Powered by Deep Web Technologies
Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30: Facility Operations at the U.S. DOE Grand Junction 30: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 8, 1996 EA-0930: Finding of No Significant Impact Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado June 8, 1996 EA-0930: Final Environmental Assessment Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand

2

UMTRA project water sampling and analysis plan, Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

Not Available

1994-07-01T23:59:59.000Z

3

Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado  

SciTech Connect

The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1996-06-01T23:59:59.000Z

4

US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

5

US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Krabacher, J.E.

1996-08-01T23:59:59.000Z

6

UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6  

Science Conference Proceedings (OSTI)

This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years.

NONE

1995-09-01T23:59:59.000Z

7

DOE/EA-1312: Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (September 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

8

Site observational work plan for the UMTRA project site at Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

This site observational work plan (SOWP) is one of the first Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement. This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The US Department of Energy (DOE) goal is to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation with the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards. The conceptual model demonstrates that the uranium processing-related contamination at the site has affected the unconfined alluvial aquifer, but not the deeper confined aquifer.

NONE

1996-01-01T23:59:59.000Z

9

Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report  

SciTech Connect

Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.

Morris, R.

1996-05-01T23:59:59.000Z

10

Grand Junction Projects Office site environmental report for calendar year 1992  

SciTech Connect

This report presents information pertaining to environmental activities conducted during calendar year 1992 at the US Department of Energy Grand Junction Projects Office (DOE-GJPO) facility in Colorado. Environmental activities conducted at the GJPO facility during 1992 included those associated with environmental compliance, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. Four phases of the on-site Grand Junction Projects Office Remedial Action Project were completed in 1992. Remediation activities, which included the removal of 161,589 tons of uranium-mill-tailings-contaminated material from the facility, were conducted in compliance with all applicable permits. Off-site dose modeling for the GJPO was conducted to determine compliance with current National Emission Standards for Hazardous Air Pollutants, Subpart H, and applicable DOE Orders (5400.1 and 5400.5). The total off-site EDE to the public from all sources of radiation emanating from the facility (radon, air particulates, gamma) was calculated as 9 mrem/yr, which is well below the DOE dose limit of 100 mrem/yr above background. The radiological and nonradiological monitoring program at the GJPO facility included monitoring of activities that generate potentially hazardous or toxic wastes and monitoring of ambient air, surface water, and ground water.

Not Available

1993-05-01T23:59:59.000Z

11

Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

12

Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-07-01T23:59:59.000Z

13

Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

14

Final report of the decontamination and decommissioning of Building 18 at the Grand Junction Projects Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. The soil beneath Building 18 was found to be radiologically contaminated; the building was not contaminated. The soil was remediated in accordance with identified standards. Building 18 and the underlying soil can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

15

Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Krabacher, J.E.

1996-07-01T23:59:59.000Z

16

Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-07-01T23:59:59.000Z

17

Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soil beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-07-01T23:59:59.000Z

18

DOE/EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Project Office To Non-DOE Ownership (04/25/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 F I N A L Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy * Grand Junction Office * 2597 B ¾ Road * Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final DOE/EA-1338 FINAL Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy Grand Junction Office 2597 B ¾ Road Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final i April 2000 TABLE OF CONTENTS Title Page Table of Contents ......................................................................................................................................... i List of Figures ............................................................................................................................................iii

19

EA-1037: Uranium Lease Management Program, Grand Junction, Colorado |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Uranium Lease Management Program, Grand Junction, Colorado 37: Uranium Lease Management Program, Grand Junction, Colorado EA-1037: Uranium Lease Management Program, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of domestic uranium and vanadium ores, to maintain a viable domestic mining and milling infrastructure required to produce and mill these ores, and to provide assurance of a fair monetary return to the U.S. Government. The Uranium Lease Management Program gives The Department of Energy the flexibility to continue leasing these lands. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 1995

20

2011 Annual Planning Summary for Office of Legacy Management (LM), Grand Junction (See LM APS)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Office of Legacy Management (LM), Grand Junction (See LM APS).

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE - Office of Legacy Management -- Grand Junction Sites  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

22

Data Compendium for the Logging Test Pits at the ERDA Grand Junction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound...

23

Cambridge Grand Junction transit implementation : alternatives, scheduling, cost, and performance  

E-Print Network (OSTI)

The Grand Junction railroad lies at the heart of East Cambridge adjacent to the Kendall Square business district and the Massachusetts Institute of Technology campus. Over the last one hundred years the railroad has gone ...

Iglesias Cuervo, Jesus

2012-01-01T23:59:59.000Z

24

City of Grand Junction, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Junction City of Grand Junction City of Place Iowa Utility Id 7486 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Demand Service Commercial Residential Eletric Residential Average Rates Residential: $0.1340/kWh Commercial: $0.1300/kWh Industrial: $0.0899/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Grand_Junction,_Iowa_(Utility_Company)&oldid=409673

25

EA-1338: Transfer of the Department of Energy Grand Junction Office to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Transfer of the Department of Energy Grand Junction Office 8: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 25, 2000 EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 25, 2000 EA-1338: Final Environmental Assessment Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership

26

Estimating commuter rail demand to Kendall Square along the Grand Junction Corridor  

E-Print Network (OSTI)

Since acquiring the Grand Junction Railroad in June 2010 from CSX, the Massachusetts Bay Transit Authority (MBTA) has explored the possibility of using the line for commuter rail service. In addition the Grand Junction ...

Bockelie, Adam

2012-01-01T23:59:59.000Z

27

Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

28

Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

29

Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

30

Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001  

Office of Legacy Management (LM)

Grand Junction Disposal Site Grand Junction Disposal Site Uranium ore was processed at the Climax millsite at Grand Junction, Colorado, between 1951 and 1970. The milling operations created process-related waste and tailings, a sandlike material containing radioactive materials and other contaminants. The tailings were an ideal and inexpensive construction material suitable for concrete, mortar, and fill. Accordingly, the tailings were widely used in the Grand Junction area for these purposes. The U.S. Department of Energy (DOE) encapsulated the tailings and other contaminated materials from the millsite and more than 4,000 vicinity properties in the Grand Junction area in an engineered disposal cell. Part of the disposal cell was completed in 1994; the remainder of the cell remains open until it is

31

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney Disposal Site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-07-01T23:59:59.000Z

32

Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado  

SciTech Connect

This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-08-01T23:59:59.000Z

33

PCB usage at the Grand Junction Area Office Facility. Final report  

Science Conference Proceedings (OSTI)

The development, implementation, and results of the polychlorinated biphenyl (PCB) identification project at the Grand Junction Area Office (GJAO) are summarized. Methodology for the PCB analysis is described, and results are tabulated. Of the 51 transformers and disconnects in use at GJAO, 15 unites were determined to be PCB-contaminated or filled with PCBs. This number falls within EPA's estimate of 25 to 40 percent of all transformers in use being at least contaminated. Approximately 324 gallons of PCBs and 515 gallons of PCB-contaminated fluids are being used currently. No contaminated transformers or disconnects are in a position to contaminate food or feed products at the facility.

Miller, M.E.; Donivan, S.

1982-06-01T23:59:59.000Z

34

Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monitoring of the Airport Calibration Pads at Walker Field, Grand Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) More Documents & Publications Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End Summary Report

35

DOE Grand Junction Projects Office Parkersburg LTSP  

NLE Websites -- All DOE Office Websites (Extended Search)

Parkersburg LTSP Parkersburg LTSP September 1995 Page ii Contents Page 1.0 Introduction.........................................................................................................................................1 1.1 Purpose ..........................................................................................................................................1 1.2 Background ...................................................................................................................................1 1.3 Regulatory Requirements .............................................................................................................1 2.0 Site Description and History .............................................................................................................3

36

DOE Grand Junction Projects Office Edgemont LTSP  

Office of Legacy Management (LM)

Edgemont LTSP Edgemont LTSP June 1996 Page ii Contents Page 1.0 Introduction ....................................................................................................................................... 1 1.1 Purpose ..................................................................................................................................... 1 1.2 Legal and Regulatory Requirements ........................................................................................ 1 1.3 Role of the Department of Energy ........................................................................................... 2 2.0 Final Site Conditions ......................................................................................................................... 3

37

DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/Grand Junction Office Bluewater LTSP DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii Contents Page 1.0 Introduction .........................................................................................................................................1 1.1 Purpose ................................................................................................................................1 1.2 Legal and Regulatory Requirements .................................................................................. 1 1.3 Role of the Department of Energy ..................................................................................... 2 1.4 Disposal of Mill Waste Containing Polychlorinated Biphenyls ........................................ 2 2.0 Bluewater Disposal Site .....................................................................................................................

38

Final report of the radiological release survey of Building 30B at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 30B and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Krauland, P.A.; Corle, S.G.

1997-09-01T23:59:59.000Z

39

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-04-01T23:59:59.000Z

40

Grand Junction, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Colorado: Energy Resources Junction, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0638705°, -108.5506486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0638705,"lon":-108.5506486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Technical basis for radiological release of Grand Junction Office Building 2. Volume 1, dose assessment  

SciTech Connect

Building 2 on the US Department of Energy (DOE) Grand Junction Office (GJO) site is part of the GJO Remedial Action Program (GJORAP). During evaluation of Building 2 for determination of radiological release disposition, some inaccessible surface contamination measurements were detected to be greater than the generic surface contamination guidelines of DOE Order 5400.5 (which are functionally equivalent to US Nuclear Regulatory Commission [NRC] Regulatory Guide 1.86). Although the building is nominal in size, it houses the site telecommunications system, that is critical to continued GJO operations, and demolition is estimated at $1.9 million. Because unrestricted release under generic surface contamination guidelines is cost-prohibitive, supplemental standards consistent with DOE Order 5400.5 are being pursued. This report describes measurements and dose analysis modeling efforts to evaluate the radiation dose to members of the public who might occupy or demolish Building 2, a 2,480 square-foot (ft) building constructed in 1944. The north portion of the building was used as a shower facility for Manhattan Project uranium-processing mill workers and the south portion was a warehouse. Many originally exposed surfaces are no longer accessible for contamination surveys because expensive telecommunications equipment have been installed on the floors and mounted on panels covering the walls. These inaccessible surfaces are contaminated above generic contamination limits.

Morris, R.; Warga, J.; Thorne, D.

1997-07-01T23:59:59.000Z

42

U.S. Department of Energy at Grand Junction 2003 Annual Inspection⎯Monticello, Utah  

Office of Legacy Management (LM)

at Grand Junction 2003 Annual Inspection⎯Monticello, Utah at Grand Junction 2003 Annual Inspection⎯Monticello, Utah November 2003 Page 1 2003 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites Summary The Monticello site, which includes the U.S. Department of Energy (DOE) Monticello Mill Tailings Site (MMTS) and the Monticello Radioactively Contaminated Properties site, was inspected September 23-25, 2003. A follow-up inspection of the Soil and Sediment properties was conducted on October 8, 2003. The Monticello Radioactively Contaminated Properties site is also called the Monticello Vicinity Properties (MVP) and will be referred to as MVP in this report. Restoration work at MVP is complete and is nearly complete at MMTS. MVP is in good

43

Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993. Final report  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailing Remedial Action (UMTRA) Project`s Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations.

Not Available

1993-08-01T23:59:59.000Z

44

Grand Ridge Elementary Wind Project | Open Energy Information  

Open Energy Info (EERE)

Grand Ridge Elementary Wind Project Grand Ridge Elementary Wind Project Facility Grand Ridge Elementary Sector Wind energy Facility Type Community Wind Location WA Coordinates 47.545883°, -122.005714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.545883,"lon":-122.005714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Assessment of cover systems at the Grand Junction, Colorado, uranium mill tailings pile: 1987 field measurements  

SciTech Connect

Four Pacific Northwest Laboratory (PNL) scientists and a technician conducted an onsite evaluation of radon gas exhalation, water content profiles, and plant and animal intrusion for a series of cover systems located on the uranium mill tailings pile at Grand Junction, Colorado. These six plots were sampled extensively down to the radon control layer (e.g., asphalt or wet clay) for soil moisture content and permeability. Radon gas emission through the surface was measured. Soil samples were collected and analyzed in the lab for particle-size distribution, particle density, bulk density, and ambient water content. Prairie dog burrows were excavated to discover the extent to which they penetrated the barriers. Plant type, density, and cover characteristics were measured.

Gee, G.W.; Campbell, M.D.; Freeman, H.D.; Cline, J.F.

1989-02-01T23:59:59.000Z

46

Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old project that will protect an additional 1.3 miles of stream and 298.3 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Improving fish passage in Bear Creek to restore tributary and mainstem access; (4) Planting and seeding 6.7 stream miles with 7,100 plants and 365 lbs. of seed; (5) Establishing 18 new photopoints and retaking 229 existing photopoint pictures; (6) Monitoring stream temperatures at 12 locations on 6 streams; (7) completing riparian fence, water gap and other maintenance on 98.7 miles of project fences. Since initiation of the project in 1984 over 62 miles of anadromous fish bearing streams and 1,910 acres of habitat have been protected, enhanced and maintained.

McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

2001-04-01T23:59:59.000Z

47

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado  

SciTech Connect

This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

Not Available

1994-06-01T23:59:59.000Z

48

GIS Data from LANL's Cerro Grande Rehabilitation Project (CGRP)  

DOE Data Explorer (OSTI)

The Los Alamos National Laboratorys Cerro Grande Rehabilitation Project (CGRP) involves many subprojects. One of them is a geographic information system for electronically storing and displaying geographically-related data about the fires effects. The data are used for research, planning, emergency response, and for informing the public. This website provides access to geospatial data relating to the May 2000 Cerro Grande Fire. This includes data generated by the Burned Area Emergency Rehabilitation (BAER) Team during and shortly after the fire as well as data resulting from the ongoing environmental monitoring programs related to the fire. These data are available from a data catalog in two forms: (i) direct download of individual geospatial files and (ii) image files.

49

MHK Projects/Grand Manan Channel Project | Open Energy Information  

Open Energy Info (EERE)

Manan Channel Project Manan Channel Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8586,"lon":-66.9836,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

50

Comments and responses on the Remedial Action Plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Grand Junction, Colorado. Revision 1  

SciTech Connect

This report contains information concerning public comments and responses on the remedial action plan and site design for stabilization of the inactive uranium mill tailings site in Grand Junction, Colorado.

NONE

1994-01-01T23:59:59.000Z

51

Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fish production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No. 199202601). Work undertaken during 2008 included: (1) completing 1 new fencing project in the North Fork John Day subbasin that protects 1.82 miles of stream and 216.2 acres of habitat, and 1 fencing project in the Wallowa subbasin that protects an additional 0.59 miles of stream and 42.5 acres of habitat; (2) constructing 0.47 miles of new channel on the Wallowa river to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) planting 10,084 plants along 0.5 miles of the Wallowa Riverproject; (4) establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; and (7) completed a comprehensive project summary report to the Independent Scientific Review panel (ISRP) that provided our conclusions regarding benefits to focal species, along with management recommendations for the future. Since initiation of this program 57 individual projects have been implemented, monitoring and maintained along 84.9 miles of anadromous fish bearing streams, that protect and enhance 3,564 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H. [Oregon Department of Fish and Wildlife

2009-07-01T23:59:59.000Z

52

Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.  

DOE Green Energy (OSTI)

Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by the construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass Creek, an extirpated area, will be stocked (smolts and adults) with Catherine Creek origin salmon to initiate natural production in unseeded habitat, and to initiate future harvest opportunities. The current production levels have been incorporated into the U.S. v. Oregon Interim Management Agreement. The purpose of this contract is to integrate Bonneville Power Administration (BPA) efforts with the Lower Snake River Compensation Plan (LSRCP) program utilizing Lookingglass Hatchery as the primary rearing facility. BPA constructed an adult holding and spawning structure on the hatchery grounds; however, maintenance of this infrastructure was discontinued due to funding limitation and transferred to the LSRCP program in 2007. These integrated efforts focus on holding and spawning adults, rearing juveniles, fish health, and monitoring natural production (Redd counts) for Catherine Creek, Lostine River, and Upper Grande Ronde stocks.

Patterson, Scott

2009-04-10T23:59:59.000Z

53

Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No.199202601). Work undertaken during 2007 included: (1) Starting 1 new fencing project in the NFJD subbasin that will protect an additional 1.82 miles of stream and 216.2 acres of habitat; (2) Constructing 0.47 miles of new channel on the Wallowa River to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) Planting 22,100 plants along 3 streams totaling 3.6 stream miles; (4) Establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) Monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) Completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; (7) Initiated writing of a comprehensive project summary report that will present a summary of conclusions of the benefits to focal species and management recommendations for the future. Since initiation of this program 56 individual projects have been implemented, monitored and maintained along 84.8 miles of anadromous fish bearing streams that protect and enhance 3,501 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H.

2008-12-30T23:59:59.000Z

54

Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998  

SciTech Connect

The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

NONE

1998-04-01T23:59:59.000Z

55

Northeast Oregon Hatchery Program Grande Ronde … Imnaha Spring Chinook Hatchery Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Oregon Hatchery Program Northeast Oregon Hatchery Program Grande Ronde - Imnaha Spring Chinook Hatchery Project Final Environmental Impact Statement Bonneville Power Administration July 2004 Northeast Oregon Hatchery Program -- Grande Ronde-Imnaha Spring Chinook Project i Table of Contents Page Chapter 1: Updated Summary and Project Description 1.1 Introduction..............................................................................................................1-1 1.2 Purpose and Need for the Proposed Action .............................................................1-2 1.3 Decisions to be Made and Responsible Officials ....................................................1-3 1.4 Summary of Public Involvement, Consultation, and Coordination.........................1-3

56

Work plan for phase 1A paleochannel studies at the Cheney disposal cell, Grand Junction, Colorado: Draft  

Science Conference Proceedings (OSTI)

This document will serve as a Work Plan for continuing paleochannel characterization activities at the Cheney disposal site near Grand Junction, Colorado. Elevated levels of nitrate were encountered in ground water from two monitor wells installed in alluvial paleochannels near the Cheney disposal cell in 1994. This triggered a series of investigations (Phase 1) designed to determine the source of nitrate and other chemical constituents in ground water at the site. A comprehensive summary of the Phase 1 field investigations (limited to passive monitoring and modeling studies) conducted by the Remedial Action Contractor (RAC) and Technical Assistance Contractor (TAC) to date is provided in Section 2.0 of this document. Results of Phase 1 were inconclusive regarding the potential interaction between the disposal cell and the paleochannels, so additional Phase 1A investigations are planned. Recommendations for Phase 1A tasks and possible future activities are discussed in Section 3.0. Detailed information on the implementation of the proposed Phase 1A tasks appears in Section 4.0 and will provide the basis for Statements of Work (SOW) for each of these tasks. A detailed sampling plan is provided to ensure quality and a consistency with previous data collection efforts.

NONE

1996-11-01T23:59:59.000Z

57

Bonneville Power Administration Grand Coulee-Bell 500-kV Transmission Line Project Record of Decision  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee-Bell 500-kV Transmission Line Project Grand Coulee-Bell 500-kV Transmission Line Project Record of Decision Decision The Bonneville Power Administration (BPA) has decided to construct the proposed Grand Coulee-Bell 500-kV Transmission Line Project in Douglas, Grant, Lincoln, and Spokane Counties, Washington. BPA has decided to implement the proposed action identified in the Grand Coulee-Bell 500-kV Transmission Line Project Final Environmental Impact Statement (DOE/EIS-0344, December 2002). The proposed action consists of constructing a new 500- kilovolt (kV) transmission line between the Bureau of Reclamation's (BOR) Grand Coulee 500- kV Switchyard near Grand Coulee, Washington, and BPA's Bell Substation near Spokane, a distance of 84 miles. The proposed action involves removing an existing 115-kV transmission

58

Microsoft Word - Grand Coulee Transmission Line Replacement Project Prelim EA.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant 500-kilovolt Transmission Line Replacement Project Preliminary Environmental Assessment May 2011 DOE/EA-1679 Agency Proposing Action. U.S. Bureau of Reclamation is the lead NEPA agency. The Bonneville Power Administration is assisting Reclamation through project design, environmental review and construction, if the Proposed Action is taken. Action. Reclamation is proposing to replace the six, 500- kV transmission lines of the Third Powerplant (TPP) at Grand Coulee Dam. The transmission lines are presently installed within the dam and a two-chambered tunnel that leads to a Spreader Yard about a mile away. Purpose and Need. The TPP's six generators and transmission lines are critical to the regional power supply.

59

DOE/EIS-0340; Grand Ronde … Imnaha Spring Chinook Hatchery Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 NORTHEAST OREGON HATCHERY PROGRAM GRANDE RONDE - IMNAHA SPRING CHINOOK HATCHERY PROJECT DOE/EIS-0340 Draft Environmental Impact Statement Northeast Oregon Hatchery Program Grande Ronde - Imnaha Spring Chinook Hatchery Project Draft Environmental Impact Statement (DOE/EIS-0340) Responsible Agency: U.S. Department of Energy, Bonneville Power Administration (BPA) Cooperating Federal Agencies: U.S. Department of Interior, Fish and Wildlife Service (USFWS); U.S. Department of Commerce, National Oceanic and Atmospheric Administration National Marine Fisheries Service (NOAA Fisheries); U.S. Department of Agriculture, Forest Service Cooperating Tribes: Nez Perce Tribe (NPT), Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Cooperating State Agencies: Oregon Department of Fish and Wildlife (ODFW)

60

Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22.9 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Planting 31,733 plants along 3.7 stream miles, (4) Establishing 71 new photopoints and retaking 254 existing photopoint pictures; (5) Monitoring stream temperatures at 12 locations on 6 streams; (6) Completing riparian fence, water gap and other maintenance on 100.5 miles of project fences. Since initiation of the project in 1984 over 68.7 miles of anadromous fish bearing streams and 1,933 acres of habitat have been protected, enhanced and maintained.

McGowan, Vance

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Environmental Assessment and Finding of No Significant Impact: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership  

SciTech Connect

The scope of this environmental assessment (EA) is to analyze the potential consequences of the Proposed Action on human health and the environment. Accordingly, this EA contains an introduction to the site and the history of the Grand Junction Office (Chapter One), a description of the Purpose and Need for Agency Action (Chapter Two), a description of the Proposed Action and Alternatives (Chapter Three), and the description of the Affected Environment and the Environmental Consequences (Chapter Four). Resource categories addressed in this EA include geology, soils and topography, groundwater and surface water, floodplains and wetlands, land use and infrastructure, human health, ecological resources, cultural resources, air quality, noise, visual resources, solid and hazardous waste management, transportation, and socioeconomic and environmental justice.

N /A

2000-04-25T23:59:59.000Z

62

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and Abbreviations...........................................................................................................v Executive Summary...................................................................................................................... vii 1.0 Introduction.............................................................................................................................1

63

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

64

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects  

SciTech Connect

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

Spane, Frank A.

