Powered by Deep Web Technologies
Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001  

Office of Legacy Management (LM)

Grand Junction Disposal Site Grand Junction Disposal Site Uranium ore was processed at the Climax millsite at Grand Junction, Colorado, between 1951 and 1970. The milling operations created process-related waste and tailings, a sandlike material containing radioactive materials and other contaminants. The tailings were an ideal and inexpensive construction material suitable for concrete, mortar, and fill. Accordingly, the tailings were widely used in the Grand Junction area for these purposes. The U.S. Department of Energy (DOE) encapsulated the tailings and other contaminated materials from the millsite and more than 4,000 vicinity properties in the Grand Junction area in an engineered disposal cell. Part of the disposal cell was completed in 1994; the remainder of the cell remains open until it is

2

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney Disposal Site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-07-01T23:59:59.000Z

3

Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado  

SciTech Connect

This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-08-01T23:59:59.000Z

4

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-04-01T23:59:59.000Z

5

Work plan for phase 1A paleochannel studies at the Cheney disposal cell, Grand Junction, Colorado: Draft  

Science Conference Proceedings (OSTI)

This document will serve as a Work Plan for continuing paleochannel characterization activities at the Cheney disposal site near Grand Junction, Colorado. Elevated levels of nitrate were encountered in ground water from two monitor wells installed in alluvial paleochannels near the Cheney disposal cell in 1994. This triggered a series of investigations (Phase 1) designed to determine the source of nitrate and other chemical constituents in ground water at the site. A comprehensive summary of the Phase 1 field investigations (limited to passive monitoring and modeling studies) conducted by the Remedial Action Contractor (RAC) and Technical Assistance Contractor (TAC) to date is provided in Section 2.0 of this document. Results of Phase 1 were inconclusive regarding the potential interaction between the disposal cell and the paleochannels, so additional Phase 1A investigations are planned. Recommendations for Phase 1A tasks and possible future activities are discussed in Section 3.0. Detailed information on the implementation of the proposed Phase 1A tasks appears in Section 4.0 and will provide the basis for Statements of Work (SOW) for each of these tasks. A detailed sampling plan is provided to ensure quality and a consistency with previous data collection efforts.

NONE

1996-11-01T23:59:59.000Z

6

Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993. Final report  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailing Remedial Action (UMTRA) Project`s Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations.

Not Available

1993-08-01T23:59:59.000Z

7

DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/Grand Junction Office Bluewater LTSP DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii Contents Page 1.0 Introduction .........................................................................................................................................1 1.1 Purpose ................................................................................................................................1 1.2 Legal and Regulatory Requirements .................................................................................. 1 1.3 Role of the Department of Energy ..................................................................................... 2 1.4 Disposal of Mill Waste Containing Polychlorinated Biphenyls ........................................ 2 2.0 Bluewater Disposal Site .....................................................................................................................

8

UMTRA project water sampling and analysis plan, Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

Not Available

1994-07-01T23:59:59.000Z

9

DOE - Office of Legacy Management -- Grand Junction Sites  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

10

Data Compendium for the Logging Test Pits at the ERDA Grand Junction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound...

11

UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6  

Science Conference Proceedings (OSTI)

This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years.

NONE

1995-09-01T23:59:59.000Z

12

EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30: Facility Operations at the U.S. DOE Grand Junction 30: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 8, 1996 EA-0930: Finding of No Significant Impact Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado June 8, 1996 EA-0930: Final Environmental Assessment Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand

13

EA-1037: Uranium Lease Management Program, Grand Junction, Colorado |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Uranium Lease Management Program, Grand Junction, Colorado 37: Uranium Lease Management Program, Grand Junction, Colorado EA-1037: Uranium Lease Management Program, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of domestic uranium and vanadium ores, to maintain a viable domestic mining and milling infrastructure required to produce and mill these ores, and to provide assurance of a fair monetary return to the U.S. Government. The Uranium Lease Management Program gives The Department of Energy the flexibility to continue leasing these lands. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 1995

14

Cambridge Grand Junction transit implementation : alternatives, scheduling, cost, and performance  

E-Print Network (OSTI)

The Grand Junction railroad lies at the heart of East Cambridge adjacent to the Kendall Square business district and the Massachusetts Institute of Technology campus. Over the last one hundred years the railroad has gone ...

Iglesias Cuervo, Jesus

2012-01-01T23:59:59.000Z

15

City of Grand Junction, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Junction City of Grand Junction City of Place Iowa Utility Id 7486 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Demand Service Commercial Residential Eletric Residential Average Rates Residential: $0.1340/kWh Commercial: $0.1300/kWh Industrial: $0.0899/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Grand_Junction,_Iowa_(Utility_Company)&oldid=409673

16

EA-1338: Transfer of the Department of Energy Grand Junction Office to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Transfer of the Department of Energy Grand Junction Office 8: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 25, 2000 EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 25, 2000 EA-1338: Final Environmental Assessment Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership

17

Estimating commuter rail demand to Kendall Square along the Grand Junction Corridor  

E-Print Network (OSTI)

Since acquiring the Grand Junction Railroad in June 2010 from CSX, the Massachusetts Bay Transit Authority (MBTA) has explored the possibility of using the line for commuter rail service. In addition the Grand Junction ...

Bockelie, Adam

2012-01-01T23:59:59.000Z

18

Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado  

SciTech Connect

The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1996-06-01T23:59:59.000Z

19

2011 Annual Planning Summary for Office of Legacy Management (LM), Grand Junction (See LM APS)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Office of Legacy Management (LM), Grand Junction (See LM APS).

20

Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monitoring of the Airport Calibration Pads at Walker Field, Grand Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) More Documents & Publications Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End Summary Report

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

22

DOE/EA-1312: Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (September 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

23

Grand Junction, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Colorado: Energy Resources Junction, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0638705°, -108.5506486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0638705,"lon":-108.5506486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

DOE/EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Project Office To Non-DOE Ownership (04/25/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 F I N A L Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy * Grand Junction Office * 2597 B ¾ Road * Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final DOE/EA-1338 FINAL Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy Grand Junction Office 2597 B ¾ Road Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final i April 2000 TABLE OF CONTENTS Title Page Table of Contents ......................................................................................................................................... i List of Figures ............................................................................................................................................iii

25

US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Krabacher, J.E.

1996-08-01T23:59:59.000Z

26

U.S. Department of Energy at Grand Junction 2003 Annual Inspection⎯Monticello, Utah  

Office of Legacy Management (LM)

at Grand Junction 2003 Annual Inspection⎯Monticello, Utah at Grand Junction 2003 Annual Inspection⎯Monticello, Utah November 2003 Page 1 2003 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites Summary The Monticello site, which includes the U.S. Department of Energy (DOE) Monticello Mill Tailings Site (MMTS) and the Monticello Radioactively Contaminated Properties site, was inspected September 23-25, 2003. A follow-up inspection of the Soil and Sediment properties was conducted on October 8, 2003. The Monticello Radioactively Contaminated Properties site is also called the Monticello Vicinity Properties (MVP) and will be referred to as MVP in this report. Restoration work at MVP is complete and is nearly complete at MMTS. MVP is in good

27

Site observational work plan for the UMTRA project site at Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

This site observational work plan (SOWP) is one of the first Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement. This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The US Department of Energy (DOE) goal is to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation with the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards. The conceptual model demonstrates that the uranium processing-related contamination at the site has affected the unconfined alluvial aquifer, but not the deeper confined aquifer.

NONE

1996-01-01T23:59:59.000Z

28

Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

29

Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

30

Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

31

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

32

PCB usage at the Grand Junction Area Office Facility. Final report  

Science Conference Proceedings (OSTI)

The development, implementation, and results of the polychlorinated biphenyl (PCB) identification project at the Grand Junction Area Office (GJAO) are summarized. Methodology for the PCB analysis is described, and results are tabulated. Of the 51 transformers and disconnects in use at GJAO, 15 unites were determined to be PCB-contaminated or filled with PCBs. This number falls within EPA's estimate of 25 to 40 percent of all transformers in use being at least contaminated. Approximately 324 gallons of PCBs and 515 gallons of PCB-contaminated fluids are being used currently. No contaminated transformers or disconnects are in a position to contaminate food or feed products at the facility.

Miller, M.E.; Donivan, S.

1982-06-01T23:59:59.000Z

33

Grand Junction Projects Office site environmental report for calendar year 1992  

SciTech Connect

This report presents information pertaining to environmental activities conducted during calendar year 1992 at the US Department of Energy Grand Junction Projects Office (DOE-GJPO) facility in Colorado. Environmental activities conducted at the GJPO facility during 1992 included those associated with environmental compliance, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. Four phases of the on-site Grand Junction Projects Office Remedial Action Project were completed in 1992. Remediation activities, which included the removal of 161,589 tons of uranium-mill-tailings-contaminated material from the facility, were conducted in compliance with all applicable permits. Off-site dose modeling for the GJPO was conducted to determine compliance with current National Emission Standards for Hazardous Air Pollutants, Subpart H, and applicable DOE Orders (5400.1 and 5400.5). The total off-site EDE to the public from all sources of radiation emanating from the facility (radon, air particulates, gamma) was calculated as 9 mrem/yr, which is well below the DOE dose limit of 100 mrem/yr above background. The radiological and nonradiological monitoring program at the GJPO facility included monitoring of activities that generate potentially hazardous or toxic wastes and monitoring of ambient air, surface water, and ground water.

Not Available

1993-05-01T23:59:59.000Z

34

Assessment of cover systems at the Grand Junction, Colorado, uranium mill tailings pile: 1987 field measurements  

SciTech Connect

Four Pacific Northwest Laboratory (PNL) scientists and a technician conducted an onsite evaluation of radon gas exhalation, water content profiles, and plant and animal intrusion for a series of cover systems located on the uranium mill tailings pile at Grand Junction, Colorado. These six plots were sampled extensively down to the radon control layer (e.g., asphalt or wet clay) for soil moisture content and permeability. Radon gas emission through the surface was measured. Soil samples were collected and analyzed in the lab for particle-size distribution, particle density, bulk density, and ambient water content. Prairie dog burrows were excavated to discover the extent to which they penetrated the barriers. Plant type, density, and cover characteristics were measured.

Gee, G.W.; Campbell, M.D.; Freeman, H.D.; Cline, J.F.

1989-02-01T23:59:59.000Z

35

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado  

SciTech Connect

This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

Not Available

1994-06-01T23:59:59.000Z

36

Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report  

SciTech Connect

Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.

Morris, R.

1996-05-01T23:59:59.000Z

37

Technical basis for radiological release of Grand Junction Office Building 2. Volume 1, dose assessment  

SciTech Connect

Building 2 on the US Department of Energy (DOE) Grand Junction Office (GJO) site is part of the GJO Remedial Action Program (GJORAP). During evaluation of Building 2 for determination of radiological release disposition, some inaccessible surface contamination measurements were detected to be greater than the generic surface contamination guidelines of DOE Order 5400.5 (which are functionally equivalent to US Nuclear Regulatory Commission [NRC] Regulatory Guide 1.86). Although the building is nominal in size, it houses the site telecommunications system, that is critical to continued GJO operations, and demolition is estimated at $1.9 million. Because unrestricted release under generic surface contamination guidelines is cost-prohibitive, supplemental standards consistent with DOE Order 5400.5 are being pursued. This report describes measurements and dose analysis modeling efforts to evaluate the radiation dose to members of the public who might occupy or demolish Building 2, a 2,480 square-foot (ft) building constructed in 1944. The north portion of the building was used as a shower facility for Manhattan Project uranium-processing mill workers and the south portion was a warehouse. Many originally exposed surfaces are no longer accessible for contamination surveys because expensive telecommunications equipment have been installed on the floors and mounted on panels covering the walls. These inaccessible surfaces are contaminated above generic contamination limits.

Morris, R.; Warga, J.; Thorne, D.

1997-07-01T23:59:59.000Z

38

Final report of the radiological release survey of Building 30B at the Grand Junction Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 30B and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Krauland, P.A.; Corle, S.G.

1997-09-01T23:59:59.000Z

39

Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

40

Comments and responses on the Remedial Action Plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Grand Junction, Colorado. Revision 1  

SciTech Connect

This report contains information concerning public comments and responses on the remedial action plan and site design for stabilization of the inactive uranium mill tailings site in Grand Junction, Colorado.

NONE

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-07-01T23:59:59.000Z

42

Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

43

Final report of the decontamination and decommissioning of Building 18 at the Grand Junction Projects Office Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. The soil beneath Building 18 was found to be radiologically contaminated; the building was not contaminated. The soil was remediated in accordance with identified standards. Building 18 and the underlying soil can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

44

Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Krabacher, J.E.

1996-07-01T23:59:59.000Z

45

Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-07-01T23:59:59.000Z

46

Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soil beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-07-01T23:59:59.000Z

47

DOE - Office of Legacy Management -- Cheney Disposal Cell - 008  

NLE Websites -- All DOE Office Websites (Extended Search)

Cheney Disposal Cell - 008 Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: All of the uranium mill tailings and other residual radioactive materials from the former Grand Junction uranium mill site were disposed of in this dedicated disposal cell. The cell is authorized to remain open until 2003 to accept any additional byproduct materials from Title I UMTRA sites and the Monticello, Utah site; e.g. materials from additional vicinity properties that may be identified. The Department of Energy¿s Grand Junction Office is responsible for Long Term Surveillance and Maintenance

48

Environmental Assessment and Finding of No Significant Impact: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership  

SciTech Connect

The scope of this environmental assessment (EA) is to analyze the potential consequences of the Proposed Action on human health and the environment. Accordingly, this EA contains an introduction to the site and the history of the Grand Junction Office (Chapter One), a description of the Purpose and Need for Agency Action (Chapter Two), a description of the Proposed Action and Alternatives (Chapter Three), and the description of the Affected Environment and the Environmental Consequences (Chapter Four). Resource categories addressed in this EA include geology, soils and topography, groundwater and surface water, floodplains and wetlands, land use and infrastructure, human health, ecological resources, cultural resources, air quality, noise, visual resources, solid and hazardous waste management, transportation, and socioeconomic and environmental justice.

N /A

2000-04-25T23:59:59.000Z

49

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1  

SciTech Connect

This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

50

DOE - Office of Legacy Management -- Climax Uranium Co Grand...  

Office of Legacy Management (LM)

Climax Uranium Co Grand Junction Mill - CO 0-03 FUSRAP Considered Sites Site: Climax Uranium Co. (Grand Junction Mill) (CO.0-03) Designated Name: Alternate Name: Location:...

51

Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone June 3, 2011 - 12:00pm Addthis Media Contacts Donald Metzler Moab Federal Project Director (970) 257-2115 Wendee Ryan S&K Aerospace Public Affairs Manager (970) 257-2145 Grand Junction, CO - One quarter of the uranium mill tailings pile located in Moab, Utah, has been relocated to the Crescent Junction, Utah, site for permanent disposal. Four million tons of the 16 million tons total has been relocated under the Uranium Mill Tailings Remedial Action Project managed by the U.S. Department of Energy (DOE). A little over 2 years ago, Remedial Action Contractor EnergySolutions began

52

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 Grand Junction, CO- The U.S. Department of Energy (DOE) reached another milestone today for the Uranium Mill Tailings Remedial Action Project, having shipped 5 million tons of tailings from the massive pile located in Moab, Utah, to the engineered disposal cell near Crescent Junction, Utah. The pile comprised an estimated 16 million tons total when DOE's Remedial

53

News Release: 2010 UMTRCA Title I and Title II Disposal Sites Reports  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 UMTRCA Title I and Title II Disposal Sites 2010 UMTRCA Title I and Title II Disposal Sites Reports Available News Release: 2010 UMTRCA Title I and Title II Disposal Sites Reports Available February 23, 2011 - 9:51am Addthis News Contact: DOE, Rich Bush, UMTRCA Program Lead (970) 248-6073 Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs (720) 377-9672 Grand Junction, Colo. - The U.S. Department of Energy announces the availability of the 2010 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites and the 2010 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites reports. In 2010, DOE's Office of Legacy Management was responsible for providing long-term surveillance and maintenance services at 25 uranium mill tailings

54

Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell--GJO-99-96-TAR, June 1999  

Office of Legacy Management (LM)

Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. U.S. Department of Energy GJO-99-96-TAR Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell: Evaluation of Long-Term Performance and Risk June 1999 DOE Grand Junction Office June 1999 Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell Page iii Contents Page Executive Summary .....................................................................................................................vii 1.0 Introduction ........................................................................................................................ 1 1.1 Purpose......................................................................................................................... 1

55

DOE Grand Junction Projects Office Parkersburg LTSP  

NLE Websites -- All DOE Office Websites (Extended Search)

Parkersburg LTSP Parkersburg LTSP September 1995 Page ii Contents Page 1.0 Introduction.........................................................................................................................................1 1.1 Purpose ..........................................................................................................................................1 1.2 Background ...................................................................................................................................1 1.3 Regulatory Requirements .............................................................................................................1 2.0 Site Description and History .............................................................................................................3

56

DOE Grand Junction Projects Office Edgemont LTSP  

Office of Legacy Management (LM)

Edgemont LTSP Edgemont LTSP June 1996 Page ii Contents Page 1.0 Introduction ....................................................................................................................................... 1 1.1 Purpose ..................................................................................................................................... 1 1.2 Legal and Regulatory Requirements ........................................................................................ 1 1.3 Role of the Department of Energy ........................................................................................... 2 2.0 Final Site Conditions ......................................................................................................................... 3

57

Case Study: Grand Junction VA Medical Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Expansion Data - Building Additions - PV Solar Array www.antaresgroupinc.com Key Energy Usage Characteristics * Electricity Use: - Summer (Max.): 494 MWh - Winter (Min.): 367 MWh -...

58

Nanotube junctions  

DOE Patents (OSTI)

The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

Crespi, Vincent Henry (Darien, IL); Cohen, Marvin Lou (Berkeley, CA); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

2003-01-01T23:59:59.000Z

59

Josephson junction  

DOE Patents (OSTI)

A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

Wendt, Joel R. (Albuquerque, NM); Plut, Thomas A. (Albuquerque, NM); Martens, Jon S. (Sunnyvale, CA)

1995-01-01T23:59:59.000Z

60

Josephson junction  

DOE Patents (OSTI)

A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

Wendt, J.R.; Plut, T.A.; Martens, J.S.

1995-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Junction Hilltop Wind | Open Energy Information  

Open Energy Info (EERE)

Junction Hilltop Wind Junction Hilltop Wind Jump to: navigation, search Name Junction Hilltop Wind Facility Junction Hilltop Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Community Owned Developer Tom Wind & Bill Sutton Energy Purchaser Interstate Power and Light (Alliant Energy) Location Grand Junction IA Coordinates 42.04671131°, -94.23969269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.04671131,"lon":-94.23969269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Grand Unified Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

Grand Unified Theory Ungelste Rtsel Grand Unified Theory Heute besteht eines der Hauptziele der Teilchenphysik darin, die verschiedenen fundamentalen Krfte in einer Grossen...

63

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

64

Septage Disposal, Licensure (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This statute describes licensing requirements for septage disposal, and addresses land disposal and processing facilities.

65

Disposable rabbit  

DOE Patents (OSTI)

A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

Lewis, Leroy C. (Idaho Falls, ID); Trammell, David R. (Rigby, ID)

1986-01-01T23:59:59.000Z

66

Disposal rabbit  

DOE Patents (OSTI)

A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

Lewis, L.C.; Trammell, D.R.

1983-10-12T23:59:59.000Z

67

Solar Junction | Open Energy Information  

Open Energy Info (EERE)

Junction Jump to: navigation, search Name Solar Junction Place San Jose, California Zip CA 95131 Sector Efficiency, Solar Product Solar Junction is developing high efficiency solar...

68

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success...

69

EMSL: Science: Biogeochemistry Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemistry Grand Challenge Shewanella oneidensis MR-1 growing on a hematite surface Shewanella oneidensis MR-1 growing on a hematite surface. A Grand Challenge in...

70

DOE and Colorado Mesa University Education Agreement Expands...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Junction disposal site. This removal action significantly reduced the potential for radiation exposure to the residents of Grand Junction. Because there are a number of vicinity...

