Sample records for grand junction colorado

  1. EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado.

  2. Grand Junction, Colorado, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 s %GrandD D&D

  3. EA-1037: Uranium Lease Management Program, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of...

  4. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

  5. EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

  6. EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership.

  7. Site observational work plan for the UMTRA Project Site at Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has prepared this initial site observational work plan (SOWP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project site in Grand Junction, Colorado. This SOWP is one of the first UMTRA Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards (40 CFR Part 192, as amended by 60 FR 2854) for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement (PEIS). This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The DOE goal is to use the observational method to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation based on the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards.

  8. Grand Junction, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,GrandIsland,

  9. Grand Junction, Colorado, Processing Site and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 s %Grand

  10. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  11. Site observational work plan for the UMTRA project site at Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This site observational work plan (SOWP) is one of the first Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement. This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The US Department of Energy (DOE) goal is to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation with the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards. The conceptual model demonstrates that the uranium processing-related contamination at the site has affected the unconfined alluvial aquifer, but not the deeper confined aquifer.

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  13. Work plan for phase 1A paleochannel studies at the Cheney disposal cell, Grand Junction, Colorado: Draft

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This document will serve as a Work Plan for continuing paleochannel characterization activities at the Cheney disposal site near Grand Junction, Colorado. Elevated levels of nitrate were encountered in ground water from two monitor wells installed in alluvial paleochannels near the Cheney disposal cell in 1994. This triggered a series of investigations (Phase 1) designed to determine the source of nitrate and other chemical constituents in ground water at the site. A comprehensive summary of the Phase 1 field investigations (limited to passive monitoring and modeling studies) conducted by the Remedial Action Contractor (RAC) and Technical Assistance Contractor (TAC) to date is provided in Section 2.0 of this document. Results of Phase 1 were inconclusive regarding the potential interaction between the disposal cell and the paleochannels, so additional Phase 1A investigations are planned. Recommendations for Phase 1A tasks and possible future activities are discussed in Section 3.0. Detailed information on the implementation of the proposed Phase 1A tasks appears in Section 4.0 and will provide the basis for Statements of Work (SOW) for each of these tasks. A detailed sampling plan is provided to ensure quality and a consistency with previous data collection efforts.

  14. Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? . -. .- *' *---: .;Grand

  15. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    SciTech Connect (OSTI)

    None

    1986-12-01T23:59:59.000Z

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  17. Environmental Audit of the Grand Junction Projects Office

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs.

  18. Survey of Seeps and Springs within the Bureau of Land Management's Grand Junction Field Office Management Area

    E-Print Network [OSTI]

    Survey of Seeps and Springs within the Bureau of Land Management's Grand Junction Field Office Management Area (Mesa County, CO) Colorado Natural Heritage Program Colorado State University 8002 Campus Delivery Fort Collins, Colorado 80523-8002 #12;Survey of Seeps and Springs within the Bureau of Land

  19. Survey of Seeps and Springs within the Bureau of Land Management's Grand Junction Field Office Management Area

    E-Print Network [OSTI]

    Survey of Seeps and Springs within the Bureau of Land Management's Grand Junction Field Office Management Area (Garfield County, CO) Colorado Natural Heritage Program College of Natural Resources, 254 General Services Building Colorado State University Fort Collins, Colorado 80523 #12;Survey of Seeps

  20. United States Department of Energy, Grand Junction Office

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Grand Junction Office (GJO), US Department of Energy (DOE), develops and administers programs for evaluating domestic uranium resources and the production capability of industry; for developing resource planning information for DOE; and for advancing geologic and geophysical exploration concepts and techniques. In addition, GJO administers the leasing of mineral lands under DOE control, and carries out activities relating to the environmental aspects of uranium mining and milling, including remedial programs. The Office is staffed by administrative and technical program-management personnel. Bendix Field Engineering Corporation (Bendix) is the DOE operating contractor at the Grand Junction, Colorado, Government-owned/contractor-operated (GOCO) facility. The technical staffs of both GJO and Bendix are primarily geoscience-oriented. Specifically during 1980, uranium resource assessment on 135 National Topographic Map Series (NTMS) quadrangles was completed, along with other specific studies, to yield October 1980 national resource estimates. In addition, updated uranium supply analysis and production capability projections were completed. Another key aspect of this successful program was the development of improved geophysical and geochemical equipment and techniques in support of uranium resource assessment. Much of the hardware and know-how developed was turned over to the public and to the uranium industry at large for application to uranium exploration and the assessment of uranium company resources. The Grand Junction Office also participated actively during 1980 in international cooperative research on uranium exploration techniques and on the geology of uranium deposits.

  1. Estimating commuter rail demand to Kendall Square along the Grand Junction Corridor

    E-Print Network [OSTI]

    Bockelie, Adam

    2012-01-01T23:59:59.000Z

    Since acquiring the Grand Junction Railroad in June 2010 from CSX, the Massachusetts Bay Transit Authority (MBTA) has explored the possibility of using the line for commuter rail service. In addition the Grand Junction ...

  2. Grand Junction Office Founder Honored at the

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance onGlennNEPAofUpdate Workshop4 Grand

  3. Grand Junction Projects Office site environmental report for calendar year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report presents information pertaining to environmental activities conducted during calendar year 1992 at the US Department of Energy Grand Junction Projects Office (DOE-GJPO) facility in Colorado. Environmental activities conducted at the GJPO facility during 1992 included those associated with environmental compliance, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. Four phases of the on-site Grand Junction Projects Office Remedial Action Project were completed in 1992. Remediation activities, which included the removal of 161,589 tons of uranium-mill-tailings-contaminated material from the facility, were conducted in compliance with all applicable permits. Off-site dose modeling for the GJPO was conducted to determine compliance with current National Emission Standards for Hazardous Air Pollutants, Subpart H, and applicable DOE Orders (5400.1 and 5400.5). The total off-site EDE to the public from all sources of radiation emanating from the facility (radon, air particulates, gamma) was calculated as 9 mrem/yr, which is well below the DOE dose limit of 100 mrem/yr above background. The radiological and nonradiological monitoring program at the GJPO facility included monitoring of activities that generate potentially hazardous or toxic wastes and monitoring of ambient air, surface water, and ground water.

  4. Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership

    SciTech Connect (OSTI)

    none,

    2001-02-01T23:59:59.000Z

    The U.S. Department of Energy Grand Junction Office (DOE?GJO) in Grand Junction, Colorado, has played an integral role within the DOE complex for many years. GJO has a reputation for outstanding quality in the performance of complex environmental restoration projects, utilizing state-of-the-art technology. Many of the GJO missions have been completed in recent years. In 1998, DOE Headquarters directed GJO to reduce its mortgage costs by transferring ownership of the site and to lease space at a reasonable rate for its ongoing work. A local community group and GJO have entered into a sales contract; signing of the Quitclaim Deed is planned for February 16, 2001. Site transfer tasks were organized as a project with a critical-path schedule to track activities and a Site Transition Decision Plan was prepared that included a decision process flow chart, key tasks, and responsibilities. Specifically, GJO identified the end state with affected parties early on, successfully dealt with site contamination issues, and negotiated a lease-back arrangement, resulting in an estimated savings of more than 60 percent of facility maintenance costs annually. Lessons learned regarding these transition activities could be beneficial to many other sites.

  5. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  6. U.S. Department of Energy Grand Junction Projects Office site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This report presents information pertaining to environmental activities conducted during calendar year 1995 at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Environmental activities conducted at the GJPO facility during 1995 were associated with mixed-waste treatment, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. As part of the GJPO Mixed-Waste Treatment Program, on-site treatability studies were conducted in 1995 that made use of pilot-scale evaporative-oxidation and thermal-desorption units and bench-scale stabilization. DOE-GJPO used some of its own mixed-waste as well as samples received from other DOE sites for these treatability studies. These studies are expected to conclude in 1996. Removal of radiologically contaminated materials from GJPO facility buildings was conducted under the provisions of the Grand Junction Projects Office Remedial Action Project. Remediation activities included the removal of 394 metric tons of contaminated material from Buildings 18 and 28 and revegetation activities on the GJPO site; remediation was conducted in compliance with applicable permits.

  7. LM Completes the Grand Junction, Colorado, Site Historical Wall Display |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJune 17, 2015

  8. Grand County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc, Michigan:Colorado:

  9. Rio Grande County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze -Richton Park,RidgeviewRifton,County, Colorado:

  10. Grand View Estates, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas: Energy ResourcesGrand Valley

  11. City of Grand Junction, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCityCity ofGrand

  12. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

    SciTech Connect (OSTI)

    Johnson, J.B.

    1981-05-01T23:59:59.000Z

    In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1/sup 0/ x 2/sup 0/ NTMS quadrangle, key words, and exploration area.

  13. April, 30 2005 Aspen, Colorado Andreas Haungs KASCADE-Grande Collaboration `Physics from the Knee to the Ankle Investigating the 2nd Knee

    E-Print Network [OSTI]

    April, 30 2005 ­ Aspen, Colorado Andreas Haungs ­ KASCADE-Grande Collaboration `Physics from@ik.fzk.de Forschungszentrum Karlsruhe in der Helmholtzgemeinschaft #12;April, 30 2005 ­ Aspen, Colorado Andreas Haungs of observables multi-detector system #12;April, 30 2005 ­ Aspen, Colorado Andreas Haungs ­ KASCADE

  14. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  15. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  16. LGRJ Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7635U: .'j', J o R-

  17. Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-12T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1993. To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are: Direct employment was estimated at 894 workers; An estimated 89 percent of all direct employment was local; Secondary employment resulting from remedial action at the active Colorado UMTRA Project sites and the Grand Junction vicinity property program is estimated at 546 workers. Total employment (direct and secondary) is estimated at 1440 workers for the period of study (July 1, 1992, to June 30, 1993). An estimated $24.1 million was paid in wages to UMTRA workers in Colorado during FY1993; Direct and secondary wage earnings were estimated at $39.9 million; Income tax payments to the state of Colorado were estimated at $843,400 during FY1993; The gross economic impact of UMTRA Project activities in the state of Colorado is estimated at $70 million during the 1-year study period; and the net economic benefit to the state of Colorado was estimated at $57.5 million, or $5.90 per dollar of funding provided by Colorado. This figure includes both direct and secondary benefits but does not include the impact of alternative uses of the state funding.

  18. Grande

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breaks ground on key sediment control project November 5, 2009 Structures will limit flow of sediments toward Rio Grande Los Alamos, New Mexico, November 5, 2009- Crews broke...

  19. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    SciTech Connect (OSTI)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01T23:59:59.000Z

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  20. Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the NationalPennsylvania | Department of EnergyColorado,

  1. U.S. Department of Energy at Grand Junction 2003 Annual Inspection⎯Monticello, Utah

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1repositoryShiprock,at Grand

  2. Confirmatory radiological survey of the Grand Junction Projects Office Remedial Action Project exterior portions, 1989-1995

    SciTech Connect (OSTI)

    Forbes, G.H.; Egidi, P.V.

    1997-04-01T23:59:59.000Z

    The purpose of this independent assessment was to provide the U.S. Department of Energy (DOE) with an independent verification (IV) that the soil at the Grand Junction Projects Office (GJPO) complies with applicable DOE guidelines. Oak Ridge National Laboratory/ Environmental Technology Section (ORNL/ETS) which is also located at the GJPO, was assigned by DOE as the Independent Verification Contractor (IVC). The assessment included reviews of the decontamination and decommissioning plan, annual environmental monitoring reports, data in the pre- and post-remedial action reports, reassessment reports and IV surveys. Procedures and field methods used during the remediation were reviewed, commented on, and amended as needed. The IV surveys included beta-gamma and gamma radiation scans, soil sampling and analyses. Based on the data presented in the post-remedial action report and the results of the IV surveys, the remediation of the outdoor portions of the GJPO has achieved the objectives. Residual deposits of uranium contamination may exist under asphalt because the original characterization was not designed to identify uranium and subsequent investigations were limited. The IVC recommends that this be addressed with the additional remediation. The IVC is working with the remedial action contractor (RAC) to assure that final documentation WM be sufficient for certification. The IVC will address additional remediation of buildings, associated utilities, and groundwater in separate reports. Therefore, this is considered a partial verification.

  3. Rio Grande Compact (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Rio Grande Compact, a joint agreement between the states of Colorado, New Mexico, and Texas. The compact is administered by the Rio Grande...

  4. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

  5. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

  6. Environmental Assessment and Finding of No Significant Impact: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership

    SciTech Connect (OSTI)

    N /A

    2000-04-25T23:59:59.000Z

    The scope of this environmental assessment (EA) is to analyze the potential consequences of the Proposed Action on human health and the environment. Accordingly, this EA contains an introduction to the site and the history of the Grand Junction Office (Chapter One), a description of the Purpose and Need for Agency Action (Chapter Two), a description of the Proposed Action and Alternatives (Chapter Three), and the description of the Affected Environment and the Environmental Consequences (Chapter Four). Resource categories addressed in this EA include geology, soils and topography, groundwater and surface water, floodplains and wetlands, land use and infrastructure, human health, ecological resources, cultural resources, air quality, noise, visual resources, solid and hazardous waste management, transportation, and socioeconomic and environmental justice.

  7. Site-specific analysis of the cobbly soils at the Grand Junction processing site. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    This report describes a recent site-specific analysis to evaluate the necessity of a recommendation to install a slurry trench around the Grand Junction processing site. The following analysis addresses the cobbly nature of the site's radiologically contaminated foundation soil, reassesses the excavation depths based on bulk radionuclide concentrations, and presents data-based arguments that support the elimination of the initially proposed slurry trench. The slurry trench around the processing site was proposed by the Remedial Action Contractor (RAC) to minimize the amount of water encountered during excavation. The initial depths of excavation developed during conceptual design, which indicated the need for a slurry wall, were reexamined as part of this analysis. This reanalysis, based on bulk concentrations of a cobbly subsoil, supports decreasing the original excavation depth, limiting the dewatering quantities to those which can be dissipated by normal construction activities. This eliminates the need for a slurry trench andseparate water treatment prior to permitted discharge.

  8. Refuel Colorado

    Broader source: Energy.gov (indexed) [DOE]

    * 4CORE * State Fleet * West Slope CNG Collaborative * EV Stakeholder Group * Colorado Propane Gas Association * Colorado Hydrogen Coalition Partners Colorado Energy Office |...

  9. Modeling In situ sediment oxygen demand in the Arroyo Colorado

    E-Print Network [OSTI]

    Kasprzak, Kevin Ray

    2001-01-01T23:59:59.000Z

    The Arroyo Colorado River is the principal source of fresh water inflow to the Southern Laguna Madre, an economically and ecologically important resource for the Lower Rio Grande Valley region of Texas. The Arroyo Colorado serves as a principal...

  10. Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy`s cultural resource activities at Colorado UMTRA Project sites, January--December 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This report is a summary of the US Department of Energy`s (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE`s obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

  11. Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy's cultural resource activities at Colorado UMTRA Project sites, January--December 1991. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This report is a summary of the US Department of Energy's (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE's obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

  12. Annual report on the U.S. Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1995--September 1996

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1995 through September 30, 1996. The inactive uranium mill tailings sites in Colorado are at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of understanding (PMOU). This PMOU requires the DOE to fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report provides the state of Colorado with an annual report on the cultural resource activities performed for all UMTRA Project sites in Colorado. Due to the completion of surface activities at the UMTRA Project sites, this will be the last annual report to the state of Colorado. Cultural resources activities subsequent to this report will be reported to the state through site-specific correspondence.

  13. A watershed blueprint: partners work together to restore Arroyo Colorado's health

    E-Print Network [OSTI]

    Wythe, K.

    2010-01-01T23:59:59.000Z

    txH2O | pg. 18 A watershed blueprint Partners work together to restore Arroyo Colorado?s health In 2002 the Texas Commission on Environmental Quality (TCEQ) set a target of 90 percent reduction of nutrients and biochemical oxygen demand... for the Arroyo Colorado to regain its healthy condition. Eight years later, the Arroyo Colorado, an ancient channel of the Rio Grande in the Lower Rio Grande Valley, has been the focus of multiple projects; educational and outreach efforts...

  14. A watershed blueprint: Partners work together to restore Arroyo Colorado's health

    E-Print Network [OSTI]

    Wythe, Kathy

    2010-01-01T23:59:59.000Z

    txH2O | pg. 18 A watershed blueprint Partners work together to restore Arroyo Colorado?s health In 2002 the Texas Commission on Environmental Quality (TCEQ) set a target of 90 percent reduction of nutrients and biochemical oxygen demand... for the Arroyo Colorado to regain its healthy condition. Eight years later, the Arroyo Colorado, an ancient channel of the Rio Grande in the Lower Rio Grande Valley, has been the focus of multiple projects; educational and outreach efforts...

  15. Geothermal Prospects in Colorado

    Broader source: Energy.gov [DOE]

    Geothermal Prospects in Colorado presentation at the April 2013 peer review meeting held in Denver, Colorado.

  16. Annual report on the U.S. Department of Energy`s Cultural Resource Activities at Colorado UMTRA Project Sites for October 1993 through September 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1993, through September 30, 1994. The UMTRA Project is a cooperative (state and federal) program mandated by the Uranium Mill Tailings Radiation Control Act, Public Law 95-604 (42 USC {section}7901 et seq.). This law requires the timely cleanup of 24 inactive uranium mill tailings sites throughout the United States. Nine of these inactive uranium mill tailings sites are in Colorado at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, Advisory Council on Historic Preservation, and Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of agreement (PMOA) (DOE, 1984). This PMOA specifies requirements for the DOE`s fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report fulfills the requirement for the DOE to provide the state of Colorado with an annual report on the cultural resource activities performed for all of the UMTRA Project sites in Colorado. This report is organized by UMTRA Project site. For each site, the general remedial action activities and cultural resource activities performed during the period of record are summarized. When known, the DOE`s plans for future cultural resource activities at the site are summarized.

  17. Tenmile district special folio, Colorado 

    E-Print Network [OSTI]

    Emmons, Samuel Franklin, 1841-1911.

    1898-01-01T23:59:59.000Z

    . A portion of the browse nursery at the Little Hills Game Experimental Range showing the deer- or elk-proof fence .............................................................. 21 2? Precipitation by 10-day intervals at Gunnison, near... by standard deer- or elk-proof fence (Figure 1 ) . Nurseries were located on the Hot Sulfur Game Refuge in Grand County as the eastern edge of Middle Park along the Colorado River; on the Little Hills Game Experimental range in Rio Blanco County about 30...