2013-04-29T23:59:59.000Z

65

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1  

SciTech Connect

This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

66

Impacts of the Cerro Grande fire on Homestead era and Manhattan Project properties at Los Alamos National Laboratory.  

SciTech Connect

In May of 2000, the Cerro Grande Fire burned approximately 8,000 acres of Department of Energy (DOE) managed land at the Los Alamos National Laboratory (LANL). Although the fire was generally of low intensity, it impacted a significant number of LANL's cultural resources. Historic wooden properties were affected more heavily than prehistoric archaeological sites. This paper will provide an overview of the Homestead and Manhattan Project Periods at LANL and will discuss the effects of the Cerro Grande Fire on historic wooden properties. Post-fire cultural resource management issues will also be discussed.

McGehee, E. D. (Ellen D.); Isaacson, J. (John)

2001-01-01T23:59:59.000Z

67

Impacts of the Cerro Grande fire on Homestead era and Manhattan Project properties at Los Alamos National Laboratory.  

SciTech Connect

In May of 2000, the Cerro Grande Fire burned approximately 8,000 acres of Department of Energy (DOE) managed land at the Los Alamos National Laboratory (LANL). Although the fire was generally of low intensity, it impacted a significant number of LANL's cultural resources. Historic wooden properties were affected more heavily than prehistoric archaeological sites. This paper will provide an overview of the Homestead and Manhattan Project Periods at LANL and will discuss the effects of the Cerro Grande Fire on historic wooden properties. Post-fire cultural resource management issues will also be discussed.

McGehee, E. D. (Ellen D.); Isaacson, J. (John)

2001-01-01T23:59:59.000Z

68

Grande Ronde Model Watershed Project; Dark Canyon Riparian Exclosure, Completion Report 2002.  

DOE Green Energy (OSTI)

The Baker Field Office, Vale District Bureau of Land Management (BLM) submitted a project proposal for funding in 2002 through the Grande Ronde Model Watershed Program (GRMWP). The project consisted of constructing two riparian exclosures to prevent livestock grazing in the riparian areas of Dark Canyon and Meadow Creek. The BLM completed the NEPA documentation and supplied the fencing materials. Funding from BPA through the GRMWP was used to complete the construction of the two exclosures. This project was completed in the fall of 2002. The project area is located in Union County, Oregon on BLM managed land adjacent to Dark Canyon and Meadow Creek, T. 3. S., R. 35 E., Section 24 and 25. Section 24 is along Dark Canyon Creek and section 25 is along Meadow Creek. Approximately 0.4 miles of stream would be protected from grazing with the construction of the two exclosures. A two person crew was hired to construct a four-strand barbed wire fence. The fence enclosed the riparian area on both sides of each creek so that no grazing would occur within the riparian area on BLM managed land. Total fence length is approximately 1.25 miles. Materials consisted of metal fence posts, barbed wire, rockjacks, fence stays, and 2 x 4's. The fence was constructed in the fall of 2002. The riparian area is effectively excluded from livestock grazing at this time. The construction of the exclosures should enhance riparian vegetation, increase bank stability, and improve riparian and in-stream habitat by exclusion of livestock in the riparian areas. Monitoring will ensure that the exclosures continues to be effective. Annual monitoring will include photo-points and compliance checks during the grazing season by BLM personnel. The BLM will submit a monitoring report, which includes the results of the annual monitoring, to the GRMWP in years 2005 and 2007. The exclosures do cross the creeks so maintenance may be needed on occasion, especially after high flow events in the creeks. Material such as logs which are mobilized during high stream flows may damage the exclosures requiring maintenance to keep cattle from grazing in the riparian areas. The BLM spent approximately $4,000 on fencing materials and $1,375 on NEPA compliance. In addition, the estimated cost of the monitoring over five years is expected to be approximately $1,600. The $5,050 that the BLM received from the BPA for the project was used to hire two temporary employees to construct the exclosures.

Kuck, Todd

2003-03-01T23:59:59.000Z

69

DOE - Office of Legacy Management -- Climax Uranium Co Grand...  

Office of Legacy Management (LM)

Climax Uranium Co Grand Junction Mill - CO 0-03 FUSRAP Considered Sites Site: Climax Uranium Co. (Grand Junction Mill) (CO.0-03) Designated Name: Alternate Name: Location:...

70

Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.  

DOE Green Energy (OSTI)

This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

Merker, Christopher

1993-04-01T23:59:59.000Z

71

Projects Completed Year-to-Date Grand Total: $114,360,905 1,038,467Grand Total SF:Text25:09-Nov-10  

E-Print Network (OSTI)

Project Location: Branch Campus Architect Project Cost Project Name SFContractor Project Start/End Project,983,29974,624Total SF:Total Projects 5Totals for Branch Campus Project Location: HSC Architect Project Cost Project/30/2010 Mary Gauer Total Cost: $13,070,289118,332Total SF:Total Projects 12Totals for HSC Project Location

New Mexico, University of

72

DOE/EIS-0340-SA-01: Supplement Analysis for NEOH Grande Ronde-Imnaha Spring Chinook Hatchery Project (03/23/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2006 3, 2006 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for NEOH Grande Ronde - Imnaha Spring Chinook Hatchery Project (DOE/EIS-0340-SA-01) Ken Kirkman - KEWU-4 Project Manager Proposed Action: Grande Ronde - Imnaha Spring Chinook Hatchery Project Modifications Resulting from Final Design Project No.: 1988-053-01 Location: Wallowa County, Oregon Proposed By: Bonneville Power Administration (BPA) and Nez Perce Tribe Introduction: BPA, in its March 11, 2005 Record of Decision (ROD) on the Grande Ronde - Imnaha Spring Chinook Hatchery Project, decided to fund value engineering, land acquisition and final design of fish production facilities to support an ongoing program of Snake River spring chinook propagation for conservation and recovery of the species. BPA analyzed the

73

Charging Up For Formula Sun Grand Prix By Jonathan Nutzmann, Project Manager  

E-Print Network (OSTI)

. These tougher standards will make having a reliable, efficient, and light car extremely im- portant. Below, each Vehicle Project 111 Church Street SE Minneapolis, MN 55455 612.460.7876 svp@umn.edu www.svp.umn.edu www the project of researching, designing, and constructing a solar vehicle every two years. The project endeavors

Amin, S. Massoud

74

Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement  

Science Conference Proceedings (OSTI)

BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length. Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability standards that minimize risks to public safety and to equipment. BPA is considering two construction alternatives, the Agency Proposed Action and the Alternative Action. The Alternative Action would include all the components of the Preferred Action except a double-circuit line would be constructed in the Spokane area between a point about 2 miles west of the Spokane River and Bell Substation, a distance of about 9 miles. BPA is also considering the No Action Alternative.

N /A

2002-08-09T23:59:59.000Z

75

Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis  

SciTech Connect

The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

Bloom, R.R.

1996-04-01T23:59:59.000Z

76

Long-Term Surveillance Plan for the Sherwood Project (UMTRCA Title II) Reclamation Cell, Wellpinit, Washington, February 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

and Maintenance Program and Maintenance Program Long-Term Surveillance Plan for the DOE Sherwood Project (UMTRCA Title II) Reclamation Cell Wellpinit, Washington February 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC 01-06 Document Number S00204 DOE/Grand Junction Office Sherwood LTSP February 2001 Page iii Contents 1.0 Introduction............................................................................................................... 1-1 1.1 Purpose ..................................................................................................................... 1-1 1.2 Legal and Regulatory Requirements ........................................................................

77

Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collection in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007, acclimation of Lostine River spring Chinook salmon smolts occurred from 3/5/07 through to 4/17/07 and a total of 230,010 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2005 egg source and included captive brood (24,604) and conventional (205,406) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2007 began May 14th. The first Chinook was captured on June 2, 2007 and the last Chinook was captured on September 25, 2007. The weir and trap were removed on October 1, 2007. A total of 637 adult Chinook, including jacks, were captured during the season. The composition of the run included 240 natural origin fish and 397 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 41 natural and 81 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 403 adult Chinook were passed or transported above the weir to spawn naturally, and only hatchery origin jack Chinook were transported and outplanted in the Wallowa River and Bear Creek in underseeded habitat. Of the 122 adult fish retained for broodstock, 20 natural females and 40 supplementation females were represented in spawning. The eggs from these females produced a total of 267,350 eggs at fertilization. Eye-up was 86.73% which yielded a total of 231,882 conventional program eyed eggs. The fecundity averaged 4,456 eggs per female. These eggs will be incubated and reared at Lookingglass Hatchery until they are smolts in the spring of 2009. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2009. Due to the success of the 2007 egg collection, the number of fish produced exceeded program needs and facility capabilities. As a result, there are plans to outplant fry in 2008 and parr in early 2009 to underseeded habitat in the Wallowa River.

Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

2009-03-31T23:59:59.000Z

78

Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collection in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006, acclimation of Lostine River spring Chinook salmon smolts occurred from February 27, 2006 through to April 10, 2006 and a total of 240,568 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2004 egg source and included captive brood (40,982) and conventional (199,586) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2006 began May 15th, the first Chinook was captured on June 14, 2006 and the last Chinook was captured on September 27, 2006. The weir and trap were removed on October 1, 2006. A total of 534 adult Chinook, including jacks, were captured during the season. The composition of the run included 205 natural origin fish and 329 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 33 natural and 120 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning and 397 adult Chinook were passed or transported above the weir to spawn naturally. In 2006, no hatchery origin adult Chinook were transported and out planted in the Wallowa River and Bear Creek to spawn in under seeded habitat. In order to meet egg take goals for the conventional portion of the program, a determination was made that approximately 147 adults were needed for broodstock. As a result 16 (8 males and 8 females) of the 153 fish collected for broodstock were returned to the Lostine River to spawn naturally. Females that were spawned and provided the brood source were made up of 12 natural females and 45 supplementation females. One of these females tested positive for high levels of Bacterial Kidney Disease and consequently this females eggs were destroyed. The remaining females produced a total of 241,372 eggs at fertilization. Eye-up was 85.47% which yielded a total of 206,309 conventional program eyed eggs. The fecundity averaged 4,162 eggs per female. The brood year 2006 eggs will be incubated and reared at Lookingglass Hatchery until

Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

2009-03-31T23:59:59.000Z

79

Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of Lostine River spring Chinook salmon smolts occurred from March 3, 2003 through to April 14, 2003 and a total of 242,776 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2001 egg source and included captive broodstock (141,860) and conventional broodstock (100,916) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2003 began April 30th, the first Chinook was captured on May 16, 2003 and the last Chinook was captured on September 21, 2003. The weir and trap were removed on October 1, 2003. A total of 464 adult Chinook, including jacks, were captured during the season. The composition of the run included 239 natural origin fish and 225 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 45 natural and 4 hatchery supplementation adults were retained for broodstock and transported to LGH for holding and spawning, 366 adult Chinook were passed or transported above the weir to spawn naturally, and 49 hatchery origin adult jack Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 49 adults retained for broodstock at Lookingglass Hatchery, 21 natural females and no hatchery origin females were represented in spawning. These females produced a total of 106,609 eggs at fertilization. Eye-up was 95.50% which yielded a total of 101,811 conventional program eyed eggs. The fecundity averaged 5,077 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage. At eye they were transferred to Oxbow Hatchery where they were reared to the fingerling state at which time they were transported back to LGH until they were smolts in the spring of 2005. Captive brood program eggs/fish will be added to the conventional program eggs to make up the entire juvenile release for the Lostine River program in 2005.

Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

2009-03-31T23:59:59.000Z

80

Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004, acclimation of Lostine River spring Chinook salmon smolts occurred from March 1, 2004 through to April 14, 2004 and a total of 250,249 smolts were acclimated and released. These smolts were produced from the brood year (BY) 2002 egg source and included captive brood (133,781) and conventional (116,468) origin smolts that were all progeny of Lostine River spring Chinook salmon. Operation of the Lostine River adult monitoring and collection facility in 2004 began May 10, the first Chinook was captured on May 19, 2004 and the last Chinook was captured on September 16, 2004. The weir and trap were removed on October 1, 2004. A total of 1,091 adult Chinook, including jacks, were captured during the season. The composition of the run included 299 natural origin fish and 792 hatchery supplementation fish. There were no identified 'stray' hatchery fish from other programs trapped. Of the fish captured, 46 natural and 69 hatchery supplementation adults were retained for broodstock and transported to Lookingglass Hatchery for holding and spawning, 537 adult Chinook were passed or transported above the weir to spawn naturally, and 447 hatchery origin adult Chinook were transported and outplanted in the Wallowa River and Bear Creek to spawn in underseeded habitat. Of the 107 adults retained (eight additional hatchery females were collected and then later returned to the Lostine River to spawn naturally) for broodstock at Lookingglass Hatchery, 22 natural females and 30 supplementation females were represented in spawning. These females produced a total of 221,889 eggs at fertilization. Eye-up was 94.9% which yielded a total of 210,661 conventional program eyed eggs. The fecundity averaged 4,267 eggs per female. These eggs were incubated and at Lookingglass Hatchery until eyed stage and then transferred to Oxbow Hatchery where they will be reared to the fingerling stage. They will then be transported back to LGH and reared to the smolt stage and then transported to the Lostine acclimation facility for release in the spring of 2006. Captive brood program eggs/fish will be added to

Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

2009-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Program or Field Office: Project Title and I.D. No.:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D. No.: D. No.: u.s. Department of Energy Office of Legacy Management Categorical Exclusion Determination Form Office of Legacy Management Routine Maintenance Activities at th e Grand Junction, Colorado, Calibration Model Facility. LM # 42-11. Location: Grand Junction , Colorado Proposed Action or Project Description: DOE proposes to conduct routine maintenance actions as needed at a facility containing calibration borehole test pits. The facility is located just behind the U.S. Department of Energy Grand Junction Office Site on land leased from the Riverview Technology Corporation . Property adjacent to the east side of the facility is owned by the Union Pacific Railroad; east of that is a City of Grand Junction municipal cemetery. Renewal of the lease generally occurs every 5 years

82

Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site  

Office of Legacy Management (LM)

GJO-2000-177-TAR GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW-511-0017-12-000 Document Number U0066302 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Document Number U0066302 Contents DOE/Grand Junction Office Ground Water Compliance Action Plan for Old Rifle, Colorado

83

Case Study: Grand Junction VA Medical Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Expansion Data - Building Additions - PV Solar Array www.antaresgroupinc.com Key Energy Usage Characteristics * Electricity Use: - Summer (Max.): 494 MWh - Winter (Min.): 367 MWh -...

84

U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan  

Office of Legacy Management (LM)

GWMON 1.12-1 GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction ....................................................................................................................... 1 2.0 Purpose and Scope ........................................................................................................... 1 3.0 Pilot-Test Extraction Wellfield 2 4.0 Water Elevation Measurements and Monitoring ............... 4

85

Nanotube junctions  

DOE Patents (OSTI)

The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

Crespi, Vincent Henry (Darien, IL); Cohen, Marvin Lou (Berkeley, CA); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

2003-01-01T23:59:59.000Z

86

<GrandPrairie>  

NLE Websites -- All DOE Office Websites (Extended Search)

Grande Praire Wind Farm, O'Neill, NE Grande Praire Wind Farm, O'Neill, NE The Western Area Power Administration (Western), an agency of the Department of Energy (DOE), intends to prepare an environmental impact statement (EIS) on the proposed interconnection of the Grande Prairie Wind Farm (Project) in Holt County, near the city of O'Neill, Nebraska. Grande Prairie Wind, LLC (Grande Prairie), a subsidiary of Midwest Wind Energy Development Group, LLC, has applied to Western to interconnect their proposed Project to Western's power transmission system. Western is issuing this notice to inform the public and interested parties about Western's intent to prepare an EIS, conduct a public scoping process, and invite the public to comment on the scope, proposed action, alternatives, and other issues to be addressed in the EIS.

87

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 Grand Junction, CO- The U.S. Department of Energy (DOE) reached another milestone today for the Uranium Mill Tailings Remedial Action Project, having shipped 5 million tons of tailings from the massive pile located in Moab, Utah, to the engineered disposal cell near Crescent Junction, Utah. The pile comprised an estimated 16 million tons total when DOE's Remedial

88

Josephson junction  

DOE Patents (OSTI)

A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

Wendt, Joel R. (Albuquerque, NM); Plut, Thomas A. (Albuquerque, NM); Martens, Jon S. (Sunnyvale, CA)

1995-01-01T23:59:59.000Z

89

Josephson junction  

DOE Patents (OSTI)

A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

Wendt, J.R.; Plut, T.A.; Martens, J.S.

1995-05-02T23:59:59.000Z

90

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam hydroacoustic system was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. Two of the seven transducers were mounted to the frame containing the strobe lights and were oriented horizontally. The remaining five transducers were spaced approximately 4 m apart on individual floating frames upstream of the barge, with the transducers looking vertically downward.

Johnson, R.; McKinstry, C.; Simmons, C. (Pacific Northwest National Laboratory)

2003-01-01T23:59:59.000Z

91

Microsoft Word - GrandCoulee_FONSI.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project BPA's Finding of No Significant Impact 1 Bonneville Power Administration's Finding of No Significant Impact (FONSI) for the Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project DOE/EA-1679 SUMMARY The Bonneville Power Administration (BPA) announces its environmental findings on the Bureau of Reclamation's (Reclamation) Grand Coulee Third Powerplant 500-kV Transmission Line Replacement Project. This project involves replacing the six 500-kV transmission lines of the Third Powerplant (TPP) at Grand Coulee Dam. The transmission lines are presently installed within the dam and a two-chambered tunnel that leads to a Spreader Yard about a mile west of the TPP. BPA would design and construct

92

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Project Locations Biofuels Project Locations BlueFire Ethanol Biochemical Municipal Solid Waste (Mecca, CA) Poet Biochemical Corn Cob/Corn Fiber (Emmetsburg, IA) Lignol Biochemical Woody Biomass- Ag Residues (Grand Junction, CO) ICM Biochemical Switchgrass, Forage Sorghum, Stover (St. Joseph, MO) Abengoa Biochemica Agricultural Residue (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage Thermochemical Woody Biomass - Mill Residues (Wisconsin Rapids, WI) Range Fuels Thermochemical Woody Waste (Soperton, GA) DSM Innovation Center Biochemical Various (Parsippany, NJ) Novozymes Biochemical Various (Davis, CA) Genencor Biochemical Various (Palo Alto, CA) Verenium Corp Biochemical Various (San Diego, CA)

93

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a 3-day block throughout the study period. Hydroacoustic technology was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The hydroacoustic system in 2003 comprised seven splitbeam transducers arrayed in front of the strobe lights, two multibeam transducers behind the lights, and a mobile splitbeam system. The seven splitbeam transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. These transducers were spaced approximately 4 m apart on an aluminum frame floating upstream of the barge and looked vertically downward. The multibeam transducers monitored the distribution of fish directly behind and to both sides of the lights, while the mobile splitbeam system looked at the distribution of fish within the third powerplant forebay. To augment the hydroacoustic data, additional studies were conducted. The hydrodynamic characteristics of the third powerplant forebay were measured, and acoustically tagged juvenile kokanee were released upstream of the strobe lights and tracked within the forebay and downstream of the dam. Analysis of the effect of strobe lights on kokanee and rainbow trout focused on the number of fish detected in each of the areas covered by one of the downlooking transducers, the timing of fish arrivals after the status of the strobe lights changed, fish swimming effort (detected velocity minus flow velocity), and fish swimming direction. Water velocity measurements were used to determine fish swimming effort. The tracking of tagged kokanee provided data on fish movements into and out of the third powerplant forebay, including entrainment.

Simmons, M.; McKinstry, C.; Cook, C.

2004-01-01T23:59:59.000Z

94

Junction Hilltop Wind | Open Energy Information  

Open Energy Info (EERE)

Junction Hilltop Wind Junction Hilltop Wind Jump to: navigation, search Name Junction Hilltop Wind Facility Junction Hilltop Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Community Owned Developer Tom Wind & Bill Sutton Energy Purchaser Interstate Power and Light (Alliant Energy) Location Grand Junction IA Coordinates 42.04671131°, -94.23969269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.04671131,"lon":-94.23969269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Smolt Migration Characteristics and Mainstem Snake and Columbia River Detection Rates of PIT-Tagged Grande Ronde and Imnaha River Naturally Produced Spring Chinook Salmon, Annual Reports 1993, 1994, 1995 : Fish Research Project, Oregon.  

DOE Green Energy (OSTI)

This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995.

Walters, Timothy R.; Carmichael, Richard W.; Keefe, MaryLouise

1996-04-01T23:59:59.000Z

96

Grand Unified Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

Grand Unified Theory Ungelste Rtsel Grand Unified Theory Heute besteht eines der Hauptziele der Teilchenphysik darin, die verschiedenen fundamentalen Krfte in einer Grossen...

97

Project Plan: Long-Term Surveillance Plan (LTSP) for the Piqua Nuclear Power Facility, Piqua, Ohio, April 1998 (minor revisions November 1999).  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Surveillance and Maintenance Program Long-Term Surveillance and Maintenance Program Long-Term Surveillance Plan for the Piqua Nuclear Power Facility Piqua, Ohio April 1998 (minor revisions November 1999) Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Prepared by MACTEC Environmental Restoration Services, LLC Grand Junction, Colorado Project Number LTS-111-0027-00-000 Document Number S0007600 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC98-06 This page intentionally blank Document Number S0007600 Contents DOE/Grand Junction Office LTSP for Piqua Nuclear Power Facility April 1998 Page iii Contents Page 1.0 Introduction...........................................................................................................................1B1

98

Spelunking in La Cueva Grande  

Science Conference Proceedings (OSTI)

La Cueva Grande is the 5-sided immersive facility put into place at Los Alamos National Laboratory. It was the highest-resolution stereo immersive facility in the world at the time of first use in 2005. The design and common use cases of LCG are presented, ... Keywords: projection systems, virtual reality

Laura Monroe

2008-08-01T23:59:59.000Z

99

Solar energy demonstration project  

SciTech Connect

The solar heating demonstration system at the DOE cafeteria at Grand Junction, Colorado, is briefly described. The system will supply an estimated 40 percent of the energy required for domestic hot water and building heat. (WHK)

1978-01-01T23:59:59.000Z

100

Rio Grande Rift Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Rift Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rio Grande Rift Geothermal Region edit Details Areas (21) Power Plants (0) Projects (2)...

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

BWRVIP-274: BWR Vessel and Internals Project, Evaluation of On-Line NobleChemTM Platinum Deposition on Grand Gulf Dry Tubes  

Science Conference Proceedings (OSTI)

Grand Gulf Nuclear Station (GGNS) removed nuclear instrumentation detector dry tubes from the reactor during their 2012 refueling outage due to cracks in the plunger tubes. The report describes the results from three tubes that were scraped on site in October 2012 to obtain samples of the platinum (Pt) deposition resulting from On-Line NobleChemTM (OLNC) applications done in 2010 and 2011.BackgroundOLNC along with hydrogen injection is used by ...

