National Library of Energy BETA

Sample records for grafton grand junction

  1. DOE - Office of Legacy Management -- Grand Junction Sites

    Office of Legacy Management (LM)

    Grand Junction Sites Grand Junction Sites gjmap Grand Junction Disposal Site Grand Junction Processing Site Grand Junction Site Contact Us

  2. Grand Junction Office Founder Honored...

    Energy Savers [EERE]

    4 Grand Junction Office Founder Honored at the Philip C. Leahy Memorial Park Dedication and Open House The U.S. Department of Energy (DOE) Offce of Legacy Management (LM) held an ...

  3. Annual Inspection of the Grand Junction, Colorado, Site

    Office of Legacy Management (LM)

    6 Annual Inspection - Grand Junction, Colorado, Office Site April 2016 Page 1 Annual Inspection of the Grand Junction, Colorado, Site 1.1 Inspection Summary The Grand Junction, ...

  4. Grand Junction, Colorado, Site Fact Sheet

    Office of Legacy Management (LM)

    D D&D Page 1 of 3 Fact Sheet Grand Junction, Colorado, Site This fact sheet provides information about the Grand Junction, Colorado, Site. This site is managed by the U.S. ...

  5. DOE Grand Junction Projects Office Edgemont LTSP

    Office of Legacy Management (LM)

    DOE Grand Junction Projects Office Edgemont LTSP June 1996 Page ii Contents Page 1.0 Introduction ......

  6. Preservationists Tour Historic Log Cabin at the Grand Junction...

    Office of Environmental Management (EM)

    Preservationists Tour Historic Log Cabin at the Grand Junction, Colorado, Office Preservationists Tour Historic Log Cabin at the Grand Junction, Colorado, Office April 19, 2016 - ...

  7. Grand Junction Office Founder Honored at the Philip C. Leahy...

    Office of Environmental Management (EM)

    Grand Junction Office Founder Honored at the Philip C. Leahy Memorial Park Dedication and Open House Grand Junction Office Founder Honored at the Philip C. Leahy Memorial Park ...

  8. Students from Grand Junction High School Triumph in Colorado...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Junction High School Triumph in Colorado Science Bowl For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 12, 2000 - Students from Grand Junction High ...

  9. Grand Junction, Colorado, Processing Site and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Grand Junction, Colorado, Disposal and Processing Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal and processing sites at Grand Junction, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Grand Junction, Colorado, Sites Site Description and History The former Grand Junction processing site, historically known as the Climax uranium mill, sits at an elevation of

  10. EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado.

  11. DOE - Office of Legacy Management -- Climax Uranium Co Grand Junction Mill

    Office of Legacy Management (LM)

    - CO 0-03 Climax Uranium Co Grand Junction Mill - CO 0-03 FUSRAP Considered Sites Site: Climax Uranium Co. (Grand Junction Mill) (CO.0-03) Licensed to DOE for long-term custody and managed by the Office of Legacy Management. Designated Name: Grand Junction, Colorado, Processing Site Alternate Name: Climax Uranium Company (Grand Junction Mill) Grand Junction Uranium Mill Tailings Remedial Action Site Climax Mill Site Grand Junction Mill 1 Location: Grand Junction, Colorado Evaluation Year:

  12. 2012 Annual Inspection Report for the Grand Junction, Colorado, Site

    Office of Legacy Management (LM)

    Annual Inspection - Grand Junction, Colorado, Site March 2012 Page 1 2012 Annual Inspection Report for the Grand Junction, Colorado, Site Summary The Grand Junction, Colorado, Site was inspected on February 23, 2012, and was in excellent condition. Physical and institutional controls enacted at the site continue to be effective in preventing exposure to contamination remaining on the property. A 5-year deficiency-based inspection of all real property assets in compliance with DOE Order 430.1B

  13. 2013 Annual Inspection Report for the Grand Junction, Colorado, Site

    Office of Legacy Management (LM)

    Annual Inspection - Grand Junction, Colorado, Site April 2013 Page 1 2013 Annual Inspection Report for the Grand Junction, Colorado, Site Summary The Grand Junction, Colorado, Site was inspected on March 4, 2013, and was in excellent condition. Physical and institutional controls enacted at the site continue to be effective in preventing exposure to contamination remaining on the property. No cause for a follow-up inspection was identified. 1.0 Introduction This report presents the results of

  14. Annual Inspection of the Grand Junction, Colorado, Site

    Office of Legacy Management (LM)

    Grand Junction, Colorado, Office Site March 2014 Page 1 Annual Inspection of the Grand Junction, Colorado, Site 1.1 Inspection Summary The Grand Junction, Colorado, Site was inspected on February 19, 2014, and was in excellent condition. Physical and institutional controls enacted at the site continue to be effective in preventing exposure to contamination remaining on the property. No maintenance needs were identified and no cause for a follow-up inspection was identified. The site was

  15. Annual Inspection of the Grand Junction, Colorado, Site

    Office of Legacy Management (LM)

    Grand Junction, Colorado, Office Site March 2015 Page 1 Annual Inspection of the Grand Junction, Colorado, Site 1.1 Inspection Summary The Grand Junction, Colorado, Site was inspected on February 18, 2015, and was in good condition. Physical and institutional controls enacted at the site continue to be effective in preventing exposure to contamination remaining on the property. Two minor maintenance needs were identified; however, no cause for a follow-up inspection was identified. The site was

  16. Grand Junction, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Grand Junction, Colorado Ruby Canyon Engineering Inc References US Census Bureau Incorporated place and minor civil...

  17. City of Grand Junction, Iowa (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Iowa (Utility Company) Jump to: navigation, search Name: Grand Junction Municipal Utilities Place: Iowa Phone Number: (515) 738-2285 or (515) 738-2726 Facebook: https:...

  18. Data Compendium for the Logging Test Pits at the ERDA Grand Junction...

    Office of Environmental Management (EM)

    Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound ...

  19. EA-1037: Uranium Lease Management Program, Grand Junction, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of...

  20. EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership.

  1. Environmental Audit of the Grand Junction Projects Office

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs.

  2. August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site

    Office of Legacy Management (LM)

    Sampling at the Grand Junction, Colorado, Disposal Site October 2015 LMS/GRJ/S00815 This page intentionally left blank U.S. Department of Energy DVP-August 2015, Grand Junction, Colorado October 2015 RIN 15077245 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site, Sample Location Map ...................................................3 Data Assessment

  3. January 2016 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Processing Site

    Office of Legacy Management (LM)

    6 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Processing Site March 2016 LMS/GJT/S00116 This page intentionally left blank U.S. Department of Energy DVP-January 2016, Grand Junction, Colorado March 2016 RIN 15127576 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Processing Site, Sample Location Map

  4. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

    SciTech Connect (OSTI)

    1996-06-01

    The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

  5. Grafton, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Grafton, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5586845, -71.9439721 Show Map Loading map... "minzoom":false,"mappin...

  6. Grafton County, New Hampshire: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Facility Bridgewater Biomass Facility Bridgewater Power LP Biomass Facility Pine Tree Bethlehem Biomass Facility Pinetree Power Biomass Facility Utility Companies in Grafton...

  7. Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001

    Office of Legacy Management (LM)

    Grand Junction Disposal Site Uranium ore was processed at the Climax millsite at Grand Junction, Colorado, between 1951 and 1970. The milling operations created process-related waste and tailings, a sandlike material containing radioactive materials and other contaminants. The tailings were an ideal and inexpensive construction material suitable for concrete, mortar, and fill. Accordingly, the tailings were widely used in the Grand Junction area for these purposes. The U.S. Department of Energy

  8. 2011 Annual Planning Summary for Office of Legacy Management (LM), Grand Junction (See LM APS)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Office of Legacy Management (LM), Grand Junction (See LM APS).

  9. December 2015 Groundwater and Surface Waater Sampling at the Grand Junction, Colorado, Site

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Grand Junction, Colorado, Site March 2016 LMS/GJO/S01215 This page intentionally left blank U.S. Department of Energy DVP-December 2015, Grand Junction, Colorado March 2016 RIN 15117528 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary

  10. Updated Radiation Exhibit Unveiled at Math and Science Center in Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    A newly updated radiation exhibit, created by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) office in Grand Junction, Colorado, was recently unveiled at the John McConnell...

  11. Preservationists Tour Historic Log Cabin at the Grand Junction, Colorado, Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    A working committee of local historic preservation specialists held their monthly meeting at the U.S. Department of Energy Office of Legacy Management (LM) Grand Junction, Colorado, Office on...

  12. Grand Junction Office Founder Honored at the Philip C. Leahy Memorial Park Dedication and Open House

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) held an open house and park dedication at the Grand Junction, Colorado, Office to commemorate its place in the Manhattan Project...

  13. Environmental monitoring report on the US Department of Energy's Grand Junction Projects Office facility, Grand Junction, Colorado, for calendar year 1987

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    This report presents results of environmental monitoring activities conducted in 1987 at the US Department of Energy's (DOE) Grand Junction Projects Office (GJPO) Facility in Colorado. The site is included under the DOE's Defense Decontamination and Decommissioning (Defense D and D) Program.

  14. UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6

    SciTech Connect (OSTI)

    1995-09-01

    This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years.

  15. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  16. Site observational work plan for the UMTRA Project Site at Grand Junction, Colorado

    SciTech Connect (OSTI)

    1996-03-01

    The U.S. Department of Energy (DOE) has prepared this initial site observational work plan (SOWP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project site in Grand Junction, Colorado. This SOWP is one of the first UMTRA Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards (40 CFR Part 192, as amended by 60 FR 2854) for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement (PEIS). This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The DOE goal is to use the observational method to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation based on the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards.

  17. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    SciTech Connect (OSTI)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  18. U.S. Department of Energy at Grand Junction 2003 Annual Inspection⎯Monticello, Utah

    Office of Legacy Management (LM)

    at Grand Junction 2003 Annual Inspection⎯Monticello, Utah November 2003 Page 1 2003 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites Summary The Monticello site, which includes the U.S. Department of Energy (DOE) Monticello Mill Tailings Site (MMTS) and the Monticello Radioactively Contaminated Properties site, was inspected September 23-25, 2003. A follow-up inspection of the Soil and Sediment properties was conducted on

  19. EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

  20. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

    SciTech Connect (OSTI)

    Johnson, J.B.

    1981-05-01

    In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1/sup 0/ x 2/sup 0/ NTMS quadrangle, key words, and exploration area.

  1. Work plan for ground water elevation data recorder/monitor well injection at Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-07-18

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Grand Junction ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Grand Junction processing site; modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing.

  2. Site observational work plan for the UMTRA project site at Grand Junction, Colorado

    SciTech Connect (OSTI)

    1996-01-01

    This site observational work plan (SOWP) is one of the first Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement. This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The US Department of Energy (DOE) goal is to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation with the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards. The conceptual model demonstrates that the uranium processing-related contamination at the site has affected the unconfined alluvial aquifer, but not the deeper confined aquifer.

  3. Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility

    SciTech Connect (OSTI)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

  4. Final audit report of remedial action construction at the UMTRA Project, Grand Junction, Colorado, processing site

    SciTech Connect (OSTI)

    1995-02-01

    This final audit report (FAR) for remedial action at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project processing site consists of a summary of the radiological surveillances/ audits, the quality assurance (QA) in-process surveillances, and the QA final close-out inspection performed by the US Department of Energy (DOE) and Technical Assistance Contractor (TAC). The FAR also summarizes other surveillances performed by the US Nuclear Regulatory Commission (NRC). To summarize, a total of one finding and 127 observations were noted during DOE/TAC audit and surveillance activities. The NRC noted general site-related observations during the OSCRs. Follow-up to responses required from MK-Ferguson for the DOE/TAC finding and observations indicated that all issues related to the Grand Junction processing site were resolved and closed out to the DOE`s satisfaction. The NRC OSCRs resulted in no issues related to the Grand Junction processing site requiring a response from MK-Ferguson.

  5. Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility

    SciTech Connect (OSTI)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

  6. Final report of the radiological release survey of Building 54 at the Grand Junction Office Facility

    SciTech Connect (OSTI)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 54 and the underlying soil were found not to be radiologically contaminated, and can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual release report for each GJO building.

  7. Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility

    SciTech Connect (OSTI)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

  8. PCB usage at the Grand Junction Area Office Facility. Final report

    SciTech Connect (OSTI)

    Miller, M.E.; Donivan, S.

    1982-06-01

    The development, implementation, and results of the polychlorinated biphenyl (PCB) identification project at the Grand Junction Area Office (GJAO) are summarized. Methodology for the PCB analysis is described, and results are tabulated. Of the 51 transformers and disconnects in use at GJAO, 15 unites were determined to be PCB-contaminated or filled with PCBs. This number falls within EPA's estimate of 25 to 40 percent of all transformers in use being at least contaminated. Approximately 324 gallons of PCBs and 515 gallons of PCB-contaminated fluids are being used currently. No contaminated transformers or disconnects are in a position to contaminate food or feed products at the facility.

  9. Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado

    SciTech Connect (OSTI)

    1997-08-01

    This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  10. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    1997-07-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney Disposal Site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  11. Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership

    SciTech Connect (OSTI)

    none,

    2001-02-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) in Grand Junction, Colorado, has played an integral role within the DOE complex for many years. GJO has a reputation for outstanding quality in the performance of complex environmental restoration projects, utilizing state-of-the-art technology. Many of the GJO missions have been completed in recent years. In 1998, DOE Headquarters directed GJO to reduce its mortgage costs by transferring ownership of the site and to lease space at a reasonable rate for its ongoing work. A local community group and GJO have entered into a sales contract; signing of the Quitclaim Deed is planned for February 16, 2001. Site transfer tasks were organized as a project with a critical-path schedule to track activities and a Site Transition Decision Plan was prepared that included a decision process flow chart, key tasks, and responsibilities. Specifically, GJO identified the end state with affected parties early on, successfully dealt with site contamination issues, and negotiated a lease-back arrangement, resulting in an estimated savings of more than 60 percent of facility maintenance costs annually. Lessons learned regarding these transition activities could be beneficial to many other sites.

  12. Assessment of cover systems at the Grand Junction, Colorado, uranium mill tailings pile: 1987 field measurements

    SciTech Connect (OSTI)

    Gee, G.W.; Campbell, M.D.; Freeman, H.D.; Cline, J.F.

    1989-02-01

    Four Pacific Northwest Laboratory (PNL) scientists and a technician conducted an onsite evaluation of radon gas exhalation, water content profiles, and plant and animal intrusion for a series of cover systems located on the uranium mill tailings pile at Grand Junction, Colorado. These six plots were sampled extensively down to the radon control layer (e.g., asphalt or wet clay) for soil moisture content and permeability. Radon gas emission through the surface was measured. Soil samples were collected and analyzed in the lab for particle-size distribution, particle density, bulk density, and ambient water content. Prairie dog burrows were excavated to discover the extent to which they penetrated the barriers. Plant type, density, and cover characteristics were measured.

  13. Technical basis for radiological release of Grand Junction Office Building 2. Volume 2, dose assessment supporting data

    SciTech Connect (OSTI)

    1997-07-01

    The second volume of the Grand Junction Office Action Program Technical Basis for Radiological Release of Grand Junction Office Building 2 report includes the data quality objectives (DQO), sampling plan, collected data, and analysis used to model future radiation doses to members of the public occupying Building 2 on the U.S. Department of Energy (DOE) Grand Junction Office (GJO) site. This volume was assembled by extracting relevant components of the Grand Junction Projects Office Remedial Action Project Building 2 Public Dose Evaluation (DOE 1996) and inserting recent additional data that was gathered and dose pathway modeling that was performed. The intent of this document is to provide all derived guidance decisions, assumptions, measured data, testing results, and pathway modeling software input and output data that supports the discussion and determinations presented in Volume 1 of this report. For constructive employment of this document, the reader is encouraged to closely follow Volume 1 for proper association with the segment of information being examined.

  14. Grande

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breaks ground on key sediment control project November 5, 2009 Structures will limit flow of sediments toward Rio Grande Los Alamos, New Mexico, November 5, 2009- Crews broke...

  15. Technical basis for radiological release of Grand Junction Office Building 2. Volume 1, dose assessment

    SciTech Connect (OSTI)

    Morris, R.; Warga, J.; Thorne, D.

    1997-07-01

    Building 2 on the US Department of Energy (DOE) Grand Junction Office (GJO) site is part of the GJO Remedial Action Program (GJORAP). During evaluation of Building 2 for determination of radiological release disposition, some inaccessible surface contamination measurements were detected to be greater than the generic surface contamination guidelines of DOE Order 5400.5 (which are functionally equivalent to US Nuclear Regulatory Commission [NRC] Regulatory Guide 1.86). Although the building is nominal in size, it houses the site telecommunications system, that is critical to continued GJO operations, and demolition is estimated at $1.9 million. Because unrestricted release under generic surface contamination guidelines is cost-prohibitive, supplemental standards consistent with DOE Order 5400.5 are being pursued. This report describes measurements and dose analysis modeling efforts to evaluate the radiation dose to members of the public who might occupy or demolish Building 2, a 2,480 square-foot (ft) building constructed in 1944. The north portion of the building was used as a shower facility for Manhattan Project uranium-processing mill workers and the south portion was a warehouse. Many originally exposed surfaces are no longer accessible for contamination surveys because expensive telecommunications equipment have been installed on the floors and mounted on panels covering the walls. These inaccessible surfaces are contaminated above generic contamination limits.

  16. Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report

    SciTech Connect (OSTI)

    Morris, R.

    1996-05-01

    Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.

  17. Comments and responses on the Remedial Action Plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Grand Junction, Colorado. Revision 1

    SciTech Connect (OSTI)

    1994-01-01

    This report contains information concerning public comments and responses on the remedial action plan and site design for stabilization of the inactive uranium mill tailings site in Grand Junction, Colorado.

  18. Final report of the radiological release survey of Building 30B at the Grand Junction Office Facility

    SciTech Connect (OSTI)

    Krauland, P.A.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 30B and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

  19. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building.

  20. U.S. Department of Energy Grand Junction Projects Office site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    1996-05-01

    This report presents information pertaining to environmental activities conducted during calendar year 1995 at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Environmental activities conducted at the GJPO facility during 1995 were associated with mixed-waste treatment, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. As part of the GJPO Mixed-Waste Treatment Program, on-site treatability studies were conducted in 1995 that made use of pilot-scale evaporative-oxidation and thermal-desorption units and bench-scale stabilization. DOE-GJPO used some of its own mixed-waste as well as samples received from other DOE sites for these treatability studies. These studies are expected to conclude in 1996. Removal of radiologically contaminated materials from GJPO facility buildings was conducted under the provisions of the Grand Junction Projects Office Remedial Action Project. Remediation activities included the removal of 394 metric tons of contaminated material from Buildings 18 and 28 and revegetation activities on the GJPO site; remediation was conducted in compliance with applicable permits.

  1. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  2. Grande

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breaks ground on key sediment control project November 5, 2009 Structures will limit flow of sediments toward Rio Grande Los Alamos, New Mexico, November 5, 2009- Crews broke ground this week on one of two engineered structures in a Los Alamos National Laboratory environmental project to reduce the flow of sediments down two canyons toward the Rio Grande. Called "grade-control" structures, the approximately $2 million features are up to eight feet high and made of rocks packed tightly

  3. DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA...

    Office of Legacy Management (LM)

    DOEGrand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii Contents Page 1.0 Introduction ......

  4. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  5. Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soil beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  6. Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  7. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  8. Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility

    SciTech Connect (OSTI)

    Krabacher, J.E.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  9. Final report of the decontamination and decommissioning of Building 18 at the Grand Junction Projects Office Facility

    SciTech Connect (OSTI)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. The soil beneath Building 18 was found to be radiologically contaminated; the building was not contaminated. The soil was remediated in accordance with identified standards. Building 18 and the underlying soil can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  10. Long-Term Management Plan for the Former UMTRCA Title I Processing Site at Grand Junction, Colorado

    Office of Legacy Management (LM)

    I I I I* I I I I I: I , I I I I I I I I I I I I GJQ-2002-354-TAC GJO-LGJT 1.1.3 LTSM012974 Long-Term Surveillance and Maintenance Program Long-Term Management Plan for the Former UMTRCA Title I Processing Site at Grand Junction, Colorado September 2002 '* Work Performed Under DOE Contract No. DE-AC13-02GJ79491 for the U.S. Department of Energy - r I,- Approved for public release; distribution is unlimited. ~ " } T 6 0 ~ * ~ L G -:FT, /. ~ I. o6 I I I I I I .I I I I I I I I I I I I I

  11. Work plan for phase 1A paleochannel studies at the Cheney disposal cell, Grand Junction, Colorado: Draft

    SciTech Connect (OSTI)

    1996-11-01

    This document will serve as a Work Plan for continuing paleochannel characterization activities at the Cheney disposal site near Grand Junction, Colorado. Elevated levels of nitrate were encountered in ground water from two monitor wells installed in alluvial paleochannels near the Cheney disposal cell in 1994. This triggered a series of investigations (Phase 1) designed to determine the source of nitrate and other chemical constituents in ground water at the site. A comprehensive summary of the Phase 1 field investigations (limited to passive monitoring and modeling studies) conducted by the Remedial Action Contractor (RAC) and Technical Assistance Contractor (TAC) to date is provided in Section 2.0 of this document. Results of Phase 1 were inconclusive regarding the potential interaction between the disposal cell and the paleochannels, so additional Phase 1A investigations are planned. Recommendations for Phase 1A tasks and possible future activities are discussed in Section 3.0. Detailed information on the implementation of the proposed Phase 1A tasks appears in Section 4.0 and will provide the basis for Statements of Work (SOW) for each of these tasks. A detailed sampling plan is provided to ensure quality and a consistency with previous data collection efforts.

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  13. Grand Junction Projects Office Remedial Action Project: Feasibility test of real-time radiation monitoring during removal of surface contamination from concrete floors

    SciTech Connect (OSTI)

    Leino, R.; Corle, S.

    1995-10-01

    This feasibility test was conducted to determine if real-time radiation-monitoring instruments could be mounted on decontamination machines during remediation activities to provide useful and immediate feedback to equipment operators. The U.S. Department of Energy (DOE) sponsored this field test under the Grand Junction Projects Office Remedial Action Project (GJPORAP) to identify a more efficient method to remove radiological contamination from concrete floor surfaces. This test demonstrated that project durations and costs may be reduced by combining radiation-monitoring equipment with decontamination machines. The test also demonstrated that a microprocessor-based instrument such as a radiation monitor can withstand the type of vibration that is characteristic of floor scabblers with no apparent damage. Combining radiation-monitoring equipment with a decontamination machine reduces the time and costs required to decontaminate concrete surfaces. These time and cost savings result from the reduction in the number of interim radiological surveys that must be conducted to complete remediation. Real-time radiation monitoring allows equipment operators to accurately monitor contamination during the decontamination process without support from radiological technicians, which also reduces the project duration and costs. The DOE Grand Junction Projects Office recommends more extensive and rigorous testing of this real-time radiation monitoring to include a variety of surfaces and decontamination machines. As opportunities arise, additional testing will be conducted under GJPORAP.

  14. Environmental Assessment and Finding of No Significant Impact: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership

    SciTech Connect (OSTI)

    N /A

    2000-04-25

    The scope of this environmental assessment (EA) is to analyze the potential consequences of the Proposed Action on human health and the environment. Accordingly, this EA contains an introduction to the site and the history of the Grand Junction Office (Chapter One), a description of the Purpose and Need for Agency Action (Chapter Two), a description of the Proposed Action and Alternatives (Chapter Three), and the description of the Affected Environment and the Environmental Consequences (Chapter Four). Resource categories addressed in this EA include geology, soils and topography, groundwater and surface water, floodplains and wetlands, land use and infrastructure, human health, ecological resources, cultural resources, air quality, noise, visual resources, solid and hazardous waste management, transportation, and socioeconomic and environmental justice.

  15. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    SciTech Connect (OSTI)

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  16. Rio Grande

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rio Grande Rio Grande In New Mexico, the Rio Grande flows from one sediment-filled basin to another, cutting canyons between the basins and supporting a fragile ecosystem on its...

  17. Grand Challenges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Challenges Grand Challenges Our goals to live a sustainable future LANL stakeholders TA-21 cleanup activities water on LANL land Collaborate with our stakeholders and tribal...

  18. Rio Grande

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rio Grande Rio Grande In New Mexico, the Rio Grande flows from one sediment-filled basin to another, cutting canyons between the basins and supporting a fragile ecosystem on its flood plain. August 1, 2013 river bank Banks of the Rio Grande Groundwater at LANL discharges to springs along the Rio Grande. Stream flow resulting from heavy storms and snowmelt also has the potential to reach the Rio Grande. RELATED IMAGES http://farm3.staticflickr.com/2818/9628464665_3a972e1387_t.jpg Enlarge

  19. Rio Grande

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In New Mexico, the Rio Grande flows from one sediment-filled basin to another, cutting canyons between the basins and supporting a fragile ecosystem on its flood plain. August 1, ...