71

Three-junction solar cell  

SciTech Connect

A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

Ludowise, Michael J. (Cupertino, CA)

1986-01-01T23:59:59.000Z

72

slc_disposal.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site at Salt Lake City, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Disposal Site ENERGY Office of Legacy Management U.S. DEPARTMENT OF Site Description and History Regulatory Setting The Salt Lake Disposal Site is located approximately 81 miles west of Salt Lake City and 2.5 miles south of Interstate 80 on the eastern edge of the Great Salt Lake Desert. The disposal cell is adjacent to Energy Solutions, Inc., a commercial low-level radioactive materials disposal site. The surrounding area is sparsely populated, and the nearest residences are at least 15 miles from the site. Vegetation in the area is sparse and typical of semiarid low shrubland. The disposal cell encapsulates about

73

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

74

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

wastewater absorption beds that received effluent from the DP Site radioactive laundry facility from 1945 to 1963, two surface debris disposal sites, and a former septic...

75

Mississippi Nuclear Profile - Grand Gulf  

U.S. Energy Information Administration (EIA) Indexed Site

Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

76

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Poultry Farm Daily Disposal Methods 0;Disposal: Science and Theory First Composter in Delaware · Delmarva was of the first daily composting · 120 in USA over next 10 years #12;Disposal: Science and Theory Composting Procedure · Mixture ­ 1 ½ to 2

Benson, Eric R.

77

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Disposal options emergency mortality composting procedure · Use of composting during outbreaks #12;Disposal: Science and disinfection of farms and surveillance around affected flocks. " USDA APHIS VS EMD, 2007 #12;Disposal: Science

Benson, Eric R.

78

<GrandPrairie>  

NLE Websites -- All DOE Office Websites (Extended Search)

Grande Praire Wind Farm, O'Neill, NE Grande Praire Wind Farm, O'Neill, NE The Western Area Power Administration (Western), an agency of the Department of Energy (DOE), intends to prepare an environmental impact statement (EIS) on the proposed interconnection of the Grande Prairie Wind Farm (Project) in Holt County, near the city of O'Neill, Nebraska. Grande Prairie Wind, LLC (Grande Prairie), a subsidiary of Midwest Wind Energy Development Group, LLC, has applied to Western to interconnect their proposed Project to Western's power transmission system. Western is issuing this notice to inform the public and interested parties about Western's intent to prepare an EIS, conduct a public scoping process, and invite the public to comment on the scope, proposed action, alternatives, and other issues to be addressed in the EIS.

79

Grand Central Connector  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrity Program Integrity Program Integration Karthik Subramanian URS-WD High Level Waste Integration Background * High level radioactive waste (HLW) tanks provides interim confinement for waste prior to processing and permanent disposal * Maintaining structural integrity (SI) of the tanks is a critical component of operations * "Structural Integrity" and "Leak Integrity" Structural Integrity Programs History of Tank Farms SI DST Expert P anel Co mmissio ned Tank SI Wo rksho p SST SI P anel Co mmissio ned VSC Wo rksho p II DST Chemistry Optimizatio n Wo rksho p 2nd TFA SI Wo rksho p 1 st TFA SI Wo rksho p DOE Order 435.1 TSIP Repo rt SRS SI To pical Repo rt TSIP Co mmissio ned Co rro sio n Techno lo gy Exchange (SRNL) Hanfo rd Life Extensio n P anel VSC Wo rksho p I DNFSB 2001 -1 Reco mmendatio

80

Delicate disposal of PCBs  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has published three handbooks to help utilities evaluate the alternatives for disposal of polychlorinated biphenyls (PCBs), which will continue to be a utility responsibility for some time. The identification of PCBs as a toxic substance in 1976 ended their use as a capacitor and transformer insulator, but 375 million pounds are distributed in equipment and their disposal must be carefully planned. The booklets outline Environmental Protection Agency (EPA) regulations, the disposal technology by incineration or landfill which is currently available, and guidelines for preventing spills and controlling risks. (DCK)

Lihach, N.; Golden, D.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Rio Grande Compact (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rio Grande Compact (Texas) Rio Grande Compact (Texas) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

82

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

request for further delays After the EPA certified that the WIPP met the standards for disposal of transuranic waste in May 1998, then-New Mexico Attorney General Tom Udall...

83

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy (DOE) is closing the circle on the generation, management, and disposal of transuranic waste. But the WIPP story is not just about radioactive waste. It is...

84

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Use of Composting · Composting has ­ British Columbia 2009 #12;Disposal: Science and Theory · Initial farm linked to NY LBM · Two additional and pile procedure Delmarva 2004 #12;Disposal: Science and Theory Delmarva 2004 · Composting used

Benson, Eric R.

85

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Foam Used in Actual Outbreak · Water #12;Disposal: Science and Theory Water Based Foam Culling Demo · First large scale comparison · Two:46 (m:s) #12;Disposal: Science and Theory WV H5N2 AIV 2007 · AIV positive turkeys ­ 25,000 turkey farm

Benson, Eric R.

86

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se ha usado como Virginia (2007) ­ British Columbia (2009) Uso del compostaje #12;Disposal: Science and Theory · Primera apilamiento Delmarva (2004) #12;Disposal: Science and Theory · El compostaje se usó para proteger una densa

Benson, Eric R.

87

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Brief History of Foam 2004 ­ Bud and foam 2009 ­ No advantage for gas #12;Disposal: Science and Theory What is foam? · What is fire fighting system. #12;Disposal: Science and Theory Foam Composition · Foam can include ­ Mixture of surfactants

Benson, Eric R.

88

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Compostaje de aves de corralRouchey et al., 2005) Investigación previa #12;Disposal: Science and Theory · Se ha evaluado y documentado el, bovino Investigación previa #12;Disposal: Science and Theory · Experimento nro. 1 Impacto de la espuma en

Benson, Eric R.

89

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Opciones para la eliminación · ¿Qué compostaje durante brotes de enfermedades Lista de contenido #12;Disposal: Science and Theory "Ante un brote brotes de IIAP #12;Disposal: Science and Theory · En 2004, se despoblaron 100 millones de aves en todo el

Benson, Eric R.

90

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Las recomendaciones de campo se la espuma #12;Disposal: Science and Theory · Múltiples especies de aves pueden despoblarse con espuma cesación #12;Disposal: Science and Theory · Dentro de una especie, pueden existir variaciones ­ Los ánades

Benson, Eric R.

91

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Opciones para la producción de espuma espuma · Sistemas de boquilla #12;Disposal: Science and Theory Requisitos estimados: · Tiempo: 2 a 3 compactas ­ Equipo de respuesta propio de la industria Espuma de aire comprimido #12;Disposal: Science

Benson, Eric R.

92

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Summary · Foam is currently a viable ­ Foam application directly to cage #12;Disposal: Science and Theory Legal Status of Foam · Procedure depopulation, culling, and euthanasia #12;Disposal: Science and Theory Acknowledgements · USDA AICAP2 · USDA

Benson, Eric R.

93

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Mass Emergency Composting · Basic ­ Create carcass and litter windrow #12;Disposal: Science and Theory Mass Emergency Composting · Basic cover ­ Clean and disinfect house ­ Sample for virus again #12;Disposal: Science and Theory Mass

Benson, Eric R.

94

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Gassing is a preferred #12;Disposal: Science and Theory Carbon Dioxide Gassing · Carbon dioxide (CO2) one of the standard sensitivity time #12;Disposal: Science and Theory · Argon-CO2 gas depopulation evaluated under laboratory

Benson, Eric R.

95

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Foam Generator Setup · Drop off foam generator cart at one end of house #12;Disposal: Science and Theory Foam Generator Setup · Trailer parked generator attached to hose #12;Disposal: Science and Theory Foam Generation Begins · Team of two to operate

Benson, Eric R.

96

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Foaming Options · Compressed Air Foam Systems (CAFS) · Foam Blower · Foam Generator · Nozzle Systems #12;Disposal: Science and Theory Compressed ­ Industry owned response team #12;Disposal: Science and Theory Commercial CAFS for Poultry · Poultry

Benson, Eric R.

97

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory 2004 ­ Participación de Bud Malone y la espuma 2009 ­ Ninguna ventaja para el gas Breve historia de la espuma #12;Disposal: Science sistema de boquilla ¿Qué es la espuma? #12;Disposal: Science and Theory · La espuma puede incluir: ­ Una

Benson, Eric R.

98

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory 0 20 40 60 80 100 Compostaje #12;Disposal: Science and Theory · Delmarva fue de las primeras granjas en realizar el compostaje de en EE.UU. en los próximos 10 años. Pionera en compostaje en Delaware #12;Disposal: Science and Theory

Benson, Eric R.

99

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Procedimiento básico ­ Desarrollar una pila de carcasas y lecho. Compostaje masivo de emergencia #12;Disposal: Science and Theory de emergencia #12;Disposal: Science and Theory · Desarrollar planes antes de que ocurra una

Benson, Eric R.

100

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Composting · Composting is defined drop #12;Disposal: Science and Theory Composting · Optimal composting ­ Carbon to nitrogen ratio (C;Disposal: Science and Theory Compost Composition · A variety of supplemental carbon materials have been

Benson, Eric R.

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

102

disposal_cell.cdr  

Office of Legacy Management (LM)

With the With the April 24, 1997, ceremonial ground-breaking for disposal facility construction, the Weldon Spring Site Remedial Action Project (WSSRAP) moved into the final stage of cleanup, treatment, and disposal of uranium- processing wastes. The cleanup of the former uranium- refining plant consisted of three primary operations: Demolition and removal of remaining concrete pads and foundations that supported the 44 structures and buildings on site Treatment of selected wastes Permanent encapsulation of treated and untreated waste in an onsite engineered disposal facility In September l993, a Record of Decision (ROD) was signed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), with concurrence by the Missouri Department of Natural

103

Neutrino Mass and Grand Unification  

E-Print Network (OSTI)

Seesaw mechanism appears to be the simplest and most appealing way to understand small neutrino masses observed in recent experiments. It introduces three right handed neutrinos with heavy masses to the standard model, with at least one mass required by data to be close to the scale of conventional grand unified theories. This may be a hint that the new physics scale implied by neutrino masses and grand unification of forces are one and the same. Taking this point of view seriously, I explore different ways to resolve the puzzle of large neutrino mixings in grand unified theories such as SO(10) and models based on its subgroup $SU(2)_L\\times SU(2)_R\\times SU(4)_c$.

R. N. Mohapatra

2004-12-03T23:59:59.000Z

104

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

PIONEERING NUCLEAR WASTE DISPOSAL U.S. Department of Energy Carlsbad Area Office February 2000 DOECAO-00-3124 T h e W a s t e I s o l a t i o n P i l o t P l a n t ii Table of...

105

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

106

Waste disposal package  

DOE Patents (OSTI)

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

107

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Previous Research · Composting, et.al. 2005; Bendfeldt et al., 2006; DeRouchey et al., 2005) #12;Disposal: Science and Theory: Science and Theory Scientific Validation of Composting · Experiment 1 Impact of foam on composting

Benson, Eric R.

108

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Field recommendations based of activity ­ Corticosterone ­ EEG, ECG and motion studies · Large scale testing ­ Field scale units Science of Foam #12;Disposal: Science and Theory Cessation Time · Multiple bird species can be depopulated

Benson, Eric R.

109

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · Se ubica el carretón con el enfriamiento Ventiladores de túnel de viento #12;Disposal: Science and Theory · Se estaciona el remolque en uno: Science and Theory · Se usa un equipo de dos personas para hacer funcionar el sistema: ­ Operario del

Benson, Eric R.

110

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se define como la: Science and Theory · Compostaje óptimo ­ Relación carbono/nitrógeno (C:N): 20:1 a 35:1 ­ Contenido de Compostaje #12;Disposal: Science and Theory · Se ha utilizado satisfactoriamente una variedad de materiales

Benson, Eric R.

111

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network (OSTI)

Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Why Depopulate? · Depopulation Methods · Basics of Foam · Types of Foam Equipment · Science Behind Foam · Implementing Foam Depopulation · Use of Foam in the Field · Conclusions #12;Disposal: Science and Theory "When HPAI outbreaks

Benson, Eric R.

112

Photo of the Week: An Express Train to Crescent Junction | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Express Train to Crescent Junction An Express Train to Crescent Junction Photo of the Week: An Express Train to Crescent Junction January 4, 2013 - 1:53pm Addthis In the 1950s, one of the largest uranium deposits in the U.S. was found near Moab, Utah. The Department of Energy began cleaning up the uranium mill tailings from the Moab Site in April 2009, using steel containers to transport more than five million tons of tailings for safe disposal near Crescent Junction, Utah. In this May 2012 photo, one of the trains is shown on the Union Pacific Railroad in Utah, passing a butte capped by a familiar southwest U.S. rock formation known as Navajo Sandstone. | Photo courtesy of the Department of Energy. In the 1950s, one of the largest uranium deposits in the U.S. was found near Moab, Utah. The Department of Energy began cleaning up the uranium

113

Spelunking in La Cueva Grande  

Science Conference Proceedings (OSTI)

La Cueva Grande is the 5-sided immersive facility put into place at Los Alamos National Laboratory. It was the highest-resolution stereo immersive facility in the world at the time of first use in 2005. The design and common use cases of LCG are presented, ... Keywords: projection systems, virtual reality

Laura Monroe

2008-08-01T23:59:59.000Z

114

Grand Challenges in Energy by Secretary Steven Chu | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Challenges in Energy by Secretary Steven Chu Grand Challenges in Energy by Secretary Steven Chu Grand Challenges in Energy by Secretary Steven Chu More Documents &...

115

The Particle Adventure | Unsolved Mysteries | Grand Unified Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

Unsolved Mysteries - Grand Unified Theory Grand Unified Theory Today, one of the major goals of particle physics is to unify the various fundamental forces in a Grand Unified...

116

PP-53 Rio Grande Electric Cooperative, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Rio Grande Electric Cooperative, Inc. PP-53 Rio Grande Electric Cooperative, Inc. Presidential Permit authorizing Rio Grande Electric Cooperative, Inc.to construct, operate, and...

117

PP-33 Rio Grande Electric Cooperative Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rio Grande Electric Cooperative Inc PP-33 Rio Grande Electric Cooperative Inc Presidential permit authorizing Grande Electric Cooperative Inc to construct, operate, and maintain...

118

Chapter 37 Land Disposal Restrictions (Kentucky) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Land Disposal Restrictions (Kentucky) Chapter 37 Land Disposal Restrictions (Kentucky) Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor...

119

Transportation, Aging and Disposal Canister System Performance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1...

120

Waste Disposal (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Disposal (Illinois) Waste Disposal (Illinois) Eligibility Commercial Construction Industrial Utility Program Information Illinois Program Type Environmental Regulations This...

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS...  

NLE Websites -- All DOE Office Websites (Extended Search)

DISPOSAL RECORDS (Revision 2) More Documents & Publications Records Management Handbook PROPERTY DISPOSAL RECORDS ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND...

122

Josephson junction Q-spoiler  

DOE Patents (OSTI)

An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

1986-03-25T23:59:59.000Z

123

Josephson junction Q-spoiler  

DOE Patents (OSTI)

An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

Clarke, John (Berkeley, CA); Hilbert, Claude (Austin, TX); Hahn, Erwin L. (Berkeley, CA); Sleator, Tycho (Berkeley, CA)

1988-01-01T23:59:59.000Z

124

EV Everywhere Grand Challenge Blueprint  

NLE Websites -- All DOE Office Websites (Extended Search)

A Message from A Message from the Assistant Secretary Every challenge presents an even greater opportunity, and the EV Everywhere Grand Challenge is no exception. The need for clean energy solutions drives the most important economic development race of the 21st century, providing opportunity for America to invent, manufacture, and export clean energy technologies. Recognizing that vehicle electrification is an essential part of our country's "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to be the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

125

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

126

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

127

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

WEB RESOURCE: Nuclear Waste Disposal  

Science Conference Proceedings (OSTI)

May 10, 2007 ... The complete "Yucca Mountain Resource Book" is also available for download at this site. Citation: Nuclear Waste Disposal. 2007. Nuclear...

129

Waste disposal and renewable resources.  

E-Print Network (OSTI)

?? Purpose/aim: The purpose of this dissertation is to find out the effect of waste disposal on environment and to explore the effect of renewable (more)

Hai, Qu; PiaoYi, Sun

2013-01-01T23:59:59.000Z

130

Continuing disposal of coal ash  

Science Conference Proceedings (OSTI)

The large volume of power-plant coal ash produced and stricter Federal water pollution controls are making ash disposal increasingly difficult for utilities. The protection of surface and ground water quality required in the Resource conservation and Recovery Act of 1976 (RCRA) and the Federal Water Pollution Control Act's Clean Water Act (CWA) amendments of 1977 have raised the cost of disposal to a level where an acceptable method must be found. The Electric Power Research Institute's Coal Ash Disposal Manual (EPRI-FM--1257) describes-ash chemistry, disposal site selection, site monitoring and reclamation, and other information of interest to utilities that are making cost estimates and procedure evaluations. (DCK)

Lihach, N.; Golden, D.

1980-03-01T23:59:59.000Z

131

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

132

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

133

Method of making semiconductor junctions  

DOE Patents (OSTI)

A p-n junction on a silicon substrate doped with boron ions (d- dopant) is made in following manner. A shallow silicon surface layer including a n-type dopant is first obtained by ion implantation of the substrate with arsenic atoms. The arsenic-doped silicon layer at the surface has a relatively low initial reflectivity. Then, radiation from a pulsed carbon dioxide laser is directed onto the doped surface. A portion of the pulsed radiation causes melting of the thin arsenic-doped layer at the solid surface, giving the shallow melted surface a reflectivity greater than the initial reflectivity of the solid surface. The increased reflectivity of the melted surface prevents an additional portion of the pulsed radiation from causing further melting, thus controlling the depth of melting. The melted surface is then allowed to cool and solidify to form a p-n junction at a thin (less than 200 angstrom) junction depth. 6 figs.

James, R.B.

1990-01-01T23:59:59.000Z

134

WASTE DISPOSAL SECTION CORNELL UNIVERSITY  

E-Print Network (OSTI)

2/07 WASTE DISPOSAL SECTION CORNELL UNIVERSITY PROCEDURE for DISPOSAL of RADIOACTIVE MATERIALS This procedure has been developed to ensure the safety of those individuals who handle radioactive waste identified hazardous waste, or other unusual issues require special consideration. Contact the Department

Manning, Sturt

135

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics EV Everywhere Grand Challenge With their immense potential for increasing the...

136

UNREVIEWED DISPOSAL QUESTION EVALUATION: WASTE DISPOSAL IN ENGINEERED TRENCH #3  

SciTech Connect

Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

Hamm, L.; Smith, F.; Flach, G.; Hiergesell, R.; Butcher, T.

2013-07-29T23:59:59.000Z

137

Electronic properties of nanoribbon junctions  

Science Conference Proceedings (OSTI)

We investigate the effects of nitrogen impurities on the electronic properties of quantum dots realized in Z-shaped graphene nanoribbon junction. The system is studied using first principle calculations, based on the local spin density approximation ... Keywords: Graphene, Nanoribbon, Quantum dots

A. Len; Z. Barticevic; M. Pacheco

2008-11-01T23:59:59.000Z

138

Health Risks Associated with Disposal of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Disposal of Depleted Uranium A discussion of risks associated with disposal...

139

Documents: Disposal of DUF6 Conversion Products  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion Products Search Documents: Search PDF Documents View a list of all documents Disposal of DUF6 Conversion Products PDF Icon Engineering Analysis for Disposal of...

140

Environmental Risks of Depleted UF6 Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Disposal A discussion of the environmental impacts...

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Assessment of Preferred Depleted Uranium Disposal Forms  

NLE Websites -- All DOE Office Websites (Extended Search)

. . 7 3.2 PRELIMINARY ASSESSMENT OF DU DISPOSAL AT OTHER SITES . . . . . . . . . . 8 3.3 COSTS OF PRODUCTION, TRANSPORTATION, AND DISPOSAL OF DU WASTE FORMS . . . . . . . . . . ....

142

PROPERTY DISPOSAL RECORDS | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

DISPOSAL RECORDS More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) Records Management Handbook Inspection Report: INS-O-02-01...