  18. Annual report on the US Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1991--September 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-06T23:59:59.000Z

    This report summarizes the US Department of Energy`s (DOE) cultural resource studies that were undertaken in support of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project in the state of Colorado for the period of October 1, 1991, through September 30, 1992. This report fulfills the DOE`s obligation to provide an annual report to the state of Colorado on the status and results of cultural resource studies conducted during the above period of record. This requirement is stated in a programmatic memorandum of agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Previous reports were based on a calendar year reporting period. However, in order to be more consistent with the programmatic memorandum of agreement, the period of record for this and subsequent annual reports has been changed to the Federal fiscal year. The current status and summaries of 1992 cultural resource surveys are provided for all UMTRA Project sites in Colorado. The sites are Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock.

  19. DOE Grand Junction Projects Office Edgemont LTSP

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8. (8-89) EFO IO?-90) United

  20. Josephson junction

    DOE Patents [OSTI]

    Wendt, J.R.; Plut, T.A.; Martens, J.S.

    1995-05-02T23:59:59.000Z

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

  1. City in Colorado Fueling Vehicles with Gas Produced from Wastewater...

    Broader source: Energy.gov (indexed) [DOE]

    the key facts? Grand Junction built a five mile pipeline to transport compressed natural gas (CNG) from its local wastewater treatment facility to its CNG station to fuel the city...

  2. EIS-0116-S1: Final Supplemental Environmental Impact Statement for the Blue River-Gore Pass Portion of the Hayden-Blue River Transmission Line Project, Grand and Summit Counties, Colorado

    Broader source: Energy.gov [DOE]

    This supplemental environmental impact statement by the Western Area Power Administration assesses the environmental effects of constructing, operating, and maintaining about 30 miles of 230/345-kV transmission line between the existing Gore Pass Substation northwest of Kremmling, Colorado, and a proposed new substation (not part of this action) near the Ute Pass Road. Alternatives assessed included routing and design alternatives plus the alternatives addressed in the Hayden-Blue River Final EIS, issued by the Rural Electrification Administration in July 1982 and adopted by DOE in June 1985 (see DOE/EIS-0116).

  3. Grand Challenges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat PumpJorgeAtlGrad.Employee, RetireeGrand

  4. Sustainability of the Arroyo Colorado Watershed Partnership and Continued Implementation of the Arroyo Colorado Watershed Protection Plan Final Report

    E-Print Network [OSTI]

    Flores, J.; Berthold, A.

    2014-01-01T23:59:59.000Z

    The Arroyo Colorado (AC) is an ancient channel of the Rio Grande and is approximately 90 miles long. The headwaters of the AC begins at the Anzalduas Diversion Dam in Mission, TX and flows eastward through southern Hidalgo County, into Cameron...

  5. Colorado Statewide Forest Resource Assessment

    E-Print Network [OSTI]

    Colorado Statewide Forest Resource Assessment A Foundation for Strategic Discussion and Private Forestry Redesign Initiative 2 National Guidance for Statewide Forest Resource Assessments 4 The Colorado Statewide Resource Assessment and all appendices are available online on the Colorado State Forest

  6. Institutional Adjustments for Coping with Prolonged and Severe Drought in the Rio Grande Basin

    E-Print Network [OSTI]

    Ward, Frank A.; Young, Robert; Lacewell, Ronald D.; King, J. Philip; Frasier, Marshall; McGuckin, J. Thomas; DuMars, Charles R.; Booker, James; Ellis, John; Srinivasan, Raghavan

    and industrial needs of cities like Albuquerque and El Paso, the Rio Grande represents a significant resource in the arid southwest. In 1938, Congress approved the Rio Grande Compact which divided the annual water flow among the three states of Colorado, New...

  7. Geothermal Prospects in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prospects in Colorado Geothermal Peer Review Bobi Garrett Deputy Laboratory Director Strategic Programs and Partnerships April 22, 2013 2 NREL Snapshot * Physical Assets Owned by...

  8. of Colorado's Special Issue

    E-Print Network [OSTI]

    Report on the Health of Colorado's Forests Special Issue 2005 Aspen Forests #12;2005 Report the ecology and management of the state's aspen forests and provides an expanded insect and disease update in the management of Colorado's trademark aspen forests. Many of the state's aspen stands are reaching the end

  9. Field Projects: Durango, Colorado

    Broader source: Energy.gov [DOE]

    Personnel from Sandia National Laboratories in New Mexico installed four permeable reactive barriers  PRBs at the Durango, Colorado, Uranium Mill Tailings Radiation Control Act Title I site in...

  10. Colorado Regional Faults

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  11. Colorado Electrical Transmission Grid

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  12. Colorado: Colorado's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Colorado.

  13. adult colorado potato: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado State University Extension Colorado Department of Public Health and Environment 12 Anderson Acronyms AES Agricultural Experiment Station (Colorado State...

  14. Control of the electromagnetic environment for single Josephson junctions using arrays of dc

    E-Print Network [OSTI]

    Haviland, David

    ;ective impedance of the array can be varied in situ by applying an external magnetic #12;eld and Technology, 325 Broadway, Boulder, Colorado 80305, USA Abstract. We have measured the current-pair tunneling is induced in the single junction. The measured blockade voltage agrees with the theoretical

  15. Colorado Potential Geothermal Pathways

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  16. Colorado Forestry Best Management Practices

    E-Print Network [OSTI]

    Stephens, Graeme L.

    Colorado Forestry Best Management Practices Forest Stewardship Guidelines for Water Quality Management Practices (BMPs) for forestry activities. BMPs are a set of water-quality protection measures-harvest sites in southwest Colorado to assess Colorado forestry BMP application and effectiveness. Sites were

  17. Lessons Learned: The Grand Junction Office Site Transfer to Private

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearningMarch 2015 LessonsLearned:

  18. DOE - Office of Legacy Management -- Grand Junction Sites

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo -Elk RiverFrederickAZ 03

  19. Three-junction solar cell

    DOE Patents [OSTI]

    Ludowise, Michael J. (Cupertino, CA)

    1986-01-01T23:59:59.000Z

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  20. Environmental Health and Safety COLORADO SCHOOL OF MINES Colorado School of Mines GOLDEN, COLORADO 80401-1887

    E-Print Network [OSTI]

    Environmental Health and Safety COLORADO SCHOOL OF MINES Colorado School of Mines GOLDEN, COLORADO Institute Site (CSMRI Site) on the south side of Clear Creek has been undergoing environmental time. Sincerely, L Linn D. Havelick Director, Environmental Health & Safety #12;

  1. EA-1611: Colorado Highlands Wind Project, Logan County, Colorado...

    Broader source: Energy.gov (indexed) [DOE]

    Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Western's...

  2. Colorado Geothermal Commercialization Program

    SciTech Connect (OSTI)

    Healy, F.C.

    1980-04-01T23:59:59.000Z

    Chaffee County, located in central Colorado, has immense potential for geothermal development. This report has been prepared to assist residents and developers in and outside the area to develop the hydrothermal resources of the county. Data has been collected and interpreted from numerous sources in order to introduce a general description of the area, estimate energy requirements, describe the resources and postulate a development plan. Electric power generation and direct heat application potential for the region are described.

  3. Colorado Highlands Wind Project, Western's RM Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Highlands Wind Project Western Area Power Administration, Rocky Mountain Region (Western) has received a request from Colorado Highlands Wind to modify its Interconnection...

  4. Colorado State University Public Forums concerning the

    E-Print Network [OSTI]

    Stephens, Graeme L.

    · Colorado Health Care Reform · NIF "Energy Problem" forums · Improving higher education · Childhood obesity · Child care quality and affordability Ongoing Projects · Embrace Colorado · Poverty in Larimer County

  5. Colorado: Energy Modeling Products Support Energy Efficiency...

    Energy Savers [EERE]

    Colorado: Energy Modeling Products Support Energy Efficiency Projects Colorado: Energy Modeling Products Support Energy Efficiency Projects May 1, 2014 - 11:04am Addthis Xcel...

  6. Colorado Natural Gas- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Colorado Natural Gas offers the Excess is Out Program for residential and commercial customers in Colorado. Incentives are available for purchasing and installing energy efficient furnaces, boilers...

  7. State of Colorado Wildfire Hazard

    E-Print Network [OSTI]

    State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 and importance of the August 1995 Wildfire Hazard Mitigation Plan and its predecessors as foundation documents on which to build and judge progress in wildfire hazard mitigation. The text version of the 1995 Plan

  8. Colorado Climate Update Nolan Doesken

    E-Print Network [OSTI]

    to the Colorado Farm Show Wednesday, January 30, 2013 Prepared by Wendy Ryan and Zach Schwalbe #12;Topics we;Monitoring our Climate · Elements: temperature, precipitation, snow, wind, solar, evaporation, soil Average Solar Radiation National Renewal Energy Laboratory: www.nrel.gov Colorado is a part

  9. The Value Chain of Colorado Agriculture

    E-Print Network [OSTI]

    Stephens, Graeme L.

    The Value Chain of Colorado Agriculture Gregory Graff, Ryan Mortenson, Rebecca Goldbach, Dawn of Agricultural and Resource Economics, College of Agricultural Sciences, and the Office of Engagement Colorado the Colorado Department of Agriculture and the Colorado State University Office of Engagement. The authors

  10. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2012 Colorado Water Institute Annual Technical Report FY 2012 1 #12;Introduction Colorado Water Institute Annual Report for the period: March 1, 2012 ­ February 28, 2013 Water research is more pertinent than ever in Colorado. Whether the project explores

  11. Southeastern Colorado Survey of Critical Biological Resources

    E-Print Network [OSTI]

    , local landowners, CCALT, and Great Outdoors Colorado (GOCO) requested that CNHP conduct a second field

  12. ProGreen 2014 Colorado Climate Update

    E-Print Network [OSTI]

    · Complex Mountain topography · Solar energy and seasonal cycles drive our climate #12;Colorado has" and we LOVE IT! #12;Monitoring our Climate · Elements: temperature, precipitation, snow, wind, solarProGreen 2014 Colorado Climate Update Nolan Doesken Colorado State Climatologist Colorado Climate

  13. Colorado STEP Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i tCollaboration March 16,Connect ColorColorado

  14. Ft. Carson Army Base, Colorado Springs, Colorado | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Colorado. It was the first Federal facility to install a "solar wall"-a solar ventilation air preheating system. The solar wall heats Ft. Carson's new high-bay aviation...

  15. CX-007442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Routine Maintenance Activities at the Grand Junction, Colorado, Calibration Model Facility CX(s) Applied: B1.3, B1.24 Date: 12/13/2011 Location(s): Colorado Offices(s): Legacy Management

  16. CX-007440: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Routine Maintenance Activities at the Grand Junction Regional Airport, Colorado, Calibration Model Facility CX(s) Applied: B1.3, B1.24 Date: 12/13/2011 Location(s): Colorado Offices(s): Legacy Management

  17. 2015 Race to Zero Competition Grand Winner and Grand Winner Finalist...

    Office of Environmental Management (EM)

    Grand Winner and Grand Winner Finalist Team Submissions 2015 Race to Zero Competition Grand Winner and Grand Winner Finalist Team Submissions Read the team submissions for the...

  18. Field Projects: Cañon City, Colorado

    Broader source: Energy.gov [DOE]

    In June 2000, Cotter Corporation installed a PRB at its uranium ore processing millsite in Cañon City, Colorado. The PRB contains zero-valent iron (ZVI) that treated molybdenum and uranium...

  19. to Protect Water Quality in Colorado

    E-Print Network [OSTI]

    Rutledge, Steven

    ..................................................... 5 road Construction ...................................................... 6 drainage from road (BMPS) for Colorado, with additional recommendations from a 2008 BMP audit. The Colorado Timber Industry, operations and maintenance pro- cedures. BMPs can be applied before, during and after pollution

  20. COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD

    E-Print Network [OSTI]

    Sheehan, Anne F.

    COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado, seismic, seismicity, crust, fault, hazard ABSTRACT Construction of seismic hazard and risk maps depends upon carefully constrained input parameters including background seismicity, seismic attenuation

  1. Biological Inventory Colorado Canyons National Conservation Area

    E-Print Network [OSTI]

    Biological Inventory of the Colorado Canyons National Conservation Area Prepared by: Joe Stevens .............................. 12 Identify Targeted Inventory Areas

  2. Rio Grande project partnerships

    E-Print Network [OSTI]

    Supercinski, Danielle

    2008-01-01T23:59:59.000Z

    for supporting hydrologic analysis and modeling. The information will help develop bi-national cooperation between Mexico and the United States concerning water in the Rio Grande Basin. It will also provide accurate and reli- able data necessary for analysis... municipal demands. With the population expected to double in the next 50 years, the urban water demands will increase proportionately. Story by Danielle Supercinski At the Cameron County Irrigation District No. 2 in San Benito, sluice gates inside...

  3. Rio Grande project partnerships 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2008-01-01T23:59:59.000Z

    ? financial and economic aspects to provide a life-cycle cost value that allows an accurate comparison with other desalination plants analyzed with the same technique and other water sources as well. With the success of RGBI, various partner- ships have... Rio Grande Valley agricultural producers to begin a large- scale, 10-year Agricultural Water Conservation Demonstration Initiative (ADI). Funded by the Texas Water Development Board, ADI gathers gathers comprehensive data to evaluate the impact...

  4. Colorado Statewide Forest Resource Assessment and Strategy

    E-Print Network [OSTI]

    Colorado Statewide Forest Resource Assessment and Strategy www.csfs.colostate.edu Colorado Forest resource assessments had to be completed by June 2010 ­ required to receive S&PF funds in the future (2008;Resource Assessment and Strategy Partners Resource Assessment and Strategy Partners Colorado Division

  5. Southeastern Colorado Survey of Critical Biological Resources

    E-Print Network [OSTI]

    Southeastern Colorado Survey of Critical Biological Resources 2007 #12;ii #12;Southeastern Colorado Survey of Critical Biological Resources Prepared for: Colorado Cattleman's Agricultural Land Trust 8833 Department of Natural Resources Division of State Board of Land Commissioners 1313 Sherman Street Denver, CO

  6. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics;#12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of the requirements for the degree of Master of Science (Geophysics). Golden, Colorado Date: April 14, 2005 Signed

  7. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: May 10 (Geophysics). Golden, Colorado Date May 15, 2006 Signed: on original copy Jeongmin Lee Signed: on original

  8. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics Colorado School of Mines CGEM Dongjie Cheng #12;#12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: December 2003 Advisor: Dr. Yaoguo Li (GP

  9. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: September fulfillment of the requirements for the degree of Master of Science (Geophysics). Golden, Colorado Date

  10. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics Colorado School of Mines CGEM Alisa Marie Green #12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: November 06, 2003 Advisor: Dr. Yaoguo Li

  11. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2011 Colorado Water Institute Annual Technical Report FY 2011 1 #12;Introduction Water research is more pertinent than ever in Colorado. Whether the project explores the effects of decentralized wastewater treatment systems on water quality, optimal

  12. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2013 Colorado Water Institute Annual Technical Report FY 2013 1 #12;Introduction Water research is more important than ever in Colorado. Whether the project explores the effects of decentralized wastewater treatment systems on water quality, optimal

  13. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2009 Colorado Water Institute Annual Technical Report FY 2009 1 #12;Introduction Water research is more pertinent than ever in Colorado. Whether the research explores the effects of decentralized wastewater treatment systems on water quality, optimal

  14. Colorado Water Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Institute Annual Technical Report FY 2010 Colorado Water Institute Annual Technical Report FY 2010 1 #12;Introduction Water research is more pertinent than ever in Colorado. Whether the project explores the effects of decentralized wastewater treatment systems on water quality, optimal

  15. Colorado Natural Heritage Program Wetland Program Plan

    E-Print Network [OSTI]

    of Land Management (BLM), and numerous county and local governments. The surveys have also involvedColorado Natural Heritage Program Wetland Program Plan A Vision for Building Comprehensive Wetland Information for the State of Colorado Planning Years 2011­2015 #12;Colorado Natural Heritage Program Wetland

  16. Junction Plasmon-Induced Molecular Reorientation. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Junction Plasmon-Induced Molecular Reorientation. Junction Plasmon-Induced Molecular Reorientation. Abstract: Time and frequency dependent intensity variations in sequences of...

  17. Colorado School of Mines 1 Colorado School of

    E-Print Network [OSTI]

    admission standards. The Colorado School of Mines shall have a unique mission in energy, mineral be the primary institution of higher education offering energy, mineral and materials science and mineral faces a crisis in balancing resource availability with environmental protection and that CSM and its

  18. Rural recycling in southeast Colorado

    SciTech Connect (OSTI)

    Lariviere, R. (Prowers County Development, Inc., Lamar, CO (United States))

    1993-05-01T23:59:59.000Z

    This article describes a recycling effort developed for rural southeast Colorado. The program was inspired and manned by local volunteers and based on a drop-off method used in Europe. The topics of the article include getting started, funding, problems encountered, level of participation, and estimated savings in waste collection and landfilling fees.

  19. Sixth Annual Colorado Rare Plant Symposium Overview of G2 Plants of Northern Colorado

    E-Print Network [OSTI]

    Sixth Annual Colorado Rare Plant Symposium Overview of G2 Plants of Northern Colorado 9:00 am - 4 Anticlea (Zigadenus) vaginatus 3:15 Rare Plant Conservation Initiative ­ CNHP/TNC 4:00 Adjourn #12;

  20. Watching ColoradoWatching Colorado WeatherWeather

    E-Print Network [OSTI]

    ­ Evapotranspiration #12;CoAgMet Southeast Colorado #12;Hoehne CoAgMet Weather Station #12;Hoehne Daily Temperatures #12;Hoehne Relative Humidity #12;Hoehne Solar Radiation #12;Hoehne Wind Speed #12;Hoehne ET Reference Hoehne ET Reference 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Jan-04 Jan-04 Feb-04 M ar-04 M

  1. Josephson junction Q-spoiler

    DOE Patents [OSTI]

    Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

    1986-03-25T23:59:59.000Z

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  2. Josephson junction Q-spoiler

    DOE Patents [OSTI]

    Clarke, John (Berkeley, CA); Hilbert, Claude (Austin, TX); Hahn, Erwin L. (Berkeley, CA); Sleator, Tycho (Berkeley, CA)

    1988-01-01T23:59:59.000Z

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  3. The 6th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado

    E-Print Network [OSTI]

    The 6th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado September 11, 2009 8 am - 4 pm, endangered, candidate, and petitioned plant species. The second symposium, held in Pagosa Springs in 2005, covered the globally critically imperiled (G1) plant species of Colorado that are not federally listed

  4. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Colorado Air Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs)...