2013-05-09T23:59:59.000Z

102

Chief Joseph Kokanee Enhancement Project; Characterization of Pump Flow at the Grand Coulee Dam Pumping Station for Fish Passage, 2004-2005 Final Report.  

DOE Green Energy (OSTI)

This report describes a study conducted by Pacific Northwest National Laboratory (PNNL) for the Bonneville Power Administration to characterize the conditions fish experience when entrained in pump flow at the Grand Coulee Dam. PNNL conducted field studies at Grand Coulee Dam in 2004 using the Sensor Fish to measure the acceleration and pressure conditions that might be experienced by fish that pass through pumps at Grand Coulee Dam's Pump-Generating Plant and are transported up into the feeder canal leading to Banks Lake. The probability that fish would be struck by the Pump-Generating Plant's new nine-bladed turbines was also estimated. Our measurements showed relatively low turbulence except in the immediate vicinity of the runner environment. The lowest and highest pressures experienced by the Sensor Fish were 6.4 and 155 psi (the pressure gauge saturated at 155 psi). The probability of strike was also calculated, based on the average length of hatchery-reared juvenile kokanee (land-locked sockeye). Strike probabilities ranged from 0.0755 for 2.36-inch fish to 0.3890 for 11.8-inch fish. The probability of strike estimates indicate that the majority (77%) of recently released hatchery kokanee would be carried through the test pump without being struck and most likely with low risk of injury resulting from pressure and turbulence exposure. Of the 23% that might be struck it is expected that 60% would arrive in Banks Lake without visible external injuries. Thus more than 90% of entrained fish could be expected to arrive in Banks Lake without significant injury, assuming that no kokanee were injured or killed by pressure exposure during passage.

Carlson, T.; Duncan, J.; Johnson, R.

2005-03-01T23:59:59.000Z

103

Chief Joseph Kokanee Enhancement Project -- Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay  

DOE Green Energy (OSTI)

This report describes the work conducted during the first year of a long-term study to assess the efficacy of a prototype strobe light system in eliciting a negative phototactic response in kokanee and rainbow trout. The strobe light system is being evaluated as a means to prevent entrainment (and subsequent loss) of fish at the entrance to the forebay adjacent to the third powerplant at Grand Coulee Dam. Pacific Northwest National Laboratory and the Colville Confederated Tribes are collaborating on the three-year study being conducted for the Bonneville Power Administration and the Northwest Power Planning Council.

Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Anglea, Steven M.; Simmons, Carver S.; Thorsten, Susan L.; Lecaire, R; Francis, S

2002-01-29T23:59:59.000Z

104

Finding  

Office of Legacy Management (LM)

Junction UMTRA Project Site (Climax Uranium Millsite) September 1999 U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Finding of No Significant Impact...

105

Investigations into the [Early] Life History of Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project, Oregon : Annual Report 1994 : Project Period 1 June 1993 to 31 May 1994.  

DOE Green Energy (OSTI)

This study was designed to describe aspects of the life history strategies of spring chinook salmon in the Grande Ronde basin. During the past year we focused on rearing and migration patterns of juveniles and surveys of spawning adults. The specific objectives for the early life history portion of the study were: Objective 1, document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River, including the abundance of migrants, migration timing and duration; Objective 2, estimate and compare smolt survival indices to mainstem Columbia and Snake River dams for fall and spring migrating spring chinook salmon; Objective 3 initiate study of the winter habitat utilized by spring chinook salmon in the Grande Ronde River basin. The specific objectives for the spawning ground surveys were: Objective 4, conduct extensive and supplemental spring chinook salmon spawning ground surveys in spawning streams in the Grande Ronde and Imnaha basin, Objective 5; determine how adequately historic index area surveys index spawner abundance by comparing index counts to extensive and supplemental redd counts; Objective 6, determine what changes in index areas and timing of index surveys would improve the accuracy of index surveys; Objective 7, determine the relationship between number of redds observed and fish escapement for the Grande Ronde and Imnaha river basins.

Keefe, MaryLouise

1996-04-01T23:59:59.000Z

106

Investigations into the Early History of Naturally Produced Spring Chinook Salmon in the Grand Ronde Basin : Fish Research Project Oregon : Annual Progress Report Project Period September 1, 1996 to August 31, 1997.  

DOE Green Energy (OSTI)

We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving upper rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool habitats, particularly alcove and backwater pools. These results were consistent for both summer and winter surveys.

Johasson, Brian C.; Tranquilli, J. Vincent; Keefe, MaryLouise

1998-10-28T23:59:59.000Z

107

Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone June 3, 2011 - 12:00pm Addthis Media Contacts Donald Metzler Moab Federal Project Director (970) 257-2115 Wendee Ryan S&K Aerospace Public Affairs Manager (970) 257-2145 Grand Junction, CO - One quarter of the uranium mill tailings pile located in Moab, Utah, has been relocated to the Crescent Junction, Utah, site for permanent disposal. Four million tons of the 16 million tons total has been relocated under the Uranium Mill Tailings Remedial Action Project managed by the U.S. Department of Energy (DOE). A little over 2 years ago, Remedial Action Contractor EnergySolutions began

108

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

109

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

110

Solar Junction | Open Energy Information  

Open Energy Info (EERE)

Junction Jump to: navigation, search Name Solar Junction Place San Jose, California Zip CA 95131 Sector Efficiency, Solar Product Solar Junction is developing high efficiency solar...

111

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993  

Science Conference Proceedings (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.

Not Available

1993-12-01T23:59:59.000Z

112

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay, 2005-2006 Annual Report.  

Science Conference Proceedings (OSTI)

The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee population found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock openings, fish would avoid the lighted regions. Four omnidirectional strobe lights were deployed on the one trash rack directly in front of one turbine penstock. Seven splitbeam transducers were deployed to monitor fish approaching three penstock openings either from in front of the trash racks or moving down the dam behind the trash racks. Four key results emerged from the 2005 study. The results provide insight into the current level of entrainment and how fish respond to strobe lights under high flow conditions. First, very few fish were detected inside the trash racks. Of the more than 3,200 targets identified by the data processing, less than 100 were detected inside the trash racks. Only 23 fish were found inside the trash racks behind the strobe lights. Of those 21 fish, 13 were detected when the lights were on. Most of the fish detected behind the trash racks were above the turbine penstock but were headed downward. No fish were detected at night when minimal flows occurred between midnight and 4:00 a.m. Second, significantly more fish (P number of detections by the transducers aimed away from the lights. Third, fish clearly manifested a behavioral response to the strobe lights during the day. When the lights were on, fish detected by three of the four transducers generally were swimming north, parallel to the face of the dam. Howeve

Simmons, M.; Johnson, Robert; McKinstry, C. [Pacific Northwest National Laboratory

2006-03-01T23:59:59.000Z

113

EMSL: Science: Biogeochemistry Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemistry Grand Challenge Shewanella oneidensis MR-1 growing on a hematite surface Shewanella oneidensis MR-1 growing on a hematite surface. A Grand Challenge in...

114

Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay, 2005-2006 Annual Report.  

DOE Green Energy (OSTI)

The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee population found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock openings, fish would avoid the lighted regions. Four omnidirectional strobe lights were deployed on the one trash rack directly in front of one turbine penstock. Seven splitbeam transducers were deployed to monitor fish approaching three penstock openings either from in front of the trash racks or moving down the dam behind the trash racks. Four key results emerged from the 2005 study. The results provide insight into the current level of entrainment and how fish respond to strobe lights under high flow conditions. First, very few fish were detected inside the trash racks. Of the more than 3,200 targets identified by the data processing, less than 100 were detected inside the trash racks. Only 23 fish were found inside the trash racks behind the strobe lights. Of those 21 fish, 13 were detected when the lights were on. Most of the fish detected behind the trash racks were above the turbine penstock but were headed downward. No fish were detected at night when minimal flows occurred between midnight and 4:00 a.m. Second, significantly more fish (P < 0.001) were detected in front of the trash racks when the lights were on at night. On a count-per-hour basis, the difference between lights off and lights on was apparent in the early morning hours at depths between 25 m and 50 m from the transducers. The lights were approximately 34 m below the splitbeam transducers, and fish detected at night with lights on were found at a median depth of approximately 35 m, compared to a median depth of from 20.6 to 23.5 m when the lights were off. The differences in depth between lights on and off at night were also significant (P < 0.001). Additionally, the increase in fish occurred only in front of the trash rack where the strobe lights were mounted; there was no increase in the number of detections by the transducers aimed away from the lights. Third, fish clearly manifested a behavioral response to the strobe lights during the day. When the lights were on, fish detected by three of the four transducers generally were swimming north, parallel to the face of the dam. Howeve

Simmons, M.; Johnson, Robert; McKinstry, C. [Pacific Northwest National Laboratory

2006-03-01T23:59:59.000Z

115

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) Interconnect Between Canals 39 and 13-A1 and Replacement of Rio Grande Diversion Pumping Plant  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for the capital renovation project proposed by the Cameron County Irrigation District No. 2 (a.k.a. San Benito) to the North American Development Bank (NADBank) and Bureau of Reclamation. Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for both components of the proposed project (i.e., a lined interconnect between Canals 39 and 13-A1 and replacement of the Rio Grande diversion pumping plant). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost of water savings and cost of energy savings for both components are aggregated into a composite set of cost measures for the total proposed project. Aggregate cost of water savings is estimated to be $41.26 per ac-ft and energy savings are measured at an aggregate value of $0.0001586 per BTU (i.e., $0.541 per kwh). In addition, expected values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $157.07 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0001777 per BTU ($0.606 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.80.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2003-01-01T23:59:59.000Z

116

Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995  

Science Conference Proceedings (OSTI)

This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

NONE

1995-12-01T23:59:59.000Z

117

Three-junction solar cell  

SciTech Connect

A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

Ludowise, Michael J. (Cupertino, CA)

1986-01-01T23:59:59.000Z

118

Microsoft Word - GrandCoulee_FinalEA_CommentResponses.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant Grand Coulee's Third Powerplant 500-kilovolt Transmission Line Replacement Project Revision Sheet for the Environmental Assessment Finding of No Significant Impact Mitigation Action Plan DOE/EA-1679 December 2011 Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Revision Sheet for the Environmental Assessment 2 SUMMARY This revision sheet documents the changes to be incorporated into the Grand Coulee's Third Powerplant 500-kilovolt (kV) Transmission Line Replacement Project Preliminary Environmental Assessment (EA). With the addition of these changes, the Preliminary EA will not be reprinted and will serve as the Final EA. On May 2, 2011, the Preliminary EA was sent to agencies and interested parties.

119

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

120

Final Report on Grand Challenge LDRD Project:  

NLE Websites -- All DOE Office Websites (Extended Search)

SAND 2004-2365 SAND 2004-2365 UNLIMITED RELEASE PRINTED MAY 2004 F F i i n n a a l l R R e e p p o o r r t t o o n n G G r r a a n n d d C C h h a a l l l l e e n n g g e e L L D D R R D D P P r r o o j j e e c c t t : : A A R R e e v v o o l l u u t t i i o o n n i i n n L L i i g g h h t t i i n n g g - - B B u u i i l l d d i i n n g g t t h h e e S S c c i i e e n n c c e e a a n n d d T T e e c c h h n n o o l l o o g g y y B B a a s s e e f f o o r r U U l l t t r r a a - - E E f f f f i i c c i i e e n n t t S S o o l l i i d d - - S S t t a a t t e e L L i i g g h h t t i i n n g g Solid-State Lighting GCLDRD Final Report Page 3 of 151 J. A. Simmons, J. Y. Tsao, S. R. Kurtz, T. M. Bauer, R. J. Kaplar, W. W. Chow, E. D. Jones, K. E. Waldrip, S. R. Lee, A. J. Fischer, M. H. Crawford, K. W. Fullmer, and B. L. Abrams Semiconductor Material and Device Sciences Department R. M. Biefeld, D. D. Koleske, A. A. Allerman, J. J. Figiel, R. J. Creighton, M. E. Coltrin,

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Rio Grande Project Power Sales Rate History  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Sales Rate History Updated: 1022009 Rate Schedule Effective Dates Energy (MillskWh) Capacity (kW-mo.) Combined (MillskWh) R5-F1 1940 - 1949 3.000 - 8.000 (declining...

122

Rio Grande pipeline introduces LPG to Mexico  

SciTech Connect

Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

NONE

1997-06-01T23:59:59.000Z

123

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

124

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

125

SunShot Grand Challenge Summit 2014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge Summit 2014 SunShot Grand Challenge Summit 2014 SunShot Grand Challenge Summit 2014 May 19, 2014 8:00AM PDT to May 22, 2014 5:00PM PDT Anaheim, California Hilton Anaheim The DOE SunShot Initiative Grand Challenge Summit 2014 will bring together more than 800 members of the solar community including SunShot-funded project teams, industry leaders, innovative researchers and scientists, and local, state and federal government policymakers to review the progress made and discuss the challenges ahead to make solar energy more affordable and widespread across America. The event will include activities that celebrate the accomplishments across more than 250 SunShot-funded projects and discuss the path forward for the U.S. solar energy industry. Plenary Sessions and Keynote Speakers - Top leaders from business,

126

LM Completes X-Ray Film Digitization Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes X-Ray Film Digitization Project Completes X-Ray Film Digitization Project LM Completes X-Ray Film Digitization Project January 7, 2013 - 12:02pm Addthis Nearly 400,000 x-rays of former DOE contractor employees have been digitized to support LM records retention requirements. Nearly 400,000 x-rays of former DOE contractor employees have been digitized to support LM records retention requirements. What does this project do? Goal 2. Preserve, protect, and share records and information The U.S. Department of Energy (DOE) Office of Legacy Management (LM) has successfully completed a project to digitize nearly 400,000 medical x-rays of former DOE contractor employees. The x-rays, from the Rocky Flats and Grand Junction, Colorado; Fernald, Mound, and Ashtabula, Ohio; and Pinellas, Florida; sites, are needed to

127

UMTRA Surface Project management action process document: Final. Revision 2  

Science Conference Proceedings (OSTI)

Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites.

NONE

1996-06-01T23:59:59.000Z

128

Mississippi Nuclear Profile - Grand Gulf  

U.S. Energy Information Administration (EIA) Indexed Site

Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

129

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994  

SciTech Connect

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

Not Available

1994-11-01T23:59:59.000Z

130

Saft America Advanced Batteries Plant Celebrates Grand Opening in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saft America Advanced Batteries Plant Celebrates Grand Opening in Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida, factory, which will produce advanced lithium-ion batteries to power electric vehicles and other applications. Saft America estimates it will create nearly 280 permanent jobs at the factory, and the city of Jacksonville expects an additional 800 indirect jobs to be created within its community. The project has created or preserved an estimated 300

131

DOE - Office of Legacy Management -- Project Rio Blanco - CO 0-09  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Rio Blanco - CO 0-09 Project Rio Blanco - CO 0-09 FUSRAP Considered Sites Site: Project Rio Blanco (CO.0-09) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: ~ 52 miles north of Grand Junction, Co. , Rio Blanco County , Colorado CO.0-09-1 Evaluation Year: 1985 CO.0-09-1 Site Operations: The project was a cooperative research effort undertaken in 1973 between CER Geonuclear Corp, Continental Oil Co (Conoco), and the US Energy Research and Development Administration Nevada Operations Office (ERDA/NV) to assess the commercial feasibility of using nuclear explosives to recover natural gas from low permeability formations in the Rocky Mountains. CO.0-09-1 Site Disposition: Eliminated - Radiation levels below criteria CO.0-09-1

132

Final Report Northeast Site Area B NAPL Remediation Project  

Office of Legacy Management (LM)

Northeast Site Area B Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Office of Legacy Management DOE M/1457 2007 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1457-2007 Final Report Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado

133

Monitoring Results Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterwards, the site was shut down, then remediated and the emplacement well (R-E) and reentry well (R-Ex) plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

134

Rio Grande Compact (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rio Grande Compact (Texas) Rio Grande Compact (Texas) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

135

GaInNAs Junctions for Next-Generation Concentrators: Progress and Prospects  

DOE Green Energy (OSTI)

We discuss progress in the development of GaInNAs junctions for application in next-generation multijunction concentrator cells. A significant development is the demonstration of near-100% internal quantum efficiencies in junctions grown by molecular-beam epitaxy. Testing at high currents validates the compatibility of these devices with concentrator operation. The efficiencies of several next-generation multijunction structures incorporating these state-of-the-art GaInNAs junctions are projected.

Friedman, D. J.; Ptak, A. J.; Kurtz, S. R.; Geisz, J. F.; Kiehl, J.

2005-08-01T23:59:59.000Z

136

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

137

JGI - Project List  

NLE Websites -- All DOE Office Websites (Extended Search)

ID NCBI taxonomy ID Show projects from: all ARRA BRC-BESC BRC-GLBRC BRC-JBEI BRC-Multi CSP CSP-ICBG CSP-LD DD Director's Science DOE Legacy DOEM FGP GEBA Genomic Tech Grand...

138

Moab Mill Tailings Removal Project Plans to Resume Train Shipments in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans to Resume Train Shipments Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return Moab Mill Tailings Removal Project Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return February 25, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, donald.metzler@gjem.doe.gov 970-257-2115 Jeff Biagini, jeff.biagini@gjemrac.doe.gov 970-257-2117 Wendee Ryan, wryan@gjemtac.doe.gov 970-257-2145 Grand Junction, CO - All 27 employees of the Remedial Action Contractor (RAC) to the U.S. Department of Energy will return to work on the Uranium Mill Tailings Remedial Action Project on March 4, following a 3-month planned furlough. Project shipping and disposal operations have been shut down, as planned, since late November 2012, but are scheduled to resume

139

Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 1999 Annual Report.  

DOE Green Energy (OSTI)

This project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Folk John Day and Grande Ronde Rivers, for five years.

Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

2000-01-01T23:59:59.000Z

140

Neutrino Mass and Grand Unification  

E-Print Network (OSTI)

Seesaw mechanism appears to be the simplest and most appealing way to understand small neutrino masses observed in recent experiments. It introduces three right handed neutrinos with heavy masses to the standard model, with at least one mass required by data to be close to the scale of conventional grand unified theories. This may be a hint that the new physics scale implied by neutrino masses and grand unification of forces are one and the same. Taking this point of view seriously, I explore different ways to resolve the puzzle of large neutrino mixings in grand unified theories such as SO(10) and models based on its subgroup $SU(2)_L\\times SU(2)_R\\times SU(4)_c$.

R. N. Mohapatra

2004-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.  

DOE Green Energy (OSTI)

This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia River hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.

Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W. [Oregon Department of Fish and Wildlife

2009-07-31T23:59:59.000Z

142

EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

79: Grand Coulee's Third Powerplant 500-kV Transmission Line 79: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington Summary This EA evaluates potential environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE's Bonneville Power Administration (BPA), a cooperating agency, was asked by the U. S. Department of the Interior's Bureau of Reclamation to design and construct the proposed new transmission lines. A Finding of No Significant Impact was issued by BPA in December 2011. BPA website: http://efw.bpa.gov/environmental_services/Document_Library/Grand_Coulee/

143

Microsoft Word - CX-GrandCoulee-Creston_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Robert Keudell Robert Zeller Lineman Foreman III - TFWK-Grand Coulee Lineman Foreman I - TFWK-Grand Coulee Proposed Action: Selected wood pole replacement and minor access road maintenance along the Grand Coulee-Creston transmission line at miles 14, 15, 21 and 28. PP&A Project No: 1828 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities...for structures, rights of way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures... in a condition suitable for a facility to be used for its designed purpose.

144

EMSL: Science: GC: Membrane Biology - Project Achievements  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Achievements EMSL's Membrane Biology Scientific Grand Challenge researchers grew Cyanothece in defined culture conditions and entrained it to a 12-hour light12-hour...

145

Uranium Mill Tailings Remedial Action Project 1994 environmental report  

Science Conference Proceedings (OSTI)

This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

NONE

1995-08-01T23:59:59.000Z

146

DOE/EA-1155 Uranium Mill Tailing Remedial Action Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

55 55 Uranium Mill Tailing Remedial Action Project Environmental Assessment of Ground- Water Compliance Activities At the Uranium Mill Tailings Site Spook, Wyoming February 1997 Prepared by U.S. Department of Energy Albuquerque Operations Office Grand Junction Office This page intentionally blank : illegible Portions of tbis DISCLAIMER document may be in electronic image products. Images are produced fiom the best available original dOClMXlf?IlL DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liabili- ty or responsibility for the accuracy, completeness,

147

Microsoft Word - CX-GrandCoulee-Bell3WestsideInsulatorRepAccessImprov_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark Kjelland Mark Kjelland Project Manager - TEP-TPP-2 Proposed Action: Grand Coulee-Bell No. 3/Grand Coulee-Westside No. 1 double circuit 230-kV transmission line insulator replacement and access improvement project Budget Information: Work Order #00255064 PP&A Project No.: PP&A 1946 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment... routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designated purpose. Proposed by: Bonneville Power Administration (BPA) Location: The proposed Grand Coulee-Bell No. 3/Grand Coulee-Westside No. 1 double circuit

148

1987 annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the Department of Energy's cultural resource activities at Colorado UMTRA Project sites. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect

This report is a summary of the Department of Energy's (DOE) cultural resource investigations related to the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE's obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December, 1984. A summary of the cultural resource surveys and identified resources is provided for project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. This report summarizes all DOE UKTRA Project cultural resource activities in Colorado for the 1987 calender year.

Not Available

1988-04-01T23:59:59.000Z

149

Grand Challenges in Energy by Secretary Steven Chu | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Challenges in Energy by Secretary Steven Chu Grand Challenges in Energy by Secretary Steven Chu Grand Challenges in Energy by Secretary Steven Chu More Documents &...

150

The Particle Adventure | Unsolved Mysteries | Grand Unified Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

Unsolved Mysteries - Grand Unified Theory Grand Unified Theory Today, one of the major goals of particle physics is to unify the various fundamental forces in a Grand Unified...

151

PP-53 Rio Grande Electric Cooperative, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Rio Grande Electric Cooperative, Inc. PP-53 Rio Grande Electric Cooperative, Inc. Presidential Permit authorizing Rio Grande Electric Cooperative, Inc.to construct, operate, and...

152

PP-33 Rio Grande Electric Cooperative Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rio Grande Electric Cooperative Inc PP-33 Rio Grande Electric Cooperative Inc Presidential permit authorizing Grande Electric Cooperative Inc to construct, operate, and maintain...

