Sample records for government schools boilers

  1. Improving School Governance | 1 Improving School Governance

    E-Print Network [OSTI]

    Rambaut, Andrew

    Improving School Governance | 1 Improving School Governance A Recommended Code of Governance for Schools: A flexible framework for strategic planning October 2012 Pilot version 1 #12;Improving School Governance | 2 #12;Improving School Governance | 3 This pilot version of the Recommended Code of Governance

  2. Political Science Division Hatfield School of Government

    E-Print Network [OSTI]

    Bertini, Robert L.

    Political Science Division Hatfield School of Government Minor in Law & Legal Studies Program, emphasizing the political, social, cultural, and philosophical foundations and impacts of law and legal campus who are interested in the relationship of law to politics, society, and culture. While the core

  3. Biomass Boiler to Heat Oregon School | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015CommerceDepartment ofBioenergyBoiler to

  4. EA-0923: Winnett School District Boiler Replacement Project, Winnett, Montana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to replace the Winnett School District complex's existing oil-fired heating system with a new coal-fired heating system with funds...

  5. Nottingham Business School Biofuels Market and Policy Governance

    E-Print Network [OSTI]

    Evans, Paul

    a dramatic growth in the global production and consumption of biofuels, as a rapidly- rising numberNottingham Business School Biofuels Market and Policy Governance The last decade has seen triggered growing concerns about the downsides from different types of biofuel. This, in turn, presents

  6. School of Graduate Studies Governing Principles Approved by GFC December 10th, 2012

    E-Print Network [OSTI]

    Morris, Joy

    School of Graduate Studies Governing Principles Approved by GFC December 10th, 2012 The University in limited academic areas, consolidation of all post-baccalaureate programs under the School of Graduate meeting, the Board of Governors established the School of Graduate Studies. In accordance with the Board

  7. Waterside Stress Assisted Corrosion (SAC) of Boiler Tubes

    E-Print Network [OSTI]

    Das, Suman

    Waterside Stress Assisted Corrosion (SAC) of Boiler Tubes School of Materials Science Boiler Areas Susceptible to SAC · Generally SAC initiates near weld joints on cold side of tubes · SAC cracks are difficult to detect inaccessibility · Failures Detected at Various Locations in Boilers

  8. School Governance, Teacher Incentives, and Pupil-Teacher Ratios: Experimental Evidence from Kenyan Primary Schools

    E-Print Network [OSTI]

    Duflo, Esther; Dupas, Pascaline; Kremer, Michael

    2012-01-01T23:59:59.000Z

    and Kumar et al. (2005). 4 School-Based Management programsA. Patrinos (2011). Making Schools Work. New Evidence onKrishnan (2004). When Can School Inputs Improve Test

  9. Recovery Boiler Corrosion Chemistry

    E-Print Network [OSTI]

    Das, Suman

    11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

  10. Stack Gas Heat Recovery from 100 to 1200 HP Boilers

    E-Print Network [OSTI]

    Judson, T. H.

    1980-01-01T23:59:59.000Z

    in reduced production and caused personnel layoffs. U.S. Government reports indicate that roughly 20% of all fuel is consumed in boilers. A savings in boiler fuel consumption can have a positive impact on energy conservation, and become an important component...

  11. Recovery Boiler Modeling

    E-Print Network [OSTI]

    Abdullah, Z.; Salcudean, M.; Nowak, P.

    , east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

  12. Minimize Boiler Blowdown

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  13. Establishing an energy efficiency recommendation for commercial boilers

    SciTech Connect (OSTI)

    Ware, Michelle J.

    2000-08-01T23:59:59.000Z

    To assist the federal government in meeting its energy reduction goals, President Clinton's Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25th percentile of efficiency. Under the direction of DOE's Federal Energy Management Program (FEMP), the Procurement Challenge's goal is to create efficiency recommendations for all energy-using products that could substantially impact the government's energy reduction goals, like commercial boilers. A typical 5,000,000 Btuh boiler, with a thermal efficiency of 83.2%, can have lifetime energy cost savings of $40,000 when compared to a boiler with a thermal efficiency of 78%. For the federal market, which makes up 2% of the boiler market, this means lifetime energy cost savings of over $25,600,000. To establish efficiency recommendations, FEMP uses standardized performance ratings for products sold in the marketplace. Currently, the boiler industry uses combustion efficiency and, sometimes, thermal efficiency performance measures when specifying a commercial boiler. For many years, the industry has used these efficiency measures interchangeably, causing confusion about boiler performance measurements, and making it difficult for FEMP to establish the top 25th percentile of efficiency. This paper will illustrate the method used to establish FEMP's recommendation for boilers. The method involved defining a correlation between thermal and combustion efficiency among boiler classifications; using the correlation to model a data set of all the boiler types available in the market; and identifying how the correlation affected the top 25th percentile analysis. The paper also will discuss the applicability of this method for evaluating other equipment for which there are limited data on performance ratings.

  14. Boiler Corrosion and Monitoring

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    G. R. Holcomb; B. F. McGhee; A. T. Fry; N. J. Simms; K. Davis; Shim, H S; S. J. Bullard

    2013-11-19T23:59:59.000Z

    Results of a collaborative effort to investigate and develop solutions for key material issues affecting the performance of large-scale coal-fired boilers operating at advanced conditions is presented. Advanced conditions include advanced steam temperatures, oxyfuel firing, and co-firing biomass materials. A series of laboratory experimental results are presented on fireside corrosion in environments representing air-, and oxy-fired conditions, and with coal and/or biomass as the fuel. The effects of fluctuating reducing atmospheres and heat flux effects were examined. A variety of boiler corrosion probes and sensors were developed and tested. The probes measured corrosion by section loss and the sensors by electrochemical techniques including electrochemical noise. The probes were tested in coal and waste-to-energy boilers. Correlations between section loss probes and electrochemical noise sensors allow for real-time corrosion rate measurements to be made that allow for changes in boiler operations to be tracked in terms of corrosion effects.

  15. New York City School Evaluations: Comparing Parent, Teacher, and Government Assessments

    E-Print Network [OSTI]

    Favero, Nathan 1991-

    2012-04-20T23:59:59.000Z

    ..................................................................................... 88 IV CONCLUSION ......................................................................................... 90 REFERENCES .................................................................................................................. 94... something about a school by noting the visual appearance of the building. To test this theory, researchers inspected the physical condition of several school buildings. The results indicate that visual appearance does exhibit a modest correlation...