  5. Athletic Training Coordinator Hometown: Colorado Springs, CO

    E-Print Network [OSTI]

    Van Stryland, Eric

    WHO WE ARE Gaby Bell Athletic Training Coordinator Hometown: Colorado Springs, CO Certifications Athletic Training Graduate Assistant Jonathan Hodapp Student Athletic Trainer Mike Carlson Student Athletic

  6. A Colorado Perspective: The New Energy Economy

    E-Print Network [OSTI]

    Martin, Jim; Brannon, Ginny

    2009-01-01T23:59:59.000Z

    to- ward full realization of the New Energy Economy.Colorado Perspective: The New Energy Economy Jim Martin* andtwenty-first century New Energy Economy by pro- moting

  7. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

  8. Colorado State University Public Forums concerning the

    E-Print Network [OSTI]

    Stephens, Graeme L.

    · Statewide dropout rate · Colorado Health Care Reform · NIF "Energy Problem" forums · Improving higher · Water and growth issues · PSD Innovation plans · Child care quality and affordability Ongoing Projects

  9. Colorado Springs Utilities- Energy Efficient Builder Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR® qualified homes within the CSU service area. The incentive range...

  10. Spring 2001 Vol. 2, No. 2 ii Colorado Climate

    E-Print Network [OSTI]

    Colorado Climate Spring 2001 Vol. 2, No. 2 #12;ii Colorado Climate Table of Contents Frost: Nature ...................................................................................................................................... 9 January 2001 .......................................................................................................................................................... 9 February 2001

  11. Fall 2001 Vol. 2, No. 4 ii Colorado Climate

    E-Print Network [OSTI]

    Colorado Climate Fall 2001 Vol. 2, No. 4 #12;ii Colorado Climate Table of Contents On Being a Small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 July 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 August 2001

  12. Summer 2001 Vol. 2, No. 3 ii Colorado Climate

    E-Print Network [OSTI]

    Colorado Climate Summer 2001 Vol. 2, No. 3 #12;ii Colorado Climate Table of Contents Nocturnal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 April 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 May 2001

  13. Bureau of Land Management, Colorado collaborate to advance efficient...

    Open Energy Info (EERE)

    Colorado collaborate to advance efficient geothermal development Jump to: navigation, search OpenEI Reference LibraryAdd to library Memorandum: Bureau of Land Management, Colorado...

  14. Eagle County - Energy Smart Colorado Energy Efficiency Rebate...

    Open Energy Info (EERE)

    Eagle County - Energy Smart Colorado Energy Efficiency Rebate Program (Colorado) No revision has been approved for this page. It is currently under review by our subject matter...

  15. area northwestern colorado: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Southwestern Colorado and Northwestern New Mexico: How the Past and Environmental Management and Restoration Websites Summary: The Forests of Southwestern Colorado and...

  16. Energy Department Names Two Colorado-based Electric Cooperatives...

    Energy Savers [EERE]

    Energy Department Names Two Colorado-based Electric Cooperatives as Wind Cooperatives of the Year for 2014 Energy Department Names Two Colorado-based Electric Cooperatives as Wind...

  17. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 8 Grand Challenge Portfolio: Driving Innovations in...

  18. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 9 grandchallengesportfoliopg9.pdf More Documents & Publications Grand...

  19. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 6 grandchallengesportfoliopg6.pdf More Documents & Publications Grand...

  20. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 8 grandchallengesportfoliopg8.pdf More Documents & Publications Grand...

  1. EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

    Broader source: Energy.gov [DOE]

    Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69 kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing the EA. Further information about the project is available on the project website.

  2. EA-1611: Colorado Highlands Wind Project, Logan County, Colorado

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Western’s transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western prepared a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

  3. Nuclear Proliferation and Grand Challenges

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    Nuclear engineer Dr. Kathy McCarthy leads systems analysis. She talks about proliferation and the grand challenges of nuclear R&D. For more information about INL energy research, visit http://www.facebook.com/idahonationallaboratory.

  4. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: May 11 (Geophysics) On Original Copies Dr. Terence K. Young Professor and Head Department of Geophysics Approved

  5. Colorado Homeowner Preferences on Energy and

    E-Print Network [OSTI]

    Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest ResearchColorado Homeowner Preferences on Energy and Environmental Policy June 1999 · NREL/TP-550-25285 Barbara C. Farhar, Ph.D. Timothy C. Coburn, Ph.D. National Renewable Energy Laboratory 1617 Cole Boulevard

  6. The Colorado Rare Plant Technical Committee presents

    E-Print Network [OSTI]

    Natural Heritage Program #12;#12;Asclepias uncialis ssp. uncialis Dwarf milkweed · Federal status: BLM/USFS sensitive · Heritage ranks: G3G4T2T3/S2 · Global distribution: Arizona, Texas, New Mexico, Wyoming, Oklahoma/11/2004 · Colorado occurrences: 20, 13 historical · Colorado individuals: ~500 · Primary threats: Population

  7. A History of DROUGHT IN COLORADO

    E-Print Network [OSTI]

    reservoirs, and drifts of topsoil left many of us in government feeling helpless and ill prepared expressed by decision makers then was the lack of timely and integrated information on which to make plans studies which have been supported by the Colorado Office of Emergency Management, the Colorado Water

  8. Colorado State University Computer Programmer Research Associate

    E-Print Network [OSTI]

    of the positives cited in the ranking include: practically every new road has a bike lane and bicycles can even be checked out of a bike #12;library; Colorado State University occupies a scenic spot in the middle of town identity or expression. Colorado State University is an equal opportunity/equal access/affirmative action

  9. Colorado Forestry Advisory Board Members: Don Ament Tom Stone

    E-Print Network [OSTI]

    #12;Colorado Forestry Advisory Board Members: Don Ament Tom Stone Commissioner of Agriculture desired benefits? The members of Colorado's Forestry Advisory Board have presented this question, Colorado Forestry Advisory Board #12;2003 Report on the Health of Colorado's Forests 1 2003 Report

  10. And Our State's Economic Vitality Colorado's Recreation Economy

    E-Print Network [OSTI]

    And Our State's Economic Vitality Colorado's Recreation Economy Bryan Martin, The Colorado Mountain Club #12;Colorado's Recreation Economy The Colorado Mountain Club · 8,000 Members · 14 Chapters's Recreation Economy By the Numbers · $10 Billion Annually · 107,000 Jobs · $500 Million in State Tax Revenue

  11. 2013 Colorado Forest Health Report 2013 Report on the

    E-Print Network [OSTI]

    2013 Colorado Forest Health Report 2013 Report on the Health of Colorado's Forests Caring Timm Schaubert, Outreach Division Supervisor. Thanks also to William M. Ciesla, Forest Health;A January 2014 2013 Colorado Forest Health Report As your new Colorado State Forester, it is my

  12. Colorado Climate Spring 2000 Vol. 1, No. 2

    E-Print Network [OSTI]

    Colorado Climate Spring 2000 Vol. 1, No. 2 Inside: · Growing Season Trends · Urban Heat Islands · Where Do Climate Data Come From · Climate Prediction in the 21st Century #12;22 ColoradoClimate Colorado Climate Center Atmospheric Science Department Colorado State University Fort Collins, CO 80523-1371 ISSN

  13. Colorado Highlands | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy OfficeHighlands

  14. Energy Smart Colorado, Final Report

    SciTech Connect (OSTI)

    Gitchell, John M. [Program Administrator] [Program Administrator; Palmer, Adam L. [Program Manager] [Program Manager

    2014-03-31T23:59:59.000Z

    Energy Smart Colorado is an energy efficiency program established in 2011 in the central mountain region of Colorado. The program was funded through a grant of $4.9 million, awarded in August 2010 by the U.S. Department of Energy’s Better Buildings Program. As primary grant recipient, Eagle County coordinated program activities, managed the budget, and reported results. Eagle County staff worked closely with local community education and outreach partner Eagle Valley Alliance for Sustainability (now Walking Mountains Science Center) to engage residents in the program. Sub-recipients Pitkin County and Gunnison County assigned local implementation of the program in their regions to their respective community efficiency organizations, Community Office for Resource Efficiency (CORE) in Pitkin County, and Office for Resource Efficiency (ORE) in Gunnison County. Utility partners contributed $166,600 to support Home Energy Assessments for their customers. Program staff opened Energy Resource Centers, engaged a network of qualified contractors, developed a work-flow, an enrollment website, a loan program, and a data management system to track results.

  15. Colorado Statewide Forest Products Industry Profile

    E-Print Network [OSTI]

    Colorado Statewide Forest Products Industry Profile Economic Sustainability and Ecological and Comparisons · Production and Processing · Sales and Markets · Economic and Ecological Contributions Sawmills · 1/4 for Roundwood (post and pole, vigas, house logs), furniture, excelsior etc. ­ Sawmill

  16. Alternative Fuels Data Center: Colorado Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Colorado, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  17. Southern Rockies: eastern and northwestern Colorado

    SciTech Connect (OSTI)

    Dolson, J.

    1981-10-01T23:59:59.000Z

    Exploratory drilling in eastern and northwestern Colorado closely paralleled that of 1979. Success factors, however, were higher, partially due to a greater number of marginal well completions following the increase in oil prices. Thirty-seven percent more exploratory wells were completed in 1980 than in 1979. Statewide exploratory success was 28.8% and the development well success rate was 78.3%, compared to 20.8% and 73.4%, respectively, in 1979. Cretaceous sandstones remained the primary target in northwestern and central Colorado. Shallow Niobrara gas provided the main play in eastern Colorado. Southeastern Colorado was the site of significant exploration and development drilling in Pennsylvanian Morrow trends. 1 figure, 3 tables.

  18. Colorado's hydrothermal resource base: an assessment

    SciTech Connect (OSTI)

    Pearl, R.H.

    1981-01-01T23:59:59.000Z

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  19. Colorado Springs Utilities- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Through its Renewable Energy Rebate Program, Colorado Springs Utilities (CSU) offers a rebate to customers who install grid-connected solar-electric (PV) systems, wind systems, and solar water...

  20. Aspen, Colorado: Community Energy Strategic Planning Process

    Broader source: Energy.gov [DOE]

    This presentation features Lee Ledesma, utilities operations manager with the City of Aspen, Colorado. Ledesma provides an overview of the City of Aspen's experience in putting together a financing...

  1. Colorado

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I E X

  2. Grand Rip and Grand Bang/Crunch cosmological singularities

    E-Print Network [OSTI]

    L. Fernández-Jambrina

    2015-01-26T23:59:59.000Z

    The present accelerated expansion of the universe has enriched the list of possible scenarios for its fate, singular or not. In this paper a unifying framework for analyzing such behaviors is proposed, based on generalized power and asymptotic expansions of the barotropic index $w$, or equivalently of the deceleration parameter $q$, in terms of the time coordinate. Besides well known singular and non-singular future behaviors, other types of strong singularities appear around the phantom divide in flat models, with features similar to those of big rip or big bang/crunch, which we have dubbed grand rip and grand bang/crunch respectively, since energy density and pressure diverge faster than $t^{-2}$ in coordinate time. In addition to this, the scale factor does not admit convergent generalized power series around these singularities with a finite number of terms with negative powers.

  3. Long-term hydrologic monitoring program. Rulison Event Site, Grand Valley, Colorado

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The Hydrologic Program Advisory Group reviewed the Long-Term Hydrologic Monitoring Program proposed for the Rulison site at their December 12, 1971, meeting. Samples are collected annually, at about the same dates each year. The hydraulic head, temperature in /sup 0/C, pH, and electrical conductance are recorded at the time of sample collection. Prior to October 1, 1979, each sample was analyzed for gamma emitters and tritium. Gross alpha and beta radioactivity measurements were made on all samples collected. After October 1, 1979, these analyses were discontinued in favor of high-resolution gamma spectrometry using a GeLi detector. For each sample location, samples of raw water and filtered and acidified watar are collected. The raw water samples are analyzed for tritium by the conventional method. Those samples with concentrations that are below the detection level for this method are then analyzed by the enrichment method. Portions of the filtered and acidified samples are analyzed for gamma emitters.

  4. Tectonic analysis of the Rio Grande Rift Zone, central Colorado | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement Inc Place: Cleveland, Ohio Zip:SettingsEnergy

  5. Colorado Forestry Advisory Board Members: Don Ament Tom Stone

    E-Print Network [OSTI]

    #12;Colorado Forestry Advisory Board Members: Don Ament Tom Stone Commissioner of Agriculture As Chairperson of Colorado's newly created Forestry Advisory Board, I would like to thank you for taking the time

  6. Colorado State University Brand Toolbox I Design principles

    E-Print Network [OSTI]

    Colorado State University Brand Toolbox I Design principles Graphic standards Communicators Updated 3/2013 #12;Communications Assurance...................................... 1 Graphic Standards, or general consent as a model or example; criterion. Graphic Standards #12;Colorado State University Brand

  7. Colorado's Economic Recovery since the Great Recession Professor Martin Shields

    E-Print Network [OSTI]

    1 Colorado's Economic Recovery since the Great Recession Professor Martin Shields Regional Economics Institute Colorado State University csurei, economic performance has been mixed. The northern Front Range has fared best

  8. Kids Clean Up ‘Polluted’ Groundwater at Festival

    Broader source: Energy.gov [DOE]

    GRAND JUNCTION, Colo. – Every spring, about 2,500 fifth graders in western Colorado participate in the Children’s Water Festival — two fun-filled days of discoveries about water.

  9. Role of magnetic anisotropy in spin-filter junctions

    E-Print Network [OSTI]

    Chopdekar, R.V.

    2011-01-01T23:59:59.000Z

    and azimuthal angle for a 2 nm MCO based junction. Figure 1.4 (CCO) or MnCr 2 O 4 (MCO)- both of which are isostructuralin CCO junctions compared to MCO junctions. Detailed studies

  10. Superconducting Tunnel Junctions as Direct Detectors for Submillimeter Astronomy

    E-Print Network [OSTI]

    Superconducting Tunnel Junctions as Direct Detectors for Submillimeter Astronomy A Dissertation 2008 by John Daniel Teufel. All rights reserved. #12;Abstract Superconducting Tunnel Junctions on the of performance of superconducting tunnel junctions (STJ) as direct detectors for submillimeter radiation. Over

  11. Colorado Forestry Advisory Board Members: April 6, 2005

    E-Print Network [OSTI]

    #12;Colorado Forestry Advisory Board Members: April 6, 2005 The 2004 Report on the Health types that characterize Colora- do's unique landscapes. As members of the Colorado Forestry Advisory will motivate and inform your involvement. Sincerely, Nancy M. Fishering Chairperson, Colorado Forestry Advisory

  12. School of Social Work Fort Collins, Colorado 80523-1586

    E-Print Network [OSTI]

    Rutledge, Steven

    School of Social Work Fort Collins, Colorado 80523-1586 Phone (970) 491-6612 Fax (970) 491-7280 Colorado State University College of Health and Human Sciences School of Social Work http or disability. #12;ii Greetings! Welcome to the School of Social Work at Colorado State University! Central

  13. STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper

    E-Print Network [OSTI]

    STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper Governor Lt. Gov. Joseph A-YEAR INSTITUTIONS OF HIGHER EDUCATION Colorado State University-Ft Collins Metropolitan State University of Denver number of credits designated by the Colorado Commission on Higher Education. The guarantees

  14. State of the Watershed: Water Quality of Boulder Creek, Colorado

    E-Print Network [OSTI]

    State of the Watershed: Water Quality of Boulder Creek, Colorado By Sheila F. Murphy Prepared of the watershed : water quality of Boulder Creek, Colorado / by Sheila Murphy. p. cm. ­(USGS Circular ; 1284) Includes bibliographic references. 1. Water quality -- Colorado -- Boulder Creek Watershed (Boulder

  15. Grande

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat PumpJorgeAtlGrad.Employee,Dedication

  16. Method for shallow junction formation

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA)

    1996-01-01T23:59:59.000Z

    A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

  17. 7th Annual Colorado Rare Plant Symposium Conservation Efforts and Status Review of G1 Plants of Colorado

    E-Print Network [OSTI]

    7th Annual Colorado Rare Plant Symposium Conservation Efforts and Status Review of G1 Plants of the Colorado Rare Plant Technical Committee (RPTC) for the 7th Annual Colorado Rare Plant Symposium. The RPTC is an ad-hoc group of agency and NGO botanists that has been working for years to advance rare plant

  18. Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin...

    Office of Scientific and Technical Information (OSTI)

    Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures Citation Details Title: Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin...

  19. adherens junction formation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of aluminum tunnel junctions Our recent work has involved fabrication of superconducting aluminum tunnel junctions for use; W. Barber et al. 2. PROCEDURE Our tunnel...

  20. Colorado Heat Flow Data from IHFC

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: The International Heat Flow Commission (IHFC) Publication Date: 2012 Title: Colorado IHFC Data Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: Abstract: This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication. Spatial Domain: Extent: Top: 4522121.800672 m Left: 165356.134075 m Right: 621836.776246 m Bottom: 4097833.419676 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude Of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  1. Grand Junction Office Founder Honored at the Philip C. Leahy Memorial Park

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,Glen Wattman - Director,Dedication and Open House

  2. DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A LithologicProcessing SiteSurface1 Rev.I

  3. Data Compendium for the Logging Test Pits at the ERDA Grand Junction

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPMMilestone | DepartmentEACompound (December 1975) |

  4. DOE - Office of Legacy Management -- Climax Uranium Co Grand Junction Mill

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NYBowen LabSouth,

  5. Quantum Junction Solar Cells Jiang Tang,,

    E-Print Network [OSTI]

    Quantum Junction Solar Cells Jiang Tang,, Huan Liu,, David Zhitomirsky,§ Sjoerd Hoogland,§ Xihua, 1037 Luoyu Road, Wuhan, Hubei 430074, China § Department of Electrical and Computer Engineering-type and p-type materials to create the first quantum junction solar cells. We present a family

  6. Colorado State University | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColorado

  7. Colorado Water Courts | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColoradoCourts Jump to:

  8. Department Name Degrees Phone Email Website Aerospace Engineering MS, PhD 303-492-6416 aerograd@colorado.edu http://www.colorado.edu/aerospace

    E-Print Network [OSTI]

    Mulligan, Jane

    Department Name Degrees Phone Email Website Aerospace Engineering MS, PhD 303-492-6416 aerograd@colorado.edu http://www.colorado.edu/aerospace Anthropology MA, PhD 303-492-7947 anthro@colorado.edu http://www.colorado.edu/anthropology Applied Mathematics MS, PhD 303-492-1238 amgradco@colorado.edu http://amath.colorado.edu Art and Art

  9. Savings Along the Rio Grande

    E-Print Network [OSTI]

    Supercinski, Danielle

    2007-01-01T23:59:59.000Z

    -feet of water per year from canal replacement, lining and/or seepage- loss testing. In addition, technical support from Extension engineers have saved districts more than $180,000 on engineering services. On-farm studies resulted in an average 25 percent...tx H2O | pg. 22 Conserving water is vital for the Rio GrandeBasin, one of the most productive agriculturalareas in the United States. Irrigated agricul- ture claims 85 percent of its water, and urban water use is expected to double in the next 50...