153

Josephson junction Q-spoiler  

DOE Patents (OSTI)

An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

1986-03-25T23:59:59.000Z

154

Josephson junction Q-spoiler  

DOE Patents (OSTI)

An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

Clarke, John (Berkeley, CA); Hilbert, Claude (Austin, TX); Hahn, Erwin L. (Berkeley, CA); Sleator, Tycho (Berkeley, CA)

1988-01-01T23:59:59.000Z

155

EV Everywhere Grand Challenge Blueprint  

NLE Websites -- All DOE Office Websites (Extended Search)

A Message from A Message from the Assistant Secretary Every challenge presents an even greater opportunity, and the EV Everywhere Grand Challenge is no exception. The need for clean energy solutions drives the most important economic development race of the 21st century, providing opportunity for America to invent, manufacture, and export clean energy technologies. Recognizing that vehicle electrification is an essential part of our country's "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to be the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

156

Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993  

Science Conference Proceedings (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1993. To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are: Direct employment was estimated at 894 workers; An estimated 89 percent of all direct employment was local; Secondary employment resulting from remedial action at the active Colorado UMTRA Project sites and the Grand Junction vicinity property program is estimated at 546 workers. Total employment (direct and secondary) is estimated at 1440 workers for the period of study (July 1, 1992, to June 30, 1993). An estimated $24.1 million was paid in wages to UMTRA workers in Colorado during FY1993; Direct and secondary wage earnings were estimated at $39.9 million; Income tax payments to the state of Colorado were estimated at $843,400 during FY1993; The gross economic impact of UMTRA Project activities in the state of Colorado is estimated at $70 million during the 1-year study period; and the net economic benefit to the state of Colorado was estimated at $57.5 million, or $5.90 per dollar of funding provided by Colorado. This figure includes both direct and secondary benefits but does not include the impact of alternative uses of the state funding.

Not Available

1993-11-12T23:59:59.000Z

157

Microsoft Word - CX-GrandCouleeDistrictWoodPoleReplacementsAccessRoadsFY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Todd Wehner Civil Design/Access Roads - TELF-TPP-3 James Semrau Project Manager - TEP-TPP-1 Proposed Action: Wood pole replacement, equipment landing construction, and access road improvements along various transmission lines in Bonneville Power Administration's (BPA) Grand Coulee District. PP&A Project No.: 2152 (Grand Coulee-Chief Joseph No. 1), 2151 (Grand Coulee-Chief Joseph No. 2), 2121 (Grand Coulee-Foster Creek No. 1) and 1776 (Grand Coulee-Okanogan No. 2) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Douglas and Okanogan counties, Washington. Refer to table below for project locations: Line Name Structure Township Range Section County

158

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Special study on vegetative covers. [UMTRA Project  

SciTech Connect

This report describes the findings of a special study on the use of vegetative covers to stabilize tailings piles for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The principal rationale for using plants would be to establish a dynamic system for controlling water balance. Specifically, vegetation would be used to intercept and transpire precipitation to the atmosphere, rather than allowing water to drain into the tailings and mobilize contaminants. This would facilitate compliance with groundwater standards proposed for the UMTRA Project by the Environmental Protection Agency. The goals of the study were to evaluate the feasibility of using vegetative covers on UMTRA Project piles, define the advantages and disadvantages of vegetative covers, and develop general guidelines for their use when such use seems reasonable. The principal method for the study was to analyze and apply to the UMTRA Project the results of research programs on vegetative covers at other US Department of Energy (DOE) waste management facilities. The study also relied upon observations made of existing stabilized piles at UMTRA Project sites where natural vegetation is growing on the rock-covered surfaces. Water balance and erosion models were also used to quantify the long-term performance of vegetative covers planned for the topslopes of stabilized piles at Grand Junction and Durango, Colorado, two UMTRA Project sites where the decision was made during the course of this special study to use vegetative covers. Elements in the design and construction of the vegetative covers at these two sites are discussed in the report, with explanations of the differing features that reflect differing environmental conditions. 28 refs., 18 figs., 9 tabs.

Not Available

1988-11-01T23:59:59.000Z

160

Granby Pumping Plant Switchyard - Windy Gap Substation Transmission Line Rebuild, Grand County, Colorado: Final Environmental Impact Statement Appendices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PUMPING PLANT SWITCHYARD - WINDY GAP PUMPING PLANT SWITCHYARD - WINDY GAP SUBSTATION TRANSMISSION LINE REBUILD, GRAND COUNTY, COLORADO DOE/EIS-0400 Final Environmental Impact Statement Appendices Grand County, Colorado June 2013 Appendix A EIS Scoping Report GRANBY PUMPING PLANT - WINDY GAP TRANSMISSION LINE REBUILD PROJECT ENVIRONMENTAL IMPACT STATEMENT SCOPING SUMMARY REPORT December 4, 2007

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An applied paleoecology case study: Bahia Grande, Texas prior to construction of the Brownsville Ship Channel  

E-Print Network (OSTI)

Bahia Grande is a large lagoon located within Laguna Atascosa National Wildlife Refuge in Cameron County, Texas. When the Brownsville Ship Channel was built along the southern end of the lagoon in 1936, Bahia Grande was cut off from the marine water of Laguna Madre. Since that time, Bahia Grande has been primarily dry with only ephemeral fresh water coming from heavy rainfall events, resulting in a severe decline in biological productivity. A restoration project led by the U.S. Fish and Wildlife Service has proposed to cut new channels between Bahia Grande and the Ship Channel to restore the connection with Laguna Madre. This is a large-scale project with major implications for the water quality, surrounding ecology, and associated biota in the region. Unfortunately, because very little is known about Bahia Grande prior to isolation, it is difficult to predict whether the results of the restoration will be comparable to the pre-Ship Channel environment. Paleoecological data provide the best opportunity to understand what Bahia Grande was like in the past. This study uses statistical analyses of the molluscan death assemblages from Bahia Grande to gain a better understanding of the environmental conditions in the lagoon before it was isolated. The first question addressed is how does Bahia Grande relate to other water bodies on the Texas coast? This may provide a modern analog to the past conditions in Bahia Grande. The second question inquires whether there are any local patterns or variations within Bahia Grande and several smaller surrounding lagoons. These results provide an important baseline for comparison with the restored lagoon. The results of this investigation show that, in a regional context, Bahia Grande was most similar to Alazan Bay and Baffin Bay, which are mostly enclosed shallow bays with high salinities due to the arid climate and limited freshwater inflow. Within Bahia Grande, there are several distinct molluscan assemblages. Salinity and water coverage are the most likely environmental factors responsible for the differences within Bahia Grande. Additionally, data from surrounding lagoons strongly indicate that some connections with Bahia Grande existed in the past.

Lichlyter, Stephen Alvah

2003-05-01T23:59:59.000Z

162

Solid-State Lighting at Sandia National Laboratory - Grand Challenge LDRD  

NLE Websites -- All DOE Office Websites (Extended Search)

| | Sandia Press Releases & News Coverage | GRAND CHALLENGE LDRD PROJECT 6images of light To accelerate the development of the science and technology underlying Solid State Lighting, Sandia initiated, in October 2000, a multi-year Grand Challenge Laboratory Directed Research and Development (GCLDRD) project, " A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-State Lighting." This project is considered one of Sandia's most successful GCLDRDs. One way in which the SSL GCLDRD was different from others was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and

163

Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.  

DOE Green Energy (OSTI)

The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

Ashley, Paul

1992-06-01T23:59:59.000Z

164

Method of making semiconductor junctions  

DOE Patents (OSTI)

A p-n junction on a silicon substrate doped with boron ions (d- dopant) is made in following manner. A shallow silicon surface layer including a n-type dopant is first obtained by ion implantation of the substrate with arsenic atoms. The arsenic-doped silicon layer at the surface has a relatively low initial reflectivity. Then, radiation from a pulsed carbon dioxide laser is directed onto the doped surface. A portion of the pulsed radiation causes melting of the thin arsenic-doped layer at the solid surface, giving the shallow melted surface a reflectivity greater than the initial reflectivity of the solid surface. The increased reflectivity of the melted surface prevents an additional portion of the pulsed radiation from causing further melting, thus controlling the depth of melting. The melted surface is then allowed to cool and solidify to form a p-n junction at a thin (less than 200 angstrom) junction depth. 6 figs.

James, R.B.

1990-01-01T23:59:59.000Z

165

Notice of Intent to Prepare an Environmental Impact Statement for the Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project, Grand County, CO (DOE/EIS-0400)(08/10/07)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

040 Federal Register 040 Federal Register / Vol. 72, No. 154 / Friday, August 10, 2007 / Notices g. Filed Pursuant to: 18 CFR 4.200. h. Applicant Contact: David Lovely, Hydro Supervisor, Madison Paper Industries, P.O. Box 129, 3 Main Street, Madison, Maine 04950-0129, (207) 696- 1225. i. FERC Contact: Robert Bell, (202) 502-6062. j. Deadline for filing comments, motions to intervene and protest: August 20, 2007. Please include the project number (P- 2365-040) on any comments or motions filed. All documents (original and seven copies) should be filed with: Kimberly D. Bose, Secretary, Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. Comments, protests, and interventions may be filed electronically via the Internet in lieu of paper, see 18 CFR

166

u0052100_Beav.PDF  

Office of Legacy Management (LM)

312 312 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

167

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics EV Everywhere Grand Challenge With their immense potential for increasing the...

168

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1  

SciTech Connect

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

Not Available

1994-12-01T23:59:59.000Z

169

Electronic properties of nanoribbon junctions  

Science Conference Proceedings (OSTI)

We investigate the effects of nitrogen impurities on the electronic properties of quantum dots realized in Z-shaped graphene nanoribbon junction. The system is studied using first principle calculations, based on the local spin density approximation ... Keywords: Graphene, Nanoribbon, Quantum dots

A. Len; Z. Barticevic; M. Pacheco

2008-11-01T23:59:59.000Z

170

Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy's cultural resource activities at Colorado UMTRA Project sites, January--December 1991. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

Science Conference Proceedings (OSTI)

This report is a summary of the US Department of Energy's (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE's obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

Not Available

1992-04-01T23:59:59.000Z

171

Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership  

Energy.gov (U.S. Department of Energy (DOE))

Proceedings of the Waste Management 2001 Symposium.2001, University of Arizona, Tucson, Arizona.Donna Bergman-Tabbert, Tracy Plessinger

172

SUMMARY REPORT, 1954-1959 RAW MATERIALS DEVELOPMENT LABORATORY WINCHESTER, MASSACHUSETTS AND GRAND JUNCTION, COLORADO  

SciTech Connect

A brief review of the research work performed by the National Lead Company on the recovery of U from its ores is presented. A bibliography is presented which includes all reports on raw materials published by National Lead Company through Dec. 1958. Also included is a list of complete publications on raw materials from 1944 to 1954. (W.L.H.) low conditions at room temperature. Emphasis was placed on the effect of reaction parameters and mercury-recovery techniques on the Hg/sup 202/ content of the solid calomel formed in the reaction. For pure hydrogen chloride the Hg/sup 202/ content of the Calomel was found to be 39.9 plus or minus 0.3%, compared to the natural abundance of 29.8%. With 20 to 40 mole% of butadiene-1,3 in the hydrogen chloride, calomels containing 83 to 84% of Hg/sup 202/ were consistently obtained. The Hg/sup 202/ content of the calomel product was found to increase markedly when unsaturated hydrocarbons were added to the hydrogen chloride stream. The addends studied included butadiene - 1,3, benzene, isoprene, acetylene, propylene, and ethylene in order of decreasing effectiveness. From steady-state calculations the effectiveness of the addend can be shown to be determined by the rate ratio, k/sub 8// k/sub 4/. For the maximally enriching mixture of hydrogen chloride and butadiene, the effect of variations in lamp temperature and reaction pressure was studied. At lamp temperatures exceeding approximately 35 deg 'C, reduced enrichments were obtained owing to emission-line broadening. A progressive reduction in enrichment was also observed with substrate pressures greater than 25 mm, owing presumably to Lorentz-broadening of the hyperfine absorption contours of the Hg/sup N/ in the reaction cell. The Hg/sup 202/ content of the calomel product was determined by resonance radiation absorbiometry. The apparent Hg/sup 202/ abundances of the mercury recovered from the calomel product were found to depend strongly on the method used for isolating the enriched mercury from the calomel. Evidence was obtained for the occurrence of isotopically degradative exchange reactions during the recovery process. A recovery technique was developed which appeared to eliminate this exchange degradation. (auth)

Beverly, R.G. ed.

1959-09-30T23:59:59.000Z

173

Pinellas Environmental Restoration Project Quarterly Progress Report, 4.5 Acre January through March 2004  

Office of Legacy Management (LM)

January through March 2004 January through March 2004 April 2004 Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management Office of Legacy Management DOE LM/ 645 2004 GJ - - N0074500 DOE-LM/GJ645-2004 Pinellas Environmental Restoration Project Quarterly Progress Report 4.5 Acre Site January through March 2004 April 2004 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado Document Number N0074500 Contents U.S. Department of Energy 4.5 Acre Site Quarterly Progress Report

174

An aerial radiological survey of Project Rulison and surrounding area, Battlement Creek Valley, Colorado  

SciTech Connect

An aerial radiological survey was conducted over the Project Rulison site, 40 miles (64 kilometers) northeast of Grand Junction, Colorado, from July 6 through July 12, 1993. Parallel lines were flown at intervals of 250 feet (76 meters) over a 6.5-square-mile (17-square-kilometer) area at a 200-foot (61-meter) altitude surrounding Battlement Creek Valley. The gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a high altitude aerial photograph of the area. The terrestrial exposure rate varied from 3.5 to 12.5 {mu}R/h (excluding cosmic) at 1 meter above ground level. No anomalous or man-made isotopes were found.

NONE

1995-08-01T23:59:59.000Z

175

Review: Red Pedagogy: Native American Social and Political Thought by Sandy Grande  

E-Print Network (OSTI)

and Political Thought by Sandy Grande. New York: Rowman &discourse. For these reasons, Sandy Grandes (2004) text

Caldern, Dolores

2006-01-01T23:59:59.000Z

176

SunShot Grand Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home SunShot Grand Challenge SunShot Grand Challenge Addthis SunShot Grand Challenge 1 of 28...

177

1987 annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the Department of Energy`s cultural resource activities at Colorado UMTRA Project sites  

SciTech Connect

This report is a summary of the Department of Energy`s (DOE) cultural resource investigations related to the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE`s obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December, 1984. A summary of the cultural resource surveys and identified resources is provided for project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. This report summarizes all DOE UKTRA Project cultural resource activities in Colorado for the 1987 calender year.

Not Available

1988-04-01T23:59:59.000Z

178

Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy`s cultural resource activities at Colorado UMTRA Project sites, January--December 1991  

SciTech Connect

This report is a summary of the US Department of Energy`s (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE`s obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

Not Available

1992-04-01T23:59:59.000Z

179

Microsoft Word - CX-GrandCoulee-BellNo3ReconductoringFY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 SUBJECT: Environmental Clearance Memorandum Frank Weintraub Project Manager - TEP-TPP-1 Proposed Action: Grand Coulee-Bell No. 3 double circuit 230-kV transmission line reconductoring project Budget Information: Work Order #00280243 PP&A Project No.: PP&A 1946 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance Proposed by: Bonneville Power Administration (BPA) Location: The proposed Grand Coulee-Bell No. 3 Double Circuit 230-kV Transmission Line Reconductoring Project is located in Grant, Lincoln, and Spokane counties, Washington, in BPA's Spokane Operations and Maintenance District. Townships, Ranges, and Sections crossed by the proposed project listed below (Table 1).

180

Microsoft Word - CX-GrandCoulee-BellNo5InsultatorFY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Stacie Hensley Project Manager - TEP-TPP-4 Proposed Action: Grand Coulee-Bell No. 5 Dead End Insulator Replacement Project Budget Information: Work Order #00339638 PP&A Project No.: 2699 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance Proposed by: Bonneville Power Administration (BPA) Location: Grant and Lincoln counties, Washington, in BPA's Spokane Operations and Maintenance District. Townships, Ranges, and Sections crossed by the proposed project are listed below (Table 1). Table 1. Townships, Ranges, and Sections for the Grand Coulee-Bell No.5 Dead End Insulator Replacement Project. Township Range Sections

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties,...

182

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30,...

183

EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln  

NLE Websites -- All DOE Office Websites (Extended Search)

50: Grand Coulee-Creston Transmission Line Rebuild; Grant and 50: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington SUMMARY Bonneville Power Administration is preparing this EA to assess the potential environmental impacts of the proposed rebuild of approximately 28 miles of transmission line between the cities of Coulee Dam in Grant County and Creston in Lincoln County, Washington. The proposed project would include replacing all wood pole structures and conductor, improving existing access roads, and developing temporary access roads. Additional information is available at the project website: http://www.bpa.gov/goto/CouleeCrestonRebuild. PUBLIC COMMENT OPPORTUNITIES Draft EA: Comment Period Ends 2/3/14.

184

Grand Meadow Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Grand Meadow Wind Farm Grand Meadow Wind Farm Jump to: navigation, search Name Grand Meadow Wind Farm Facility Grand Meadow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Xcel Energy Location Dexter MN Coordinates 43.707798°, -92.654071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.707798,"lon":-92.654071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

EV Everywhere Grand Challenge - Battery Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandalow, Under Secretary of Energy (acting) and Assistant Secretary for Policy and International Affairs 8:45-8:55 AM SETTING THE STAGE FOR THE EV EVERYWHERE GRAND CHALLENGE Dr....

186

Junction, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Junction, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

187

Nanoscale heat conduction across tunnel junctions  

E-Print Network (OSTI)

?2005? Nanoscale heat conduction across tunnel junctions Y.May 2005? Nanoscale heat conduction across tunnel junctionsprevailing theory of heat conduction in highly disordered

Ju, Y. Sungtaek; Hung, M T; Carey, M J; Cyrille, M C; Childress, J R

2005-01-01T23:59:59.000Z

188

Thermal activation of superconducting Josephson junctions  

E-Print Network (OSTI)

Superconducting quantum circuits (SQCs) are being explored as model systems for scalable quantum computing architectures. Josephson junctions are extensively used in superconducting quantum interference devices (SQUIDs) ...

Devalapalli, Aditya P. (Aditya Prakash)

2007-01-01T23:59:59.000Z

189

EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska  

Energy.gov (U.S. Department of Energy (DOE))

DOEs Western Area Power Administration is preparing this EIS to evaluate the environmental impacts of interconnecting the proposed Grande Prairie Wind Farm, in Holt County, near the city of ONeill, Nebraska, to Westerns power transmission system. The proposed wind energy generation project would include up to 266 wind turbines.

190

Performance model assessment for multi-junction concentrating photovoltaic systems.  

DOE Green Energy (OSTI)

Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert. (Amonix, Inc., Seal Beach, CA); Sahm, Aaron (University of Nevada, Las Vegas, NV); Crawford, Clark (Amonix, Inc., Seal Beach, CA); King, David L.; Cameron, Christopher P.; Foresi, James S. (Emcore, Inc., Albuquerque, NM)

2010-03-01T23:59:59.000Z

191

NEPA?a grand new idea  

NLE Websites -- All DOE Office Websites (Extended Search)

When the NEPA project began to loose momentum, in 1949 the Aircraft Nuclear Propulsion (ANP) project was established at the Oak Ridge National Laboratory. This project expanded...

192

Delta Junction Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delta Junction Wind Farm Delta Junction Wind Farm Jump to: navigation, search Name Delta Junction Wind Farm Facility Delta Junction Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Alaska Environmental Power Developer Alaska Environmental Power Location South of Delta Junction AK Coordinates 64.069461°, -145.717661° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.069461,"lon":-145.717661,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Design of Flexible-Duct Junction Boxes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design of Flexible-duct Design of Flexible-duct Junction Boxes Robert Beach, IBACOS Duncan Prahl, IBACOS Design of Flexible-duct Junction Boxes Presentation Outline * Current Standards and Practice * Analysis Methods * Recommendations Design of Flexible-duct Junction Boxes * Detailed report is in peer review anticipated to be published T3 this year. - http://www1.eere.energy.gov/library/default.aspx?page=2&spi d=2. * Measure guide to be part of Building America Solutions Center - http://basc.pnnl.gov/ Design of Flexible-duct Junction Boxes Typical Installations As Plenum As Monster Design of Flexible-duct Junction Boxes Current Standards * ASHRAE 2012 HVAC Systems and Equipment, Box Plenum Systems Using Flexible Duct - Constrains Box Width to 2-3x Entrance Width - Constrains Box Length to 2 x Box Width

194

Triple Junction Distributions in Grain Boundary Engineered Alloys  

Science Conference Proceedings (OSTI)

A triple junction distribution function for junctions with at least one coherent ... Strain Gradient and Degradation in Magnetic Properties: Focus Transformer Steel.

195

Rio Grande South | Open Energy Information  

Open Energy Info (EERE)

Rio Grande South Rio Grande South Facility Rio Grande South Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Gulf of Mexico TX Coordinates 26.189°, -97.053° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.189,"lon":-97.053,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Rio Grande North | Open Energy Information  

Open Energy Info (EERE)

Rio Grande North Rio Grande North Facility Rio Grande North Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from South Padre Island TX Coordinates 26.364°, -97.078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.364,"lon":-97.078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

District-heating system, La Grande, Oregon  

DOE Green Energy (OSTI)

The area suggested for district heating feasibility study encompassed slightly over 400 acres extending north and south from the geographic center of the city. This district was subdivided into 8 areas, which include the Grande Ronde Hospital, Eastern Oregon State College, La Grande school district, one institutional area, one commercial area and three residential areas. Basic space heating loads developed for the various areas after a survey by county personnel and computation using a computer program form the basis for this economic feasibility study.

