array of Josephson junctions realized with an atomic Bose-Einstein condensate. The array is created by a laser standing-wave, with the condensates trapped in the valleys of the periodic potential and weakly coupled by the inter-well barriers. The coherence of multiple tunneling between adjacent wells is continuously probed by atomic interference. The square of the small-amplitude oscillation frequency is proportional to the microscopic tunneling rate of each condensate through the barriers, and provides a direct measurement of the Josephson critical current as a function of the intermediate barrier heights. Our superfluid array may allow investigation of phenomena so far inaccessible to superconducting Josephson junctions and lays a bridge between the condensate dynamics and the physics of discrete nonlinear media.

F. S. Cataliotti; S. Burger; C. Fort; P. Maddaloni; F. Minardi; A. Trombettoni; A. Smerzi; M. Inguscio

2001-08-07T23:59:59.000Z

408

Chiral Edge Currents in a Holographic Josephson Junction  

E-Print Network (OSTI)

We discuss the Josephson effect and the appearance of dissipationless edge currents in a holographic Josephson junction configuration involving a chiral, time-reversal breaking, superconductor in 2+1 dimensions. Such a superconductor is expected to be topological, thereby supporting topologically protected gapless Majorana-Weyl edge modes. Such modes manifest themselves in chiral dissipationless edge currents, which we exhibit and investigate in the context of our construction. The physics of the Josephson current itself, though expected to be unconventional in some non-equilibrium settings, is shown to be conventional in our setup which takes place in thermal equilibrium. We comment on various ways in which the expected Majorana nature of the edge excitations, and relatedly the unconventional nature of topological Josephson junctions, can be verified in the holographic context.

Moshe Rozali; Alexandre Vincart-Emard

2013-11-28T23:59:59.000Z

409

Resistance of Josephson Junction Arrays at Low Temperatures  

E-Print Network (OSTI)

We study motion of vortices in arrays of Josephson junctions at zero temperature where it is controlled by quantum tunneling from one plaquette to another. The tunneling process is characterized by a finite time and can be slow compared to the superconducting gap (so that $\\tau \\Delta >> 1$). The dissipation which accompanies this process arises from rare processes when a vortex excites a quasiparticle above the gap while tunneling through a single junction. We find that the dissipation is significant even in the case $\\tau \\Delta >> 1$, in particular it is not exponentially small in this parameter. We use the calculated energy dissipation for the single vortex jump to estimate the physical resistance of the whole array.

L. B. Ioffe; B. N. Narozhny

1998-07-25T23:59:59.000Z

410

Coso Junction, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Coso Junction, California: Energy Resources Jump to: navigation, search Name Coso Junction, California Equivalent URI DBpedia GeoNames ID 5339829 Coordinates 36.0449439°, -117.9472993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0449439,"lon":-117.9472993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Electron transport through a metal-molecule-metal junction  

Science Journals Connector (OSTI)

Molecules of bisthiolterthiophene have been adsorbed on the two facing gold electrodes of a mechanically controllable break junction in order to form metal-molecule(s)-metal junctions. Current-voltage (I-V) characteristics have been recorded at room temperature. Zero bias conductances were measured in the 10100 nS range and different kinds of nonlinear I-V curves with steplike features were reproducibly obtained. Switching between different kinds of I-V curves could be induced by varying the distance between the two metallic electrodes. The experimental results are discussed within the framework of tunneling transport models explicitly taking into account the discrete nature of the electronic spectrum of the molecule.

C. Kergueris; J.-P. Bourgoin; S. Palacin; D. Esteve; C. Urbina; M. Magoga; C. Joachim

1999-05-15T23:59:59.000Z

412

DOE - Office of Legacy Management -- Hamilton OH Site - OH 27  

Office of Legacy Management (LM)

Hamilton OH Site - OH 27 Hamilton OH Site - OH 27 FUSRAP Considered Sites Hamilton, OH Alternate Name(s): Herring-Hall-Marvin Safe Company Diebold Incorporated OH.27-2 Location: 1550 Grand Boulevard, Hamilton, Ohio OH.27-2 Historical Operations: Machined uranium metal slugs from rolled stock, under subcontract with National Lead, an MED contractor. OH.27-3 OH.27-4 OH.27-9 Eligibility Determination: Eligible OH.27-1 Radiological Survey(s): Assessment Surveys, Verification Survey OH.27-1 OH.27-5 OH.27-6 OH.27-7 Site Status: Certified - Certification Basis, Federal Register Notice included OH.27-8 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP Also see Hamilton, OH Site Documents Related to Hamilton, OH

413

Do ridge-ridge-fault triple junctions exist on Earth? Evidence from the Aden-Owen-Carlsberg junction in the NW Indian Ocean  

E-Print Network (OSTI)

and the East Pacific Rise, and the Aden-Owen-Carlsberg (AOC) triple junction between the Owen fracture zone before connecting to the ridges. We here report the results of a marine geophysical survey of the AOC of distributed deformation. The AOC triple junction appears to be in a transient stage between a former triple

414

High-frequency losses in tin Josephson tunnel junctions  

Science Journals Connector (OSTI)

The losses associated with the excitation of surface plasma oscillations in Fiske modes in tin Josephson junctions, at frequencies from 20 to 270 GHz, were measured by studying the currentvoltage characteristics as a function of magnetic field. Our results generally support Economou and Ngai's theory of surface-plasma oscillations and Miller's calculation of the conductivity of superconductors. At lower temperatures, discrepancies that include an anomalous peak in the frequency dependence of the loss may reflect a small disagreement with Miller's results.