  10. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895Vehicle FuelFeet) DecadetotalGrand

  11. Denver, Colorado: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure provides an overview of the challenges and successes of Denver, Colorado, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  12. Geospatial Data Store Colorado School of Mines

    E-Print Network [OSTI]

    Geospatial Data Store Colorado School of Mines White Paper February 2006 Martin Spann, Adjunct Professor EPICS #12;2 A Geospatial Data Store Contents Executive Summary Proposed Budget (short version) General Information Geospatial Data Geospatial Data Store Library Geospatial Committee Academic

  13. Air Pollution, ATS555 Colorado State University

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Air Pollution, ATS555 Colorado State University Fall 2014 Mondays and Wednesdays @ 4:00 ­ 5:30 Room://ramct.colostate.edu/) Textbooks: Air Pollution: Its Origin and Control, 3rd Edition, by Wark, Warner and Davis, Addison Wesley. Specific objectives include: 1. Develop an understanding of types and sources of air pollution. 2. Examine

  14. COLORADO SCHOOL OF MINES PERFORMANCE MANAGEMENT PROGRAM

    E-Print Network [OSTI]

    , managers, and other affected parties, · Emphasizes planning, management, and evaluation of employee1 COLORADO SCHOOL OF MINES PERFORMANCE MANAGEMENT PROGRAM Revised October 1, 2008 I. HISTORY Since salaries were adjusted based on prevailing wages as determined by a salary survey, with merit increases

  15. ASTER Thermal Anomalies in western Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2013-01-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: ASTER Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2?, and areas with temperature equal to 1? to 2?, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4547052.446651 m Left: 158917.090117 m Right: 4101162.228281 m Bottom: 4101162.228281 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  16. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Environmental Management (EM)

    Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere...

  17. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

    1992-01-01T23:59:59.000Z

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  18. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, J.M.; Kurtz, S.R.

    1992-11-24T23:59:59.000Z

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  19. Thermoelectric efficiency of critical quantum junctions

    E-Print Network [OSTI]

    Mihail Mintchev; Luca Santoni; Paul Sorba

    2013-10-30T23:59:59.000Z

    We derive the efficiency at maximal power of a scale-invariant (critical) quantum junction in exact form. Both Fermi and Bose statistics are considered. We show that time-reversal invariance is spontaneously broken. For fermions we implement a new mechanism for efficiency enhancement above the Curzon-Ahlborn bound, based on a shift of the particle energy in each heat reservoir, proportional to its temperature. In this setting fermionic junctions can even reach at maximal power the Carnot efficiency. The bosonic junctions at maximal power turn out to be less efficient then the fermionic ones.

  20. Cyber Security Grand Challenges and Prognosis

    E-Print Network [OSTI]

    Sandhu, Ravi

    Cyber Security Grand Challenges and Prognosis Prof. Ravi Sandhu Executive Director and Institute for Cyber Security Executive Director and Endowed Chair ravi.sandhu@utsa.edu www.profsandhu.com www.ics.utsa.edu © Ravi Sandhu World-Leading Research with Real Cyber Security Grand Challenges and Prognosis Prof. Ravi

  1. Proton Hexality in Local Grand Unification

    E-Print Network [OSTI]

    Stefan Forste; Hans Peter Nilles; Saul Ramos-Sanchez; Patrick K. S. Vaudrevange

    2010-09-03T23:59:59.000Z

    Proton hexality is a discrete symmetry that avoids the problem of too fast proton decay in the supersymmetric extension of the standard model. Unfortunately it is inconsistent with conventional grand unification. We show that proton hexality can be incorporated in the scheme of "Local Grand Unification" discussed in the framework of model building in (heterotic) string theory.

  2. Remotely Sensed Thermal Anomalies in western Colorado

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Landsat Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2?, and areas with temperature equal to 1? to 2?, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4546381.234113 m Left: 140556.857021 m Right: 573390.000000 m Bottom: 4094583.641581 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  3. Recent Economic Trends in Colorado's Oil and Gas Industry Martin Shields, Ph.D.

    E-Print Network [OSTI]

    's Oil and Gas Industry Martin Shields, Ph.D. Regional Economics Institute Trends in Colorado's Oil and Gas Industry Summary Colorado's economy lost issues affecting its prospects in Colorado. Although the oil and gas industry

  4. Special Collections Department/University Libraries University of Colorado at Boulder spc@colorado.edu, 303-492-6144 Page 1

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    ©Special Collections Department/University Libraries University of Colorado at Boulder spc at Boulder Libraries Norlin Library Room N345, 303-492-6144, spc@colorado.edu http Collections Department/University Libraries University of Colorado at Boulder spc@colorado.edu, 303

  5. Multi-junction solar cell device

    DOE Patents [OSTI]

    Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

    2007-12-18T23:59:59.000Z

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  6. Radiation Research Society 2005 Annual Meeting, Denver, Colorado

    SciTech Connect (OSTI)

    Robert Ullrich, PhD

    2005-10-04T23:59:59.000Z

    Abstracts and proceedings of the 2005 Annual Meeting of the Radiation Research Society held in Denver, Colorado on October 16-19, 2005.

  7. Colorado Springs Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Business Energy and Water Efficiency Rebate Program offers a variety of incentives to business customers who upgrade evaporative cooling, HVAC, irrigation,...

  8. Colorado Community Readiness Efforts for PEVs Support State Policy...

    Broader source: Energy.gov (indexed) [DOE]

    the development of Colorado state policies to accelerate the adoption of plug-in electric vehicles (PEVs). Through Project FEVER, the Denver Clean Cities coalition and its...

  9. Economic Impact of NREL on Colorado, FY2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY Economic Impact of NREL on Colorado, FY2012 STUDY FUNDED BY: Alliance for Sustainable Energy, LLC BUSINESS RESEARCH DIVISION Leeds School of Business University of...

  10. University of Colorado-Boulder Researches Solar-Thermochemical...

    Broader source: Energy.gov (indexed) [DOE]

    EERE funds research at the University of Colorado-Boulder for a hydrogen production technology that uses solar energy to produce hydrogen from water. The thermochemical process...

  11. Direct Confirmation of Commercial Geothermal Resources in Colorado...

    Open Energy Info (EERE)

    Megawatts by location. Awardees (Company Institution) Flint Geothermal, LLC Partner 1 University of Colorado, Boulder Partner 2 Geothermal Development Associates Partner 3...

  12. Colorado Firm Develops Innovative Materials for Geothermal Systems...

    Office of Environmental Management (EM)

    Firm Develops Innovative Materials for Geothermal Systems Colorado Firm Develops Innovative Materials for Geothermal Systems April 18, 2013 - 12:00am Addthis With support from...

  13. applications laboratory colorado: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory 13 O:CSUEHorticultureNative Plant Masters20132013 NPM Application.doc432013 Colorado State University Extension 2009 Geosciences Websites...

  14. Colorado Springs Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

  15. UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE TELECOM PARISTECH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE TELECOM PARISTECH METAMATERIAL INSPIRED IMPROVED #12;i UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE TELECOM PARISTECH Metamaterial Inspired Improved

  16. Grand Challenge for Basic and Applied Research in Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage: Statement of Objectives Grand Challenge for Basic and Applied Research in Hydrogen Storage: Statement of Objectives Statement of objectives for the Grand Challenge for...

  17. 'Grand Challenge' for Basic and Applied Research in Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    'Grand Challenge' for Basic and Applied Research in Hydrogen Storage Solicitation 'Grand Challenge' for Basic and Applied Research in Hydrogen Storage Solicitation DOE is issuing a...

  18. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Energy Savers [EERE]

    EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power...

  19. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Drive Workshop EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere Grand Challenge - Battery...

  20. EV Everywhere Grand Challenge - Battery Workshop attendees list...

    Office of Environmental Management (EM)

    More Documents & Publications EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge Overview EV...

  1. Supersymmetry and supergravity: Phenomenology and grand unification

    SciTech Connect (OSTI)

    Arnowitt, R. [Texas A& M Univ., College Station, TX (United States)]|[Superconducting Super Collider Lab., Dallas, TX (United States); Nath, P. [Northeastern Univ., Boston, MA (United States). Dept. of Physics

    1993-12-31T23:59:59.000Z

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) {times} U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field.

  2. Grand Coulee Transmission Line Replacement Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Bureau of Reclamation to design and construct six new 500-kV overhead transmission lines at Grand Coulee Dam. BPA will replace the existing underground transmission...

  3. Colorado 2014 Economic Outlook: There are No Guarantees

    E-Print Network [OSTI]

    Colorado 2014 Economic Outlook: There are No Guarantees Dr. Martin Shields Regional Economics Institute Colorado State University #12;The Important Economic Issues · The economy is no longer "recovering the recovery looked like · 2014 outlook · Does economic growth improve individual well-being? #12;"Recovery

  4. Water Supply Analysis for Restoring the Colorado River Delta, Mexico

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Water Supply Analysis for Restoring the Colorado River Delta, Mexico Josué Medellín-Azuara1 ; Jay R, Mexico. Potential water sources include reductions in local agricultural and urban water use through headings: Water supply; Restoration; Mexico; Colorado River; Environmental issues. Introduction Providing

  5. Agricultural Water Demand Along the Colorado River Main Stem

    E-Print Network [OSTI]

    Fay, Noah

    Agricultural Water Demand Along the Colorado River Main Stem: An Econometric Analysis Advisor: Dr · Agriculture is by far the largest water user in the state of Arizona (70%) Municipal Industrial Agriculture 25% 7%68% Municipal Industrial Agriculture #12;Relevance to Arizona · Irrigation along the Colorado

  6. STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper

    E-Print Network [OSTI]

    STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper Governor Lt. Gov. Joseph A-YEAR INSTITUTIONS OF HIGHER EDUCATION Colorado State University-Ft Collins Fort Lewis College Metropolitan State Commission on Higher Education. The guarantees and limitations below describe the minimum requirements

  7. STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper

    E-Print Network [OSTI]

    STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper Governor Lt. Gov. Joseph A OF HIGHER EDUCATION Colorado State University-Ft Collins #12;FINAL Statewide Transfer Articulation Agreement Education. The guarantees and limitations below describe the minimum requirements to which all participating

  8. A Classification of Riparian Wetland Plant Associations of Colorado

    E-Print Network [OSTI]

    Protection Agency, the US Forest Service, the US Bureau of Land Management, the US Bureau of Reclamation, US: EPA/State of Colorado, The Nature Conservancy, US Forest Service, Bureau of Land Management, Bureau of Reclamation, National Fish and Wildlife Foundation, Denver Water Board, City of Boulder, Colorado Natural

  9. Colorado Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Resources Research Institute Annual Technical Report FY 1999 Introduction WATER Water Institute Program for FY1999, the Advisory Council on Water Research Policy (ACWRP) for the Colorado Water Resources Research Institute (CWRRI) was activated. The Council held its initial meeting

  10. Colorado Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Colorado Water Resources Research Institute Annual Technical Report FY 2000 Introduction As water managers work to solve the integrated water problems facing Colorado today, the dimensions of each issue demand a better understanding of basic water science, technology and policy. Whether water managers work

  11. Colorado State University Cooperative Extension. 4/02.

    E-Print Network [OSTI]

    necessary for good germination. Aspen is unique among Colorado forest trees in its ability to sprout new types are pinon pine-juniper; ponderosa pine-Douglas-fir; lodgepole pine; spruce-fir; and aspen. Fire lower in elevation and dryer than the spruce-fir forest types of the subalpine zone. Aspen is Colorado

  12. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY

    E-Print Network [OSTI]

    COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 · The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation RESEARCH INSTITUTE REMEDIATION PROJECT SUMMARY Page Two May 15, 2007 · The revised Remedial Investigation

  13. SME Annual Meeting Feb. 26-28, Denver, Colorado

    E-Print Network [OSTI]

    Saylor, John R.

    SME Annual Meeting Feb. 26-28, Denver, Colorado 1 Copyright © 2001 by SME Preprint 01-114 EFFECTS of operating conditions that included multiple drum heights and the use of side and underboom sprays. #12;SME Annual Meeting Feb. 26-28, Denver, Colorado 2 Copyright © 2001 by SME TEST FACILITY Gallery Testing

  14. The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium

    E-Print Network [OSTI]

    · Land ownership/management: BLM, private, state Conservation Action Plan #12;Astragalus osterhoutii #12 · Land ownership/management: Colorado National Monument, BLM, possibly on adjacent private #12;Aletes · Land ownership/management: BLM, Mesa Verde NP, tribal (Southern Ute and Ute Mountain Ute), and private

  15. Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan...

    Open Energy Info (EERE)

    Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleDataAcqui...

  16. Boomtown blues; Oil shale and Exxon's exit

    SciTech Connect (OSTI)

    Gulliford, A. (Western New Mexico Univ., Silver City, NM (USA))

    1989-01-01T23:59:59.000Z

    This paper chronicles the social and cultural effects of the recent oil shale boom on the Colorado communities of Rifle, Silt, Parachute, and Grand Junction. The paper is based upon research and oral history interviews conducted throughout Colorado and in Houston and Washington, DC.

  17. Junction-side illuminated silicon detector arrays

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30T23:59:59.000Z

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  18. Theory of Proximity Effect in Junctions with Unconventional Superconductors

    E-Print Network [OSTI]

    Fominov, Yakov

    )Singlet superconductor junctions ()Triplet superconductor junctions [PRB 70, 012507 (2004), PRB71 024506(2005) PRB 72,R140503 (2005), PRL 96 (2006) ] [PRB 69 144519 (2004), PRL 90 167003(2003)] #12;Tunneling

  19. Complementary junction heterostructure field-effect transistor

    DOE Patents [OSTI]

    Baca, Albert G. (Albuquerque, NM); Drummond, Timothy J. (Albuquerque, NM); Robertson, Perry J. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  20. Axion physics in a Josephson junction environment

    E-Print Network [OSTI]

    Christian Beck

    2011-11-23T23:59:59.000Z

    We show that recent experiments based on Josephson junctions, SQUIDS, and coupled Josephson qubits have a cosmological interpretation in terms of axionic dark matter physics, in the sense that they allow for analogue simulation of early-universe axion physics. We propose new experimental setups in which SQUID-like axionic interactions in a resonant Josephson junction environment can be tested, similar in nature to recent experiments that test for quantum entanglement of two coupled Josephson qubits. We point out that the parameter values relevant for early-universe axion cosmology are accessible with present day's achievements in nanotechnology.

  1. Complementary junction heterostructure field-effect transistor

    DOE Patents [OSTI]

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26T23:59:59.000Z

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  2. Alfred A. Arraj U.S. Courthouse; Denver, Colorado: A Model of Sustainability

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This brochure describes the sustainability of the Alfred A. Arraj United States Courthouse in Denver, Colorado.

  3. Energy Incentive Programs, Colorado | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact SheetColorado Energy Incentive

  4. Akron, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airway Heights,Akins, Oklahoma: EnergyColorado:

  5. Florence, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisia BabcockFlexColorado: Energy

  6. Westcreek, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, NewWestbrook, Minnesota: EnergyWestcreek, Colorado:

  7. Clean Cities: Northern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthern Colorado Clean Cities

  8. Clean Cities: Southern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthernSouth ShoreColorado Clean

  9. Kittredge, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:KimbleKinnelon,Kirtland,Kittredge, Colorado:

  10. Jamestown, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind Farm JumpJamestown, Colorado: Energy

  11. Hudson, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio: EnergyHudson EnergyColorado: Energy

  12. Colorado Renewable Energy Collaboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonial Industria de BebidasColorado

  13. Woodmoor, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,WoodfordLandfillWoodmoor, Colorado:

  14. Parachute, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisadesParachute, Colorado: Energy Resources Jump

  15. Southeast Colorado Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado Power Assn Jump to: navigation, search Name:

  16. Eagle, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2Latvia)Colorado: Energy Resources Jump

  17. Eaton, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine: EnergyColorado: Energy Resources

  18. Nunn, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn, Colorado: Energy Resources Jump to:

  19. DOE - Office of Legacy Management -- Colorado

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona Arizona az_map Monument ValleyColorado

  20. Cottonwood, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis AtSystems |CostaCottonAlabama:Colorado:

  1. Lafayette, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNL EnergyLafarge RoofingColorado:

  2. Applewood, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan:Applewood, Colorado: Energy Resources

  3. Colorado DWR GWS-32 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,Published Colorado

  4. Colorado Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,PublishedColorado

  5. Colorado Energy Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy Office Jump to:

  6. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy Office

  7. Colorado Public Utilities Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado

  8. Berkley, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina: Energy Resources JumpWestColorado: Energy

  9. RAPID/Geothermal/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | Geothermal Jump to:

  10. REC Solar (Colorado) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformationeNevada <REC Solar (Colorado) Jump to:

  11. Rangely, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:Rancia 2Rangely, Colorado: Energy

  12. Dynamic simulations of arrays of Josephson junctions

    SciTech Connect (OSTI)

    Eikmans, H.; van Himbergen, J.E. (Institute for Theoretical Physics, University of Utrecht, P.O. Box 80.006, 3508 TA Utrecht, The Netherlands (NL))

    1990-05-01T23:59:59.000Z

    First we introduce a very efficient algorithm for dynamic simulations of a wide class of arrays of Josephson junctions with realistic boundaries. With this algorithm one can also represent current-biased arrays with periodic boundaries. Next we present results of extensive simulations of ladder arrays. We evaluate the resistance as a function of magnetic field and find striking differences between different geometries.