  16. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  17. Improve Your Boiler's Combustion Efficiency

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  18. Return Condensate to the Boiler

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  19. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect (OSTI)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31T23:59:59.000Z

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  20. RENEWABLES RESEARCH Boiler Burner Energy System Technology

    E-Print Network [OSTI]

    RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER Renewables Research September 2010 The Issue Researchers at Altex Technologies Corporation in Sunnyvale, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research

  1. Biofuels and certification. A workshop at the Harvard Kennedy School of Government. Summary report

    SciTech Connect (OSTI)

    Devereaux, Charan; Lee, Henry

    2009-06-01T23:59:59.000Z

    Liquid biofuels can provide a substitute for fossil fuels in the transportation sector. Many countries have mandated the use of biofuels, by creating targets for their use. If not implemented with care, however, actions that increase biofuel production can put upward pressure on food prices, increase greenhouse gas (GHG) emissions, and exacerbate degradation of land, forest, and water sources. A strong global biofuels industry will not emerge unless these environmental and social concerns are addressed. Interested parties around the world are actively debating the design and implementation of policies to meet the biofuel goals, particularly those established in the United States and Europe. In general, policy options for managing the potential risks and benefits of biofuel development should specify not only clear standards governing biofuel content and production processes, but also certification processes for verifying whether particular biofuels meet those standards, and specific metrics or indicators on which to base the certification. Historically, many standards in the energy and environment fields have ultimately been set or supported by governments. Many of the certification processes have been voluntary, carried out by independent third parties. The biofuels case is a young one, however, with questions of goals, standards, certification, and metrics still in interdependent flux. The workshop focused its discussions on certification issues, but found the discussions naturally reaching into ongoing debates regarding possible goals, standards, and metrics. Many countries are proposing that for a biofuel to qualify as contributing to government-mandated targets or goals, it must be certified to meet certain standards. These standards could be limited to the amount of GHG emitted in the production process or could include a number of other environmental sustainability concerns ranging from deforestation and biodiversity to water resources. While the threat to both forests and food supplies from increased biofuel production is real, it is not clear that setting broad sustainability standards and then requiring sellers to certify that all of those standards have been met is the best way to address these interconnected problems. In particular, if too many standards and related certification requirements are put in place too soon, this could constrain the development of a global biofuels market. In contrast, certification targeted at a specific and limited set of problems and designed with the flexibility to adjust to changes in policies and programs can enhance the public's acceptance of the biofuel option while protecting key social and environmental goals. A second set of questions revolves around the locus of responsibility for certifying whether biofuel production meets sustainability targets. Should the biofuel processing firms, third parties, or governments be responsible for certifying the production of biofuels? This question also elicited significant discussion. While it could be easier to have individual country governments assume the certification of production responsibility, some governments may not have the capacity to implement an effective certification process. Production facilities that comply with international standards should not be kept out of the market because of their government's inability to manage the process. The possible contribution to effective certification of third party organizations or public-private partnerships should not be underestimated.

  2. Small boiler uses waste coal

    SciTech Connect (OSTI)

    Virr, M.J. [Spinheat Ltd. (United States)

    2009-07-15T23:59:59.000Z

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  3. Boiler Maximum Achievable Control Technology (MACT) Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Industrial, Commercial, and Institutional (ICI) Boilers and Process Heaters, February 2013 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004...

  4. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    of incinerator.whether fixed bed.rotary kiln or fluid bed.Sla9ging constituents present in the gas can result in bridging of tubes by molten salts if tube spacing is not wide,particularly at the boiler inlet.Ash hoppers ,soot blowers and cleaning lanes... take various configurations as seen in Fig 1 to ~.Consultants and engineers who specify and evaluate HRSGs should be aware that several factors influence the final configuration of HRSGs.Some of these factors are discussed below. SYSTEM...

  5. Boilers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio JumpVenturesCoral CapitalBoilers Jump to:

  6. DEPENDANT SCHOOLING INFORMATION In Western Australia, dependants of international students may be enrolled in either government (public) or non-government

    E-Print Network [OSTI]

    DEPENDANT SCHOOLING INFORMATION In Western Australia, dependants of international students may students are eligible to attend a public school through the Department of Education of Western Australia schools in Western Australia under the same conditions as local students while studying in Perth, provided

  7. Recover Heat from Boiler Blowdown

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  8. Steam Conservation and Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing...

  9. Sootblowing optimization for improved boiler performance

    DOE Patents [OSTI]

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25T23:59:59.000Z

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  10. Sootblowing optimization for improved boiler performance

    DOE Patents [OSTI]

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30T23:59:59.000Z

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  11. Covered Product Category: Commercial Boilers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for commercial boilers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  12. Underdeposit corrosion in boiler applications

    SciTech Connect (OSTI)

    Seels, F.H.

    1987-05-01T23:59:59.000Z

    Corrosion in industrial boilers is often associated with localized deposits. The most severe corrosion damage is often beneath the deposit. Waterside deposits can result in tube metal temperatures above the safe working limit for low-carbon steel. The variable of elevated metal temperature influences interactions between the deposit and corrosion processes under the deposit. Four case histories are discussed.

  13. Implementation of Boiler Best Practices

    E-Print Network [OSTI]

    Blake, N. R.

    . It also makes it easier to assign a value to the projects that are indicated by the questionnaire. The ten sections examine feedwater system performance and capability, with target limits for mixed-bed, two-bed, and softened water operation, boiler...

  14. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions.

    E-Print Network [OSTI]

    Yang, Dong

    2008-01-01T23:59:59.000Z

    ??Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, (more)

  15. Kraft recovery boiler physical and chemical processes

    SciTech Connect (OSTI)

    Adams, T.N.; Frederick, W.J. (Adams (Terry N.), Tacoma, WA (USA); Oregon State Univ., Corvallis, OR (USA). Dept. of Chemical Engineering)

    1988-01-01T23:59:59.000Z

    The focus of this book is on the recent research into the physical and chemical processes occurring in and around a black liquor recovery boiler. Almost all of the detailed technical information in this book has previously appeared in the open literature. The purpose here is not to present research for the first time, but to present it in a context of the other processes occurring in recovery boilers. Topics covered include: general characteristics of recovery boilers; black liquor thermal and transport properties; black liquor droplet formation and combustion; recovery boiler char bed processes; flow and mixing in Kraft recovery boilers; entrainment and carryover in recovery furnaces; fume formation and dust chemistry; deposits and boiler plugging; and recovery boiler thermal performance. 257 refs., 102 figs., 38 tabs.

  16. Alternate Materials for Recovery Boiler Superheater Tubes

    SciTech Connect (OSTI)

    Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

    2009-01-01T23:59:59.000Z

    The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

  17. Predictive modelling of boiler fouling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    In this reporting period, efforts were initiated to supplement the comprehensive flow field description obtained from the RNG-Spectral Element Simulations by incorporating, in a general framework, appropriate modules to model particle and condensable species transport to the surface. Specifically, a brief survey of the literature revealed the following possible mechanisms for transporting different ash constituents from the host gas to boiler tubes as deserving prominence in building the overall comprehensive model: (1) Flame-volatilized species, chiefly sulfates, are deposited on cooled boiler tubes via the mechanism of classical vapor diffusion. This mechanism is more efficient than the particulate ash deposition, and as a result there is usually an enrichment of condensable salts, chiefly sulfates, in boiler deposits; (2) Particle diffusion (Brownian motion) may account for deposition of some fine particles below 0. 1 mm in diameter in comparison with the mechanism of vapor diffusion and particle depositions, however, the amount of material transported to the tubes via this route is probably small. (3) Eddy diffusion, thermophoretic and electrophoretic deposition mechanisms are likely to have a marked influence in transporting 0.1 to 5[mu]m particles from the host gas to cooled boiler tubes; (4) Inertial impaction is the dominant mechanism in transporting particles above 5[mu]m in diameter to water and steam tubes in pulverized coal fired boiler, where the typical flue gas velocity is between 10 to 25 m/s. Particles above 10[mu]m usually have kinetic energies in excess of what can be dissipated at impact (in the absence of molten sulfate or viscous slag deposit), resulting in their entrainment in the host gas.

  18. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan

    2002-04-15T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  19. Local Government Energy Loan Program

    Broader source: Energy.gov [DOE]

    Through a public-private partnership with PowerSouth, Alabama's Local Government Energy Loan Program offers zero-interest loans to local governments, K-12 schools, and public colleges and...