T. C. Wang and R. I. Gayley

1978-07-01T23:59:59.000Z

415

Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint  

SciTech Connect

We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

2011-07-01T23:59:59.000Z

416

Low-frequency magnetic and resistance noise in magnetic tunnel junctions  

Science Journals Connector (OSTI)

We have studied the voltage fluctuations of current-biased, micron-scale magnetic tunnel junctions. We find that the spectral power density is 1/f-like at low frequencies and becomes frequency independent at high frequencies. The frequency-independent background noise is due to Johnson-Nyquist noise and shot noise mechanisms. The nature of the 1/f noise has its origin in two different mechanisms. In the magnetic hysteresis loops this noise power is strongly field-dependent and is due to thermal magnetization fluctuations in both the free and fixed magnetic layers. We attribute these magnetic fluctuations to thermally excited hopping of magnetic domain walls between pinning sites. At high temperatures, this magnetic noise is found to track the dc resistance susceptibility but it is not in quantitative agreement with the fluctuation dissipation relation, indicating that the magnetic structure is not in equilibrium. A second mechanism for the 1/f noise, connected with defects in the tunnel barrier but not related to the overall magnetization fluctuations, was found at fields for which the magnetic structure in the free and fixed layers is well aligned. We attribute this noise to electron trapping processes having thermally activated kinetics and a broad distribution of activation energies. Below ?25 K the noise power is temperature independent suggesting that the kinetics are dominated by tunneling. Our results show that the thermal stability of both the magnetic layers and the quality of the tunnel barrier are important factors in reducing the low-frequency noise in magnetic tunnel junctions.

L. Jiang; E. R. Nowak; P. E. Scott; J. Johnson; J. M. Slaughter; J. J. Sun; R. W. Dave

2004-02-13T23:59:59.000Z

417

Emission of Microwave Photon Pairs by a Tunnel Junction  

E-Print Network (OSTI)

Generation and control of non-classical electromagnetic fields is of crucial importance for quantum information physics. While usual methods for the production of such fields rely on a non-linearity (of a crystal, a Josephson junction, etc.), a recent experiment performed on a normal conductor, a tunnel junction under microwave irradiation, has unveiled an alternative: the use of electron shot noise in a quantum conductor\\cite{PAN_squeezing}. Here we show that such a device can emit \\emph{pairs of microwave photons} of different frequencies with a rate as high as that of superconducting Josephson junctions\\cite{Flurin}. This results in intensity fluctuations of the photon field at two different frequencies being correlated below the photon shot noise,i.e. two-mode amplitude squeezing. Our experiment constitutes a fundamental step towards the understanding of electronic noise in terms of quantum optics, and shows that even a normal conductor could be used as a resource for quantum information processing.

Jean-Charles Forgues; Christian Lupien; Bertrand Reulet

2014-03-21T23:59:59.000Z

418

Hanford Site Safety Standards - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

and Rigging Manual DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual Hanford Site LockoutTagout Procedure DOE-0336, Hanford Site LockoutTagout Procedure (PDF) Hanford...

419

SITE MAINTENANCE PLAN CSMRI SITE REMEDIATION  

E-Print Network (OSTI)

...............................................................................................................5 5.2 Ground and Surface Water MonitoringSITE MAINTENANCE PLAN CSMRI SITE REMEDIATION June 29, 2004 Prepared by: Colorado School of Mines .................................................................................................4 5.0 SITE AIR AND WATER MONITORING

420

Division Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Reduction Catalysts Carbon Dioxide Reduction Catalysts Our research program is directed toward developing and understanding metal complexes that catalyze reactions relevant to renewable energy, particularly those that reduce carbon dioxide to fuels or fuel precursors. Carbon dioxide reduction catalysts are important targets because they could enable "recycling" of hydrocarbon fuels, thus lowering their carbon footprint. Our research addresses two key challenges in this area. First, we aim to improve the lifetimes, activity, and selectivity of homogeneous catalysts by incorporating them into porous heterogeneous frameworks derived from structurally persistent organic polymers. These frameworks allow isolation of the catalytic centers, which inhibits reaction pathways that lead to catalyst decomposition, and enable the spatially controlled deployment of ancillary functional groups that bind and concentrate substrate near the active site and/or assist with its activation. Second, we are developing homogeneous dual-catalyst systems and assemblies that couple CO2 reduction catalysis to a parallel catalytic reaction that provides the reducing equivalents. We are especially interested in proton-coupled electron-transfer reactions involving activation of H2 and of organic dehydrogenation substrates, wherein the proton pathway also participates in the conversion of CO2 to CO. In both of these research thrusts we are studying catalysts that may be activated under thermal, electrochemical, or photochemical conditions.

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hanford Site Wide Programs - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Decrease Font Size Hanford Site Wide Programs Hanford Safety Hanford Site Wide Programs Hanford Fire Department Health & Safety Exposition Hanford Traffic Safety Hanford...

422

Neutrino oscillations, supersymmetric grand unification, and B decay  

Science Journals Connector (OSTI)

The effects of supersymmetric particles on flavor changing neutral current and lepton flavor violating processes are studied in supersymmetric SU(5) grand unified theory with right-handed neutrino supermultiplets. Using input parameters motivated by neutrino oscillation, it is shown that the time-dependent CP asymmetry of radiative B decay can be as large as 25% when the ???? branching ratio becomes close to the present experimental upper bound. We also show that the BsBs mixing can be significantly different from the presently allowed range in the standard model.

Seungwon Baek; Toru Goto; Yasuhiro Okada; Ken-ichi Okumura

2001-01-23T23:59:59.000Z

423

Northeast Oregon Hatchery Project, Final Siting Report.  

SciTech Connect

This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

Watson, Montgomery

1995-03-01T23:59:59.000Z

424

Site Map | DOEpatents  

Office of Scientific and Technical Information (OSTI)

Site Map Site Map Home Basic Search Advanced Search DOEpatents FAQ About DOEpatents Site Map Contact Us Website PoliciesImportant Links...