  13. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, John C. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  14. Axion mass estimates from resonant Josephson junctions

    E-Print Network [OSTI]

    Christian Beck

    2014-06-10T23:59:59.000Z

    Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass [C. Beck, PRL 111, 231801 (2013)]. Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electric current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of $(110 \\pm 2)\\mu $eV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.

  15. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, J.C.; Shul, R.J.

    1999-02-02T23:59:59.000Z

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  16. Colorado's Prospects for Interstate Commerce in Renewable Power

    SciTech Connect (OSTI)

    Hurlbut, D. J.

    2009-12-01T23:59:59.000Z

    Colorado has more renewable energy potential than it is ever likely to need for its own in-state electricity consumption. Such abundance may suggest an opportunity for the state to sell renewable power elsewhere, but Colorado faces considerable competition from other western states that may have better resources and easier access to key markets on the West Coast. This report examines factors that will be important to the development of interstate commerce for electricity generated from renewable resources. It examines market fundamentals in a regional context, and then looks at the implications for Colorado.

  17. EIS-0351: Operation of Flaming Gorge Dam, Colorado River Storage Project, Colorado River, UT

    Broader source: Energy.gov [DOE]

    The Secretary of the United States Department of the Interior (Secretary), acting through the Bureau of Reclamation (Reclamation), is considering whether to implement a proposed action under which Flaming Gorge Dam would be operated to achieve the flow and temperature regimes recommended in the September 2000 report Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam (2000 Flow and Temperature Recommendations), published by the Upper Colorado River Endangered Fish Recovery Program (Recovery Program).

  18. 2008 Forestry-related Legislation in Colorado The state of Colorado values healthy, resilient forest landscapes and is willing to invest

    E-Print Network [OSTI]

    2008 Forestry-related Legislation in Colorado The state of Colorado values healthy, resilient and value of Colorado's forests. At the time this report was written, several forestry-related bills were related to the WUI, fuels mitigation, fire fighting, bark beetle mortality and incentives for forestry

  19. City extensions : the revitalization of Denver Colorado's Platte River Valley

    E-Print Network [OSTI]

    Sobey, James A

    1982-01-01T23:59:59.000Z

    This thesis examines a process for future city growth in Denver, Colorado. Its objective is to develop a model by which future expansion of the city might build qualities of continuity and identity between adjacent sections ...

  20. asce denver colorado: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BASIN, COLORADO By D. J. Nichols in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones here or on this symbol in the...

  1. Water supply analysis for restoring the Colorado River Delta, Mexico

    E-Print Network [OSTI]

    Medellin-Azuara, Josue; Lund, Jay R.; Howitt, Richard E.

    2007-01-01T23:59:59.000Z

    1091-1109. Banco de México. (2006). "Indices de Precios alColorado River Delta in Mexico." Cohen, M. J. (2006). "TheEstadísticas del Agua en México 2004." Comisión Nacional del

  2. Dear Readers: For years, you've known Colorado

    E-Print Network [OSTI]

    #12;Dear Readers: For years, you've known Colorado State Magazine as a source for news and updates the Division of Continuing Education #12;A Magazine for Alumni and Friends SUMMER 2013 · NUMBER 63 Editorial

  3. 2005 ASME Pressure Vessels and Piping Conference Denver, Colorado, USA

    E-Print Network [OSTI]

    Özer, Mutlu

    1 DRAFT 2005 ASME Pressure Vessels and Piping Conference Denver, Colorado, USA July 17-21, 2005 subjected to lateral earthquake loads. The results are verified with different codes (e.g. Eurocode8, API

  4. College of Engineering Profile The College of Engineering at Colorado

    E-Print Network [OSTI]

    Programs: Chemical and Biological Engineering Civil Engineering Computer Engineering Electrical Engineering: Atmospheric Science Bioengineering Chemical Engineering Civil Engineering Electrical Engineering MechanicalCollege of Engineering Profile 2007-2008 The College of Engineering at Colorado State has a strong

  5. Amanda S Hering Colorado School of Mines; Assistant Professor

    E-Print Network [OSTI]

    Society (TIES) · American Statistical Association (ASA) ­ Section on Statistics and the Environment Energy ­ Journal of the American Statistical Association ­ Journal of Computational and GraphicalAmanda S Hering Colorado School of Mines; Assistant Professor Applied Mathematics and Statistics

  6. Southeast Colorado Power Association- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southeast Colorado Power Association (SECPA) offers a variety of rebates to customers who purchase and install energy efficient [http://secpa.com/Sites/Appliances.html appliances], [http://secpa...

  7. 6040 Greenwood Plaza Boulevard Greenwood Village, Colorado 80111

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the Lowry Bombing Range on behalf of the Colorado State Land Board. The upfront bonus of 137 Million and 88 well commitment will generate approximately 500 Million in...

  8. Colorado Front Range Fuel Photo Series Michael A. Battaglia

    E-Print Network [OSTI]

    Fried, Jeremy S.

    Colorado Front Range Fuel Photo Series Michael A. Battaglia Jonathan M. Dodson Wayne D. Shepperd of Agriculture Forest Service Rocky Mountain Research Station June 2005 #12;Battaglia, Michael A.; Dodson

  9. Ponnequin Wind Energy Project Weld County, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

  10. Public Service Announcements for the Arroyo Colorado Watershed

    E-Print Network [OSTI]

    Berthold, Allen

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-396 2011 Public Service Announcements for the Arroyo Colorado Watershed Final Report By T. Allen Berthold Texas Water Resources Institute Prepared... for Texas General Land Office March 2011 Texas Water Resources Institute Technical Report No. 396 Texas A&M University System College Station, Texas 77843-2118 Public Service Announcements for the Arroyo Colorado Watershed By T...

  11. Arroyo Colorado Watershed Protection Plan Implementation Project Final Report

    E-Print Network [OSTI]

    Berthold, T. Allen; Flores, Jaime

    2011-01-01T23:59:59.000Z

    Arroyo Colorado Watershed Protection Plan Implementation Project Final Report August 2011 By T. Allen Berthold and Jaime Flores Texas Water Resources Institute Texas Water Resources Institute Technical Report No. 411 Texas A&M University... System College Station, Texas 77843-2118 COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-411 2011 Arroyo Colorado Watershed Protection Plan Implementation Project Final Report By T. Allen Berthold and Jaime Flores Texas Water Resources...

  12. MARY CARROLL CRAIG BRADFORD: PROVIDING OPPORTUNITIES TO COLORADO’S WOMEN AND CHILDREN THROUGH SUFFRAGE AND EDUCATION

    E-Print Network [OSTI]

    Caldwell, Heather K.

    2010-07-14T23:59:59.000Z

    This dissertation is a historical biography on the life, suffrage and educational contributions of Mary Carroll Craig Bradford, a wife, mother, suffragist, teacher and educational administrator in the state of Colorado. The purpose...

  13. alto rio grande: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 MALE RIO GRANDE WILD TURKEY Environmental Sciences and Ecology Websites Summary: 217 MALE RIO GRANDE WILD TURKEY...

  14. Winning the Future: Grand Ronde Solar Projects Reduce Pollution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs October 20, 2014 - 5:00pm...

  15. Energy Secretary Steven Chu to Attend Grand Opening of Recovery...

    Office of Environmental Management (EM)

    to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant...

  16. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOE Patents [OSTI]

    Chang, Y. Austin (Middleton, WI); Yang, Jianhua Joshua (Madison, WI)

    2008-11-11T23:59:59.000Z

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  17. Single P-N junction tandem photovoltaic device

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

    2012-03-06T23:59:59.000Z

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  18. Single P-N junction tandem photovoltaic device

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

    2011-10-18T23:59:59.000Z

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  19. Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.

    SciTech Connect (OSTI)

    Goulet, C. T.; LaGory, K. E.; Environmental Science Division

    2009-10-05T23:59:59.000Z

    Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

  20. Investigation of the Wall Effect in the long Josephson junctions

    SciTech Connect (OSTI)

    Nevirkovets, I.P.; Rudenko, E.M. (Inst. of Metal Physics of the Ukrainian Academy of Science, Kiev 252142 (SU))

    1991-03-01T23:59:59.000Z

    This paper reports on the long Josephson junctions with edge current injection and shortened control line studied experimentally. It is found that the wall effect is connected with the blockade of vortices entry into the junction by control current, as well as with the existence of the energy barrier for the vortices at the boundary between a projection region and the remainder part of the junction. The significant enhancement of supercurrent due to the blockade was found.

  1. Colorado Better Buildings Project Final Report

    SciTech Connect (OSTI)

    Strife, Susie; Yancey, Lea

    2013-12-30T23:59:59.000Z

    The Colorado Better Buildings project intended to bring new and existing energy efficiency model programs to market with regional collaboration and funding partnerships. The goals for Boulder County and its program partners were to advance energy efficiency investments, stimulate economic growth in Colorado and advance the state’s energy independence. Collectively, three counties set out to complete 9,025 energy efficiency upgrades in 2.5 years and they succeeded in doing so. Energy efficiency upgrades have been completed in more than 11,000 homes and businesses in these communities. Boulder County and its partners received a $25 million BetterBuildings grant from the U.S. Department of Energy under the American Recovery and Reinvestment Act in the summer of 2010. This was also known as the Energy Efficiency and Conservation Block Grants program. With this funding, Boulder County, the City and County of Denver, and Garfield County set out to design programs for the residential and commercial sectors to overcome key barriers in the energy upgrade process. Since January 2011, these communities have paired homeowners and business owners with an Energy Advisor – an expert to help move from assessment to upgrade with minimal hassle. Pairing this step-by-step assistance with financing incentives has effectively addressed many key barriers, resulting in energy efficiency improvements and happy customers. An expert energy advisor guides the building owner through every step of the process, coordinating the energy assessment, interpreting results for a customized action plan, providing a list of contractors, and finding and applying for all available rebates and low-interest loans. In addition to the expert advising and financial incentives, the programs also included elements of social marketing, technical assistance, workforce development and contractor trainings, project monitoring and verification, and a cloud-based customer data system to coordinate among field advisors and across local governments and local service vendors. A portion of the BetterBuildings grant went to the Metro Mayors Caucus (MMC) who worked in partnership with the Denver Regional Council of Governments (DRCOG) to conduct a series of 10 energy efficiency workshops for local government officials and other interested parties. The workshops helped showcase lessons learned on energy efficiency and helped guide other local governments in the establishment of similar programs. The workshops covered a wide range of energy efficiency and renewable energy topics such as clean energy finance, social mobilization and communications, specific case studies of Colorado towns, energy efficiency codes, net zero buildings and solar power. Since the programs launched in January 2011, these communities have collectively spurred economic investments in energy efficiency, achieved greater than 5:1 leveraging of grant funds, saved energy and reduced greenhouse gas emissions, provided trainings for a robust local energy contractor network, and proved out viable and replicable program models that local utilities and other communities are adopting, with long lasting market transformation.

  2. Raman Scattering at Plasmonic Junctions Shorted by Conductive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories...

  3. Quantum manipulation and simulation using Josephson junction arrays

    E-Print Network [OSTI]

    Xingxiang Zhou; Ari Mizel

    2006-05-01T23:59:59.000Z

    We discuss the prospect of using quantum properties of large scale Josephson junction arrays for quantum manipulation and simulation. We study the collective vibrational quantum modes of a Josephson junction array and show that they provide a natural and practical method for realizing a high quality cavity for superconducting qubit based QED. We further demonstrate that by using Josephson junction arrays we can simulate a family of problems concerning spinless electron-phonon and electron-electron interactions. These protocols require no or few controls over the Josephson junction array and are thus relatively easy to realize given currently available technology.

  4. Urban Water Conservation along the Rio Grande

    E-Print Network [OSTI]

    Silvey, Valeen; Kaiser, Ronald; Lesikar, Bruce; Runyan, Craig

    2004-01-01T23:59:59.000Z

    Urban Water Conservation along the Rio Grande THE TEXAS A&M UNIVERSITY SYSTEM NEW MEXICO STATE UNIVERSITY An Inventory of Water Conservation Programs TR 269 SP 201 Valeen Silvy, 1 Ronald Kaiser, 2 Bruce Lesikar 3 and Craig Runyan... water running into the streets from irrigation systems. Urban water conservation incorporates water- saving measures and incentives for the home, on the landscape and throughout the city water distribution system. It is easy to differentiate be...

  5. Cenozoic Landscape Evolution of the Grand Canyon Region, Arizona

    E-Print Network [OSTI]

    Lee, John

    2008-02-26T23:59:59.000Z

    The landscape evolution of the southwestern Colorado Plateau has eluded accurate description due to the scarcity of a Cenozoic rock record. However, advances in low-temperature thermochronology have shown the ability to quantitatively assess erosion...

  6. Did the Great Recession Wipe Out a Decade of Economic Progress in Colorado?

    E-Print Network [OSTI]

    1 Did the Great Recession Wipe Out a Decade of Economic Associate Professor of Economics Michael Marturana Research Economist Colorado rebuild. To make better decisions about Colorado's open economic path

  7. AN INVESTIGATION OF DEWATERING FOR THE MODIFIED IN-SITU RETORTING PROCESS, PICEANCE CREEK BASIN, COLORADO

    E-Print Network [OSTI]

    Mehran, M.

    2013-01-01T23:59:59.000Z

    J:''-~orraation v Piceance Creek Basin v Colorado r and 9 p'C~b Tract, Piceance Creek Basin, Colorado," Report to Oc~for Piceance and Yellow Creek Watersheds," Environmental

  8. EIS-0362: Colorado Springs Utilities' Next Generation CFB Coal Generating Unit, CO

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve Colorado Springs Utilities design, construction, and operation of their Next- Generation Circulating Fluidized Bed (CFB) Coal Generating Unit demonstration plant near Fountain, El Paso County, Colorado.

  9. 20052006ColoradoSchoolofMinesUndergraduateBulletin Office of Undergraduate Studies

    E-Print Network [OSTI]

    is for your use as a source of continuing reference. Please save it. Published by Colorado School of Mines

  10. Colorado School of Mines Undergraduate Bulletin 1999-2000 1 School of Mines

    E-Print Network [OSTI]

    This Bulletin is for your use as a source of continuing reference. Please save it. Published by Colorado School

  11. nitelluBetaudargrednUseniMfoloohcSodaroloC80-7002 Colorado School of Mines

    E-Print Network [OSTI]

    is for your use as a source of continuing reference. Please save it. Published by Colorado School of Mines

  12. Colorado School of Mines Undergraduate Bulletin 2001-2002 1 School of Mines

    E-Print Network [OSTI]

    This Bulletin is for your use as a source of continuing reference. Please save it. Published by Colorado School

  13. Colorado School of Mines Graduate Bulletin 1999-2000 1 School of Mines

    E-Print Network [OSTI]

    is for your use as a source of continuing reference. Please save it. Published by Colorado School of Mines

  14. Economic Development Impacts of Colorado's First 1000 Megawatts of Wind Energy

    SciTech Connect (OSTI)

    Reategui, S.; Tegen, S.

    2008-08-01T23:59:59.000Z

    This report analyzes the economic impacts of the installation of 1000 MW of wind power in the state of Colorado.

  15. Preliminary Site Characterization Report, Rulsion Site, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  16. Phonon interference effects in molecular junctions

    SciTech Connect (OSTI)

    Markussen, Troels, E-mail: troels.markussen@gmail.com [Center for Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)] [Center for Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2013-12-28T23:59:59.000Z

    We study coherent phonon transport through organic, ?-conjugated molecules. Using first principles calculations and Green's function methods, we find that the phonon transmission function in cross-conjugated molecules, like meta-connected benzene, exhibits destructive quantum interference features very analogous to those observed theoretically and experimentally for electron transport in similar molecules. The destructive interference features observed in four different cross-conjugated molecules significantly reduce the thermal conductance with respect to linear conjugated analogues. Such control of the thermal conductance by chemical modifications could be important for thermoelectric applications of molecular junctions.

  17. Junction Hilltop Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | WindInformationJosephine,Junction Hilltop

  18. Created to Serve: Colorado State University's Impact on the State's Economy

    E-Print Network [OSTI]

    Rutledge, Steven

    Created to Serve: Colorado State University's Impact on the State's Economy #12;2 Created to Serve: Created to Serve: Colorado State University's Impact on the State's Economy All data, research's Impact on the State's Economy Message from the President Colorado State, as a land-grant university

  19. Colorado School of Mines Police Department, Campus Security and Fire Safety Report -2013 2013 ANNUAL SECURITY

    E-Print Network [OSTI]

    Colorado School of Mines Police Department, Campus Security and Fire Safety Report -2013 1 2013 ANNUAL SECURITY & FIRE SAFETY REPORT PREPARED BY: THE COLORADO SCHOOL OF MINES DEPARTMENT OF PUBLIC SAFETY #12;Colorado School of Mines Police Department, Campus Security and Fire Safety Report -2013 2

  20. University of Colorado at Boulder Department of Environmental Health and Safety

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    University of Colorado at Boulder Department of Environmental Health and Safety Department of Environmental Health and Safety 1000 Regent Drive 413 UCB University of Colorado Boulder, Colorado 80309 to stationary objects (potential damage), and preparing for high winds. The Facilities Management Guidelines

  1. Limiting and realistic efficiencies of multi-junction solar Photonic Materials Group, FOM institute AMOLF, Amsterdam

    E-Print Network [OSTI]

    Polman, Albert

    analysis of the single junction c-Si cell and the 5-junction Ge-(c-Si)-CZTS-(a-SiC)-GaP cell is performed

  2. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    SciTech Connect (OSTI)

    Bloom, R.R.

    1996-04-01T23:59:59.000Z

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

  3. Nonvolatile memory disturbs due to gate and junction leakage currents

    E-Print Network [OSTI]

    Schroder, Dieter K.