  20. Grand Challenges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Challenges Grand Challenges Our goals to live a sustainable future LANL stakeholders TA-21 cleanup activities water on LANL land Collaborate with our stakeholders and tribal governments to ensure that LANL's impact on the environment is as low as reasonably achievable Remove or stabilize pollutants from the Manhattan Project and Cold War eras Protect water resource quality and reduce water use Stormwater drainage at LANL LANL land waste workers at LANL Eliminate industrial emissions,

  1. Grafton Electric | Open Energy Information

    Open Energy Info (EERE)

    Place: Iowa Phone Number: (641) 748-2970 Website: www.graftoniowa.comutilities Facebook: https:www.facebook.comgraftoniowa Outage Hotline: (641) 748-2970 References: EIA...

  2. Nanotube junctions

    DOE Patents [OSTI]

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  3. Nanotube junctions

    DOE Patents [OSTI]

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  4. Josephson junction

    DOE Patents [OSTI]

    Wendt, J.R.; Plut, T.A.; Martens, J.S.

    1995-05-02

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

  5. Josephson junction

    DOE Patents [OSTI]

    Wendt, Joel R.; Plut, Thomas A.; Martens, Jon S.

    1995-01-01

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

  6. SOFT COST GRAND CHALLENGE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energycenter.org California Center for Sustainable Energy Soft Cost Grand Challenge May 22, 2014 Accelerating the transition to a sustainable world powered by clean energy 2...

  7. GRAND CHALLENGE PROBLEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GRAND CHALLENGE PROBLEMS Time is the biggest issue. Materials typically become critical in a matter of months, but solutions take years or decades to develop and implement. Our first two grand challenges address this discrepancy. Anticipating Which Materials May Go Critical In an ideal world, users of materials would anticipate supply-chain disruptions before they occur. They would undertake activities to manage the risks of disruption, including R&D to diversify and increase supplies or to

  8. LM Completes the Grand Junction, Colorado, Site Historical Wall Display

    Broader source: Energy.gov [DOE]

    On Wednesday, October 8, a new display was unveiled at DOE Headquarters in Washington, DC, by DOE Deputy Under Secretary David Klaus. The display celebrates more than 70 years of operations at the...

  9. Solar Junction | Open Energy Information

    Open Energy Info (EERE)

    Junction Jump to: navigation, search Name: Solar Junction Place: San Jose, California Zip: CA 95131 Sector: Efficiency, Solar Product: Solar Junction is developing high efficiency...

  10. Mountain View Grand | Open Energy Information

    Open Energy Info (EERE)

    Mountain View Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  11. Three-junction solar cell

    DOE Patents [OSTI]

    Ludowise, Michael J. (Cupertino, CA)

    1986-01-01

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  12. 2015 Race to Zero Competition Grand Winner and Grand Winner Finalist Team

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Submissions | Department of Energy Grand Winner and Grand Winner Finalist Team Submissions 2015 Race to Zero Competition Grand Winner and Grand Winner Finalist Team Submissions Read the team submissions for the Grand Winner and Grand Winner Finalist teams from the 2015 Race to Zero Student Design Competition below. Learn more about the results of the 2015 competition. Grand Winner: Opti-MN, University of Minnesota (38.54 MB) Grand Winner Finalist: Team App, Appalachian State University (4.78

  13. Rio Grande North | Open Energy Information

    Open Energy Info (EERE)

    search Name Rio Grande North Facility Rio Grande North Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx...

  14. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January ...

  15. Nuclear Proliferation and Grand Challenges

    SciTech Connect (OSTI)

    McCarthy, Kathy

    2009-01-01

    Nuclear engineer Dr. Kathy McCarthy leads systems analysis. She talks about proliferation and the grand challenges of nuclear R&D. For more information about INL energy research, visit http://www.facebook.com/idahonationallaboratory.

  16. Nuclear Proliferation and Grand Challenges

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    Nuclear engineer Dr. Kathy McCarthy leads systems analysis. She talks about proliferation and the grand challenges of nuclear R&D. For more information about INL energy research, visit http://www.facebook.com/idahonationallaboratory.

  17. SU(6) grand unified model

    SciTech Connect (OSTI)

    Dong, J.X.

    1986-03-14

    A model of grand unified theory based on SU(6) gauge group is proposed. It can accommodate two generations of ordinary fermions with V-A weak coupling and two generations of weird fermions with V+A weak coupling. In this model, a new discrete symmetry is introduced that insures existence of fermions with lower masses when SU(6) gauge symmetry is spontaneously broken. Simple Higgs fields with appropriate vacuum expectation values are chosen, so that the masses of weird fermions are heavier than those of ordinary fermions. This model also gives the same value of Weinberg angle, sin sq of Theta/sub w/ = 3/8, as in the usual SU(5) grand unified model at the grand unified scale.

  18. Junction Hilltop Wind | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Junction Hilltop Wind Facility Junction Hilltop Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Community Owned...

  19. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,251","9,643",88.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,251","9,643",88.0 "Data for 2010" "BWR = Boiling Water Reactor."

  20. EV Everywhere Grand Challenge Blueprint

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to enable plug-in electric vehicles (PEVs) that are as affordable and convenient for the American family as gasoline-powered vehicles by 2022. I am more convinced now than ever that we can capture this opportunity, and I am committed to making the strategic investments necessary to get there. These investments will: 1) improve the competitive position of U.S.

  1. Destilaria Rio Grande | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Destilaria Rio Grande Place: Fronteira, Minas Gerais, Brazil Zip: 38230-000 Product: Brazil based ethanol producer. References: Destilaria Rio...

  2. Usina Serra Grande | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Usina Serra Grande Place: Maceio, Alagoas, Brazil Product: Ethanol producer Coordinates: -9.666479, -35.734954 Show Map Loading map......

  3. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Framing Workshop Report Out & Lessons Learned EV Everywhere Grand ...

  4. Hydrogen Storage Grand Challenge Individual Projects

    Broader source: Energy.gov [DOE]

    Hydrogen Storage Grand Challenge individual projects funded for three Centers of Excellence, led by the National Renewable Energy Laboratory, Sandia National Laboratories, and Los Alamos National Laboratory

  5. EV Everywhere Grand Challenge - Battery Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...2012 EV Everywhere Grand Challenge -- Battery Workshop Thursday, July 26, 2012 - ... Technologies Program 9:25-9:50 AM EV BATTERY TECHNOLOGY-CURRENT STATUS & COST ...

  6. PP-33 Rio Grande Electric Cooperative Inc

    Broader source: Energy.gov [DOE]

    Presidential permit authorizing Grande Electric Cooperative Inc to construct, operate, and maintain electric transmission facilities at the U.S-Mexico border.

  7. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 9 PDF icon grandchallengesportfoliopg9.pdf More Documents & Publications ...

  8. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 8 PDF icon grandchallengesportfoliopg8.pdf More Documents & Publications ...

  9. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 6 PDF icon grandchallengesportfoliopg6.pdf More Documents & Publications ...

  10. EV Everywhere Grand Challenge Overview Presentation

    Broader source: Energy.gov [DOE]

    Presentation by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI

  11. Grand River Dam Authority | Open Energy Information

    Open Energy Info (EERE)

    River Dam Authority Place: Oklahoma Phone Number: 918-256-5545 Website: www.grda.com Twitter: @okgrda Facebook: https:www.facebook.compagesGrand-River-Dam-Authority...

  12. 2015 Race to Zero Competition Grand Winner and Grand Winner Finalist...

    Broader source: Energy.gov (indexed) [DOE]

    Learn more about the results of the 2015 competition. PDF icon Grand Winner: Opti-MN, University of Minnesota PDF icon Grand Winner Finalist: Team App, Appalachian State University ...

  13. Josephson junction Q-spoiler

    DOE Patents [OSTI]

    Clarke, John; Hilbert, Claude; Hahn, Erwin L.; Sleator, Tycho

    1988-01-01

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  14. Josephson junction Q-spoiler

    DOE Patents [OSTI]

    Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

    1986-03-25

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  15. Electronic thermometry in tunable tunnel junction

    DOE Patents [OSTI]

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  16. City of Grand Marais, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Grand Marais Place: Minnesota Phone Number: (218) 387-3030 or (218)387-1848 Website: www.ci.grand-marais.mn.usinde Facebook: https:www.facebook.comGrandMaraisMN Outage Hotline:...

  17. 2014 Race to Zero Student Design Competition: Grand Winner Teams...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grand Winner Teams 2014 Race to Zero Student Design Competition: Grand Winner Teams 2014 Race to Zero Student Design Competition: Grand Winner Teams, from the U.S. Department of ...

  18. EA-33 Rio Grande Electric | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-33 Rio Grande Electric Order authorizing Rio Grande Electric to export electric energy to Mexico PDF icon EA-33 Rio Grande Electric More Documents & Publications EA-33-A and ...

  19. EV Everywhere Grand Challenge Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2_danielson_caci.pdf (299.97 KB) More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Overview EV Everywhere Battery Workshop: Setting the Stage for the EV Everywhere Grand Challenge

  20. Defining the Mechanisms of Friction: A Grand Challenge in Interfacial...

    Office of Scientific and Technical Information (OSTI)

    Defining the Mechanisms of Friction: A Grand Challenge in Interfacial Mechanics. Citation Details In-Document Search Title: Defining the Mechanisms of Friction: A Grand Challenge...

  1. Winning the Future: Grand Ronde Solar Projects Reduce Pollution...

    Energy Savers [EERE]

    Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects ... to develop renewable energy projects and implement energy efficiency measures. ...

  2. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power ...

  3. Rio Grande Rift Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Region Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al., 2010) Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) Magnetotellurics At...

  4. East Grand St Bridge Snowmelt Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    East Grand St Bridge Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name East Grand St Bridge Snowmelt Low Temperature Geothermal Facility Facility East...

  5. Agropecuaria e Industrial Serra Grande | Open Energy Information

    Open Energy Info (EERE)

    e Industrial Serra Grande Jump to: navigation, search Name: Agropecuaria e Industrial Serra Grande Place: So Raimundo das Mangabeiras, Maranhao, Brazil Product: Privately owned...

  6. LGRJ Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado

    Office of Legacy Management (LM)

  7. Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proceedings of the Waste Management 2001 Symposium.2001, University of Arizona, Tucson, Arizona.Donna Bergman-Tabbert, Tracy Plessinger

  8. Oak Ridge National Laboratory/Grand Junction field support for the Lasagna{trademark} technology demonstration

    SciTech Connect (OSTI)

    Zutman, J.L.; Wilson-Nichols, M.J.

    1998-08-01

    The Oak Ridge National Laboratory (ORNL) Environmental Technology Section (ETS) was tasked by the US Department of Energy EM-50 to provide field support for the Lasagna{trademark} Technology Demonstration from 1994 through 1997. The purpose of the Lasagna Technology Demonstration was to determine the effectiveness of using reductive dehalogenation to degrade trichloroethene (TCE) into its innocuous components. The purpose of this technical memorandum is to document the ORNL-ETS field effort, including results from samples analyzed using the ORNL-ETS field laboratory. The primary contribution from the ORNL-ETS field effort was the effectiveness of the field laboratory, which was found superior to standard methods since significant volatile losses occur during the transport of samples. The field laboratory is particularly effective on demonstration projects where large numbers of samples are collected. Data quality is evaluated by submitting a portion of samples to an analytical laboratory.

  9. Wintertime meteorology of the Grand Canyon region

    SciTech Connect (OSTI)

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  10. Grand Coulee & Hungry Horse SCADA Replacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gates Replacement This project is part of the Third Powerplant overhaul at Grand Coulee Dam. The full overhaul effort involves a mechanical overhaul of units G19 - G24. The...

  11. CMI Grand Challenge Problems | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Grand Challenge Problems Time is the biggest issue. Materials typically become critical in a matter of months, but solutions take years or decades to develop and implement. Our first two grand challenges address this discrepancy. Anticipating Which Materials May Go Critical In an ideal world, users of materials would anticipate supply-chain disruptions before they occur. They would undertake activities to manage the risks of disruption, including R&D to diversify and increase supplies or

  12. EV Everywhere Grand Challenge - Battery Workshop Agenda | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Agenda EV Everywhere Grand Challenge - Battery Workshop Agenda Agenda for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. agenda_b.pdf (196.97 KB) More Documents & Publications EV Everywhere Grand Challenge - Charge to the Breakout Groups EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV Everywhere Grand Challenge Kick-Off

  13. EV Everywhere Grand Challenge - Battery Workshop attendees list |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy attendees list EV Everywhere Grand Challenge - Battery Workshop attendees list Attendance list for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. companies_in_attendance_b.pdf (149.45 KB) More Documents & Publications EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge Overview EV Everywhere Grand Challenge Introduction for

  14. Middle Rio Grande Cooperative Water Model

    Energy Science and Technology Software Center (OSTI)

    2005-11-01

    This is computer simulation model built in a commercial modeling product Called Studio Expert, developed by Powersim, Inc. The simulation model is built in a system dynamics environment, allowing the simulation of the interaction among multiple systems that are all changing over time. The model focuses on hydrology, ecology, demography, and economy of the Middle Rio Grande, with Water as the unifying feature.

  15. Energy Secretary Steven Chu to Attend Grand Opening of Recovery...

    Energy Savers [EERE]

    to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant ...

  16. DOE/EIS-0485 Final Environmental Impact Statement Grande Prairie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grande Prairie Wind has applied to Western to interconnect the proposed Project to Western's 345-kilovolt (kV) Fort Thompson to Grand Island transmission line at a new switchyard. ...

  17. GreenHunter Biodiesel Refinery Grand Opening | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer ...

  18. SunShot Grand Challenge Summit Breakout Sessions Announced

    Broader source: Energy.gov [DOE]

    The 2014 SunShot Grand Challenge Summit is only six weeks away! SunShot is excited to announce our thought-provoking lineup of Grand Challenge Breakout Sessions.

  19. City of Grand Haven, Michigan (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Grand Haven Place: Michigan Phone Number: (616) 846-6250 Website: www.ghblp.org Twitter: @ghblp Facebook: https:www.facebook.comGrandHavenBLP Outage Hotline: (616) 842-2241...

  20. Rio Grande LNG LLC- Dkt. No. 15-190-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an Application filed December 23, 2015, by Rio Grande LNG, LLC (Rio Grande), seeking a long-term multi-contract authorization to export...

  1. Method for shallow junction formation

    DOE Patents [OSTI]

    Weiner, K.H.

    1996-10-29

    A doping sequence is disclosed that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated. 8 figs.

  2. Method for shallow junction formation

    DOE Patents [OSTI]

    Weiner, Kurt H.

    1996-01-01

    A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

  3. Grand Challenges | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Grand Challenges Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications History Grand Challenges BES Reports Document Archives Contests Contact BES Home History Grand Challenges Print Text Size: A A A FeedbackShare Page Grand Challenge Report The Basic Energy Sciences Advisory Committee (BESAC) report, Directing Matter and Energy: Five Challenges for Science and the Imagination was the culmination of a series of BES-sponsored

  4. Grand Challenges | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Grand Challenges Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Grand Challenges BES Reports Science Highlights News & Events Publications History Contact BES Home Research Grand Challenges Print Text Size: A A A FeedbackShare Page Grand Challenge Report The Basic Energy Sciences Advisory Committee (BESAC) report, Directing Matter and Energy: Five Challenges for Science and the Imagination was the culmination of a series of BES-sponsored workshops that began in 2001.

  5. PP-53 Rio Grande Electric Cooperative, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Rio Grande Electric Cooperative, Inc. PP-53 Rio Grande Electric Cooperative, Inc. Presidential Permit authorizing Rio Grande Electric Cooperative, Inc.to construct, operate, and maintain electric transmission facilities at the U.S. - Mexico Border. PP-53 Rio Grande Electric Cooperative, Inc. (1.09 MB) More Documents & Publications PP-55 Roseau Electric Cooperative, Inc. PP-42 Roseau Electric Cooperative, Inc. PP-67 North Central Electric Cooperative, Inc.

  6. Winners Announced for the NNSA Grand Challenge Competition

    Broader source: Energy.gov [DOE]

    Clark Atlanta University students' rocket tail component for Additive Manufacturing won the NNSA student Grand Challenge Competition.

  7. EV Everywhere Grand Challenge - Charge to the Breakout Groups | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Charge to the Breakout Groups EV Everywhere Grand Challenge - Charge to the Breakout Groups Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. 7_howell_b.pdf (796.65 KB) More Documents & Publications EV Everywhere - Charge to Breakout Sessions EV Everywhere Grand Challenge - Battery Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric

  8. 2014 Race to Zero Student Design Competition: Grand Winner Teams |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Grand Winner Teams 2014 Race to Zero Student Design Competition: Grand Winner Teams 2014 Race to Zero Student Design Competition: Grand Winner Teams, from the U.S. Department of Energy. rtz_grand_winner_team_rosters.pdf (59.94 KB) More Documents & Publications 2014 Race to Zero Student Design Competition: Montage Builders Team Submission 2014 Race to Zero Student Design Competition: Montage Builders Profile 2014 Race to Zero Student Design Competition: Auburn

  9. Hydrogen Storage Grand Challenge Centers of Excellence | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Centers of Excellence Hydrogen Storage Grand Challenge Centers of Excellence DOE's Hydrogen Storage Grand Challenge Centers of Excellence and partners, led by NREL, SNL, and LANL grand_challenge_centers.pdf (62.21 KB) More Documents & Publications Hydrogen Storage Grand Challenge Individual Projects Final Solar and Wind H2 Report EPAct 812.doc Microsoft Word - H2 National Release 2.doc

  10. SunShot Grand Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Grand Challenge SunShot Grand Challenge Addthis SunShot Grand Challenge 1 of 28 SunShot Grand Challenge Participants gather for the plenary session at the SunShot Grand Challenge Summit and Technology Forum in Denver, Colorado. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:10 Arun Majumdar, Founding Director, ARPA-E 2 of 28 Arun Majumdar, Founding Director, ARPA-E Arun Majumdar, Founding Director, ARPA-E gives the welcoming remarks. (Photo by DENNIS SCHROEDER / NREL) Date

  11. Upper Rio Grande Simulation Model (URGSIM)

    Energy Science and Technology Software Center (OSTI)

    2010-08-05

    URGSIM estimates the location of surface water and groundwater resources in the upper Rio Grande Basin between the Colorado-New Mexico state line, and Caballo Reservoir from 1975 - 2045. It is a mass balance hydrology model of the Upper Rio Grande surface water, groundwater, and water demand systems which runs at a monthly timestep from 1975-1999 in calibration mode, 2000 – 2004 in validation mode, and 2005 – 2045 in scenario analysis mode.

  12. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - ...

  13. Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin...

    Office of Scientific and Technical Information (OSTI)

    Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures Title: Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures ...

  14. Rio Grande pipeline introduces LPG to Mexico

    SciTech Connect (OSTI)

    1997-06-01

    Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

  15. Raptor Use of the Rio Grande Gorge

    SciTech Connect (OSTI)

    Ponton, David A.

    2015-03-20

    The Rio Grande Gorge is a 115 km long river canyon located in Southern Colorado (15 km) and Northern New Mexico (100 km). The majority of the canyon is under the administration of the Bureau of Land Management {BLM), and 77 km of the canyon south of the Colorado/New Mexico border are designated Wild River under the National Wild and Scenic Rivers Act of 1968. Visits I have made to the Rio Grande Gorge over the past 15 .years disclosed some raptor utilization. As the Snake River Birds of Prey Natural Area gained publicity, its similarity to the Rio Grande Gorge became obvious, and I was intrigued by the possibility of a high raptor nesting density in the Gorge. A survey in 1979 of 20 km of the northern end of the canyon revealed a moderately high density of red-tailed hawks and prairie falcons. With the encouragement of that partial survey, and a need to assess the impact of river-running on nesting birds of prey, I made a more comprehensive survey in 1980. The results of my surveys, along with those of a 1978 helicopter survey by the BLM, are presented in this report, as well as general characterization of the area, winter use by raptors, and an assessment of factors influencing the raptor population.

  16. Silicon fiber with p-n junction

    SciTech Connect (OSTI)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-09-22

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900??m and core diameters of 20800??m. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  17. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  18. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  19. Semiconductor tunnel junction with enhancement layer

    DOE Patents [OSTI]

    Klem, John F.; Zolper, John C.

    1997-01-01

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

  20. Semiconductor tunnel junction with enhancement layer

    DOE Patents [OSTI]

    Klem, J.F.; Zolper, J.C.

    1997-10-21

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling. 5 figs.

  1. Saft America Advanced Batteries Plant Celebrates Grand Opening in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jacksonville | Department of Energy Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida,

  2. SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Signals in the Subsurface | Department of Energy SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface Grand Challenge Workshop -Imaging Subsurface.pdf (434.52 KB) More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Presentation at Town Hall - American Geophysical Union Controlling Subsurface Fractures and Fluid Flow: A Basic

  3. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Workshop Agenda | Department of Energy Agenda EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA agenda_caci.pdf (218.57 KB) More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop - Backsplash EV Everywhere Grand Challenge:

  4. DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational

  5. Multi-junction solar cell device

    DOE Patents [OSTI]

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  6. Rio Grande County, Colorado: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    B. Places in Rio Grande County, Colorado Center, Colorado Del Norte, Colorado Monte Vista, Colorado South Fork, Colorado Retrieved from "http:en.openei.orgw...

  7. Sandia Energy - SunShot Grand Challenge: Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge: Regional Test Centers Home Videos Renewable Energy Energy Events News SunShot News & Events Photovoltaic Solar SunShot Grand Challenge: Regional Test Centers Previous...

  8. EV Everywhere Grand Challenge Kick-Off | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dearborn, MI framingworkshopagenda062112.pdf (85.02 KB) More Documents & Publications EV Everywhere Grand Challenge Overview Presentation EV Everywhere Framing Workshop - ...

  9. EV Everywhere Grand Challenge- Battery Status and Cost Reduction Prospects

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by technology manager David Howell at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

  10. Grand Blanc, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    5th congressional district.12 Registered Energy Companies in Grand Blanc, Michigan 21st century Green Solutions LLC References US Census Bureau Incorporated place and...

  11. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon ...

  12. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon ...

  13. Statement by Energy Secretary Steven Chu on Today's Grand Opening...

    Energy Savers [EERE]

    on today's grand opening of the Nordex wind turbine manufacturing facility in Jonesboro. ... to assist in the creation of a wind turbine manufacturing facility in Jonesboro, Arkansas. ...

  14. Field Studies of Geothermal Reservoirs: Rio Grande Rift, New...

    Open Energy Info (EERE)

    Abstract The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity...

  15. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The nation's third commercial-scale cellulosic ethanol biorefinery celebrates its grand ... The plant will produce cellulosic ethanol from non-edible corn stalks, stems, and leaves ...

  16. EV Everywhere Grand Challenge Introduction for Electric Drive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, ...

  17. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of ...

  18. Alpine Extensional Detachment Tectonics In The Grande Kabylie...

    Open Energy Info (EERE)

    Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Jump to: navigation, search OpenEI Reference LibraryAdd to...

  19. Winning the Future: Grand Ronde Solar Projects Reduce Pollution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    coastal range, the Confederated Tribes of the Grand Ronde Community of Oregon has a strong connection to the earth and nature and a deep commitment to environmental stewardship. ...

  20. Grand Rapids Public Util Comm | Open Energy Information

    Open Energy Info (EERE)

    https:www.facebook.compagesGrand-Rapids-Public-Utilities108782819203449?skwall Outage Hotline: 218-326-4806 References: EIA Form EIA-861 Final Data File for 2010 -...

  1. Sierra Grande Lodge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Sierra Grande Lodge Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  2. Summary of Grand Challenge Products Selected for Award Negotiations

    SciTech Connect (OSTI)

    2010-04-26

    DOE provides $13 million in funding to 48 research and development projects across the country that were selected as award winners of the Industrial Energy Efficiency Grand Challenge.

  3. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    SciTech Connect (OSTI)

    Hadley, Austin; Ding, George X.

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup errorinduced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fields and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.

  4. Methods for the fabrication of thermally stable magnetic tunnel junctions

    DOE Patents [OSTI]

    Chang, Y. Austin; Yang, Jianhua J.; Ladwig, Peter F.

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  5. Junction-side illuminated silicon detector arrays

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  6. Complementary junction heterostructure field-effect transistor

    DOE Patents [OSTI]

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  7. Complementary junction heterostructure field-effect transistor

    DOE Patents [OSTI]

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  8. Fluctuation of heat current in Josephson junctions

    SciTech Connect (OSTI)

    Virtanen, P.; Giazotto, F.

    2015-02-15

    We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  9. EIS-0519: Rio Grande LNG Project and Rio Bravo Pipeline Project...

    Office of Environmental Management (EM)

    19: Rio Grande LNG Project and Rio Bravo Pipeline Project; Kleberg, Kenedy, Willacy, and Cameron Counties, Texas EIS-0519: Rio Grande LNG Project and Rio Bravo Pipeline Project; ...

  10. Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell

    Broader source: Energy.gov [DOE]

    EERE supported the development of Solar Junction's concentrated photovoltaic technology that set a world record for conversion efficiency.