425

Site Monitoring Area Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

426

Statistics of avalanches in the self-organized criticality state of a Josephson junction  

SciTech Connect

Magnetic flux avalanches in Josephson junctions that include superconductor-insulator-superconductor (SIS) tunnel junctions and are magnetized at temperatures lower than approximately 5 K have been studied in detail. Avalanches are of stochastic character and appear when the magnetic field penetration depth {lambda} into a junction becomes equal to the length a of the Josephson junction with a decrease in the temperature. The statistical properties of such avalanches are presented. The size distribution of the avalanches is a power law with a negative noninteger exponent about unity, indicating the self-organized criticality state. The self-organized criticality state is not observed in Josephson junctions with a superconductor-normal metal-superconductor (SNS) junction.

Matizen, E. V.; Martynets, V. G., E-mail: mart@niic.nsc.ru; Bezverkhii, P. P. [Russian Academy of Sciences, Nikolaev Institute of Inorganic Chemistry, Siberian Division (Russian Federation)

2010-08-15T23:59:59.000Z

427

Self-consistent solution for proximity effect and Josephson current in ballistic graphene SNS Josephson junctions  

SciTech Connect

We use a tight-binding Bogoliubov-de Gennes (BdG) formalism to self-consistently calculate the proximity effect, Josephson current, and local density of states in ballistic graphene SNS Josephson junctions. Both short and long junctions, with respect to the superconducting coherence length, are considered, as well as different doping levels of the graphene. We show that self-consistency does not notably change the current-phase relationship derived earlier for short junctions using the non-selfconsistent Dirac-BdG formalism but predict a significantly increased critical current with a stronger junction length dependence. In addition, we show that in junctions with no Fermi level mismatch between the N and S regions superconductivity persists even in the longest junctions we can investigate, indicating a diverging Ginzburg-Landau superconducting coherence length in the normal region.

Black-Schaffer, Annica M.

2010-04-06T23:59:59.000Z

428

GJO.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Grand Grand Junction, Colorado, Site Site Description and History The Grand Junction Site is located in the city of Grand Junction, in west-central Colorado about 25 miles from the Utah border. The Gunnison River flows along the west and north boundaries of the site and flows into the Colorado River about 0.5 mile north of the site. The U.S. War Department acquired the 54-acre property in 1943 for use by the Manhattan Engineer District, which operated a refinery on site from 1943 to 1946 to concentrate uranium oxide. The refinery produced an estimated 2.36 million pounds of uranium oxide and a comparable amount of vanadium oxide, which were shipped off site for further processing. The U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), operated a uranium concentrate sampling plant and assay laboratory on site until 1974. Beginning in 1953, AEC

429

SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge Highlights Ambitious Efforts along the SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum June 13, 2012 - 5:30pm Addthis Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program What are the key facts? Today at the SunShot Grand Challenge Summit Energy Secretary Chu announced up to $8 million to support clean energy startups. Secretary Chu also announced a nationwide competition to drive down

430

OPTIMIZATION OF a-SiGe BASED TRIPLE, TANDEM AND SINGLE-JUNCTION SOLAR Xunming Deng  

E-Print Network (OSTI)

at the University of Toledo (UT) in the fabrication of high-efficiency triple, tandem and single-junction solar with 12.5% initial efficiency and 10.7% stable efficiency, tandem-junction a-Si/a-SiGe solar cells with 12.9% initial efficiency, and single-junction a-SiGe solar cells with 12.5-13% initial efficiency and 10

Deng, Xunming

431

On the Harmonic approximation for large Josephson junction coupling charge qubits  

E-Print Network (OSTI)

We revisit the harmonic approximation (HA) for a large Josephson junction interacting with some charge qubits through the variational approach for the quantum dynamics of the junction-qubit coupling system. By making use of numerical calculation and analytical treatment, the conditions under which HA works well can be precisely presented to control the parameters implementing the two-qubit quantum logical gate through the couplings to the large junction with harmonic oscillator (HO) Hamiltonian.

T. Shi; B. Chen; Z. Song; C. P. Sun

2004-09-23T23:59:59.000Z

432

Characteristics of high-transmission-probability tunnel junctions for use as particle detectors  

SciTech Connect

Interest in the problem of the galactic dark matter has stimulated development of particle detectors sensitive to very low energies. Superconducting tunnel junctions may be useful in such detectors. We describe here superconducting tunnel junctions with thin barriers which may be suitable for this purpose. We present I-V characteristics and data on the temperature dependence of the subgap tunneling current. We also present some scanning-electron-microscope observations of the thin films of the tunnel junctions.

Stricker, D.A.; Alba, G.P.; Anderson, C.C.; Bing, D.D.; Bland, R.W.; Dickson, S.C.; Dignan, T.G.; Gagnon, P.; Johnson, R.T.; Seneclauze, C.M.

1988-12-31T23:59:59.000Z

433

Characteristics of high-transmission-probability tunnel junctions for use as particle detectors  

SciTech Connect

Interest in the problem of the galactic dark matter has stimulated development of particle detectors sensitive to very low energies. Superconducting tunnel junctions may be useful in such detectors. We describe here superconducting tunnel junctions with thin barriers which may be suitable for this purpose. We present I-V characteristics and data on the temperature dependence of the subgap tunneling current. We also present some scanning-electron-microscope observations of the thin films of the tunnel junctions.

Stricker, D.A.; Alba, G.P.; Anderson, C.C.; Bing, D.D.; Bland, R.W.; Dickson, S.C.; Dignan, T.G.; Gagnon, P.; Johnson, R.T.; Seneclauze, C.M.

1988-01-01T23:59:59.000Z

434

Characteristics of high-transmission-probability tunnel junctions for use as particle detectors  

SciTech Connect

Interest in the problem of the galactic dark matter has stimulated development of particle detectors sensitive to very low energies. Superconducting tunnel junctions may be useful in such detectors. The authors describe superconducting tunnel junctions with thin barriers which may be suitable for this purpose. They present I-V characteristics and data on the temperature dependence of the subgap tunneling current. They also present some scanning-electron-microscope observations of the thin films of the tunnel junctions.