    ) from traps within the gate oxides. Such low gate leakage currents can lead to sufficient charge; accepted 10 September 2002 Abstract We address disturbs due to gate oxide and junction leakage currents in floating gate nonvolatile memories (NVM). The junction leakage is important, because the gate oxide current

  4. Profiling the Thermoelectric Power of Semiconductor Junctions with

    E-Print Network [OSTI]

    Profiling the Thermoelectric Power of Semiconductor Junctions with Nanometer Resolution Ho-Ki Lyeo,3 * We have probed the local thermoelectric power of semiconductor nanostruc- tures with the use of ultrahigh-vacuum scanning thermoelectric microscopy. When applied to a p-n junction, this method reveals

  5. Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE`s deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

  6. Grand Unification and Enhanced Quantum Gravitational Effects

    SciTech Connect (OSTI)

    Calmet, Xavier [Catholic University of Louvain, Center for Particle Physics and Phenomenology, 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Hsu, Stephen D. H.; Reeb, David [Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)

    2008-10-24T23:59:59.000Z

    In grand unified theories with large numbers of fields, renormalization effects significantly modify the scale at which quantum gravity becomes strong. This in turn can modify the boundary conditions for coupling constant unification, if higher dimensional operators induced by gravity are taken into consideration. We show that the generic size of, and the uncertainty in, these effects from gravity can be larger than the two-loop corrections typically considered in renormalization group analyses of unification. In some cases, gravitational effects of modest size can render unification impossible.

  7. Grand Meadow Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, searchGoodyear,GouldDakotaCouleeGrand

  8. Grand Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,Grand Electric Coop,

  9. CMI Grand Challenge Problems | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home HomeDevelopsEducation andGrand

  10. Colorado Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColorado Solar Energy

  11. Colorado State Bank and Trust | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColorado Solar

  12. Colorado State Board of Land Commissioners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColorado SolarState

  13. Colorado Water Quality Control Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColoradoCourts Jump

  14. Colorado thermal spring water geothermometry (public dataset) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColoradoColoradoCourts

  15. RAPID/Geothermal/Environment/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | GeothermalColorado

  16. RAPID/Geothermal/Exploration/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska <Colorado <

  17. RAPID/Geothermal/Exploration/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska <Colorado

  18. A Grand Challenge for Planetary Nebulae

    E-Print Network [OSTI]

    Adam Frank; Orsola De Marco; Eric Blackman; Bruce Balick

    2007-12-12T23:59:59.000Z

    The study of PN has been confronting a growing list of dilemmas which have yet to find coherent resolution. These issues are both observational and theoretical and can be stated as a series of "facts" which can not, as of yet, be accounted for via a single framework. We review these facts and propose a skeleton framework for developing a new understanding post-AGB stars, PPN and PN. Our framework represents an attempt to articulate a a global perspective on the late stages of stellar evolution that can embrace both the nature of the central engine and the outflows they produce. Our framework focuses on interacting binary central stars which drive collimated outflows through MHD processes. We propose that the field of AGB/PN studies now faces a "Grand Challenge" in articulating the observational systematics of these objects in a way that can address issues related to binarity and magnetic shaping. A theoretical Grand Challenge is also faced in the form of integrated studies which can explicate the highly non-linear processes associated with MHD outflows driven by interacting binaries. These issues include the generation of magnetic fields via dynamo processes, the creation of accretion disks, the dynamics of Common Envelope ejection and the creation of magnetized jets.

  19. Citrus Production in the Lower Rio Grande Valley of Texas.

    E-Print Network [OSTI]

    Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

    1930-01-01T23:59:59.000Z

    LIE?ARY, A t r: COLLEGE, CAvrus. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas... of Agriculture. . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up...

  20. SunShot Grand Challenge Summit Breakout Sessions Announced |...

    Broader source: Energy.gov (indexed) [DOE]

    leaders and subject matter experts across 17 breakout sessions will provide insights and perspectives on the "grand challenges" to meeting the SunShot 2020 affordability goal in...

  1. Grand Challenge for Basic and Applied Research in Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Grand Challenge for Basic and Applied Research in Hydrogen Storage Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

  2. City of Grand Rapids- Green Building Requirements for Municipal Buildings

    Broader source: Energy.gov [DOE]

    In January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement the principles...

  3. ,"Grand Island, NY Natural Gas Pipeline Imports From Canada ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Grand Island,...

  4. Dermatology Grand Rounds "AJCC Melanoma Staging Update: Impact on Diagnostic

    E-Print Network [OSTI]

    Bar, Moshe

    Dermatology Grand Rounds "AJCC Melanoma Staging Update: Impact on Diagnostic Reporting in primary melanoma Explain the decision making process in offering sentinel lymph node mapping Date

  5. Petrogenesis of Valle Grande Member Rhyolites, Valles Caldera...

    Open Energy Info (EERE)

    of Valle Grande Member Rhyolites, Valles Caldera, New Mexico- Implications for Evolution of the Jemez Mountains Magmatic System Jump to: navigation, search OpenEI Reference...

  6. Sandia National Laboratories: Grand Challenge Laboratory-Directed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Challenge Laboratory-Directed Research and Development project Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in...

  7. EV Everywhere Grand Challenge - Battery Status and Cost Reduction...

    Energy Savers [EERE]

    Status and Cost Reduction Prospects EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects Presentation given by technology manager David Howell at the EV...

  8. EV Everywhere Grand Challenge Introduction for Electric Drive...

    Energy Savers [EERE]

    David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare,...

  9. Statement by Energy Secretary Steven Chu on Today's Grand Opening...

    Office of Environmental Management (EM)

    Steven Chu issued the following statement on today's grand opening of the Nordex wind turbine manufacturing facility in Jonesboro. The facility was supported with funding from the...

  10. Mechanical deformations of boron nitride nanotubes in crossed junctions

    SciTech Connect (OSTI)

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong, E-mail: cke@binghamton.edu [Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Park, Cheol [NASA Langley Research Center, Hampton, Virginia 23681 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Fay, Catharine C. [NASA Langley Research Center, Hampton, Virginia 23681 (United States); Stupkiewicz, Stanislaw [Institute of Fundamental Technological Research, Warsaw (Poland)

    2014-04-28T23:59:59.000Z

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%–33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.21–4.67?nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.2–7.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07?±?0.11 TPa and 0.18–0.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  11. Finance 2013-14 Institution: Colorado School of Mines (126775)

    E-Print Network [OSTI]

    Finance 2013-14 Institution: Colorado School of Mines (126775) User ID: P1267751 Overview Finance Overview Purpose The purpose of the IPEDS Finance component is to collect basic financial information from to the 2013-14 Finance data collection from the 2012-13 collection. Resources: To download the survey

  12. Colorado State University Center for Advising & Student Achievement

    E-Print Network [OSTI]

    at CASA are first and second year learning communities serving a highly diverse student population Academic Culture, Communication, and Sports is a first-year Learning Community focused on the integration1 Colorado State University Center for Advising & Student Achievement Position Description Key Plus

  13. COLORADO STATE UNIVERSITY Research Integrity & Compliance Review Office (RICRO)

    E-Print Network [OSTI]

    COLORADO STATE UNIVERSITY Research Integrity & Compliance Review Office (RICRO) Assistant of the Research Integrity and Compliance Review Office (RICRO) is responsible for a broad range of duties to the campus community and visitors to campus. #12; Ability to successfully plan and prepare for as well as set

  14. Colorado State University Cooperative Extension. 2/99.

    E-Print Network [OSTI]

    , unattacked trees. Mountain pine beetle (MPB), Dendroctonus ponderosae, is native to the forests of western.543, Western Spruce Budworms). Spruce beetle (D. rufipennis) is a pest of Engelmann and Colorado blue spruce beetles and related bark beetles in the genus Dendroctonus can be distinguished from other large bark

  15. SAND AND GRAVEL MINING IN COLORADO RIPARIAN HABITATS

    E-Print Network [OSTI]

    Reclamation Specialist Colorado Division of Mined Land Reclamation 723 Centennial Building 1313 Sherman Reclamation Board (MLRB) administers the Colo rado Mined Land Reclamation Act of 1976. This law requires types of mining including sand and gravel mining. The Mined Land Reclamation Division (MLRD

  16. Water Resources and Climate Change in Garden Park, Colorado

    E-Print Network [OSTI]

    Baffa, Thomas W.

    2009-12-18T23:59:59.000Z

    , is the availability of an adequate water supply. Drought is an ever-present danger, and, with an annual statewide precipitation rate of 12 to 17 inches, the quote above is a grim reminder that water is as precious as gold in Colorado. Combine that fact...

  17. COLORADO DEPARTMENT OF TRANSPORTATION Sustainability of Concrete Pavement

    E-Print Network [OSTI]

    COLORADO DEPARTMENT OF TRANSPORTATION Sustainability of Concrete Pavement I-225 - Mississippi to 6 · 2 Mile Reconstruction Existing: · 4 Lane Divided Highway · 8" Concrete Pavement (Recycled on-site) · 4" Asphalt Overlay (Recycled off-site) Project Design: · 6 Lane Divided Highway · 13" Concrete

  18. This Quick Guide was produced by the Colorado

    E-Print Network [OSTI]

    This Quick Guide was produced by the Colorado State Forest Service to promote knowledge transfer. Juniper tends to grow in more arid areas; its scaled foliage allows it to conserve water more effectively. Treatment Methods for Thinning Piñon-Juniper Forests A variety of techniques may be used to manage piñon

  19. Colorado State University Cooperative Extension. 9/99.

    E-Print Network [OSTI]

    are affected by this disease, including aspen, birch, cottonwood, poplar, spruce, willow, ash, maple, elm Cytospora. These pathogens affect many species of trees in Colorado, including aspen, cottonwood, lombardy are host specific and will not spread to other tree species. Aspen and cottonwoods are attacked by the same

  20. Colorado State University Cooperative Extension. 2/99.

    E-Print Network [OSTI]

    D E N I N G S E R I E S DISEASES Foliage diseases can reduce the aesthetic value of aspen Marssonina causes the most common foliage disease on aspen and poplars in urban and forested areas and occasionally aspen in urban areas of Colorado. Quick Facts... Five fungi cause most foliage diseases on aspen

  1. COLORADO STATE UNIVERSITY LISTING OF VARIOUS KFS CODES USED IN

    E-Print Network [OSTI]

    Stephens, Graeme L.

    COLORADO STATE UNIVERSITY KFS CODES LISTING OF VARIOUS KFS CODES USED IN INQUIRY SCREENS INDEX Item COMPENSATION CPTL CAPITAL FDBL FUND BALANCE GENX GENERAL EXPENSE IDEX INDIRECT COST RECOVERY EXPENSE LIAB Contracts OTRE CACO Capital Construction CPTL CAPO Equipment CPTL CASH Cash ASST CINP Construc in Process

  2. The Colorado Rare Plant Technical Committee Rare Plant Symposium

    E-Print Network [OSTI]

    Natural Heritage Program USDA Forest Service #12;All species map #12;Federal status: None Heritage ranks occurrences: 36, 1 historical Colorado individuals: 15,000+ Primary threats: Recreational uses are the primary nutallii Nuttall's Desert-parsley Federal status: None Heritage ranks: G3/S1 Global distribution: Montana

  3. Robert R. Leben Colorado Center for Astrodynamics Research

    E-Print Network [OSTI]

    . Colorado 80309 Note on plankton and cold-core rings in the Gulf of Mexico Douglas C. Biggs* Robert A. However, we were ity, and zooplankton biomass are generally extremely low (Biggs, 1992). In contrast during several cruises when GulfofMexico CCR's were tracked, Biggs et a1. (1988) hypothesized

  4. Joel M. Bach, Ph.D. Colorado School of Mines

    E-Print Network [OSTI]

    Engineers (ASME) Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Past and Rehabilitation Research Colorado School of Mines 2011 ­ Present Clinical Associate Professor Assistive Technology;Joel M. Bach, Ph.D. Page 3 of 15 Professional Societies Current American Society of Mechanical

  5. COLORADO STATE-WIDE FOREST LEGACY ASSESSMENT OF NEED

    E-Print Network [OSTI]

    plan designed for their forest. Activities consistent with the management plan, including timber for property owners. These ten criteria were developed through a survey conducted as part of this AON. The survey is meant as a means to assess and include stakeholders' interest in the FLP for Colorado

  6. Colorado Water Resources Research Institute Special Report No. 16

    E-Print Network [OSTI]

    management area AMP agricultural management plan ARS Agricultural Research Service (United States Department of Agriculture) BDL below detection limit BMP best management practice CCA Certified Crop Advisor CDA Colorado National Water-Quality Assessment Program (United States Geologic Survey) NRCS Natural Resources

  7. Survey of Critical Biological Resources Garfield County, Colorado

    E-Print Network [OSTI]

    Survey of Critical Biological Resources Garfield County, Colorado Volume I Prepared for Garfield of the Garfield County Commissioners, the Planning Department, and the Assessor's office. We received much help and good advice from the Bureau of Land Management, especially Carla Scheck and Dan Sokal in the Glenwood

  8. EIS-0395: San Luis Rio Colorado Project, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to construct and operate a proposed transmission line originating at the proposed San Luis Rio Colorado (SLRC) Power Center in Sonora, Mexico, interconnect with Western's existing Gila Substation, and continue to Arizona Public Service Company’s (APS) North Gila Substation

  9. Arroyo Colorado Agricultural Nonpoint Source Assessment Final Report

    E-Print Network [OSTI]

    Berthold, A.

    2012-06-19T23:59:59.000Z

    As a result of low dissolved oxygen levels, the tidal segment of the Arroyo Colorado (Segment 2201), does not currently meet the aquatic life use designated by the State of Texas and described in the Texas Water Quality Standards. This has been...

  10. SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO

    E-Print Network [OSTI]

    Chapter SD SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO By D. J. Nichols in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones here or on this symbol in the toolbar to return. 1999 Resource assessment of selected Tertiary coal

  11. Recent Results from Kascade-Grande

    E-Print Network [OSTI]

    Kampert, K H; Ainsley, C; Åkesson, P F; Alexander, G; Anagnostou, G; Anderson, K J; Asai, S; Axen, D; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, K; Dienes, B; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, F; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, J; Gruwé, M; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Herten, G; Heuer, R D; Hill, J C; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, D; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krasznahorkay, A; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Laerty, G D; Landsman, H; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Mashimo, T; Mättig, P; McKenna, J; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Schar-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L; Kampert, Karl-Heinz

    2006-01-01T23:59:59.000Z

    KASCADE-Grande is a new extensive air shower experiment co-located to the KASCADE site at Forschungszentrum Karlsruhe. The multi-detector system allows to investigate the energy spectrum, composition, and anisotropies of cosmic rays with unprecedented prevision in the energy range from 10^{14}-10^{18} eV. The primary goals besides investigating the origin of the knee at E ~ 3 * 10^{15} eV, are to verify the existence of the second knee at E ~ 10^{17} eV and to measure the composition in the expected transition region of galactic to extragalactic cosmic rays. The performance of the apparatus and shower reconstruction methods will be discussed on the basis of detailed Monte Carlo simulations and first data. First results based on slightly more than a year of data taking are presented.

  12. Colorado SChool of MineS We are Colorado School of Mines. Full of pride in our distinguished history. Full

    E-Print Network [OSTI]

    to excellence and service. Graphic standards address the "show" element of this commitment. By diligently and stewardship of the earth's resources. This Graphic Standards Guide sets forth the trademarked logos -- both and communications. #12;Contents GraphiC standards 04 Letter from the President 05 Colorado School of Mines Signature

  13. New Applications of the Image Grand Tour Jrgen Symanzik

    E-Print Network [OSTI]

    Symanzik, Jürgen

    . Wegman George Mason University, Center for Computational Statistics Fairfax, VA 22030-4444 e data analysts find very helpful. Wegman (1992) discussed a form of the grand tour for general k-dimensional space, k d. The algorithms for computing a grand tour are relatively computationally intensive. Wegman

  14. 39 Geographic Information Science: The Grand Challenges MICHAEL F. GOODCHILD

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    39 Geographic Information Science: The Grand Challenges MICHAEL F. GOODCHILD Many chapters; and the lack of awareness of such issues as #12;3 Geographic Information Science: The Grand Challenges scale technology; in essence the science behind the systems. Over the past twelve years there have been various

  15. DAPRPA Grand Challenge, Unfinished Business, November 1, 2005 Back & Forth

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    DAPRPA Grand Challenge, Unfinished Business, November 1, 2005 Back & Forth Return to Beer Bottle Pass Route to/from Beer Bottle Pass from Start of 2005 GC Course #12;DAPRPA Grand Challenge, Unfinished Business, November 1, 2005 Return to Beer Bottle Pass GPS tracks of route to/from Beer Bottle Pass #12

  16. Integrated Water Management for Environmental Flows in the Rio Grande

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    flows; Reservoir reoperation; Integrated water management; Adaptive management; Rio Grande. IntroductionIntegrated Water Management for Environmental Flows in the Rio Grande S. Sandoval-Solis, A.M.ASCE1 the environment. This paper presents an integrated water management approach to meet current and future water

  17. Power dissipation in a single molecule junction: Tracking energy levels

    E-Print Network [OSTI]

    Yaghoob Naimi; Javad Vahedi

    2014-12-05T23:59:59.000Z

    Motivated by recent work [Lee et al. Nature {\\bf 489}, 209 (2013)], on asymmetry features of heat dissipation in the electrodes of molecular junctions, we put forward an idea as a result of heat dissipation in the electrodes. Based on tight-binding model and a generalized Green's function formalism, we describe the conditions under which heat dissipation shows symmetry characteristic and does not depend on the bias polarity. We also show the power dissipated in the junction can be used to detect which energy levels of molecule junction play more or less role in the transmission process. We present this idea by studying a simple toy model and Au-$C_{60}$-Au junction.

  18. apical cell junctions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Viciana; Dora E. Vega-salas; Hans-peter Hauri; M. Brignoni 1997-01-01 3 Quantum Junction Solar Cells Jiang Tang,, Engineering Websites Summary: tuned primarily via control over...

  19. adhering junctions connecting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of such experiments the number of magnetic flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel junction built on top of...

  20. adherens junctions connect: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of such experiments the number of magnetic flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel junction built on top of...

  1. Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation

    E-Print Network [OSTI]

    Booij, Wilfred Edwin

    Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation Wilfred Edwin Booij Gonville and Caius College Cambridge A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge December 1997... Summary Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation The irradiation of high Tc superconducting thin films with a focused electron beam, such as that obtained in a scanning transmission electron microscope (STEM), can...