  11. High voltage series connected tandem junction solar battery

    DOE Patents [OSTI]

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  12. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    SciTech Connect (OSTI)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

  13. EV Everywhere Grand Challenge Blueprint | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Grand Challenge Blueprint EV Everywhere Grand Challenge Blueprint Recognizing that vehicle electrification is an essential part of our countrys "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to enable plug-in electric vehicles (PEVs) that are as affordable and convenient for the American family as gasoline-powered vehicles by 2022. This "Blueprint" provides an outline

  14. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  15. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  16. Semiconductor liquid-junction solar cell

    SciTech Connect (OSTI)

    Parkinson, B.A.

    1982-10-29

    A semiconductor liquid junction photocell in which the photocell is in the configuration of a light concentrator and in which the electrolytic solution both conducts current and facilitates the concentration of incident solar radiation onto the semiconductor. The photocell may be in the configuration of a non-imaging concentrator such as a compound parabolic concentrator, or an imaging concentrator such as a lens.

  17. Tandem junction amorphous silicon solar cells

    DOE Patents [OSTI]

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  18. SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Grand Challenge Workshop -Imaging Subsurface.pdf More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Fact Sheet SubTER Presentation at Town Hall - ...

  19. City of Grand Rapids- Green Power Purchasing Policy

    Broader source: Energy.gov [DOE]

    In 2005, the City of Grand Rapids established a goal of purchasing 20% of its municipal power demand from renewable energy by 2008. In November 2007, the city signed a three-year agreement with a...

  20. EV Everywhere Grand Challenge - Battery Status and Cost Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. 5howellb.pdf (1.24 MB) More Documents & Publications PHEV Battery Cost Assessment ...

  1. EV Everywhere Grand Challenge - Battery Workshop attendees list...

    Broader source: Energy.gov (indexed) [DOE]

    Attendance list for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. companiesinattendanceb.pdf (149.45 KB) More ...

  2. 2014 SunShot Grand Challenge Summit Opening Session Photos |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaheim Mayor Tom Tait with SunShot Director Minh Le Credit: SunShot Initiative Date ... SunShot Grand Challenge Summit Opening Session SunShot Director Minh Le Credit: SunShot ...

  3. EV Everywhere Grand Challenge Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3_davis_caci.pdf (591.63 KB) More Documents & Publications EV Everywhere Framing Workshop Report Out & Lessons Learned EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Grand Challenge - Charge to the Breakout Groups

  4. Grand Forks County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dakota. Its FIPS County Code is 035. It is classified as ASHRAE 169-2006 Climate Zone Number 7 Climate Zone Subtype A. Registered Energy Companies in Grand Forks County, North...

  5. EV Everywhere Grand Challenge Introduction for Electric Drive Workshop

    Broader source: Energy.gov [DOE]

    Presentation given by EERE Assistant Secretary David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL.

  6. Evaluation of Geothermal Potential of Rio Grande Rift and Basin...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Report: Evaluation of Geothermal Potential of Rio Grande Rift and Basin and Range Province, New Mexico Abstract A...

  7. Arroyo Grande, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Arroyo Grande is a city in San Luis Obispo County, California. It falls under California's 22nd congressional...

  8. Grand Opening for Project LIBERTY: Nation's First Plant to Use...

    Energy Savers [EERE]

    for Project LIBERTY: Nation's First Plant to Use Corn Waste as a Feedstock Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste as a Feedstock August 28, 2014 ...

  9. Casa Grande, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Casa Grande is a city in Pinal County, Arizona. It falls under Arizona's 1st congressional...

  10. Fernald Preserve Visitors Center Grand Opening and LEED Platinum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certification | Department of Energy Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to

  11. SubTER Grand Challenge Roundtable: Imaging Geophysical and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface The Grand Challenge SubTER Panel (Dr. Marcia McNutt, Chair) DOE Leads: Margaret Coleman, Julio Friedmann, Doug Hollett, and Harriet Kung Introduction The future of the world's energy production and deployment is closely tied to our understanding of the subsurface, as well as our capabilities in subsurface or geologic engineering. Developments over the past ten years, including the growth of natural

  12. EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Design | Department of Energy Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA 5_slezak_caci.pdf (2 MB) More Documents & Publications EV Everywhere Framing Workshop - Report Out & Lessons Learned EV Everywhere Framing

  13. EV Everywhere Grand Challenge - Electric Drive (Power Electronics and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines) Workshop | Department of Energy - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop List of companies in attendance at the Electric Drive Workshop held on July 24, 2012 at the Doubletree O'Hare, Chicago, IL companies_in_attendance_ed.pdf (145.65 KB) More Documents & Publications EV Everywhere Grand Challenge Introduction for Electric Drive Workshop EV

  14. Montage Builders Northern Forest, Ryerson University Selected as Grand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winners of First Student Design Competition for Zero Energy Ready Homes | Department of Energy Montage Builders Northern Forest, Ryerson University Selected as Grand Winners of First Student Design Competition for Zero Energy Ready Homes Montage Builders Northern Forest, Ryerson University Selected as Grand Winners of First Student Design Competition for Zero Energy Ready Homes April 29, 2014 - 2:15pm Addthis To help cut energy waste and improve U.S. energy productivity, the Energy

  15. PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy -1 and EA-33-A Rio Grande Electric Cooperative Inc PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc Rescission of Presidential Permit and Electricity Export Authorization for Rio Grande Electric Cooperative to Export electricity to Mexico. PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc (52.93 KB) More Documents & Publications EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. PP-53 Rio Grande Electric Cooperative, Inc. PP-33 Rio Grande Electric Cooperative

  16. Junction conditions in extended Teleparallel gravities

    SciTech Connect (OSTI)

    De la Cruz-Dombriz, lvaro; Dunsby, Peter K.S.; Sez-Gmez, Diego E-mail: peter.dunsby@uct.ac.za

    2014-12-01

    In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results.

  17. Semiconductor junction formation by directed heat

    DOE Patents [OSTI]

    Campbell, Robert B.

    1988-03-24

    The process of the invention includes applying precursors 6 with N- and P-type dopants therein to a silicon web 2, with the web 2 then being baked in an oven 10 to drive off excessive solvents, and the web 2 is then heated using a pulsed high intensity light in a mechanism 12 at 1100.degree.-1150.degree. C. for about 10 seconds to simultaneously form semiconductor junctions in both faces of the web.

  18. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Watertown, South Dakota filter Golden, Colorado (1) Apply Golden, Colorado filter Grand Junction, Colorado (1) Apply Grand Junction, Colorado filter Grand Junction, Colorado ...

  19. Highly Charged Ion (HCI) Modified Tunnel Junctions

    SciTech Connect (OSTI)

    Pomeroy, J. M.; Grube, H. [Atomic Physics Division, National Institute of Standards and Technology (NIST) 100 Bureau Dr., MS 8423, Gaithersburg, MD 20899-8423 (United States)

    2009-03-10

    The neutralization energy carried by highly charged ions (HCIs) provides an alternative method for localizing energy on a target's surface, producing features and modifying surfaces with fluences and kinetic energy damage that are negligible compared to singly ionized atoms. Since each HCI can deposit an enormous amount of energy into a small volume of the surface (e.g., Xe{sup 44+} delivers 51 keV of neutralization energy per HCI), each individual HCI's interaction with the target can produce a nanoscale feature. Many studies of HCI-surface features have characterized some basic principles of this unique ion-surface interaction, but the activity reported here has been focused on studying ensembles of HCI features in ultra-thin insulating films by fabricating multi-layer tunnel junction devices. The ultra-thin insulating barriers allow current to flow by tunneling, providing a very sensitive means of detecting changes in the barrier due to highly charged ion irradiation and, conversely, HCI modification provides a method of finely tuning the transparency of the tunnel junctions that spans several orders of magnitude for devices produced from a single process recipe. Systematic variation of junction bias, temperature, magnetic field and other parameters provides determination of the transport mechanism, defect densities, and magnetic properties of these nano-features and this novel approach to device fabrication.

  20. Single P-N junction tandem photovoltaic device

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Ager, III, Joel W.; Yu, Kin Man

    2012-03-06

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  1. Single P-N junction tandem photovoltaic device

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Ager, III, Joel W.; Yu, Kin Man

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  2. Electromagnetic squeezer for compressing squeezable electron tunneling junctions. Technical report

    SciTech Connect (OSTI)

    Moreland, J.; Hansma, P.K.

    1984-01-01

    The resistance of squeezable electron tunnel junctions (SET junctions) can be adjusted with an electromagnetic squeezer. For junctions immersed in liquid helium, the resistance is stable to approximately 0.1%. This stability is sufficient for measurements of superconducting energy gaps and for superconducting phonon spectroscopy out to 50 mV applied bias. Increased stability, especially at higher biases, will be necessary for inelastic electron tunneling spectroscopy.

  3. Electromagnetic squeezer for compressing squeezable electron tunnelling junctions

    SciTech Connect (OSTI)

    Moreland, J.; Hansma, P.K.

    1984-03-01

    The resistance of squeezable electron tunnel junctions (SET junctions) can be adjusted with an electromagnetic squeezer. For junctions immersed in liquid helium, the resistance is stable to approximately 0.1%. This stability is sufficient for measurements of superconducting energy gaps and for superconducting phonon spectroscopy out to 50-mV applied bias. Increased stability, especially at higher biases, will be necessary for inelastic electron tunnelling spectroscopy.

  4. Superconductive tunnel junction device and method of manufacture

    SciTech Connect (OSTI)

    Kroger, H.

    1983-12-20

    A Josephson tunnel junction device having niobium nitride superconductive electrodes includes a polycrystalline semiconductor tunneling barrier therebetween comprised of silicon, germanium, or an alloy thereof preferably deposited on the lower superconductive electrodes by vapor deposition. The barrier thickness of the junction is controlled by precision doping of the semiconductor material. The active junction is defined after the interfaces between the barrier material and the two superconductor lines are formed, retaining those active interfaces in fully unpolluted character.

  5. DNA Gridiron Nanostructures Based on Four-Arm Junctions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DNA Gridiron Nanostructures Based on Four-Arm Junctions Authors: Han, D., Pal, S., Yang, Y., Jiang, S., Nangreave, J., Liu, Y., and Yan, H. Title: DNA Gridiron Nanostructures Based on Four-Arm Junctions Source: Science Year: 2013 Volume: 339 Pages: 1412-1415 ABSTRACT: Engineering wireframe architectures and scaffolds of increasing complexity is one of the important challenges in nanotechnology. We present a design strategy to create gridiron-like DNA structures. A series of four-arm junctions

  6. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOE Patents [OSTI]

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  7. Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin

    Office of Scientific and Technical Information (OSTI)

    Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures Borzenets, I. V.; Coskun, U. C.; Mebrahtu, H. T.; Bomze, Yu. V.; Smirnov, A. I.; Finkelstein, G....

  8. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis...

    Office of Scientific and Technical Information (OSTI)

    3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNTgraphene junctions. We have started to understand their structural, compositional, more and electronic properties. ...

  9. Van der Waals metal-semiconductor junction: Weak Fermi level...

    Office of Scientific and Technical Information (OSTI)

    Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier Citation Details In-Document Search Title: Van der Waals ...

  10. Apache Junction, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Junction, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4150485, -111.5495777 Show Map Loading map... "minzoom":false,"mappingser...

  11. Phonon interference effects in molecular junctions

    SciTech Connect (OSTI)

    Markussen, Troels

    2013-12-28

    We study coherent phonon transport through organic, ?-conjugated molecules. Using first principles calculations and Green's function methods, we find that the phonon transmission function in cross-conjugated molecules, like meta-connected benzene, exhibits destructive quantum interference features very analogous to those observed theoretically and experimentally for electron transport in similar molecules. The destructive interference features observed in four different cross-conjugated molecules significantly reduce the thermal conductance with respect to linear conjugated analogues. Such control of the thermal conductance by chemical modifications could be important for thermoelectric applications of molecular junctions.

  12. Grand Traverse Band of Ottawa and Chippewa Indians- 2005 Project

    Broader source: Energy.gov [DOE]

    The Grand Traverse Band of Ottawa and Chippewa Indians (GTB) will conduct a feasibility study to determine the cost effectiveness and other economic, environmental, cultural, and social benefits of maximizing the diversity of energy sources used at GTB facilities. This includes an assessment of energy conservation measures as well as renewable energy sources such as wind, solar, and biomass.

  13. Mesa Grande Band of Mission Indians- 2004 Project

    Broader source: Energy.gov [DOE]

    The Mesa Grande Band of Mission Indians, located in northern San Diego County, will conduct a study of the feasibility of reducing air pollution generated on the reservation by an over-reliance on wood-burning stoves, kerosene heaters, and gasoline generators, and to identify the types of renewable energy systems that could be used for residential structures and well-pump systems.

  14. SunShot Grand Challenge Summit and Peer Review 2014

    Broader source: Energy.gov [DOE]

    The 2014 SunShot Grand Challenge Summit and Peer Review brought together more than 800 members of the solar community to review the progress made toward the SunShot goal and discuss the challenges ahead to make solar energy more affordable and widespread across America. Download the Summit conference presentations here.

  15. Subgap biasing of superconducting tunnel junctions without a magnetic field

    SciTech Connect (OSTI)

    Segall, K.; Moyer, J.; Mazo, Juan J.

    2008-08-15

    Superconducting tunnel junctions (STJs) have been successfully used as single-photon detectors but require the use of a magnetic field to operate. A recent paper has proposed the idea to use a circuit of three junctions in place of a single junction in order to achieve the necessary biasing without applying a magnetic field. The nonlinear interaction between the different junctions in the circuit causes the existence of a stable subgap state for one of the junctions, which acts as the detector junction. In this paper, we present the first measurements demonstrating the existence of such a biasing state feasible for STJ detectors. Single junction measurements with an applied magnetic field help determine the functional form of the subgap current versus voltage; then the operating point of a three-junction circuit is measured and fit to theory. The excellent match between theory and experiment demonstrates the existence of the subgap biasing state. The outlook for possible use in detector applications is discussed.

  16. Josephson junctions in high-T/sub c/ superconductors

    DOE Patents [OSTI]

    Falco, C.M.; Lee, T.W.

    1981-01-14

    The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

  17. EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. Order authorizing Rio Grande Electric Cooperative, Inc to export electric energy to Mexico PDF icon EA-33-A and PP-33-1 ...

  18. Save the Date: 2014 SunShot Grand Challenge Summit, May 19-22...

    Broader source: Energy.gov (indexed) [DOE]

    2014 SunShot Grand Challenge Summit and Peer Review SunShot Grand Challenge Summit Opening Session Energy Department Announces New Prize Challenge to Drive Down Solar Costs

  19. Media Invitation: 2014 SunShot Grand Challenge Summit and Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Media Invitation: 2014 SunShot Grand Challenge Summit and Peer Review Media Invitation: 2014 SunShot Grand Challenge Summit and Peer Review April 14, 2014 - 4:27pm Addthis Media ...

  20. Solar Community Comes Out in Full Force for SunShot Grand Challenge...

    Energy Savers [EERE]

    Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit May 22, 2014 - 9:58am Addthis ...

  1. The emerging multi-polar world and China's grand game (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The emerging multi-polar world and China's grand game Citation Details In-Document Search Title: The emerging multi-polar world and China's grand game You are ...

  2. Phase diagram of Josephson junction between s and s ± superconductors...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Phase diagram of Josephson junction between s and s superconductors in the dirty limit Title: Phase diagram of Josephson junction between s and ...

  3. Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar

    SciTech Connect (OSTI)

    Suzanne McSawby, Project Director Steve Smiley, Principle Investigator Grand Traverse Resort, Cost Sharing Partner

    2008-12-31

    Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

  4. SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spectrum | Department of Energy Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum June 13, 2012 - 5:30pm Addthis Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by

  5. SunShot Grand Challenge: Summit and Technology Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grand Challenge: Summit and Technology Forum SunShot Grand Challenge: Summit and Technology Forum The SunShot Grand Challenge: Summit and Technology Forum was the first event in a series of Department of Energy Grand Challenges. This event focused on SunShot Initiative goals of achieving grid-parity solar energy within the decade. The SunShot Summit and Technology Forum included: Plenary sessions featuring Energy Secretary Steven Chu and other industry leaders Group discussions focusing on the

  6. Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs October 20, 2014 - 5:00pm Addthis PV panels installed on Grand Ronde Tribal Housing Authority carport. Photo from GRTHA, NREL 31797 PV panels installed on Grand Ronde Tribal Housing Authority carport. Photo from GRTHA, NREL 31797 Challenge: Situated on nearly 12,000 acres in the heart of Western Oregon's scenic coastal range, the

  7. Field-effect P-N junction

    DOE Patents [OSTI]

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  8. EA-1458: Environmental Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites, DOE Grand Junction Office, Grand Junction, Colorado

  9. Mechanical deformations of boron nitride nanotubes in crossed junctions

    SciTech Connect (OSTI)

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C.; Stupkiewicz, Stanislaw

    2014-04-28

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.214.67?nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.27.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07??0.11 TPa and 0.180.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  10. 2014 SunShot Grand Challenge Summit Opening Session Photos | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Opening Session Photos 2014 SunShot Grand Challenge Summit Opening Session Photos Addthis SunShot Grand Challenge Summit Opening Session 1 of 35 SunShot Grand Challenge Summit Opening Session Anaheim Mayor Tom Tait with SunShot Director Minh Le Credit: SunShot Initiative Date taken: 2014-05-19 16:01 SunShot Grand Challenge Summit Opening Session 2 of 35 SunShot Grand Challenge Summit Opening Session SunShot Director Minh Le Credit: SunShot Initiative Date taken: 2014-05-19 16:06

  11. City of Grand Rapids Building Solar Roof Demonstration

    SciTech Connect (OSTI)

    DeClercq, Mark; Martinez, Imelda

    2012-08-31

    Grand Rapids, Michigan is striving to reduce it environmental footprint. The municipal government organization has established environmental sustainability policies with the goal of securing 100% of its energy from renewable sources by 2020. This report describes the process by which the City of Grand Rapids evaluated, selected and installed solar panels on the Water/Environmental Services Building. The solar panels are the first to be placed on a municipal building. Its new power monitoring system provides output data to assess energy efficiency and utilization. It is expected to generate enough clean solar energy to power 25 percent of the building. The benefit to the public includes the economic savings from reduced operational costs for the building; an improved environmentally sustainable area in which to live and work; and increased knowledge about the use of solar energy. It will serve as a model for future energy saving applications.

  12. SunShot Grand Challenge Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Grand Challenge Summit Online registration is now closed Online registration is now closed Limited onsite registration is available. Learn more. Read more Resources for Summit Attendees Resources for Summit Attendees Plan your Summit experience today by accessing event schedules, venue information and more. Read more Exciting Keynotes, Plenary Sessions, Industry Workshops, Technology Forum and Peer Review Exciting Keynotes, Plenary Sessions, Industry Workshops, Technology Forum and Peer

  13. Upper Rio Grande Simulation Model (URGSiM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upper Rio Grande Simulation Model (URGSiM) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  14. SunShot Grand Challenge Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Grand Challenge Summit Online registration is now closed Online registration is now closed Limited onsite registration is available. Learn more. Read more Resources for Summit Attendees Resources for Summit Attendees Plan your Summit experience today by accessing event schedules, venue information and more. Read more Exciting Keynotes, Plenary Sessions, Industry Workshops, Technology Forum and Peer Review Exciting Keynotes, Plenary Sessions, Industry Workshops, Technology Forum and Peer

  15. Climate-Science Computational End Station Development and Grand Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team | Argonne Leadership Computing Facility Total precipitable water, a measure of how much moisture is in the air from a single moment in time in the global simulation of the atmosphere at a resolution of half a degree of latitude. (Figure provided by Mark Taylor, Sandia National Laboratories.) Figure provided by Mark Taylor, Sandia National Laboratories. Climate-Science Computational End Station Development and Grand Challenge Team PI Name: Warren Washington, Tom Bettge PI Email:

  16. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    SciTech Connect (OSTI)

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  17. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    SciTech Connect (OSTI)

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  18. Effect of current injection into thin-film Josephson junctions

    SciTech Connect (OSTI)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  19. Selective niobium anodization process for fabricating Josephson tunnel junctions

    SciTech Connect (OSTI)

    Kroger, H.; Smith, L.N.; Jillie, D.W.

    1981-08-01

    A novel process for fabricating refractory sperconducting tunnel junctions is described, which is useful with both deposited and native oxide barriers. The distinguishing feature of the method is that the entire superconductor-barrier-superconductor sandwich is formed before the patterning of any layer. Isolated Josephson junctions are then formed by anodizing through the upper electrode, while the devices themselves are protected by a photoresist mask. Using this process, Nb-Si:H-Nb junctions have been fabricated, whose product of critical current and subgap resistance exceeds 10 mV and whose critical current density varies by about 50% over a 2-in. diameter wafer.

  20. Effect of current injection into thin-film Josephson junctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  1. Coso Junction, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    OpenEI by expanding it. Coso Junction is a city in Inyo County, California. It is in Rose Valley, south of Dunmovin and west of Sugarloaf Mountain.1 Energy Generation...

  2. In the OSTI Collections: Josephson Junctions | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    ... in ferromagnetic Josephson junctions"DoE PAGES. (a) A niobium base layer 150 nanometers thick. (b) A niobium-aluminum-niobium-gold multilayer stack 87.4 nanometers thick. ...

  3. White River Junction, Vermont: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. White River Junction is a census-designated place in Windsor County, Vermont. It falls under...

  4. Manipulating Josephson junctions in thin-films by nearby vortices

    SciTech Connect (OSTI)

    Kogan, V G; Mints, R G

    2014-07-01

    It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

  5. Single-charge detection by an atomic precision tunnel junction

    SciTech Connect (OSTI)

    House, M. G. Peretz, E.; Keizer, J. G.; Hile, S. J.; Simmons, M. Y.

    2014-03-17

    We demonstrate sensitive detection of single charges using a planar tunnel junction 8.5?nm wide and 17.2?nm long defined by an atomically precise phosphorus doping profile in silicon. The conductance of the junction responds to a nearby gate potential and also to changes in the charge state of a quantum dot patterned 52?nm away. The response of this detector is monotonic across the entire working voltage range of the device, which will make it particularly useful for studying systems of multiple quantum dots. The charge sensitivity is maximized when the junction is most conductive, suggesting that more sensitive detection can be achieved by shortening the length of the junction to increase its conductance.

  6. Phase diagram of Josephson junction between

    Office of Scientific and Technical Information (OSTI)

    diagram of Josephson junction betweensandssuperconductors in the dirty limit...

  7. RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN NEAR JUNCTION OF HIGHWAY...

    Office of Legacy Management (LM)

    RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN NEAR JUNCTION OF HIGHWAY 3I AND MILITARY ROAD ... RESULTS OF RADIOLOGTCAL ITEASUREMENfi| TAKEN NEAR JUNCTToN 9F HIGESAY 31 AT.ID MILITARY ...

  8. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    SciTech Connect (OSTI)

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.; Grassman, Tyler J.; McComb, David W.; Myers, Roberto C.

    2015-09-07

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junction within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.

  9. Heterojunction for Multi-Junction Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Solar Photovoltaic Advanced Materials Advanced Materials Find More Like This Return to Search Heterojunction for Multi-Junction Solar Cells Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (1,250 KB) Technology Marketing SummarySandia National Laboratories has created a semiconductor p-n heterojunction for use in forming a photodetector that has applications for use in a multi-junction solar cell and detecting light

  10. High Efficiency Multiple-Junction Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search High Efficiency Multiple-Junction Solar Cells Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (937 KB) Technology Marketing SummarySingle junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific spectral region. Higher efficiency and optical to electrical energy conversion is achieved by stacking

  11. Reviewing the success of intentional flooding of the Grand Canyon

    SciTech Connect (OSTI)

    Wirth, B.D.

    1997-04-01

    A description and evaluation of the results of an intentional flooding experiment at the Grand Canyon are described. The purpose of the 7-day release of flood waters from the Glen Canyon Dam was to determine if managed floods have the ability to predictably restore the riverine environment. A summary of environmental conditions leading to the experiment is provided and flood results are listed. Initial results showed significant improvement in the size and number of the river`s beaches, creation of backwater habitat for endangered species, and no adverse impact to the trout fishery, Indian cultural sites, and other resources.

  12. Statement by Energy Secretary Steven Chu on Today's Grand Opening of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nordex Manufacturing Facility in Jonesboro, Arkansas | Department of Energy Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas October 29, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu issued the following statement on today's grand opening of the Nordex wind turbine manufacturing facility in Jonesboro. The

  13. Media Invitation: 2014 SunShot Grand Challenge Summit and Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Media Invitation: 2014 SunShot Grand Challenge Summit and Peer Review Media Invitation: 2014 SunShot Grand Challenge Summit and Peer Review April 14, 2014 - 4:27pm Addthis Media Invitation: 2014 SunShot Grand Challenge Summit and Peer Review You're Invited: 2014 SunShot Grand Challenge Summit and Peer Review Hear from solar's brightest visionaries about what's on the horizon for the U.S. solar energy industry WASHINGTON, D.C. -- Members of the media are invited to attend

  14. EIS-0344: Grand Coulee-Bell 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action for the construction and operation of the proposed Grand Coulee-Bell 500-kV Transmission Line Project.