Not Available

1982-01-01T23:59:59.000Z

198

Microsoft Word - CX-GrandCoulee-OkanoganWP-AR-Landing_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Cleareance Memorandum Jim Semrau Robert Keudell Road Engineer - TELF-TPP-3 Line Foreman III - TFWK-Grand Coulee Todd Wehner Robert Zellar Road Engineer - TELF-TPP-3 Line Foreman I - TFWK-Grand Coulee Proposed Action: Wood pole replacement, equipment landing construction and access road construction/maintenance along the Grand Coulee-Okanogan #2 115-kV transmission line right-of-way (ROW). PP&A Project No: 1776 Work Order No.: 275584 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):  B1.13 Construction, acquisition, and relocation of onsite pathways and short onsite access roads and railroads.  B1.3 Routine maintenance activities...for structures, rights-of-way, infrastructures such

199

Microsoft Word - CX-GrandCoulee-ChiefJoseph_ARandWood Poles_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Cleareance Memorandum Todd Wehner Road Engineer - TELF-TPP-3 Robert Keudell Line Foreman III - TFWK-Grand Coulee Robert Zellar Line Foreman I - TFWK-Grand Coulee Proposed Action: Wood pole replacement, equipment landing construction and access road construction/maintenance along portions of the Grand Coulee-Chief Joseph #1 and #2 230-kV transmission line rights-of-way. PP&A Project No: 1777 Work Order No.: 275582 and 275583 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):  B1.13 Construction, acquisition, and relocation of onsite pathways and short onsite access roads and railroads.  B1.3 Routine maintenance activities...for structures, rights-of-way, infrastructures such

200

SunShot Grand Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge SunShot Grand Challenge SunShot Grand Challenge Addthis SunShot Grand Challenge 1 of 28 SunShot Grand Challenge Participants gather for the plenary session at the SunShot Grand Challenge Summit and Technology Forum in Denver, Colorado. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:10 Arun Majumdar, Founding Director, ARPA-E 2 of 28 Arun Majumdar, Founding Director, ARPA-E Arun Majumdar, Founding Director, ARPA-E gives the welcoming remarks. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:16 Energy Secretary Steven Chu at SunShot Grand Challenge 3 of 28 Energy Secretary Steven Chu at SunShot Grand Challenge Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:32

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Project 398  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Gasification Technologies CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Ronald Breault Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4486 ronald.breault@netl.doe.gov Michael Swanson Principal Investigator University of North Dakota Energy and Environmental Research Center 15 North 23rd Street P.O. Box 9018 Grand Forks, ND 58202 701-777-5239 mswanson@eerc.und.nodak.edu ADVANCED HIGH TEMPERATURE, HIGH-PRESSURE TRANSPORT REACTOR Description Today, coal supplies over 55 percent of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being

202

Grand Unification with and without Supersymmetry  

Science Conference Proceedings (OSTI)

Grand Unified Theories based on the group SO(10) generically provide interesting and testable relations between the charged fermions and neutrino sector masses and mixings. In the light of the recent neutrino data, we reexamine these relations both in supersymmetric and non-supersymmetric models, and give a brief review of their present status.

Melfo, Alejandra [CFF, Universidad de Los Andes, Merida (Venezuela); Institute J. Stefan, Ljubljana (Slovenia)

2007-06-19T23:59:59.000Z

203

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents (OSTI)

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

Olson, J.M.; Kurtz, S.R.

1992-11-24T23:59:59.000Z

204

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents (OSTI)

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1992-01-01T23:59:59.000Z

205

Microsoft Word - NEPA_CX_Acquisition_of_OTEC_Disconnect_Switch_LaGrand_Substation_05-08-2012.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kelly Miller Kelly Miller Project Manager - TG-DITT-2 Proposed Action: BPA Acquisition of OTEC Disconnect Switch at the BPA LaGrande Substation Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): Appendix B 1.24 Property Transfer Location: BPA LaGrande Substation, in the City of LaGrande, Union County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to purchase the 230-kilovolt (kV) main bus disconnect switch (MB A-270) that is currently installed and operating within the BPA LaGrande Substation. The disconnect switch is owned by the Oregon Trail Electric Cooperative (OTEC). On October 7, 2011, the manager of engineering for OTEC requested that BPA purchase the disconnect switch. The disconnect switch is the only piece of equipment within

206

Granby Pumping Plant Switchyard - Windy Gap Substation Transmission Line Rebuild, Grand County, Colorado: Final Environmental Impact Statement Executive Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PUMPING PLANT SWITCHYARD - WINDY GAP PUMPING PLANT SWITCHYARD - WINDY GAP SUBSTATION TRANSMISSION LINE REBUILD, GRAND COUNTY, COLORADO DOE/EIS-0400 Final Environmental Impact Statement Executive Summary Grand County, Colorado June 2013 Granby Pumping Plant-Windy Gap Substation Transmission Line Rebuild Project FEIS Executive Summary ES-1 EXECUTIVE SUMMARY Introduction Western Area Power Administration (Western), a power marketing administration within the U.S. Department of Energy (DOE), is proposing to rebuild and upgrade the Granby Pumping Plant Switchyard-Windy Gap Substation transmission line in Grand County, Colorado (Grand County). This Environmental Impact Statement (EIS) analyzes the impacts associated with the proposal to remove approximately 13.6 miles of 69-kilovolt (kV) transmission line, construct approximately

207

Josephson Junctions Fabricated by Focussed Ion Beam  

E-Print Network (OSTI)

Devices (SQUIDs) are the worlds most sensitive detectors of magnetic flux, capable of measuring the magnetic fields produced by a single living cell. Josephson junctions have formed the basis of the international standardization of the volt since...

Hadfield, Robert Hugh

208

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

209

Semiconductor tunnel junction with enhancement layer  

DOE Patents (OSTI)

The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

Klem, John F. (Sandia Park, NM); Zolper, John C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

210

Junction Plasmon-Induced Molecular Reorientation  

SciTech Connect

Time and frequency dependent intensity variations in sequences of Raman spectra recorded at plasmonic junctions can be assigned to molecular reorientation. This is revealed through Raman trajectories recorded at a nanojunction formed between a silver AFM tip and a corrugated silver surface coated with biphenyl-4,4-dithiol. Molecular motion is not observed when the tip is retracted and only surface enhancement is operative. In effect, junction plasmon induced molecular reorientation is tracked.

El-Khoury, Patrick Z.; Hu, Dehong; Hess, Wayne P.

2013-10-17T23:59:59.000Z

211

Multi-junction solar cell device  

SciTech Connect

A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

2007-12-18T23:59:59.000Z

212

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah...

213

Energy Secretary Steven Chu to Attend Grand Opening of Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123...

214

Microsoft Word - CX-Olympia-GrandCoulee85-5RelocationFY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2012 9, 2012 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Amanda Williams Project Manager - TEP-TPP-1 Proposed Action: Olympia-Grand Coulee Structure 85/5 Relocation Project Budget Information: Work Order #00291628 PP&A Project No.: PP&A 1984 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance Proposed by: Bonneville Power Administration (BPA) Location: The proposed Olympia-Grand Coulee Structure 85/5 Relocation Project is located in King County, Washington, within the Mt. Baker-Snoqualmie National Forest (MBS), in BPA's Covington Operations and Maintenance District. Township, Range, and Section crossed by the proposed project are listed below:

215

Hualapai Tribal Utility Development Project  

SciTech Connect

The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribes tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West mini-grid sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribes wind resources.

Hualapai Tribal Nation

2008-05-25T23:59:59.000Z

216

Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.  

DOE Green Energy (OSTI)

Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

2004-01-01T23:59:59.000Z

217

EV Everywhere Grand Challenge Kick-Off  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Grand Challenge Kick-Off Thursday, June 21, 2012 - Hyatt Regency, Dearborn, MI Event Objective: To showcase existing DOE efforts in vehicle electrification and to obtain stakeholder input on the overall concept of the EV Everywhere Grand Challenge, the high-level strategy, and aggressive next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program 8:35-8:45 AM STRATEGIC SIGNIFICANCE OF PLUG-IN ELECTRIC VEHICLES

218

Grand Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Grand Ridge Wind Farm Facility Grand Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location La Salle County IL Coordinates 40.999966°, -88.401693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.999966,"lon":-88.401693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Microsoft Word - CX-GrandCouleeBellNo3-WestsideAgLand_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Mark Kjelland Project Manager - TEP-TPP-2 Proposed Action: Insulator replacement in agricultural lands along the Grand Coulee-Bell No. 3/Grand Coulee-Westside No. 1 double circuit 230-kV transmission line Budget Information: Work Order #00255064 PP&A Project No.: PP&A 1909 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment... routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designed purpose. Proposed by: Bonneville Power Administration (BPA)

220

Supplement Analysis for the Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program EA (DOE/EA-1173/SA-01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 18, 2003 December 18, 2003 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program EA (DOE/EA-1173/SA-01) Ken Kirkman - KEWU-4 TO: Fish and Wildlife Project Manager Proposed Action: Monitoring and Evaluation of Supplemented Spring Chinook Salmon and Life Histories of Wild Summer Steelhead in the Grande Ronde Basin Project No: 1998-007-03 Location: Union County, Oregon Proposed by: Bonneville Power Administration (BPA), Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW). Description of the Proposed Action: The CTUIR and ODFW propose to expand their monitoring and evaluation for the Grande Ronde spring chinook supplementation program to

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.  

DOE Green Energy (OSTI)

The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

1999-07-01T23:59:59.000Z

222

Agropecuaria e Industrial Serra Grande | Open Energy Information  

Open Energy Info (EERE)

Agropecuaria e Industrial Serra Grande Agropecuaria e Industrial Serra Grande Jump to: navigation, search Name Agropecuaria e Industrial Serra Grande Place São Raimundo das Mangabeiras, Maranhao, Brazil Product Privately owned Brazil based ethanol producer, located in the state of Maranhao. References Agropecuaria e Industrial Serra Grande[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Agropecuaria e Industrial Serra Grande is a company located in São Raimundo das Mangabeiras, Maranhao, Brazil . References ↑ "[ Agropecuaria e Industrial Serra Grande]" Retrieved from "http://en.openei.org/w/index.php?title=Agropecuaria_e_Industrial_Serra_Grande&oldid=341914" Categories:

223

Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport (Partnerships in Computational Science)  

SciTech Connect

The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the University of South Carolina component of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997. Seven institutions were primarily involved in this project: Brookhaven National Laboratory, Oak Ridge National Laboratory, Princeton University, SUNY at Stony Brook, Texas A&M University, The University of South Carolina, and the University of Texas at Austin, with contributing efforts from the Westinghouse Savannah River Technology Center. Each institution had primary responsibility for specific research components, but strong collaboration among all institutions was essential for the success of the project and in producing the final deliverables. PICS deliverables include source code for the suite of research simulators and auxiliary HPC tools, associated documentation, and test problems. These materials will be available as indicated from each institution's web page or from the Center for Computational Sciences Oak Ridge National Laboratory in January 1998.

Sharpley, Robert C.

1997-12-01T23:59:59.000Z

224

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Grand Coulee-Creston  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Grand Coulee-Creston Transmission Line Rebuild Project Draft Environmental Assessment December 2013 DOE/EA-1950 Grand Coulee-Creston Transmission Line Rebuild Project Draft Environmental Assessment December 2013 DOE/EA-1950 This page left intentionally blank. Grand Coulee-Creston Transmission Line Rebuild Project i

225

Methods for the fabrication of thermally stable magnetic tunnel junctions  

DOE Patents (OSTI)

Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

Chang, Y. Austin (Middleton, WI); Yang, Jianhua J. (Madison, WI); Ladwig, Peter F. (Hutchinson, MN)

2009-08-25T23:59:59.000Z

226

Windy Gap Firming Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Windy Gap Firming Project Windy Gap Firming Project Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Windy Gap Firming Project, Final Environmental Impact Statement, DOE/EIS-0370 (cooperating agency) Western's proposed action is to relocate approximately 3.8 miles of the existing Estes to Lyons 115-kilovolt transmission line, if the Chimney Hollow Reservoir alternative is constructed. The line would be moved outside the area proposed for the reservoir, and Western would ensure the new location would allow the agency to continue to operate and maintain it. Section 2.4.1.4 of the Final Environmental Impact Statement, Volume 1 provides more information on the transmission line relocation proposal. The U.S. Department of the Interior, Bureau of Reclamation is the Lead Agency for the National Environmental Policy Act Review. Cooperating agencies are Western, the U.S. Army Corps of Engineers and Grand County, Colo.

227

High voltage series connected tandem junction solar battery  

DOE Patents (OSTI)

A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

Hanak, Joseph J. (Lawrenceville, NJ)

1982-01-01T23:59:59.000Z

228

Tandem junction amorphous silicon solar cells  

DOE Patents (OSTI)

An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

Hanak, Joseph J. (Lawrenceville, NJ)

1981-01-01T23:59:59.000Z

229

Semiconductor liquid-junction solar cell  

DOE Patents (OSTI)

A semiconductor liquid junction photocell in which the photocell is in the configuration of a light concentrator and in which the electrolytic solution both conducts current and facilitates the concentration of incident solar radiation onto the semiconductor. The photocell may be in the configuration of a non-imaging concentrator such as a compound parabolic concentrator, or an imaging concentrator such as a lens.

Parkinson, B.A.

1982-10-29T23:59:59.000Z

230

EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Grande Ronde Basin Endemic Spring Chinook Salmon 3: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy Bonneville Power Administration's proposal to fund a program designed to prevent the extinction and begin the recovery of spring Chinook salmon stocks in the Grande Ronde River Basin in the Upper Grande Ronde River, Lostine River, and Catherine Creek in Northeastern Oregon. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 18, 2003 EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program

231

Evaluation of the Performance of the PVUSA Rating Methodology Applied to Dual Junction PV Technology: Preprint (Revised)  

DOE Green Energy (OSTI)

The PVUSA (Photovoltaics for Utility Scale Applications) project in the 1990's developed a rating methodology for PV performance evaluation which has become popular, and even incorporated into concentrating PV rating standards This report apply that method to rack-mounted dual-junction PV system, and produces a system rating.

Myers, D. R.

2009-07-01T23:59:59.000Z

232

City of Grand Rapids - Green Building Requirements for Municipal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement...

233

Statement by Energy Secretary Steven Chu on Today's Grand Opening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steven Chu issued the following statement on today's grand opening of the Nordex wind turbine manufacturing facility in Jonesboro. The facility was supported with funding from the...

234

SunShot Grand Challenge Highlights Ambitious Efforts along the...  

NLE Websites -- All DOE Office Websites (Extended Search)

startups. Secretary Chu also announced a nationwide competition to drive down the cost of rooftop solar energy system. The SunShot Grand Challenge: Summit and Technology Forum...

235

City of Grand Rapids- Green Building Requirements for Municipal Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement the principles...

236

Annual report on the U.S. Department of Energy`s Cultural Resource Activities at Colorado UMTRA Project Sites for October 1993 through September 1994  

SciTech Connect

This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1993, through September 30, 1994. The UMTRA Project is a cooperative (state and federal) program mandated by the Uranium Mill Tailings Radiation Control Act, Public Law 95-604 (42 USC {section}7901 et seq.). This law requires the timely cleanup of 24 inactive uranium mill tailings sites throughout the United States. Nine of these inactive uranium mill tailings sites are in Colorado at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, Advisory Council on Historic Preservation, and Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of agreement (PMOA) (DOE, 1984). This PMOA specifies requirements for the DOE`s fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report fulfills the requirement for the DOE to provide the state of Colorado with an annual report on the cultural resource activities performed for all of the UMTRA Project sites in Colorado. This report is organized by UMTRA Project site. For each site, the general remedial action activities and cultural resource activities performed during the period of record are summarized. When known, the DOE`s plans for future cultural resource activities at the site are summarized.

Not Available

1994-11-01T23:59:59.000Z

237

Microsoft Word - CX-GrandRonde-Boyer-ImpairmentEmergency-FY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 REPLY TO ATTN OF: KEP-Alvey SUBJECT: Environmental Clearance Memorandum Jim Semrau Civil Engineer - TEP-TPP-1 Proposed Action: Wood pole replacement PP&A Project No.: 2760 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Structures 4/5 and 4/6 of Bonneville Power Administration's (BPA) 115-kilovolt Grand Ronde-Boyer No. 1 transmission line located in Polk County, Oregon (Willamette Meridian, T6S, R8W, section 8, se ¼ of se ¼). Proposed by: BPA Description of the Proposed Action: BPA proposes to fix two ground impairments between structures 4/5 and 4/6 on the Grand Ronde-Boyer No. 1 line. The impairments are required to be fixed within 30 days of detection due to concerns for public safety. The conductor on a typical

238

Efficient Irrigation for Water Conservation in the Rio Grande Basin: 2010/2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative-known as the Rio Grande Basin Initiative (RGBI)-has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B. L.; Runyan, C.; DeMouche, L.

2011-06-01T23:59:59.000Z

239

Efficient Irrigation for Water conservation in the Rio Grande Basin: 2010-2011 Progress and Accomplishments  

E-Print Network (OSTI)

Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative known as the Rio Grande Basin Initiative (RGBI)has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county Extension agents from Texas AgriLife Research, the Texas AgriLife Extension Service, and the New Mexico State University Agricultural Experiment Station and Cooperative Extension Service work with local irrigation districts, agricultural producers, homeowners, and regional agencies to meet present and future water demand through water conservation and efficient irrigation measures. This project is funded through the U.S. Department of Agriculture National Institute of Food and Agriculture and is administered by the Texas Water Resources Institute and the New Mexico State University Water Task Force.

Kalisek, D.; Harris, B.L.; Runyan, C.; DeMouche, L.

2011-06-21T23:59:59.000Z

240

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 16640 of 26,764 results. 31 - 16640 of 26,764 results. Page EA-0928: Burlington Bottoms Wildlife Mitigation Project, Multnomah County, Oregon This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration proposal to fund wildlife management and enhancement activities for the Burlington... http://energy.gov/nepa/ea-0928-burlington-bottoms-wildlife-mitigation-project-multnomah-county-oregon Page EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado. http://energy.gov/nepa/ea-0930-facility-operations-us-doe-grand-junction-projects-office-grand-junction-colorado

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Grand River Dam Authority | Open Energy Information  

Open Energy Info (EERE)

Dam Authority Dam Authority Jump to: navigation, search Name Grand River Dam Authority Place Oklahoma Utility Id 7490 Utility Location Yes Ownership S NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png general service Commercial general service commercial Commercial large general servic time of use distributional Commercial

242

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

243

Grand Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Grand Electric Coop, Inc Place South Dakota Utility Id 7484 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Heat Rate Commercial Farm and Residential Electric Heat Rate Residential Metered Security Light - 100 HPS Lighting Metered Security Light - 175 MV Lighting Metered Security Light - 250 HPS Lighting Metered Security Light - 400 MV Lighting Schedule A - Farm and Residential Residential Schedule ADF -Du al Fuel Service Residential

244

Survey of Seeps and Springs within the Bureau of Land Management's Grand Junction Field Office Management Area  

E-Print Network (OSTI)

attenuation; geologic sequestration of greenhouse gases; coupled reactive transport; oil shale production with the current emphasis being gas hydrate production via CO2 injection, oil shale production, and coupled

245

Microsoft Word - RBL-RUL_Gas-Plant  

Office of Legacy Management (LM)

Page 1 Project Rulison Monitoring Results For Separated Water at a Natural Gas Plant, Parachute, Colorado U.S. Department of Energy Office of Legacy Management Grand Junction,...

246

Panel on grand challenges for modeling and simulation  

Science Conference Proceedings (OSTI)

It has been a decade since the Workshop on Grand Challenge for Modeling & Simulation (M&S) was held at Dagstuhl in Germany (www.dagstuhl.de/02351). Grand challenges provide a critical focal point for research and development and can potentially create ...

Simon J. E. Taylor; Richard Fujimoto; Ernest H. Page; Paul A. Fishwick; Adelinde M. Uhrmacher; Gabriel Wainer

2012-12-01T23:59:59.000Z

247

Josephson-Junction Qubits with Controlled Couplings  

E-Print Network (OSTI)

Low-capacitance Josephson junctions, where Cooper pairs tunnel coherently while Coulomb blockade effects allow the control of the total charge, provide physical realizations of quantum bits (qubits), with logical states differing by one Cooper-pair charge on an island. The single- and two-bit operations required for quantum computation can be performed by applying a sequence of gate voltages. A basic design, described earlier [cond-mat/9706016], is sufficient to demonstrate the principles, but requires a high precision time control, and residual two-bit interactions introduce errors. Here we suggest a new nano-electronic design, close to ideal, where the Josephson junctions are replaced by controllable SQUIDs. This relaxes the requirements on the time control and system parameters substantially, and the two-bit coupling can be switched exactly between zero and a non-zero value for arbitrary pairs. The phase coherence time is sufficiently long to allow a series of operations.

Yuriy Makhlin; Gerd Schoen; Alexander Shnirman

1998-08-06T23:59:59.000Z

248

Semiconductor junction formation by directed heat  

DOE Patents (OSTI)

The process of the invention includes applying precursors 6 with N- and P-type dopants therein to a silicon web 2, with the web 2 then being baked in an oven 10 to drive off excessive solvents, and the web 2 is then heated using a pulsed high intensity light in a mechanism 12 at 1100.degree.-1150.degree. C. for about 10 seconds to simultaneously form semiconductor junctions in both faces of the web.

Campbell, Robert B. (Pittsburgh, PA)

1988-03-24T23:59:59.000Z

249

The Particle Adventure | Unsolved Mysteries | Forces and the Grand Unified  

NLE Websites -- All DOE Office Websites (Extended Search)

Unsolved Mysteries - Forces and the Grand Unified Theory Unsolved Mysteries - Forces and the Grand Unified Theory Forces and the Grand Unified Theory Physicists hope that a Grand Unified Theory will unify the strong, weak, and electromagnetic interactions. There have been several proposed Unified Theories, but we need data to pick which, if any, of these theories describes nature. If a Grand Unification of all the interactions is possible, then all the interactions we observe are all different aspects of the same, unified interaction. However, how can this be the case if strong and weak and electromagnetic interactions are so different in strength and effect? Strangely enough, current data and theory suggests that these varied forces merge into one force when the particles being affected are at a high enough energy.

250

Grand Challenges | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Grand Challenges Grand Challenges Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Basic Research Needs Grand Challenges Science Highlights News & Events Publications Contact BES Home Research Grand Challenges Print Text Size: A A A RSS Feeds FeedbackShare Page Grand Challenge Report The Basic Energy Sciences Advisory Committee (BESAC) report, Directing Matter and Energy: Five Challenges for Science and the Imagination was the culmination of a series of BES-sponsored workshops that began in 2001. Over and over, the recommendations from these workshops described similar themes that in this new era of science, we would design, discover, and synthesize new materials and molecular assemblies through atomic scale control; probe and control photon, phonon, electron, and ion interactions

251

Grande Ronde Subbasin Gauging Station Operations, 2007-2008 Reporting Period.  