143

Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership  

Energy.gov (U.S. Department of Energy (DOE))

Proceedings of the Waste Management 2001 Symposium.2001, University of Arizona, Tucson, Arizona.Donna Bergman-Tabbert, Tracy Plessinger

144

SUMMARY REPORT, 1954-1959 RAW MATERIALS DEVELOPMENT LABORATORY WINCHESTER, MASSACHUSETTS AND GRAND JUNCTION, COLORADO  

SciTech Connect

A brief review of the research work performed by the National Lead Company on the recovery of U from its ores is presented. A bibliography is presented which includes all reports on raw materials published by National Lead Company through Dec. 1958. Also included is a list of complete publications on raw materials from 1944 to 1954. (W.L.H.) low conditions at room temperature. Emphasis was placed on the effect of reaction parameters and mercury-recovery techniques on the Hg/sup 202/ content of the solid calomel formed in the reaction. For pure hydrogen chloride the Hg/sup 202/ content of the Calomel was found to be 39.9 plus or minus 0.3%, compared to the natural abundance of 29.8%. With 20 to 40 mole% of butadiene-1,3 in the hydrogen chloride, calomels containing 83 to 84% of Hg/sup 202/ were consistently obtained. The Hg/sup 202/ content of the calomel product was found to increase markedly when unsaturated hydrocarbons were added to the hydrogen chloride stream. The addends studied included butadiene - 1,3, benzene, isoprene, acetylene, propylene, and ethylene in order of decreasing effectiveness. From steady-state calculations the effectiveness of the addend can be shown to be determined by the rate ratio, k/sub 8// k/sub 4/. For the maximally enriching mixture of hydrogen chloride and butadiene, the effect of variations in lamp temperature and reaction pressure was studied. At lamp temperatures exceeding approximately 35 deg 'C, reduced enrichments were obtained owing to emission-line broadening. A progressive reduction in enrichment was also observed with substrate pressures greater than 25 mm, owing presumably to Lorentz-broadening of the hyperfine absorption contours of the Hg/sup N/ in the reaction cell. The Hg/sup 202/ content of the calomel product was determined by resonance radiation absorbiometry. The apparent Hg/sup 202/ abundances of the mercury recovered from the calomel product were found to depend strongly on the method used for isolating the enriched mercury from the calomel. Evidence was obtained for the occurrence of isotopically degradative exchange reactions during the recovery process. A recovery technique was developed which appeared to eliminate this exchange degradation. (auth)

Beverly, R.G. ed.

1959-09-30T23:59:59.000Z

145

Review: Red Pedagogy: Native American Social and Political Thought by Sandy Grande  

E-Print Network (OSTI)

and Political Thought by Sandy Grande. New York: Rowman &discourse. For these reasons, Sandy Grandes (2004) text

Caldern, Dolores

2006-01-01T23:59:59.000Z

146

Microsoft Word - GrandCoulee_FONSI.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project BPA's Finding of No Significant Impact 1 Bonneville Power Administration's Finding of No Significant Impact (FONSI) for the Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project DOE/EA-1679 SUMMARY The Bonneville Power Administration (BPA) announces its environmental findings on the Bureau of Reclamation's (Reclamation) Grand Coulee Third Powerplant 500-kV Transmission Line Replacement Project. This project involves replacing the six 500-kV transmission lines of the Third Powerplant (TPP) at Grand Coulee Dam. The transmission lines are presently installed within the dam and a two-chambered tunnel that leads to a Spreader Yard about a mile west of the TPP. BPA would design and construct

147

Microsoft Word - 11084030 DVP  

Office of Legacy Management (LM)

1 1 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site November 2011 LMS/GRJ/S00811 This page intentionally left blank U.S. Department of Energy DVP-August 2011, Grand Junction, Colorado November 2011 RIN 11084030 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

148

Microsoft Word - RIN 12084759 DVP  

Office of Legacy Management (LM)

Sampling at the Sampling at the Grand Junction, Colorado, Disposal Site October 2012 LMS/GRJ/S00812 This page intentionally left blank U.S. Department of Energy DVP-August 2012, Grand Junction, Colorado October 2012 RIN 12084759 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

149

Microsoft Word - 10073245 DVP.doc  

Office of Legacy Management (LM)

0 0 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2010 LMS/GRJ/S00810 This page intentionally left blank U.S. Department of Energy DVP-August 2010, Grand Junction, Colorado October 2010 RIN 10073245 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment Summary..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

150

WIPP - Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Disposal Cover Page and Table of Contents Closing the Circle The Long Road to WIPP - Part 1 The Long Road to WIPP - Part 2 Looking to the Future Related Reading and The...

151

Solid Waste Disposal Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

152

SunShot Grand Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home SunShot Grand Challenge SunShot Grand Challenge Addthis SunShot Grand Challenge 1 of 28...

153

EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties,...

154

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30,...

155

Tank Waste Disposal Program redefinition  

SciTech Connect

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

156

Grand Meadow Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Grand Meadow Wind Farm Grand Meadow Wind Farm Jump to: navigation, search Name Grand Meadow Wind Farm Facility Grand Meadow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Xcel Energy Location Dexter MN Coordinates 43.707798°, -92.654071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.707798,"lon":-92.654071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

EV Everywhere Grand Challenge - Battery Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandalow, Under Secretary of Energy (acting) and Assistant Secretary for Policy and International Affairs 8:45-8:55 AM SETTING THE STAGE FOR THE EV EVERYWHERE GRAND CHALLENGE Dr....

158

Depleted uranium disposal options evaluation  

SciTech Connect

The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

1994-05-01T23:59:59.000Z

159

Junction, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Junction, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

160

Nanoscale heat conduction across tunnel junctions  

E-Print Network (OSTI)

?2005? Nanoscale heat conduction across tunnel junctions Y.May 2005? Nanoscale heat conduction across tunnel junctionsprevailing theory of heat conduction in highly disordered

Ju, Y. Sungtaek; Hung, M T; Carey, M J; Cyrille, M C; Childress, J R

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermal activation of superconducting Josephson junctions  

E-Print Network (OSTI)

Superconducting quantum circuits (SQCs) are being explored as model systems for scalable quantum computing architectures. Josephson junctions are extensively used in superconducting quantum interference devices (SQUIDs) ...

Devalapalli, Aditya P. (Aditya Prakash)

2007-01-01T23:59:59.000Z

162

Disposable telemetry cable deployment system  

DOE Patents (OSTI)

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

163

Electrochemical Apparatus with Disposable and Modifiable Parts  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

164

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can liners. This waste stream must be boxed to protect custodial staff. It goes directly to the landfill lined cardboard box. Tape seams with heavy duty tape to contain waste. Limit weight to 20 lbs. Or

Sheridan, Jennifer

165

Design of Flexible-Duct Junction Boxes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design of Flexible-duct Design of Flexible-duct Junction Boxes Robert Beach, IBACOS Duncan Prahl, IBACOS Design of Flexible-duct Junction Boxes Presentation Outline * Current Standards and Practice * Analysis Methods * Recommendations Design of Flexible-duct Junction Boxes * Detailed report is in peer review anticipated to be published T3 this year. - http://www1.eere.energy.gov/library/default.aspx?page=2&spi d=2. * Measure guide to be part of Building America Solutions Center - http://basc.pnnl.gov/ Design of Flexible-duct Junction Boxes Typical Installations As Plenum As Monster Design of Flexible-duct Junction Boxes Current Standards * ASHRAE 2012 HVAC Systems and Equipment, Box Plenum Systems Using Flexible Duct - Constrains Box Width to 2-3x Entrance Width - Constrains Box Length to 2 x Box Width

166

Delta Junction Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delta Junction Wind Farm Delta Junction Wind Farm Jump to: navigation, search Name Delta Junction Wind Farm Facility Delta Junction Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Alaska Environmental Power Developer Alaska Environmental Power Location South of Delta Junction AK Coordinates 64.069461°, -145.717661° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.069461,"lon":-145.717661,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Triple Junction Distributions in Grain Boundary Engineered Alloys  

Science Conference Proceedings (OSTI)

A triple junction distribution function for junctions with at least one coherent ... Strain Gradient and Degradation in Magnetic Properties: Focus Transformer Steel.

168

DISPOSAL OF RADIOACTIVE WASTE ON LAND  

SciTech Connect

Two years' consideration of the disposal problem by the National Research Council Committee on Waste Disposal has led to certain conclusions which are presented. Waste may be safely disposed of at many sites in the United States but conversely there are many large areas in which it is unlikely that disposal sites can be found as, for example, the Atlantic seaboard. The research to ascertain feasibility of disposal hss for the most part not yet been done. The most practical immediate solution of the problem suggests disposal in cavities mined in salt beds or domes. Disposal could be greatly simplified if the waste could be gotten into solid form of relatively insoluble character. Disposal in porous beds underground has capabilities of taking large volumes but will require considerable research to mske the waste compatible with such an environment. The main difficulty with this method at present is to prevent clogging of pore space as waste is pumped in. (auth)

Hess, H.H.; Thurston, W.R.

1958-06-01T23:59:59.000Z

169

Disposal of NORM waste in salt caverns  

Science Conference Proceedings (OSTI)

Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

1998-07-01T23:59:59.000Z

170

Changes in Vegetation at the Monticello, Utah, Disposal Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changes in Vegetation at the Monticello, Utah, Disposal Site Changes in Vegetation at the Monticello, Utah, Disposal Site Changes in Vegetation at the Monticello, Utah, Disposal...

171

Disposal Practices at the Nevada Test Site 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

172

FAQ 42-What are the potential environmental impacts from disposal...  

NLE Websites -- All DOE Office Websites (Extended Search)

disposal of depleted uranium as an oxide? What are the potential environmental impacts from disposal of depleted uranium as an oxide? Disposal as oxide could result in adverse...

173

Repository Reference Disposal Concepts and Thermal Load Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists...

174

Rio Grande South | Open Energy Information  

Open Energy Info (EERE)

Rio Grande South Rio Grande South Facility Rio Grande South Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Gulf of Mexico TX Coordinates 26.189°, -97.053° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.189,"lon":-97.053,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Rio Grande North | Open Energy Information  

Open Energy Info (EERE)

Rio Grande North Rio Grande North Facility Rio Grande North Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from South Padre Island TX Coordinates 26.364°, -97.078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.364,"lon":-97.078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Disposal Systems Evaluations and Tool Development - Engineered...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

... 156 Table 5-5 Fuel cycle, disposal environment, and aging time for 24 base case combinations. ......

177

District-heating system, La Grande, Oregon  

DOE Green Energy (OSTI)

The area suggested for district heating feasibility study encompassed slightly over 400 acres extending north and south from the geographic center of the city. This district was subdivided into 8 areas, which include the Grande Ronde Hospital, Eastern Oregon State College, La Grande school district, one institutional area, one commercial area and three residential areas. Basic space heating loads developed for the various areas after a survey by county personnel and computation using a computer program form the basis for this economic feasibility study.

Not Available

1982-01-01T23:59:59.000Z

178

SunShot Grand Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge SunShot Grand Challenge SunShot Grand Challenge Addthis SunShot Grand Challenge 1 of 28 SunShot Grand Challenge Participants gather for the plenary session at the SunShot Grand Challenge Summit and Technology Forum in Denver, Colorado. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:10 Arun Majumdar, Founding Director, ARPA-E 2 of 28 Arun Majumdar, Founding Director, ARPA-E Arun Majumdar, Founding Director, ARPA-E gives the welcoming remarks. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:16 Energy Secretary Steven Chu at SunShot Grand Challenge 3 of 28 Energy Secretary Steven Chu at SunShot Grand Challenge Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:32

179

Waste disposal options report. Volume 1  

SciTech Connect

This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

1998-02-01T23:59:59.000Z

180

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network (OSTI)

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL #12;#12;PNNL-SA-69994 Waste Disposal Workshops: Anthrax- Contaminated Waste AM Lesperance JF Upton SL

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Environmental waste disposal contracts awarded  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

182

Sample storage/disposal study  

SciTech Connect

Radioactive waste from defense operations has accumulated at the Hanford Site`s underground waste tanks since the late 1940`s. Each tank must be analyzed to determine whether it presents any harm to the workers at the Hanford Site, the public or the environment. Analyses of the waste aids in the decision making process in preparation of future tank waste stabilization procedures. Characterization of the 177 waste tanks on the Hanford Site will produce a large amount of archived material. This also brings up concerns as to how the excess waste tank sample material from 325 and 222-S Analytical Laboratories will be handled. Methods to archive and/or dispose of the waste have been implemented into the 222-S and 325 Laboratory procedures. As the amount of waste characterized from laboratory analysis grows, an examination of whether the waste disposal system will be able to compensate for this increase in the amount of waste needs to be examined. Therefore, the need to find the safest, most economically sound method of waste storage/disposal is important.

Valenzuela, B.D.

1994-09-29T23:59:59.000Z

183

Grand Unification with and without Supersymmetry  

Science Conference Proceedings (OSTI)

Grand Unified Theories based on the group SO(10) generically provide interesting and testable relations between the charged fermions and neutrino sector masses and mixings. In the light of the recent neutrino data, we reexamine these relations both in supersymmetric and non-supersymmetric models, and give a brief review of their present status.

Melfo, Alejandra [CFF, Universidad de Los Andes, Merida (Venezuela); Institute J. Stefan, Ljubljana (Slovenia)

2007-06-19T23:59:59.000Z

184

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents (OSTI)

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

Olson, J.M.; Kurtz, S.R.

1992-11-24T23:59:59.000Z

185

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents (OSTI)

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1992-01-01T23:59:59.000Z

186

Josephson Junctions Fabricated by Focussed Ion Beam  

E-Print Network (OSTI)

Devices (SQUIDs) are the worlds most sensitive detectors of magnetic flux, capable of measuring the magnetic fields produced by a single living cell. Josephson junctions have formed the basis of the international standardization of the volt since...

Hadfield, Robert Hugh

187

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah...

188

Energy Secretary Steven Chu to Attend Grand Opening of Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123...

189

Microsoft Word - GRJ 2008-final.doc  

Office of Legacy Management (LM)

Grand Junction, Colorado Grand Junction, Colorado Page 6-1 6.0 Grand Junction, Colorado, Disposal Site 6.1 Compliance Summary The Grand Junction, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site, was inspected on March 21 and 26, 2008. The disposal cell and all associated surface water diversion and drainage structures were in good condition and functioning as designed. A portion of the disposal cell remains open and is operated by DOE to receive additional low-level radioactive waste materials from various sources. The annual inspection requirement is only applicable to the closed and completed portion of the disposal cell and the surrounding disposal site. DOE is evaluating relatively low-cost methods for renovating conventional (low-permeability)

190

Semiconductor tunnel junction with enhancement layer  

DOE Patents (OSTI)

The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

Klem, John F. (Sandia Park, NM); Zolper, John C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

191

Junction Plasmon-Induced Molecular Reorientation  

SciTech Connect

Time and frequency dependent intensity variations in sequences of Raman spectra recorded at plasmonic junctions can be assigned to molecular reorientation. This is revealed through Raman trajectories recorded at a nanojunction formed between a silver AFM tip and a corrugated silver surface coated with biphenyl-4,4-dithiol. Molecular motion is not observed when the tip is retracted and only surface enhancement is operative. In effect, junction plasmon induced molecular reorientation is tracked.

El-Khoury, Patrick Z.; Hu, Dehong; Hess, Wayne P.

2013-10-17T23:59:59.000Z

192

Multi-junction solar cell device  

SciTech Connect

A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

2007-12-18T23:59:59.000Z

193

Aerosol can waste disposal device  

DOE Patents (OSTI)

Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

O' Brien, Michael D. (Las Vegas, NV); Klapperick, Robert L. (Las Vegas, NV); Bell, Chris (Las Vegas, NV)

1993-01-01T23:59:59.000Z

194

Aerosol can waste disposal device  

DOE Patents (OSTI)

Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

O' Brien, M.D.; Klapperick, R.L.; Bell, C.

1993-12-21T23:59:59.000Z

195

EV Everywhere Grand Challenge Kick-Off  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Grand Challenge Kick-Off Thursday, June 21, 2012 - Hyatt Regency, Dearborn, MI Event Objective: To showcase existing DOE efforts in vehicle electrification and to obtain stakeholder input on the overall concept of the EV Everywhere Grand Challenge, the high-level strategy, and aggressive next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program 8:35-8:45 AM STRATEGIC SIGNIFICANCE OF PLUG-IN ELECTRIC VEHICLES

196

Grand Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Grand Ridge Wind Farm Facility Grand Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location La Salle County IL Coordinates 40.999966°, -88.401693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.999966,"lon":-88.401693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Rio Grande pipeline introduces LPG to Mexico  

SciTech Connect

Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

NONE

1997-06-01T23:59:59.000Z

198

Disposal Authorization Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and closure of the SDF, and is a requirement under the Department of Energy's (DOE) Radioactive Waste Management Manual 435.1-1. Disposal Authorization Statement More...

199

HNPF LIQUID WASTE DISPOSAL COST STUDY  

SciTech Connect

The HNPF cost analysis for waste disposal was made on the basis of 10,000 gallons of laundry waste and 9,000 gallons of other plant waste per year. The costs are compared for storage at HNPF site for 10 yr, packaging and shipment to AEC barial ground, packaging and shipment for sea disposal, and disposal by licensed vendor. A graphical comparison is given for the yearly costs of disposal by licensed vendor and the evaporator system as a function of waste volume. Recommendations are included for the handling of the wastes expected from HNPF operations. (B.O.G.)

Piccot, A.R.

1959-11-01T23:59:59.000Z

200

Operational Issues at the Environmental Restoration Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ERDF is operated by Stoller Corporation (Stoller) under subcontract to Washington Closure Hanford (WCH). Currently, six disposal cells comprise the ERDF, with four more...

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Date: ____________ MATERIAL FOR HAZARDOUS WASTE DISPOSAL  

E-Print Network (OSTI)

Feb 2003 Date: ____________ MATERIAL FOR HAZARDOUS WASTE DISPOSAL 1) Source: Bldg: ________________________________________ Disinfection? cc YES, Autoclaved (each container tagged with `Treated Biomedical Waste') cc YES, Chemical

Sinnamon, Gordon J.

202

Agropecuaria e Industrial Serra Grande | Open Energy Information  

Open Energy Info (EERE)

Agropecuaria e Industrial Serra Grande Agropecuaria e Industrial Serra Grande Jump to: navigation, search Name Agropecuaria e Industrial Serra Grande Place São Raimundo das Mangabeiras, Maranhao, Brazil Product Privately owned Brazil based ethanol producer, located in the state of Maranhao. References Agropecuaria e Industrial Serra Grande[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Agropecuaria e Industrial Serra Grande is a company located in São Raimundo das Mangabeiras, Maranhao, Brazil . References ↑ "[ Agropecuaria e Industrial Serra Grande]" Retrieved from "http://en.openei.org/w/index.php?title=Agropecuaria_e_Industrial_Serra_Grande&oldid=341914" Categories:

203

Used Fuel Disposition Campaign Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

204

Chemical Disposal The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program  

E-Print Network (OSTI)

Chemical Disposal Dec, 2011 Chemicals: The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program where all University chemical waste is picked up and sent out for proper disposal. (There are some chemicals that they will not take because of their extreme hazards

Machel, Hans

205

Methods for the fabrication of thermally stable magnetic tunnel junctions  

DOE Patents (OSTI)

Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

Chang, Y. Austin (Middleton, WI); Yang, Jianhua J. (Madison, WI); Ladwig, Peter F. (Hutchinson, MN)

2009-08-25T23:59:59.000Z

206

Petroleum Engineering Techniques for HLW Disposal  

Science Conference Proceedings (OSTI)

This paper describes why petroleum engineering techniques are of importance and can be used for underground disposal of HLW (high-level radioactive waste). It is focused on rock salt as a geological host medium in combination with disposal of the HLW canisters in boreholes drilled from the surface. Both permanent disposal and disposal with the option to retrieve the waste are considered. The paper starts with a description of the disposal procedure. Next disposal in deep boreholes is treated. Then the possible use of deviated boreholes and of multiple boreholes is discussed. Also waste isolation aspects and the implications of the HLW heat generation are treated. It appears that the use of deep boreholes can be beneficial, and also that--to a certain extent--borehole deviation offers possibilities. The benefits of using multiple boreholes are questionable for permanent disposal, while this technique cannot be applied for retrievable disposal. For the use of casing material, the additional temperature rise due to the HLW heat generation must be taken into account.

van den Broek, W. M. G. T.

2002-02-25T23:59:59.000Z

207

? Disposal concepts (enclosed): crystalline, clay/shale,  

E-Print Network (OSTI)

salt, deep borehole (Re: January, 2012 briefing) ? Thermal analysis for mined, enclosed concepts ? Finite element analysis for generic salt repository (waste package size up to 32-PWR) ? Open disposal concept development: shale unbackfilled, sedimentary backfilled, and hard-rock unsaturated (waste package sizes up to 32-PWR) ? Thermal analysis for mined, open concepts ? Cost estimation for 5 disposal concepts ? Summary and conclusions

Ernest Hardin (snl; Jim Blink; Harris Greenberg (llnl; Joe Carter (srnl; Rob Howard (ornl

2012-01-01T23:59:59.000Z

208

Evaluation of waste disposal by shale fracturing  

SciTech Connect

The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation.