  15. Feasibility for Reintroducing Sockeye and Coho Salmon in the Grande Ronde Basin, 1998 Final Report.

    SciTech Connect (OSTI)

    Cramer, Steven P.; Witty, Kenneth L.

    1998-07-01

    A report concerning the feasibility of reintroducing Sockeye Salmon into Wallowa Lake and Coho Salmon into the Grande Ronde River Basin.

  16. EV Everywhere EV Everywhere Grand Challenge- Electric Drive (Power Electronics and Electric Machines) Workshop Agenda

    Broader source: Energy.gov [DOE]

    Agenda for the EV Everywhere Grand Challenge - Electric Drive Workshop on July 24, 2012 at the Doubletree O'Hare, Chicago, IL

  17. EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Attendence List

    Broader source: Energy.gov [DOE]

    Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Golden, CO (United States) Grand Forks Energy Technology Center (United States) Grand Junction Project Office, Grand Junction, CO (United States) HSS Office of Classification ...

  19. SciTech Connect: Your connection to science, technology, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Golden, CO (United States) Grand Forks Energy Technology Center (United States) Grand Junction Project Office, Grand Junction, CO (United States) HSS Office of Classification ...

  20. Geomorphology of plutonium in the Northern Rio Grande

    SciTech Connect (OSTI)

    Graf, W.L.

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

    1. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

      SciTech Connect (OSTI)

      Beach, R.; Burdick, A.

      2014-03-01

      This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

    2. Advanced materials development for multi-junction monolithic photovoltaic devices

      SciTech Connect (OSTI)

      Dawson, L.R.; Reno, J.L.

      1996-07-01

      We report results in three areas of research relevant to the fabrication of monolithic multi-junction photovoltaic devices. (1) The use of compliant intervening layers grown between highly mismatched materials, GaAs and GaP (same lattice constant as Si), is shown to increase the structural quality of the GaAs overgrowth. (2) The use of digital alloys applied to the MBE growth of GaAs{sub x}Sb{sub l-x} (a candidate material for a two junction solar cell) provides increased control of the alloy composition without degrading the optical properties. (3) A nitrogen plasma discharge is shown to be an excellent p-type doping source for CdTe and ZnTe, both of which are candidate materials for a two junction solar cell.

    3. Junction-based field emission structure for field emission display

      DOE Patents [OSTI]

      Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.

      2002-01-01

      A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

    4. Superpoissonian shot noise in organic magnetic tunnel junctions

      SciTech Connect (OSTI)

      Cascales, Juan Pedro; Martinez, Isidoro; Aliev, Farkhad G.; Hong, Jhen-Yong; Lin, Minn-Tsong; Szczepański, Tomasz; Dugaev, Vitalii K.; Barnaś, Józef

      2014-12-08

      Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here, we investigate conductance and shot noise in magnetic tunnel junctions with 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10% and 40%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5–2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. We explain our main findings in terms of a model which includes tunneling through a two level (or multilevel) system, originated from interfacial bonds of the PTCDA molecules. Our results suggest that interfaces play an important role in the control of shot noise when electrons tunnel through organic barriers.

    5. Computer-assisted data acquisition on Josephson junctions

      SciTech Connect (OSTI)

      Pagano, S. ); Costabile, G.; Fedullo, V.

      1989-09-01

      An automatic digital data-acquisition system for the test and characterization of superconducting Josephson tunnel junctions is presented. The key feature is represented by the high degree of interaction of the measurement system with the device under test. This is accomplished by an iterated sequence of data acquisitions, automatic analysis, and subsequent modifications of the control signals in the device. In this way, the basic calibration and the value of the relevant quantities involved with the Josephson junction are automatically determined. A connection with a host computer makes possible more complex data analysis, while the full control of the experiment by a dedicated computer allows the operator to perform nonroutine procedures.

    6. Josephson tunnel junctions with chemically vapor deposited polycrystalline germanium barriers

      SciTech Connect (OSTI)

      Kroger, H.; Jillie, D.W.; Smith, L.N.; Phaneuf, L.E.; Potter, C.N.; Shaw, D.M.; Cukauskas, E.J.; Nisenoff, M.

      1984-03-01

      High quality Josephson tunnel junctions have been fabricated whose tunneling barrier is polycrystalline germanium chemically vapor deposited on a NbN base electrode and covered by a Nb counterelectrode. These junctions have excellent characteristics for device applications: values of V/sub m/ (the product of the critical current and the subgap resistance measured at 2 mV and 4.2 K) ranging between 35--48 mV, ideal threshold curves, a steep current rise at the gap voltage, and Josephson current densities from 100 to 1100 A/cm/sup 2/.

    7. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

      SciTech Connect (OSTI)

      McGowan, Vance R.; Morton, Winston H.

      2008-12-30

      On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by

    8. Salto Grande. [1890-MW project on Vruguay River

      SciTech Connect (OSTI)

      de Hoyos, R.J.

      1980-09-01

      A joint hydroelectric project, the Salto Grande Dam on the Uruguay River, serves six million people in Argentina and Uruguay. The construction day was continuous from April 1974 until the first turbine began on schedule in July 1979. Although planning began in 1890 by individual visionaries who saw the river's potential, serious efforts did not get underway for another 50 years. The project became a technical training school and has built up a recognized management team in the process. Financing became available only after the 1973 oil embargo. The benefits of regional cooperation to develop a common resource enables the two countries to provide water resources, electric power, navigable streams for commerce and recreation, a common highway, and an interconnecting railroad. The cooperative infrastructure established to meet the needs of project personnel has improved living conditions for the area. (DCK)

    9. A Leptophobic Z' And Dark Matter From Grand Unification

      SciTech Connect (OSTI)

      Buckley, Matthew R.; Hooper, Dan; Rosner, Jonathan L.

      2011-09-01

      We explore the phenomenology of Grand Unified Models based on the E_6 group, focusing on the Z' with suppressed couplings to leptons that can appear in such models. We find that this Z' can accommodate the W+dijets anomaly reported by the CDF collaboration. Furthermore, a viable dark matter candidate in the form of a right-handed sneutrino is also present within the fundamental 27-dimensional representation of E_6. Through its sizable couplings to the Z', the dark matter is predicted to possess an elastic scattering cross section with neutrons which can generate the signals reported by the CoGeNT and DAMA/LIBRA collaborations. To avoid being overproduced in the early universe, the dark matter must annihilate to leptons through the exchange of charged or neutral fermions which appear in the 27 of E_6, providing an excellent fit to the gamma ray spectrum observed from the Galactic Center by the Fermi Gamma Ray Space Telescope.

    10. Precision welding cuts downtime at Grand Coulee Dam

      SciTech Connect (OSTI)

      Light, S.; White, E.

      1997-03-01

      The three large 700-MW generators at Grand Coulee Dam--originally built and installed by Canadian General Electric in the late 1970s--are being upgraded using precision welding techniques and leading edge installation technology. These generators suffered from numerous water leaks at and around the bar water connections, resulting in a significant number of forced repair outages that were increasing in frequency. The US Bureau of Reclamation, in conjunction with the Bonneville Power Administration, decided to overhaul these machines. The design from Siemens Power Corp. provided state-of-the-art materials and included a rating increase from 700 to 805 MW, which would make these three machines the highest output single-unit hydrogenerators in the world. The upgrade was to be accomplished with only the replacement of the stator components; there would be no changes to the rotating element. The cost for all three machines is approximately $27.5 million. This project is described in this paper.

    11. Scientific Grand Challenges Workshop Series | U.S. DOE Office of Science

      Office of Science (SC) Website

      (SC) Scientific Grand Challenges Workshop Series Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Featured Content ASCR Discovery ASCR Program Documents ASCR Workshops and Conferences Workshops & Conferences Archive DOE Simulations Summit Scientific Grand Challenges Workshop Series SciDAC Conferences HPC Operations Review

    12. Interaction of Josephson Junction and Distant Vortex in Narrow Thin-Film Superconducting Strips

      SciTech Connect (OSTI)

      Kogan, V. G.; Mints, R. G.

      2014-01-31

      The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010)], who showed that the vortex may turn the junction into ? type. It is shown here that even if the vortex is far away from the junction, it still changes the 0 junction to a ? junction when situated close to the strip edges. Within the approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology of the vortex phase which extends to macroscopic distances of superconducting coherence.

    13. Optimized Triple-Junction Solar Cells Using Inverted Metamorphic Approach (Presentation)

      SciTech Connect (OSTI)

      Geisz, J. F.

      2008-11-01

      Record efficiencies with triple-junction inverted metamorphic designs, modeling useful to optimize, and consider operating conditions before choosing design.

    14. EERE Success Story—Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell

      Broader source: Energy.gov [DOE]

      EERE supported the development of Solar Junction's concentrated photovoltaic technology that set a world record for conversion efficiency.

    15. Performance model assessment for multi-junction concentrating photovoltaic systems.

      SciTech Connect (OSTI)

      Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

      2010-03-01

      Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

    16. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

      SciTech Connect (OSTI)

      Beach, R.; Burdick, A.

      2014-03-01

      This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance. IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations. These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

    17. ALTERNATIVE MATERIALS FOR RAMP-EDGE SNS JUNCTIONS

      SciTech Connect (OSTI)

      Jia, Q.; Fan, Y.

      1999-06-01

      We report on the processing optimization and fabrication of ramp-edge high-temperature superconducting junctions by using alternative materials for both superconductor electrodes and normal-metal barrier. By using Ag-doped YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (Ag:YBCO) as electrodes and a cation-modified compound of (Pr{sub y}Gd{sub 0.6{minus}y})Ca{sub 0.4}Ba{sub 1.6}La{sub 0.4}Cu{sub 3}O{sub 7} (y = 0.4, 0.5, and 0.6) as a normal-metal barrier, high-temperature superconducting Josephson junctions have been fabricated in a ramp-edge superconductor/normal-metal/superconductor (SNS) configuration. By using Ag:YBCO as electrodes, we have found that the processing controllability /reproducibility and the stability of the SNS junctions are improved substantially. The junctions fabricated with these alternative materials show well-defined RSJ-like current vs voltage characteristics at liquid nitrogen temperature.

    18. The chaotic oscillations of a Josephson junction with external magnetic field

      SciTech Connect (OSTI)

      Ma, J.G.; Wolff, I.

      1996-05-01

      Using the Melnikov Method the oscillation of a single Josephson junction with external magnetic field and DC bias is analyzed. Under the external magnetic field the junction can operate in chaos even if there is no bias. The numerical results show that in dependence on some parameters the Josephson junction with external magnetic field will go from stable periodic states to chaotic states.

    19. Grand Junction/New Brunswick Laboratory interlaboratory measurement program. Part I. Evaluation. Part II. Methods manual. [National Uranium Resources Evaluation (NURE)

      SciTech Connect (OSTI)

      Trahey, N.M.; Voeks, A.M.; Soriano, M.D.

      1982-09-01

      This interlaboratory measurement program was conducted to provide a reference data base for comparison of measurements performed using various measurement methods under the National Uranium Resources Evaluation (NURE) Program. The design of the program also included an evaluation of the accuracies of the measurement methods used by the participating laboratories in measuring New Brunswick Laboratory Reference Materials (RMs) 101-A through 110-A, the low level uranium and thorium samples distributed in the program. Finally, consensus values for these RMs, based on participants measurement data, were calculated.

    20. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 2, Appendices: Final environmental impact statement

      SciTech Connect (OSTI)

      1986-12-01

      This volume contains Appendix F--hydrology report, and Appendix G--flood plain and wetland assessment. Contents of the hydrology report include: surface water; ground water; potentially affected hydrogeologic environment-processing site; potentially affected hydrogeologic environment-Cheney reservoir site; potentially affected hydrogeologic environment-Two Road site; and conclusions-ground water.

    1. Antireflection Coating Design for Series Interconnected Multi-Junction Solar Cells

      SciTech Connect (OSTI)

      AIKEN,DANIEL J.

      1999-11-29

      AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub SC}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices.

    2. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

      SciTech Connect (OSTI)

      SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

      2000-05-16

      Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

    3. Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      | Department of Energy Community Comes Out in Full Force for SunShot Grand Challenge Summit Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit May 22, 2014 - 10:13am Addthis Packed House 1 of 12 Packed House An energetic crowd of hundreds of leaders throughout the solar community gathered for the 2014 SunShot Grand Challenge Summit to work together to reduce the costs of solar energy technologies. Image: SunShot Initiative, Energy Department. Solar Tech Forum 2 of 12

    4. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

      SciTech Connect (OSTI)

      1998-04-01

      The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

    5. Highlights from the 2014 SunShot Grand Challenge Summit | Department of

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Energy Highlights from the 2014 SunShot Grand Challenge Summit Highlights from the 2014 SunShot Grand Challenge Summit Addthis Packed House 1 of 12 Packed House An energetic crowd of hundreds of leaders throughout the solar community gathered for the 2014 SunShot Grand Challenge Summit to work together to reduce the costs of solar energy technologies. Image: SunShot Initiative, Energy Department. Solar Tech Forum 2 of 12 Solar Tech Forum Attendees enter the SunShot Summit Technology forum --

    6. Towards understanding junction degradation in cadmium telluride solar cells

      SciTech Connect (OSTI)

      Nardone, Marco

      2014-06-21

      A degradation mechanism in cadmium telluride (CdTe/CdS) solar cells is investigated using time-dependent numerical modeling to simulate various temperature, bias, and illumination stress conditions. The physical mechanism is based on defect generation rates that are proportional to nonequilibrium charge carrier concentrations. It is found that a commonly observed degradation mode for CdTe/CdS solar cells can be reproduced only if defects are allowed to form in a narrow region of the absorber layer close to the CdTe/CdS junction. A key aspect of this junction degradation is that both mid-gap donor and shallow acceptor-type defects must be generated simultaneously in response to photo-excitation or applied bias. The numerical approach employed here can be extended to study other mechanisms for any photovoltaic technology.

    7. Millikelvin cooling by heavy-fermion-based tunnel junctions

      SciTech Connect (OSTI)

      Prest, Martin; Min, Gao; Whall, Terry

      2015-12-28

      This paper addresses a high-performance electron-tunneling cooler based on a novel heavy-fermion/insulator/superconductor junction for millikelvin cooling applications. We show that the cooling performance of an electronic tunneling refrigerator could be significantly improved using a heavy-fermion metal to replace the normal metal in a conventional normal metal/insulator/superconductor junction. The calculation, based on typical parameters, indicates that, for a bath temperature of 300 mK, the minimum cooling temperature of an electron tunneling refrigerator is reduced from around 170 mK to below 50 mK if a heavy-fermion metal is employed in place of the normal metal. The improved cooling is attributed to an enhancement in electron tunneling due to the existence of a resonant density of states at the Fermi level.

    8. Grain boundary and triple junction diffusion in nanocrystalline copper

      SciTech Connect (OSTI)

      Wegner, M. Leuthold, J.; Peterlechner, M.; Divinski, S. V.; Song, X.; Wilde, G.

      2014-09-07

      Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, ?d?, of ?35 and ?44?nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d???35?nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500?D{sub gb} within the temperature interval from 420?K to 470?K.

    9. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells

      SciTech Connect (OSTI)

      Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

      2011-01-01

      We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n{sup ++} Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

    10. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

      SciTech Connect (OSTI)

      Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

      2011-07-01

      We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

    11. Top 5 Reasons to Attend the SunShot Grand Challenge Solar Summit

      Broader source: Energy.gov [DOE]

      Anticipation for the SunShot Grand Challenge Summit is heating up. Register now for the event, which is taking place May 19 to May 22 in Anaheim, California.

    12. Grand Challenge Kicks Off with 34 Entries to Improve ORP Mission

      Broader source: Energy.gov [DOE]

      RICHLAND, Wash. – The 2016 EM Office of River Protection (ORP) Grand Challenge submissions are in, with 34 entries ranging in subject from methods to treat waste in Hanford’s western tank farms to software for waste processing.

    13. Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit

      Broader source: Energy.gov [DOE]

      This week in sunny Anaheim, California, more than 800 solar industry leaders gathered for the 2014 SunShot Grand Challenge Summit. The Summit, launched by the Energy Department’s SunShot Initiative...

    14. EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska

      Broader source: Energy.gov [DOE]

      DOE’s Western Area Power Administration prepared an EIS to evaluate the environmental impacts of interconnecting the proposed Grande Prairie Wind Farm, in Holt County, near O’Neill, Nebraska, to Western’s power transmission system.

    15. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 1999 Annual Report.

      SciTech Connect (OSTI)

      Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D.

      2000-01-01

      This project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Folk John Day and Grande Ronde Rivers, for five years.

    16. Fractional quantum Hall junctions and two-channel Kondo models

      SciTech Connect (OSTI)

      Sandler, Nancy P.; Fradkin, Eduardo

      2001-06-15

      A mapping between fractional quantum Hall (FQH) junctions and the two-channel Kondo model is presented. We discuss this relation in detail for the particular case of a junction of a FQH state at {nu}=1/3 and a normal metal. We show that in the strong coupling regime this junction has a non-Fermi-liquid fixed point. At this fixed point the electron Green{close_quote}s function has a branch cut and the impurity entropy is equal to S=1/2ln2. We construct the space of perturbations at the strong coupling fixed point and find that the dimension of the tunneling operator is 1/2. These properties are strongly reminiscent of the non-Fermi-liquid fixed points of a number of quantum impurity models, particularly the two-channel Kondo model. However we have found that, in spite of these similarities, the Hilbert spaces of these two systems are quite different. In particular, although in a special limit the Hamiltonians of both systems are the same, their Hilbert spaces are not since they are determined by physically distinct boundary conditions. As a consequence the spectrum of operators in the two problems is different.

    17. EV Everywhere Grand Challenge Kick-off Parameters and Analysis | Department

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      of Energy off Parameters and Analysis EV Everywhere Grand Challenge Kick-off Parameters and Analysis Presentation at the EV Everywhere Grand Challenge Kick-Off meeting held on June 21, 2012 at the Hyatt Regency, Dearborn, MI. 4-jake.pdf (464.38 KB) More Documents & Publications EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework EV Everywhere Battery Workshop: Preliminary Target-Setting Framework EV Everywhere Consumer/Charging Workshop: Target-Setting Framework

    18. A GRAND DESIGN FOR GALAXY CLUSTERS: CONNECTIONS AND PREDICTIONS

      SciTech Connect (OSTI)

      Cavaliere, A.; Lapi, A.; Fusco-Femiano, R.

      2011-11-20

      We analyze with our entropy-based Supermodel a library of 12 galaxy clusters featuring extended X-ray observations of their intracluster plasma (ICP). The few intrinsic parameters of the model-basically, the central level and the outer slope of the entropy profile-enable us to uniformly derive not only robust snapshots of the ICP thermal state, but also the 'concentration' parameter marking the age of the host dark matter (DM) halo. We test these profiles for consistency with numerical simulations and observations. We find the central and the outer entropy correlate, so that these clusters split into two main classes defined on the basis of low (LE) or high entropy (HE) conditions prevailing throughout the ICP. We also find inverse correlations between the central/outer entropy and the halo concentration. We interpret these in terms of mapping the ICP progress on timescales around 5 Gyr toward higher concentrations, under the drive of the DM halo development. The progress proceeds from HE clusters to LE clusters, toward states of deeper entropy erosion by radiative cooling in the inner regions and of decreasing outer entropy production as the accretion peters out. We propose these radial and time features constitute a cluster Grand Design that we use here to derive a number of predictions. For HE clusters we predict sustained outer temperature profiles. For LEs we expect the outer entropy ramp to bend over; hence the temperature declines before steepening at low z; this feature goes together with an increasing turbulent support, a condition that can be directly probed with the Sunyaev-Zel'dovich effect. We finally discuss the looming out of two intermediate subsets: a wiggled HE-tilde at low z that features central temperature profiles retaining imprints of entropy discharged by active galactic nuclei or deep mergers and high-z LEs where the cosmogony/cosmology had little time to enforce a sharp outer entropy bending.

    19. High performance computing and communications grand challenges program

      SciTech Connect (OSTI)

      Solomon, J.E.; Barr, A.; Chandy, K.M.; Goddard, W.A., III; Kesselman, C.

      1994-10-01

      The so-called protein folding problem has numerous aspects, however it is principally concerned with the {ital de novo} prediction of three-dimensional (3D) structure from the protein primary amino acid sequence, and with the kinetics of the protein folding process. Our current project focuses on the 3D structure prediction problem which has proved to be an elusive goal of molecular biology and biochemistry. The number of local energy minima is exponential in the number of amino acids in the protein. All current methods of 3D structure prediction attempt to alleviate this problem by imposing various constraints that effectively limit the volume of conformational space which must be searched. Our Grand Challenge project consists of two elements: (1) a hierarchical methodology for 3D protein structure prediction; and (2) development of a parallel computing environment, the Protein Folding Workbench, for carrying out a variety of protein structure prediction/modeling computations. During the first three years of this project, we are focusing on the use of two proteins selected from the Brookhaven Protein Data Base (PDB) of known structure to provide validation of our prediction algorithms and their software implementation, both serial and parallel. Both proteins, protein L from {ital peptostreptococcus magnus}, and {ital streptococcal} protein G, are known to bind to IgG, and both have an {alpha} {plus} {beta} sandwich conformation. Although both proteins bind to IgG, they do so at different sites on the immunoglobin and it is of considerable biological interest to understand structurally why this is so. 12 refs., 1 fig.

    20. Joint measurement of current-phase relations and transport properties of hybrid junctions using a three junctions superconducting quantum interference device

      SciTech Connect (OSTI)

      Basset, J.; Delagrange, R.; Weil, R.; Kasumov, A.; Bouchiat, H.; Deblock, R.

      2014-07-14

      We propose a scheme to measure both the current-phase relation and differential conductance dI/dV of a superconducting junction, in the normal and the superconducting states. This is done using a dc Superconducting Quantum Interference Device with two Josephson junctions in parallel with the device under investigation and three contacts. As a demonstration, we measure the current-phase relation and dI/dV of a small Josephson junction and a carbon nanotube junction. In this latter case, in a regime where the nanotube is well conducting, we show that the non-sinusoidal current phase relation we find is consistent with the theory for a weak link, using the transmission extracted from the differential conductance in the normal state. This method holds great promise for future investigations of the current-phase relation of more exotic junctions.

    1. A Model for the Behavior of Magnetic Tunnel Junctions

      SciTech Connect (OSTI)

      Bryan John Baker

      2003-08-05

      A magnetic tunnel junction is a device that changes its electrical resistance with a change in an applied magnetic field. A typical junction consists of two magnetic electrodes separated by a nonmagnetic insulating layer. The magnetizations of the two electrodes can have two possible extreme configurations, parallel and antiparallel. The antiparallel configuration is observed to have the higher measured resistance and the parallel configuration has the lower resistance. To switch between these two configurations a magnetic field is applied to the device which is primarily used to change the orientation of the magnetization of one electrode usually called the free layer, although with sufficient high magnetic field the orientation of the magnetizations of both of the electrodes can be changed. The most commonly used models for describing and explaining the electronic behavior of tunnel junctions are the Simmons model and the Brinkman model. However, both of these models were designed for simple, spin independent tunneling. The Simmons model does not address the issue of applied magnetic fields nor does it address the form of the electronic band structure in the metallic electrodes, including the important factor of spin polarization. The Brinkman model is similar, the main difference between the two models being the shape of the tunneling barrier potential between the two electrodes. Therefore, the research conducted in this thesis has developed a new theoretical model that addresses these important issues starting from basic principles. The main features of the new model include: the development of equations for true spin dependent tunneling through the insulating barrier, the differences in the orientations of the electrode magnetizations on either side of the barrier, and the effects of the density of states function on the behavior of the junction. The present work has explored densities of states that are more realistic than the simplified free electron density

    2. Process For Direct Integration Of A Thin-Film Silicon P-N Junction Diode With A Magnetic Tunnel Junction

      DOE Patents [OSTI]

      Toet, Daniel; Sigmon, Thomas W.

      2005-08-23

      A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

    3. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

      DOE Patents [OSTI]

      Toet, Daniel; Sigmon, Thomas W.

      2003-01-01

      A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

    4. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

      DOE Patents [OSTI]

      Toet, Daniel; Sigmon, Thomas W.

      2004-12-07

      A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

    5. Shunt-capacitor-assisted synchronization of oscillations in intrinsic Josephson junctions stack.

      SciTech Connect (OSTI)

      Martin, I.; Halasz, G. B.; Bulaevskii, L. N.; Koshelev, A. E.; Materials Science Division; LANL

      2010-08-06

      We show that a shunt capacitor, by coupling each Josephson junction to all the other junctions, stabilizes synchronized oscillations in an intrinsic Josephson junction stack biased by a dc current. This synchronization mechanism is similar to the previously discussed radiative coupling between junctions, however, it is not defined by the geometry of the stack. It is particularly important in crystals with smaller numbers of junctions (where the radiation coupling is weak), and is comparable with the effect of strong super-radiation in crystals with many junctions. The shunt also helps to enter the phase-locked regime in the beginning of the oscillations, after switching on the bias current. Furthermore, it may be used to tune radiation power, which drops as the shunt capacitance increases.