  20. Fluidized bed boiler feed system

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1981-01-01T23:59:59.000Z

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  1. Boiler - tuning basics, part 1

    SciTech Connect (OSTI)

    Leopold, T. [ABB Inc. (United States)

    2009-03-15T23:59:59.000Z

    Tuning power plant controls takes nerves of steel and an intimate knowledge of plant systems gained only by experience. Tuning controls also requires equal parts art and science, which probably is why there are so few tuning experts in the power industry. In part 1 of a two-part series, the author explores a mix of the theoretical and practical aspects of tuning boiler control. 5 figs.

  2. Determining boiler-water makeup

    SciTech Connect (OSTI)

    Beecher, J.; Herman, K. [Ashland Chemical Co., Boonton, NJ (United States). Drew Industrial Div.

    1995-10-01T23:59:59.000Z

    In boiler operations, it is desirable to determine blowdown--and, thus, the feedwater`s concentration cycles--because it enables operators to calculate the theoretical concentrations of iron, copper or dispersant in the system. These calculations are important for maintaining boiler cleanliness. In practice, however, it isn`t always feasible to determine blowdown. For example, if the steam, feedwater and blowdown flows are not measured in a system, or if the measurements are not accurate, the blowdown and feedwater concentration cycles cannot be accurately determined. Also, if demineralized makeup water with very-low silica concentrations is mixed with essentially silica-free condensate, the ratio of silica in the boiler water to the silica in the feedwater may not yield accurate values for the concentration cycle. This method for calculating concentration cycles is accurate to within 5%, when the accuracy of the parameters measured are within the following limits: steam flow (2%); phosphate, residual (5%); micro calcium (50%); micro iron (25%); and phosphate, feed (10%).

  3. Quantifying Energy Savings by Improving Boiler Operation

    E-Print Network [OSTI]

    Carpenter, K.; Kissock, J. K.

    2005-01-01T23:59:59.000Z

    Dayton, OH ABSTRACT On/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify energy savings from switching to modulation control mode and reducing excess air in natural gas fired boilers... the accuracy of the methods. INTRODUCTION In our experience, common opportunities for improving boiler efficiency include switching from on/off to modulation control and reducing excess air. The decision about whether to pursue these opportunities...

  4. Stress-Assisted Corrosion in Boiler Tubes

    SciTech Connect (OSTI)

    Preet M Singh; Steven J Pawel

    2006-05-27T23:59:59.000Z

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  5. Upgrade Boilers with Energy-Efficient Burners

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. Best Practices: The Engineering Approach For Industrial Boilers

    E-Print Network [OSTI]

    Blake, N. R.

    , as well as plant profitability. Boiler Best Practices represent The Engineering Approach for Boilers-a way to examine mechanical, operational and chemical aspects of the systems (pretreatment through condensate) to ensure reliable boiler operations...

  7. Boiler System Efficiency Improves with Effective Water Treatment

    E-Print Network [OSTI]

    Bloom, D.

    Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

  8. Biomass Boiler and Furnace Emissions and Safety Regulations in...

    Open Energy Info (EERE)

    Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions...

  9. Consider Installing High-Pressure Boilers with BackpressureTurbine...

    Broader source: Energy.gov (indexed) [DOE]

    High-Pressure Boilers with Backpressure Turbine-Generators Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators This tip sheet outlines the benefits of...

  10. Predictive modelling of boiler fouling. Final report.

    SciTech Connect (OSTI)

    Chatwani, A

    1990-12-31T23:59:59.000Z

    A spectral element method embodying Large Eddy Simulation based on Re- Normalization Group theory for simulating Sub Grid Scale viscosity was chosen for this work. This method is embodied in a computer code called NEKTON. NEKTON solves the unsteady, 2D or 3D,incompressible Navier Stokes equations by a spectral element method. The code was later extended to include the variable density and multiple reactive species effects at low Mach numbers, and to compute transport of large particles governed by inertia. Transport of small particles is computed by treating them as trace species. Code computations were performed for a number of test conditions typical of flow past a deep tube bank in a boiler. Results indicate qualitatively correct behavior. Predictions of deposition rates and deposit shape evolution also show correct qualitative behavior. These simulations are the first attempts to compute flow field results at realistic flow Reynolds numbers of the order of 10{sup 4}. Code validation was not done; comparison with experiment also could not be made as many phenomenological model parameters, e.g., sticking or erosion probabilities and their dependence on experimental conditions were not known. The predictions however demonstrate the capability to predict fouling from first principles. Further work is needed: use of large or massively parallel machine; code validation; parametric studies, etc.

  11. A Methodology for Optimizing Boiler Operating Strategy

    E-Print Network [OSTI]

    Jones, K. C.

    1983-01-01T23:59:59.000Z

    Among the many ways by which an energy manager can conserve energy is the establishment of a strategy for operation of fired boilers. In particular, he can effect total fuel consumption by his decision on how much on-line boiler surplus is required...

  12. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, C.L.; Foote, J.P.

    1995-07-04T23:59:59.000Z

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  13. A new blowdown compensation scheme for boiler leak detection

    E-Print Network [OSTI]

    Marquez, Horacio J.

    considers the blowdown effect in industrial boiler operation. This adds to the efficiency of recent advancesA new blowdown compensation scheme for boiler leak detection A. M. Pertew ,1 X. Sun ,1 R. Kent in identification-based leak detection techniques of boiler steam- water systems. Keywords: Industrial Boilers, Tube

  14. Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??

    E-Print Network [OSTI]

    Henzinger, Thomas A.

    Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ?? Thomas A. Henzinger1 Howard model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models that guarantee the safety of the boiler. 1 Introduction A description of an industrial steam boiler has been

  15. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

    1995-01-01T23:59:59.000Z

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

  16. Parametric study of a firetube boiler performance

    SciTech Connect (OSTI)

    Park, H. [Marquette Univ., Milwaukee, WI (United States). Dept. of Mechanical and Industrial Engineering; Valentino, M.W. [Cleaver-Brooks, Milwaukee, WI (United States)

    1995-12-31T23:59:59.000Z

    Critical areas in the design of commercial and industrial firetube boilers are burner and furnace configuration, as is the resultant heat transfer from the furnace wall to the water under the various conditions. Furthermore, performance of industrial and commercial boilers is mainly dependent upon their material and geometrical dimensions. In order to investigate boiler performance globally, a relatively simple model which can be processed in a personal computer (PC) is proposed. In this paper, the effects of thermo-physical parameters on the energy and exergy performance of a firetube boiler are studied by using a simple model for the combustion product gas behavior through the boiler passes. For each steady-state condition, the boiler performance is investigated by parametrically changing the degree of inception of nucleate boiling, the tube wall emissivity, the saturation steam pressure, and the fraction of flue gas recirculation (FGR, utilized for NO{sub x} emissions reduction). Results for a set of parameters such as those considered in this work may be used in future firetube boiler design to improve performance and reduce manufacturing costs.

  17. Low Temperature Heat Recovery for Boiler Systems

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    be economically heated to within 50 0 F of the entering flue gas temperature. Other less common, but practical, uses for energy include driving a low-temperature electric turbine cycle or an absorption chilling cycle. An improvement in boiler efficiency of 3...% to 8% can normally be realized by cooling boiler flue gasses down to llO o F_200 0 F. This recovers a large quantity of the available sensible heat in most boiler flue gas streams. Efficiency can be improv ed by up to 10% if flue gas is cooled down...