Stricker, D.A.; Alba, G.P.; Anderson, C.C.; Bing, D.D.; Bland, R.W.; Dickson, S.C.; Dignan, T.G.; Gagnon, P.; Johnson, R.T.; Seneclauze, C.M.

1989-03-01T23:59:59.000Z

435

Geomorphology of plutonium in the Northern Rio Grande  

SciTech Connect

Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography

1993-03-01T23:59:59.000Z

436

Grand Unification as a Bridge Between String Theory and Phenomenology  

SciTech Connect

In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.

Pati, Jogesh C.

2006-06-09T23:59:59.000Z

437

F:\SHARE\SE\Web_Origs\Wrk_Jan\00-075\U0027603.WP6  

NLE Websites -- All DOE Office Websites (Extended Search)

268 268 Rev. 0 Environmental Assessment of Ground Water Compliance at the Tuba City Uranium Mill Tailings Site December 1998 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Document Number U0027603 DOE Grand Junction Office Page iii EA of Ground Water Compliance at Tuba City December 1998 Contents Page Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Site Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 Need for DOE Compliance Strategy

438

EA-1406-FEA-2003.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

341 341 DOE/EA-1406 Rev. 0 Final Environmental Assessment of Ground Water Compliance at the New Rifle, Colorado, UMTRA Project Site July 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 This Page Intentionally Blank DOE Grand Junction Office EA of Ground Water Compliance at the New Rifle Site July 2003 Page iii Contents Page Acronyms and Abbreviations........................................................................................................ vii Executive Summary........................................................................................................................ix 1.0 Introduction.............................................................................................................................1

439

n0052300-4_5 acre.doc  

Office of Legacy Management (LM)

2300 2300 MAC-PIN 25.5.1 Pinellas Environmental Restoration Project Interim Remedial Action Quarterly Progress Report for the Young-Rainey Star Center's 4.5-Acre Site January through March 2002 April 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC02-10 Document Number N0052300 Contents DOE/Grand Junction Office 4.5 Acre Site Interim Remedial Action April 2002 Page iii Contents Acronyms and Abbreviations ........................................................................................................... v 1.0 Introduction ............................................................................................................................1

440

Microsoft Word - U0179700.doc  

Office of Legacy Management (LM)

700 700 DOE/EA-1466 Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site April 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left blank DOE Grand Junction Office EA of Ground Water Compliance at the Naturita Site April 2003 Page iii Contents Page Acronyms and Abbreviations ..........................................................................................................v Executive Summary ...................................................................................................................... vii 1.0 Introduction ............................................................................................................................ 1

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

N0057000.doc  

Office of Legacy Management (LM)

000 000 GJO- 2002-380- TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report July through September 2002 October 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 Task Order Number ST03-107 Document Number N0057000 Contents DOE/Grand Junction Office Northeast Site NAPL Interim Measures Progress Report October 2002 Page ii Contents Acronyms and Abbreviations ..........................................................................................................iii 1.0 Introduction ............................................................................................................................1

442

shprkEA.doc  

Office of Legacy Management (LM)

EA-1388 EA-1388 Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site Final September 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 This Page Intentionally Blank DOE Grand Junction Office EA of Ground Water Compliance at the Shiprock Site September 2001 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................ vii Executive Summary ....................................................................................................................... ix 1.0 Introduction .............................................................................................................................1

443

n0055800-4_5 acre.doc  

Office of Legacy Management (LM)

5800 5800 GJO- 2002-379- TAC GJO-PIN 25.5.1 Pinellas Environmental Restoration Project Quarterly Progress Report for the Young - Rainey STAR Center's 4.5 Acre Site July through September 2002 October 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 Task Order Number ST03-107 Document Number N0055800 Contents DOE/Grand Junction Office 4.5 Acre Site Quarterly Progress Report October 2002 Page iii Contents Acronyms and Abbreviations ........................................................................................................... v 1.0 Introduction ............................................................................................................................1

444

Microsoft Word - U01804.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

0400 0400 GJO-2003-422-TAC GJO-GWTUB 30.13.2-2 UMTRA Ground Water Project Tuba City UMTRA Project Site Semi-Annual Performance Evaluation through August 2002 May 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left blank Document Number U0180400 Contents DOE/Grand Junction Office Tuba City UMTRA Project Site Semi-Annual Performance Evaluation May 2003 Page iii Contents 1.0 Introduction ............................................................................................................................1 2.0 Aquifer Horizons....................................................................................................................2

445

Microsoft Word - U0184800-September 2003.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

4800 4800 GJO-2003-483-TAC GJO-GWTUB 30.13.2 UMTRA Ground Water Project Tuba City, Arizona, UMTRA Project Site Semi-Annual Performance Evaluation September 2002 through February 2003 September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left blank Document Number U0184800 Contents DOE/Grand Junction Office Tuba City UMTRA Project Site Semi-Annual Performance Evaluation September 2003 Page iii Contents 1.0 Introduction ............................................................................................................................1 1.1 Remediation System Performance Standards...............................................................1

446

Mean-field dynamics of a Bose Josephson junction in an optical cavity  

E-Print Network (OSTI)

We study the mean-field dynamics of a Bose Josephson junction which is dispersively coupled to a single mode of a high-finesse optical cavity. An effective classical Hamiltonian for the Bose Josephson junction is derived and its dynamics is studied in the perspective of phase portrait. It is shown that the strong condensate-field coupling does alter the dynamics of the Bose Josephson junction drastically. The possibility of coherent manipulating and \\textsl{in situ} observation of the dynamics of the Bose Josephson junction is discussed.