Weeren, H.O.

1976-02-01T23:59:59.000Z

209

Land Management and Disposal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Management and Disposal Land Management and Disposal Land Management and Disposal Land Management and Disposal 42 USC 2201(g), Section 161(g), of the AEA 42 USC Section 2224, Section 174 DOE, July 2004, Real Property Desk Guide Requirements: Document Title P.L. 83-703 (68 Stat. 919), Section 161g Grants Special Authority as Required in the Act to Acquire, Sell, Dispose, etc., of Real Property in Furtherance of the Department's Mission (Under the Atomic Energy Act of 1954) P.L. 95-91, 91 Stat. 578 (Sections 302 and 347) Department of Energy Organizational Act of 1977, Delegated Authority for Real Property P.L. 106-580 Federal Property and Administrative Services Act of 1949, As Amended P.L. 105-85 Federal Property and Administrative Services Act of 1949, As Amended 10 CFR 770 Transfer of Real Property at Defense Nuclear Facilities for Economic Development

210

Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

1994-09-01T23:59:59.000Z

211

EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Grande Ronde Basin Endemic Spring Chinook Salmon 3: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy Bonneville Power Administration's proposal to fund a program designed to prevent the extinction and begin the recovery of spring Chinook salmon stocks in the Grande Ronde River Basin in the Upper Grande Ronde River, Lostine River, and Catherine Creek in Northeastern Oregon. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 18, 2003 EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program

212

High voltage series connected tandem junction solar battery  

DOE Patents (OSTI)

A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

Hanak, Joseph J. (Lawrenceville, NJ)

1982-01-01T23:59:59.000Z

213

Large Component Removal/Disposal  

Science Conference Proceedings (OSTI)

This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

Wheeler, D. M.

2002-02-27T23:59:59.000Z

214

Tandem junction amorphous silicon solar cells  

DOE Patents (OSTI)

An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

Hanak, Joseph J. (Lawrenceville, NJ)

1981-01-01T23:59:59.000Z

215

Semiconductor liquid-junction solar cell  

DOE Patents (OSTI)

A semiconductor liquid junction photocell in which the photocell is in the configuration of a light concentrator and in which the electrolytic solution both conducts current and facilitates the concentration of incident solar radiation onto the semiconductor. The photocell may be in the configuration of a non-imaging concentrator such as a compound parabolic concentrator, or an imaging concentrator such as a lens.

Parkinson, B.A.

1982-10-29T23:59:59.000Z

216

City of Grand Rapids - Green Building Requirements for Municipal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement...

217

Statement by Energy Secretary Steven Chu on Today's Grand Opening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steven Chu issued the following statement on today's grand opening of the Nordex wind turbine manufacturing facility in Jonesboro. The facility was supported with funding from the...

218

Rio Grande Rift Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Rift Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rio Grande Rift Geothermal Region edit Details Areas (21) Power Plants (0) Projects (2)...

219

SunShot Grand Challenge Highlights Ambitious Efforts along the...  

NLE Websites -- All DOE Office Websites (Extended Search)

startups. Secretary Chu also announced a nationwide competition to drive down the cost of rooftop solar energy system. The SunShot Grand Challenge: Summit and Technology Forum...

220

City of Grand Rapids- Green Building Requirements for Municipal Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement the principles...

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gas, Heat, Water, Sewerage Collection and Disposal, and Street...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies...

222

DOE - Office of Legacy Management -- Estes Gulch Disposal Cell...  

Office of Legacy Management (LM)

Estes Gulch Disposal Cell - 010 FUSRAP Considered Sites Site: Estes Gulch Disposal Cell (010) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

223

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

Burro Canyon Disposal Cell - 007 FUSRAP Considered Sites Site: Burro Canyon Disposal Cell (007) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

224

Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell: Evaluation of Long-Term Performance Plant Encroachment on the Burrell, Pennsylvania, Disposal Cell: Evaluation of...

225

Idaho CERCLA Disposal Facility at Idaho National Laboratory ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho CERCLA Disposal Facility at Idaho National Laboratory Idaho CERCLA Disposal Facility at Idaho National Laboratory Full Document and Summary Versions are available for...

226

Erosion Control and Revegetation at DOE's Lowman Disposal Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Erosion Control and Revegetation at DOE's Lowman Disposal Site, Lowman, Idaho Erosion Control and Revegetation at DOE's Lowman Disposal Site, Lowman, Idaho Erosion Control and...

227

Biological Weed Control at the Sherwood, Washington, Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Ecosystem Management Team Biological Weed Control at the Sherwood, Washington, Disposal Site Biological Weed Control at the Sherwood, Washington, Disposal Site...

228

Acquisition, Use, and Disposal of Real Estate | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use, and Disposal of Real Estate More Documents & Publications Acquisition, Use, and Disposal of Real Estate OPAM Policy Acquisition Guides Chapter 17 - Special Contracting Methods...

229

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste...

230

EA-1097: Solid waste Disposal - Nevada Test Site, Nye County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Solid waste Disposal - Nevada Test Site, Nye County, Nevada EA-1097: Solid waste Disposal - Nevada Test Site, Nye County, Nevada SUMMARY This EA evaluates the environmental...

231

New Facility Will Test Disposal Cell Cover Renovation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Ecosystem Management Team New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation Calibration Facilities...

232

Solid Waste Disposal, Hazardous Waste Management Act, Underground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Eligibility...

233

Spent fuel characteristics & disposal considerations  

SciTech Connect

The fuel used in commercial nuclear power reactors is uranium, generally in the form of an oxide. The gas-cooled reactors developed in England use metallic uranium enclosed in a thin layer of Magnox. Since this fuel must be processed into a more stable form before disposal, we will not consider the characteristics of the Magnox spent fuel. The vast majority of the remaining power reactors in the world use uranium dioxide pellets in Zircaloy cladding as the fuel material. Reactors that are fueled with uranium dioxide generally use water as the moderator. If ordinary water is used, the reactors are called Light Water Reactors (LWR), while if water enriched in the deuterium isotope of hydrogen is used, the reactors are called Heavy Water reactors. The LWRs can be either pressurized reactors (PWR) or boiling water reactors (BWR). Both of these reactor types use uranium that has been enriched in the 235 isotope to about 3.5 to 4% total abundance. There may be minor differences in the details of the spent fuel characteristics for PWRs and BWRs, but for simplicity we will not consider these second-order effects. The Canadian designed reactor (CANDU) that is moderated by heavy water uses natural uranium without enrichment of the 235 isotope as the fuel. These reactors run at higher linear power density than LWRs and produce spent fuel with lower total burn-up than LWRs. Where these difference are important with respect to spent fuel management, we will discuss them. Otherwise, we will concentrate on spent fuel from LWRs.

Oversby, V.M.

1996-06-01T23:59:59.000Z

234

The Salt Defense Disposal Investigations (SDDI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Defense Disposal Investigations (SDDI) Salt Defense Disposal Investigations (SDDI) will utilize a newly mined Underground Research Lab (URL) in WIPP to perform a cost effective, proof-of-principle field test of the emplacement of heat-generating radioactive waste and validate modeling efforts. The goals of the SDDI Thermal Test are to: * Demonstrate a proof-of-principle concept for in-drift disposal in salt. * Investigate, in a specific emplacement concept, the response of the salt to heat. * Develop a full-scale response for run-of- mine (ROM) salt. * Develop a validated coupled process model for disposal of heat-generating wastes in salt. * Evaluate the environmental conditions of the

235

Acquisition, Use, and Disposal of Real Estate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 17.3 (March 2011) Chapter 17.3 (March 2011) 1 Acquisition, Use, and Disposal of Real Estate References DEAR 917.74 - Acquisition, Use, and Disposal of Real Estate DOE Directives DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, or current version DOE Order 430.1B, Real Property Asset Management, or current version Overview This section provides internal Departmental information and DOE and NNSA points of contact for issues dealing with real estate acquisition, use, and disposal for cost reimbursement and fixed price contracts when in performance of the contract, the contractor will acquire or proposes to acquire use of real property. Background DEAR Subpart 917.74 - Acquisition, Use, and Disposal of Real Estate provides the policy and

236

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

237

Waste disposal options report. Volume 2  

SciTech Connect

Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

1998-02-01T23:59:59.000Z

238

Disposal Systems Evaluations and Tool Development - Engineered...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

disposable, plastic transfer pipettes. Sample vials were then filled with 40 mL of 2% nitric acid solutions (TraceSelect grade) in order to facilitate U(VI) desorption from...

239

Method of Disposing of Corrosive Gases  

DOE Patents (OSTI)

Waste gas containing elemental fluorine is disposed of in the disclosed method by introducing the gas near the top of a vertical chamber under a downward spray of caustic soda solution which contains a small amount of sodium sulfide.

Burford, W.B. III; Anderson, H.C.

1950-07-11T23:59:59.000Z

240

Economic assessment of CO? capture and disposal  

E-Print Network (OSTI)

A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A disposable, self-administered electrolyte test  

E-Print Network (OSTI)

This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

Prince, Ryan, 1977-

2003-01-01T23:59:59.000Z

242

Grand River Dam Authority | Open Energy Information  

Open Energy Info (EERE)

Dam Authority Dam Authority Jump to: navigation, search Name Grand River Dam Authority Place Oklahoma Utility Id 7490 Utility Location Yes Ownership S NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png general service Commercial general service commercial Commercial large general servic time of use distributional Commercial

243

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

244

Grand Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Grand Electric Coop, Inc Place South Dakota Utility Id 7484 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Heat Rate Commercial Farm and Residential Electric Heat Rate Residential Metered Security Light - 100 HPS Lighting Metered Security Light - 175 MV Lighting Metered Security Light - 250 HPS Lighting Metered Security Light - 400 MV Lighting Schedule A - Farm and Residential Residential Schedule ADF -Du al Fuel Service Residential

245

Superfund Record of Decision (EPA Region 2): Grand Street Mercury Site, Hoboken, NJ, September 30, 1997  

SciTech Connect

This Record of Decision presents the selected remedial action for the Grand Street Mercury Site. The major components of the selected remedy include: permanent relocation of the former residents of the Site; continuation of temporary relocation of the former residents until permanent relocation has been implemented; historic preservation mitigation measures for the buildings at the Site, as appropriate; gross mercury decontamination of the buildings at the Site including recovery of available mercury, whenever possible; identification and abatement of asbestos in the buildings at the Site; removal and recovery of reusable fixtures, appliances, and recyclable scrap metal and other building components; demolition of the two buildings at the Site using measures to minimize releases of mercury into the environment; removal and off-site disposal of all demolition debris at EPA-approved facilities; sampling of soils at the Site; excavation and off-site disposal of contaminated soils at EPA-approved facilities; sampling of soils at off-site adjacent locations; sampling of groundwater at the Site; and assessment of off-site soil and groundwater data to evaluate the need for future remedial action.

1998-01-01T23:59:59.000Z

246

Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis  

SciTech Connect

The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

Bloom, R.R.

1996-04-01T23:59:59.000Z

247

Survey of Seeps and Springs within the Bureau of Land Management's Grand Junction Field Office Management Area  

E-Print Network (OSTI)

attenuation; geologic sequestration of greenhouse gases; coupled reactive transport; oil shale production with the current emphasis being gas hydrate production via CO2 injection, oil shale production, and coupled

248

Panel on grand challenges for modeling and simulation  

Science Conference Proceedings (OSTI)

It has been a decade since the Workshop on Grand Challenge for Modeling & Simulation (M&S) was held at Dagstuhl in Germany (www.dagstuhl.de/02351). Grand challenges provide a critical focal point for research and development and can potentially create ...

Simon J. E. Taylor; Richard Fujimoto; Ernest H. Page; Paul A. Fishwick; Adelinde M. Uhrmacher; Gabriel Wainer

2012-12-01T23:59:59.000Z

249

The Particle Adventure | Unsolved Mysteries | Forces and the Grand Unified  

NLE Websites -- All DOE Office Websites (Extended Search)

Unsolved Mysteries - Forces and the Grand Unified Theory Unsolved Mysteries - Forces and the Grand Unified Theory Forces and the Grand Unified Theory Physicists hope that a Grand Unified Theory will unify the strong, weak, and electromagnetic interactions. There have been several proposed Unified Theories, but we need data to pick which, if any, of these theories describes nature. If a Grand Unification of all the interactions is possible, then all the interactions we observe are all different aspects of the same, unified interaction. However, how can this be the case if strong and weak and electromagnetic interactions are so different in strength and effect? Strangely enough, current data and theory suggests that these varied forces merge into one force when the particles being affected are at a high enough energy.

250

Grand Challenges | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Grand Challenges Grand Challenges Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Basic Research Needs Grand Challenges Science Highlights News & Events Publications Contact BES Home Research Grand Challenges Print Text Size: A A A RSS Feeds FeedbackShare Page Grand Challenge Report The Basic Energy Sciences Advisory Committee (BESAC) report, Directing Matter and Energy: Five Challenges for Science and the Imagination was the culmination of a series of BES-sponsored workshops that began in 2001. Over and over, the recommendations from these workshops described similar themes that in this new era of science, we would design, discover, and synthesize new materials and molecular assemblies through atomic scale control; probe and control photon, phonon, electron, and ion interactions

251

Microsoft Word - GRJ-2012_Final.docx  

Office of Legacy Management (LM)

for the Grand Junction Disposal Site Requirement Long-Term Surveillance Plan This Report Annual Inspection and Report Section 3.0 Section 6.4 Follow-Up or Contingency...

252

CX-008766: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Asphalt Repair and Concrete Work Activities at the Grand Junction, Colorado, Disposal Site CX(s) Applied: B1.3 Date: 05/18/2012 Location(s): Colorado Offices(s): Legacy Management

253

Josephson-Junction Qubits with Controlled Couplings  

E-Print Network (OSTI)

Low-capacitance Josephson junctions, where Cooper pairs tunnel coherently while Coulomb blockade effects allow the control of the total charge, provide physical realizations of quantum bits (qubits), with logical states differing by one Cooper-pair charge on an island. The single- and two-bit operations required for quantum computation can be performed by applying a sequence of gate voltages. A basic design, described earlier [cond-mat/9706016], is sufficient to demonstrate the principles, but requires a high precision time control, and residual two-bit interactions introduce errors. Here we suggest a new nano-electronic design, close to ideal, where the Josephson junctions are replaced by controllable SQUIDs. This relaxes the requirements on the time control and system parameters substantially, and the two-bit coupling can be switched exactly between zero and a non-zero value for arbitrary pairs. The phase coherence time is sufficiently long to allow a series of operations.

Yuriy Makhlin; Gerd Schoen; Alexander Shnirman

1998-08-06T23:59:59.000Z

254

Semiconductor junction formation by directed heat  

DOE Patents (OSTI)

The process of the invention includes applying precursors 6 with N- and P-type dopants therein to a silicon web 2, with the web 2 then being baked in an oven 10 to drive off excessive solvents, and the web 2 is then heated using a pulsed high intensity light in a mechanism 12 at 1100.degree.-1150.degree. C. for about 10 seconds to simultaneously form semiconductor junctions in both faces of the web.

Campbell, Robert B. (Pittsburgh, PA)

1988-03-24T23:59:59.000Z

255

STORAGE, TRANSPORTATION AND DISPOSAL SYSTEM FOR USED NUCLEAR ...  

STORAGE, TRANSPORTATION AND DISPOSAL SYSTEM FOR USED NUCLEAR FUEL ASSEMBLIES United States Patent Application

256

Clean Cities: National Clean Fleets Partner: Advanced Disposal Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Disposal Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

257

Generic Disposal System Modeling, Fiscal Year 2011 Progress Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal System Modeling, Fiscal Year 2011 Progress Report Disposal System Modeling, Fiscal Year 2011 Progress Report Generic Disposal System Modeling, Fiscal Year 2011 Progress Report The UFD Campaign is developing generic disposal system models (GDSM) of different disposal environments and waste form options. Currently, the GDSM team is investigating four main disposal environment options: mined repositories in three geologic media (salt, clay, and granite) and the deep borehole concept in crystalline rock (DOE 2010d). Further developed the individual generic disposal system (GDS) models for salt, granite, clay, and deep borehole disposal environments. GenericDisposalSystModelFY11.pdf More Documents & Publications Integration of EBS Models with Generic Disposal System Models TSPA Model Development and Sensitivity Analysis of Processes Affecting

258

EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A and PP-33-1 Rio Grande Electric Cooperative, Inc. EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. Order authorizing Rio Grande Electric Cooperative, Inc to export...

259

THE DISPOSAL OF POWER REACTOR WASTE INTO DEEP WELLS  

SciTech Connect

Disposal of wastes from the processing of solid fuel elements and from solid blanket elements is discussed. The subjects considered include extraction of uranium by several methods, the removal of element jackets, the treatment of uraxium -zirconium fuel elements, disposal into deep wells, the hydraulics of wells, thermal considerations of disposal aquifers regional hydrology, potential deep-well disposal areas in the U. S., aud the cost of disposal. (J.R.D.)

de Laguna, W.; Blomeke, J.O.

1957-06-13T23:59:59.000Z

260

Microsoft Word - SRSSaltWasteDisposal.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Doc. No. Filename Title Main Document References 1. 2005 RWR DAA §3116 NDAA.pdf "Ronald W. Regan National Defense Authorization Act for FY 2005," Section 3116, 2004. 2. CBU-PIT-2004-00024 CBU-PIT-2004-00024.pdf Ledbetter, L. S., CBU-PIT-2004-00024, 12/01/04 - December Monthly WCS Curie and Volume Inventory Report," Revision 0, December 9, 2004. 3. CBU-PIT-2005-00031 CBU-PIT-2005-00031.pdf Rios-Armstrong, M. A., CBU-PIT-2005-00031, "Decontaminated Salt Solution Volume to be transferred to the Saltstone Disposal Facility from Salt Treatment and Disposition Activities," Revision 0, February 13, 2005.

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

262

Single P-N junction tandem photovoltaic device  

SciTech Connect

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

2012-03-06T23:59:59.000Z

263

Single P-N junction tandem photovoltaic device  

SciTech Connect

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

2011-10-18T23:59:59.000Z

264

Environmental restoration waste materials co-disposal  

Science Conference Proceedings (OSTI)

Co-disposal of radioactive and hazardous waste is a highly efficient and cost-saving technology. The technology used for final treatment of soil-washing size fractionization operations is being demonstrated on simulated waste. Treated material (wasterock) is used to stabilize and isolate retired underground waste disposal structures or is used to construct landfills or equivalent surface or subsurface structures. Prototype equipment is under development as well as undergoing standardized testing protocols to prequalify treated waste materials. Polymer and hydraulic cement solidification agents are currently used for geotechnical demonstration activities.

Phillips, S.J.; Alexander, R.G.; England, J.L.; Kirdendall, J.R.; Raney, E.A.; Stewart, W.E. [Westinghouse Hanford Co., Richland, WA (United States); Dagan, E.B.; Holt, R.G. [Dept. of Energy, Richland, WA (United States). Richland Operations Office

1993-09-01T23:59:59.000Z

265

Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers  

DOE Patents (OSTI)

This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

Chang, Y. Austin (Middleton, WI); Yang, Jianhua Joshua (Madison, WI)

2008-11-11T23:59:59.000Z

266

Road to AC Voltage Standard Leads to Important Junction  

Science Conference Proceedings (OSTI)

Road to AC Voltage Standard Leads to Important Junction. ... Grumman in the mid-1990s.*** A number of innovations since then have led to the first ...

2013-08-13T23:59:59.000Z

267

NN3, Conductance Statistics of Molecular Junctions Fabricated with ...  

Science Conference Proceedings (OSTI)

The I-V curves are dominated by a tunneling behavior as usually observed in the MMM junctions of alkyl chains. The TVS (transient voltage spectroscopy)...

268

Thermoelectricity in Molecular Junctions Science 315, 1568 (2007);  

DOI: 10.1126/science.1137149 Science 315, 1568 (2007); Pramod Reddy, et al. Thermoelectricity in Molecular Junctions www.sciencemag.org (this ...