  18. Resource recovery waste heat boiler upgrade

    SciTech Connect (OSTI)

    Kuten, P.; McClanahan, D.E. [Fluor Daniel, Inc., Houston, TX (United States); Gehring, P.R.; Toto, M.L. [SRRI, Springfield, MA (United States); Davis, J.J. [Deltak, Minon, MN (United States)

    1996-09-01T23:59:59.000Z

    The waste heat boilers installed in a 360 TPD waste to energy plant were identified as the bottle neck for an effort to increase plant capacity. These boilers were successfully modified to accommodate the increase of plant capacity to 408 TPD, improve steam cycle performance and reduce boiler tube failures. The project demonstrated how engineering and operation can work together to identify problems and develop solutions that satisfy engineering, operation, and financial objectives. Plant checking and testing, design review and specification development, installation and operation results are presented.

  19. Blackwell Publishing, Ltd.Oxford, UKAPELAsian-Pacific Economic Literature0818-9935 2005 Asia Pacific School of Economics and Government, The Australian National University and Blackwell Publishing Asia Pty LtdNovember 2005192ORIGINAL ARTICLEROLAND-HOLST a

    E-Print Network [OSTI]

    Kammen, Daniel M.

    18 Blackwell Publishing, Ltd.Oxford, UKAPELAsian-Pacific Economic Literature0818-9935© 2005 Asia Pacific School of Economics and Government, The Australian National University and Blackwell Publishing and ITS NEIGHBOURSASIAN-PACIFIC ECONOMIC LITERATURE People's Republic of China and its Neighbours

  20. Boiler scale prevention employing an organic chelant

    DOE Patents [OSTI]

    Wallace, Steven L. (Lake Jackson, TX); Griffin, Jr., Freddie (Missouri City, TX); Tvedt, Jr., Thorwald J. (Angleton, TX)

    1984-01-01T23:59:59.000Z

    An improved method of treating boiler water which employs an oxygen scavenging compound and a compound to control pH together with a chelating agent, wherein the chelating agent is hydroxyethylethylenediaminetriacetic acid.

  1. Commonwealth Small Pellet Boiler Grant Program

    Broader source: Energy.gov [DOE]

    The Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER) are offering the Commonwealth Small Pellet Boiler Pilot Grant Program to provide grants to residents...

  2. Condensing Heat Exchangers Optimize Steam Boilers

    E-Print Network [OSTI]

    Sullivan, B.; Sullivan, P. A.

    1983-01-01T23:59:59.000Z

    for Industrial Boilers" R. E. Thompson - R. J. Goldstick KVB, Inc., 18806 Skypark Blvd., Irvine, California 92714, pg. 12-4. (3) "Condensing Heat Exchangers Using Tenon R Covered Tubes", Ronald Hessen, Condensing Heat Exchanger Corp., Latham, New York...

  3. Practical Procedures for Auditing Industrial Boiler Plants

    E-Print Network [OSTI]

    O'Neil, J. P.

    1980-01-01T23:59:59.000Z

    Industrial boiler plants are an area of opportunity in virtually every industry to save energy and reduce costs by using relatively simple, inexpensive auditing procedures. An energy audit consists of inspection, measurement, analysis...

  4. Energy Conservation for Boiler Water Systems

    E-Print Network [OSTI]

    Beardsley, M. L.

    1981-01-01T23:59:59.000Z

    . This paper reviews methods to conserve energy in industrial boiler water systems. Both mechanical and chemical approaches for energy conservation are discussed. The important aspects of efficient combustion are covered as well as other mechanical factors...

  5. Clean Boiler Waterside Heat Transfer Surfaces

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. Boiler MACT Technical Assistance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012. This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.

  7. Simulation of Combustion and Thermal Flow in an Industrial Boiler

    E-Print Network [OSTI]

    Saripalli, R.; Wang, T.; Day, B.

    2005-01-01T23:59:59.000Z

    Industrial boilers that produce steam or electric power represent a crucial facility for overall plant operations. To make the boiler more efficient, less emission (cleaner) and less prone to tube rupture problems, it is important to understand...

  8. Modern Boiler Control and Why Digital Systems are Better

    E-Print Network [OSTI]

    Hughart, C. L.

    1983-01-01T23:59:59.000Z

    Steam generation in petrochemical plants and refineries is in a state of change. Expensive fuels have resulted in greater use of waste heat recovery boilers and other energy conservation measures. As a result, many conventional boilers have been...

  9. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01T23:59:59.000Z

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  10. FAQs Manhattanville Campus Central Energy Plant Boiler Stacks

    E-Print Network [OSTI]

    Kim, Philip

    FAQs Manhattanville Campus Central Energy Plant Boiler Stacks Installation Frequently Asked Questions What is happening? Columbia University is installing two (2) boiler stacks on top of the Jerome L, a below-grade facility which will consist four (4) 45,000 lbs/hr steam boilers and related equipment

  11. 1 | P a g e Boiler Gold Rush

    E-Print Network [OSTI]

    Ginzel, Matthew

    1 | P a g e Boiler Gold Rush VISION STATEMENT The vision of BGR is twofold: first, help all new by participating in the premiere orientation program in the nation, Boiler Gold Rush. Second, enhance upper leaders for the betterment of the university. PROGRAM GOALS Boiler Gold Rush will provide the following

  12. Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

  13. Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator

    E-Print Network [OSTI]

    Demirel, Melik C.

    Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

  14. Density-Enthalpy Phase Diagram 0D Boiler Simulation

    E-Print Network [OSTI]

    Vuik, Kees

    Diagram 0D Boiler Simulation Finite Element Method Further Research Mass and Heat balances V d dt = i - eDensity-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Finite Transitions #12;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research

  15. Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??

    E-Print Network [OSTI]

    Henzinger, Thomas A.

    Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;?? Thomas A. Henzinger 1 Howard model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models constraints that guarantee the safety of the boiler. 1 Introduction A description of an industrial steam

  16. Steam boiler control speci cation problem: A TLA solution

    E-Print Network [OSTI]

    Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

  17. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    ?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

  18. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    ?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

  19. Streams of Steam The Steam Boiler Specification Case Study

    E-Print Network [OSTI]

    Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

  20. Steam boiler control specification problem: A TLA solution

    E-Print Network [OSTI]

    Merz, Stephan

    Steam boiler control specification problem: A TLA solution Frank Le?ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

  1. TA-2 Water Boiler Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Durbin, M.E. (ed.); Montoya, G.M.

    1991-06-01T23:59:59.000Z

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

  2. Circulating Fluidized Bed Combustion Boiler Project

    E-Print Network [OSTI]

    Farbstein, S. B.; Moreland, T.

    1984-01-01T23:59:59.000Z

    or turndown so we delayed consideration of installation of a FBC boil r. CIRCULATING FBC In early 1980 we became aware of the work by the Ahlstrom Company of Helsinki, Finland in the development of the circulating FBC boiler design. The PYROFLOW... layer is a lightweight insulating refractory. In 1979, Ahlstrom started up a 45,000 pound per hour PYROFLOW unIt at Pihlava, Finland. In 1981, 200,000 pound per hour boiler was started up 1 Kauttua, Finland as le b se load steam supply for paper...

  3. 1 School of Business SCHOOL OF BUSINESS

    E-Print Network [OSTI]

    Vertes, Akos

    1 School of Business SCHOOL OF BUSINESS Dean D.C. Kayes (Interim) / L.A. Livingstone (as of August. Jabbour, V. Perry (Interim) First organized as the School of Government in 1928, the School of Business development of individuals assuming leadership roles in society. The School has eight departments

  4. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    SciTech Connect (OSTI)

    Liss, William E; Cygan, David F

    2013-04-17T23:59:59.000Z

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system???¢????????the Super Boiler???¢????????for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today???¢????????s typical firetube boilers.