J. M. Zhang; W. M. Liu; D. L. Zhou

2008-04-22T23:59:59.000Z

447

Comment on "Analysis of quantum coherent semiconductor quantum dot p-i-n junction photovoltaic cells"  

E-Print Network (OSTI)

This is a comment on PRL paper by A.P. Kirk "Analysis of quantum coherent semiconductor quantum dot p-i-n junction photovoltaic cells"

Scully, Marlan O

2010-01-01T23:59:59.000Z

448

E-Print Network 3.0 - arsenide junction-field-effect transistors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas at Arlington Materials Science and Engineering Department Summary: and optoelectronic devices. Topics include electrical properties of semiconductors, p-n junctions,...

449

E-Print Network 3.0 - annular josephson junctions Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

<< < 1 2 3 4 5 > >> 41 Collective Josephson vortex dynamics in a finite number of stacked intrinsic Josephson junctions Myung-Ho Bae,1, Summary: Collective Josephson vortex...

450

Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit  

Energy.gov (U.S. Department of Energy (DOE))

A packed crowd of leaders across the solar community gathered in Anaheim, California, for the 2014 SunShot Grand Challenge Summit.

451

EV Everywhere EV Everywhere Grand Challenge- Electric Drive (Power Electronics and Electric Machines) Workshop Agenda  

Energy.gov (U.S. Department of Energy (DOE))

Agenda for the EV Everywhere Grand Challenge - Electric Drive Workshop on July 24, 2012 at the Doubletree O'Hare, Chicago, IL

452

EIS-0344: Grand Coulee-Bell 500 kV Transmission Line  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's proposed action for the construction and operation of the proposed Grand Coulee-Bell 500-kV Transmission Line Project.

453

EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Attendence List  

Energy.gov (U.S. Department of Energy (DOE))

Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

454

EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda  

Energy.gov (U.S. Department of Energy (DOE))

Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

455

E-Print Network 3.0 - aux grandes echelles Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Extraction en ondelettes des fluctuations turbulentes coherentes : application au plasma de bord du tokamak Tore-Supra Summary: ero aux echelles fines. Les grands...

456

'Grand Challenge' for Basic and Applied Research in Hydrogen Storage Solicitation  

Energy.gov (U.S. Department of Energy (DOE))

DOE is issuing a Grand Challenge to the scientific community by soliciting Applications for research, development and demonstration of hydrogen storage materials and technologies. In addition to...

457

Chapter 3: Building Siting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

458

MIDC: Web Site Search  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDC Web Site Search Enter words or phrases: Search Clear Help Also see the site directory. NREL MIDC...

459

EA-1312: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

312: Finding of No Significant Impact 312: Finding of No Significant Impact EA-1312: Finding of No Significant Impact Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) The U.S. Department of Energy proposes a strategy to achieve ground water compliance at the Grand Junction, Colorado, LJMTRA project site, formerly known as the Climax Uranium Millsite. The proposed compliance strategy is no remediation and the application of supplemental standards. This proposed action and a no-action alternative are described in the Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (see attached DOE/EAB 1312). The Environmental Assessment analyzes the relevant environmental issues at the Grand Junction site, which include ground water, surface water, water and

460

DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE))

(Grand Junction, CO) ? The U.S. Department of Energy (DOE) has safely moved another million tons of uranium mill tailings from the Moab site in Utah under the Uranium Mill Tailings Remedial Action Project.

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Microsoft Word - S08568_CY2011 Annual Rpt  

Office of Legacy Management (LM)

2 Spatial ecology data for the Site are available for several data types and are stored in the GIS on the servers in Grand Junction, Colorado. The types of ecological spatial data...

462

Microsoft Word - LL-LOW erosion repair.doc  

Energy Savers (EERE)

Control and Revegetation at DOE's Lowman Disposal Site, Lowman, Idaho M. Kastens, R. Johnson, and D. Scheuerman, S.M. Stoller Corporation, Grand Junction, Colorado The U.S....

463

PartialDeletion for web.cdr  

Office of Legacy Management (LM)

States Department of Energy Grand Junction Office F A C T S H E E T Partial Deletion of Monticello Mill Tailings Site From the National Priorities List July 2003 The U.S....

464

O:\\GRAPHICS\\FACTSH~1\\MONTICEL\\millsite_restoration_web.pmd  

Office of Legacy Management (LM)

July 2001 United States Department of Energy Grand Junction Office The U.S. Department of Energy transferred a former uranium mill tailings site and adjacent government-owned...

465

Anomalous Finite-Size Effect in Superconducting Josephson Junction Arrays  

SciTech Connect

We show that a previously reported discrepancy between simulations of superconducting Josephson junction arrays and the theoretical analysis of Ambegaokar, Halperin, Nelson, and Siggia (AHNS) [Phys. Rev. Lett. 40, 783 (1978)] is rooted in a peculiar finite-size effect under periodic boundary conditions. Our simulation results for the largest array support the power-law I-V curves predicted by AHNS. Analysis of the vortex dynamics reveals two intrinsic length scales set by the applied current, which define three size regimes with distinctive I-V characteristics.

Chen, Qing-Hu; Tang, Lei-Han; Tong, Peiqing

2001-08-06T23:59:59.000Z

466

Transitions in two sinusoidally coupled Josephson junction rotators  

SciTech Connect

We investigate the dynamics of two sinusoidally coupled Josephson junction rotators to provide a clear knowledge of the behaviors in different regions of the parameter space. The dynamical states are identified, and the transitions among these states are studied. The properties of the current-voltage curves are investigated. Further more, we observed the chaotic states in some regions of parameter space. We conjecture it may caused by the competition of two periodic potentials: one is the external field, another is the interacting of two particles.

Qian Min [School of Mathematical Sciences, Peking University, Beijing 100871 (China); Wang Jiazeng [Department of Mathematics, Shanghai University, Shanghai 200444 (China)], E-mail: wangjiazen@yahoo.com.cn

2008-08-15T23:59:59.000Z

467

Coherent Oscillations in an Exciton-Polariton Josephson Junction  

SciTech Connect

We report on the observation of spontaneous coherent oscillations in a microcavity polariton bosonic Josephson junction. Condensation of exciton polaritons here takes place under incoherent excitation in a double potential well naturally formed in the disorder. Coherent oscillations set on at an excitation power well above the condensation threshold. The time resolved population and phase dynamics reveal the analogy with the ac Josephson effect. A theoretical two-mode model describes the observed effects, explaining how the different realizations of the pulsed experiment can be in phase.