DOE Green Energy (OSTI)

The Grande Ronde Basin (GRB) in Northeast Oregon is a moderately dry climate receiving between 10 and 20 inches of precipitation per year with surrounding mountains accumulating up to 100 inches. Irrigated agriculture is a major part of the economy with water being diverted or pumped from surface and ground sources from April through October. Several ESA listed species exist in the basin including Chinook, steelhead, and bulltrout. Agriculture and ESA (Endangered Species Act) listed aquatic species combined with a dry climate demonstrate the need for a network of stream gauges. The GRB covers over 5,000 square miles and includes several thousand miles of perennial flowing streams. This project is in place to operate 12 existing stream gauges in combination with USGS (4 gauges) and OWRD (one gauge) who, independent of this project, operate five additional gauges (Grande Ronde at Troy, Imnaha R. at Imnaha, Minam R. at Minam, Lookingglass Creek, and Upper Catherine Cr.) to characterizes flow in both the Grande Ronde and Imnaha subbasins. These gauges are intended to assist in irrigation water management, fisheries management, long term flow and trend analysis, TMDL and SB1010 water quality management plan effectiveness, subbasin plan implementation, and provide essential information regarding cumulative effects response to conservation in the GRB. Headwater characteristics, land management influence, and basin outlet data are all selectively collected in this network of 17 flow gauges. Prior to the 2007 water year there were three separate stream gauging programs with similar objectives, protocol, and funding sources in the GRB. Each of these programs for the past ten years has operated under separate administration consuming more time and administrative money than is necessary to accomplish stated objectives. By combining all programs into one project costs have been reduced, each funding source has one contract instead of three, and the same amount of work has been done accomplishing the same objectives. This objective has been continued and realized in the 2008 water year.

Menton, R. Coby [Grande Ronde Model Watershed

2008-11-10T23:59:59.000Z

252

Low-cost process for P-N junction-type solar cell  

DOE Green Energy (OSTI)

Spray pyrolysis of CuInS/sub 2/ was studied. The concentrations of copper and sulfur in the spray solutions were increased so as to increase the copper content of the films to the stoichiometric level. Although Auger analysis indicates that this was successful, x ray microanalysis has identified the growth of copper-rich crystals on the surfaces of the deposit. Heat treatment in H/sub 2/S did not improve the stoichiometry. The copper-rich crystals were also found on a sample sprayed from a solution with no excess copper. Heterojunctions of glass/SnO/sub 2/(Sb)/CdS/CdTe/carbon(Cu)/Ag-In were prepared with a number of methods used to restrict the junction. The various devices failed to exhibit a diode characteristic or a photo-response. Work on this project is being directed toward understanding the type of junction and how it is formed.

Mooney, J.B.; Cubicciotti, D.D.; Bates, C.W. Jr.

1980-03-01T23:59:59.000Z

253

Photovoltaic concentrator technology development project. Sixth project integration meeting  

DOE Green Energy (OSTI)

Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

None

1980-10-01T23:59:59.000Z

254

EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A and PP-33-1 Rio Grande Electric Cooperative, Inc. EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. Order authorizing Rio Grande Electric Cooperative, Inc to export...

255

Annual report on the U.S. Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1995--September 1996  

SciTech Connect

This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1995 through September 30, 1996. The inactive uranium mill tailings sites in Colorado are at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of understanding (PMOU). This PMOU requires the DOE to fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report provides the state of Colorado with an annual report on the cultural resource activities performed for all UMTRA Project sites in Colorado. Due to the completion of surface activities at the UMTRA Project sites, this will be the last annual report to the state of Colorado. Cultural resources activities subsequent to this report will be reported to the state through site-specific correspondence.

NONE

1996-09-01T23:59:59.000Z

256

1  

Office of Legacy Management (LM)

300 300 GJO-2003-431-TAC GJO-GWSHP 13.2-1 UMTRA Ground Water Project Baseline Performance Report for the Shiprock, New Mexico, UMTRA Project Site September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 This page intentionally left blank Document Number U0179300 Contents DOE/Grand Junction Office Baseline Performance Report, Shiprock, New Mexico

257

Single P-N junction tandem photovoltaic device  

SciTech Connect

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

2012-03-06T23:59:59.000Z

258

Single P-N junction tandem photovoltaic device  

SciTech Connect

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

2011-10-18T23:59:59.000Z

259

Toward Net Energy Buildings: Design, Construction, and Performance of the Grand Canyon House  

DOE Green Energy (OSTI)

The Grand Canyon house is a joint project of the DOE's National Renewable Energy Laboratory and the U.S. National Park Service and is part of the International Energy Agency Solar Heating and Cooling Programme Task 13 (Advanced Solar Low-Energy Buildings). Energy consumption of the house, designed using a whole-building low-energy approach, was reduced by 75% compared to an equivalent house built in accordance with American Building Officials Model Energy Code and the Home Energy Rating System criteria.

Balcomb, J. D.; Hancock, C. E.; Barker, G.

1999-06-23T23:59:59.000Z

260

Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers  

DOE Patents (OSTI)

This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

Chang, Y. Austin (Middleton, WI); Yang, Jianhua Joshua (Madison, WI)

2008-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Road to AC Voltage Standard Leads to Important Junction  

Science Conference Proceedings (OSTI)

Road to AC Voltage Standard Leads to Important Junction. ... Grumman in the mid-1990s.*** A number of innovations since then have led to the first ...

2013-08-13T23:59:59.000Z

262

NN3, Conductance Statistics of Molecular Junctions Fabricated with ...  

Science Conference Proceedings (OSTI)

The I-V curves are dominated by a tunneling behavior as usually observed in the MMM junctions of alkyl chains. The TVS (transient voltage spectroscopy)...

263

Thermoelectricity in Molecular Junctions Science 315, 1568 (2007);  

DOI: 10.1126/science.1137149 Science 315, 1568 (2007); Pramod Reddy, et al. Thermoelectricity in Molecular Junctions www.sciencemag.org (this ...

264

Junction temperature measurement of light emitting diode by electroluminescence  

Science Conference Proceedings (OSTI)

Junction temperature (JT) is a key parameter of the performance and lifetime of light emitting diodes(LEDs). In this paper

S. M. He; X. D. Luo; B. Zhang; L. Fu; L. W. Cheng; J. B. Wang; W. Lu

2011-01-01T23:59:59.000Z

265

High Efficiency Multiple-Junction Solar Cells - Energy ...  

Technology Marketing Summary Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific ...

266

Sandia National Laboratories High Efficiency Multiple-Junction ...  

Sandia National Laboratories TECHNOLOGY SUMMARY Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific

267

Quantum manipulation and simulation using Josephson junction arrays  

E-Print Network (OSTI)

We discuss the prospect of using quantum properties of large scale Josephson junction arrays for quantum manipulation and simulation. We study the collective vibrational quantum modes of a Josephson junction array and show that they provide a natural and practical method for realizing a high quality cavity for superconducting qubit based QED. We further demonstrate that by using Josephson junction arrays we can simulate a family of problems concerning spinless electron-phonon and electron-electron interactions. These protocols require no or few controls over the Josephson junction array and are thus relatively easy to realize given currently available technology.

Xingxiang Zhou; Ari Mizel

2006-05-01T23:59:59.000Z

268

Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report  

SciTech Connect

The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

Kos, S.E.

1997-02-01T23:59:59.000Z

269

Microsoft Word - cover.doc  

Office of Legacy Management (LM)

1999-90-TAR 1999-90-TAR MAC-GWGRJ 1.9 Ground Water Compliance Action Plan for the Grand Junction, Colorado, UMTRA Project Site May 2001 GJO-1999-90-TAR MAC-GWGRJ 1.9 Ground Water Compliance Action Plan for the Grand Junction, Colorado, UMTRA Project Site May 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW-511-0008-09-000 Document Number U0050100 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Document Number U0050100 Contents DOE/Grand Junction Office Ground Water Compliance Action Plan for Grand Junction, Colorado May 2001 Page ii Contents 1.0 Introduction.........................................................................................................................

270

Finding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding Finding of No Significant Impact Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) September 1999 U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Finding of No Significant Impact Environmental Assessment The U.S. Department of Energy (DOE) proposes a strategy to achieve ground water compliance at the Grand Junction, Colorado, LJMTRA project site, formerly known as the Climax Uranium Millsite. The proposed compliance strategy is no remediation and the application of supplemental standards. This proposed action and a no-action alternative are described in the Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (see attached DOE/EAB 1312). The Environmental Assessment analyzes the relevant environmental issues at the Grand Junction site,

271

Thermomechanical models of the Rio Grande rift  

SciTech Connect

Fully two-dimensional, coupled thermochemical solutions of a continental rift and platform are used to model the crust and mantle structure of a hot, buoyant mantle diapir beneath the Rio Grande rift. The thermomechanical model includes both linear and nonlinear laws of the Weertman type relating shear stress and creep strain rate, viscosity which depends on temperature and pressure, and activation energy, temperature-dependent thermal conductivity, temperature-dependent coefficient of thermal expansion, the Boussinesq approximation for thermal bouyancy, material convection using a stress rate that is invariant to rigid rotations, an elastically deformable crust, and a free surface. The model determines the free surface velocities, solid state flow field in the mantle, and viscosity structure of lithosphere and asthenosphere. Regional topography and crustal heat flow are simulated. A suite of symmetric models, assumes continental geotherms on the right and the successively increasing rift geotherms on the left. These models predict an asthenospheric flow field which transfers cold material laterally toward the rift at > 300 km, hot, buoyant material approx. 200 km wide which ascends vertically at rates of 1 km/my between 175 to 325 km, and spreads laterally away from the rift at the base of the lithosphere. Crustal spreading rates are similar to uplift rates. The lithosphere acts as stiff, elastic cap, damping upward motion through decreased velocities of 1 km/10 my and spreading uplift laterally. A parameter study varying material coefficients for the Weertman flow law suggests asthenospheric viscosities of approx. 10/sup 22/ to 10/sup 23/ poise. Similar studies predict crustal viscosities of approx. 10/sup 25/ poise. The buoyant process of mantle flow narrows and concentrates heat transport beneath the rift, increases upward velocity, and broadly arches the lithosphere. 10 figures, 1 table.

Bridwell, R.J.; Anderson, C.A.

1980-01-01T23:59:59.000Z

272

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2000 Annual Report.  

DOE Green Energy (OSTI)

The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, commonly known as the Joint Stock Assessment Project (JSAP) is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (blocked area). The three-phase approach of this project will enhance the fisheries resources of the blocked area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information housed in a central location will allow managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP (NWPPC program measure 10.8B.26) is designed and guided jointly by fisheries managers in the blocked area and the Columbia Basin blocked area management plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of blocked area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the blocked area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. The use of common collection and analytical tools is essential to the process of streamlining joint management decisions. In 1999 and 2000 the project began to address some of the identified data gaps, throughout the blocked area, with a variety of newly developed sampling projects, as well as, continuing with ongoing data collection of established projects.

Crossley, Brian (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA); Lockwood, Jr., Neil W. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA)

2001-01-01T23:59:59.000Z

273

Grand Blanc Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grand Blanc Generating Station Biomass Facility Grand Blanc Generating Station Biomass Facility Jump to: navigation, search Name Grand Blanc Generating Station Biomass Facility Facility Grand Blanc Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Alpine Extensional Detachment Tectonics In The Grande Kabylie Metamorphic  

Open Energy Info (EERE)

Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alpine Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Details Activities (0) Areas (0) Regions (0) Abstract: The Maghrebides are part of the peri-Mediterranean Alpine orogen. They expose in their inner zone inliers of high-grade crystalline rocks surrounded by Oligo-Miocene and younger Miocene cover. Detailed mapping coupled with structural and petrological investigations in the Grande Kabylie massif, and the reinterpretation of the available geochronological data, allow us to refute the traditional concept of rigid behaviour of this

275

Empowering First Year Students by Immersion in a 'Grand Challenges'  

Science Conference Proceedings (OSTI)

Apr 19, 2010 ... Interestingly, this preceded the National Academy of Engineering Grand ... Within their lifetime they will witness burgeoning needs in energy resources, ... to statistics, environmental studies, to history and philosophyin...

276

SunShot Grand Challenge Highlights Ambitious Efforts along the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu also announced a nationwide competition to drive down the cost of rooftop solar energy system. The SunShot Grand Challenge: Summit and Technology Forum kicked off in...

277

Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's 10-Year Vision for Plug-in Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in...

278

Wintertime Boundary Layer Structure in the Grand Canyon  

Science Conference Proceedings (OSTI)

Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during ...

C. David Whiteman; Shiyuan Zhong; Xindi Bian

1999-08-01T23:59:59.000Z

279

Select Economic Implications for the Biological Control of Arundo donax along the Rio Grande  

E-Print Network (OSTI)

Arundo donax, or giant reed, is a large, bamboo-like plant native to Spain that has invaded several thousand acres of the Rio Grande riparian in Texas. The plant grows to 18-24 feet, consuming large quantities of water per acre per year. With concern of increased water demands in the Texas Lower Rio Grande Valley region, the United States Department of Agriculture-Agricultural Research Service (USDA)ARS) is investigating four herbivorous insects as potential biological control agents for Arundo donax to facilitate increased water supply. This study examines select economic implications for agricultural water users in the United States of applying these biological control agents along the Rio Grande. The research includes (a) estimating the value of the water saved due to the reduction of Arundo donax, (b) a benefit-cost analysis, (c) regional economic impact analysis, and (d) an estimate of the per-unit cost of water saved over a 50-year planning horizon (2009 through 2058). The model ArundoEcon is used to perform a deterministic analyses using low- and high-marginal-composite acre values. Regional results indicate present values of farmlevel benefits ranging from $97.80 to $159.87 million. Benefit-cost ratios are calculated with normalized prices and range from 4.38 to 8.81. Sensitivity analyses provide a robust set of results for Arundo water use, replacement species water use, Arundo expansion rate after control, value of water, and the cost of the program. The pre-production processes and farm-gate economic impact analysis is estimated using multipliers from the IMPLAN model. Regional results reveal a range of $8.90 to $17.94 million annually in economic output and 197 to 351 new jobs for the year 2025. Further results show the cost per acre-foot of water saved is $44.08. This amount is comparable to other projects designed to conserve water in the region. The USDA)ARS, Weslaco, Texas Arundo donax biological control project realizes positive results for the benefit-cost ratios, economic impact analyses, and competitive results for the per-unit cost of saving water. These positive results indicate this project will have positive economic implications for the U.S. and the Texas Lower Rio Grande Valley.

Seawright, Emily Kaye

2009-08-01T23:59:59.000Z

280

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart: project timeline - Project Milestones - Budget - Bibliography * Thank you 29 30 Organization Chart * Project team: Purdue University - Dr. Brenda B. Bowen: PI, student...

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Josephson junctions in high-T/sub c/ superconductors  

DOE Patents (OSTI)

The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

Falco, C.M.; Lee, T.W.

1981-01-14T23:59:59.000Z

282

Molecular nanoplasmonics: self-consistent electrodynamics in current carrying junctions  

E-Print Network (OSTI)

We consider a biased molecular junction subjected to external time-dependent electromagnetic field. We discuss local field formation due to both surface plasmon-polariton excitations in the contacts and the molecular response. Employing realistic parameters we demonstrate that such self-consistent treatment is crucial for proper description of the junction transport characteristics.

White, Alexander J; Galperin, Michael

2012-01-01T23:59:59.000Z

283

MOAB PROJECT REACHES SIGNIFICANT MILESTONE | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MOAB PROJECT REACHES SIGNIFICANT MILESTONE MOAB PROJECT REACHES SIGNIFICANT MILESTONE MOAB PROJECT REACHES SIGNIFICANT MILESTONE August 1, 2011 - 12:00pm Addthis View of the mill tailings pile at the MOAB site, looking east. View of the mill tailings pile at the MOAB site, looking east. The day crew at the Crescent Junction Disposal site stands in front of the container carrying the 4 millionth ton of mill tailings from the Moab site. The day crew at the Crescent Junction Disposal site stands in front of the container carrying the 4 millionth ton of mill tailings from the Moab site. View of the mill tailings pile at the MOAB site, looking east. The day crew at the Crescent Junction Disposal site stands in front of the container carrying the 4 millionth ton of mill tailings from the Moab site. Moab, UT - One quarter of the uranium mill tailings pile located in Moab,

284

Single-junction solar cells with the optimum band gap for ...  

A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown ...

285

Annual report on the US Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1991--September 1992  

Science Conference Proceedings (OSTI)

This report summarizes the US Department of Energy`s (DOE) cultural resource studies that were undertaken in support of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project in the state of Colorado for the period of October 1, 1991, through September 30, 1992. This report fulfills the DOE`s obligation to provide an annual report to the state of Colorado on the status and results of cultural resource studies conducted during the above period of record. This requirement is stated in a programmatic memorandum of agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Previous reports were based on a calendar year reporting period. However, in order to be more consistent with the programmatic memorandum of agreement, the period of record for this and subsequent annual reports has been changed to the Federal fiscal year. The current status and summaries of 1992 cultural resource surveys are provided for all UMTRA Project sites in Colorado. The sites are Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock.

Not Available

1993-10-06T23:59:59.000Z

286

Guneafinal-for laser printer.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11900 11900 DOE/EA-1399 Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site Final July 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed Under DOE Contract No. DE-AC13-96GJ87355 DOE Grand Junction Office EA of Ground Water Compliance at the Gunnison Site July 2002 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................... v Executive Summary .......................................................................................................................vii 1.0 Introduction.............................................................................................................................1

287

Guneafinal-for laser printer.doc  

Office of Legacy Management (LM)

11900 11900 DOE/EA-1399 Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site Final July 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed Under DOE Contract No. DE-AC13-96GJ87355 DOE Grand Junction Office EA of Ground Water Compliance at the Gunnison Site July 2002 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................... v Executive Summary .......................................................................................................................vii 1.0 Introduction.............................................................................................................................1

288

Microsoft Word - U0163300.doc  

Office of Legacy Management (LM)

EA-1458 EA-1458 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left blank DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and Abbreviations ..........................................................................................................v Executive Summary ...................................................................................................................... vii

289

Winners Announced for the NNSA Grand Challenge Competition | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

Winners Announced for the NNSA Grand Challenge Competition Winners Announced for the NNSA Grand Challenge Competition Winners Announced for the NNSA Grand Challenge Competition December 11, 2013 - 1:23pm Addthis President Carlton Brown of Clark Atlanta University pictured here with winning students junior Jules Henry (Electrical Engineering/Computer Science) and sophomore KeAndra Goodman (Electrical Engineering/Physics). President Carlton Brown of Clark Atlanta University pictured here with winning students junior Jules Henry (Electrical Engineering/Computer Science) and sophomore KeAndra Goodman (Electrical Engineering/Physics). Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact The first year of the Minority Serving Institution Partnership Program with the Department of Energy site Kansas City Plant was a fruitful one. The two

290

Fernald Preserve Visitors Center Grand Opening and LEED Platinum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald Preserve Visitors Center Grand Opening and LEED Platinum Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to do three things here at Fernald: to close it, to clean it up and to give it back to the community. I'm proud to say we have fulfilled that commitment safely and ahead of schedule. Less than two years ago, I was here with Secretary Bodman as he announced the completion of a $4.4 billion clean up operation. Since then, we have

291

Grand Marais PUC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount CFLs: $2/bulb or up to 50% of cost LEDs: $10 - $15/bulb Lighting Fixtures: $15 - $20/fixture Refrigerators: $25, plus $50 for recycling an old, working unit Freezers: $25, plus $50 for recycling an old, working unit Dishwashers: $25 Clothes Washers: $50 Dehumidifiers: $65 Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings

292

GreenHunter Biodiesel Refinery Grand Opening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer Today, Acting Deputy Secretary Jeffrey Kupfer delivered remarks at the launch of GreenHunter Energy's biodiesel refinery, which will be the nation's single largest biodiesel refinery, producing 105 million gallons of "white-water" B100 biodiesel per year. Thank you Gary. I'm pleased to join with Governor Perry, Congressmen Green and Lampson, and Mayor Garcia in celebrating this important occasion. Today, as we open the nation's largest biodiesel refinery, we reach another milestone in our effort to make America more energy secure. As you know, global energy demand is surging. We must act swiftly and aggressively to

293

Fernald Preserve Visitors Center Grand Opening and LEED Platinum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald Preserve Visitors Center Grand Opening and LEED Platinum Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to do three things here at Fernald: to close it, to clean it up and to give it back to the community. I'm proud to say we have fulfilled that commitment safely and ahead of schedule. Less than two years ago, I was here with Secretary Bodman as he announced the completion of a $4.4 billion clean up operation. Since then, we have

294

Moreau-Grand Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Moreau-Grand Electric Coop Inc Moreau-Grand Electric Coop Inc Jump to: navigation, search Name Moreau-Grand Electric Coop Inc Place South Dakota Utility Id 12915 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Industrial Small General Service Single Phase Commercial Small General Service Single Phase Well Commercial Small General Service Three Phase Commercial Average Rates Residential: $0.1090/kWh Commercial: $0.0798/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

295

Mutagenic potential of sediments from the Grand Calumet River  

Science Conference Proceedings (OSTI)

The Grand Calumet River/Indiana Harbor Canal is one of the International Joint Commission's Great Lakes Areas of Concern (AOC). Like many other AOCs, the Grand Calumet River is in a heavily industrialized area and has a history of chemical contamination. Many of the chemicals found in the industrial and municipal wastes that enter the waterway end up in sediment where they are concentrated to high levels. In order to assess the potential genotoxicity of sediments from the Grand Calumet River, the authors determined the mutagenic potential of organic extracts of sediments. The sediment extracts were assayed in the Salmonella/microsome mutagenicity test. In the Ames test, all ten sediment samples assayed were found to be mutagenic. In general, chemicals found in the sediments required metabolic activation before a positive mutagenic response was observed.

Maccubbin, A.E.; Ersing, N. (Roswell Park Cancer Inst., Buffalo, NY (United States))

1991-08-01T23:59:59.000Z

296

Grand Symmetry, Spectral Action, and the Higgs mass  

E-Print Network (OSTI)

In the context of the spectral action and the noncommutative geometry approach to the standard model, we build a model based on a larger symmetry. The latter satisfies all the requirements to have a noncommutative manifold, and mixes gauge and spin degrees of freedom without introducing extra fermions. With this "grand symmetry" it is natural to have the scalar field necessary to obtain the Higgs mass in the vicinity of 126 GeV. Requiring the noncommutative space to be an almost commutative geometry (i.e. the product of manifold by a finite dimensional internal space) gives conditions for the breaking of this grand symmetry to the standard model.

Agostino Devastato; Fedele Lizzi; Pierre Martinetti

2013-04-01T23:59:59.000Z

297

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity  

E-Print Network (OSTI)

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity Alberto E of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding of synaptic transmission: chemical and electrical. In chemical synapses, presynaptic electrical currents

Rash, John E.

298

Network discovery, characterization, and prediction : a grand challenge LDRD final report.  