  5. Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01T23:59:59.000Z

    A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

  6. Best Management Practice #8: Steam Boiler Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  7. Digital radiographic systems detect boiler tube cracks

    SciTech Connect (OSTI)

    Walker, S. [EPRI, Charlotte, NC (United States)

    2008-06-15T23:59:59.000Z

    Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

  8. Mitsubishi FGD plants for lignite fired boilers

    SciTech Connect (OSTI)

    Kotake, Shinichiro; Okazoe, Kiyoshi; Iwashita, Koichiro; Yajima, Satoru

    1998-07-01T23:59:59.000Z

    In order to respond to the increasing electric energy demand for sustaining economic growth, construction of coal-fired thermal power plants worldwide is indispensable. As a countermeasure for environmental pollution which otherwise may reach a serious proportion from the operation of these plants, construction of flue gas desulfurization (FGD) plants is being promoted. Among these power stations where lignite fuel is burnt, the FGD plants concerned have to be designed to cope with high gas volume and SO{sub x} concentration as well as violent fluctuations in their values caused by such features of lignite as high sulfur content, low calorific volume, and unstable properties. Mitsubishi Heavy Industries (MHI) has received construction awards for a total of seven (7) FGD plants for lignite-fired boilers in succession starting from that for CEZ as, Czech Republic followed by those for EGAT, Thailand in 1993. All these plants are presently operating satisfactorily since successful completion of their performance tests in 1996. Further, a construction award of three (3) more FGD plants for lignite-fired boilers was received from ENDESA (Spain) in 1995 which are now being outfitted and scheduled to start commercial operation in 1998. In this paper, the authors discuss the outline design of FGD plants for lignite-fired boilers based on experience of FGD plants constructed since 1970 for heavy oil--as well as black coal-fired boilers, together with items confirmed from the operation and design guideline hereafter.

  9. The next generation of oxy-fuel boiler systems

    SciTech Connect (OSTI)

    Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01T23:59:59.000Z

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  10. Oxy-Combustion Boiler Material Development

    SciTech Connect (OSTI)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31T23:59:59.000Z

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

  11. Oxy-Combustion Boiler Material Development

    SciTech Connect (OSTI)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31T23:59:59.000Z

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

  12. Recovery Boiler Superheater Ash Corrosion Field Study

    SciTech Connect (OSTI)

    Keiser, James R [ORNL] [ORNL; Kish, Joseph [McMaster University] [McMaster University; Singbeil, Douglas [FPInnovations] [FPInnovations

    2010-01-01T23:59:59.000Z

    With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

  13. World Class Boilers and Steam Distribution System

    E-Print Network [OSTI]

    Portell, V. P.

    WORLD CLASS BOILERS AND STEAM DISTRIBUTION SYSTEM Vernon P. Portell, Ph.D. Manager Armstrong Service, Inc. ABSTRACT categorizing, measuring, and comparing subjects which are of interest to us is the way we identify the "World class" is a... of information can also be obtained through an independent firm that provides third-party assessment of steam systems. One of these third parties, Armstrong Energy Certification, Inc., has used data gleaned from decades of industrial experience...

  14. Reducing NOx in Fired Heaters and Boilers

    E-Print Network [OSTI]

    Garg, A.

    -6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

  15. Predictive modelling of boiler fouling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    As this study incorporates in a general framework, appropriate modules to model condensable species transport to the surface along with particles, the need for a suitable solver for the reaction component of the species equations with regard to issues of stability, stiffness, economy, etc. becomes obvious. It is generally agreed in the literature that the major problem associated with the simultaneous integration of large sets of chemical kinetic rate equations is that of stiffness. Although stiffness does not have a simple definition, it is characterized by widely varying time constants. For example, in hydrogen-air combustion, the induction time is of the order of microseconds whereas the nitric oxide formation time is of the order of milliseconds. These widely different time constants present classical methods (such as the popular explicit Runge-Kutta method) with the following difficulty: to ensure stability of the numerical solution, these methods are restricted to using very short time steps that are determined by the smallest time constant. However, the time for all chemical species to reach near-equilibrium values is determined by the longest time constant. As a result, classical methods require excessive amounts of computer time to solve stiff systems of ordinary differential equations (ODE's). Several approaches for the solution of stiff ODE's have been proposed. Of all these techniques, the general purpose codes EPISODE and LSODE are regarded as the best available packaged'' codes for the solution of stiff systems of ODE'S. However, although these codes may be the best available for solving an arbitrary systems ODE'S, it may be possible to construct superior methods for solving a particular system of ODE's governing the behavior of a specific problem. In this view, an exponentially fitted method, CREK1D, deserves a special mention and is described briefly.

  16. Operating experience of Pyroflow boilers in a 250 MWe unit

    SciTech Connect (OSTI)

    Chelian, P.K.; Hyvarinen, K. [Pyropower Corp., San Diego, CA (United States)

    1995-12-31T23:59:59.000Z

    The Cedar Bay Cogeneration project is a 250 MWe unit owned and operated by US Generating Company. This plant has one turbine rated at 250 MWe net which is supplied by three Pyroflow CFB boilers that operate in parallel while supplying a paper mill with steam on an uninterruptible basis. Compared to similar size CFB boilers the Cedar Bay boilers have certain unique features. First, these are reheat boilers which must continue to supply process steam even when the steam turbine is down. Second, the SO{sub 2} control operates at a very low Ca/S molar ratio by optimizing the process conditions and flyash reinjection. Third, the NO{sub x} reduction process utilizes aqueous ammonia injection. This paper presents the operating data at full load in terms of boiler efficiency, and the ability to limit gaseous emissions with minimum limestone and ammonia usage. Unique features relating to the multiple boiler installation are also discussed.

  17. Boiler MACT 35000FT: Maximum Achievable Control Technology

    E-Print Network [OSTI]

    Robinson, J.

    2013-01-01T23:59:59.000Z

    fossil fuel is coal, petroleum coke, tire derived fuel, etc. ESL-IE-13-05-29 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 Classification-Boiler Subcategory Boiler Classification Pulverized... Heaters Affected ? Large affected units burning coal, oil, biomass, natural gas, other solid, liquid, gaseous non-waste materials ? Boilers or Process Heaters Not Affected ? Electric Utility Generating Unit (EGU) ?Waste Heat, hot water heaters...

  18. Build, Own, Operate and Maintain (BOOM) Boiler Systems

    E-Print Network [OSTI]

    Henry, T.

    Build, Own, Operate and Maintain (BOOM) Boiler Systems Tom Henry, Annstrong Service, Inc. Overview: The article addresses the growing trend in outsourcing boiler equipment, installation, operation, maintenance and ownership by large.... In most cases, thennal, electric and air energy systems are not considered "core" assets resulting in the need to find "other" solutions to providing the needed energy. ? Reduced staffing has resulted in fewer experienced and knowledgeable boiler...

  19. Modeling of a Drum Boiler Using MATLAB/Simulink.

    E-Print Network [OSTI]

    Anderson, Scott B.