Lagoudakis, K. G.; Pietka, B.; Deveaud-Pledran, B. [ICMP, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Wouters, M. [ITP, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Andre, R. [Institut Neel, CNRS, Grenoble (France)

2010-09-17T23:59:59.000Z

468

Tunneling qubit operation on a protected Josephson junction array  

SciTech Connect

We propose a complete quantum computation process on a topologically protected Josephson junction array system, originally proposed by Ioffe and Feigel'man [Phys. Rev. B 66, 224503 (2002)]. Logical qubits for computation are encoded in the punctured array. The number of qubits is determined by the number of holes. The topological degeneracy is lightly shifted by tuning the flux along specific paths. We show how to perform both single-qubit and basic quantum-gate operations in this system, especially the controlled-NOT (CNOT) gate.

Yin Zhi; Li Shengwen; Chen Yixin [Zhejiang Insitute of Modern Physics, Zhejiang University, Hangzhou 310027 (China)

2010-01-15T23:59:59.000Z

469

Resonantly phase-matched Josephson junction traveling wave parametric amplifier  

E-Print Network (OSTI)

We develop a technique to overcome phase-mismatch in Josephson-junction traveling wave parametric amplifiers in order to achieve high gain over a broad bandwidth. Using "resonant phase matching," we design a compact superconducting device consisting of a transmission line with subwavelength resonant inclusions that simultaneously achieves a gain of 20 dB, an instantaneous bandwidth of 3 GHz, and a saturation power of -98 dBm. Such an amplifier is well-suited to cryogenic broadband microwave measurements such as the multiplexed readout of quantum coherent circuits based on superconducting, semiconducting, or nano-mechanical elements as well as traditional astronomical detectors.

Kevin O'Brien; Chris Macklin; Irfan Siddiqi; Xiang Zhang

2014-06-09T23:59:59.000Z

470

Replica Theory and Large D Josephson Junction Hypercubic Models  

E-Print Network (OSTI)

We study the statistical mechanics of a $D$-dimensional array of Josephson junctions in presence of a magnetic field on a lattice of side $2$. In the high temperature region the thermodynamical properties can be computed in the limit $D \\to \\infty$. A conjectural form of the thermodynamic properties in the low temperature phase is obtained by assuming that they are the same of an appropriate spin glass system, based on quenched disordered couplings. Numerical simulations show that this conjecture is very accurate in one regime of the magnetic field, while it is probably slightly inaccurate in a second regime.

Enzo Marinari; Giorgio Parisi; Felix Ritort

1995-02-16T23:59:59.000Z

471

Dynamics of Josephson junction systems in the computational subspace  

E-Print Network (OSTI)

The quantum dynamics of the Josephson junction system in the computational subspace is investigated. A scheme for the controlled not operation is given for two capasitively coupled SQUIDs. In this system, there is no systematic error for the two qubit operation. For the inductively coupled SQUIDs, the effective Hamiltonian causes systematic errors in the computational subspace for the two qubit operation. Using the purterbation theory, we construct a more precise effective Hamiltonian. This new effective Hamiltonian reduces the systematic error to the level much lower than the threshold of the fault resilent quantum computation.

Wang Xiang-Bin; Matsumoto Keiji; Fan Heng; Y. Nakamura

2001-12-05T23:59:59.000Z

472

Manipulating transport through a single-molecule junction  

SciTech Connect

Molecular Electronics deals with the realization of elementary electronic devices that rely on a single molecule. For electronic applications, the most important property of a single molecule is its conductance. Here we show how the conductance of a single octanethiol molecule can be measured and manipulated by varying the contact's interspace. This mechanical gating of the single molecule junction leads to a variation of the conductance that can be understood in terms of a tunable image charge effect. The image charge effect increases with a decrease of the contact's interspace due to a reduction of the effective potential barrier height of 1.5 meV/pm.

Sotthewes, Kai; Heimbuch, Ren; Zandvliet, Harold J. W. [Physics of Interfaces and Nanomaterials, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands)] [Physics of Interfaces and Nanomaterials, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands)

2013-12-07T23:59:59.000Z

473

Electron transport in normal-metal/superconductor junctions  

E-Print Network (OSTI)

. 1. Conductance G as a function of the voltage V for an NS (d-wave! junction with $100% interface at T50 and t0 /t50.5. The present calculation ~solid line! is compared with the BTK result ~dashed line!. PRB 61ZHAO, AND CHIA-REN HU FIG. 2.... The same as Fig. 1 but at t0 /t51. dominant contribution to the conductance in the BTK theory. Under the present assumption, however, the transport is due to the decay of quasiparticles in both sides. Such a decaying process is more complex than the BTK...

Yan, XZ; Zhao, HW; Hu, Chia-Ren.

2000-01-01T23:59:59.000Z

474

Evaluation of Geothermal Potential of Rio Grande Rift and Basin...  

Open Energy Info (EERE)

age-dating; 4) geochemical surveying, including regional and site-specific water chemistry , stable isotopic analyses of thermal waters , whole-rock and mineral isotopic...