    6. Voltage dependence of the differential capacitance of a p{sup +}-n junction

      SciTech Connect (OSTI)

      Shekhovtsov, N. A.

      2013-04-15

      The dependences of the differential capacitance and current of a p{sup +}-n junction with a uniformly doped n region on the voltage in the junction region are calculated. The p{sup +}-n junction capacitance controls the charge change in the junction region taking into account a change in the electric field of the quasi-neutral n region and a change in its bipolar drift mobility with increasing excess charge-carrier concentration. It is shown that the change in the sign of the p{sup +}-n junction capacitance with increasing injection level is caused by a decrease in the bipolar drift mobility as the electron-hole pair concentration in the n region increases. It is shown that the p{sup +}-n junction capacitance decreases with increasing reverse voltage and tends to a constant positive value.

    7. GaInNAs Junctions for Next-Generation Concentrators: Progress and Prospects

      SciTech Connect (OSTI)

      Friedman, D. J.; Ptak, A. J.; Kurtz, S. R.; Geisz, J. F.; Kiehl, J.

      2005-08-01

      We discuss progress in the development of GaInNAs junctions for application in next-generation multijunction concentrator cells. A significant development is the demonstration of near-100% internal quantum efficiencies in junctions grown by molecular-beam epitaxy. Testing at high currents validates the compatibility of these devices with concentrator operation. The efficiencies of several next-generation multijunction structures incorporating these state-of-the-art GaInNAs junctions are projected.

    8. Niobium nitride-niobium Josephson tunnel junctions with sputtered amorphous silicon barriers

      SciTech Connect (OSTI)

      Jillie, D.W.; Kroger, H.; Smith, L.N.; Cukauskas, E.J.; Nisenoff, M.

      1982-04-15

      Niobium nitride-niobium Josephson tunnel junctions with sputtered amorphous silicon barriers (NbN-..cap alpha..Si-Nb) have been prepared using processing that is fully compatible with integrated circuit fabrication. These junctions are of suitable quality and uniformity for digital circuit and S-I-S detector applications. The junction quality depends critically upon the properties of the NbN surface, and seems to correlate well with the UV/visible reflectivity of this surface.

    9. Proper Orthogonal Decomposition of the Flow in a T-Junction ...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      T-Junction (In: Advances in Nuclear Power Plants) Authors: Merzari, E., Pointer, W.D., ... Congress on Advances in Nuclear Power Plants 2010 (ICAPP 2010) Publisher: Curran ...

    10. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell January 5, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and...

    11. AmeriFlux US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Randerson, James [University of California, Irvine

      2016-01-01

      This is the AmeriFlux version of the carbon flux data for the site US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction. Site Description - The Delta Junction 1920 Control site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. In 2001, total aboveground biomass consisted almost entirely of black spruce (Picea mariana).

    12. Enhancement of tunnel magnetoresistance in magnetic tunnel junction by a superlattice barrier

      SciTech Connect (OSTI)

      Chen, C. H.; Hsueh, W. J.

      2014-01-27

      Tunnel magnetoresistance of magnetic tunnel junction improved by a superlattice barrier composed of alternate layers of a nonmagnetic metal and an insulator is proposed. The forbidden band of the superlattice is used to predict the low transmission range in the superlattice barrier. By forbidding electron transport in the anti-parallel configuration, the tunnel magnetoresistance is enhanced in the superlattice junction. The results show that the tunnel magnetoresistance ratio for a superlattice magnetic tunnel junction is greater than that for traditional single or double barrier junctions.

    13. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell January 5, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and ...

    14. Engineering ferroelectric tunnel junctions through potential profile shaping

      SciTech Connect (OSTI)

      Boyn, S.; Garcia, V. Fusil, S.; Carrtro, C.; Garcia, K.; Collin, S.; Deranlot, C.; Bibes, M.; Barthlmy, A.

      2015-06-01

      We explore the influence of the top electrode materials (W, Co, Ni, Ir) on the electronic band profile in ferroelectric tunnel junctions based on super-tetragonal BiFeO{sub 3}. Large variations of the transport properties are observed at room temperature. In particular, the analysis of current vs. voltage curves by a direct tunneling model indicates that the metal/ferroelectric interfacial barrier height increases with the top-electrode work function. While larger metal work functions result in larger OFF/ON ratios, they also produce a large internal electric field which results in large and potentially destructive switching voltages.

    15. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.

      SciTech Connect (OSTI)

      Hoffnagle, Timothy; Carmichael, Richard; Noll, William

      2003-12-01

      The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resulted in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the index survey

    16. The Mercury Export Ban Act of 2008...

      Office of Environmental Management (EM)

      Statement (Mercury Storage EIS) DOE Grand Junction Disposal Site, CO The Grand Junction Disposal Site is located on DOE-owned land, 18 miles southeast of Grand Junction, Colorado. ...

    17. Grand Challenges in Modeling, Simulation and Analysis: Extraction and Visualization of Power Systems

      SciTech Connect (OSTI)

      Fernandez, Steven J; Omitaomu, Olufemi A

      2010-01-01

      Threats to the national electric power grid often require the coupling of real-time state data with look-ahead or forecasting models to provide timely disruption warnings. However, successful accomplishment of this capability presents a grand challenge in modeling, simulation, and analysis. Analysis of inter-area oscillatory modes may provide a new path to anticipate power system stability and address this grand challenge. An algorithm is presented for the identification and analysis of such modes from high resolution phasor measurement data that might indicate a pathway to meet this grand challenge. The process outlined includes data collection, conditioning, extraction of the primary oscillatory frequency, and determination of participating areas of the system.

    18. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

      SciTech Connect (OSTI)

      McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

      2004-01-01

      Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks

    19. Inverted GaInP/(In)GaAs/InGaAs Triple-Junction Solar Cells with Low-Stress Metamorphic Bottom Junctions: Preprint

      SciTech Connect (OSTI)

      Geisz, J. F.; Kurtz, S. R.; Wanlass, M. W.; Ward, J. S.; Duda, A.; Friedman, D. J.; Olson, J. M.; McMahon, W. E.; Moriarty, T. E.; Kiehl, J. T.; Romero, M. J.; Norman, A. G.; Jones, K. M.

      2008-05-01

      We demonstrate high efficiency performance in two ultra-thin, Ge-free III-V semiconductor triple-junction solar cell device designs grown in an inverted configuration. Low-stress metamorphic junctions were engineered to achieve excellent photovoltaic performance with less than 3 x 106 cm-2 threading dislocations. The first design with band gaps of 1.83/1.40/1.00 eV, containing a single metamorphic junction, achieved 33.8% and 39.2% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 131 suns, respectively. The second design with band gaps of 1.83/1.34/0.89 eV, containing two metamorphic junctions achieved 33.2% and 40.1% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 143 suns, respectively.

    20. Josephson tunnel junction with polycrystalline silicon, germanium or silicon-germanium alloy tunneling barrier

      SciTech Connect (OSTI)

      Kroger, H.

      1980-09-02

      A Josephson tunnel junction device having niobium nitride superconductive electrodes includes a polycrystalline semiconductor tunnelling barrier therebetween comprised of silicon, germanium or an alloy thereof preferably deposited on the lower superconductive electrodes by chemical vapor deposition. The barrier height of the junction is precisely controlled by precision doping of the semiconductor material.

    1. Low temperature junction growth using hot-wire chemical vapor deposition

      SciTech Connect (OSTI)

      Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

      2014-02-04

      A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

    2. SunShot Grand Challenge Summit: Bright Outlook to Achieve SunShot Goal |

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Department of Energy Grand Challenge Summit: Bright Outlook to Achieve SunShot Goal SunShot Grand Challenge Summit: Bright Outlook to Achieve SunShot Goal May 30, 2014 - 2:15pm Addthis Watch the video above to learn more about the Energy Department's SunShot Initiative, a national collaborative effort to make solar energy cost-competitive with other forms of electricity. Minh Le Minh Le Deputy Director, Solar Energy Technologies Office Last week, hundreds of solar energy leaders gathered in

    3. SunShot Shoots for the Moon with First Grand Challenge Event | Department

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      of Energy Shoots for the Moon with First Grand Challenge Event SunShot Shoots for the Moon with First Grand Challenge Event May 23, 2012 - 11:40am Addthis The Energy Department's SunShot Initiative focuses on making solar electricity cost-competitive by the end of the decade. | Photo courtesy of Dennis Schroeder/NREL. The Energy Department's SunShot Initiative focuses on making solar electricity cost-competitive by the end of the decade. | Photo courtesy of Dennis Schroeder/NREL. Ramamoorthy

    4. Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      A123 Systems Battery Plant | Department of Energy to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant September 10, 2010 - 12:00am Addthis Washington D.C. - This Monday, U.S. Energy Secretary Steven Chu will speak at the dedication ceremony for the largest lithium-ion automotive battery production facility in North America. Funded in part by $249 million from the

    5. Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      as a Feedstock | Department of Energy for Project LIBERTY: Nation's First Plant to Use Corn Waste as a Feedstock Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste as a Feedstock August 28, 2014 - 12:33pm Addthis POET-DSM's Project LIBERTY in Emmetsburg, Iowa, will celebrate its grand opening September 3, 2014, becoming the first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock. Developed through a joint venture between POET LLC in Sioux

    6. Restoring The Azimuthal Symmetry Of Charged Particle Lateral Density In The Range Of KASCADE-Grande

      SciTech Connect (OSTI)

      Sima, O.; Rebel, H.; Apel, W. D.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.

      2010-11-24

      KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located in Karlsruhe Institute of Technology (Campus North), Germany. An important observable for analyzing the EAS is the lateral density of charged particles in the intrinsic shower plane. This observable is deduced from the basic information provided by the Grande scintillators - the energy deposit - first in the observation plane, by using a Lateral Energy Correction Function (LECF), then in the intrinsic shower plane, by applying an adequate mapping procedure. In both steps azimuthal.

    7. Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      A123 Systems Battery Plant | Department of Energy to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant September 10, 2010 - 12:00am Addthis Washington D.C. - This Monday, U.S. Energy Secretary Steven Chu will speak at the dedication ceremony for the largest lithium-ion automotive battery production facility in North America. Funded in part by $249 million from the

    8. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Program, 2000 Annual Report.

      SciTech Connect (OSTI)

      Carmichael, Richard W.

      2003-03-01

      Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2000.

    9. Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.

      SciTech Connect (OSTI)

      Merker, Christopher

      1993-04-01

      This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

    10. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

      SciTech Connect (OSTI)

      Imtiaz, Atif; Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel; Weber, Joel C.; Coakley, Kevin J.

      2014-06-30

      We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ?}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ?}? effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ?} images.

    11. Dislocation Dynamics Simulations of Junctions in Hexagonal Close-Packed Crystals

      SciTech Connect (OSTI)

      Wu, C; Aubry, S; Chung, P; Arsenlis, A

      2011-12-05

      The formation and strength of dislocations in the hexagonal closed packed material beryllium are studied through dislocation junctions and the critical stress required to break them. Dislocation dynamics calculations (using the code ParaDiS) of junction maps are compared to an analytical line tension approximation in order to validate our model. Results show that the two models agree very well. Also the critical shear stress necessary to break 30{sup o} - 30{sup o} and 30{sup o} - 90{sup o} dislocation junctions is computed numerically. Yield surfaces are mapped out for these junctions to describe their stability regions as function of resolved shear stresses on the glide planes. The example of two non-coplanar binary dislocation junctions with slip planes [2-1-10] (01-10) and [-12-10] (0001) corresponding to a prismatic and basal slip respectively is chosen to verify and validate our implementation.

    12. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

      SciTech Connect (OSTI)

      Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; Fringer, Oliver B.; Monismith, Stephen G.

      2014-12-17

      In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Doppler Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.

    13. Laboratory instrumentation and techniques for characterizing multi-junction solar cells for space applications

      SciTech Connect (OSTI)

      Woodyard, J.R.

      1995-10-01

      Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. The authors report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to `fit` the spectral irradiance of the dual-source solar simulator to WRL AMO data.

    14. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; Fringer, Oliver B.; Monismith, Stephen G.

      2014-12-17

      In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

    15. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

      SciTech Connect (OSTI)

      Li, Zhao; Jin, Zhu-Qiu

      2012-08-31

      Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC

    16. Updated Radiation Exhibit Unveiled at Math and Science Center...

      Office of Environmental Management (EM)

      Updated Radiation Exhibit Unveiled at Math and Science Center in Grand Junction, Colorado Updated Radiation Exhibit Unveiled at Math and Science Center in Grand Junction, Colorado ...

    17. shippip.PDF

      Office of Legacy Management (LM)

      Remedial Action (UMTRA) Project Site February 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed under DOE Contract No. ...

    18. Quarterly Progress Report, 4.5 Acre Site April through June 2003

      Office of Legacy Management (LM)

      Acre Site April through June 2003 July 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number ...

    19. Office of Legacy Management | Department of Energy

      Office of Environmental Management (EM)

      Office of Legacy Management Fernald Preserve, Ohio Fernald Preserve, Ohio Read more Grand Junction, Colorado, Site Grand Junction, Colorado, Site Read more National Environmental ...

    20. n0052300-4_5 acre.doc

      Office of Legacy Management (LM)

      Site January through March 2002 April 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number ...

    1. CONTACT LIST Records Management Field Officers (RMFOs) PRGM

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      ... LLNL Rantz, Nicole Lawrence Livermore National Laboratory Contractor Livermore, CA 925-423-7282 rantz1@llnl.gov LM Gueretta, Jeanie Grand Junction Federal Grand Junction, CO ...

    2. Microsoft Word - U0186500.doc

      Office of Legacy Management (LM)

      New Mexico, UMTRA Site September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number ...

    3. High School Students Gear Up for Battle of the Brains

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Pueblo Pueblo Centennial High School Pueblo Central High School Pueblo South High School Other areas Granada High School - Granada Grand Junction High School - Grand Junction Lewis ...

    4. Students From Highlands Ranch Triumph in Colorado Science Bowl

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Highlands Ranch; Grand Junction High School, Grand Junction; Pueblo South High School, Pueblo; Christian Fellowship High School, Lakewood and Doherty High School, Colorado Springs. ...

    5. EIS-0423: Final Environmental Impact Statement | Department of...

      Office of Environmental Management (EM)

      socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, ...

    6. Other Participants 2000 | U.S. DOE Office of Science (SC)

      Office of Science (SC) Website

      , PA Georgetown Day School , Washington , DC Glencoe High School , Hillsboro , OR Grand Junction High School, Grand Junction, CO Hanford High School , Richland , WA Huron High ...

    7. Finding

      Office of Legacy Management (LM)

      Finding of No Significant Impact Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) September 1999 U.S. Department of Energy Grand Junction ...

    8. LM Program Update Newsletter

      Energy Savers [EERE]

      Updated Radiation Exhibit Unveiled at Math and Science Center in Grand Junction, Colorado ... Goal 6 Updated Radiation Exhibit Unveiled at Math and Science Center in Grand Junction, ...

    9. Cooperative Research between NREL and Solar Junction Corp: Cooperative Research and Development Final Report, CRADA Number CRD-08-306

      SciTech Connect (OSTI)

      Friedman, D.

      2015-03-01

      NREL and Solar Junction Corp. will perform cooperative research on materials and devices that are alternatives to standard approaches with the goal of improving solar cell efficiency while lowering cost. The general purpose of this work is to model the performance of a multi-junction concentrator cell of Solar Junction, Inc. design under normal concentrator operating conditions.

    10. Chemical Fabrication of Heterometallic Nanogaps for Molecular Transport Junctions

      SciTech Connect (OSTI)

      Chen, Xiaodong; Yeganeh, Sina; Qin, Lidong; Li, Shuzhou; Xue, Can; Braunschweig, Adam B.; Schatz, George C.; Ratner, Mark A.; Mirkin, Chad A.

      2009-01-01

      We report a simple and reproducible method for fabricating heterometallic nanogaps, which are made of two different metal nanorods separated by a nanometer-sized gap. The method is based upon on-wire lithography, which is a chemically enabled technique used to synthesize a wide variety of nanowire-based structures (e.g., nanogaps and disk arrays). This method can be used to fabricate pairs of metallic electrodes, which exhibit distinct work functions and are separated by gaps as small as 2 nm. Furthermore, we demonstrate that a symmetric thiol-terminated molecule can be assembled into such heterometallic nanogaps to form molecular transport junctions (MTJs) that exhibit molecular diode behavior. Theoretical calculations demonstrate that the coupling strength between gold and sulfur (Au-S) is 2.5 times stronger than that of Pt-S. In addition, the structures form Raman hot spots in the gap, allowing the spectroscopic characterization of the molecules that make up the MTJs.

    11. Performance model assessment for multi-junction concentrating photovoltaic systems.

      SciTech Connect (OSTI)

      Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

      2010-03-01

      Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

    12. Fluxons in a triangular set of coupled long Josephson junctions

      SciTech Connect (OSTI)

      Yukon, Stanford P.; Malomed, Boris A.

      2015-09-15

      We report results of an analysis of the dynamics of magnetic flux solitons in the system of three long Josephson junctions between three bulk superconductors that form a prism. The system is modeled by coupled sine-Gordon equations for the phases of the junctions. The Aharonov-Bohm constraint takes into account the axial magnetic flux enclosed by the prism and reduces the system from three independent phases to two. The equations of motion for the phases include dissipative terms, and a control parameter δ which accounts for the deviation of the enclosed flux from half a quantum. Analyzing the effective potential of the coupled equations, we identify different species of topological and non-topological phase solitons (fluxons) in this system. In particular, subkinks with fractional topological charges ±1/3 and ±2/3, confined inside integer-charge fluxons, may be mapped onto the root diagrams for mesons and baryons in the original quark model of hadrons. Solutions for straight-line kinks and for two types of non-topological solitons are obtained in an explicit analytical form. Numerical tests demonstrate that the former species is unstable against breakup into pairs of separating single-fluxon kinks. The non-topological kinks feature metastability, eventually breaking up into fluxon-antifluxon pairs. Free fractional-fluxon kinks, that connect different potential minima and are, accordingly, pulled by the potential difference, are also considered. Using the momentum-balance method, we predict the velocity at which these kinks should move in the presence of the dissipation. Numerical tests demonstrate that the analysis predicts the velocity quite closely. Higher-energy static solutions for all of the stable kink types mentioned above, as well as kinks connecting false vacua, are found by means of the shooting method. Inelastic collisions among the stable fractional and single-fluxon kinks are investigated numerically.

    13. Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.

      SciTech Connect (OSTI)

      Ashley, Paul

      1992-06-01

      The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

    14. Biofuels and Sustainable Development: An Executive Session on the Grand Challenges of the Sustainability Transition

      SciTech Connect (OSTI)

      Lee, Henry; Clark, William C.; Devereaux, Charan

      2008-05-20

      This report is the result of the second in a series of intense workshops and study sessions on Grand Challenges of the Sustainability Transition, organized by the Sustainability Science Program at Harvard University, hosted by Venice International University, and supported by the Italian Ministry of Environment, Land and Sea.

    15. Recovery sequences for a station blackout accident at the Grand Gulf Nuclear Station

      SciTech Connect (OSTI)

      Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

      1995-12-31

      Recovery sequences for a low-pressure, short term, station blackout severe accident at the Grand Gulf power plant have been investigated using the computer code MELCOR, version 1.8.3 PN. This paper investigates the effect of reflood timing and mass flow rate on accident recovery.

    16. Project Reports for Grand Traverse Band of Ottawa and Chippewa Indians- 2005 Project

      Office of Energy Efficiency and Renewable Energy (EERE)

      The Grand Traverse Band of Ottawa and Chippewa Indians (GTB) will conduct a feasibility study to determine the cost effectiveness and other economic, environmental, cultural, and social benefits of maximizing the diversity of energy sources used at GTB facilities. This includes an assessment of energy conservation measures as well as renewable energy sources such as wind, solar, and biomass.

    17. EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles

      Office of Energy Efficiency and Renewable Energy (EERE)

      EV Everywhere is a Clean Energy Grand Challenge to have the U.S. become the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

    18. EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington

      Broader source: Energy.gov [DOE]

      Bonneville Power Administration prepared this EA to evaluate potential environmental impacts of rebuilding approximately 28 miles of the Grand Coulee-Creston No. 1 115-kilovolt (kV) transmission line between Coulee Dam in Grant County and Creston in Lincoln County, Washington.

    19. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1999 Annual Report.

      SciTech Connect (OSTI)

      Carmichael, Richard W.

      2003-03-01

      Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next year's work.

    20. Grand Opening of Abengoa’s Biorefinery: Nation’s Third Commercial-Scale Facility

      Broader source: Energy.gov [DOE]

      The nation’s third commercial-scale cellulosic ethanol biorefinery celebrates its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic hydrolysis process which turns cellulosic biomass into fermentable sugars that are then converted into transportation fuels.

    1. Comparative flow measurements: Grand Coulee pumping-generating plant unit P/G9. Final report

      SciTech Connect (OSTI)

      Heigel, L.; Lewey, A.B.; Greenwood, J.B.

      1986-10-01

      In extensive testing, two acoustic flow measurement systems compared well in accuracy and repeatability with conventional methods at a power plant at Grand Coulee Dam. Acoustic flow measurement systems offer utilities an inexpensive, real-time method for optimizing hydro plant efficiency.

    2. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

      DOE Patents [OSTI]

      Madan, A.

      1984-12-10

      A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

    3. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

      SciTech Connect (OSTI)

      Zhang, Xiang-Hua [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Department of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411101 (China); Li, Xiao-Fei, E-mail: xfli@theochem.kth.se [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn; Xu, Liang; Luo, Kai-Wu [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China)

      2014-03-10

      Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics.

    4. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

      SciTech Connect (OSTI)

      Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya

      2004-10-11

      A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J{sub P}) and valley current (J{sub V}) densities should be greater than the short-circuit current density (J{sub sc}) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J{sub P}) and valley current density (J{sub V}) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios.

    5. Method And Apparatus For Reducing Sample Dispersion In Turns And Junctions Of Micro-Channel Systems

      DOE Patents [OSTI]

      Griffiths, Stewart K. , Nilson, Robert H.

      2004-05-11

      What is disclosed pertains to improvement in the performance of microchannel devices by providing turns, wyes, tees, and other junctions that produce little dispersion of a sample as it traverses the turn or junction. The reduced dispersion results from contraction and expansion regions that reduce the cross-sectional area over some portion of the turn or junction. By carefully designing the geometries of these regions, sample dispersion in turns and junctions is reduced to levels comparable to the effects of ordinary diffusion. The low dispersion features are particularly suited for microfluidic devices and systems using either electromotive force, pressure, or combinations thereof as the principle of fluid transport. Such microfluidic devices and systems are useful for separation of components, sample transport, reaction, mixing, dilution or synthesis, or combinations thereof.

    6. Technology Solutions Case Study: New Insights for Improving the Designs of Flexible Duct Junction Boxes

      SciTech Connect (OSTI)

      2014-01-01

      In this project, IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance.

    7. A Manufacturing Cost Analysis Relevant to Single- and Dual-Junction...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      A Manufacturing Cost Analysis Relevant to Single- and Dual-Junction Photovoltaic Cells Fabricated with III-Vs and III-Vs Grown on Silicon A Manufacturing Cost Analysis Relevant to ...

    8. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

      SciTech Connect (OSTI)

      Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; Garca, Ivn

      2014-09-26

      Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

    9. Materials en Multi-junction Solar Cells to Push CPV Efficiencies...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ceem.ucsb.edurss News and Events - Center for Energy Efficient Materials en Multi-junction Solar Cells to Push CPV Efficiencies Beyond 50% http:www.compoundsemiconductor.net...

    10. Highly efficient organic multi-junction solar cells with a thiophene based donor material

      SciTech Connect (OSTI)

      Meerheim, Rico Krner, Christian; Leo, Karl

      2014-08-11

      The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

    11. AmeriFlux US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Randerson, James [University of California, Irvine

      2016-01-01

      This is the AmeriFlux version of the carbon flux data for the site US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction. Site Description - The Delta Junction 1987 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Granite Creek fire burned ~20,000 ha of black spruce (Picea mariana) during 1987. Approximately half of the dead boles remained upright in 2004, while the other half had fallen over or had become entangled with other boles.

    12. AmeriFlux US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Randerson, James [University of California, Irvine

      2016-01-01

      This is the AmeriFlux version of the carbon flux data for the site US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction. Site Description - The Delta Junction 1999 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Donnelly Flats fire burned ~7,600 ha of black spruce (Picea mariana) during June 1999. The boles of the black spruce remained standing 3 years after the fire. 70% of the surface was not covered by vascular plants.