    2008-01-01T23:59:59.000Z

    ?? A dynamic simulator was developed for a natural circulation drum type boiler through a joint Youngstown State University/The Babcock and Wilcox Company cooperative agreement. (more)

  20. Application of Boiler Op for combustion optimization at PEPCO

    SciTech Connect (OSTI)

    Maines, P.; Williams, S. [Potomac Electric Power Co., Upper Marlsboro, MD (United States); Levy, E. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-09-01T23:59:59.000Z

    Title IV requires the reduction of NOx at all stations within the PEPCO system. To assist PEPCO plant personnel in achieving low heat rates while meeting NOx targets, Lehigh University`s Energy Research Center and PEPCO developed a new combustion optimization software package called Boiler Op. The Boiler Op code contains an expert system, neural networks and an optimization algorithm. The expert system guides the plant engineer through a series of parametric boiler tests, required for the development of a comprehensive boiler database. The data are then analyzed by the neural networks and optimization algorithm to provide results on the boiler control settings which result in the best possible heat rate at a target NOx level or produce minimum NOx. Boiler Op has been used at both Potomac River and Morgantown Stations to help PEPCO engineers optimize combustion. With the use of Boiler Op, Morgantown Station operates under low NOx restrictions and continues to achieve record heat rate values, similar to pre-retrofit conditions. Potomac River Station achieves the regulatory NOx limit through the use of Boiler Op recommended control settings and without NOx burners. Importantly, any software like Boiler Op cannot be used alone. Its application must be in concert with human intelligence to ensure unit safety, reliability and accurate data collection.

  1. FEMP Technology Brief: Boiler Combustion Control and Monitoring System

    Broader source: Energy.gov [DOE]

    There are more than 45,000 industrial and commercial boilers larger than 10 MMBtu/hr in the United States with a total fuel input capacity of 2.7 million MMBtu/hr. Efficiency of existing boilers can be improved in three ways; replacement with new boilers, replacement of the burner, or installation of a combustion control system. While installation of a new boiler or replacement of the burner can lead to the greatest efficiency gains, the higher costs associated with these measures typically leads to longer payback periods than combustion control systems.

  2. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect (OSTI)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01T23:59:59.000Z

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  3. A centurial history of technological change and learning curves or pulverized coal-fired utility boilers

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward

    2007-01-01T23:59:59.000Z

    allow ultra-supercritical boilers to achieve still higherthat supercritical-coal boilers, at least in the 1970s, didGW/year) by type of boiler. Source: [25]. Net Efficiency (

  4. Robust Output Feedback Stabilization of Nonlinear Interconnected Systems with Application to an Industrial Utility Boiler

    E-Print Network [OSTI]

    Marquez, Horacio J.

    to an Industrial Utility Boiler Adarsha Swarnakar, Horacio Jose Marquez and Tongwen Chen Abstract-- This paper boiler (Utility boiler), where the nonlinear model describes the complicated dynamics of the drum

  5. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    E-Print Network [OSTI]

    Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

    2004-01-01T23:59:59.000Z

    9 Hot-Water Oil Boiler LCC Analysis-Efficiency Levels and10 Hot-Water Gas Boiler LCC Analysis-Efficiency Levels andfurnace and boiler energy-efficiency standards. Determining

  6. Characterization of the U.S. Industrial/Commercial Boiler Population...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of the U.S. IndustrialCommercial Boiler Population - Final Report, May 2005 Characterization of the U.S. IndustrialCommercial Boiler Population - Final Report,...

  7. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat and Power Systems for Boiler Owners and Operators Guide to Combined Heat and Power Systems for Boiler Owners and Operators This guide presents useful information for...

  8. Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies

    E-Print Network [OSTI]

    Hahn, G.

    A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water...

  9. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers

    E-Print Network [OSTI]

    Li, Ying

    matter and char, and cold-end air pollution control devices. There is also evidence that boiler is equipped with hot and cold precipitators and a tubular air preheater. A strategy for mercury control designated hazardous air pollutants by the US Environmental Protection Agency (EPA), mercury (Hg) has

  10. Government Funding Opportunity Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermalGo Back to SchoolGovernment

  11. Materials development for ultra-supercritical boilers

    SciTech Connect (OSTI)

    NONE

    2005-09-30T23:59:59.000Z

    Progress is reported on a US Department of Energy project to develop high temperature, corrosion resistant alloys for use in ultra-supercritical steam cycles. The aim is to achieve boiler operation at 1,400{sup o}F/5,000 psi steam conditions with 47% net cycle efficiency. Most ferritic steel tested such as T92 and Save 12 showed severe corrosion. Nickel-based alloys, especially IN 740 and CCA 617, showed greatest resistance to oxidation with no evidence of exfoliation. Laboratory and in-plant tests have begun. 2 figs.

  12. List of Boilers Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) JumpEventBoilers Incentives Jump to:

  13. Introduction to the Boiler MACT Energy Assessment Process

    E-Print Network [OSTI]

    Theising, T. R.

    2014-01-01T23:59:59.000Z

    served from affected boiler(s) that are under BASFs control. Review of architectural/engineering plans, facility O&M procedures/logs, and fuel usage Review of facilitys energy management practice and provide recommendations for improvement where...

  14. Boiler Gold Rush Prof. Johnny Brown (MATH 700)

    E-Print Network [OSTI]

    Brown, Johnny E.

    Boiler Gold Rush Prof. Johnny Brown (MATH 700) jeb@math.purdue.edu #12;#12;#12;David McCullough, Jr help Always be prepared #12;Boiler Gold Rush Prof. Johnny Brown (MATH 700) jeb@math.purdue.edu #12;

  15. How to Evaluate Low Excess Air Controls for Packaged Boilers

    E-Print Network [OSTI]

    Londerville, S. B.; Kerler, W. J.

    1984-01-01T23:59:59.000Z

    characteristics within your boiler so that a reliable estimate of the efficiency gain from LEA firing can be determined. Recall that heat transfer takes place in three main areas of the boiler-the radiant section, convection bank, and heat recovery equipment...

  16. A Flexural Mode Tuning Technique for Membraned Boiler Tubing

    SciTech Connect (OSTI)

    Quarry, M J; Chinn, D J; Rose, J L

    2005-03-21T23:59:59.000Z

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the cold side or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications.

  17. MATTHEW WRIGHT Assistant Professor, Department of Government

    E-Print Network [OSTI]

    Lansky, Joshua

    MATTHEW WRIGHT Assistant Professor, Department of Government School of Public-REVIEWED (Forth.) Reeskens, T., & Wright, M. "Host Country Patriotism Among European Studies. (Forth.) Citrin, J., Levy, M., & Wright, M. "Multicultural Policy

  18. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  19. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  20. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; J. Sarver; M. Borden; K. Coleman; J. Blough; S. Goodstine; R.W. Swindeman; W. Mohn; I. Perrin

    2003-04-21T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  1. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

  2. Boiler Materials For Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  3. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-07-17T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

  4. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-04-20T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-01-23T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  9. Sulphidation resistance of composite boiler tube materials

    SciTech Connect (OSTI)

    Kish, Joseph [McMaster University; Eng, Philip [FPInnovations; Singbeil, Douglas [FPInnovations; Keiser, James R [ORNL

    2008-01-01T23:59:59.000Z

    A lab-based testing program was undertaken to generate data to better define the sulphidation resistance of composite tubes installed in the lower-furnace section of black liquor recovery boilers. All composite tube cladding alloys tested were observed to have an acceptable corrosion rate at normal operating temperatures (up to 400 C) in the synthetic lower-furnace gaseous environment tested (1% H{sub 2}S-99% N{sub 2}). This acceptable corrosion resistance is due to the expected formation of a relatively protective chromium-rich inner sulphide scale. An increase in temperature up to 560 C was found to significantly increase the corrosion rate. Of the various alloys tested, Alloy HR11N exhibited the lowest corrosion rate at each of the three temperatures tested. Moreover, the corrosion rate was found not to be strongly dependent on the fabrication route (weld overlay versus co-extruded). To minimize corrosion, operating conditions that promote prolonged exposure to elevated temperatures in the lower-furnace section of black liquor recovery boilers should be avoided, regardless of the type of composite tube installed.