475

City of Grand Marais, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Marais, Minnesota (Utility Company) Marais, Minnesota (Utility Company) Jump to: navigation, search Name City of Grand Marais Place Minnesota Utility Id 7487 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL - SINGLE PHASE Commercial COMMERCIAL - THREE PHASE Commercial DUAL FUEL(Single Phase) DUAL FUEL(Three Phase) RESIDENTIAL - SINGLE PHASE Residential RESIDENTIAL - THREE PHASE Residential YARD LIGHT METERED Lighting YARD LIGHT UNMETERED Lighting

476

Grand Valley Rrl Pwr Line, Inc | Open Energy Information  

Open Energy Info (EERE)

Pwr Line, Inc Pwr Line, Inc Jump to: navigation, search Name Grand Valley Rrl Pwr Line, Inc Place Colorado Utility Id 7563 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Power Service, Three Phase Schedule (25)-CSP-1 Commercial Farm and Home (Residential) Service Schedule (10)-FH-1 Residential Industrial Service Schedule (50) -IND-1 Industrial Irrigation Service Schedule (40)-I-1 Commercial Large Power Service Schedule (30) -LP-1 Industrial Nonresidential - General Schedule (20)-NRG-1 Commercial

477

City of East Grand Forks, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Minnesota (Utility Company) Minnesota (Utility Company) Jump to: navigation, search Name East Grand Forks City of Place Minnesota Utility Id 5575 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Off Peak Rates Commercial Residential Electric Heat Residential Residential General Electric Residential Small Commercial Rate Residential Average Rates Residential: $0.0943/kWh Commercial: $0.0740/kWh Industrial: $0.0789/kWh

478

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

479

Grand Ridge III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Grand Ridge III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Grand Rapids Public Util Comm | Open Energy Information  

Open Energy Info (EERE)

Rapids Public Util Comm Rapids Public Util Comm Jump to: navigation, search Name Grand Rapids Public Util Comm Place Minnesota Utility Id 7489 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CITY COMMERCIAL Commercial CITY LIGHT & POWER Lighting CITY RESIDENTIAL Residential CONTROLLED WATER HEATING (CITY) Commercial CONTROLLED WATER HEATING (RURAL) Commercial ENTERTAINMENT LIGHTING RATE (CITY) Lighting ENTERTAINMENT LIGHTING RATE (RURAL) Lighting INDUSTRIAL (CITY) Industrial

Note: This page contains sample records for the topic "grand junction site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

grandjunction.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Grand Grand Junction, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The former Grand Junction Processing Site, historically known as the Climax uranium mill, occupies 114 acres at an elevation of about 4,600 feet above sea level in the broad, arid Grand Valley in west central Colorado. The former millsite is located on land owned by the City of Grand Junction in an industrial area along the north bank of the west-flowing Colorado River. The facility began in 1899 as a sugar beet mill. In 1950, the Climax Uranium Company reconfigured the original site and operated the facility as a uranium and vana- dium mill until 1970. During 19 years of operation, the mill produced 2.2 million tons of radioactive tailings, a predominantly sandy material. From 1950 to 1966, tailings were available to private citizens and contractors,

482

Inverted GaInP/(In)GaAs/InGaAs Triple-Junction Solar Cells with Low-Stress Metamorphic Bottom Junctions: Preprint  

SciTech Connect

We demonstrate high efficiency performance in two ultra-thin, Ge-free III-V semiconductor triple-junction solar cell device designs grown in an inverted configuration. Low-stress metamorphic junctions were engineered to achieve excellent photovoltaic performance with less than 3 x 106 cm-2 threading dislocations. The first design with band gaps of 1.83/1.40/1.00 eV, containing a single metamorphic junction, achieved 33.8% and 39.2% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 131 suns, respectively. The second design with band gaps of 1.83/1.34/0.89 eV, containing two metamorphic junctions achieved 33.2% and 40.1% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 143 suns, respectively.

Geisz, J. F.; Kurtz, S. R.; Wanlass, M. W.; Ward, J. S.; Duda, A.; Friedman, D. J.; Olson, J. M.; McMahon, W. E.; Moriarty, T. E.; Kiehl, J. T.; Romero, M. J.; Norman, A. G.; Jones, K. M.

2008-05-01T23:59:59.000Z

483

Diffusion current in a system of coupled Josephson junctions  

SciTech Connect

The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.

Shukrinov, Yu. M., E-mail: shukrinv@theor.jinr.ru; Rahmonov, I. R. [Joint Institute for Nuclear Research (Russian Federation)

2012-08-15T23:59:59.000Z

484

On the Chaotic Flux Dynamics in a Long Josephson Junction  

E-Print Network (OSTI)

Flux dynamics in an annular long Josephson junction is studied. Three main topics are covered. The first is chaotic flux dynamics and its prediction via Melnikov integrals. It turns out that DC current bias cannot induce chaotic flux dynamics, while AC current bias can. The existence of a common root to the Melnikov integrals is a necessary condition for the existence of chaotic flux dynamics. The second topic is on the components of the global attractor and the bifurcation in the perturbation parameter measuring the strength of loss, bias and irregularity of the junction. The global attractor can contain co-existing local attractors e.g. a local chaotic attractor and a local regular attractor. In the infinite dimensional phase space setting, the bifurcation is very complicated. Chaotic attractors can appear and disappear in a random fashion. Three types of attractors (chaos, breather, spatially uniform and temporally periodic attractor) are identified. The third topic is ratchet effect. Ratchet effect can be achieved by a current bias field which corresponds to an asymmetric potential, in which case the flux dynamics is ever lasting chaotic. When the current bias field corresponds to a symmetric potential, the flux dynamics is often transiently chaotic, in which case the ratchet effect disappears after sufficiently long time.

Z. C. Feng; Y. Charles Li

2009-07-16T23:59:59.000Z

485

BOTANICAL SURVEY OF WINTER PARK RESORT, ARAPAHO NATIONAL FOREST, GRAND COUNTY, COLORADO  

E-Print Network (OSTI)

BOTANICAL SURVEY OF WINTER PARK RESORT, ARAPAHO NATIONAL FOREST, GRAND COUNTY, COLORADO Colorado Natural Heritage Program College of Natural Resources, 8002 Campus Delivery Colorado State University Fort Collins, Colorado 80523-8002 #12;BOTANICAL SURVEY OF WINTER PARK RESORT, ARAPAHO NATIONAL FOREST, GRAND

486

Economic Essays on Water Resources Management of the Texas Lower Rio Grande Valley  

E-Print Network (OSTI)

's functionality are due to minimal return flows to the Rio Grande (River) occurring throughout the Valley, and the monitoring and enforcement efforts of the Rio Grande Watermaster Program. The final essay is a presentation of a hydroeconomic model to study...