    13. Low-bias negative differential resistance effect in armchair graphene nanoribbon junctions

      SciTech Connect (OSTI)

      Li, Suchun; Gan, Chee Kwan; Son, Young-Woo; Feng, Yuan Ping; Quek, Su Ying

      2015-01-05

      Graphene nanoribbons with armchair edges (AGNRs) have bandgaps that can be flexibly tuned via the ribbon width. A junction made of a narrower AGNR sandwiched between two wider AGNR leads was recently reported to possess two perfect transmission channels close to the Fermi level. Here, we report that by using a bias voltage to drive these transmission channels into the gap of the wider AGNR lead, we can obtain a negative differential resistance (NDR) effect. Owing to the intrinsic properties of the AGNR junctions, the on-set bias reaches as low as ∼0.2 V and the valley current almost vanishes. We further show that such NDR effect is robust against details of the atomic structure of the junction, substrate, and whether the junction is made by etching or by hydrogenation.

    14. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

      DOE Patents [OSTI]

      Wanlass, Mark W.

      1994-01-01

      A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

    15. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) Four-Junction Solar Cell

      SciTech Connect (OSTI)

      Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

      2006-01-01

      We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga{sub 0.5}In{sub 0.5} P/GaAs/Ga{sub 0.75}In{sub 0.25}As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga{sub 0.75}In{sub 0.25}As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap Ga{sub x}In{sub 1-x}As fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the Ga{sub x}In{sub 1-x}As fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

    16. Quantum interference in thermoelectric molecular junctions: A toy model perspective

      SciTech Connect (OSTI)

      Nozaki, Daijiro E-mail: research@nano.tu-dresden.de; Avdoshenko, Stas M.; Sevinçli, Hâldun; Cuniberti, Gianaurelio

      2014-08-21

      Quantum interference (QI) phenomena between electronic states in molecular circuits offer a new opportunity to design new types of molecular devices such as molecular sensors, interferometers, and thermoelectric devices. Controlling the QI effect is a key challenge for such applications. For the development of single molecular devices employing QI effects, a systematic study of the relationship between electronic structure and the quantum interference is needed. In order to uncover the essential topological requirements for the appearance of QI effects and the relationship between the QI-affected line shape of the transmission spectra and the electronic structures, we consider a homogeneous toy model where all on-site energies are identical and model four types of molecular junctions due to their topological connectivities. We systematically analyze their transmission spectra, density of states, and thermoelectric properties. Even without the degree of freedom for on-site energies an asymmetric Fano peak could be realized in the homogeneous systems with the cyclic configuration. We also calculate the thermoelectric properties of the model systems with and without fluctuation of on-site energies. Even under the fluctuation of the on-site energies, the finite thermoelectrics are preserved for the Fano resonance, thus cyclic configuration is promising for thermoelectric applications. This result also suggests the possibility to detect the cyclic configuration in the homogeneous systems and the presence of the QI features from thermoelectric measurements.

    17. Electron transport in molecular junctions with graphene as protecting layer

      SciTech Connect (OSTI)

      Hüser, Falco; Solomon, Gemma C.

      2015-12-07

      We present ab initio transport calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the electronic transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of the transmission. On the other hand, we see that our results are stable with respect to various defects in the graphene. For weakly physiosorbed molecules, no signs of interaction with the graphene are evident, so the transport properties are determined by offresonant tunnelling between the gold leads across an extended structure that includes the molecule itself and the additional graphene layer. Compared with pure gold electrodes, calculated conductances are about one order of magnitude lower due to the increased tunnelling distance. Relative differences upon changing the end group and the length of the molecule on the other hand, are similar.

    18. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

      SciTech Connect (OSTI)

      Beach, Robert; Prahl, Duncan; Lange, Rich

      2013-12-01

      IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

    19. Spin Josephson effect in topological superconductor-ferromagnet junction

      SciTech Connect (OSTI)

      Ren, C. D.; Wang, J.

      2014-03-21

      The composite topological superconductor (TS), made of one-dimensional spin-orbit coupled nanowire with proximity-induced s-wave superconductivity, is not a pure p-wave superconductor but still has a suppressed s-wave pairing. We propose to probe the spin texture of the p-wave pairing in this composite TS by examining possible spin supercurrents in an unbiased TS/ferromagnet junction. It is found that both the exchange-coupling induced and spin-flip reflection induced spin currents exist in the setup and survive even in the topological phase. We showed that besides the nontrivial p-wave pairing state accounting for Majorana Fermions, there shall be a trivial p-wave pairing state that contributes to spin supercurrent. The trivial p-wave pairing state is diagnosed from the mixing effect between the suppressed s-wave pairing and the topologically nontrivial p-wave pairing. The d vector of the TS is proved not to be rigorously perpendicular to the spin projection of p-wave pairings. Our findings are also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing.

    20. Electron transfer statistics and thermal fluctuations in molecular junctions

      SciTech Connect (OSTI)

      Goswami, Himangshu Prabal; Harbola, Upendra

      2015-02-28

      We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.

    1. Hydrogenated amorphous silicon barriers for niobium-niobium Josephson junctions

      SciTech Connect (OSTI)

      Kroger, H.; Aucoin, R.; Currier, L.W.; Jillie, D.W.; Potter, C.N.; Shaw, D.W.; Smith, L.N.; Thaxter, J.B.; Willis, P.H.

      1985-03-01

      The authors report on further studies of the effects of hydrogenation of sputtered amorphous silicon barriers upon the current-voltage (I-V) characteristics of Nb-Nb Josephson tunnel junctions. For composite trilayer barriers (a-Si/a-Si:H/a-Si) which are deposited using 8 mT of Ar, we find that there is an abrupt improvement in device characteristics when the central hydrogenated layer is deposited using a hydrogen partial pressure which exceeds about 0.5 mT. They attribute this to the reduction in the density of localized states in the a-Si:H layer. We have observed excellent I-V characteristics with trilayer barrier devices whose central hydrogenated layer is only about 1/7 of the thickness of the entire barrier. This observation suggests that localized states near the geometric center of the barrier are the most significant in degrading device characteristics. Annealing experiments and published data on the diffusion of deuterium in a-Si suggest that the composite barriers will be extremely stable during processing and storage. Zero bias anomalies in device I-V characteristics and spin density in the a-Si and a-Si:H layers have been measured.

    2. Lower Rio Grande Valley transboundary air pollution project (TAPP). Project report 1996--1997

      SciTech Connect (OSTI)

      Mukerjee, S.; Shadwick, D.S.; Dean, K.E.; Carmichael, L.Y.; Bowser, J.J.

      1999-04-01

      The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a US-Mexico Border XXI project to find out if air pollutants were moving across the border from Mexico into the Lower Rio Grande Valley of Texas and to see what levels of air pollutants were present. Ambient measurements and meteorology were collected data for a year (March 1996-March 1997) at three fixed sites in and near Brownsville, Texas very close to the US-Mexico border on a continuous and 24-h internal basis. Overall levels of air pollution were similar to or lower than other areas in Texas and elsewhere. Based on wind sector analyses, transport of air pollution across the border did not appear to adversely impact air quality on the US side of the Valley. Southeasterly winds from the Gulf of Mexico were largely responsible for the clean air conditions.

    3. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems

      SciTech Connect (OSTI)

      Factorovich, Matas H.; Scherlis, Damin A.

      2014-02-14

      In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.

    4. Method and apparatus for reducing sample dispersion in turns and junctions of microchannel systems

      DOE Patents [OSTI]

      Griffiths, Stewart K.; Nilson, Robert H.

      2001-01-01

      The performance of microchannel devices is improved by providing turns, wyes, tees, and other junctions that produce little dispersions of a sample as it traverses the turn or junction. The reduced dispersion results from contraction and expansion regions that reduce the cross-sectional area over some portion of the turn or junction. By carefully designing the geometries of these regions, sample dispersion in turns and junctions is reduced to levels comparable to the effects of ordinary diffusion. A numerical algorithm was employed to evolve low-dispersion geometries by computing the electric or pressure field within candidate configurations, sample transport through the turn or junction, and the overall effective dispersion. These devices should greatly increase flexibility in the design of microchannel devices by permitting the use of turns and junctions that do not induce large sample dispersion. In particular, the ability to fold electrophoretic and electrochrornatographic separation columns will allow dramatic improvements in the miniaturization of these devices. The low-lispersion devices are particularly suited to electrochromatographic and electrophoretic separations, as well as pressure-driven chromatographic separation. They are further applicable to microfluidic systems employing either electroosrnotic or pressure-driven flows for sample transport, reaction, mixing, dilution or synthesis.

    5. Structure–property relationships in atomic-scale junctions: Histograms and beyond

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Mark S. Hybertsen; Venkataraman, Latha

      2016-03-03

      Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less

    6. High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O

      DOE Patents [OSTI]

      Ginley, David S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.; Martens, Jon S.; Plut, Thomas A.; Tigges, Chris P.; Vawter, Gregory A.; Zipperian, Thomas E.

      1994-10-25

      A process for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO.sub.3 crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O.sub.3, followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry.

    7. High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O

      DOE Patents [OSTI]

      Ginley, D.S.; Hietala, V.M.; Hohenwarter, G.K.G.; Martens, J.S.; Plut, T.A.; Tigges, C.P.; Vawter, G.A.; Zipperian, T.E.

      1994-10-25

      A process is disclosed for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO[sub 3] crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O[sub 3], followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry. 8 figs.

    8. University of Texas Rio Grande Valley Regional High School Science Bowl |

      Office of Science (SC) Website

      U.S. DOE Office of Science (SC) University of Texas Rio Grande Valley Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us

    9. University of Texas Rio Grande Valley Regional Middle School Science Bowl |

      Office of Science (SC) Website

      U.S. DOE Office of Science (SC) University of Texas Rio Grande Valley Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email

    10. Haze in the Grand Canyon: An evaluation of the Winter Haze Intensive Tracer Experiment

      SciTech Connect (OSTI)

      Not Available

      1990-10-01

      The Grand Canyon is one of the most spectacular natural sights on earth. Approximately 4 million visitors travel to Grand Canyon National Park (GCNP) each year to enjoy its majestic geological formations and intensely colored views. However, visibility in GCNP can be impaired by small increases in concentrations of fine suspended particles that scatter and absorb light; the resulting visibility degradation is perceived as haze. Sulfate particles are a major factor in visibility impairment at Grand Canyon in summer and winter. Many wintertime hazes at GCNP are believed to result from the accumulation of emissions from local sources during conditions of air stagnation, which occur more frequently in winter than in summer. In January and February 1987, the National Park Service (NPS) carried out a large-scale experiment known as the Winter Haze Intensive Tracer Experiment (WHITEX) to investigate the causes of wintertime haze in the region of GCNP and Canyonlands National Park. The overall objective of WHITEX was to assess the feasibility of attributing visibility impairment in specific geographic regions to emissions from a single point source. The experiment called for the injection of a tracer, deuterated methane (CD{sub 4}), into one of the stacks of the Navajo Generating Station (NGS), a major coal-fired power plant located 25 km from the GCNP boundary and 110 km northeast of Grand Canyon Village. A network of field stations was established in the vicinity -- mostly to the northeast of GCNP and NGS -- to measure CD{sub 4} concentrations, atmospheric aerosol and optical properties, and other chemical and physical attributes. 19 refs., 3 figs.

    11. Solid-State Lighting Technology: Current State of the Art and Grand

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Challenges Technology: Current State of the Art and Grand Challenges - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear

    12. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

      SciTech Connect (OSTI)

      Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

      2004-01-01

      This report documents the third year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

    13. DuPont’s Cellulosic Ethanol Grand Opening Marks a Milestone for the Advanced Biofuels Industry

      Office of Energy Efficiency and Renewable Energy (EERE)

      On a bright, crisp October morning in Iowa, I had the privilege to speak at the grand opening of DuPont’s cellulosic ethanol biorefinery—the fourth biorefinery of its kind in the United States and the largest in the world. This impressive plant is equipped to produce 30 million gallons of ethanol each year from the leftover stalks and leaves of the corn plant, called corn stover.

    14. Grand Valley State University Checks Out Energy Savings at New Mary Idema Pew Library

      SciTech Connect (OSTI)

      none,

      2013-03-01

      Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

    15. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

      SciTech Connect (OSTI)

      Johnson, Robert L.; Simmons, Mary Ann; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

      2005-02-25

      This report documents the fourth year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

    16. Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.

      SciTech Connect (OSTI)

      Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

      1999-07-01

      The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

    17. Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin

      SciTech Connect (OSTI)

      Whiteman, C.D.; Allwine, K.J.

      1992-06-01

      In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona's Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.

    18. Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin

      SciTech Connect (OSTI)

      Whiteman, C.D.; Allwine, K.J.

      1992-06-01

      In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona`s Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.

    19. Finite element analysis of the I-40 bridge over the Rio Grande

      SciTech Connect (OSTI)

      Farrar, C.R.; Duffey, T.A.; Goldman, P.A.; Jauregui, D.V.; Vigil, J.S.

      1996-01-01

      In the 1960s and 1970s numerous bridges were built in the US with a design similar to those on Interstate 40 (I-40) over the Rio Grande in Albuquerque, New Mexico. The Federal Highway Administration (FHWA) and the National Science Foundation (NSF) have provided funds to New Mexico State University (NMSU) through the New Mexico State Highway and Transportation Department (NMSH and TD) and The Alliance For Transportation Research (ATR) for evaluation and testing of the existing fracture-critical bridges over the Rio Grande. Because the I-40 Bridges over the Rio Grande were to be razed during the summer of 1993, the investigators were able to introduce damage into the structure in order to test various damage identification methods and to observe the changes in load paths through the structure caused by the cracking. To support this research effort, NMSU contracted Los Alamos National Laboratory (LANL) to perform experimental modal analyses, and to develop experimentally verified numerical models of the bridge. A previous report (LA-12767-MS) summarizes the results of the experimental modal analyses. This report summarizes the numerical analyses of the bridges and compares the results of these analyses to the experimental results.

    20. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 2000 Annual Report.

      SciTech Connect (OSTI)

      Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D.

      2001-01-01

      Fine sediment in spawning substrate has a major effect on salmon survival from egg to smolt. Basin-wide restoration plans have established targets for fine sediment levels in spawning habitat. The project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Fork John Day (NFJDR) and Grande Ronde Rivers, for five years. The project is also investigating the potential relationship between surface fine levels and overwinter sedimentation. It will provide data to assess trends in substrate conditions in monitored reaches and whether trends are consistent with efforts to improve salmon habitat conditions. The data on the magnitude of overwinter sedimentation will also be used to estimate salmon survival from egg to emergence. In Sept. 1998, 1999, and Aug. 2000, sites for monitoring overwinter sedimentation were established in salmon spawning habitat in the upper Grande Ronde River, Catherine Creek (a Grande Ronde tributary), the North Fork John Day River (NFJDR), and Granite Creek (a NFJDR tributary). Surface fine sediment levels were measured in these reaches via the grid method and visually estimated to test the relative accuracy of these two methods. In 1999 and 2000, surface fine sediment was also estimated via pebble counts at selected reaches to allow comparison of results among the methods. Overwintering substrate samples were collected in April 1999 and April-May 2000 to estimate the amount of overwinter sedimentation in clean gravels in spawning habitat. Monitoring methods and locations are described.

    1. Ecosystem level assessment of the Grand Calumet Lagoons, Indiana Dunes National Lakeshore

      SciTech Connect (OSTI)

      Stewart, P.M. [National Biological Service, Porter, IN (United States)

      1995-12-31

      The Grand Calumet Lagoons make up the eastern section of the Grand Calumet River (GCR), Indiana Harbor and Ship Canal and nearshore Lake Michigan Area of Concern (AOC). The GCR AOC is the only one of the 42 Great Lakes Areas of Concern identified by the International Joint Commission with all 14 designated uses classified as impaired. Included within the boundaries of the Indiana Dunes National Lakeshore (INDU), is the central section of the Grand Calumet Lagoons. A number of biotic and abiotic factors were tested to determine the effects of an industrial landfill that borders the lagoons to assess the potential impact on park resources. Analysis included water quality testing, assessments of macroinvertebrate, fish, algae and aquatic plant communities and contaminant concentrations in water, sediment and plant and fish tissue. Surface water testing found very few contaminants, but significantly higher nutrient levels were found in the water column closest to the landfill. Macroinvertebrate, aquatic plant and fish communities all showed significant impairment in relationship to their proximity to the landfill. Aquatic plant growth habit became limited next to the landfill with certain growth habits disappearing entirely. Aquatic plants collected close to the landfill had high concentrations of several heavy metals in their stems and shoots. Using the index of biotic integrity (IBI), fish community assessment indicated impairment in the areas adjacent to the landfill. Sediments tested at one site had over 12% polycyclic aromatic hydrocarbons (PAH) and carp (Cyprinus carpio) collected from this site had whole fish tissue concentrations over 1 mg/kg PAH.

    2. Calculation of axial charge spreading in carbon nanotubes and nanotube Y junctions during STM measurement

      SciTech Connect (OSTI)

      Mark, Geza I.; Biro, Laszlo P.; Lambin, Philippe

      2004-09-15

      Distribution of the probability current and the probability density of wave packets was calculated for nanotubes and nanotube Y junctions by solving the three dimensional time-dependent Schroedinger equation for a jellium potential model of the scanning tunneling microscope (STM) tip-nanotube-support system. Four systems were investigated: an infinite single wall nanotube (SWNT) as reference case, a capped SWNT protruding a step of the support surface, a quantum dot (finite tube without support), and a SWNT Y junction. It is found that the spatial distribution of the probability current flowing into the sample is decided by the electron probability density of the tube and by the oscillation in time of the probability current, which in turn is governed by the quasibound states on the tube. For the infinite tube the width of the axial spreading of the wave packet during tunneling is about 5 nm. When the STM tip is above that part of the tube which protrudes from the atomic scale step of the support surface it is found that the current flows ballistically along the tube and the total transmission is the same as for the infinite tube. In the case of quantum dot, however, the finite tube is first charged in a short time then it is discharged very slowly through the tip-nanotube tunnel junction. In the Y junction both the above the junction and off the junction tip positions were investigated. For a 1.2 nm displacement of the tip from the junction the wave packet still 'samples' the junction point which means that in STM and scanning tunneling spectroscopy experiments the signature of the junction should be still present for such tip displacement. For all tunneling situations analyzed the tunnel current is mainly determined by the tip-nanotube junction owing to its large resistance. The tunneling event through the STM model is characterized by two time scales, the nanotube is quickly 'charged' with the wave packet coming from the tip then this 'charge' flows into the

    3. Detection of alpha particles using DNA/Al Schottky junctions

      SciTech Connect (OSTI)

      Al-Ta'ii, Hassan Maktuff Jaber E-mail: vengadeshp@um.edu.my; Periasamy, Vengadesh E-mail: vengadeshp@um.edu.my; Amin, Yusoff Mohd

      2015-09-21

      Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

    4. Analysis of a four lamp flash system for calibrating multi-junction solar cells under concentrated light

      SciTech Connect (OSTI)

      Schachtner, Michael Prado, Marcelo Loyo; Reichmuth, S. Kasimir; Siefer, Gerald; Bett, Andreas W.

      2015-09-28

      It has been known for a long time that the precise characterization of multi-junction solar cells demands spectrally tunable solar simulators. The calibration of innovative multi-junction solar cells for CPV applications now requires tunable solar simulators which provide high irradiation levels. This paper describes the commissioning and calibration of a flash-based four-lamp simulator to be used for the measurement of multi-junction solar cells with up to four subcells under concentrated light.

    5. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

      SciTech Connect (OSTI)

      Gessert, T. A.

      2010-09-01

      Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

    6. Increased efficiency in multijunction solar cells through the incorporation of semimetallic ErAs nanoparticles into the tunnel junction

      SciTech Connect (OSTI)

      Zide, J.M.O.; Kleiman-Shwarsctein, A.; Strandwitz, N.C.; Zimmerman, J.D.; Steenblock-Smith, T.; Gossard, A.C.; Forman, A.; Ivanovskaya, A.; Stucky, G.D.

      2006-04-17

      We report the molecular beam epitaxy growth of Al{sub 0.3}Ga{sub 0.7}As/GaAs multijunction solar cells with epitaxial, semimetallic ErAs nanoparticles at the interface of the tunnel junction. The states provided by these nanoparticles reduce the bias required to pass current through the tunnel junction by three orders of magnitude, and therefore drastically reduce the voltage losses in the tunnel junction. We have measured open-circuit voltages which are 97% of the sum of the constituent cells, which result in nearly double the efficiency of our multijunction cell with a conventional tunnel junction.

    7. Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery

      DOE Patents [OSTI]

      Hanak, Joseph J.

      1981-01-01

      A method of fabricating series-connected and tandem junction series-connected solar cells into a solar battery with laser scribing.

    8. Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions

      SciTech Connect (OSTI)

      Chang, Shun-Wen; Theiss, Jesse; Hazra, Jubin; Aykol, Mehmet; Kapadia, Rehan; Cronin, Stephen B.

      2015-08-03

      We study photocurrent generation in individual, suspended carbon nanotube pn-junction diodes formed by electrostatic doping using two gate electrodes. Photocurrent spectra collected under various electrostatic doping concentrations reveal distinctive behaviors for free particle optical transitions and excitonic transitions. In particular, the photocurrent generated by excitonic transitions exhibits a strong gate doping dependence, while that of the free particle transitions is gate independent. Here, the built-in potential of the pn-junction is required to separate the strongly bound electron-hole pairs of the excitons, while free particle excitations do not require this field-assisted charge separation. We observe a sharp, well defined E{sub 11} free particle interband transition in contrast with previous photocurrent studies. Several steps are taken to ensure that the active charge separating region of these pn-junctions is suspended off the substrate in a suspended region that is substantially longer than the exciton diffusion length and, therefore, the photocurrent does not originate from a Schottky junction. We present a detailed model of the built-in fields in these pn-junctions, which, together with phonon-assistant exciton dissociation, predicts photocurrents on the same order of those observed experimentally.

    9. E-cadherin junction formation involves an active kinetic nucleation process

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan -Chen; Guo, Zhenhuan; Padmanabhan, Anup; et al

      2015-08-19

      Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less

    10. E-cadherin junction formation involves an active kinetic nucleation process

      SciTech Connect (OSTI)

      Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan -Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

      2015-08-19

      Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.

    11. Giant magnetoresistance modulated by magnetic field in graphene p-n junction

      SciTech Connect (OSTI)

      Li, Yuan; Jalil, Mansoor B. A.; Zhou, Guanghui

      2014-11-10

      We investigate the tunneling transport across a graphene p-n junction under the influence of a perpendicular magnetic field (B field). We observe a sideway deflection of the transmission profile, which can be quantitatively explained by invoking the classical Lorentz force. By considering the trajectory of the Dirac fermions along their cyclotron orbits, we analytically derive the incident angles for transmission across the graphene junction under a B field, as well as the critical magnetic field for full suppression of tunneling across the junction. These analytical predictions are consistent with the numerical results obtained via the non-equilibrium Green's function method. A stronger B-field conductance modulation is obtained for a p-n as opposed to an n-n or p-p type graphene junction. The magnetic field also induces a forbidden region of almost zero transmission for electron energy close to the Dirac point, which can be utilized to achieve a giant magnetoresistance effect. Based on our analysis, we devise an optimal magneto-electrical transport modulation, which can potentially realize a giant magnetoresistance effect in graphene p-n junction systems.

    12. Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico

      SciTech Connect (OSTI)

      Reneau, S.L.; Dethier, D.P.

      1996-11-01

      Massive slump complexes composed of Pliocene basaltic rocks and underlying Miocene and Pliocene sediments flank the Rio Grande along 16 km of northern White Rock Canyon, New Mexico. The toe area of at least one slump complex was active in the late Pleistocene, damming the Rio Grande at least four times during the period from 18 to 12 {sup 14}C ka and impounding lakes that extended 10-20 km upriver. Stratigraphic relationships and radiocarbon age constraints indicate that three separate lakes formed between 13.7 and 12.4 {sup 14}C ka. The age and dimensions of the ca. 12.4 ka lake are best constrained; it had an estimated maximum depth of {approx}30 m, a length of {approx}13 km, a surface area of {approx}2.7 km{sup 2}, and an initial volume of {approx}2.5 x 10{sup 7} m{sup 3}. The youngest landslide-dammed lakes formed during a period of significantly wetter regional climate, strongly suggesting that climate changes were responsible for reactivation of the slump complexes. We are not certain about the exact triggering mechanisms for these landslides, but they probably involved removal of lateral support due to erosion of the slope base by the Rio Grande during periods of exceptionally high flood discharge or rapid incision; increased pore pressures associated with higher water tables; higher seepage forces at sites of ground-water discharge; or some combination of these processes. Seismic shaking could also have contributed to triggering of some of the landslides, particularly if aided by wet antecedent conditions. 54 refs., 19 figs., 3 tabs.

    13. Dynamic characterization and damage detection in the I-40 bridge over the Rio Grande

      SciTech Connect (OSTI)

      Farrar, C.R.; Baker, W.E.; Bell, T.M.; Cone, K.M.; Darling, T.W.; Duffey, T.A.; Eklund, A.; Migliori, A.