  10. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    SciTech Connect (OSTI)

    Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

    2013-09-30T23:59:59.000Z

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

  11. High Performance Green Schools Planning Grants

    Broader source: Energy.gov [DOE]

    The Governor's Green Government Council of Pennsylvania provides an incentive for new schools to be built according to green building standards. High Performance Green Schools Planning Grants are...

  12. Energy Conservation Program: Energy Conservation Standards for Residential Boilers, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Residential Boilers, Notice of Proposed Rulemaking

  13. Decentralized robust PI controller design for an industrial boiler Batool Labibi a,*, Horacio Jose Marquez b

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Decentralized robust PI controller design for an industrial boiler Batool Labibi a,*, Horacio Jose in revised form 23 April 2008 Accepted 23 April 2008 Keywords: Industrial utility boiler Internal model boiler, a control oriented nonlinear model for the boiler is identified. The nonlinearity of the system

  14. Corporate Governance and Taxation

    E-Print Network [OSTI]

    Dyck, Alexander

    2004-01-01T23:59:59.000Z

    Accounting and Corporate Governance, Journal of Accounting1997) A Survey of Corporate Governance Journal of FinanceCorporate Governance and Taxation Mihir A. Desai* Harvard

  15. NOx Control for Utility Boiler OTR Compliance

    SciTech Connect (OSTI)

    Hamid Farzan

    2003-12-31T23:59:59.000Z

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

  16. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30T23:59:59.000Z

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the projects subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

  17. Boiler Upgrades and Decentralizing Steam Systems Save Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    replacing its central plant with a combination of distributed boilers and ground source heat pumps. The results saved more than 1 million MBtu in energy and 19,574 Kgal of water...

  18. Application of Multivariable Control to Oil and Coal Fired Boilers

    E-Print Network [OSTI]

    Swanson, K.

    1981-01-01T23:59:59.000Z

    Increased visibility provided by advanced measurement and control techniques has shown that control of oil and coal fired boilers is a complex problem involving simultaneous determination of flue gas carbon monoxide, hydrocarbon, opacity...

  19. Application of Oxygen Trim Control to Small Packaged Boilers

    E-Print Network [OSTI]

    Nelson, R. L.

    1984-01-01T23:59:59.000Z

    control. New mechanical interfaces capable of modifying the relationship between the air and fuel linkage on existing boilers without expensive jackshaft modification or installation difficulties has significantly reduce the installed cost. A field...

  20. A Boiler Plant Energy Efficiency and Load Balancing Survey

    E-Print Network [OSTI]

    Nutter, D. W.; Murphy, D. R.

    Daily energy use data was used to perform an energy efficiency survey of a medium-sized university boiler plant. The physical plant operates centralized mechanical plants to provide both chilled water and steam for building conditioning. Steam...

  1. Heat Recovery Consideration for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    1984-01-01T23:59:59.000Z

    The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

  2. Heat Recovery Consideration for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    1983-01-01T23:59:59.000Z

    The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

  3. Cost-Effective Industrial Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were...

  4. Improving Boiler Efficiency Modeling Based on Ambient Air Temperature

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.

    Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load...

  5. Dissimilar-metal weld failures in boiler tubing

    SciTech Connect (OSTI)

    Klueh, R.L.

    1984-02-01T23:59:59.000Z

    Both ferritic heat-resisting steels and austenitic stainless steels are used for fossil-fired boilers for central power stations. The use of these two different types of materials within the system leads to the need for a dissimilar-metal weld transition joint. Increased cyclic operation of boilers has led to a rash of failures in welds between dissimilar metals; studies have identified the causes, and improved nondestructive testing techniques permit early identification of problem areas.

  6. Climate Wise Boiler and Steam Efficiency Wise Rules

    E-Print Network [OSTI]

    Milmoe, P. H.; Winkelman, S. R.

    (and excess oxygen, 02), boiler tube cleaning, and re-calibration of boiler controls. ? A good tune-up with preclSlon testing equipment can detect and correct excess air losses, smoking, unbumed fuel losses, sooting, and high stack temperatures... control 7. Utilize characterizable fuel valve 8. Convert to atomizing burners Stack Losses and Waste Heat Recovery 9. Reduce net stack temperature by 40 of 10. Utilize stack dampers II. Direct contact condensation heat recovery 12. Pre...

  7. Notice of construction for proposed backup package boiler

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    The Hanford Site steam plant consists of coal-fired boilers located at the 200 East and the 200 West Areas. These boilers have provided steam to heat and cool facilities in the 200 Areas since the early 1940`s. As part of Project L-017, ``Steam System Rehabilitation, Phase II``, the 200 West Area coal-fired boilers will be permanently shut down. The shut down will only occur after a proposed package backup boiler (50,000 pounds per hour (lb/hr) steam, firing No. 2 oil) is installed at the 200 West Area. The proposed backup boiler will provide back-up services when the 200 East Area steam line, which provides steam to the 200 West Area, is down for maintenance or, when the demand for steam exceeds the supply available from the 200 East Plant. This application is a request for approval to construct and operate the package backup boiler. This request is being made pursuant to Washington Administration Code (WAC) Chapter 173-400, ``General Regulations for Air Pollution Sources``, and Chapter 173-460, ``Controls for New Sources of Toxic Air Pollutants``.

  8. Guided wave acoustic monitoring of corrosion in recovery boiler tubing

    SciTech Connect (OSTI)

    Quarry, M J; Chinn, D J

    2004-02-19T23:59:59.000Z

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the coldside or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  9. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30T23:59:59.000Z

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  10. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOE Patents [OSTI]

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16T23:59:59.000Z

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  11. Postcombustion and its influences in 135 MWe CFB boilers

    SciTech Connect (OSTI)

    Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

    2009-09-15T23:59:59.000Z

    In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

  12. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    SciTech Connect (OSTI)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30T23:59:59.000Z

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  13. Open government information awareness

    E-Print Network [OSTI]

    McKinley, Ryan, 1976-

    2003-01-01T23:59:59.000Z

    In the United States, there is a widening gap between a citizen's ability to monitor his or her government and the government's ability to monitor a citizen. Average citizens have limited access to important government ...

  14. Law and Corporate Governance

    E-Print Network [OSTI]

    Fligstein, Neil; Choo, Jennifer

    2005-01-01T23:59:59.000Z

    1997. A survey of corporate governance. J. Finan. 52(2):737-1999. Employees and Corporate Governance. Washington, DC:structural change in corporate governance. J. Law Soc. 27(

  15. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-01-01T23:59:59.000Z

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  16. Upgraded recovery boiler meets low air emissions standards

    SciTech Connect (OSTI)

    La Fond, J.F.; Jansen, J.H. (Jansen Combustion and Boiler Technologies, Inc., Woodinville, WA (United States)); Eide, P. (Boise Cascade Corp., International Falls, MN (United States))

    1994-12-01T23:59:59.000Z

    In the fall of 1990, the Boise Cascade mill in International Falls, MN, carried out a millwide modernization project. One critical element of the project was the upgrade of their recovery boiler. As a result of the recovery boiler upgrade, the mill was required to obtain a prevention of significant deterioration (PSD) air permit. A best available control technology (BACT) assessment was performed as a requirement of the PSD regulations. Ultimately, a number of more stringent air pollution emission limits were established for the boiler, and a continuous emissions monitoring system (CEMS) was purchased and installed to report daily results to the Minnesota Pollution Control Agency. This paper describes efforts to achieve increased firing capacity in the mill's recovery boiler while meeting more severe air emissions regulations. The authors will show that each of the emissions limits, including CO, SO[sub 2], NO[sub x], TRS, and opacity, are met by the upgraded boiler, while achieving an increase in firing capacity over pre-upgrade levels of up to 40%.