269

Junction temperature measurement of light emitting diode by electroluminescence  

Science Conference Proceedings (OSTI)

Junction temperature (JT) is a key parameter of the performance and lifetime of light emitting diodes(LEDs). In this paper

S. M. He; X. D. Luo; B. Zhang; L. Fu; L. W. Cheng; J. B. Wang; W. Lu

2011-01-01T23:59:59.000Z

270

High Efficiency Multiple-Junction Solar Cells - Energy ...  

Technology Marketing Summary Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific ...

271

Sandia National Laboratories High Efficiency Multiple-Junction ...  

Sandia National Laboratories TECHNOLOGY SUMMARY Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific

272

Quantum manipulation and simulation using Josephson junction arrays  

E-Print Network (OSTI)

We discuss the prospect of using quantum properties of large scale Josephson junction arrays for quantum manipulation and simulation. We study the collective vibrational quantum modes of a Josephson junction array and show that they provide a natural and practical method for realizing a high quality cavity for superconducting qubit based QED. We further demonstrate that by using Josephson junction arrays we can simulate a family of problems concerning spinless electron-phonon and electron-electron interactions. These protocols require no or few controls over the Josephson junction array and are thus relatively easy to realize given currently available technology.

Xingxiang Zhou; Ari Mizel

2006-05-01T23:59:59.000Z

273

Generic Deep Geologic Disposal Safety Case | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

274

Thermomechanical models of the Rio Grande rift  

SciTech Connect

Fully two-dimensional, coupled thermochemical solutions of a continental rift and platform are used to model the crust and mantle structure of a hot, buoyant mantle diapir beneath the Rio Grande rift. The thermomechanical model includes both linear and nonlinear laws of the Weertman type relating shear stress and creep strain rate, viscosity which depends on temperature and pressure, and activation energy, temperature-dependent thermal conductivity, temperature-dependent coefficient of thermal expansion, the Boussinesq approximation for thermal bouyancy, material convection using a stress rate that is invariant to rigid rotations, an elastically deformable crust, and a free surface. The model determines the free surface velocities, solid state flow field in the mantle, and viscosity structure of lithosphere and asthenosphere. Regional topography and crustal heat flow are simulated. A suite of symmetric models, assumes continental geotherms on the right and the successively increasing rift geotherms on the left. These models predict an asthenospheric flow field which transfers cold material laterally toward the rift at > 300 km, hot, buoyant material approx. 200 km wide which ascends vertically at rates of 1 km/my between 175 to 325 km, and spreads laterally away from the rift at the base of the lithosphere. Crustal spreading rates are similar to uplift rates. The lithosphere acts as stiff, elastic cap, damping upward motion through decreased velocities of 1 km/10 my and spreading uplift laterally. A parameter study varying material coefficients for the Weertman flow law suggests asthenospheric viscosities of approx. 10/sup 22/ to 10/sup 23/ poise. Similar studies predict crustal viscosities of approx. 10/sup 25/ poise. The buoyant process of mantle flow narrows and concentrates heat transport beneath the rift, increases upward velocity, and broadly arches the lithosphere. 10 figures, 1 table.

Bridwell, R.J.; Anderson, C.A.

1980-01-01T23:59:59.000Z

275

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

276

Grand Blanc Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grand Blanc Generating Station Biomass Facility Grand Blanc Generating Station Biomass Facility Jump to: navigation, search Name Grand Blanc Generating Station Biomass Facility Facility Grand Blanc Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

278

SunShot Grand Challenge Summit 2014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge Summit 2014 SunShot Grand Challenge Summit 2014 SunShot Grand Challenge Summit 2014 May 19, 2014 8:00AM PDT to May 22, 2014 5:00PM PDT Anaheim, California Hilton Anaheim The DOE SunShot Initiative Grand Challenge Summit 2014 will bring together more than 800 members of the solar community including SunShot-funded project teams, industry leaders, innovative researchers and scientists, and local, state and federal government policymakers to review the progress made and discuss the challenges ahead to make solar energy more affordable and widespread across America. The event will include activities that celebrate the accomplishments across more than 250 SunShot-funded projects and discuss the path forward for the U.S. solar energy industry. Plenary Sessions and Keynote Speakers - Top leaders from business,

279

Saft America Advanced Batteries Plant Celebrates Grand Opening in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saft America Advanced Batteries Plant Celebrates Grand Opening in Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida, factory, which will produce advanced lithium-ion batteries to power electric vehicles and other applications. Saft America estimates it will create nearly 280 permanent jobs at the factory, and the city of Jacksonville expects an additional 800 indirect jobs to be created within its community. The project has created or preserved an estimated 300

280

Alpine Extensional Detachment Tectonics In The Grande Kabylie Metamorphic  

Open Energy Info (EERE)

Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alpine Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Details Activities (0) Areas (0) Regions (0) Abstract: The Maghrebides are part of the peri-Mediterranean Alpine orogen. They expose in their inner zone inliers of high-grade crystalline rocks surrounded by Oligo-Miocene and younger Miocene cover. Detailed mapping coupled with structural and petrological investigations in the Grande Kabylie massif, and the reinterpretation of the available geochronological data, allow us to refute the traditional concept of rigid behaviour of this

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Empowering First Year Students by Immersion in a 'Grand Challenges'  

Science Conference Proceedings (OSTI)

Apr 19, 2010 ... Interestingly, this preceded the National Academy of Engineering Grand ... Within their lifetime they will witness burgeoning needs in energy resources, ... to statistics, environmental studies, to history and philosophyin...

282

SunShot Grand Challenge Highlights Ambitious Efforts along the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu also announced a nationwide competition to drive down the cost of rooftop solar energy system. The SunShot Grand Challenge: Summit and Technology Forum kicked off in...

283

Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's 10-Year Vision for Plug-in Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in...

284

Wintertime Boundary Layer Structure in the Grand Canyon  

Science Conference Proceedings (OSTI)

Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during ...

C. David Whiteman; Shiyuan Zhong; Xindi Bian

1999-08-01T23:59:59.000Z

285

Microsoft Word - GrandCoulee_FinalEA_CommentResponses.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant Grand Coulee's Third Powerplant 500-kilovolt Transmission Line Replacement Project Revision Sheet for the Environmental Assessment Finding of No Significant Impact Mitigation Action Plan DOE/EA-1679 December 2011 Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Revision Sheet for the Environmental Assessment 2 SUMMARY This revision sheet documents the changes to be incorporated into the Grand Coulee's Third Powerplant 500-kilovolt (kV) Transmission Line Replacement Project Preliminary Environmental Assessment (EA). With the addition of these changes, the Preliminary EA will not be reprinted and will serve as the Final EA. On May 2, 2011, the Preliminary EA was sent to agencies and interested parties.

286

Status of UFD Campaign International Activities in Disposal Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Status of UFD Campaign International Activities in Disposal Status of UFD Campaign International Activities in Disposal Research Status of UFD Campaign International Activities in Disposal Research Several international organizations have made significant progress in the characterization and performance evaluation of other disposal design options and host rock characteristics (clay/shale, granite), most of which were very different from those studied in the United States. The DOE recognizes that close international collaboration is a beneficial and cost effective strategy for advancing disposal science. This report describes the active collaboration opportunities available to U.S. researchers, and presents specific cooperative research activities that have been recently initiated within DOE's disposal research program.

287

Treatment and Disposal of Unanticipated 'Scavenger' Wastewater  

Science Conference Proceedings (OSTI)

The Savannah River Site often generates wastewater for disposal that is not included as a source to one of the site's wastewater treatment facilities that are permitted by the South Carolina Department of Health and Environmental Control. The techniques used by the SRS contract operator (Westinghouse Savannah River Company) to evaluate and treat this unanticipated 'scavenger' wastewater may benefit industries and municipalities who experience similar needs. Regulations require that scavenger wastewater be treated and not just diluted. Each of the pollutants that are present must meet effluent permit limitations and/or receiving stream water quality standards. if a scavenger wastewater is classified as 'hazardous' under the Resource Conservation and Recovery Act (RCRA) its disposal must comply with RCRA regulations. Westinghouse Savannah River Company obtained approval from SCDHEC to dispose of scavenger wastewater under specific conditions that are included within the SRS National Pollutant Discharge Elimination System permit. Scavenger wastewater is analyzed in a laboratory to determine its constituency. Pollutant values are entered into spreadsheets that calculate treatment plant removal capabilities and instream concentrations. Disposal rates are computed, ensuring compliance with regulatory requirements and protection of treatment system operating units. Appropriate records are maintained in the event of an audit.

Payne, W.L.

2003-09-15T23:59:59.000Z

288

Process for the disposal of alkali metals  

SciTech Connect

Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

Lewis, Leroy C. (Arco, ID)

1977-01-01T23:59:59.000Z

289

Low level tank waste disposal study  

SciTech Connect

Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

Mullally, J.A.

1994-09-29T23:59:59.000Z

290

COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS  

SciTech Connect

The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

THIELGES, J.R.; CHASTAIN, S.A.

2007-06-21T23:59:59.000Z

291

Defense High Level Waste Disposal Container System Description Document  

Science Conference Proceedings (OSTI)

The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents.

N. E. Pettit

2001-07-13T23:59:59.000Z

292

Josephson junctions in high-T/sub c/ superconductors  

DOE Patents (OSTI)

The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

Falco, C.M.; Lee, T.W.

1981-01-14T23:59:59.000Z

293

Molecular nanoplasmonics: self-consistent electrodynamics in current carrying junctions  

E-Print Network (OSTI)

We consider a biased molecular junction subjected to external time-dependent electromagnetic field. We discuss local field formation due to both surface plasmon-polariton excitations in the contacts and the molecular response. Employing realistic parameters we demonstrate that such self-consistent treatment is crucial for proper description of the junction transport characteristics.

White, Alexander J; Galperin, Michael

2012-01-01T23:59:59.000Z

294

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE))

This Revision 3 of the Low-Level Waste Disposal Facility Federal Review Group (LFRG) Manual was prepared primarily to include review criteria for the review of transuranic (TRU) waste disposal...

295

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

296

Laboratory to demolish excavation enclosures at Material Disposal...  

NLE Websites -- All DOE Office Websites (Extended Search)

waste disposal facility. MDA B was used from 1944 to 1948 as a waste disposal site for Manhattan Project and Cold War-era research and production. The Laboratory received 212...

297

UCSC Glassware and Sharps Disposal Matrix Responsibility Color key  

E-Print Network (OSTI)

(Solid Debris) EH&S Lab Safety Services Dispose of Sharps Safely! Includes syringes (with or without debris may be combined. Dispose by completing a Radioactive Waste Tracking Form and affix to the box

California at Santa Cruz, University of

298

Disposal Practices at the Nevada Test Site 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at the Nevada Test Site 2008...

299

Single-junction solar cells with the optimum band gap for ...  

A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown ...

300

Disposable Point-of-Care Testing Device for Nucleic Acid ...  

home \\ technologies \\ disposable point of care testing device. Technologies: Ready-to-Sign Licenses: ... Operated by Lawrence Livermore National Security, ...

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE))

Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses

302

Idaho CERCLA Disposal Facility at Idaho National Laboratory ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility at Idaho National Laboratory Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory More Documents & Publications Environmental Management...

303

Transportation, Aging and Disposal Canister System Performance Specification: Revision 1  

Energy.gov (U.S. Department of Energy (DOE))

This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system.

304

Integrated Used Nuclear Fuel Storage, Transportation, and Disposal ...  

dry cask storage of used nuclear fuel at existing plant ... achievement of geologic disposal thermal management ... Senior Technology Commercialization Manager ...

305

Materials for Nuclear Waste Disposal and Environmental Cleanup  

Science Conference Proceedings (OSTI)

Symposium, Materials for Nuclear Waste Disposal and Environmental Cleanup ... Secure and Certify Studies to Work on Production of Spiked Plutonium.

306

Acceptance of Classified Excess Components for Disposal at Area 5  

Science Conference Proceedings (OSTI)

This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

Poling, J., and Saad, M.

2012-04-09T23:59:59.000Z

307

Cost of meeting geothermal liquid effluent disposal regulations  

DOE Green Energy (OSTI)

Background information is presented on the characteristics of liquid wastes and the available disposal options. Regulations that may directly or indirectly influence liquid waste disposal are reviewed. An assessment of the available wastewater-treatment systems is provided. A case study of expected liquid-waste-treatment and disposal costs is summarized. (MHR)

Wells, K.D.; Currie, J.W.; Price, B.A.; Rogers, E.A.

1981-06-01T23:59:59.000Z

308

Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms  

SciTech Connect

This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

Vinson, D.W.

1998-11-06T23:59:59.000Z

309

LEGACY NONCONFORMANCE ISSUE IN SOLID WASTE DISPOSAL  

Science Conference Proceedings (OSTI)

Beginning in 1968 waste from sectioning, sampling, and assaying of reactor fuels was sent to underground burial caissons in the 200-W Area of the Hanford Plant in Richland, Washington. In 2002 a review of inventory records revealed that criticality safety storage limits had been exceeded. This prompted declaration of a Criticality Prevention Specification nonconformance. The corrective action illustrates the difficulties in demonstrating compliance to fissile material limits decades after waste disposal.

ROGERS, C.A.

2002-12-16T23:59:59.000Z

310

The Determinants of Hazardous Waste Disposal Choice:  

E-Print Network (OSTI)

In this paper, we estimate conditional logit models of generators choice of waste management facilities (TSDFs) for shipments of halogenated solvent waste documented by the manifests filled out in California in 1995. We find that the probability that a facility is selected as the destination of an off-site shipment of halogenated solvent waste depends on the cost of shipping and disposal at that facility, on measures of existing contamination at the site, and on the track record of the receiving facility. Generators do seem to balance current disposal costs with the likelihood of future liability, should the TSDF become involved in either the state or federal Superfund program. In general, we find no evidence that generators prefer wealthier TSDFs or larger facilities, suggesting that there is a role for smaller, private companies in the management of halogenated solvent waste. When attention is limited to so-called restricted wastes containing halogenated compounds, which cannot be landfilled, the best match between the waste and the treatment offered by the facility may be more important than saving on the cost of disposal, and price may even be interpreted as a signal for quality of the facility. 3

Anna Alberini; John Bartholomew; Anna Alberini; John Bartholomew

1998-01-01T23:59:59.000Z

311

Microsoft Word - CX-GrandCoulee-Creston_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Robert Keudell Robert Zeller Lineman Foreman III - TFWK-Grand Coulee Lineman Foreman I - TFWK-Grand Coulee Proposed Action: Selected wood pole replacement and minor access road maintenance along the Grand Coulee-Creston transmission line at miles 14, 15, 21 and 28. PP&A Project No: 1828 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities...for structures, rights of way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures... in a condition suitable for a facility to be used for its designed purpose.

312

Grand Ridge Elementary Wind Project | Open Energy Information  

Open Energy Info (EERE)

Grand Ridge Elementary Wind Project Grand Ridge Elementary Wind Project Facility Grand Ridge Elementary Sector Wind energy Facility Type Community Wind Location WA Coordinates 47.545883°, -122.005714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.545883,"lon":-122.005714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Fernald Preserve Visitors Center Grand Opening and LEED Platinum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald Preserve Visitors Center Grand Opening and LEED Platinum Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to do three things here at Fernald: to close it, to clean it up and to give it back to the community. I'm proud to say we have fulfilled that commitment safely and ahead of schedule. Less than two years ago, I was here with Secretary Bodman as he announced the completion of a $4.4 billion clean up operation. Since then, we have

314

Grand Marais PUC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount CFLs: $2/bulb or up to 50% of cost LEDs: $10 - $15/bulb Lighting Fixtures: $15 - $20/fixture Refrigerators: $25, plus $50 for recycling an old, working unit Freezers: $25, plus $50 for recycling an old, working unit Dishwashers: $25 Clothes Washers: $50 Dehumidifiers: $65 Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings

315

GreenHunter Biodiesel Refinery Grand Opening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer Today, Acting Deputy Secretary Jeffrey Kupfer delivered remarks at the launch of GreenHunter Energy's biodiesel refinery, which will be the nation's single largest biodiesel refinery, producing 105 million gallons of "white-water" B100 biodiesel per year. Thank you Gary. I'm pleased to join with Governor Perry, Congressmen Green and Lampson, and Mayor Garcia in celebrating this important occasion. Today, as we open the nation's largest biodiesel refinery, we reach another milestone in our effort to make America more energy secure. As you know, global energy demand is surging. We must act swiftly and aggressively to

316

Fernald Preserve Visitors Center Grand Opening and LEED Platinum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald Preserve Visitors Center Grand Opening and LEED Platinum Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to do three things here at Fernald: to close it, to clean it up and to give it back to the community. I'm proud to say we have fulfilled that commitment safely and ahead of schedule. Less than two years ago, I was here with Secretary Bodman as he announced the completion of a $4.4 billion clean up operation. Since then, we have

317

Moreau-Grand Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Moreau-Grand Electric Coop Inc Moreau-Grand Electric Coop Inc Jump to: navigation, search Name Moreau-Grand Electric Coop Inc Place South Dakota Utility Id 12915 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Industrial Small General Service Single Phase Commercial Small General Service Single Phase Well Commercial Small General Service Three Phase Commercial Average Rates Residential: $0.1090/kWh Commercial: $0.0798/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

318

Mutagenic potential of sediments from the Grand Calumet River  

Science Conference Proceedings (OSTI)

The Grand Calumet River/Indiana Harbor Canal is one of the International Joint Commission's Great Lakes Areas of Concern (AOC). Like many other AOCs, the Grand Calumet River is in a heavily industrialized area and has a history of chemical contamination. Many of the chemicals found in the industrial and municipal wastes that enter the waterway end up in sediment where they are concentrated to high levels. In order to assess the potential genotoxicity of sediments from the Grand Calumet River, the authors determined the mutagenic potential of organic extracts of sediments. The sediment extracts were assayed in the Salmonella/microsome mutagenicity test. In the Ames test, all ten sediment samples assayed were found to be mutagenic. In general, chemicals found in the sediments required metabolic activation before a positive mutagenic response was observed.

Maccubbin, A.E.; Ersing, N. (Roswell Park Cancer Inst., Buffalo, NY (United States))

1991-08-01T23:59:59.000Z

319

Winners Announced for the NNSA Grand Challenge Competition | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

Winners Announced for the NNSA Grand Challenge Competition Winners Announced for the NNSA Grand Challenge Competition Winners Announced for the NNSA Grand Challenge Competition December 11, 2013 - 1:23pm Addthis President Carlton Brown of Clark Atlanta University pictured here with winning students junior Jules Henry (Electrical Engineering/Computer Science) and sophomore KeAndra Goodman (Electrical Engineering/Physics). President Carlton Brown of Clark Atlanta University pictured here with winning students junior Jules Henry (Electrical Engineering/Computer Science) and sophomore KeAndra Goodman (Electrical Engineering/Physics). Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact The first year of the Minority Serving Institution Partnership Program with the Department of Energy site Kansas City Plant was a fruitful one. The two

320

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

322

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

323

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applauds Opening of Historic Disposal Facility Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

324

Grand Symmetry, Spectral Action, and the Higgs mass  

E-Print Network (OSTI)

In the context of the spectral action and the noncommutative geometry approach to the standard model, we build a model based on a larger symmetry. The latter satisfies all the requirements to have a noncommutative manifold, and mixes gauge and spin degrees of freedom without introducing extra fermions. With this "grand symmetry" it is natural to have the scalar field necessary to obtain the Higgs mass in the vicinity of 126 GeV. Requiring the noncommutative space to be an almost commutative geometry (i.e. the product of manifold by a finite dimensional internal space) gives conditions for the breaking of this grand symmetry to the standard model.

Agostino Devastato; Fedele Lizzi; Pierre Martinetti

2013-04-01T23:59:59.000Z

325

Microsoft Word - DisposalInSaltDifferentThanDisposalInWIPP.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Issues Statement Concerning Debates Over DOE Issues Statement Concerning Debates Over Waste Disposal in Salt CARLSBAD, N.M., July 24, 2009 - The U.S. Department of Energy and its Carlsbad Field Office recognize and respect the long history that led to the current regulations that govern operations at the Waste Isolation Pilot Plant (WIPP). The WIPP is authorized to ship and dispose of transuranic (TRU) waste that was created by U.S. defense programs. TRU waste is a category of waste strictly defined by legislation and legal agreements. The WIPP mission includes the safe disposal of two types of defense-related TRU waste, contact-handled (CH) and remote-handled (RH). Both consist of tools, rags, protective clothing, sludges, soil and other materials contaminated with radioactive

326

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL; Wagner, John C [ORNL

2011-01-01T23:59:59.000Z

327

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity  

E-Print Network (OSTI)

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity Alberto E of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding of synaptic transmission: chemical and electrical. In chemical synapses, presynaptic electrical currents

Rash, John E.