      1994-06-01

      In the 1960`s and 1970`s over 2500 bridges were built in the U.S. with a design similar to those on Interstate 40 over the Rio Grande in Albuquerque, New Mexico. These bridges were built without structural redundancy and typically have only two plate girders carrying the entire dead and live loads. Failure of either girder is assumed to produce catastrophic failure of the bridge, hence these bridges are referred to as fracture-critical bridges. The Federal Highway Administration (FHWA) and the National Science Foundation (NSF) have provided funds to New Mexico State University (NMSU) through the New Mexico State Highway and Transportation Department (NMSH&TD) and The Alliance For Transportation Research (ATR) for evaluation and testing of the existing fracture critical bridges over the Rio Grande. Because the 1-40 bridges over the Rio Grande were to be razed during the summer of 1993, the investigators were able to introduce simulated fatigue cracks, similar to those observed in the field, into the structure in order to test various damage identification methods and to observe the changes in load paths through the structure caused by the cracking. To support this research effort, NMSU contracted Los Alamos National Laboratory (LANL) to perform experimental modal analyses, and to develop experimentally verified numerical models of the bridge. Scientists from the LANL`s Condensed Matter and Thermal Physics Group (P-10) applied state-of-the-art sensors and data acquisition software to the modal tests. Engineers from the LANL`s Advanced Engineering Technology Group (MEE-13) conducted ambient and forced vibration tests to verify detailed and simplified finite element models of the bridge. Forced vibration testing was done in conjunction with engineers from Sandia National Laboratory (SNL) who provided and operated a hydraulic shaker.

    14. 2014 SunShot Grand Challenge Summit Day Two Photos | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Day Two Photos 2014 SunShot Grand Challenge Summit Day Two Photos Addthis Day 2 Subprogram Overviews 9 1 of 39 Day 2 Subprogram Overviews 9 Photo Credit: SunShot Date taken: 2014-05-20 14:41 Day 2 Subprogram Overviews 8 2 of 39 Day 2 Subprogram Overviews 8 Photo Credit: SunShot Date taken: 2014-05-20 14:37 Day 2 Subprogram Overviews 7 3 of 39 Day 2 Subprogram Overviews 7 Photo Credit: SunShot Date taken: 2014-05-20 14:36 Day 2 Subprogram Overviews 6 4 of 39 Day 2 Subprogram Overviews 6 Photo

    15. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

      SciTech Connect (OSTI)

      Johnson, Robert L. ); Simmons, Mary Ann ); Simmons, Carver S. ); McKinstry, Craig A. ); Cook, Chris B. ); Thorsten, Susan L. ); Lecaire, Richard; Francis, Stephen

      2003-01-29

      This report describes the work conducted during the second year of a multi-year study to assess the efficacy of a prototype strobe light system in eliciting a negative phototactic response in kokanee and rainbow trout. The strobe light system is being evaluated as a means to prevent entrainment (and subsequent loss) of fish at the entrance to the forebay adjacent to the third powerplant at Grand Coulee Dam. Pacific Northwest National Laboratory and the Confederated Tribes of the Colville Reservation are collaborating on the three-year study being conducted for the Bonneville Power Administration and the Northwest Power Planning Council.

    16. Communication: Reduced density matrices in molecular systems: Grand-canonical electron states

      SciTech Connect (OSTI)

      Bochicchio, Roberto C.; Miranda-Quintana, Ramn A.; Rial, Diego

      2013-11-21

      Grand-canonical like descriptions of many electron atomic and molecular open systems which are characterized by a non-integer number of electrons are presented. Their associated reduced density matrices (RDMs) are obtained by introducing the contracting mapping for this type of distributions. It is shown that there is loss of information when connecting RDMs of different order by partial contractions. The energy convexity property of these systems simplifies the description. Consequently, this formulation opens the possibility to a new look for chemical descriptors such as chemical potential and reactivity among others. Examples are presented to discuss the theoretical aspects of this work.

    17. Improved tunneling magnetoresistance at low temperature in manganite junctions grown by molecular beam epitaxy

      SciTech Connect (OSTI)

      Werner, R.; Kleiner, R.; Koelle, D.; Petrov, A. Yu.; Davidson, B. A.; Mino, L. Alvarez

      2011-04-18

      We report resistance versus magnetic field measurements for a La{sub 0.65}Sr{sub 0.35}MnO{sub 3}/SrTiO{sub 3}/La{sub 0.65}Sr{sub 0.35}MnO{sub 3} tunnel junction grown by molecular-beam epitaxy, that show a large field window of extremely high tunneling magnetoresistance (TMR) at low temperature. Scanning the in-plane applied field orientation through 360 deg., the TMR shows fourfold symmetry, i.e., biaxial anisotropy, aligned with the crystalline axis but not the junction geometrical long axis. The TMR reaches {approx}1900% at 4 K, corresponding to an interfacial spin polarization of >95% assuming identical interfaces. These results show that uniaxial anisotropy is not necessary for large TMR, and lay the groundwork for future improvements in TMR in manganite junctions.

    18. A versatile optical junction using photonic band-gap guidance and self collimation

      SciTech Connect (OSTI)

      Gupta, Man Mohan; Medhekar, Sarang

      2014-09-29

      We show that it is possible to design two photonic crystal (PC) structures such that an optical beam of desired wavelength gets guided within the line defect of the first structure (photonic band gap guidance) and the same beam gets guided in the second structure by self-collimation. Using two dimensional simulation of a design made of the combination of these two structures, we propose an optical junction that allows for crossing of two optical signals of same wavelength and same polarization with very low crosstalk. Moreover, the junction can be operated at number of frequencies in a wide range. Crossing of multiple beams with very low cross talk is also possible. The proposed junction should be important in future integrated photonic circuits.

    19. Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers

      SciTech Connect (OSTI)

      Vinokurov, D. A.; Ladugin, M. A.; Lyutetskii, A. V.; Marmalyuk, A. A.; Petrunov, A. N.; Pikhtin, N. A.; Slipchenko, S. O. Sokolova, Z. N.; Stankevich, A. L.; Fetisova, N. V.; Shashkin, I. S.; Averkiev, N. S.; Tarasov, I. S.

      2010-06-15

      Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavelength by varying the active region thickness in each tunnel-junction laser structure was demonstrated. Independent two-band lasing at wavelengths of 914 and 925 nm (the difference frequency is 2.3 THz) was achieved at a maximum optical radiation power of 20 W in each band of the epitaxially stacked tunnel-junction semiconductor laser.

    20. Sputtered a-silicon tunneling barriers for Nb-Nb Josephson junctions

      SciTech Connect (OSTI)

      Smith, L.N.; Jillie, D.W.; Kroger, H.; Thaxter, J.B.

      1982-11-01

      The authors have developed an IC-compatible process for fabricating Josephson tunnel junctions, which uses dc magnetron-sputtered Nb films as both base and counterelectrodes, and rf-sputtered amorphous silicon as the tunneling barrier. Optical reflectivity measurements have been used to study the silicon barrier, and to allow precise determination of the barrier thickness. The Josephson current density varies exponentially -over several orders of magnitude -- with the barrier thickness. The product of the critical current and subgap resistance V /SUB m/ is constant over this wide range of current density. The specific capacitance of these junctions is about 2.5 ..mu..f/cm/sup 2/ at a current density of a few hundred A/cm/sup 2/. This is lower than the value for lead-alloy junctions, about 4.3 ..mu..f/cm/sup 2/, and is consistent with the measured thickness and dielectric constant of the a-Si barrier.

    1. SEP Success Story: City in Colorado Fueling Vehicles with Gas...

      Energy Savers [EERE]

      April 29, 2015 - 8:00pm Addthis Grand Junction's CNG station fuels the city's fleets and ... Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG ...

    2. 585

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... Technology Cen- ter, P.O. Box 8213, University Station, Grand Forks, ND 58201. (7) Grand Junction Office, P.O. Box 2567, Grand Junction, CO 81502. (8) Headquarters, Department of ...

    3. NREL, CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell

      SciTech Connect (OSTI)

      2016-01-01

      Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. National Renewable Energy Laboratory (NREL) and Swiss Center for Electronics and Microtechnology (CSEM) scientists have collaborated to create a novel tandem solar cell that operates at 29.8% conversion efficiency under non-concentrator (1-sun) conditions. In comparison, the 1-sun efficiency of a silicon (Si) single-junction solar cell is probably still a few years away from converging on its practical limit of about 26%.

    4. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

      DOE Patents [OSTI]

      Wanlass, M.W.

      1994-12-27

      A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

    5. Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application

      DOE Patents [OSTI]

      Hawkins, G.A.; Clarke, J.

      1975-10-31

      A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

    6. Light-splitting photovoltaic system utilizing two dual-junction solar cells

      SciTech Connect (OSTI)

      Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

      2010-12-15

      There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

    7. Evaluation of power production from the solar electric generating systems at Kramer Junction: 1988 to 1993

      SciTech Connect (OSTI)

      Kolb, G.J.

      1994-12-31

      The five Solar Electric Generating Systems (SEGS) at Kramer Junction, California, now have nearly 30 years of cumulative operating experience. These 30 MW plants employ parabolic trough technology originally deployed by LUZ International in the late 1980`s and are now managed, operated and maintained by the Kramer Junction Company. In this paper, Sandia National Laboratories performed an analysis of the annual energy production from the five plants. Annual solar-to-electric conversion efficiencies are calculated and the major factors that influenced the results are presented. The generally good efficiencies are primarily attributed to the excellent equipment availabilities achieved at all plants.

    8. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization

      SciTech Connect (OSTI)

      Yap, Yoke Khin

      2013-03-14

      Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up to 3000 degree Celsius by laser ablation) and explosive chemicals. During the award period, we have successfully developed a simple chemical vapor deposition (CVD) technique to grow BNNTs at 1100-1200 degree Celsius without using dangerous chemicals. A series of common catalyst have then been identified for the synthesis of BNNTs and CNTs. Both of these breakthroughs have led to our preliminary success in growing two types of BNNT/CNT junctions and two additional new nanostructures: 1) branching BNNT/CNT junctions and 2) co-axial BNNT/CNT junctions, 3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNT/graphene junctions. We have started to understand their structural, compositional, and electronic properties. Latest results indicate that the branching BNNT/CNT junctions and QDs-BNNTs are functional as room-temperature tunneling devices. We have submitted the application of a renewal grant to continue the study of these new energy efficient materials. Finally, this project has also strengthened our collaborations with multiple Department of Energy’s Nanoscale Science Research Centers (NSRCs), including the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, and the Center for Integrated Nanotechnologies (CINTs) at Sandia National Laboratories

    9. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

      SciTech Connect (OSTI)

      Murray, Christopher Sean; Wilt, David Morgan

      1999-06-30

      An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

    10. McMillan-Rowell Like Oscillations in a Superconductor-InAs/GaSb-Superconductor Junction

      SciTech Connect (OSTI)

      Shi, Xiaoyan; Yu, Wenlong; Hawkins, Samuel D.; Klem, John F.; Pan, Wei

      2015-08-04

      We fabricated a superconductor (Ta)-InAs/GaSb bilayer-superconductor (Ta) junction device that has a long mean free path and can preserve the wavelike properties of particles (electrons and holes) inside the junction. Differential conductance measurements were also carried out at low temperatures in this device, and McMillan-Rowell like oscillations (MROs) were observed. A much larger Fermi velocity, compared to that from Shubnikov-de Haas oscillations, was obtained from the frequency of MROs. Possible mechanisms are discussed for this discrepancy.

    11. Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance

      DOE Patents [OSTI]

      Murray, Christopher S.; Wilt, David M.

      2000-01-01

      An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

    12. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

      DOE Patents [OSTI]

      Sopori, Bhushan; Rangappan, Anikara

      2014-11-25

      Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

    13. Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

      SciTech Connect (OSTI)

      Spane, Frank A.

      2013-04-29

      Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

    14. Effect of Front-Side Silver Metallization on Underlying n+-p Junction in Multicrystalline Silicon Solar Cells: Preprint

      SciTech Connect (OSTI)

      Jiang, C. S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

      2012-06-01

      We report on the effect of front-side Ag metallization on the underlying n+-p junction of multicrystalline Si solar cells. The junction quality beneath the contacts was investigated by characterizing the uniformities of the electrostatic potential and doping concentration across the junction, using scanning Kelvin probe force microscopy and scanning capacitance microscopy. We investigated cells with a commercial Ag paste (DuPont PV159) and fired at furnace setting temperatures of 800 degrees, 840 degrees, and 930 degrees C, which results in actual cell temperatures ~100 degrees C lower than the setting temperature and the three cells being under-, optimal-, and over-fired. We found that the uniformity of the junction beneath the Ag contact was significantly degraded by the over-firing, whereas the junction retained good uniformity with the optimal- and under-fire temperatures. Further, Ag crystallites with widely distributed sizes from <100 nm to several μm were found at the Ag/Si interface of the over-fired cell. Large crystallites were imaged as protrusions into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of the junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent recrystallization with incorporation of impurities in the Ag paste and with formation of crystallographic defects during quenching.

    15. Network discovery, characterization, and prediction : a grand challenge LDRD final report.

      SciTech Connect (OSTI)

      Kegelmeyer, W. Philip, Jr.

      2010-11-01

      This report is the final summation of Sandia's Grand Challenge LDRD project No.119351, 'Network Discovery, Characterization and Prediction' (the 'NGC') which ran from FY08 to FY10. The aim of the NGC, in a nutshell, was to research, develop, and evaluate relevant analysis capabilities that address adversarial networks. Unlike some Grand Challenge efforts, that ambition created cultural subgoals, as well as technical and programmatic ones, as the insistence on 'relevancy' required that the Sandia informatics research communities and the analyst user communities come to appreciate each others needs and capabilities in a very deep and concrete way. The NGC generated a number of technical, programmatic, and cultural advances, detailed in this report. There were new algorithmic insights and research that resulted in fifty-three refereed publications and presentations; this report concludes with an abstract-annotated bibliography pointing to them all. The NGC generated three substantial prototypes that not only achieved their intended goals of testing our algorithmic integration, but which also served as vehicles for customer education and program development. The NGC, as intended, has catalyzed future work in this domain; by the end it had already brought in, in new funding, as much funding as had been invested in it. Finally, the NGC knit together previously disparate research staff and user expertise in a fashion that not only addressed our immediate research goals, but which promises to have created an enduring cultural legacy of mutual understanding, in service of Sandia's national security responsibilities in cybersecurity and counter proliferation.

    16. Characterization of Pump Flow at the Grand Coulee Pumping Station for Fish Passage, 2004

      SciTech Connect (OSTI)

      Carlson, Thomas J.; Duncan, Joanne P.; Johnson, Robert L.

      2005-03-31

      This report describes a study conducted by PNNL for the Bonneville Power Administration to characterized the conditions fish experience when entrained in pump flow at the Grand Coulee Dam. PNNL used the Sensor Fish to measure the acceleration and pressure conditions that might be experienced by fish who are pulled through the pumps and turbines at Grand Coulee Dam's pump generation station and transported up into the feeder canal leading to Banks Lake. The probability that fish would be struck by the pump generating plant's new 9-bladed turbines was also calculated using Monte Carlo simulations. Our measurements showed relatively low turbulence except in the immediate vicinity of the runner environment. The highest pressure experienced by the Sensor Fish was estimated at 157 psi (the pressure gauge saturated at 155 psi). The probability of strike was also calculated, based on the average length of hatchery-reared juvenile kokanee (land-locked sockeye). Strike probabilities ranged from 0.755 for 2.36-inch fish to 0.3890 for 11.8-inch fish. The probability of strike estimates indicate that the majority (77%) of kokanne would be carried through the pump without being struck and most likely without injury resulting from pressure and turbulence exposure. Of the 23% that might be struck it is expected that 60% would arrive in Banks Lake without visible external injuries. Thus more than 90% of entrained fish would be expected to arrive in Banks Lake without injury.

    17. A Coupled Modeling System to Simulate Water Resources in the Rio Grande Basin

      SciTech Connect (OSTI)

      Bossert, J.E.; Breshears, D.D.; Campbell, K.; Costigan, K.R.; Greene, R.K.; Keating, E.H.; Kleifgen, L.M.; Langley, D.L.; Martens, S.N.; Sanderson, J.G.; Springer, E.P.; Stalker, J.R.; Tartakovsky, D.M.; Winter, C.L.; Zyvoloski, G.A.

      1999-01-11

      Limited availability of fresh water in arid and semi-arid regions of the world requires prudent management strategies from accurate, science-based assessments. These assessments demand a thorough understanding of the hydrologic cycle over long time periods within the individual water-sheds that comprise large river basins. Measurement and simulation of the hydrologic cycle is a tremendous challenge, involving a coupling between global to regional-scale atmospheric precipitation processes with regional to local-scale land surface and subsurface water transport. Los Alamos National Laboratory is developing a detailed modeling system of the hydrologic cycle and applying this tool at high resolution to assess the water balance within the upper Rio Grande river basin. The Rio Grande is a prime example of a river system in a semiarid environment, with a high demand from agricultural, industrial, recreational, and municipal interests for its water supply. Within this river basin, groundwater supplies often augment surface water. With increasing growth projected throughout the river basin, however, these multiple water users have the potential to significantly deplete groundwater resources, thereby increasing the dependence on surface water resources.

    18. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

      SciTech Connect (OSTI)

      N /A

      2005-08-05

      The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) {section} 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments

    19. EIS-0400: Granby Pumping Plant Switchyard-Windy Gap Substation Transmission Line Rebuild Project, Grand County, CO

      Office of Energy Efficiency and Renewable Energy (EERE)

      Western Area Power Administration prepared an EIS, with the U.S. Forest Service, Bureau of Land Management, and Grand County (Colorado) as cooperating agencies, to evaluate the potential environmental impacts of rebuilding a 12-mile, 69 kV electric transmission line in Grand County. The proposed project would rebuild the single-circuit line as a double-circuit transmission line and add a second power transformer. Western identified potentially significant impacts while preparing an EA for this proposal (DOE/EA-1520) and prepared an EIS instead of completing the EA. Further information about the project is available on the project website.

    20. Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale - February 2-4, 2010, Washington, D.C.

      SciTech Connect (OSTI)

      Khaleel, Mohammad A.

      2011-02-06

      The goal of the "Scientific Grand Challenges - Crosscutting Technologies for Computing at the Exascale" workshop in February 2010, jointly sponsored by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research and the National Nuclear Security Administration, was to identify the elements of a research and development agenda that will address these challenges and create a comprehensive exascale computing environment. This exascale computing environment will enable the science applications identified in the eight previously held Scientific Grand Challenges Workshop Series.

    1. In situ Formation of Highly Conducting Covalent Au-C Contacts for Single-Molecule Junctions

      SciTech Connect (OSTI)

      Cheng, Z.L.; Hybertsen, M.; Skouta, R.; Vazquez, H.; Widawsky, J.R.; Schneebeli, S.; Chen, W.; Breslow, R.; Venkataraman, L.

      2011-06-01

      Charge transport across metal-molecule interfaces has an important role in organic electronics. Typically, chemical link groups such as thiols or amines are used to bind organic molecules to metal electrodes in single-molecule circuits, with these groups controlling both the physical structure and the electronic coupling at the interface. Direct metal-carbon coupling has been shown through C60, benzene and {pi}-stacked benzene but ideally the carbon backbone of the molecule should be covalently bonded to the electrode without intervening link groups. Here, we demonstrate a method to create junctions with such contacts. Trimethyl tin (SnMe{sub 3})-terminated polymethylene chains are used to form single-molecule junctions with a break-junction technique. Gold atoms at the electrode displace the SnMe{sub 3} linkers, leading to the formation of direct Au-C bonded single-molecule junctions with a conductance that is {approx}100 times larger than analogous alkanes with most other terminations. The conductance of these Au-C bonded alkanes decreases exponentially with molecular length, with a decay constant of 0.97 per methylene, consistent with a non-resonant transport mechanism. Control experiments and ab initio calculations show that high conductances are achieved because a covalent Au-C sigma ({sigma}) bond is formed. This offers a new method for making reproducible and highly conducting metal-organic contacts.

    2. Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint

      SciTech Connect (OSTI)

      Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

      2008-05-01

      We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

    3. Tuning electron transport through a single molecular junction by bridge modification

      SciTech Connect (OSTI)

      Li, Xiao-Fei Qiu, Qi; Luo, Yi

      2014-07-07

      The possibility of controlling electron transport in a single molecular junction represents the ultimate goal of molecular electronics. Here, we report that the modification of bridging group makes it possible to improve the performance and obtain new functions in a single cross-conjugated molecular junction, designed from a recently synthesized bipolar molecule bithiophene naphthalene diimide. Our first principles results show that the bipolar characteristic remains after the molecule was modified and sandwiched between two metal electrodes. Rectifying is the intrinsic characteristic of the molecular junction and its performance can be enhanced by replacing the saturated bridging group with an unsaturated group. A further improvement of the rectifying and a robust negative differential resistance (NDR) behavior can be achieved by the modification of unsaturated bridge. It is revealed that the modification can induce a deviation angle about 4° between the donor and the acceptor π-conjugations, making it possible to enhance the communication between the two π systems. Meanwhile, the low energy frontier orbitals of the junction can move close to the Fermi level and encounter in energy at certain biases, thus a transport channel with a considerable transmission can be formed near the Fermi level only at a narrow bias regime, resulting in the improvement of rectifying and the robust NDR behavior. This finding could be useful for the design of single molecular devices.

    4. Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL

      SciTech Connect (OSTI)

      Moriarty, Tom; France, Ryan; Steiner, Myles

      2015-06-14

      Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.

    5. Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL: Preprint

      SciTech Connect (OSTI)

      Moriarty, Tom; France, Ryan; Steiner, Myles

      2015-09-15

      Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.

    6. Imaging the Solar Cell P-N Junction and Depletion Region Using Secondary Electron Contrast

      SciTech Connect (OSTI)

      Heath, J. T.; Jiang, C. S.; Al-Jassim, M. M.

      2011-01-01

      We report on secondary electron (SE) images of cross-sectioned multicrystalline Si and GaAs/GaInP solar cell devices, focusing on quantifying the relationship between the apparent n{sup +}-p contrast and characteristic electronic features of the device. These samples allow us to compare the SE signal from devices which have very different physical characteristics: differing materials, diffused junction versus abrupt junction, heterojunction versus homojunction. Despite these differences, we find that the SE image contrast for both types of sample, and as a function of reverse bias across the diode, closely agrees with PC1D simulations of the bulk electrostatic potential in the device, accurately yielding the depletion edge and width. A spatial derivative of the SE data shows a local maximum at the metallurgical junction. Such data are valuable, for example, in studying the conformity of a diffused junction to the textured surface topography. These data also extend our understanding of the origin of the SE contrast.

    7. Superconductive tunnel junction device with enhanced characteristics and method of manufacture

      SciTech Connect (OSTI)

      Kroger, H.; Jillie, D. W.

      1985-08-20

      A superconductive tunnel junction device comprises first and second superconductive electrodes with a barrier disposed therebetween where the first superconductive electrode and the barrier are formed without interruption in the same vacuum system pump down and with the first superconductive electrode subjected to sputter etching in an argon plasma before the deposition of the barrier for improving the characteristics of the device.

    8. The importance of Fe surface states for spintronic devices based on magnetic tunnel junctions

      SciTech Connect (OSTI)

      Chantis, Athanasios N

      2008-01-01

      In this article we give a review of our recent theoretical studies of the influence of Fe(001) surface (interface) states on spin-polarized electron transport across magnetic tunnel junctions with Fe electrodes. We show that minority-spin surface (interface) states are responsible for at least two effects which are important for spin electronics. First, they can produce a sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, tunneling magnetoresistance junctions with a single ferromagnetic electrode. Second, in Fe/GaAs(001) magnetic tunnel junctions minority-spin interface states produce a strong dependence of the tunneling current spin polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is predicted. This explains the observed sign reversal of spin polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistance through vertical Fe/GaAs/Fe trilayers.