  2. Shallow (2-meter) temperature surveys in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54” outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below. Spatial Domain: Extent: Top: 4490310.560635 m Left: 150307.008238 m Right: 433163.213617 m Bottom: 4009565.915398 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  3. A Three-Isocenter Jagged-Junction IMRT Approach for Craniospinal Irradiation Without Beam Edge Matching for Field Junctions

    SciTech Connect (OSTI)

    Cao, Fred, E-mail: fcao@bccancer.bc.ca [Department of Medical Physics, Fraser Valley Centre, BC Cancer Agency, Surrey, British Columbia (Canada)] [Department of Medical Physics, Fraser Valley Centre, BC Cancer Agency, Surrey, British Columbia (Canada); Ramaseshan, Ramani; Corns, Robert; Harrop, Sheryl [Department of Medical Physics, Fraser Valley Centre, BC Cancer Agency, Surrey, British Columbia (Canada)] [Department of Medical Physics, Fraser Valley Centre, BC Cancer Agency, Surrey, British Columbia (Canada); Nuraney, Nimet; Steiner, Peter; Aldridge, Stephanie [Department of Radiation Oncology, Fraser Valley Centre, BC Cancer Agency, Surrey, British Columbia (Canada)] [Department of Radiation Oncology, Fraser Valley Centre, BC Cancer Agency, Surrey, British Columbia (Canada); Liu, Mitchell; Carolan, Hannah [Department of Radiation Oncology, Vancouver Centre, BC Cancer Agency, Vancouver, British Columbia (Canada)] [Department of Radiation Oncology, Vancouver Centre, BC Cancer Agency, Vancouver, British Columbia (Canada); Agranovich, Alex; Karvat, Anand [Department of Radiation Oncology, Fraser Valley Centre, BC Cancer Agency, Surrey, British Columbia (Canada)] [Department of Radiation Oncology, Fraser Valley Centre, BC Cancer Agency, Surrey, British Columbia (Canada)

    2012-11-01T23:59:59.000Z

    Purpose: Traditionally craniospinal irradiation treats the central nervous system using two or three adjacent field sets. We propose a technique using a three-isocenter intensity-modulated radiotherapy (IMRT) plan (jagged-junction IMRT) which overcomes problems associated with field junctions and beam edge matching and improves planning and treatment setup efficiencies with homogenous target dose distribution. Methods and Materials: Treatments for 3 patients with a prescription of 36 Gy in 20 fractions were retrospectively planned with jagged-junction IMRT and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan used three field sets, each with a unique isocenter. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped, and the optimization process smoothly integrated the dose inside the overlapped junction. Results: For jagged-junction IMRT plans vs. conventional technique, the average homogeneity index equaled 0.08 {+-} 0.01 vs. 0.12 {+-} 0.02, respectively, and conformity number equaled 0.79 {+-} 0.01 vs. 0.47 {+-} 0.12, respectively. The 95% isodose surface covered (99.5 {+-} 0.3)% of the PTV vs. (98.1 {+-} 2.0)%, respectively. Both jagged-junction IMRT plans and the conventional plans had good sparing of organs at risk. Conclusions: Jagged-junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to organs at risk. Results from jagged-junction IMRT plans were better than or equivalent to those from the conventional technique. Jagged-junction IMRT optimization smoothly distributed dose in the junction between field sets. Because there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction, in contrast to conventional techniques. The planning process is also simplified as only one IMRT plan is required for the entire target volume.

  4. File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air...

    Open Energy Info (EERE)

    icon File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements.pdf Jump to: navigation, search File File history File...

  5. Colorado - C.R.S. 40-5-101 - New Construction - Extension - Compliance...

    Open Energy Info (EERE)

    - New Construction - Extension - Compliance with Local Zoning Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado -...

  6. Non-Lawyers' Guide to Hearings before the Colorado Ground Water...

    Open Energy Info (EERE)

    Lawyers' Guide to Hearings before the Colorado Ground Water Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  7. AN INVESTIGATION OF DEWATERING FOR THE MODIFIED IN-SITU RETORTING PROCESS, PICEANCE CREEK BASIN, COLORADO

    E-Print Network [OSTI]

    Mehran, M.

    2013-01-01T23:59:59.000Z

    Commercially Producing Oil Shale: World Oil, Vol. 190, No.A Tech~ nology Assessment. of Oil Shale Development,"13th Oil Shale Symposium Proceedings, Colorado School of

  8. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

  9. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

    SciTech Connect (OSTI)

    Beach, R.; Burdick, A.

    2014-03-01T23:59:59.000Z

    This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

  10. Undergraduate Research Experience in the Sleep and Development Laboratory http://www.colorado.edu/intphys/research/sleepdevelopment.html

    E-Print Network [OSTI]

    Seals, Douglas R.

    electronically with your CV or resume to monique.lebourgeois@colorado.edu ASAP. Many thanks for your interest. Monique LeBourgeois monique.lebourgeois@colorado.edu #12;Date____________________ Interested start date_____________ Name________________________________________________ Major

  11. Conference on Mountain Meteorology, 7-11 August 2000 Aspen, Colorado, Amer. Meteor. Soc., Preprint p.11-14.

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    9th Conference on Mountain Meteorology, 7-11 August 2000 Aspen, Colorado, Amer. Meteor. Soc-11 August 2000 Aspen, Colorado, Amer. Meteor. Soc., Preprint p.11-14. the Osservatorio Ticinese at Locarno

  12. Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33 

    E-Print Network [OSTI]

    Casey, Michael Chase

    2011-08-08T23:59:59.000Z

    several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand...

  13. Geothermal Resources of Rifts- a Comparison of the Rio Grande...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Resources of Rifts- a Comparison of the Rio Grande Rift and the Salton Trough Abstract The Rio...

  14. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Office of Environmental Management (EM)

    its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic...

  15. Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33

    E-Print Network [OSTI]

    Casey, Michael Chase

    2011-08-08T23:59:59.000Z

    several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand...

  16. Evaluation of Geothermal Potential of Rio Grande Rift and Basin...

    Open Energy Info (EERE)

    and Range Province, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Evaluation of Geothermal Potential of Rio Grande Rift and Basin and Range...

  17. City of Grand Rapids- Green Power Purchasing Policy

    Broader source: Energy.gov [DOE]

    In 2005, the City of Grand Rapids established a goal of purchasing 20% of its municipal power demand from renewable energy by 2008. In November 2007, the city signed a three-year agreement with a...

  18. agudos grandes granite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Rio GrandeBasin, one of the most productive agriculturalareas in the United States. Irrigated agricul- ture claims 85 percent of its water, and urban water use is...

  19. Reusing Property Resulting from Analytical Laboratory Closure

    SciTech Connect (OSTI)

    Elmer, J. [S.M. Stoller Corporation, Grand Junction, CO 81503 (United States); DePinho, D.; Wetherstein, P. [Battelle Memorial Institute, Grand Junction, CO 81503 (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Department of Energy Office of Legacy Management (DOE-LM) site in Grand Junction, Colorado, faced the problem of reusing an extensive assortment of laboratory equipment and supplies when its on-site analytical chemistry laboratory closed. This challenge, undertaken as part of the Grand Junction site's pollution prevention program, prioritized reuse of as much of the laboratory equipment and supplies as possible during a 9-month period in fiscal year 2004. Reuse remedies were found for approximately $3 million worth of instrumentation, equipment, chemicals, precious metals, and other laboratory items through other Grand Junction site projects, Federal Government databases, and extensive contact with other DOE facilities, universities, and colleges. In 2005, the DOE-LM Grand Junction site received two prestigious DOE pollution prevention awards for reuse of the laboratory's equipment and supplies. (authors)

  20. Junction-based field emission structure for field emission display

    DOE Patents [OSTI]

    Dinh, Long N. (Concord, CA); Balooch, Mehdi (Berkeley, CA); McLean, II, William (Oakland, CA); Schildbach, Marcus A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

  1. Annexin A2 is Required for Endothelial Cell Junctional Response to S1P 

    E-Print Network [OSTI]

    Smith, Rebecca

    2014-01-14T23:59:59.000Z

    Endothelial cell (EC) junctions are critical for angiogenesis, the sprouting and growth of new blood vessels from existing vessels. Sphingosine 1-phosphate (S1P) is a proangiogenic factor that potently stimulates sprouting, fortifies EC junctions...

  2. February/March2007 COLORADO WATER Residential Water Demand Management in Aurora

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    February/March2007 COLORADO WATER 14 Residential Water Demand Management in Aurora: Learning from Assessment Kevin Reidy, Water Conservation Supervisor, Aurora Water Recent drought years in Colorado have provided a strong in- centive for reform and innovation. One example can be found in Aurora, where drought

  3. PART A: TYPE OF COVERAGE HMO Colorado/Anthem Blue Cross and Blue Shield

    E-Print Network [OSTI]

    PART A: TYPE OF COVERAGE HMO Colorado/Anthem Blue Cross and Blue Shield Colorado Higher Education Insurance Benefits Alliance Trust Effective January 1, 2015 Blue Advantage HMO/Point-of-Service(POS) Plan and copayment options reflect the amount the covered person will pay. BlueAdvantage HMO

  4. 5/1/2013 Page 1 of 4 COLORADO STATE UNIVERSITY

    E-Print Network [OSTI]

    . Procedure Title: Inventories of Consumables and Merchandise 2. Procedure Purpose and Effect: The procedures for inventories of consumable material and merchandise for issue or sale are to ensure complete and accurate inventory data as required by the State of Colorado and Colorado State University. 3. Application

  5. Heuristics for Creating Assignments to Incorporate Simulations REU Report, University of Colorado

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    of Colorado daniel.rehn@colorado.edu Abstract The use of simulations in learning physics is a topic of growing situation intended for student learning as a complex system. Not only does the simulation influence howHeuristics for Creating Assignments to Incorporate Simulations Danny Rehn REU Report, University

  6. Workshop on Physics at the End of the Galactic Cosmic Ray Spectrum, Aspen, Colorado, April 2005

    E-Print Network [OSTI]

    Workshop on Physics at the End of the Galactic Cosmic Ray Spectrum, Aspen, Colorado, April 2005 contributions to the Workshop on Physics at the End of the Galactic Cosmic Ray Spectrum, held at the Aspen Physics Institute, Aspen, Colorado in April 2005. Experimental talks presented during the five day

  7. Lightning in Wildfire Smoke Plumes Observed in Colorado during Summer 2012 TIMOTHY J. LANG

    E-Print Network [OSTI]

    Rutledge, Steven

    University, Fort Collins, Colorado PAUL KREHBIEL AND WILLIAM RISON New Mexico Institute of Mining Mapping Array (LMA) system developed by the New Mexico Institute of Mining and Technology Corresponding and Technology, Socorro, New Mexico DANIEL T. LINDSEY NOAA/NESDIS/STAR/RAMMB, Fort Collins, Colorado (Manuscript

  8. Warming may create substantial water supply shortages in the Colorado River basin

    E-Print Network [OSTI]

    Warming may create substantial water supply shortages in the Colorado River basin Gregory J. Mc (2007), Warming may create substantial water supply shortages in the Colorado River basin, Geophys. Res; published 27 November 2007. [1] The high demand for water, the recent multiyear drought (1999

  9. Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile Creek,

    E-Print Network [OSTI]

    Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer........................................................................................................................................................... 5 Field Measurements, Nutrients, Carbon, Major Ions, Trace Elements, and Biological Components

  10. POPULATION ECOLOGY Population Dynamics of the Colorado Potato Beetle in an

    E-Print Network [OSTI]

    POPULATION ECOLOGY Population Dynamics of the Colorado Potato Beetle in an Agroecosystem with Tomatoes and Potatoes with Management Implications to Processing Tomatoes CHRIS L. HARDING,1 S. J Environ. Entomol. 31(6): 1110Ð1118 (2002) ABSTRACT We evaluated the population dynamics of Colorado potato

  11. Introduction The Colorado potato beetle became a pest when settlers brought potatoes into the Rocky

    E-Print Network [OSTI]

    New Hampshire, University of

    16 Introduction The Colorado potato beetle became a pest when settlers brought potatoes into the Rocky Mountain area, the native habitat of this beetle. The beetle preferred the potato to its host weed, and now is a serious pest throughout the U.S. and Eastern Canada. The Colorado potato beetle feeds

  12. Free electron gas primary thermometer: The bipolar junction transistor

    SciTech Connect (OSTI)

    Mimila-Arroyo, J., E-mail: jmimila@cinvestav.mx [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Dpto. de Ing. Eléctrica-SEES, Av. Instituto Politécnico Nacional No 2508, México D.F. CP 07360 (Mexico)

    2013-11-04T23:59:59.000Z

    The temperature of a bipolar transistor is extracted probing its carrier energy distribution through its collector current, obtained under appropriate polarization conditions, following a rigorous mathematical method. The obtained temperature is independent of the transistor physical properties as current gain, structure (Homo-junction or hetero-junction), and geometrical parameters, resulting to be a primary thermometer. This proposition has been tested using off the shelf silicon transistors at thermal equilibrium with water at its triple point, the transistor temperature values obtained involve an uncertainty of a few milli-Kelvin. This proposition has been successfully tested in the temperature range of 77–450?K.

  13. Visible Y -junction diode laser with mixed coupling

    SciTech Connect (OSTI)

    van der Poel, C.J.; Opschoor, J.; Valster, A.; Drenten, R.R. (Philips Research Laboratories, P. O. Box 80 000, 5600 JA Eindhoven (The Netherlands)); Andre, J.P. (Laboratoires d'Electronique et de Physique Applique, 3 Avenue Descartes, 94450 Limeil-Brevannes (France))

    1990-07-15T23:59:59.000Z

    An experimental study and theoretical analysis of a phase-locked, visible, {lambda}=670 nm, 2-3 {ital Y}-junction semiconductor laser array are presented. In a ridgetype 2-3 {ital Y}-junction, AlInGaP/InGaP array, both in-phase and anti-phase array modes are observed to lase simultaneously. The experimental results are discussed in the framework of a model based on the beam propagation method. The influence of the presence of both interferometric and evanescent coupling on the array modes is analyzed.

  14. Optimized Triple-Junction Solar Cells Using Inverted Metamorphic Approach (Presentation)

    SciTech Connect (OSTI)

    Geisz, J. F.

    2008-11-01T23:59:59.000Z

    Record efficiencies with triple-junction inverted metamorphic designs, modeling useful to optimize, and consider operating conditions before choosing design.

  15. TM-mode coupling to a Josephson junction S. J. Lewandowski

    E-Print Network [OSTI]

    Boyer, Edmond

    of the junction electrodes. to the j unction was provided by two leads immersed in superconducting solder, which

  16. 1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project. Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1991-10-22T23:59:59.000Z

    The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado`s Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community`s infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

  17. Nanowire-Based Molecular Monolayer Junctions: Synthesis, Assembly, and Electrical Characterization

    E-Print Network [OSTI]

    (phenylene vinylene) (OPV) were prepared by replicating the pores of sub-40 nm diameter polycarbonate track etched that the conductance of junctions formed with -conjugated oligomers are several orders of magnitude larger than the saturated alkanes, with the OPV junctions having the highest conductance. The molecular wire junction

  18. DESIGN APPROACHES AND MATERIALS PROCESSES FOR ULTRAHIGH EFFICIENCY LATTICE MISMATCHED MULTI-JUNCTION SOLAR CELLS

    E-Print Network [OSTI]

    Atwater, Harry

    -JUNCTION SOLAR CELLS Melissa J. Griggs 1 , Daniel C. Law 2 , Richard R. King 2 , Arthur C. Ackerman 3 , James M heterostructures grown in a multi-junction solar cell-like structure by MOCVD. Initial solar cell data are also of the minority carrier lifetime. INTRODUCTION High efficiency triple junction solar cells have recently been

  19. Favorable Geochemistry from Springs and Wells in COlorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Geothermal Development Associates, Reno Nevada Originator: United States Geological Survey (USGS) Originator: Colorado Geological Survey Publication Date: 2012 Title: Favorable Geochemistry Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included. Spatial Domain: Extent: Top: 4515595.841032 m Left: 149699.513964 m Right: 757959.309388 m Bottom: 4104156.435530 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  20. Novel InGaAsN pn Junction for High-Efficiency Multiple-Junction Solar Cells

    SciTech Connect (OSTI)

    Allerman, A.A.; Chang, P.C.; Gee, J.M.; Hammons, B.E.; Hou, H.Q.; Jones, E.D.; Kurtz, S.R.; Reinhardt, K.C.

    1999-03-26T23:59:59.000Z

    We report the application of a novel material, InGaAsN, with bandgap energy of 1.05 eV as a junction in an InGaP/GaAs/InGaAsN/Ge 4-junction design. Results of the growth and structural, optical, and electrical properties were demonstrated, showing the promising perspective of this material for ultra high efficiency solar cells. Photovoltaic properties of an as-grown pn diode structure and improvement through post growth annealing were also discussed.

  1. Geophysical inversion using petrophysical constraints with application to lithology differentiation Jiajia Sun and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado School of Mines

    E-Print Network [OSTI]

    Jiajia Sun and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado School of Mines

  2. Effects of LCRA Lakes on Riparian Property Values: Recreational and Aesthetic Components of Lake Side Housing in the Colorado River Basin

    E-Print Network [OSTI]

    Lansford, Notie H. Jr.; Jones, Lonnie L.

    The Lower Colorado River Authority (LCRA) manages the Colorado River Basin in a ten county area stretching from central Texas to the gulf coast of Texas. In its recent "Water Management Plan for the Lower Colorado River," the Lower Colorado River...

  3. Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado

    SciTech Connect (OSTI)

    N /A

    1999-03-02T23:59:59.000Z

    The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the project under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The Federal action triggering the preparation of this EA is the need for DOE to decide whether to release the requested funding to support the construction of the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE's deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

  4. Education of Best Management Practices in the Arroyo Colorado Watershed

    E-Print Network [OSTI]

    .S. Enviro n me n t a l Protec t i o n Agency (EPA). Since the progra m? s incept i o n in 2005, Extens i o n educat e d agricu l t u r a l produc e r s on proper nutrien t manageme n t and product i o n techniq u e s , pr omot e d progra ms associ a t e... and mercury and PCBs in edible fish tissue. Figure 3. Land use in the Arroyo Colorado Watershed. In 1998 the Texas Commission on Environmental Quality (TCEQ) initiated an effort to develop a Total Maximum Daily Load (TMDL) for pollutants causing low...