328

The verifying compiler: A grand challenge for computing research  

Science Conference Proceedings (OSTI)

This contribution proposes a set of criteria that distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn ...

Tony Hoare

2003-01-01T23:59:59.000Z

329

The verifying compiler: a grand challenge for computing research  

Science Conference Proceedings (OSTI)

I propose a set of criteria which distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn from Computer Science, ...

Tony Hoare

2003-04-01T23:59:59.000Z

330

Workshop and conference on Grand Challenges applications and software technology  

SciTech Connect

On May 4--7, 1993, nine federal agencies sponsored a four-day meeting on Grand Challenge applications and software technology. The objective was to bring High-Performance Computing and Communications (HPCC) Grand Challenge applications research groups supported under the federal HPCC program together with HPCC software technologists to: discuss multidisciplinary computational science research issues and approaches, identify major technology challenges facing users and providers, and refine software technology requirements for Grand Challenge applications research. The first day and a half focused on applications. Presentations were given by speakers from universities, national laboratories, and government agencies actively involved in Grand Challenge research. Five areas of research were covered: environmental and earth sciences; computational physics; computational biology, chemistry, and materials sciences; computational fluid and plasma dynamics; and applications of artificial intelligence. The next day and a half was spent in working groups in which the applications researchers were joined by software technologists. Nine breakout sessions took place: I/0, Data, and File Systems; Parallel Programming Paradigms; Performance Characterization and Evaluation of Massively Parallel Processing Applications; Program Development Tools; Building Multidisciplinary Applications; Algorithm and Libraries I; Algorithms and Libraries II; Graphics and Visualization; and National HPCC Infrastructure.

1993-12-31T23:59:59.000Z

331

The origins and limits of metalgraphene junction resistance  

E-Print Network (OSTI)

-ming Lin, Yanqing Wu and Phaedon Avouris* A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal­graphene junction in the calculation: h ¼ 5 meV, t1 ¼ 300 meV, d1 ¼ 1 ?. Red line, contact resistance in an ideal metal­graphene

Perebeinos, Vasili

332

Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges  

Science Conference Proceedings (OSTI)

Intensity spikes in Raman scattering, accompanied by switching between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories recorded at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated either with biphenyl-4,4-dithiol or biphenyl-4-thiol. The fluctuations are absent in the monothiol. In effect, the making and breaking of chemical bonds is tracked.

El-Khoury, Patrick Z.; Hu, Dehong; Apkarian, V. Ara; Hess, Wayne P.

2013-04-10T23:59:59.000Z

333

REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.  

Science Conference Proceedings (OSTI)

Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

FTHENAKIS,V.

2001-01-29T23:59:59.000Z

334

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

335

Disposal Practices at the Nevada Test Site 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Area 5 LLRW & MLLW Disposal Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive

336

Summary - Disposal Practices at the Nevada Test Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site, NV Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive waste (MLLW) are disposed of in Area 5 in shallow

337

DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05  

Office of Legacy Management (LM)

Maryland Disposal Site - MD 05 Maryland Disposal Site - MD 05 FUSRAP Considered Sites Site: MARYLAND DISPOSAL SITE (MD.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations: Proposed disposal site - never developed. MD.05-1 Site Disposition: Eliminated Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to MARYLAND DISPOSAL SITE MD.05-1 - Report (DOE/OR/20722-131 Revision 0); Site Plan for the Maryland Disposal Site; April 1989 Historical documents may contain links which are no longer valid or to

338

Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Borehole Disposal Research: Demonstration Site Selection Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal of spent nuclear fuel and other radioactive waste forms, along with research and development for mined repositories in salt, granite, and clay, as part of the used fuel disposition (UFD) campaign. The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper part of the borehole with bentonite and concrete seals. A reference design of the

339

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INL, Idaho INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of the ICDF include a landfill that is used for disposal of solid waste, an evaporation pond that is used to manage leachate from the landfill and other aqueous wastes (8.3 million L capacity), and a staging and treatment facility. The ICDF is located near the southwest

340

LANL completes excavation of 1940s waste disposal site  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL completes excavation LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communicatons Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos National Laboratory has completed excavation of its oldest waste disposal site, Material Disposal Area B (MDA-B). The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. MDA-B was used from 1944-48 as a waste disposal site for Manhattan Project and Cold War-era research and

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

342

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

343

Defense High Level Waste Disposal Container System Description  

Science Conference Proceedings (OSTI)

The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials will be selected for the disposal container inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lids will be a barrier made of high-nickel alloy. The defense HLW disposal container interfaces with the emplacement drift environment and the internal waste by transferring heat from the canisters to the external environment and by protecting the canisters and their contents from damage/degradation by the external environment. The disposal container also interfaces with the canisters by limiting access of moderator and oxidizing agents to the waste. A loaded and sealed disposal container (waste package) interfaces with the Emplacement Drift System's emplacement drift waste package supports upon which the waste packages are placed. The disposal container interfaces with the Canister Transfer System, Waste Emplacement /Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement, and retrieval for the disposal container/waste package.

NONE

2000-10-12T23:59:59.000Z

344

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

345

PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1 and EA-33-A Rio Grande Electric Cooperative Inc PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc Rescission of Presidential Permit and Electricity Export Authorization...

346

Nevada test site experience with greater confinement disposal  

Science Conference Proceedings (OSTI)

At the NTS, we consider Greater Confinement Disposal (GCD) to be a good waste management practice rather than a disposal technology. This is an important distinction because it redefines the nature of GCD. All disposal facilities operate under the principal of ''as low as reasonably achievable'' (ALARA) in reducing personnel and public exposures. ALARA is not a technology or method but a principal put into practice. We view GCD in the same manner.

Dickman, P.T.; Boland, J.R.

1986-01-01T23:59:59.000Z

347

Disposal Cost Savings Considerations in Curie Reduction Programs  

Science Conference Proceedings (OSTI)

In 1996, the Low Level Radioactive Waste (LLW) Disposal Facility in Barnwell, South Carolina, announced a new fee structure for the disposal of radioactive wastes based on waste density, dose rate, and activity (curies). This report provides a detailed discussion of the current Barnwell Disposal Fee Structure along with its cost impact on various types of wastes generated. The report also evaluates various curie reduction options, their practical application, and their cost savings potential to help LLW ...

1998-03-30T23:59:59.000Z

348

Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar  

DOE Green Energy (OSTI)

Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

Suzanne McSawby, Project Director

2008-12-31T23:59:59.000Z

349

Dredged and Fill Material Disposal (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Siting and Permitting This chapter provides regulations for the disposal of dredged and fill

350

Integrated Used Nuclear Fuel Storage, Transportation, and Disposal ...  

ORNL 2011-G00239/jcn UUT-B ID 201102603 09.2011 Integrated Used Nuclear Fuel Storage, Transportation, and Disposal Canister System Technology Summary

351

ERDA safety practices involving disposal of contaminated real property  

SciTech Connect

A general discussion of the specific procedures for excess disposal outlined in the Property Management Handbook, ERDAM 5301 is given. (LK)

Loop, E.K.

1975-09-01T23:59:59.000Z

352

IDAHO OPERATIONS OFFICE MIXEDLOW-LEVEL WASTE DISPOSAL PLANS,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home IDAHO OPERATIONS OFFICE MIXEDLOW-LEVEL WASTE DISPOSAL PLANS, IG-0527 IDAHO OPERATIONS OFFICE...

353

South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

354

Used Fuel Disposition Campaign Disposal Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF)...

355

Environmental Impacts of Options for Disposal of Depleted Uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

study by Oak Ridge National Laboratory evaluated the acceptability of several depleted uranium conversion products at potential LLW disposal sites to provide a basis for DOE...

356

Microsoft Word - SRSSaltWasteDisposal.doc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site - Tank 48 SRS Review Report 2009 Performance Assessment for the Saltstone Disposal Facility DOE Order 435.1 Performance Assessment Savannah River Site...

357

Spent Fuel Disposal Trust Fund (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Type Safety and Operational Guidelines Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund...

358

Low-Level Waste Disposal Alternatives Analysis Report  

SciTech Connect

This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

2006-09-01T23:59:59.000Z

359

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External...

360

Los Alamos Lab Completes Excavation of Waste Disposal Site Used...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Excavation of Waste Disposal Site Used in the 1940s More Documents & Publications Manhattan Project Truck Unearthed in Recovery Act Cleanup Protecting Recovery Act Cleanup...

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NDAA Section 3116 Waste Determinations with Related Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste...

362

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

363

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

364

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline  

E-Print Network (OSTI)

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline D.W. (Don) Wilson, Director, North Atlantic Pipeline Partners, L.P. NOIA 2000 Conference June, 2000 #12;Grand Banks Multi-Purpose Pipeline Route January 2000 Grand Banks of Newfoundland Newfoundland Come by Chance St. John's Argentia 50o

Bruneau, Steve

365

A New Species of Parodia (Cactaceae, Notocacteae) from Rio Grande do Sul, Brazil  

E-Print Network (OSTI)

A New Species of Parodia (Cactaceae, Notocacteae) from Rio Grande do Sul, Brazil Marlon C. Machado Grande do Sul, Brazil. jlarocca@unisinos.br ABSTRACT . A new species, Parodia gaucha M. Machado & Larocca (Cactaceae, Notocacteae), from Encruzilhada do Sul, Rio Grande do Sul, Brazil, is described and illustrated

Zürich, Universität

366

Carbon dioxide disposal in solid form  

SciTech Connect

Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

Lackner, K.S.; Butt, D.P.; Sharp, D.H. [Los Alamos National Lab., NM (United States); Wendt, C.H. [Auxon Corp., (United States)

1995-12-31T23:59:59.000Z

367

DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System. This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated by the WHB Ventilation System, which in conjunction with ventilation boundaries ensure that ai

E. F. Loros

2000-06-30T23:59:59.000Z

368

Mixed waste characterization, treatment & disposal focus area  

Science Conference Proceedings (OSTI)

The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

NONE

1996-08-01T23:59:59.000Z

369

Disposable sludge dewatering container and method  

DOE Patents (OSTI)

This invention is comprised of a device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

Cole, C.M.

1990-12-27T23:59:59.000Z

370

Grand Forks, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grand Forks, North Dakota: Energy Resources Grand Forks, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9252568°, -97.0328547° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.9252568,"lon":-97.0328547,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

GIS Data from LANL's Cerro Grande Rehabilitation Project (CGRP)  

DOE Data Explorer (OSTI)

The Los Alamos National Laboratorys Cerro Grande Rehabilitation Project (CGRP) involves many subprojects. One of them is a geographic information system for electronically storing and displaying geographically-related data about the fires effects. The data are used for research, planning, emergency response, and for informing the public. This website provides access to geospatial data relating to the May 2000 Cerro Grande Fire. This includes data generated by the Burned Area Emergency Rehabilitation (BAER) Team during and shortly after the fire as well as data resulting from the ongoing environmental monitoring programs related to the fire. These data are available from a data catalog in two forms: (i) direct download of individual geospatial files and (ii) image files.

372

East Grand St Bridge Snowmelt Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bridge Snowmelt Low Temperature Geothermal Facility Bridge Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name East Grand St Bridge Snowmelt Low Temperature Geothermal Facility Facility East Grand St Bridge Sector Geothermal energy Type Snowmelt Location Laramie, Wyoming Coordinates 41.3113669°, -105.5911007° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

373

Grand Ridge II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Grand Ridge II Wind Farm Facility Grand Ridge II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

City of Grand Island, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Island City of Grand Island City of Place Nebraska Utility Id 40606 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Flood Lighting Lighting Commercial Rate- Single Phase Commercial Commercial Rate- Three Phase Commercial Residential Rate Residential Three Phase Power Service Industrial

375

City of Grand Haven, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Haven Grand Haven Place Michigan Utility Id 7483 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Space Lighting Service - 100 Watt Lighting Area Space Lighting Service - 1000 Watt Lighting Area Space Lighting Service - 175 Watt Mercury Vapor Lighting Area Space Lighting Service - 400 Watt Mercury Vapor Lighting Area Space Lighting Service - Metal Halide 175 Watt Lighting

376

Arroyo Grande, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arroyo Grande, California: Energy Resources Arroyo Grande, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1185868°, -120.5907252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1185868,"lon":-120.5907252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Rio Grande Electric Coop, Inc (New Mexico) | Open Energy Information  

Open Energy Info (EERE)

New Mexico) New Mexico) Jump to: navigation, search Name Rio Grande Electric Coop, Inc Place New Mexico Utility Id 16057 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1560/kWh Commercial: $0.1630/kWh Industrial: $0.1170/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Rio_Grande_Electric_Coop,_Inc_(New_Mexico)&oldid=412780" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

378

City of Grand Rapids Building Solar Roof Demonstration  

SciTech Connect

Grand Rapids, Michigan is striving to reduce it environmental footprint. The municipal government organization has established environmental sustainability policies with the goal of securing 100% of its energy from renewable sources by 2020. This report describes the process by which the City of Grand Rapids evaluated, selected and installed solar panels on the Water/Environmental Services Building. The solar panels are the first to be placed on a municipal building. Its new power monitoring system provides output data to assess energy efficiency and utilization. It is expected to generate enough clean solar energy to power 25 percent of the building. The benefit to the public includes the economic savings from reduced operational costs for the building; an improved environmentally sustainable area in which to live and work; and increased knowledge about the use of solar energy. It will serve as a model for future energy saving applications.

DeClercq, Mark; Martinez, Imelda

2012-08-31T23:59:59.000Z

379

Volume terms for charged colloids: a grand-canonical treatment  

E-Print Network (OSTI)

We present a study of thermodynamic properties of suspensions of charged colloids on the basis of linear Poisson-Boltzmann theory. We calculate the effective Hamiltonian of the colloids by integrating out the ionic degrees of freedom grand-canonically. This procedure not only yields the well-known pairwise screened-Coulomb interaction between the colloids, but also additional volume terms which affect the phase behavior and the thermodynamic properties such as the osmotic pressure. These calculations are greatly facilitated by the grand-canonical character of our treatment of the ions, and allow for relatively fast computations compared to earlier studies in the canonical ensemble. Moreover, the present derivation of the volume terms are relatively simple, make a direct connection with Donnan equilibrium, yield an explicit expression for the effective screening constant, and allow for extensions to include, for instance, nonlinear effects.

Bas Zoetekouw; Rene van Roij

2005-10-10T23:59:59.000Z

380

Chattanooga Eagle Ford Rio Grande Embayment Texas- Louisiana-  

U.S. Energy Information Administration (EIA) Indexed Site

Rio Grande Rio Grande Embayment Texas- Louisiana- Mississippi Salt Basin Uinta Basin Appa lachia n Basin Utica Marcellus Devonian (Ohio) Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville Hermosa Mancos Pierre Conasauga Woodford- Caney Pearsall- Eagle Ford Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Maverick Sub-Basin Montana Thrust Belt Marfa Basin Valley and Ridge Province Arkoma Basin Forest City Basin Piceance Basin Shale Gas Plays, Lower 48 States 0 200 400 100 300 Miles ± Source: Energy Information Administration based on data from various published studies

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microsoft Word - LL-RECAP Summary.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation J. Waugh, S.M. Stoller Corporation, Grand Junction, CO C. Benson, University of Wisconsin, Madison, WI B. Albright, Desert Research Institute, Reno, NV G. Smith, Geosmith Engineering, Grand Junction, CO The U.S. Department of Energy (DOE) Office of Legacy Management (LM) constructed a test facility at the Grand Junction Disposal Site to evaluate a method for renovating a conventional, low-permeability cover. The purpose of the study, the Renovated ET [evapotranspiration] Cover Assessment Project (RECAP), will demonstrate an inexpensive way to improve long-term surveillance and maintenance (LTS&M) of disposal cell covers. LM believes that cover renovation may also lead to a reduction in risk over the long term.

382

Properties of tunnel junctions with fluorocarbon dielectric barriers  

SciTech Connect

Thesis. The electrical characteristics of In/I/In and In/I/Pb superconducting tunnel junctions have been studied in detail. Since In does not readily form pinhole free oxide layers, a thin insulating dielectric was formed on freshly deposited In film by passing an electric discharge through an atmosphere of fluorocarbon gas. Junctions were then completed by depositing a thin counter electrode of In or Pb. The same process was used to prepare high resistance junctions with Au as the base electrode; these were not however, studied in detail. In/I/In and In/I/Pb junctions were produced with resistances in the range 0.01 ohms to 10/sup 10/ ohms at liquid helium temperatures. Low resistance junctions exhibited nonlinear electrical characteristics associated with good quality oxide'' superconducting junctions including (a) the dc Josephson effcct, (b) quasiparticle tunneling characteristics. (c) phonon structure and (d) inelastic tunneling phenomena. The magnitude of the Josephson current for In/I/In junctions agreed to within a few percent of the value predicted by strong coupling theory. Current voltage (I-V) and first and second derivative curves for In/I/In and In/I/Pb were compared with curves for Al/I/In and Pb/I/Pb junctions. Discrepancies between the characteristics can be, for the most part, explained on the basis of existing theories of phonon mediated superconductivity using recent data from inelastic neutron scattering studies of In. Nonlinear structure at voltages below the phonon spectrum was observed and is most likely associated with Kohn singularities. At higher voltages, second derivative curves exhibited resonances characteristic of CH and OH impurities in the barrier as well as a complex spectrum associated with the vibrational spectrum of the fluorocarbon dielectric. To better characterize this dielectric, a variety of surface analytic techniques were used to determine the complex index of refraction, the chemical composition and chemical homogeneity of the barrier. I-V curves for high resistance junctions were used to determine the potential at the metal-insulator interface. (auth)

Jack, M.D.

1973-11-01T23:59:59.000Z

383

Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico  

DOE Green Energy (OSTI)

The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

James C Witcher

2002-07-30T23:59:59.000Z

384

Laboratory to demolish excavation enclosures at Material Disposal...  

NLE Websites -- All DOE Office Websites (Extended Search)

with potential applications in such energy-related technologies such as production of biofuels and reduction of carbon dioxide. A dead pinon at the edge of the Grand Canyon,...

385

Recycling and Disposal of Spent Selective Catalytic Reduction Catalyst  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) technology has become widespread within the utility industry as a means of controlling emissions of nitrogen oxides (NOx). The technology uses a solid catalyst that deactivates over time; and thus significant volumes of catalyst will need regeneration, recycle, or disposal. This study examined issues related to spent catalyst recycle and disposal.

2003-11-12T23:59:59.000Z

386

FGD By-Product Disposal Manual, Fourth Edition  

Science Conference Proceedings (OSTI)

This manual presents an objective, systematic methodology for evaluating potential flue gas desulfurization (FGD) sludge disposal sites and design approaches. A completely updated edition, the manual provides new information and references on existing industry disposal practices, regulatory constraints and trends, FGD sludge properties, and waste management system costs.

1995-08-11T23:59:59.000Z

387

Lessons Learned from Radioactive Waste Storage and Disposal Facilities  

Science Conference Proceedings (OSTI)

The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. This paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.

Esh, David W.; Bradford, Anna H. [U.S. Nuclear Regulatory Commission, Two White Flint North, MS T7J8, 11545 Rockville Pike, Rockville, MD 20852 (United States)

2008-01-15T23:59:59.000Z

388

Summary - Disposal Practices at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR-19 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Disposal Practices at the Savannah River Site Why DOE-EM Did This Review Disposal operations have been ongoing at the Savannah River Site (SRS) for over 50 years. Active disposal in E-Area, is near the center of the site. Although a wide range of wastes are being managed at the SRS, only low level radioactive wastes (LLRW) are disposed of on site. Wastes are disposed of in unlined slit and engineered trenches, and in low activity waste and intermediate level vaults. Some wastes are isolated in place with grout and all wastes will be covered with a cap that includes a hydraulic barrier to limit precipitation infiltration. The objective of this review was to

389

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

390

NNSA Reaches LEU Disposal Milestone | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Reaches LEU Disposal Milestone | National Nuclear Security Reaches LEU Disposal Milestone | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Reaches LEU Disposal Milestone NNSA Reaches LEU Disposal Milestone November 08, 2004 Aiken, SC NNSA Reaches LEU Disposal Milestone The National Nuclear Security Administration's reached an important

391

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE December 1, 2010 - 12:00pm Addthis OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation. EMWMF has continued a long-standing pattern of safe, complaint operations with 3,000 days without a lost workday case since operations commenced on May 28, 2002. The EMWMF has placed 1.5 million tons of waste and fill in the facility. The EMWMF receives waste from many Oak Ridge cleanup projects, including American Recovery and Reinvestment Act-funded projects, multiple

392

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

393

Composite analysis E-area vaults and saltstone disposal facilities  

Science Conference Proceedings (OSTI)

This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

Cook, J.R.