SciTech Connect

This report is the final summation of Sandia's Grand Challenge LDRD project No.119351, 'Network Discovery, Characterization and Prediction' (the 'NGC') which ran from FY08 to FY10. The aim of the NGC, in a nutshell, was to research, develop, and evaluate relevant analysis capabilities that address adversarial networks. Unlike some Grand Challenge efforts, that ambition created cultural subgoals, as well as technical and programmatic ones, as the insistence on 'relevancy' required that the Sandia informatics research communities and the analyst user communities come to appreciate each others needs and capabilities in a very deep and concrete way. The NGC generated a number of technical, programmatic, and cultural advances, detailed in this report. There were new algorithmic insights and research that resulted in fifty-three refereed publications and presentations; this report concludes with an abstract-annotated bibliography pointing to them all. The NGC generated three substantial prototypes that not only achieved their intended goals of testing our algorithmic integration, but which also served as vehicles for customer education and program development. The NGC, as intended, has catalyzed future work in this domain; by the end it had already brought in, in new funding, as much funding as had been invested in it. Finally, the NGC knit together previously disparate research staff and user expertise in a fashion that not only addressed our immediate research goals, but which promises to have created an enduring cultural legacy of mutual understanding, in service of Sandia's national security responsibilities in cybersecurity and counter proliferation.

Kegelmeyer, W. Philip, Jr.

2010-11-01T23:59:59.000Z

299

Project Accounts  

NLE Websites -- All DOE Office Websites (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

300

The origins and limits of metalgraphene junction resistance  

E-Print Network (OSTI)

-ming Lin, Yanqing Wu and Phaedon Avouris* A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal­graphene junction in the calculation: h ¼ 5 meV, t1 ¼ 300 meV, d1 ¼ 1 ?. Red line, contact resistance in an ideal metal­graphene

Perebeinos, Vasili

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges  

Science Conference Proceedings (OSTI)

Intensity spikes in Raman scattering, accompanied by switching between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories recorded at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated either with biphenyl-4,4-dithiol or biphenyl-4-thiol. The fluctuations are absent in the monothiol. In effect, the making and breaking of chemical bonds is tracked.

El-Khoury, Patrick Z.; Hu, Dehong; Apkarian, V. Ara; Hess, Wayne P.

2013-04-10T23:59:59.000Z

302

The verifying compiler: A grand challenge for computing research  

Science Conference Proceedings (OSTI)

This contribution proposes a set of criteria that distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn ...

Tony Hoare

2003-01-01T23:59:59.000Z

303

The verifying compiler: a grand challenge for computing research  

Science Conference Proceedings (OSTI)

I propose a set of criteria which distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn from Computer Science, ...

Tony Hoare

2003-04-01T23:59:59.000Z

304

Workshop and conference on Grand Challenges applications and software technology  

SciTech Connect

On May 4--7, 1993, nine federal agencies sponsored a four-day meeting on Grand Challenge applications and software technology. The objective was to bring High-Performance Computing and Communications (HPCC) Grand Challenge applications research groups supported under the federal HPCC program together with HPCC software technologists to: discuss multidisciplinary computational science research issues and approaches, identify major technology challenges facing users and providers, and refine software technology requirements for Grand Challenge applications research. The first day and a half focused on applications. Presentations were given by speakers from universities, national laboratories, and government agencies actively involved in Grand Challenge research. Five areas of research were covered: environmental and earth sciences; computational physics; computational biology, chemistry, and materials sciences; computational fluid and plasma dynamics; and applications of artificial intelligence. The next day and a half was spent in working groups in which the applications researchers were joined by software technologists. Nine breakout sessions took place: I/0, Data, and File Systems; Parallel Programming Paradigms; Performance Characterization and Evaluation of Massively Parallel Processing Applications; Program Development Tools; Building Multidisciplinary Applications; Algorithm and Libraries I; Algorithms and Libraries II; Graphics and Visualization; and National HPCC Infrastructure.

1993-12-31T23:59:59.000Z

305

Project 244  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJECT PARTNER Advanced Technology Systems, Inc. Pittsburgh, PA PROJECT PARTNERS Ohio University Athens, OH Texas A&M University-Kingsville Kingsville, TX WEBSITES http:...

306

Projects | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and Conferences Supporting Organizations Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Projects Projects 1-10 of 180 Results Prev...

307

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit...

308

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2006-02-01T23:59:59.000Z

309

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2002 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); Butler, Chris (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA)

2003-09-01T23:59:59.000Z

310

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Olympia, WA); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2005-11-01T23:59:59.000Z

311

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2001 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power Planning Council (NPPC). The NPPC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPPC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area and the Columbia Basin Blocked Area Management Plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of seven streams and four lakes on the Spokane Indian Reservation were completed by 2000. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in southern Pend Oreille County, and water bodies within and near the Spokane Indian Reservation were conducted in 2001. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispell Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); O'Connor, Dick (Washington Department of Fish and Wildlife, Olympia, WA)

2003-01-01T23:59:59.000Z

312

PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1 and EA-33-A Rio Grande Electric Cooperative Inc PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc Rescission of Presidential Permit and Electricity Export Authorization...

313

Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar  

DOE Green Energy (OSTI)

Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

Suzanne McSawby, Project Director

2008-12-31T23:59:59.000Z

314

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

2009-01-01T23:59:59.000Z

315

A Synoptic Weather-Typing Approach to Project Future Daily Rainfall and Extremes at Local Scale in Ontario, Canada  

Science Conference Proceedings (OSTI)

This paper attempts to project possible changes in the frequency of daily rainfall events late in this century for four selected river basins (i.e., Grand, Humber, Rideau, and Upper Thames) in Ontario, Canada. To achieve this goal, automated ...

Chad Shouquan Cheng; Guilong Li; Qian Li; Heather Auld

2011-07-01T23:59:59.000Z

316

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline  

E-Print Network (OSTI)

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline D.W. (Don) Wilson, Director, North Atlantic Pipeline Partners, L.P. NOIA 2000 Conference June, 2000 #12;Grand Banks Multi-Purpose Pipeline Route January 2000 Grand Banks of Newfoundland Newfoundland Come by Chance St. John's Argentia 50o

Bruneau, Steve

317

A New Species of Parodia (Cactaceae, Notocacteae) from Rio Grande do Sul, Brazil  

E-Print Network (OSTI)

A New Species of Parodia (Cactaceae, Notocacteae) from Rio Grande do Sul, Brazil Marlon C. Machado Grande do Sul, Brazil. jlarocca@unisinos.br ABSTRACT . A new species, Parodia gaucha M. Machado & Larocca (Cactaceae, Notocacteae), from Encruzilhada do Sul, Rio Grande do Sul, Brazil, is described and illustrated

Zürich, Universität

318

Properties of tunnel junctions with fluorocarbon dielectric barriers  

SciTech Connect

Thesis. The electrical characteristics of In/I/In and In/I/Pb superconducting tunnel junctions have been studied in detail. Since In does not readily form pinhole free oxide layers, a thin insulating dielectric was formed on freshly deposited In film by passing an electric discharge through an atmosphere of fluorocarbon gas. Junctions were then completed by depositing a thin counter electrode of In or Pb. The same process was used to prepare high resistance junctions with Au as the base electrode; these were not however, studied in detail. In/I/In and In/I/Pb junctions were produced with resistances in the range 0.01 ohms to 10/sup 10/ ohms at liquid helium temperatures. Low resistance junctions exhibited nonlinear electrical characteristics associated with good quality oxide'' superconducting junctions including (a) the dc Josephson effcct, (b) quasiparticle tunneling characteristics. (c) phonon structure and (d) inelastic tunneling phenomena. The magnitude of the Josephson current for In/I/In junctions agreed to within a few percent of the value predicted by strong coupling theory. Current voltage (I-V) and first and second derivative curves for In/I/In and In/I/Pb were compared with curves for Al/I/In and Pb/I/Pb junctions. Discrepancies between the characteristics can be, for the most part, explained on the basis of existing theories of phonon mediated superconductivity using recent data from inelastic neutron scattering studies of In. Nonlinear structure at voltages below the phonon spectrum was observed and is most likely associated with Kohn singularities. At higher voltages, second derivative curves exhibited resonances characteristic of CH and OH impurities in the barrier as well as a complex spectrum associated with the vibrational spectrum of the fluorocarbon dielectric. To better characterize this dielectric, a variety of surface analytic techniques were used to determine the complex index of refraction, the chemical composition and chemical homogeneity of the barrier. I-V curves for high resistance junctions were used to determine the potential at the metal-insulator interface. (auth)

Jack, M.D.

1973-11-01T23:59:59.000Z

319

Grand Forks, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grand Forks, North Dakota: Energy Resources Grand Forks, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9252568°, -97.0328547° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.9252568,"lon":-97.0328547,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Chattanooga Eagle Ford Rio Grande Embayment Texas- Louisiana-  

U.S. Energy Information Administration (EIA) Indexed Site

Rio Grande Rio Grande Embayment Texas- Louisiana- Mississippi Salt Basin Uinta Basin Appa lachia n Basin Utica Marcellus Devonian (Ohio) Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville Hermosa Mancos Pierre Conasauga Woodford- Caney Pearsall- Eagle Ford Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Maverick Sub-Basin Montana Thrust Belt Marfa Basin Valley and Ridge Province Arkoma Basin Forest City Basin Piceance Basin Shale Gas Plays, Lower 48 States 0 200 400 100 300 Miles ± Source: Energy Information Administration based on data from various published studies

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

East Grand St Bridge Snowmelt Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bridge Snowmelt Low Temperature Geothermal Facility Bridge Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name East Grand St Bridge Snowmelt Low Temperature Geothermal Facility Facility East Grand St Bridge Sector Geothermal energy Type Snowmelt Location Laramie, Wyoming Coordinates 41.3113669°, -105.5911007° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

322

Grand Ridge II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Grand Ridge II Wind Farm Facility Grand Ridge II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

City of Grand Island, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Island City of Grand Island City of Place Nebraska Utility Id 40606 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Flood Lighting Lighting Commercial Rate- Single Phase Commercial Commercial Rate- Three Phase Commercial Residential Rate Residential Three Phase Power Service Industrial

324

City of Grand Haven, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Haven Grand Haven Place Michigan Utility Id 7483 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Space Lighting Service - 100 Watt Lighting Area Space Lighting Service - 1000 Watt Lighting Area Space Lighting Service - 175 Watt Mercury Vapor Lighting Area Space Lighting Service - 400 Watt Mercury Vapor Lighting Area Space Lighting Service - Metal Halide 175 Watt Lighting

325

Arroyo Grande, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arroyo Grande, California: Energy Resources Arroyo Grande, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1185868°, -120.5907252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1185868,"lon":-120.5907252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Rio Grande Electric Coop, Inc (New Mexico) | Open Energy Information  

Open Energy Info (EERE)

New Mexico) New Mexico) Jump to: navigation, search Name Rio Grande Electric Coop, Inc Place New Mexico Utility Id 16057 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1560/kWh Commercial: $0.1630/kWh Industrial: $0.1170/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Rio_Grande_Electric_Coop,_Inc_(New_Mexico)&oldid=412780" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

327

City of Grand Rapids Building Solar Roof Demonstration  

SciTech Connect

Grand Rapids, Michigan is striving to reduce it environmental footprint. The municipal government organization has established environmental sustainability policies with the goal of securing 100% of its energy from renewable sources by 2020. This report describes the process by which the City of Grand Rapids evaluated, selected and installed solar panels on the Water/Environmental Services Building. The solar panels are the first to be placed on a municipal building. Its new power monitoring system provides output data to assess energy efficiency and utilization. It is expected to generate enough clean solar energy to power 25 percent of the building. The benefit to the public includes the economic savings from reduced operational costs for the building; an improved environmentally sustainable area in which to live and work; and increased knowledge about the use of solar energy. It will serve as a model for future energy saving applications.

DeClercq, Mark; Martinez, Imelda

2012-08-31T23:59:59.000Z

328

Volume terms for charged colloids: a grand-canonical treatment  

E-Print Network (OSTI)

We present a study of thermodynamic properties of suspensions of charged colloids on the basis of linear Poisson-Boltzmann theory. We calculate the effective Hamiltonian of the colloids by integrating out the ionic degrees of freedom grand-canonically. This procedure not only yields the well-known pairwise screened-Coulomb interaction between the colloids, but also additional volume terms which affect the phase behavior and the thermodynamic properties such as the osmotic pressure. These calculations are greatly facilitated by the grand-canonical character of our treatment of the ions, and allow for relatively fast computations compared to earlier studies in the canonical ensemble. Moreover, the present derivation of the volume terms are relatively simple, make a direct connection with Donnan equilibrium, yield an explicit expression for the effective screening constant, and allow for extensions to include, for instance, nonlinear effects.

Bas Zoetekouw; Rene van Roij

2005-10-10T23:59:59.000Z

329

ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes  

SciTech Connect

By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light emission. The project engaged established expertise at the University of Florida in ZnO film growth (D. Norton), device fabrication (F. Ren) and wide bandgap photonics (S. Pearton). It addressed p-type doping and junction formation in (Zn,Mg)O alloy thin films. The project employed pulsed laser deposition for film growth. The p-type dopant of interest was primarily phosphorus, given the recent results in our laboratory and elsewhere that this anions can yield p-type ZnO-based materials. The role of Zn interstitials, oxygen vacancies, and/or hydrogen complexes in forming compensating shallow donor levels imposes the need to simultaneously consider the role of in situ and post-growth processing conditions. Temperature-dependent Hall, Seebeck, C-V, and resistivity measurements was used to determine conduction mechanisms, carrier type, and doping. Temperature-dependent photoluminescence was used to determine the location of the acceptor level, injection efficiency, and optical properties of the structures. X-ray diffraction will used to characterize film crystallinity. Using these materials, the fabrication and characterization of (Zn,Mg)O pn homojunction and heterojunction devices was pursued. Electrical characterization of the junction capacitance and I-V behavior was used to extract junction profile and minority carrier lifetime. Electroluminescence from biased junctions was the primary property of interest.

David P. Norton; Stephen Pearton; Fan Ren

2007-09-30T23:59:59.000Z

330

Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico  

DOE Green Energy (OSTI)

The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

James C Witcher

2002-07-30T23:59:59.000Z

331

The ethos in the form making of grand projects in contemporary Beijing City  

E-Print Network (OSTI)

Capital cities embody national identity and ethos, buildings in the capital cities have the power to awe and to inspire. While possibly no capital city in the world is being renewed so intensely as Beijing, which presents ...

Feng, Keru, 1974-

2004-01-01T23:59:59.000Z

332

ISSN0249-6399ISRNINRIA/RR--7950--FR+ENG Project-Teams GRAND-  

E-Print Network (OSTI)

). The weak scaling results for the Cray XK6 Jaguar at Oak Ridge Leadership Computing Facility (OLCF] file system on the Blue Gene/P at ALCF and the Lustre file system on the Cray XK6 at OLCF. 4.1 System, the Cray XK6 at OLCF, contains 18,688 compute nodes with a theoretical peak performance of 2.63 petaflops

333

NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Triple-Junction Terrestrial Concentrator Solar Cell Triple-Junction Terrestrial Concentrator Solar Cell Developers: Dr. Jerry Olson, Dr. Sarah Kurtz, Dr. Daniel Friedman, Alan Kibbler, and Charlene Karmer, National Renewable Energy Laboratory; Dr. Richard King, Jim Ermer, Dmitri D. Krut, Hector Cotal, Peter Colter, Hojun Yoon, Nassar Karam, and Gregory S. Glenn, Spectrolab, Inc. The triple-junction solar cell - or TJ solar cell - generates a lot of energy from just a very little amount of material. How much energy? A 1-cm2 cell can generate as much as 35 W of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity to power the typical American household. This cell can do this, first, because it

334

Junction-based field emission structure for field emission display  

DOE Patents (OSTI)

A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

Dinh, Long N. (Concord, CA); Balooch, Mehdi (Berkeley, CA); McLean, II, William (Oakland, CA); Schildbach, Marcus A. (Livermore, CA)

2002-01-01T23:59:59.000Z

335

Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

336

Benefits of Damage Engineering for PMOS Junction Stability  

SciTech Connect

As CMOS devices continue to shrink, the formation of ultra shallow junction (USJ) in the source/drain extension remains to be a key challenge requiring high dopant activation, shallow dopant profile and abrupt junctions. The next generations of sub nano-CMOS devices impose a new set of challenges such as elimination of residual defects resulting in higher leakage, difficulty to control lateral diffusion, junction stability post anneal and junction formation in new materials. To address these challenges for advanced technological nodes beyond 32 nm, it is imperative to explore novel species and techniques. Molecular species such as Carborane (C{sub 2}B{sub 10}H{sub 12}), a novel doping species and a promising alternative to monomer Boron is of considerable interest due to the performance boost for 22 nm low power and high performance devices. Also, to reduce residual defects, damage engineering methodologies have generated a lot of attention as it has demonstrated significant benefits in device performance. Varian proprietary techniques to perform implants at cold temperatures (PTC II) have demonstrated lower junction leakage, enhanced activation, reduced dopant diffusion and less dopant deactivation due to the reduction of self-interstitial atoms present at the end-of-range (EOR) with low implant temperatures. In this paper, for the first time, there is a comprehensive study of the effect of implant temperature on defect engineering affecting deactivation/reactivation, and it is well established in this paper that colder the implant temperature the better it is for damage engineering with reduced EOR defects and better amorphization. The effect has been studied over a wide range of implant temperature. To understand any difference in deactivation between molecular and monomer Boron and to provide direct comparison equivalent Boron implants, co-implanted with Carbon were also studied. Implants with wide range of temperatures are implemented using PTC II. This paper will also show how damage reduction correlates with optimum junction formation and stability.

Khaja, Fareen; Colombeau, Benjamin; Thanigaivelan, Thirumal; Ramappa, Deepak; Henry, Todd [Varian Semiconductor Equipment Associates, Inc. 35 Dory Road, Gloucester, MA 01930 (United States)

2011-01-07T23:59:59.000Z

337

Emission of terahertz waves from stacks of intrinsic Josephson junctions.  

SciTech Connect

By patterning mesoscopic crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (BSCCO) into electromagnetic resonators the oscillations of a large number of intrinsic Josephson junctions can be synchronized into a macroscopic coherent state accompanied by the emission of strong continuous wave THz-radiation. The temperature dependence of the emission is governed by the interplay of self-heating in the resonator and by re-trapping of intrinsic Josephson junctions which can yield a strongly non-monotonic temperature dependence of the emission power. Furthermore, proper shaping of the resonators yields THz-sources with voltage-tunable emission frequencies.

Gray, K. E.; Koshelev, A. E.; Kurter, C.; Kadowaki, K.; Yamamoto, T.; Minami, H.; Yamaguchi, H.; Tachiki, M.; Kwok, W.-K.; Welp, U.; Materials Science Division; Izmir Inst. of Tech.; Univ. Tsukuba; Univ. Tokyo

2009-06-01T23:59:59.000Z

338

Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

NONE

1997-05-01T23:59:59.000Z

339

3-D Nano-mechanics of an Erythrocyte Junctional Comples in Equibiaxial and Anisotropic Deformations  

E-Print Network (OSTI)

L.D. Sturges. Engineering Mechanics: Dynamics. Wiley, 1995.3-D Nano-mechanics of an Erythrocyte Junctional Complex inUSA Running title: Nano-mechanics of Erythrocyte Junctional

Vera, Carlos; Skelton, Robert; Sung, Amy

2005-01-01T23:59:59.000Z

340

Florence & Oracle Junction, Pinal County, AZ, RECORD OF CATEGORICAL EXCLUSION DETERMINATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

emergency wood pole emergency wood pole replacement at 59 structures located along the Coolidge-Oracle 115-kV T.L. , near Cooiidge, Florence & Oracle Junction, Pinal County, AZ, RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western plans to replace deteriorated wood poles, cross arms and X-braces at 59 existing H-frame or 3-pole-turning structures (Table 1) located along the Coolidge-Oracle 115-kV Transmission Line in Pinal County, Arizona (Figure 1), Built in 1943, its aging components are beyond repair and require replacement. These poles performed poorly during structural tests, and we consider them unstable, This project ensures the safety of Western's workers and the public as well as reliability of the bulk electric system, Western will accomplish the work by clearing vegetation and blading a level pad at

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

342

Novel InGaAsN pn Junction for High-Efficiency Multiple-Junction Solar Cells  

DOE Green Energy (OSTI)

We report the application of a novel material, InGaAsN, with bandgap energy of 1.05 eV as a junction in an InGaP/GaAs/InGaAsN/Ge 4-junction design. Results of the growth and structural, optical, and electrical properties were demonstrated, showing the promising perspective of this material for ultra high efficiency solar cells. Photovoltaic properties of an as-grown pn diode structure and improvement through post growth annealing were also discussed.

Allerman, A.A.; Chang, P.C.; Gee, J.M.; Hammons, B.E.; Hou, H.Q.; Jones, E.D.; Kurtz, S.R.; Reinhardt, K.C.

1999-03-26T23:59:59.000Z

343

Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.  

DOE Green Energy (OSTI)

The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

United States. Bonneville Power Administration.

1995-01-01T23:59:59.000Z

344

Optimized Triple-Junction Solar Cells Using Inverted Metamorphic Approach (Presentation)  

DOE Green Energy (OSTI)

Record efficiencies with triple-junction inverted metamorphic designs, modeling useful to optimize, and consider operating conditions before choosing design.

Geisz, J. F.

2008-11-01T23:59:59.000Z

345

A variational approach to motion of triple junction of gas, liquid and solid  

E-Print Network (OSTI)

A variational approach to motion of triple junction of gas, liquid and solid Kensuke Yokoia;b;c;1 a to deal with motion of triple junctions of gas, liquid (or two kinds of uid) and solid based on the level with triple junctions of gas, liquid and solid. Numerical simulations for free surface ows with moving

Soatto, Stefano

346

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity  

E-Print Network (OSTI)

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity Alberto E of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding in revised form 16 May 2012 Accepted 23 May 2012 Available online 31 May 2012 Keywords: Electrical synapse

Rash, John E.

347

Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation  

E-Print Network (OSTI)

. This relation provides a way of quantum-mechanically linking frequency and voltage and is therefore utilised in the international standardisation of the Volt. 1.2.1 The Resistively Shunted Junction (RSJ) model At finite values of the voltage bias not only an ac...

Booij, Wilfred Edwin

348

Performance model assessment for multi-junction concentrating photovoltaic systems.  

DOE Green Energy (OSTI)

Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

Riley, Daniel M.; McConnell, Robert. (Amonix, Inc., Seal Beach, CA); Sahm, Aaron (University of Nevada, Las Vegas, NV); Crawford, Clark (Amonix, Inc., Seal Beach, CA); King, David L.; Cameron, Christopher P.; Foresi, James S. (Emcore, Inc., Albuquerque, NM)

2010-03-01T23:59:59.000Z

349

Gravitational Collapse and Radiation of Grand Unified Theory  

E-Print Network (OSTI)

The infinite gravitational collapse of any supermassive stars should pass through an energy scale of the grand unified theory (GUT). After nucleon-decays, the supermassive star will convert nearly all its mass into energy, and produce the radiation of GUT. It may probably explain some ultrahigh energy puzzles in astrophysics, for example, quasars and gamma-ray bursts (GRB), etc. This is similar with a process of the Big Bang Universe with a time-reversal evolution in much smaller space scale and mass scale. In this process the star seems be a true white hole.