Leidner, Andrew

2012-07-16T23:59:59.000Z

487

Magnetic Flux Transport Simulations of Solar Surface Magnetic Distributions During a Grand Minimum.  

E-Print Network (OSTI)

, Scotland, KY16 9SS. Abstract. It is well known that magnetic activity on the Sun modulates from one cycle strongly depend on the phase of the cycle in which the grand minimum starts and whether it lasts for an odd or even number of cycles. If the grand minimum starts around cycle minimum then a signi#12;cant amount

Mackay, Duncan

488

EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska  

Energy.gov (U.S. Department of Energy (DOE))

DOEs Western Area Power Administration is preparing an EIS to evaluate the environmental impacts of interconnecting the proposed Grande Prairie Wind Farm, in Holt County, near ONeill, Nebraska, to Westerns power transmission system. The project website is http://www.wapa.gov/ugp/Environment/GrandePrairie.htm.

489

Is There A Grand Challenge or X-Prize for Data Mining? Gregory Piatetsky-Shapiro  

E-Print Network (OSTI)

· Identifying all genes and potential therapeutic targets for cancer · A text-mining and understanding systemIs There A Grand Challenge or X-Prize for Data Mining? Gregory Piatetsky-Shapiro KDnuggets gps and motivating Grand Challenge problems for Data Mining, focusing on bioinformatics, multimedia mining, link

Grossman, Robert

490

Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA  

E-Print Network (OSTI)

produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 Canyon; Colorado river; Pleistocene floods; Lava dams; Hydraulic modeling; Paleoflood indicators; DamPeak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA Cassandra R

491

Efficient broadband energy transfer via momentum matching at hybrid junctions of guided-waves  

E-Print Network (OSTI)

Efficient broadband energy transfer via momentum matching at hybrid junctions of guided://apl.aip.org/about/rights_and_permissions #12;Efficient broadband energy transfer via momentum matching at hybrid junctions of guided, The American University in Cairo, New Cairo 11835, Egypt (Received 2 August 2012; accepted 5 September 2012

492

TM-mode coupling to a Josephson junction S. J. Lewandowski  

E-Print Network (OSTI)

215 TM-mode coupling to a Josephson junction S. J. Lewandowski Instytut Fizyki PAN, 02-668 Warszawa-mode near cut-off are demonstrated to improve Josephson junction coupling to the waveguide. Revue Phys. Appl Sciences and available at http://dx.doi.org/10.1051/rphysap:01985002003021500 #12;216 Fig. 1. - Josephson

Boyer, Edmond

493

Nonlinear Phase Dynamics in a Driven Bosonic Josephson Junction Erez Boukobza,1  

E-Print Network (OSTI)

Nonlinear Phase Dynamics in a Driven Bosonic Josephson Junction Erez Boukobza,1 Michael G. Moore,2. The experimental realization of dilute-gas Bose-Einstein condensate (BEC) Josephson junctions [2­ 5] has led], in a double-BEC system in Ref. [13], and in a one-dimensional spinor BEC in Ref. [14]. The bosonic Josephson

Vardi, Amichay

494

Low temperature junction growth using hot-wire chemical vapor deposition  

DOE Patents (OSTI)

A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

2014-02-04T23:59:59.000Z

495

A Hamilton-Jacobi approach to junction problems and application to traffic flows  

E-Print Network (OSTI)

A Hamilton-Jacobi approach to junction problems and application to traffic flows C. Imbert , R of a model case of first order Hamilton-Jacobi equations posed on a "junction", that is to say the union of such problems. Keywords: Hamilton-Jacobi equations, discontinuous Hamiltonians, viscosity solutions, optimal

Paris-Sud XI, Université de

496

Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures I. V. Borzenets,1  

E-Print Network (OSTI)

Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures I. V. Borzenets and superconducting branches in superconductor-graphene-superconductor Josephson junctions. We attribute thermalization by phonons at low temperatures (T & 1 K). The relationship between the applied power

Finkelstein, Gleb

497

EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

79: Grand Coulee's Third Powerplant 500-kV Transmission Line 79: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington Summary This EA evaluates potential environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE's Bonneville Power Administration (BPA), a cooperating agency, was asked by the U. S. Department of the Interior's Bureau of Reclamation to design and construct the proposed new transmission lines. A Finding of No Significant Impact was issued by BPA in December 2011. BPA website: http://efw.bpa.gov/environmental_services/Document_Library/Grand_Coulee/

498

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Deliver Keynote on EV Everywhere Grand Challenge to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30, 2013 - 1:37pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Tomorrow, Thursday, January 31, 2013, Secretary Chu will deliver the government keynote address at the Washington Auto Show's Public Policy Day. His remarks will focus on the Energy Department's EV Everywhere Grand Challenge, including progress to date and a new initiative to strengthen American leadership in this rapidly growing global industry. Launched by President Obama in March 2012, EV-Everywhere is the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time. The EV

499

Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) |  

Open Energy Info (EERE)

Rio Grande Rift Region (Aiken & Ander, 1981) Rio Grande Rift Region (Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Rio_Grande_Rift_Region_(Aiken_%26_Ander,_1981)&oldid=401473" Category: Exploration Activities What links here Related changes Special pages Printable version

500

Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope  

SciTech Connect

We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ?}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ?}? effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ?} images.

Imtiaz, Atif [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel, E-mail: kabos@boulder.nist.gov [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Weber, Joel C. [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Coakley, Kevin J. [Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

2014-06-30T23:59:59.000Z