1997-09-01T23:59:59.000Z

394

2009 Performance Assessment for the Saltstone Disposal Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Assessment for the Saltstone Disposal Facility Performance Assessment for the Saltstone Disposal Facility 2009 Performance Assessment for the Saltstone Disposal Facility This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116]

395

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

396

THE ECONOMICS AND HAZARD POTENTIAL OF WASTE DISPOSAL  

SciTech Connect

The two most important considerations in the disposal of radioactive wastes are safety and economy. All other steps in the waste disposal complex must be tuned to accomplish these two goals. In general, the hazardous waste in the nuclear power complex affect the cost of the nuclear power reactor fuel cycle, the general environment since disposal must exclude radioactivity from the environment for over 500 years, the costs and/or methods of waste treatment including fission product utilization, the methods of shipping, the location of chemical processing plants and waste disposal sites, the methods of disposal best suited for a particular type of waste or site location, and potential public damage and third-party liability.

Arnold, E.D.

1957-07-01T23:59:59.000Z

397

Research, Development, and Demonstration Roadmap for Deep Borehole Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research, Development, and Demonstration Roadmap for Deep Borehole Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to advance deep borehole disposal (DBD) from its current conceptual status to potential future deployment as a disposal system for spent nuclear fuel (SNF) and high-level waste (HLW). The objectives of the DBD RD&D roadmap include providing the technical basis for fielding a DBD demonstration project, defining the scientific research activities associated with site characterization and postclosure safety, as well as defining the engineering demonstration activities associated with deep borehole drilling, completion, and surrogate waste canister emplacement. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

398

NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Triple-Junction Terrestrial Concentrator Solar Cell Triple-Junction Terrestrial Concentrator Solar Cell Developers: Dr. Jerry Olson, Dr. Sarah Kurtz, Dr. Daniel Friedman, Alan Kibbler, and Charlene Karmer, National Renewable Energy Laboratory; Dr. Richard King, Jim Ermer, Dmitri D. Krut, Hector Cotal, Peter Colter, Hojun Yoon, Nassar Karam, and Gregory S. Glenn, Spectrolab, Inc. The triple-junction solar cell - or TJ solar cell - generates a lot of energy from just a very little amount of material. How much energy? A 1-cm2 cell can generate as much as 35 W of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity to power the typical American household. This cell can do this, first, because it

399

Junction-based field emission structure for field emission display  

DOE Patents (OSTI)

A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

Dinh, Long N. (Concord, CA); Balooch, Mehdi (Berkeley, CA); McLean, II, William (Oakland, CA); Schildbach, Marcus A. (Livermore, CA)

2002-01-01T23:59:59.000Z

400

Benefits of Damage Engineering for PMOS Junction Stability  

SciTech Connect

As CMOS devices continue to shrink, the formation of ultra shallow junction (USJ) in the source/drain extension remains to be a key challenge requiring high dopant activation, shallow dopant profile and abrupt junctions. The next generations of sub nano-CMOS devices impose a new set of challenges such as elimination of residual defects resulting in higher leakage, difficulty to control lateral diffusion, junction stability post anneal and junction formation in new materials. To address these challenges for advanced technological nodes beyond 32 nm, it is imperative to explore novel species and techniques. Molecular species such as Carborane (C{sub 2}B{sub 10}H{sub 12}), a novel doping species and a promising alternative to monomer Boron is of considerable interest due to the performance boost for 22 nm low power and high performance devices. Also, to reduce residual defects, damage engineering methodologies have generated a lot of attention as it has demonstrated significant benefits in device performance. Varian proprietary techniques to perform implants at cold temperatures (PTC II) have demonstrated lower junction leakage, enhanced activation, reduced dopant diffusion and less dopant deactivation due to the reduction of self-interstitial atoms present at the end-of-range (EOR) with low implant temperatures. In this paper, for the first time, there is a comprehensive study of the effect of implant temperature on defect engineering affecting deactivation/reactivation, and it is well established in this paper that colder the implant temperature the better it is for damage engineering with reduced EOR defects and better amorphization. The effect has been studied over a wide range of implant temperature. To understand any difference in deactivation between molecular and monomer Boron and to provide direct comparison equivalent Boron implants, co-implanted with Carbon were also studied. Implants with wide range of temperatures are implemented using PTC II. This paper will also show how damage reduction correlates with optimum junction formation and stability.

Khaja, Fareen; Colombeau, Benjamin; Thanigaivelan, Thirumal; Ramappa, Deepak; Henry, Todd [Varian Semiconductor Equipment Associates, Inc. 35 Dory Road, Gloucester, MA 01930 (United States)

2011-01-07T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Emission of terahertz waves from stacks of intrinsic Josephson junctions.  

SciTech Connect

By patterning mesoscopic crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (BSCCO) into electromagnetic resonators the oscillations of a large number of intrinsic Josephson junctions can be synchronized into a macroscopic coherent state accompanied by the emission of strong continuous wave THz-radiation. The temperature dependence of the emission is governed by the interplay of self-heating in the resonator and by re-trapping of intrinsic Josephson junctions which can yield a strongly non-monotonic temperature dependence of the emission power. Furthermore, proper shaping of the resonators yields THz-sources with voltage-tunable emission frequencies.

Gray, K. E.; Koshelev, A. E.; Kurter, C.; Kadowaki, K.; Yamamoto, T.; Minami, H.; Yamaguchi, H.; Tachiki, M.; Kwok, W.-K.; Welp, U.; Materials Science Division; Izmir Inst. of Tech.; Univ. Tsukuba; Univ. Tokyo

2009-06-01T23:59:59.000Z

402

3-D Nano-mechanics of an Erythrocyte Junctional Comples in Equibiaxial and Anisotropic Deformations  

E-Print Network (OSTI)

L.D. Sturges. Engineering Mechanics: Dynamics. Wiley, 1995.3-D Nano-mechanics of an Erythrocyte Junctional Complex inUSA Running title: Nano-mechanics of Erythrocyte Junctional

Vera, Carlos; Skelton, Robert; Sung, Amy

2005-01-01T23:59:59.000Z

403

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

404

Disposal of Rocky Flats residues as waste  

SciTech Connect

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

405

Addendum to the composite analysis for the E-Area Vaults and Saltstone Disposal Facilities  

SciTech Connect

This report documents the composite analysis performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility.

Cook, J.R.

2000-03-13T23:59:59.000Z

406

Options and cost for disposal of NORM waste.  

Science Conference Proceedings (OSTI)

Oil field waste containing naturally occurring radioactive material (NORM) is presently disposed of both on the lease site and at off-site commercial disposal facilities. The majority of NORM waste is disposed of through underground injection, most of which presently takes place at a commercial injection facility located in eastern Texas. Several companies offer the service of coming to an operator's site, grinding the NORM waste into a fine particle size, slurrying the waste, and injecting it into the operator's own disposal well. One company is developing a process whereby the radionuclides are dissolved out of the NORM wastes, leaving a nonhazardous oil field waste and a contaminated liquid stream that is injected into the operator's own injection well. Smaller quantities of NORM are disposed of through burial in landfills, encapsulation inside the casing of wells that are being plugged and abandoned, or land spreading. It is difficult to quantify the total cost for disposing of NORM waste. The cost components that must be considered, in addition to the cost of the operation, include analytical costs, transportation costs, container decontamination costs, permitting costs, and long-term liability costs. Current NORM waste disposal costs range from $15/bbl to $420/bbl.

Veil, J. A.

1998-10-22T23:59:59.000Z

407

Novel InGaAsN pn Junction for High-Efficiency Multiple-Junction Solar Cells  

DOE Green Energy (OSTI)

We report the application of a novel material, InGaAsN, with bandgap energy of 1.05 eV as a junction in an InGaP/GaAs/InGaAsN/Ge 4-junction design. Results of the growth and structural, optical, and electrical properties were demonstrated, showing the promising perspective of this material for ultra high efficiency solar cells. Photovoltaic properties of an as-grown pn diode structure and improvement through post growth annealing were also discussed.

Allerman, A.A.; Chang, P.C.; Gee, J.M.; Hammons, B.E.; Hou, H.Q.; Jones, E.D.; Kurtz, S.R.; Reinhardt, K.C.

1999-03-26T23:59:59.000Z

408

Optimized Triple-Junction Solar Cells Using Inverted Metamorphic Approach (Presentation)  

DOE Green Energy (OSTI)

Record efficiencies with triple-junction inverted metamorphic designs, modeling useful to optimize, and consider operating conditions before choosing design.

Geisz, J. F.

2008-11-01T23:59:59.000Z

409

Scenarios of the TWRS low-level waste disposal program  

Science Conference Proceedings (OSTI)

As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste.

NONE

1994-10-01T23:59:59.000Z

410

Demilitarization and disposal technologies for conventional munitions and energetic materials  

SciTech Connect

Technologies for the demilitarization and disposal of conventional munitions and energetic materials are presented. A hazard separation system has been developed to remove hazardous subcomponents before processing. Electronic component materials separation processes have been developed that provide for demilitarization as well as the efficient recycling of materials. Energetic materials demilitarization and disposal using plasma arc and molten metal technologies are currently being investigated. These regulatory compliant technologies will allow the recycling of materials and will also provide a waste form suitable for final disposal.

Lemieux, A.A.; Wheelis, W.T.; Blankenship, D.M.

1994-09-01T23:59:59.000Z

411

Immobilized low-level waste disposal options configuration study  

Science Conference Proceedings (OSTI)

This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

Mitchell, D.E.

1995-02-01T23:59:59.000Z

412

A variational approach to motion of triple junction of gas, liquid and solid  

E-Print Network (OSTI)

A variational approach to motion of triple junction of gas, liquid and solid Kensuke Yokoia;b;c;1 a to deal with motion of triple junctions of gas, liquid (or two kinds of uid) and solid based on the level with triple junctions of gas, liquid and solid. Numerical simulations for free surface ows with moving

Soatto, Stefano

413

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity  

E-Print Network (OSTI)

Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity Alberto E of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding in revised form 16 May 2012 Accepted 23 May 2012 Available online 31 May 2012 Keywords: Electrical synapse

Rash, John E.

414

Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation  

E-Print Network (OSTI)

. This relation provides a way of quantum-mechanically linking frequency and voltage and is therefore utilised in the international standardisation of the Volt. 1.2.1 The Resistively Shunted Junction (RSJ) model At finite values of the voltage bias not only an ac...

Booij, Wilfred Edwin

415

Performance model assessment for multi-junction concentrating photovoltaic systems.  

DOE Green Energy (OSTI)

Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

Riley, Daniel M.; McConnell, Robert. (Amonix, Inc., Seal Beach, CA); Sahm, Aaron (University of Nevada, Las Vegas, NV); Crawford, Clark (Amonix, Inc., Seal Beach, CA); King, David L.; Cameron, Christopher P.; Foresi, James S. (Emcore, Inc., Albuquerque, NM)

2010-03-01T23:59:59.000Z

416

Gravitational Collapse and Radiation of Grand Unified Theory  

E-Print Network (OSTI)

The infinite gravitational collapse of any supermassive stars should pass through an energy scale of the grand unified theory (GUT). After nucleon-decays, the supermassive star will convert nearly all its mass into energy, and produce the radiation of GUT. It may probably explain some ultrahigh energy puzzles in astrophysics, for example, quasars and gamma-ray bursts (GRB), etc. This is similar with a process of the Big Bang Universe with a time-reversal evolution in much smaller space scale and mass scale. In this process the star seems be a true white hole.

Yi-Fang Chang

2007-10-02T23:59:59.000Z

417

Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old project that will protect an additional 1.3 miles of stream and 298.3 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Improving fish passage in Bear Creek to restore tributary and mainstem access; (4) Planting and seeding 6.7 stream miles with 7,100 plants and 365 lbs. of seed; (5) Establishing 18 new photopoints and retaking 229 existing photopoint pictures; (6) Monitoring stream temperatures at 12 locations on 6 streams; (7) completing riparian fence, water gap and other maintenance on 98.7 miles of project fences. Since initiation of the project in 1984 over 62 miles of anadromous fish bearing streams and 1,910 acres of habitat have been protected, enhanced and maintained.

McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

2001-04-01T23:59:59.000Z

418

Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.  

DOE Green Energy (OSTI)

Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by the construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass Creek, an extirpated area, will be stocked (smolts and adults) with Catherine Creek origin salmon to initiate natural production in unseeded habitat, and to initiate future harvest opportunities. The current production levels have been incorporated into the U.S. v. Oregon Interim Management Agreement. The purpose of this contract is to integrate Bonneville Power Administration (BPA) efforts with the Lower Snake River Compensation Plan (LSRCP) program utilizing Lookingglass Hatchery as the primary rearing facility. BPA constructed an adult holding and spawning structure on the hatchery grounds; however, maintenance of this infrastructure was discontinued due to funding limitation and transferred to the LSRCP program in 2007. These integrated efforts focus on holding and spawning adults, rearing juveniles, fish health, and monitoring natural production (Redd counts) for Catherine Creek, Lostine River, and Upper Grande Ronde stocks.

Patterson, Scott

2009-04-10T23:59:59.000Z

419

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

420

U.S. Department of Energy Announces the Availability of Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Availability of Disposal Contracts for New Nuclear Reactors U.S. Department of Energy Announces the Availability of Disposal Contracts for New Nuclear Reactors October 31, 2008...

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Finding  

Office of Legacy Management (LM)

Junction UMTRA Project Site (Climax Uranium Millsite) September 1999 U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Finding of No Significant Impact...

422

SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge Highlights Ambitious Efforts along the SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum June 13, 2012 - 5:30pm Addthis Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program What are the key facts? Today at the SunShot Grand Challenge Summit Energy Secretary Chu announced up to $8 million to support clean energy startups. Secretary Chu also announced a nationwide competition to drive down

423

Disposal Systems Evaluations and Tool Development - Engineered Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Systems Evaluations and Tool Development - Engineered Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation The engineered barrier system (EBS) plays a key role in the long-term isolation of nuclear waste in geological repository environments. This report focuses on the progress made in the evaluation of EBS design concepts, assessment of clay phase stability at repository-relevant conditions, thermodynamic database development for cement and clay phases, and THMC coupled phenomena along with the development of tools and methods to examine these processes. This report also documents the advancements of the Disposal System Evaluation Framework (DSEF) for the development of

424

Integration of EBS Models with Generic Disposal System Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

425

Integration of EBS Models with Generic Disposal System Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

426

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwestern Low-Level Radioactive Waste Disposal Compact (South Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider Southwestern Low-Level Radioactive Waste Commission This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste. The Compact is administered by a commission, which can regulate and impose fees on in-state radioactive waste generators. The states of Arizona, California,

427

Depleted Uranium Dioxide as SNF Waste Package Fill: A Disposal...  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPLETED URANIUM DIOXIDE AS SNF WASTE PACKAGE FILL: A DISPOSAL OPTION Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6179 Tel: (865)...

428

DOE - Office of Legacy Management -- Clive Disposal Cell - 036  

Office of Legacy Management (LM)

Survey(s): Site Status: The Clive Disposal Cell is located in Tooele County, Utah. All of the mill tailings and other residual radioactive materials from the South Salt...

429

DOE - Office of Legacy Management -- 11 E (2) Disposal Cell ...  

Office of Legacy Management (LM)

Radiological Survey(s): Site Status: This designation refers to an Envirocare of Utah disposal cell for byproduct material as defined under Section 11 e. (2) of the Atomic...

430

Microsoft Word - WIPP Marks A Decade of Safe Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

more than 10 years. The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) began disposal operations March 26, 1999 and today serves as an international model...

431

Impacts of Secondary Waste on Near-Surface Disposal Facility ...  

Impacts of Secondary Waste on Near-Surface Disposal Facility at Hanford ... DOE low-level and mixed low-level waste. 1E-06 1E-05 1E-04 1E-03 1E-02 ...

432

A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future was formed at the direction of the President to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle. If we are going to ensure that the United States remains at the forefront of nuclear safety and security, non-proliferation, and nuclear energy technology we must develop an effective strategy and workable plan for the safe and secure management and disposal of used nuclear fuel and nuclear waste. That is why I asked General Scowcroft and Representative Hamilton to draw on their

433

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

434

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

435

Disposing of nuclear waste in a salt bed  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposing of nuclear waste in a salt bed Disposing of nuclear waste in a salt bed 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Disposing of nuclear waste in a salt bed Decades' worth of transuranic waste from Los Alamos is being laid to rest at the Waste Isolation Pilot Plant in southeastern New Mexico March 25, 2013 Disposing of nuclear waste in a salt bed Depending on the impurities embedded within it, the salt from WIPP can be anything from a reddish, relatively opaque rock to a clear crystal like the one shown here. Ordinary salt effectively seals transuranic waste in a long-term repository Transuranic waste, made of items such as lab coats and equipment that have been contaminated by radioactive elements heavier than uranium, is being shipped from the Los Alamos National Laboratory to a long-term storage

436

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

437

200 Area treated effluent disposal facility operational test report  

Science Conference Proceedings (OSTI)

This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met.

Crane, A.F.

1995-03-01T23:59:59.000Z

438

Low and medium level radioactive waste disposal in France  

Science Conference Proceedings (OSTI)

ANDRA, as the national radioactive waste management agency of France, was created in 1979 as part of the French Atomic Energy, Commission and is responsible for radioactive waste disposal. Legislation passed on December 30, 1991 gave ANDRA greater autonomy and responsibility for radioactive waste management by making it a Public Service Company separate from the CEA and by placing it under the supervisory authority of the Ministries of Industry, of the Environment and of Research. The legislation specifically delegates the following responsibilities to ANDRA: (1) establishment of specifications for radioactive waste solidification and disposal; (2) design, siting and construction of new waste disposal facilities; (3) disposal facility operations; and (4) participation in research on, and design and construction of, isolation systems for long lived waste.

Potier, J.M.

1994-12-31T23:59:59.000Z

439

Waste Disposal Site and Radioactive Waste Management (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

440

Proof of Proper Solid Waste Disposal (West Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of providing proof of proper solid waste disposal to...

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Minor actinide waste disposal in deep geological boreholes  

E-Print Network (OSTI)

The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

Sizer, Calvin Gregory

2006-01-01T23:59:59.000Z

442

Disposal Facility Reaches 15-Million-Ton Milestone  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. EMs Environmental Restoration Disposal Facility (ERDF) a massive landfill for low-level radioactive and hazardous waste at the Hanford site has achieved a major cleanup milestone.

443

Canister design for deep borehole disposal of nuclear waste  

E-Print Network (OSTI)

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

444

Summary - Disposal Practices at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR-19 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Disposal Practices at the Savannah River Site Why DOE-EM Did...

445

Figure ES2. Annual Indices of Real Disposable Income, Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

446

SUPPORTING CALCULATIONS FOR SUBMERGED BED SCRUBBER CONDENSATE DISPOSAL PRECONCEPTUAL STUDY  

Science Conference Proceedings (OSTI)

This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Pre conceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

PAJUNEN AL; TEDESCHI AR

2012-09-18T23:59:59.000Z

447

Second Panel of Disposal Rooms Completed in WIPP Underground  

NLE Websites -- All DOE Office Websites (Extended Search)

Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 DOENews -2- Underground waste disposal panels are arranged in parallel sets of seven rooms each. Each set of seven...

448

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada EIS-0250: Geologic Repository for the...

449

Draft Environmental Impact Statement for the Disposal of Greater...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste WASHINGTON The Department of Energy (DOE) has issued a Draft Environmental...

450

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network (OSTI)

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

451

17.3 - Acquisition, Use and Disposal of Real Property  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Real Estate References DEAR 917.74 - Acquisition, Use, and Disposal of Real Estate DOE Directives DOE Order 413.3B, Program and Project Management for the Acquisition of...

452

Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study  

SciTech Connect

This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

Pajunen, A. J.; Tedeschi, A. R.

2012-09-18T23:59:59.000Z

453

A Grand Delta(96) x SU(5) Flavour Model  

E-Print Network (OSTI)

Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of theta_13 approximately 9 degrees. This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on Delta(96) x SU(5), together with a U(1) x Z3 symmetry, including a full discussion of Delta(96) in a convenient basis. The Grand Delta(96) x SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: theta_23=36...