Yi-Fang Chang

2007-10-02T23:59:59.000Z

350

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

351

gjpip.PDF  

Office of Legacy Management (LM)

GWGRJ 7.1 GWGRJ 7.1 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Grand Junction Uranium Mill Tailings Remedial Action (UMTRA) Project Site (Climax Uranium Millsite) July 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed under DOE Contract No. DE-AC13-96GJ8733 Public Involvement Plan July 1999 Page 1 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Grand Junction, Colorado, Uranium Mill Tailings Site This Public Involvement Plan is tiered to the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project Public Participation Plan dated October 1997. This public involvement plan is specific to the Grand Junction, Colorado, site and describes the activities that will meet

352

Sitewide Environmental Monitoring Quarterly Progress Report for the Young-Rainy STAR Center  

Office of Legacy Management (LM)

2-TAC 2-TAC GJO-PIN 11.6.2 Pinellas Environmental Restoration Project January through March 2003 Sitewide Environmental Monitoring Quarterly Progress Report for the Young-Rainey STAR Center April 2003 Grand Junction Office Grand Junction Office Grand Junction Office U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. N0060700 GJO-2003-432-TAC GJO-PIN 11.6.2 Pinellas Environmental Restoration Project Sitewide Environmental Monitoring Quarterly Progress Report for the Young - Rainey STAR Center January through March 2003 April 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491

353

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

354

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

355

Project 364  

NLE Websites -- All DOE Office Websites (Extended Search)

765-494-5623 lucht@purdue.edu DEVELOPMENT OF NEW OPTICAL SENSORS FOR MEASUREMENT OF MERCURY CONCENTRATIONS, SPECIATION, AND CHEMISTRY Project Description The feasibility of...

356

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State...

357

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

358

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

359

Project 283  

NLE Websites -- All DOE Office Websites (Extended Search)

NJ 07039 973-535 2328 ArchieRobertson@fwc.com Sequestration ADVANCED CO 2 CYCLE POWER GENERATION Background This project will develop a conceptual power plant design...

360

Project 197  

NLE Websites -- All DOE Office Websites (Extended Search)

will bring economic value to both the industrial customers and to the participating companies. * Complete project by June 2006. Accomplishments A ceramic membrane and seal...

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh,...

362

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Interdisciplinary Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford...

363

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for...

364

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* Concrete products in this project * Standard 8" concrete blocks * Standard 4' x 8' fiber-cement boards CO 2 The Goals * Maximizing carbon uptake by carbonation (at least...

365

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Evaluating Potential Groundwater Impacts and Natural Geochemical...

366

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date...

367

Project 252  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford Global Climate Energy Project Terralog Technologies TransAlta University of Alaska Fairbanks Washington State Department of Natural Resources Western Interstate...

368

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

research partnership to improve the understanding of CO 2 within coal and shale reservoirs. 2 2 3 Presentation Outline * Program Goal and Benefits Statement * Project...

369

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanistic insights 5 Project Overview: Scope of work * Task 1 - Pipeline and Casing Steel Corrosion Studies * Evaluate corrosion behavior of pipeline steels in CO 2 mixtures...

370

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project Program Goals * Technical...

371

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* This project pinpoints the critical catalyst features necessary to promote carbon dioxide conversion to acrylate, validate the chemical catalysis approach, and develop an...

372

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources...

373

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number...

374

Emergency Fish Restoration Project; Final Report 2002.  

DOE Green Energy (OSTI)

Lake Roosevelt is a 151-mile impoundment created by the construction of Grand Coulee Dam during the early 1940's. The construction of the dam permanently and forever blocked the once abundant anadromous fish runs to the upper Columbia Basin. Since the construction of Grand Coulee Dam in 1943 and Chief Joseph Dam in 1956 this area is known as the blocked area. The blocked area is totally dependant upon resident fish species to provide a subsistence, recreational and sport fishery. The sport fishery of lake Roosevelt is varied but consists mostly of Rainbow trout (Oncorhynchus mykiss), Kokanee salmon (Oncorhynchus nerka), Walleye (Stizostedion vitreum) Small mouth bass (Micropterus dolomieui) and white sturgeon (Acipenser transmontanus). Currently, Bonneville Power Administration funds and administers two trout/kokanee hatcheries on Lake Roosevelt. The Spokane Tribe of Indians operates one hatchery, the Washington Department of Fish and Wildlife the other. In addition to planting fish directly into Lake Roosevelt, these two hatcheries also supply fish to a net pen operation that also plants the lake. The net pen project is administered by Bonneville Power funded personnel but is dependant upon volunteer labor for daily feeding and monitoring operations. This project has demonstrated great success and is endorsed by the Colville Confederated Tribes, the Spokane Tribe of Indians, the Washington Department of Fish and Wildlife, local sportsmen associations, and the Lake Roosevelt Forum. The Lake Roosevelt/Grand Coulee Dam area is widely known and its diverse fishery is targeted by large numbers of anglers annually to catch rainbow trout, kokanee salmon, small mouth bass and walleye. These anglers contribute a great deal to the local economy by fuel, grocery, license, tackle and motel purchases. Because such a large portion of the local economy is dependant upon the Lake Roosevelt fishery and tourism, any unusual operation of the Lake Roosevelt system may have a substantial impact to the economy. During the past several years the Chief Joseph Kokanee Enhancement project has been collecting data pertaining to fish entraining out of the lake through Grand Coulee Dam. During 1996 and 1997 the lake was deeply drawn down to accommodate the limited available water during a drought year and for the highly unusual draw-down of Lake Roosevelt during the critical Northwest power shortage. The goal of the project is to enhance the resident rainbow trout fishery in Lake Roosevelt lost as a result of the unusual operation of Grand Coulee dam during the drought/power shortage.

LeCaire, Richard

2003-03-01T23:59:59.000Z

375

A Grand Delta(96) x SU(5) Flavour Model  

E-Print Network (OSTI)

Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of theta_13 approximately 9 degrees. This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on Delta(96) x SU(5), together with a U(1) x Z3 symmetry, including a full discussion of Delta(96) in a convenient basis. The Grand Delta(96) x SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: theta_23=36...

King, Stephen F; Stuart, Alexander J

2012-01-01T23:59:59.000Z

376

A Grand Delta(96) x SU(5) Flavour Model  

E-Print Network (OSTI)

Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of theta_13 approximately 9 degrees. This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on Delta(96) x SU(5), together with a U(1) x Z3 symmetry, including a full discussion of Delta(96) in a convenient basis. The Grand Delta(96) x SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: theta_23=36.9 degrees, theta_12=32.7 degrees and theta_13=9.6 degrees, in good agreement with recent global fits, and a zero Dirac CP phase delta~0.

Stephen F. King; Christoph Luhn; Alexander J. Stuart

2012-07-24T23:59:59.000Z

377

Geomorphology of plutonium in the Northern Rio Grande  

Science Conference Proceedings (OSTI)

Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography] Arizona Univ., Tempe, AZ (United States). Dept., of Geography

1993-03-01T23:59:59.000Z

378

Antireflection Coating Design for Series Interconnected Multi-Junction Solar Cells  

DOE Green Energy (OSTI)

AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub SC}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices.

AIKEN,DANIEL J.

1999-11-29T23:59:59.000Z

379

SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge Highlights Ambitious Efforts along the SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum June 13, 2012 - 5:30pm Addthis Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program What are the key facts? Today at the SunShot Grand Challenge Summit Energy Secretary Chu announced up to $8 million to support clean energy startups. Secretary Chu also announced a nationwide competition to drive down

380

Microsoft Word - U01804.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

0400 0400 GJO-2003-422-TAC GJO-GWTUB 30.13.2-2 UMTRA Ground Water Project Tuba City UMTRA Project Site Semi-Annual Performance Evaluation through August 2002 May 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left blank Document Number U0180400 Contents DOE/Grand Junction Office Tuba City UMTRA Project Site Semi-Annual Performance Evaluation May 2003 Page iii Contents 1.0 Introduction ............................................................................................................................1 2.0 Aquifer Horizons....................................................................................................................2

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microsoft Word - U0184800-September 2003.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

4800 4800 GJO-2003-483-TAC GJO-GWTUB 30.13.2 UMTRA Ground Water Project Tuba City, Arizona, UMTRA Project Site Semi-Annual Performance Evaluation September 2002 through February 2003 September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left blank Document Number U0184800 Contents DOE/Grand Junction Office Tuba City UMTRA Project Site Semi-Annual Performance Evaluation September 2003 Page iii Contents 1.0 Introduction ............................................................................................................................1 1.1 Remediation System Performance Standards...............................................................1

382

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

383

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

384

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

385

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

386

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

387

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

388

Project title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

389

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

390

Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].  

DOE Green Energy (OSTI)

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

Asotin County Conservation District

2008-12-10T23:59:59.000Z

391

EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE's...

392

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 2, Appendices: Final environmental impact statement  

Science Conference Proceedings (OSTI)

This volume contains Appendix F--hydrology report, and Appendix G--flood plain and wetland assessment. Contents of the hydrology report include: surface water; ground water; potentially affected hydrogeologic environment-processing site; potentially affected hydrogeologic environment-Cheney reservoir site; potentially affected hydrogeologic environment-Two Road site; and conclusions-ground water.

none,

1986-12-01T23:59:59.000Z

393

EMSL: Science: EMSL Scientific Grand Challenge: Membrane Biology  

NLE Websites -- All DOE Office Websites (Extended Search)

CHALLENGE: MEMBRANE BIOLOGY Membrane Biology GC Resources Meet the Team Advisory Committee What Are Cyanobacteria? Project Achievements In the News 2005-2007 Progress Report...

394

Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33  

E-Print Network (OSTI)

This thesis integrated geology, geophysics, and petroleum engineering data to build a detailed reservoir characterization models for three gas pay sands in the Grand Isle 33 & 43 fields, offshore Louisiana. The reservoirs are Late Miocene in age and include the upper (PM), middle (QH), and lower (RD) sands. The reservoir models address the stratigraphy of the upper (PM) sand and help delineate the lower (RD) reservoir. In addition, this research addresses the partially depleted QH-2 reservoir compartment. The detailed models were constructed by integrating seismic, well log, and production data. These detailed models can help locate recoverable oil and gas that has been left behind. The upper PM model further delineated that the PM sand has several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand was partially depleted in the QH-2 reservoir compartment by a series of development wells. Bottom hole pressure data from wells in Grand Isle 32 & 33 reveal that the two QH fault compartments are in communication across a leaking fault. Production wells in the QH-1 compartment produced reserves from the QH-2 compartment. The lower RD sand model helped further delineate the reservoir in the RD-2 compartment and show that this compartment has been depleted. The RD model also shows the possible presence of remaining recoverable hydrocarbons in the RD-1 compartment. It is estimated that about 6.7 billion cubic feet of gas might remain within this reservoir waiting to be recovered. A seismic amplitude anomaly response from the QH and RD sands is interpreted to be a lithologic indicator rather than the presence of hydrocarbons. Amplitude response from the PM level appears to be below the resolution of the seismic data. A synthetic seismogram model was generated to represent the PM and surrounding sands. This model shows that by increasing the frequency of the seismic data from 20 Hz to a dominant frequency of 30 Hz that the PM and surrounding sands could be seismically resolvable. Also the PM-1 compartment has possible recoverable hydrocarbons of 1.5 billion cubic feet of gas remaining.

Casey, Michael Chase

2011-05-01T23:59:59.000Z

395

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Chapters 1-11 U.S. Department of Energy Office of Environmental Management COVER SHEET Lead Agency: U.S. Department of Energy Cooperating Agencies: * National Park Service * Bureau of Land Management * U.S. Nuclear Regulatory Commission * U.S. Army Corps of Engineers * U.S. Fish and Wildlife Service * State of Utah * U.S. Environmental Protection Agency * Ute Mountain Ute Tribe * San Juan County * Grand County * City of Blanding * Community of Bluff Title: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (DOE/EIS-0355). Contact: For further information about this Environmental Impact Statement, contact: Don Metzler Moab Federal Project Director U.S. Department of Energy

396

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Summary U.S. Department of Energy Office of Environmental Management COVER SHEET Lead Agency: U.S. Department of Energy Cooperating Agencies: * National Park Service * Bureau of Land Management * U.S. Nuclear Regulatory Commission * U.S. Army Corps of Engineers * U.S. Fish and Wildlife Service * State of Utah * U.S. Environmental Protection Agency * Ute Mountain Ute Tribe * San Juan County * Grand County * City of Blanding * Community of Bluff Title: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (DOE/EIS-0355). Contact: For further information about this Environmental Impact Statement, contact: Don Metzler Moab Federal Project Director U.S. Department of Energy 2597 B ¾ Road

397

(DOE/EIS-0285/SA-99): Supplement Analysis for the Transmission System Vegetation Management Program FEIS -Olympia-Grand Coulee No.1 8/29/02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 9, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-99-Olympia-Grand Coulee No. 1 Don Atkinson - TFN/Snohomish Proposed Action: Vegetation Management along the Olympia-Grand Coulee No. 1, 287 kV transmission line from structure 53/4 through structure 64/1. Corridor width is 125 feet. Location: The project area is located within King County, Washington. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to remove unwanted vegetation along the right-of-way, access roads and around tower structures along the subject transmission line corridor. Approximately 163 acres will be treated using selective and non-selective methods that include hand cutting, mowing and herbicide treatments. Vegetation management is required for unimpeded

398

Western LNG project - Project summary  

Science Conference Proceedings (OSTI)

The Western LNG Project is a major new undertaking involving the liquefaction of conventional natural gas from the Western Canadian Sedimentary Basin at a plant on the British Columbia north coast. The gas in its liquid form will be shipped to Japan for consumption by utility companies. The Project represents a new era in gas processing and marketing for the Canadian natural gas industry.

Forgues, E.L.

1984-02-01T23:59:59.000Z

399

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

400

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

402

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

403

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

404

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

405

Pacific Junction, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Iowa: Energy Resources Junction, Iowa: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0186105°, -95.7991734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0186105,"lon":-95.7991734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Essex Junction, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Vermont: Energy Resources Junction, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4906054°, -73.1109604° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4906054,"lon":-73.1109604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Coso Junction, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Coso Junction, California: Energy Resources Jump to: navigation, search Name Coso Junction, California Equivalent URI DBpedia GeoNames ID 5339829 Coordinates 36.0449439°, -117.9472993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0449439,"lon":-117.9472993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Princeton Junction, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, New Jersey: Energy Resources Junction, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3173301°, -74.6198791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3173301,"lon":-74.6198791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Iron Junction, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Minnesota: Energy Resources Junction, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.416427°, -92.60665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.416427,"lon":-92.60665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Monmouth Junction, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, New Jersey: Energy Resources Junction, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3789957°, -74.5465436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3789957,"lon":-74.5465436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Biggs Junction, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biggs Junction, Oregon: Energy Resources Biggs Junction, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.669846°, -120.8328408° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.669846,"lon":-120.8328408,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps  

E-Print Network (OSTI)

The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

Volkovich, Roie

2010-01-01T23:59:59.000Z

413

Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps  

E-Print Network (OSTI)

The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

Roie Volkovich; Uri Peskin

2010-12-01T23:59:59.000Z

414

The development of magnetic tunnel junction fabrication techniques  

E-Print Network (OSTI)

. The effect of grain size, shape, voltage bias, temperature, layer thickness and roughness should be understood and controllable, in order to produce reproducible junctions. The most problematic requirement has been that of low resistance. Magnetic tunnel... . The effect of roughness, aluminium thickness and voltage on the number of pinholes and weak-links per unit area was studied. High frequency testing of read heads at wafer level was performed with a network analyser. Design implications for read head...

Elwell, Clifford Alastair

415

Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint  

Science Conference Proceedings (OSTI)

We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

2011-07-01T23:59:59.000Z

416

Grand Ridge III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Grand Ridge III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Grand Rapids Public Util Comm | Open Energy Information  

Open Energy Info (EERE)

Rapids Public Util Comm Rapids Public Util Comm Jump to: navigation, search Name Grand Rapids Public Util Comm Place Minnesota Utility Id 7489 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CITY COMMERCIAL Commercial CITY LIGHT & POWER Lighting CITY RESIDENTIAL Residential CONTROLLED WATER HEATING (CITY) Commercial CONTROLLED WATER HEATING (RURAL) Commercial ENTERTAINMENT LIGHTING RATE (CITY) Lighting ENTERTAINMENT LIGHTING RATE (RURAL) Lighting INDUSTRIAL (CITY) Industrial

418

City of Grand Marais, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Marais, Minnesota (Utility Company) Marais, Minnesota (Utility Company) Jump to: navigation, search Name City of Grand Marais Place Minnesota Utility Id 7487 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL - SINGLE PHASE Commercial COMMERCIAL - THREE PHASE Commercial DUAL FUEL(Single Phase) DUAL FUEL(Three Phase) RESIDENTIAL - SINGLE PHASE Residential RESIDENTIAL - THREE PHASE Residential YARD LIGHT METERED Lighting YARD LIGHT UNMETERED Lighting

419

Grand Valley Rrl Pwr Line, Inc | Open Energy Information  

Open Energy Info (EERE)

Pwr Line, Inc Pwr Line, Inc Jump to: navigation, search Name Grand Valley Rrl Pwr Line, Inc Place Colorado Utility Id 7563 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Power Service, Three Phase Schedule (25)-CSP-1 Commercial Farm and Home (Residential) Service Schedule (10)-FH-1 Residential Industrial Service Schedule (50) -IND-1 Industrial Irrigation Service Schedule (40)-I-1 Commercial Large Power Service Schedule (30) -LP-1 Industrial Nonresidential - General Schedule (20)-NRG-1 Commercial

420

City of East Grand Forks, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Minnesota (Utility Company) Minnesota (Utility Company) Jump to: navigation, search Name East Grand Forks City of Place Minnesota Utility Id 5575 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Off Peak Rates Commercial Residential Electric Heat Residential Residential General Electric Residential Small Commercial Rate Residential Average Rates Residential: $0.0943/kWh Commercial: $0.0740/kWh Industrial: $0.0789/kWh

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

422

SU(5) x Z{sub 13} grand unification model  

SciTech Connect

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at M{sub Z}, of {alpha}, {alpha}{sub s}, and sin{sup 2}{theta}{sub W}. A discrete, anomalous, Z{sub 13} symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semiclassical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the Z{sub 13} symmetry.

Dias, Alex G. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, 09210-170, Santo Andre, SP (Brazil); Franco, Edison T.; Pleitez, Vicente [Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, Sao Paulo, SP (Brazil)

2007-12-01T23:59:59.000Z

423

An SU(5)$\\otimes$Z_{13} Grand Unification Model  

E-Print Network (OSTI)

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at $M_Z$, of $\\alpha$, $\\alpha_s$, and $\\sin^2\\theta_W$. A discrete, anomalous, $Z_{13}$ symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semi-classical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the $Z_{13}$ symmetry.

Alex G. Dias; Edison T. Franco; Vicente Pleitez

2007-08-07T23:59:59.000Z

424

A Graphical representation of the grand canonical partition function  

E-Print Network (OSTI)

In this paper we consider a stochastic partial differential equation defined on a Lattice $L_\\delta$ with coefficients of non-linearity with degree $p$. An analytic solution in the sense of formal power series is given. The obtained series can be re-expressed in terms of rooted trees with two types of leaves. Under the use of the so-called Cole-Hopf transformation and for the particular case $p=2$, one thus get the generalized Burger equation. A graphical representation of the solution and its logarithm is done in this paper. A discussion of the summability of the previous formal solutions is done in this paper using Borel sum. A graphical calculus of the correlation function is given. The special case when the noise is of L\\'evy type gives a simplified representations of the solution of the generalized Burger equation. From the previous results we recall a graphical representation of the grand canonical partition function.

Boubaker Smii

2010-01-07T23:59:59.000Z

425

Higgs-boson effects in grand unified theories  

DOE Green Energy (OSTI)

It is argued that fine tuning of a minimal set of parameters, needed to fix the hierarchy of gauge-boson masses and a knowledge of intermediate symmetry groups, leads to ''natural'' mass scales for physical Higgs bosons in grand unified theories. This is applied to ..delta..B = 2 transitions in models based on SU(5), SO(10), SU(16), and (SU(2N))/sup 4/. It turns out that the Higgs bosons which mediate ..delta..B = 2 neutron-antineutron and hydrogen-antihydrogen oscillations become superheavy, and so such transitions can be observable only in theories with low unification scales, such as SU(16) and (SU(8))/sup 4/, if we adhere to the hypothesis of minimal fine tuning.

Mohapatra, R.N.; Senjanovic, G.

1983-04-01T23:59:59.000Z

426

Heating facilities for the MGM Grand Hotel, Reno, Nevada  

SciTech Connect

The MGM Grand Hotel-Reno is located adjacent to an area with a well-documented geothermal resource. Currently, there is a number of entities seeking to determine the exact nature of the resource at the MGM site. This report concerns itself with identifying current natural gas loads within the MGM complex which could be met by geothermal should a source become available. The two principle assumptions upon which the following material is based are (1) that a source of 190/sup 0/F or higher temperature water is available and (2) all systems discussed would be installed in parallel with existing systems. That is, existing systems would remain in place providing 100 percent backup for the geothermal systems.

1981-09-01T23:59:59.000Z

427

Projects Move Solar Technologies to Commercial Scale  

Science Conference Proceedings (OSTI)

Jan 21, 2010 ... Solar Junction Corp. (San Jose, California) A manufacturing process will be developed to produce a very high efficiency multi-junction cell.

428

Uranium Mill Tailings Remedial Action Project Annual Environmental Monitoring Report calendar year 1992: Volume 1  

SciTech Connect

This report describes environmental monitoring and compliance at eight UMTRA sites where remedial action was underway during 1992 and at the ten sites that were complete at the end of 1992. Volume I contains information for Ambrosia Lake, NM; Cannonsburg/Burrell, PA; Durango, CO; Falls City, TX; Grand Junction, CO; Green River, UT; and Gunnison, CO. Each site report contains a site description, compliance summary, environmental program information, environmental radiological and non-radiological program information, water resources protection, and quality assurance information.

Not Available

1993-12-31T23:59:59.000Z

429

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

430

Project Title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

431

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

432

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of CO 2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural- Genetic Algorithm Project DE FE0009284 Boyun Guo, Ph.D. University of...

433

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

434

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

435

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

436

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

437

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

438

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

439

LUCF Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

440

Project 265  

NLE Websites -- All DOE Office Websites (Extended Search)

The goal of this project is to develop an on-line instrument using multi- wavelength lasers that is capable of characterizing particulate matter (PM) generated in fossil energy...

Note: This page contains sample records for the topic "grand junction projects" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441