    9. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

      SciTech Connect (OSTI)

      McGowan, Vance

      2003-08-01

      On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22.9 acres

    10. Grand Coulee - Bell 500-kV Transmission Line Project, Draft Environmental Impact Statement

      SciTech Connect (OSTI)

      N /A

      2002-08-09

      BPA is proposing to construct a 500-kilovolt (kV) transmission line that would extend approximately 84 miles between the Grand Coulee 500-kV Switchyard, near Grand Coulee Dam, and the Bell Substation, in Mead just north of Spokane. The new line would cross portions of Douglas, Grant, Lincoln, and Spokane counties. In addition to the transmission line, new equipment would be installed at the substations at each end of the new line and at other facilities. The proposed action would remove an existing 115-kV transmission line and replace it with the new 500-kV line on existing right-of-way for most of its length. Additional right-of-way would be needed in the first 3.5 miles out of the Grand Coulee Switchyard to connect to the existing 115-kV right-of-way. Since the mid-1990s, the transmission path west of Spokane, called the West of Hatwai transmission pathway, has grown increasingly constrained. To date, BPA has been able to manage operation of the path through available operating practices, and customer needed have been met while maintaining the reliability of the path. however, in early 2001, operations showed that the amount of electricity that needs to flow from east to west along this path creates severe transmission congestion. Under these conditions, the system is at risk of overloads and violation of industry safety and reliability standards. The problem is particularly acute in the spring and summer months because of the large amount of power generated by dams east of the path. Large amounts of water cannot be spilled during that time in order for BPA to fulfill its obligation to protect threatened and endangered fish. The amount of power that needs to move through this area during these months at times could exceed the carrying capacity of the existing transmission lines. In additional capacity is not added, BPA will run a significant risk that it will not be able to continue to meet its contractual obligations to deliver power and maintain reliability

    11. Electrical and photovoltaic characteristics of MoS{sub 2}/Si p-n junctions

      SciTech Connect (OSTI)

      Hao, Lanzhong Liu, Yunjie Gao, Wei; Han, Zhide; Xue, Qingzhong; Zeng, Huizhong; Wu, Zhipeng; Zhu, Jun; Zhang, Wanli

      2015-03-21

      Bulk-like molybdenum disulfide (MoS{sub 2}) thin films were deposited on the surface of p-type Si substrates using dc magnetron sputtering technique and MoS{sub 2}/Si p-n junctions were formed. The vibrating modes of E{sup 1}{sub 2g} and A{sub 1g} were observed from the Raman spectrum of the MoS{sub 2} films. The current density versus voltage (J-V) characteristics of the junction were investigated. A typical J-V rectifying effect with a turn-on voltage of 0.2 V was shown. In different voltage range, the electrical transporting of the junction was dominated by diffusion current and recombination current, respectively. Under the light illumination of 15 mW cm{sup −2}, the p-n junction exhibited obvious photovoltaic characteristics with a short-circuit current density of 3.2 mA cm{sup −2} and open-circuit voltage of 0.14 V. The fill factor and energy conversion efficiency were 42.4% and 1.3%, respectively. According to the determination of the Fermi-energy level (∼4.65 eV) and energy-band gap (∼1.45 eV) of the MoS{sub 2} films by capacitance-voltage curve and ultraviolet-visible transmission spectra, the mechanisms of the electrical and photovoltaic characteristics were discussed in terms of the energy-band structure of the MoS{sub 2}/Si p-n junctions. The results hold the promise for the integration of MoS{sub 2} thin films with commercially available Si-based electronics in high-efficient photovoltaic devices.

    12. Rio Grande Erosion Potential Demonstration - Report for the National Border Technology Program

      SciTech Connect (OSTI)

      JEPSEN, RICHARD A.; ROBERTS, JESSE D.; LANGFORD, RICHARD; GAILANI, JOSEPH

      2001-11-01

      This demonstration project is a collaboration among DOE, Sandia National Laboratories, the University of Texas, El Paso (UTEP), the International Boundary and Water Commission (IBWC), and the US Army Corps of Engineers (USACE). Sandia deployed and demonstrated a field measurement technology that enables the determination of erosion and transport potential of sediments in the Rio Grande. The technology deployed was the Mobile High Shear Stress Flume. This unique device was developed by Sandia's Carlsbad Programs for the USACE and has been used extensively in collaborative efforts on near shore and river systems throughout the United States. Since surface water quantity and quality along with human health is an important part of the National Border Technology Program, technologies that aid in characterizing, managing, and protecting this valuable resource from possible contamination sources is imperative.

    13. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

      Broader source: Energy.gov [DOE]

      The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

    14. Power council cites Tacoma homes - the Grand Coulee Dam of the future

      SciTech Connect (OSTI)

      Riley, M.

      1984-07-01

      The energy-efficient building codes adopted by Tacoma, Washington will give the city a reservoir of power comparable to the water stored behind Grand Coulee Dam. The code standards reduce energy requirements 60%, a saving that will continue through the 50- to 60-year service life of the houses. The first to adopt the Northwest Power Planning Council (NWPPC) Model Conservation Stardards, Tacoma recognized that current electric power surpluses are temporary and that conservation is the cheapest way to get new power. The city adopted the plan despite its low rates because economic growth is likely to come from power-intensive industries. A support package for the plan combines building code compliance, an information system, marketing, and financial incentives.

    15. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

      SciTech Connect (OSTI)

      Meixner, Tom; Tidwell, Vincent Carroll; Oelsner, Gretchen; Brooks, Paul; Roach, Jesse D.

      2008-08-01

      Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

    16. TH-C-BRD-12: Robust Intensity Modulated Proton Therapy Plan Can Eliminate Junction Shifts for Craniospinal Irradiation

      SciTech Connect (OSTI)

      Liao, L; Jiang, S; Li, Y; Wang, X; Li, H; Zhu, X; Sahoo, N; Gillin, M; Mahajan, A; Grosshans, D; Zhang, X; Lim, G

      2014-06-15

      Purpose: The passive scattering proton therapy (PSPT) technique is the commonly used radiotherapy technique for craniospinal irradiation (CSI). However, PSPT involves many numbers of junction shifts applied over the course of treatment to reduce the cold and hot regions caused by field mismatching. In this work, we introduced a robust planning approach to develop an optimal and clinical efficient techniques for CSI using intensity modulated proton therapy (IMPT) so that junction shifts can essentially be eliminated. Methods: The intra-fractional uncertainty, in which two overlapping fields shift in the opposite directions along the craniospinal axis, are incorporated into the robust optimization algorithm. Treatment plans with junction sizes 3,5,10,15,20,25 cm were designed and compared with the plan designed using the non-robust optimization. Robustness of the plans were evaluated based on dose profiles along the craniospinal axis for the plans applying 3 mm intra-fractional shift. The dose intra-fraction variations (DIV) at the junction are used to evaluate the robustness of the plans. Results: The DIVs are 7.9%, 6.3%, 5.0%, 3.8%, 2.8% and 2.2%, for the robustly optimized plans with junction sizes 3,5,10,15,20,25 cm. The DIV are 10% for the non-robustly optimized plans with junction size 25 cm. The dose profiles along the craniospinal axis exhibit gradual and tapered dose distribution. Using DIVs less than 5% as maximum acceptable intrafractional variation, the overlapping region can be reduced to 10 cm, leading to potential reduced number of the fields. The DIVs are less than 5% for 5 mm intra-fractional shifts with junction size 25 cm, leading to potential no-junction-shift for CSI using IMPT. Conclusion: This work is the first report of the robust optimization on CSI based on IMPT. We demonstrate that robust optimization can lead to much efficient carniospinal irradiation by eliminating the junction shifts.

    17. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

      SciTech Connect (OSTI)

      Childs, Allen B.

      2000-08-01

      The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy, and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.

    18. Sequence stratigraphic model of the Rio Grande Delta, south west Texas: Potential analog for the Niger Delta

      SciTech Connect (OSTI)

      Banfield, L.A.; Anderson, J.B.; Vail, P.R.

      1996-12-31

      A sequence stratigraphic model developed from the ancient Rio Grande Delta in South West Texas is suggested as an analog for the Niger Delta. The two delta systems are characterized by high sand bedloads, shale diapirism with associated listric normal faulting, and large amounts of tidal and wave influence forming lower coastal plains characterized by swamps and estuaries. The sequence stratigraphic model of the ancient Rio Grande delta is based on approximately 1200 kilometers of single channel, 15 cubic inch water gun data, lithologic descriptions from approximately 25 long cores (28-30 m) located in 17-94 meters water depth, three gamma ray logs, paleontologic data from two cores, and oxygen isotopic data from one core (152 meters in length and located in 94 meters water depth). The combined data indicate that considerable quantities of sand are sequestered on the continental shelf and point sourcing the slope. The Rio Grande sequence stratigraphic model provides an improved understanding of sand deposits on the shelf, of the role of sediment bypass during lowstands, and of the base of slope deposits formed by headward eroding canyons (?) or channels (?) located at the shelf break. This information regarding the distribution of sand in the Rio Grande system can provide valuable insight into the reservoir distribution in the Niger system, improving existing reservoir predictions.

    19. Chemical beam epitaxy growth of AlGaAs/GaAs tunnel junctions using trimethyl aluminium for multijunction solar cells

      SciTech Connect (OSTI)

      Paquette, B.; DeVita, M.; Turala, A.; Kolhatkar, G.; Boucherif, A.; Jaouad, A.; Aimez, V.; Ars, R.; Wilkins, M.; Wheeldon, J. F.; Walker, A. W.; Hinzer, K.; Fafard, S.

      2013-09-27

      AlGaAs/GaAs tunnel junctions for use in high concentration multijunction solar cells were designed and grown by chemical beam epitaxy (CBE) using trimethyl aluminium (TMA) as the p-dopant source for the AlGaAs active layer. Controlled hole concentration up to 4?10{sup 20} cm{sup ?3} was achieved through variation in growth parameters. Fabricated tunnel junctions have a peak tunneling current up to 6140 A/cm{sup 2}. These are suitable for high concentration use and outperform GaAs/GaAs tunnel junctions.

    20. Spin and charge transport in double-junction Fe/MgO/GaAs/MgO/Fe heterostructures

      SciTech Connect (OSTI)

      Wolski, S. Szczepa?ski, T.; Dugaev, V. K.; Barna?, J.; Landgraf, B.; Slobodskyy, T.; Hansen, W.

      2015-01-28

      We present theoretical and experimental results on tunneling current in single Fe/MgO/GaAs and double Fe/MgO/GaAs/MgO/Fe tunnel junctions. The charge and spin currents are calculated as a function of external voltage for different sets of parameters characterizing the semiconducting GaAs layer. Transport characteristics of a single Fe/MgO/GaAs junction reveal typical diode as well as spin diode features. The results of numerical calculations are compared with current-voltage characteristics measured experimentally for double tunnel junction structures, and a satisfactory agreement of the theoretical and experimental results has been achieved.

    1. Correlation between amplitude of spin accumulation signals investigated by Hanle effect measurement and effective junction barrier height in CoFe/MgO/n{sup +}-Si junctions

      SciTech Connect (OSTI)

      Saito, Y. Ishikawa, M.; Sugiyama, H.; Inokuchi, T.; Hamaya, K.; Tezuka, N.

      2015-05-07

      Correlation between the amplitude of the spin accumulation signals and the effective barrier height estimated from the slope of the log (RA) - t{sub MgO} plot (RA: resistance area product, t{sub MgO}: thickness of MgO tunnel barrier) in CoFe/MgO/n{sup +}-Si junctions was investigated. The amplitude of spin accumulation signals increases with increasing effective barrier heights. This increase of the amplitude of spin accumulation is originated from the increase of the spin polarization (P{sub Si}) in Si. The estimated absolute values of P{sub Si} using three-terminal Hanle signals are consistent with those estimated by four-terminal nonlocal-magnetoresistance (MR) and two-terminal local-MR. To demonstrate large spin accumulation in Si bulk band and enhance the local-MR through Si channel, these results indicate that the increase of the effective barrier height at ferromagnet/(tunnel barrier)/n{sup +}-Si junction electrode is important.

    2. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

      SciTech Connect (OSTI)

      Manipatruni, Sasikanth Nikonov, Dmitri E.; Young, Ian A.

      2014-05-07

      Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

    3. Giant amplification of tunnel magnetoresistance in a molecular junction: Molecular spin-valve transistor

      SciTech Connect (OSTI)

      Dhungana, Kamal B.; Pati, Ranjit

      2014-04-21

      Amplification of tunnel magnetoresistance by gate field in a molecular junction is the most important requirement for the development of a molecular spin valve transistor. Herein, we predict a giant amplification of tunnel magnetoresistance in a single molecular spin valve junction, which consists of Ru-bis-terpyridine molecule as a spacer between two ferromagnetic nickel contacts. Based on the first-principles quantum transport approach, we show that a modest change in the gate field that is experimentally accessible can lead to a substantial amplification (320%) of tunnel magnetoresistance. The origin of such large amplification is attributed to the spin dependent modification of orbitals at the molecule-lead interface and the resultant Stark effect induced shift in channel position with respect to the Fermi energy.

    4. Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer

      SciTech Connect (OSTI)

      Cuchet, La; Rodmacq, Bernard; Auffret, Stphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

      2015-06-21

      The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0?nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.

    5. Multiple junction cell characterization using the LBIC method : early results, issues, and pathways to improvement.

      SciTech Connect (OSTI)

      Finn, Jason R.; Granata, Jennifer E.; Hansen, Barry R.

      2010-03-01

      A light beam induced current (LBIC) measurement is a non-destructive technique that produces a spatial graphical representation of current response in photovoltaic cells with respect to position when stimulated by a light beam. Generally, a laser beam is used for these measurements because the spot size can be made very small, on the order of microns, and very precise measurements can be made. Sandia National Laboratories Photovoltaic System Evaluation Laboratory (PSEL) uses its LBIC measurement technique to characterize single junction mono-crystalline and multi-crystalline solar cells ranging from miniature to conventional sizes. Sandia has modified the already valuable LBIC technique to enable multi-junction PV cells to be characterized.

    6. Assessing thermal damage in silicon PN-junctions using Raman thermometry

      SciTech Connect (OSTI)

      Beechem, Thomas E.; Serrano, Justin R.; McDonald, Anthony; Mani, Seethambal

      2013-03-28

      Laser machining is frequently utilized in the manufacture of photovoltaics. A natural by-product of these fabrication processes, heat, not only serves as a means of material removal but also modifies the material in an extended region beyond that ideally intended for alteration. This modified region, termed the heat affected zone, is detrimental to performance and should therefore be minimized. While undoubtedly thermal in origin, it is unclear exactly how the thermal environment during laser machining correlates to changes in the PN-junction that reduce performance. In response, we combine in-situ Raman based thermometry measurements with post-event failure analysis to identify the physical mechanisms damaging the junction during laser machining. From this approach, damage is shown to initiate prior to melting and be driven primarily by the diffusion of dopants for fluences that do not induce ablation. Additionally, comparatively small regions of damage are shown to have a large impact on operation.

    7. Proximity induced vortices and long-range triplet supercurrents in ferromagnetic Josephson junctions and spin valves

      SciTech Connect (OSTI)

      Alidoust, Mohammad; Halterman, Klaus

      2015-03-28

      Using a spin-parameterized quasiclassical Keldysh-Usadel technique, we theoretically study supercurrent transport in several types of diffusive ferromagnetic (F)/superconducting (S) configurations with differing magnetization textures. We separate out the even- and odd-frequency components of the supercurrent within the low proximity limit and identify the relative contributions from the singlet and triplet channels. We first consider inhomogeneous one-dimensional Josephson structures consisting of a uniform bilayer magnetic S/F/F/S structure and a trilayer S/F/F/F/S configuration, in which case the outer F layers can have either a uniform or conical texture relative to the central uniform F layer. Our results demonstrate that for supercurrents flowing perpendicular to the F/F interfaces, incorporating a conical texture yields the most effective way to observe the signatures of long-ranged spin-triplet supercurrents. We also consider three different types of finite-sized two-dimensional magnetic structures subjected to an applied magnetic field normal to the junction plane: a S/F/S junction with uniform magnetization texture and two S/F/F/S configurations with differing F/F bilayer arrangements. In one case, the F/F interface is parallel with the S/F junction interfaces while in the other case, the F/F junction is oriented perpendicular to the S/F interfaces. We then discuss the proximity vortices and corresponding spatial maps of currents inside the junctions. For the uniform S/F/S junction, we analytically calculate the magnetic field induced supercurrent and pair potential in both the narrow and wide junction regimes, thus providing insight into the variations in the Fraunhofer diffraction patterns and proximity vortices when transitioning from a wide junction to a narrow one. Our extensive computations demonstrate that the induced long-range spin-triplet supercurrents can deeply penetrate uniform F/F bilayers when spin-singlet supercurrents flow parallel to the

    8. Electronic transport in biphenyl single-molecule junctions with carbon nanotubes electrodes: The role of molecular conformation and chirality

      SciTech Connect (OSTI)

      Brito Silva, C. A. Jr.; Granhen, E. R. [Pos-Graduacao em Engenharia Eletrica, Universidade Federal do Para, 66075-900 Belem, PA (Brazil); Silva, S. J. S. da; Leal, J. F. P. [Pos-Graduacao em Fisica, Universidade Federal do Para, 66075-110 Belem, PA (Brazil); Del Nero, J. [Departamento de Fisica, Universidade Federal do Para, 66075-110 Belem, PA (Brazil); Divisao de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial, 25250-020 Duque de Caxias, RJ (Brazil); Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ (Brazil); Pinheiro, F. A. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ (Brazil)

      2010-08-15

      We investigate, by means of ab initio calculations, electronic transport in molecular junctions composed of a biphenyl molecule attached to metallic carbon nanotubes. We find that the conductance is proportional to cos{sup 2} {theta}, with {theta} the angle between phenyl rings, when the Fermi level of the contacts lies within the frontier molecular orbitals energy gap. This result, which agrees with experiments in biphenyl junctions with nonorganic contacts, suggests that the cos{sup 2} {theta} law has a more general applicability, irrespective of the nature of the electrodes. We calculate the geometrical degree of chirality of the junction, which only depends on the atomic positions, and demonstrate that it is not only proportional to cos{sup 2} {theta} but also is strongly correlated with the current through the system. These results indicate that molecular conformation plays the preponderant role in determining transport properties of biphenyl-carbon nanotubes molecular junctions.

    9. Superlinear generation of exciton and related paramagnetism induced by forward current in a diamond p-i-n junction

      SciTech Connect (OSTI)

      Natori, Kenji

      2015-02-07

      The concentration of excitons generated in a high-quality diamond p-i-n junction is investigated considering the forward current characteristics of the junction. As the forward current in the junction increases, the exciton concentration increases superlinearly, contrary to the linear increases of the electron and hole concentration. This tendency suggests a superlinear increase in emission intensity due to exciton recombination. The increase rate is more radical than quadratic, in accordance with the observed increase of the integrated intensity of free exciton emission. To estimate the concentration of triplet excitons generated in the p-i-n junction, observation of the paramagnetism due to the exciton spin moment is proposed. The magnetic susceptibility superlinearly increases with the increase in the forward current, unlike any other magnetic property of the device.

    10. Grand Challenges for Biological and Environmental Research: A Long-Term Vision

      SciTech Connect (OSTI)

      Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

      2010-12-01

      behaviors of complex biological and environmental systems, leading to robust solutions for DOE missions and strategic goals. In March 2010, the Biological and Environmental Research Advisory Committee held the Grand Challenges for Biological and Environmental Research: A Long-Term Vision workshop to identify scientific opportunities and grand challenges for BER science in the coming decades and to develop an overall strategy for drafting a long-term vision for BER. Key workshop goals included: (1) Identifying the greatest scientific challenges in biology, climate, and the environment that DOE will face over a 20-year time horizon. (2) Describing how BER should be positioned to address those challenges. (3) Determining the new and innovative tools needed to advance BER science. (4) Suggesting how the workforce of the future should be trained in integrative system science. This report lays out grand research challenges for BER - in biological systems, climate, energy sustainability, computing, and education and workforce training - that can put society on a path to achieve the scientific evidence and predictive understanding needed to inform decision making and planning to address future energy needs, climate change, water availability, and land use.

    11. NREL's Multi-Junction Solar Cells Teach Scientists How to Turn Plants into

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Powerhouses - News Releases | NREL NREL's Multi-Junction Solar Cells Teach Scientists How to Turn Plants into Powerhouses May 12, 2011 Plants can overcome their evolutionary legacies to become much better at using biological photosynthesis to produce energy, the kind of energy that can power vehicles in the near future, an all-star collection of biologists, physicists, photochemists, and solar scientists has found. A U.S. Department of Energy (DOE) workshop that drew a prestigious collection

    12. In the OSTI Collections: Josephson Junctions | OSTI, US Dept of Energy

      Office of Scientific and Technical Information (OSTI)

      Office of Scientific and Technical Information Josephson Junctions Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Terahertz Radiation Examining Subatomic Particles Measuring Material Properties Noise Spin and Supercurrents References Research Organizations Reports available through OSTI's SciTech Connect Additional References When a steady voltage gradient is applied along an ordinary conducting wire, electrons in the wire will

    13. The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions

      SciTech Connect (OSTI)

      Cooper, David; Twitchett-Harrison, Alison C.; Midgley, Paul A.; Dunin-Borkowski, Rafal E.

      2007-05-01

      Electron beam irradiation is shown to significantly influence phase images recorded from focused ion beam milled GaAs p-n junction specimens examined using off-axis electron holography in the transmission electron microscope. Our results show that the use of improved electrical connections to the specimen overcomes this problem, and may allow the correct built in potential across the junction to be recovered.

    14. Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2000 Annual Report.

      SciTech Connect (OSTI)

      Crossley, Brian; Lockwood, Jr., Neil W.; McLellan, Jason G.

      2001-01-01

      The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, commonly known as the Joint Stock Assessment Project (JSAP) is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (blocked area). The three-phase approach of this project will enhance the fisheries resources of the blocked area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information housed in a central location will allow managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP (NWPPC program measure 10.8B.26) is designed and guided jointly by fisheries managers in the blocked area and the Columbia Basin blocked area management plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of blocked area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the blocked area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. The use of common collection and analytical tools is essential to the process of streamlining joint management decisions. In 1999 and 2000 the project

    15. Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact

      SciTech Connect (OSTI)

      Karadi, C

      1995-09-01

      The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlO{sub x}/Nb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic. 133 refs., 49 figs.

    16. Competition between cotunneling, Kondo effect, and direct tunneling in discontinuous high-anisotropy magnetic tunnel junctions

      SciTech Connect (OSTI)

      Ciudad D.; Arena D.; We, Z.-C.; Hindmarch, A.T.; Negusse, E.; Han, X.-F.Han; Marrows, C.H.

      2012-06-07

      The transition between Kondo and Coulomb blockade effects in discontinuous double magnetic tunnel junctions is explored as a function of the size of the CoPt magnetic clusters embedded between AlO{sub x} tunnel barriers. A gradual competition between cotunneling enhancement of the tunneling magnetoresistance (TMR) and the TMR suppression due to the Kondo effect has been found in these junctions, with both effects having been found to coexist even in the same sample. It is possible to tune between these two states with temperature (at a temperature far below the cluster blocking temperature). In addition, when further decreasing the size of the CoPt clusters, another gradual transition between the Kondo effect and direct tunneling between the electrodes takes place. This second transition shows that the spin-flip processes found in junctions with impurities in the barrier are in fact due to the Kondo effect. A simple theoretical model able to account for these experimental results is proposed.

    17. Physical model of the contact resistivity of metal-graphene junctions

      SciTech Connect (OSTI)

      Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jimnez, David [Departament d'Enginyeria Electrnica, Escola d'Enginyeria, Universitat Autnoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2Institut Catal de Nanocincia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2Institut Catal de Nanocincia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Instituci Catalana de Recerca i Estudis Avanats, 08070 Barcelona (Spain)

      2014-04-28

      While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

    18. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

      SciTech Connect (OSTI)

      Eberhart, Craig

      2010-08-01

      Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

    19. Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation

      SciTech Connect (OSTI)

      Moucka, Filip; Bratko, Dusan Luzar, Alenka

      2015-03-28

      Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of dissolved ions and water molecules, we studied equilibrium partitioning of both components between laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of the Hamiltonian and tensorial pressure components at anisotropic conditions in the pore required the development of a novel algorithm for a self-consistent correction of nonelectrostatic cut-off effects. At pore widths above the kinetic threshold to capillary evaporation, the molality of the salt inside the confinement grows in parallel with that of the bulk phase, but presents a nonuniform width-dependence, being depleted at some and elevated at other separations. The presence of the salt enhances the layered structure in the slit and lengthens the range of inter-wall pressure exerted by the metastable liquid. Solvation pressure becomes increasingly repulsive with growing salt molality in the surrounding bath. Depending on the sign of the excess molality in the pore, the wetting free energy of pore walls is either increased or decreased by the presence of the salt. Because of simultaneous rise in the solution surface tension, which increases the free-energy cost of vapor nucleation, the rise in the apparent hydrophobicity of the walls has not been shown to enhance the volatility of the metastable liquid in the pores.

    20. Wildlife Protection, Mitigation and Enhancement Planning for Grand Coulee Dam, Final Report.

      SciTech Connect (OSTI)

      Creveling, Jennifer

      1986-08-01

      The development and operation of Grand Coulee Dam inundated approximately 70,000 acres of wildlife habitat under the jurisdictions of the Colville Confederated Tribes, the Spokane Tribe, and the State of Washington. Under the provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, this study reviews losses to wildlife and habitat, and proposes mitigation for those losses. Wildlife loss estimates were developed from information available in the literature. Habitat losses and potential habitat gains through mitigation were estimated by a modified Habitat Evaluation Procedure. The mitigation plan proposes (1) acquisition of sufficient land or management rights to land to protect Habitat Units equivalent to those lost (approximately 73,000 acres of land would be required), (2) improvement and management of those lands to obtain and perpetuate target Habitat Units, and (3) protection and enhancement of suitable habitat for bald eagles. Mitigation is presented as four actions to be implemented over a 10-year period. A monitoring program is proposed to monitor mitigation success in terms of Habitat Units and wildlife population trends.