King, Stephen F; Stuart, Alexander J

2012-01-01T23:59:59.000Z

454

A Grand Delta(96) x SU(5) Flavour Model  

E-Print Network (OSTI)

Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of theta_13 approximately 9 degrees. This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on Delta(96) x SU(5), together with a U(1) x Z3 symmetry, including a full discussion of Delta(96) in a convenient basis. The Grand Delta(96) x SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: theta_23=36.9 degrees, theta_12=32.7 degrees and theta_13=9.6 degrees, in good agreement with recent global fits, and a zero Dirac CP phase delta~0.

Stephen F. King; Christoph Luhn; Alexander J. Stuart

2012-07-24T23:59:59.000Z

455

Geomorphology of plutonium in the Northern Rio Grande  

Science Conference Proceedings (OSTI)

Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography] Arizona Univ., Tempe, AZ (United States). Dept., of Geography

1993-03-01T23:59:59.000Z

456

Naval Spent Nuclear Fuel disposal Container System Description Document  

Science Conference Proceedings (OSTI)

The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

N. E. Pettit

2001-07-13T23:59:59.000Z

457

Salt disposal of heat-generating nuclear waste.  

SciTech Connect

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

458

Antireflection Coating Design for Series Interconnected Multi-Junction Solar Cells  

DOE Green Energy (OSTI)

AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub SC}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices.

AIKEN,DANIEL J.

1999-11-29T23:59:59.000Z

459

Household waste disposal in Mekelle city, Northern Ethiopia  

SciTech Connect

In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes on household solid waste disposal are investigated using data from household survey. Household level data are then analyzed using multinomial logit estimation to determine the factors that affect household waste disposal decision making. Results show that demographic features such as age, education and household size have an insignificant impact over the choice of alternative waste disposal means, whereas the supply of waste facilities significantly affects waste disposal choice. Inadequate supply of waste containers and longer distance to these containers increase the probability of waste dumping in open areas and roadsides relative to the use of communal containers. Higher household income decreases the probability of using open areas and roadsides as waste destinations relative to communal containers. Measures to make the process of waste disposal less costly and ensuring well functioning institutional waste management would improve proper waste disposal.

Tadesse, Tewodros [Agricultural Economics and Rural Policy Group, Wageningen University, Hollandseweg 1 6706 KN Wageningen (Netherlands)], E-mail: tewodroslog@yahoo.com; Ruijs, Arjan [Environmental Economics and Natural Resources Group, Wageningen University, P.O. Box 8130, 6700 EW Wageningen (Netherlands); Hagos, Fitsum [International Water Management Institute (IWMI), Subregional Office for the Nile Basin and East Africa, P.O. Box 5689, Addis Ababa (Ethiopia)

2008-07-01T23:59:59.000Z

460

EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE's...

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Assessment of subsurface salt water disposal experience on the Texas and Louisiana Gulf Coast for applications to disposal of salt water from geopressured geothermal wells  

SciTech Connect

A representative cross section of the literature on the disposal of geothermal brine was perused and some of the general information and concepts is summarized. The following sections are included: disposal statistics--Texas Railroad Commission; disposal statistics--Louisiana Office of Conservation; policies for administering salt water disposal operations; salt water disposal experience of Gulf Coast operators; and Federal Strategic Petroleum Reserve Program's brine disposal operations. The literature cited is listed in the appended list of references. Additional literature is listed in the bibliography. (MHR)

Knutson, C.K.; Boardman, C.R.

1978-08-04T23:59:59.000Z

462

Assessment of subsurface salt water disposal experience on the Texas and Louisiana Gulf Coast for applications to disposal of salt water from geopressured geothermal wells  

DOE Green Energy (OSTI)

A representative cross section of the literature on the disposal of geothermal brine was perused and some of the general information and concepts is summarized. The following sections are included: disposal statistics--Texas Railroad Commission; disposal statistics--Louisiana Office of Conservation; policies for administering salt water disposal operations; salt water disposal experience of Gulf Coast operators; and Federal Strategic Petroleum Reserve Program's brine disposal operations. The literature cited is listed in the appended list of references. Additional literature is listed in the bibliography. (MHR)

Knutson, C.K.; Boardman, C.R.

1978-08-04T23:59:59.000Z

463

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

464

LM FIMS Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FIMS Database FIMS Database LM FIMS Database January 8, 2013 - 1:06pm Addthis A road is improved at the Grand Junction, Colorado, Disposal Site. A road is improved at the Grand Junction, Colorado, Disposal Site. A building is demolished at the Weldon Spring, Missouri, Site. A building is demolished at the Weldon Spring, Missouri, Site. An innovative cool roof installation increased energy efficiency at the Fernald Preserve, Ohio, offsite administrative building. An innovative cool roof installation increased energy efficiency at the Fernald Preserve, Ohio, offsite administrative building. A road is improved at the Grand Junction, Colorado, Disposal Site. A building is demolished at the Weldon Spring, Missouri, Site. An innovative cool roof installation increased energy efficiency at the Fernald Preserve, Ohio, offsite administrative building.

465

CX-002195: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

195: Categorical Exclusion Determination 195: Categorical Exclusion Determination CX-002195: Categorical Exclusion Determination Install a Test Cover at Grand Junction, Colorado, Disposal Site CX(s) Applied: B3.1 Date: 05/03/2010 Location(s): Grand Junction, Colorado Office(s): Legacy Management The U.S. Department of Energy (DOE) Office of Legacy Management (LM) proposes to install a 70 foot (ft) x 140 ft test cover that duplicates the top 42 inches of the existing cover at the Grand Junction, Colorado, Disposal Site. The purpose of the test cover is to evaluate methods for renovating low-permeability disposal cell covers and to measure the effects of renovation on soil hydraulic properties and seedbed ecology. The test cover would be constructed on the surface of an existing stockpile of clay

466

LM FIMS Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LM FIMS Database LM FIMS Database LM FIMS Database January 8, 2013 - 1:06pm Addthis A road is improved at the Grand Junction, Colorado, Disposal Site. A road is improved at the Grand Junction, Colorado, Disposal Site. A building is demolished at the Weldon Spring, Missouri, Site. A building is demolished at the Weldon Spring, Missouri, Site. An innovative cool roof installation increased energy efficiency at the Fernald Preserve, Ohio, offsite administrative building. An innovative cool roof installation increased energy efficiency at the Fernald Preserve, Ohio, offsite administrative building. A road is improved at the Grand Junction, Colorado, Disposal Site. A building is demolished at the Weldon Spring, Missouri, Site. An innovative cool roof installation increased energy efficiency at the Fernald Preserve, Ohio, offsite administrative building.

467

Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33  

E-Print Network (OSTI)

This thesis integrated geology, geophysics, and petroleum engineering data to build a detailed reservoir characterization models for three gas pay sands in the Grand Isle 33 & 43 fields, offshore Louisiana. The reservoirs are Late Miocene in age and include the upper (PM), middle (QH), and lower (RD) sands. The reservoir models address the stratigraphy of the upper (PM) sand and help delineate the lower (RD) reservoir. In addition, this research addresses the partially depleted QH-2 reservoir compartment. The detailed models were constructed by integrating seismic, well log, and production data. These detailed models can help locate recoverable oil and gas that has been left behind. The upper PM model further delineated that the PM sand has several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand was partially depleted in the QH-2 reservoir compartment by a series of development wells. Bottom hole pressure data from wells in Grand Isle 32 & 33 reveal that the two QH fault compartments are in communication across a leaking fault. Production wells in the QH-1 compartment produced reserves from the QH-2 compartment. The lower RD sand model helped further delineate the reservoir in the RD-2 compartment and show that this compartment has been depleted. The RD model also shows the possible presence of remaining recoverable hydrocarbons in the RD-1 compartment. It is estimated that about 6.7 billion cubic feet of gas might remain within this reservoir waiting to be recovered. A seismic amplitude anomaly response from the QH and RD sands is interpreted to be a lithologic indicator rather than the presence of hydrocarbons. Amplitude response from the PM level appears to be below the resolution of the seismic data. A synthetic seismogram model was generated to represent the PM and surrounding sands. This model shows that by increasing the frequency of the seismic data from 20 Hz to a dominant frequency of 30 Hz that the PM and surrounding sands could be seismically resolvable. Also the PM-1 compartment has possible recoverable hydrocarbons of 1.5 billion cubic feet of gas remaining.

Casey, Michael Chase

2011-05-01T23:59:59.000Z

468

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 2, Appendices: Final environmental impact statement  

Science Conference Proceedings (OSTI)

This volume contains Appendix F--hydrology report, and Appendix G--flood plain and wetland assessment. Contents of the hydrology report include: surface water; ground water; potentially affected hydrogeologic environment-processing site; potentially affected hydrogeologic environment-Cheney reservoir site; potentially affected hydrogeologic environment-Two Road site; and conclusions-ground water.

none,

1986-12-01T23:59:59.000Z

469

Final DUF6 PEIS: Volume 2: Appendix I; Disposal of Oxide  

NLE Websites -- All DOE Office Websites (Extended Search)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-80 TABLES I.1 Summary of Depleted Uranium Chemical Forms and Disposal Options Considered . . . . . . . . . . . . ....

470

Analysis of environmental regulations governing the disposal of geothermal wastes in California  

DOE Green Energy (OSTI)

Federal and California regulations governing the disposal of sludges and liquid wastes associated with the production of electricity from geothermal resources were evaluated. Current disposal practices, near/far term disposal requirements, and the potential for alternate disposal methods or beneficial uses for these materials were determined. 36 refs., 3 figs., 15 tabs. (ACR)

Royce, B.A.

1985-09-01T23:59:59.000Z

471

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance  

Energy.gov (U.S. Department of Energy (DOE))

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance

472

Reactor Vessel Head Disposal Campaign for Nuclear Management Company  

SciTech Connect

After establishing a goal to replace as many reactor vessel heads as possible - in the shortest time and at the lowest cost as possible - Nuclear Management Company (NMC) initiated an ambitious program to replace the heads on all six of its pressurized water reactors. Currently, four heads have been replaced; and four old heads have been disposed of. In 2002, NMC began fabricating the first of its replacement reactor vessel heads for the Kewaunee Nuclear Plant. During its fall 2004 refueling outage, Kewaunee's head was replaced and the old head was prepared for disposal. Kewaunee's disposal project included: - Down-ending, - Draining, - Decontamination, - Packaging, - Removal from containment, - On-Site handling, - Temporary storage, - Transportation, - Disposal. The next two replacements took place in the spring of 2005. Point Beach Nuclear Plant (PBNP) Unit 2 and Prairie Island Nuclear Generating Plant (PINGP) Unit 2 completed their head replacements during their scheduled refueling outages. Since these two outages were scheduled so close to each other, their removal and disposal posed some unique challenges. In addition, changes to the handling and disposal programs were made as a result of lessons learned from Kewaunee. A fourth head replacement took place during PBNP Unit 1's refueling outage during the fall of 2005. A number of additional changes took place. All of these changes and challenges are discussed in the paper. NMC's future schedule includes PINGP Unit 1's installation in Spring 2006 and Palisades' installation during 2007. NMC plans to dispose of these two remaining heads in a similar manner. This paper presents a summary of these activities, plus a discussion of lessons learned. (authors)

Hoelscher, H.L.; Closs, J.W. [Nuclear Management Company, LLC, 700 First Street, Hudson, WI 54016 (United States); Johnson, S.A. [Duratek, Inc., 140 Stoneridge Drive, Columbia, SC 29210 (United States)

2006-07-01T23:59:59.000Z

473

Pacific Junction, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Iowa: Energy Resources Junction, Iowa: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0186105°, -95.7991734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0186105,"lon":-95.7991734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Essex Junction, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Vermont: Energy Resources Junction, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4906054°, -73.1109604° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4906054,"lon":-73.1109604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Princeton Junction, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, New Jersey: Energy Resources Junction, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3173301°, -74.6198791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3173301,"lon":-74.6198791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Iron Junction, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Minnesota: Energy Resources Junction, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.416427°, -92.60665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.416427,"lon":-92.60665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Monmouth Junction, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, New Jersey: Energy Resources Junction, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3789957°, -74.5465436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3789957,"lon":-74.5465436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Biggs Junction, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biggs Junction, Oregon: Energy Resources Biggs Junction, Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.669846°, -120.8328408° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.669846,"lon":-120.8328408,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps  

E-Print Network (OSTI)

The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

Volkovich, Roie

2010-01-01T23:59:59.000Z

480

Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps  

E-Print Network (OSTI)

The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

Roie Volkovich; Uri Peskin

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "grand junction disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Coso Junction, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Coso Junction, California: Energy Resources Jump to: navigation, search Name Coso Junction, California Equivalent URI DBpedia GeoNames ID 5339829 Coordinates 36.0449439°, -117.9472993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0449439,"lon":-117.9472993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

Grand Ridge III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Grand Ridge III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

City of Grand Marais, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Marais, Minnesota (Utility Company) Marais, Minnesota (Utility Company) Jump to: navigation, search Name City of Grand Marais Place Minnesota Utility Id 7487 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL - SINGLE PHASE Commercial COMMERCIAL - THREE PHASE Commercial DUAL FUEL(Single Phase) DUAL FUEL(Three Phase) RESIDENTIAL - SINGLE PHASE Residential RESIDENTIAL - THREE PHASE Residential YARD LIGHT METERED Lighting YARD LIGHT UNMETERED Lighting

484

Grand Valley Rrl Pwr Line, Inc | Open Energy Information  

Open Energy Info (EERE)

Pwr Line, Inc Pwr Line, Inc Jump to: navigation, search Name Grand Valley Rrl Pwr Line, Inc Place Colorado Utility Id 7563 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Power Service, Three Phase Schedule (25)-CSP-1 Commercial Farm and Home (Residential) Service Schedule (10)-FH-1 Residential Industrial Service Schedule (50) -IND-1 Industrial Irrigation Service Schedule (40)-I-1 Commercial Large Power Service Schedule (30) -LP-1 Industrial Nonresidential - General Schedule (20)-NRG-1 Commercial

485

City of East Grand Forks, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Minnesota (Utility Company) Minnesota (Utility Company) Jump to: navigation, search Name East Grand Forks City of Place Minnesota Utility Id 5575 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Off Peak Rates Commercial Residential Electric Heat Residential Residential General Electric Residential Small Commercial Rate Residential Average Rates Residential: $0.0943/kWh Commercial: $0.0740/kWh Industrial: $0.0789/kWh

486

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

487

Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No.199202601). Work undertaken during 2007 included: (1) Starting 1 new fencing project in the NFJD subbasin that will protect an additional 1.82 miles of stream and 216.2 acres of habitat; (2) Constructing 0.47 miles of new channel on the Wallowa River to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) Planting 22,100 plants along 3 streams totaling 3.6 stream miles; (4) Establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) Monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) Completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; (7) Initiated writing of a comprehensive project summary report that will present a summary of conclusions of the benefits to focal species and management recommendations for the future. Since initiation of this program 56 individual projects have been implemented, monitored and maintained along 84.8 miles of anadromous fish bearing streams that protect and enhance 3,501 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H.

2008-12-30T23:59:59.000Z

488

Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fish production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No. 199202601). Work undertaken during 2008 included: (1) completing 1 new fencing project in the North Fork John Day subbasin that protects 1.82 miles of stream and 216.2 acres of habitat, and 1 fencing project in the Wallowa subbasin that protects an additional 0.59 miles of stream and 42.5 acres of habitat; (2) constructing 0.47 miles of new channel on the Wallowa river to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) planting 10,084 plants along 0.5 miles of the Wallowa Riverproject; (4) establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; and (7) completed a comprehensive project summary report to the Independent Scientific Review panel (ISRP) that provided our conclusions regarding benefits to focal species, along with management recommendations for the future. Since initiation of this program 57 individual projects have been implemented, monitoring and maintained along 84.9 miles of anadromous fish bearing streams, that protect and enhance 3,564 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H. [Oregon Department of Fish and Wildlife

2009-07-01T23:59:59.000Z

489

SU(5) x Z{sub 13} grand unification model  

SciTech Connect

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at M{sub Z}, of {alpha}, {alpha}{sub s}, and sin{sup 2}{theta}{sub W}. A discrete, anomalous, Z{sub 13} symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semiclassical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the Z{sub 13} symmetry.

Dias, Alex G. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, 09210-170, Santo Andre, SP (Brazil); Franco, Edison T.; Pleitez, Vicente [Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, Sao Paulo, SP (Brazil)

2007-12-01T23:59:59.000Z

490

An SU(5)$\\otimes$Z_{13} Grand Unification Model  

E-Print Network (OSTI)

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at $M_Z$, of $\\alpha$, $\\alpha_s$, and $\\sin^2\\theta_W$. A discrete, anomalous, $Z_{13}$ symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semi-classical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the $Z_{13}$ symmetry.

Alex G. Dias; Edison T. Franco; Vicente Pleitez

2007-08-07T23:59:59.000Z

491

A Graphical representation of the grand canonical partition function  

E-Print Network (OSTI)

In this paper we consider a stochastic partial differential equation defined on a Lattice $L_\\delta$ with coefficients of non-linearity with degree $p$. An analytic solution in the sense of formal power series is given. The obtained series can be re-expressed in terms of rooted trees with two types of leaves. Under the use of the so-called Cole-Hopf transformation and for the particular case $p=2$, one thus get the generalized Burger equation. A graphical representation of the solution and its logarithm is done in this paper. A discussion of the summability of the previous formal solutions is done in this paper using Borel sum. A graphical calculus of the correlation function is given. The special case when the noise is of L\\'evy type gives a simplified representations of the solution of the generalized Burger equation. From the previous results we recall a graphical representation of the grand canonical partition function.

Boubaker Smii

2010-01-07T23:59:59.000Z

492

Higgs-boson effects in grand unified theories  

DOE Green Energy (OSTI)

It is argued that fine tuning of a minimal set of parameters, needed to fix the hierarchy of gauge-boson masses and a knowledge of intermediate symmetry groups, leads to ''natural'' mass scales for physical Higgs bosons in grand unified theories. This is applied to ..delta..B = 2 transitions in models based on SU(5), SO(10), SU(16), and (SU(2N))/sup 4/. It turns out that the Higgs bosons which mediate ..delta..B = 2 neutron-antineutron and hydrogen-antihydrogen oscillations become superheavy, and so such transitions can be observable only in theories with low unification scales, such as SU(16) and (SU(8))/sup 4/, if we adhere to the hypothesis of minimal fine tuning.

Mohapatra, R.N.; Senjanovic, G.

1983-04-01T23:59:59.000Z

493

Heating facilities for the MGM Grand Hotel, Reno, Nevada  

SciTech Connect

The MGM Grand Hotel-Reno is located adjacent to an area with a well-documented geothermal resource. Currently, there is a number of entities seeking to determine the exact nature of the resource at the MGM site. This report concerns itself with identifying current natural gas loads within the MGM complex which could be met by geothermal should a source become available. The two principle assumptions upon which the following material is based are (1) that a source of 190/sup 0/F or higher temperature water is available and (2) all systems discussed would be installed in parallel with existing systems. That is, existing systems would remain in place providing 100 percent backup for the geothermal systems.

1981-09-01T23:59:59.000Z

494

Grand Rapids Public Util Comm | Open Energy Information  

Open Energy Info (EERE)

Rapids Public Util Comm Rapids Public Util Comm Jump to: navigation, search Name Grand Rapids Public Util Comm Place Minnesota Utility Id 7489 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CITY COMMERCIAL Commercial CITY LIGHT & POWER Lighting CITY RESIDENTIAL Residential CONTROLLED WATER HEATING (CITY) Commercial CONTROLLED WATER HEATING (RURAL) Commercial ENTERTAINMENT LIGHTING RATE (CITY) Lighting ENTERTAINMENT LIGHTING RATE (RURAL) Lighting INDUSTRIAL (CITY) Industrial

495

The development of magnetic tunnel junction fabrication techniques  

E-Print Network (OSTI)

. The effect of grain size, shape, voltage bias, temperature, layer thickness and roughness should be understood and controllable, in order to produce reproducible junctions. The most problematic requirement has been that of low resistance. Magnetic tunnel... . The effect of roughness, aluminium thickness and voltage on the number of pinholes and weak-links per unit area was studied. High frequency testing of read heads at wafer level was performed with a network analyser. Design implication