  5. Comments of the Lower Colorado River Authority | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.Space Data Corporation Comments oftheLower Colorado River

  6. Lake County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLagoBenton,(RedirectedColorado:

  7. Logan County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole, Nebraska: Energy Resources JumpColorado: Energy

  8. Lower Colorado River Authority LCRA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee,Energy InformationMichigan:Lower Colorado

  9. Alamosa East, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airwaysource History6.1836854°,East, Colorado:

  10. Bow Mar, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights, Ohio:BoulevardBow Mar, Colorado: Energy

  11. Colorado Commercial-Scale Tribal Renewable Energy Workshop | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. Cash 6-1ClayChange:Energy Colorado

  12. Cherry Hills Village, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County,ChenangoHills Village, Colorado: Energy

  13. San Miguel County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasin EC JumpMarino,Miguel County, Colorado:

  14. Alamosa County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60Alameda County, California:Colorado: Energy

  15. Colorado School of Mines Technology Marketing Summaries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i tCollaboration March 16,ConnectPortal Colorado

  16. Kiowa County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington:KimbleKinnelon, New Jersey:Kinston,Colorado:

  17. La Salle, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEEPuente,Salle, Colorado: Energy

  18. Hinsdale County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: Energy ResourcesHilshireCounty, Colorado:

  19. Yuma County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, NewYanceyYokayoYorktownYukon,Colorado: Energy

  20. Park County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisadesParachute,Paramus, NewColorado: Energy

  1. Colorado Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag"Department of8, 2013 DOE ExtendsColorado

  2. SBOT COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergyDepartment of EnergyCOLORADO GOLDEN FIELD OFFICE POC

  3. City of Burlington, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |City ofBlue Earth,City ofBurlington, Colorado

  4. City of Longmont, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCityLongmont, Colorado (Utility

  5. City of Loveland, Colorado (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCityLongmont, Colorado (UtilityCity of

  6. Southern Colorado Plateau Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado Power Assn Jump to:Southern AllianceSCEP P

  7. Summit County - Energy Smart Colorado Renewable Energy Rebate Program

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy(Colorado) | Open Energy

  8. Summit County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy(Colorado) | Open

  9. Eagle County - Energy Smart Colorado Renewable Energy Rebate Program

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2Latvia) JumpEnergysource(Colorado) |

  10. Eagle-Vail, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2Latvia)Colorado: EnergyEagle-Vail,

  11. Custer County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing, Maine: Energy Resources JumpColorado:

  12. Human Resources at Colorado School of Mines | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault SignInstituteDOE OriginsManagementColorado

  13. Colorado Region | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals »AwakeBrookhavenColorado Region National Science

  14. Colorado Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals »AwakeBrookhavenColorado Region National

  15. Colorado Department of Labor and Employment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,Published ColoradoLabor

  16. Colorado Division of Water Resources Substitute Water Supply Plans Webpage

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,PublishedColorado| Open

  17. Colorado Division of Water Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier Technologies IncCity,PublishedColorado|

  18. Colorado Green Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy Office Jump

  19. Colorado Office of Archaeology and Historic Preservation | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado Energy

  20. Colorado Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollier TechnologiesColorado EnergyConservation

  1. Colorado's 2nd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformation Colorado. Contents 1

  2. Colorado's 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformation Colorado. Contents

  3. Colorado's 5th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformation Colorado.

  4. Colorado's 6th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformation Colorado.Information

  5. Mountain View, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr Geothermal Project JumpPark,Colorado:

  6. RAPID/BulkTransmission/Environment/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnline PermittingAirColorado <

  7. RAPID/Geothermal/Land Access/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington

  8. RAPID/Geothermal/Transmission Siting & Interconnection/Colorado | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas <InformationEnergy

  9. RAPID/Overview/BulkTransmission/Siting/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/Colorado < RAPID‎

  10. RAPID/Overview/Geothermal/Exploration/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/Colorado <

  11. Roxborough Park, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan:RotokawaRoxborough Park, Colorado:

  12. Colorado - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department ofU.S. OffshorePENNEL BUFFALO LITTLEEdwardColorado

  13. Denver County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs Valley Area (DOECounty, Colorado:

  14. Photo-Thermoelectric Effect at a Graphene Interface Junction

    E-Print Network [OSTI]

    McEuen, Paul L.

    Photo-Thermoelectric Effect at a Graphene Interface Junction Xiaodong Xu, Nathaniel M. Gabor increase at the cryogenic temperature as compared to room temperature. Assuming the thermoelectric power predictions. KEYWORDS Graphene, photocurrent, photo-thermoelectric effect D evices that convert photons

  15. Modeling Social Network Relationships via t-Cherry Junction Trees

    E-Print Network [OSTI]

    Reisslein, Martin

    Modeling Social Network Relationships via t-Cherry Junction Trees Brian Proulx and Junshan Zhang Abstract--The massive scale of online social networks makes it very challenging to characterize intractable model for users' relationships in a social network. There are a number of advantages

  16. PARAMETRIC EXCITATION OF PLASMA OSCILLATIONS IN JOSEPHSON JUNCTIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    b. ' FIG. 3. - (a) 03B1c tan çoo vs. 2/Q at co = 2 cop. Straight line : theory. Circles : analog harmonic generation with big amplitude may be understood from a discussion of the stability properties frequency FIG. 1. - The junction model. For the analog R = 500 il, Io = 1 mA, C = 100 nF, and k = « 2 e

  17. Geothermal resource assessment of Canon City, Colorado Area

    SciTech Connect (OSTI)

    Zacharakis, Ted G.; Pearl, Richard Howard

    1982-01-01T23:59:59.000Z

    In 1979 a program was initiated to fully define the geothermal conditions of an area east of Canon City, bounded by the mountains on the north and west, the Arkansas River on the south and Colorado Highway 115 on the east. Within this area are a number of thermal springs and wells in two distinct groups. The eastern group consists of 5 thermal artesian wells located within one mile of Colorado Highway 115 from Penrose on the north to the Arkansas river on the south. The western group, located in and adjacent to Canon City, consists of one thermal spring on the south bank of the Arkansas River on the west side of Canon City, a thermal well in the northeast corner of Canon City, another well along the banks of Four Mile Creek east of Canon City and a well north of Canon City on Four Mile Creek. All the thermal waters in the Canon City Embayment, of which the study area is part of, are found in the study area. The thermal waters unlike the cold ground waters of the Canon City Embayment, are a calcium-bicarbonate type and range in temperature from 79 F (26 C) to a high of 108 F (42 C). The total combined surface discharge o fall the thermal water in the study area is in excess of 532 acre feet (A.F.) per year.

  18. Mutual synchronization of two stacks of intrinsic Josephson junctions in cuprate superconductors

    SciTech Connect (OSTI)

    Lin, Shi-Zeng [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-05-07T23:59:59.000Z

    Certain high-T{sub c} cuprate superconductors, which naturally realize a stack of Josephson junctions, thus can be used to generate electromagnetic waves in the terahertz region. A plate-like single crystal with 10{sup 4} junctions without cavity resonance was proposed to achieve strong radiation. For this purpose, it is required to synchronize the Josephson plasma oscillation in all junctions. In this work, we propose to use two stacks of junctions shunted in parallel to achieve synchronization. The two stacks are mutually synchronized in the whole IV curve, and there is a phase shift between the plasma oscillation in the two stacks. The phase shift is nonzero when the number of junctions in different stacks is the same, while it can be arbitrary when the number of junctions is different. This phase shift can be tuned continuously by applying a magnetic field when all the junctions are connected by superconducting wires.

  19. City of Grand Marais, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCityCity ofGrandCity of Grand

  20. 1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-10-22T23:59:59.000Z

    The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado's Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community's infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

  1. Health-hazard evaluation report HETA 84-427-1613, Pikes Peak Dialysis Center, Colorado Springs, Colorado

    SciTech Connect (OSTI)

    Pryor, P.

    1985-08-01T23:59:59.000Z

    Environmental and breathing zone samples were analyzed for formaldehyde at the Pikes Peak Dialysis Center, Colorado Springs, Colorado in August, 1984 and February, 1985. The evaluation was requested by a representative of the Center to determine if there was a health hazard due to formaldehyde. Eight employees were interviewed. The ventilation systems were investigated. Personal protective clothing was inspected. Breathing-zone samples contained 0 28 to 1.0 (mg/m/sup 3/) formaldehyde. The OSHA standard for formaldehyde is 3.7 mg/m/sup 3/. Area formaldehyde concentrations ranged from nondetectable to 0.75 mg/m/sup 3/. Health complaints reported included sore throat, congestion, cough, and eye, nose and throat irritation. Most of the complaints originated from employees in the formalin mixing, reuse sterilization, and dialysis unit packing sections. The exhaust system in the reuse sterilization area was not working efficiently. A variety of personal protective clothing was available including lab coats, protective goggles, aprons, respirators, and gloves. The author concludes that a health hazard from formaldehyde exposure exists at the facility. Recommendations include improving local exhaust ventilation in areas where formaldehyde is used extensively, avoiding skin and eye contact with formaldehyde, and training and educating employees in safe work practices.

  2. Citrus Variety Trends in the Lower Rio Grande Valley.

    E-Print Network [OSTI]

    Alderman, D. C. (DeForest Charles)

    1951-01-01T23:59:59.000Z

    Citrus Variety Trends in the Lower Rio Grande Valley CONTENTS ......................................................................................................... Digest ...... 3... thousands of citrus trees and the growers were faced with a tremendous replanting program, which, in turn, had focused interest on varieties. Fruit production figures, yields per acre, and monetary returns per acre for five varieties of grapefruit...

  3. Data Mining: Data Analysis on a Grand Scale? Padhraic Smyth

    E-Print Network [OSTI]

    Smyth, Padhraic

    Data Mining: Data Analysis on a Grand Scale? Padhraic Smyth Information and Computer Science for Statistical Methods in Medical Research, September 2000 1 #12;Abstract Modern data mininghas evolvedlargelyas aresult ofe orts bycomputer scientists to address the needs of data owners" in extracting useful

  4. A Grand Challenge for Computing Research: a mathematical assistant

    E-Print Network [OSTI]

    Walsh, Toby

    A Grand Challenge for Computing Research: a mathematical assistant Toby Walsh 1 Cork Constraint Computation Centre, University College Cork, Ireland. tw@4c.ucc.ie The mathematical assistant Scientists to make excellent mathematical assistants. Indeed, in specialized domains, computers already are useful

  5. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS 

    E-Print Network [OSTI]

    Hernandez, Manuel

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

  6. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS 

    E-Print Network [OSTI]

    Garcia, Bianca 1989-

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

  7. EMPLOYMENT SUMMARY FOR 2011 GRADUATES Grand Forks, ND 58202

    E-Print Network [OSTI]

    Delene, David J.

    EMPLOYMENT SUMMARY FOR 2011 GRADUATES Grand Forks, ND 58202 Website : www.law.und.edu Phone : 701 Date Deferred 0 Total graduates 81 Unemployed - Not Seeking 0 Employment Status Unknown 2 Unemployed - Seeking 9 Employed - Undeterminable * 0 0 0 0 0 Employed - Bar Passage Required 40 0 1 0 41 Pursuing

  8. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS

    E-Print Network [OSTI]

    Hernandez, Manuel

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

  9. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS

    E-Print Network [OSTI]

    Garcia, Bianca 1989-

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

  10. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect (OSTI)

    Hallock, K.A.; Mazurek, M.A. (Brookhaven National Lab., Upton, NY (United States)); Cass, G.R. (California Inst. of Tech., Pasadena, CA (United States). Dept. of Environmental Engineering Science)

    1992-05-01T23:59:59.000Z

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  11. Workshop and conference on Grand Challenges applications and software technology

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    On May 4--7, 1993, nine federal agencies sponsored a four-day meeting on Grand Challenge applications and software technology. The objective was to bring High-Performance Computing and Communications (HPCC) Grand Challenge applications research groups supported under the federal HPCC program together with HPCC software technologists to: discuss multidisciplinary computational science research issues and approaches, identify major technology challenges facing users and providers, and refine software technology requirements for Grand Challenge applications research. The first day and a half focused on applications. Presentations were given by speakers from universities, national laboratories, and government agencies actively involved in Grand Challenge research. Five areas of research were covered: environmental and earth sciences; computational physics; computational biology, chemistry, and materials sciences; computational fluid and plasma dynamics; and applications of artificial intelligence. The next day and a half was spent in working groups in which the applications researchers were joined by software technologists. Nine breakout sessions took place: I/0, Data, and File Systems; Parallel Programming Paradigms; Performance Characterization and Evaluation of Massively Parallel Processing Applications; Program Development Tools; Building Multidisciplinary Applications; Algorithm and Libraries I; Algorithms and Libraries II; Graphics and Visualization; and National HPCC Infrastructure.

  12. The Stephen and Nancy GrandThe Stephen and Nancy GrandThe Stephen and Nancy GrandThe Stephen and Nancy Grand Water ResearchWater ResearchWater ResearchWater Research

    E-Print Network [OSTI]

    Climate Change with Focus over the Mediterranean 9:55-10:20 Jan W. Hopmans, University of California: Global Climate Change, Environmental Risks and Water Scarcity #12;2 Monday, March 2Monday, March 2Monday, Director of the Stephen and Nancy Grand Water Research Institute, Technion Session 1 Global Climate Change

  13. Rio Grande Wild Turkey in Texas: Biology and Management

    E-Print Network [OSTI]

    Cathey, James; Melton, Kyle; Dreibelbis, Justin; Cavney, Bob; Locke, Shawn; DeMaso, Stephen; Schwertner, T. Wayne; Collier, Bret

    2007-09-11T23:59:59.000Z

    for the economy of Texas each year and money spent in the counties to which hunters travel is important to many townships (Fig. 14). Habitat Requirements Food It is not surprising to find that the diets of Rio Grande wild turkeys are broad, given...

  14. Topological p-n junctions in helical edge states

    E-Print Network [OSTI]

    Disha Wadhawan; Poonam Mehta; Sourin Das

    2014-11-24T23:59:59.000Z

    Quantum spin Hall effect is endowed with topologically protected edge modes with gapless Dirac spectrum. Applying a magnetic field locally along the edge leads to a gapped edge spectrum with opposite parity for winding of spin texture for conduction and valence band. Using Pancharatnam's prescription for geometric phase it is shown that mismatch of this parity across a p-n junction, which could be engineered into the edge by electrical gate induced doping, leads to a phase dependence in the two-terminal conductance which is purely topological (0 or $\\pi$). This fact results in a ${\\mathbb{Z}}_2$ classification of such junctions with an associated duality. Current asymmetry measurements which are shown to be robust against electron-electron interactions are proposed to infer this topology.

  15. Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps

    E-Print Network [OSTI]

    Roie Volkovich; Uri Peskin

    2010-12-01T23:59:59.000Z

    The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

  16. Electron transport in normal-metal/superconductor junctions

    E-Print Network [OSTI]

    Yan, XZ; Zhao, HW; Hu, Chia-Ren.

    2000-01-01T23:59:59.000Z

    junction, the electron PRB 610163-1829/2000/61~21!/14759~6!/$15.00 l?superconductor junctions g Yan , College Station, Texas 77843-4242 , P.O. Box 603, Beijing 100080, China d Chia-Ren Hu , College Station, Texas 77843-4242 y 2000! systems, we...tanh@~v1eVs3!/2kBT#~L10 2L20 !, PRB 61ZHAO, AND CHIA-REN HU R f5tanh~v/2kBT !~R10 2R20 !, L1 0 5L 2 0? 5L0~k ,v1eVs31i0 !, R1 0 5R 2 0? 5R0~k ,v1i0 !. Here L1 0 and R1 0 (L 2 0 and R 2 0 ) are the retarded ~advanced! Green...

  17. Epithelial cell polarity and cell junctions in drosophila

    E-Print Network [OSTI]

    Tepass, Ulrich; Tanentzapf­ , Guy; Ward, Robert; Fehon, Richard

    2001-12-01T23:59:59.000Z

    18 Oct 2001 10:14 AR AR144-24.tex AR144-24.sgm ARv2(2001/05/10) P1: GJB Annu. Rev. Genet. 2001. 35:747?84 Copyright c 2001 by Annual Reviews. All rights reserved EPITHELIAL CELL POLARITY AND CELL JUNCTIONS IN DROSOPHILA Ulrich Tepass and Guy....35:747-784. Downloaded from arjournals.annualreviews.org by University of Kanas-Lawrence & Edwards on 09/26/05. For personal use only. 18 Oct 2001 10:14 AR AR144-24.tex AR144-24.sgm ARv2(2001/05/10) P1: GJB 748 TEPASS ET AL. THE SEPTATE JUNCTION...

  18. Instability of superconducting state in Josephson tunnel junctions

    SciTech Connect (OSTI)

    Nevirkovets, I.P.; Rudenko, =.M.

    1984-02-01T23:59:59.000Z

    Experiments on low-resistance Josephson Sn--I--Sn tunnel junctions have shown the superconductor to exhibit an instability that manifests itself on the current--voltage characteristic (IVC) in the form of a jumplike decrease of the voltage when it reaches a value 2..delta../e. When a weak magnetic field H is applied parallel to the junction plane and suppresses the nonstationary Josephson effect, the negative-slope IVC section vanishes. The H-dependent instability-current component, as well as the dc component of the Josephson current near 2..delta../e, can be approximated by a function of H/sup -2/. The singularity observed is attributed to the presence of a maximum of the superconducting component, due to the Riedel singularity, at V = 2..delta../e.

  19. Strain designed Josephson $?$ junction qubits with topological insulators

    E-Print Network [OSTI]

    Colin Benjamin

    2015-04-09T23:59:59.000Z

    A Josephson qubit is designed via the application of a tensile strain to a topological insulator surface sandwiched between two s-wave superconductors. The strain applied leads to a shift in the Dirac point without changing the pre-existing conducting states, on the surface of a topological insulator. Strain applied can be tuned to form a $\\pi$ junction in such a structure. Combining two such junctions in a ring architecture leads to the ground state of the ring being in doubly degenerate state- the "0" and "1" states of a qubit. A qubit designed this way is quite easily controlled via the tunable strain applied. We report on the conditions necessary to design such a qubit. Finally the operating time of a single qubit phase gate is derived.

  20. Nonlinear thermal control in an N-terminal junction

    E-Print Network [OSTI]

    Dvira Segal

    2007-09-27T23:59:59.000Z

    We demonstrate control over heat flow in an N-terminal molecular junction. Using simple model Hamiltonians we show that the heat current through two terminals can be tuned, switched, and amplified, by the temperature and coupling parameters of external gating reservoirs. We discuss two models: A fully harmonic system, and a model incorporating anharmonic interactions. For both models the control reservoirs induce thermal fluctuations of the transition elements between molecular vibrational states. We find that a fully harmonic model does not show any controllability, while for an anharmonic system the conduction properties of the junction strongly depend on the parameters of the gates. Realizations of the model system within nanodevices and macromolecules are discussed.