  17. Plasma-supported coal combustion in boiler furnace

    SciTech Connect (OSTI)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

    2007-12-15T23:59:59.000Z

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  18. Slag monitoring system for combustion chambers of steam boilers

    SciTech Connect (OSTI)

    Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

    2009-07-01T23:59:59.000Z

    The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

  19. Cyclone Boiler Reburn NOx Control Improvements via Cyclone Design Improvements and Advanced Air Staging

    E-Print Network [OSTI]

    Morabito, B.; Nee, B.; Goff, V.; Maringo, G.

    2008-01-01T23:59:59.000Z

    Eastman Kodak owns three Babcock & Wilcox coal fired cyclone boilers and one Combustion Engineering pulverized coal boiler located at Kodak Park in Rochester, New York. Duke Energy Generation Services (DEGS) operates and maintains the steam...

  20. Damage Modeling and Life Extending Control of a Boiler-Turbine System1

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Damage Modeling and Life Extending Control of a Boiler-Turbine System1 Donglin Li Tongwen Chen2 hierarchical LEC structure and apply it to a typ- ical boiler system. There are two damage models

  1. From Basic Control to Optimized Systems-Applying Digital Control Systems to Steam Boilers

    E-Print Network [OSTI]

    Hockenbury, W. D.

    1982-01-01T23:59:59.000Z

    This presentation examines the application of Distributed Digital Controls in order to review the application of this recent control technology towards Steam Boilers in a step-by-step manner. The main purpose of a steam generating boiler...

  2. 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers...

    Energy Savers [EERE]

    2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed...

  3. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners...

  4. Role Profile Head of School

    E-Print Network [OSTI]

    Edinburgh, University of

    Role Profile Head of School Purpose of the Role The Head of School is accountable for:- · The provision of academic leadership, developing and delivering School objectives for, in particular, teaching, · The effective governance and management of the School and all of its resources. Context of the Role

  5. Modeling of a coal-fired natural circulation boiler

    SciTech Connect (OSTI)

    Bhambare, K.S.; Mitra, S.K.; Gaitonde, U.N. [Indian Institute of Technology, Bombay (India). Dept. of Mechanical Engineering

    2007-06-15T23:59:59.000Z

    Modeling of a natural circulation boiler for a coal-fired thermal power station is presented here. The boiler system is divided into seven subcomponents, and for each section, models based on conservation of mass, momentum, and energy are formulated. The pressure drop at various sections and the heat transfer coefficients are computed using empirical correlations. Solutions are obtained by using SIMULINK. The model is validated by comparing its steady state and dynamic responses with the actual plant data. Open loop responses of the model to the step changes in the operating parameters, such as pressure, temperature, steam flow, feed water flow, are also analyzed. The present model can be used for the development and design of effective boiler control systems.

  6. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01T23:59:59.000Z

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  7. Boiler Kids Camp Parent Manual Division of Recreational Sports Mission Statement

    E-Print Network [OSTI]

    Ginzel, Matthew

    Boiler Kids Camp Parent Manual Division of Recreational Sports Mission Statement The Division which fosters an appreciation for a healthy lifestyle and promotes lifelong learning. Boiler Kids Camp Mission Statement Boiler Kids Camp is an interactive, summer day camp designed for children ranging

  8. Decentralized robust control of a class of nonlinear systems and application to a boiler system

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Decentralized robust control of a class of nonlinear systems and application to a boiler system Keywords: Asymptotic disturbance rejection Boiler systems Decentralized robust control Descriptor systems problem, a decentralized controller for the system can be calculated. In order to control a utility boiler

  9. DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING

    E-Print Network [OSTI]

    Kusiak, Andrew

    DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING APPROACH ANDREW KUSIAK to analyze events leading to plug- gage of a boiler. The proposed approach involves statistics, data. The proposed approach has been tested on a 750 MW commercial coal-fired boiler affected with an ash fouling

  10. Development and Application of Gas Sensing Technologies to Enable Boiler Balancing

    E-Print Network [OSTI]

    Dutta, Prabir K.

    01/2004 Development and Application of Gas Sensing Technologies to Enable Boiler Balancing to monitor total NOx (0-1000 ppm), CO (0-1000 ppm) and O2 (1-15%) within the convective pass of the boiler of such sensor systems will dramatically alter how boilers are operated, since much of the emissions creation

  11. Full-Scale Boiler Measurements Demonstrating Striated Flows during Biomass Co-Firing

    E-Print Network [OSTI]

    ACERC-2008 Full-Scale Boiler Measurements Demonstrating Striated Flows during Biomass Co based measurements methods #12;Objective Minor impact of biomass cofiring with coal on boiler operation) · Experimentally demonstrate the existence of stratified flows in boilers Indication: SO2, ash composition, straw

  12. Optimal control of a multi-energy district boiler: a case study

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal control of a multi-energy district boiler: a case study J. Eynard S. Grieu M. Polit of a multi-energy district boiler (La Rochelle, France) which supplies domestic hot water and heats optimizing the use of both the tank and the wood boiler. As a result, fossil energy consumption and CO2

  13. MODELLING OF A NONLINEAR MULTIVARIABLE BOILER PLANT USING HAMMERSTEIN MODEL, A NONPARAMETRIC APPROACH

    E-Print Network [OSTI]

    Al-Duwaish, Hussain N.

    MODELLING OF A NONLINEAR MULTIVARIABLE BOILER PLANT USING HAMMERSTEIN MODEL, A NONPARAMETRIC mathematically and prac- tically tractable. Boilers are industrial units, which are used for gener- ating steam of fuel. Boiler operation is a complex operation in which hot water must be delivered to a turbine

  14. Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented

    E-Print Network [OSTI]

    Börger, Egon

    Re ning Abstract Machine Speci cations of the Steam Boiler Control to Well Documented Executable the steam boiler control speci cation problem to il- lustrate how the evolving algebra approach to the speci, in June 1995, to control the Karlsruhe steam boiler simulator satisfactorily. The abstract machines

  15. Corrections to "Proving Safety Properties of the Steam Boiler Controller" Correction Sheet

    E-Print Network [OSTI]

    Lynch, Nancy

    Corrections to "Proving Safety Properties of the Steam Boiler Controller" 1 Correction Sheet After our paper "Proving Safety Properties of the Steam Boiler Controller" went already to print, Myla address http://theory.lcs.mit.edu/tds/boiler.html. Following are the corrections to these errors and some

  16. An Algebraic Speci cation of the Steam-Boiler Control System

    E-Print Network [OSTI]

    Bidoit, Michel

    An Algebraic Speci#12;cation of the Steam-Boiler Control System Michel Bidoit 1 , Claude Chevenier describe how to derive an algebraic speci#12;cation of the Steam-Boiler Control System starting from to specify the detection of the steam-boiler fail- ures. Finally we discuss validation and veri#12;cation

  17. welcome to university residences Boiler Gold Rush Check-In...........................Saturday, August 13 and

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    welcome to university residences #12;Boiler Gold Rush Check-In...........................Saturday, August 13 and Sunday, August 14, 2011 Boiler Gold Rush residence hall systems in the United States. weLcomE! 1 #12;Boiler GoLD Rush ParticiPants Your regular

  18. Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Analysis and control of a nonlinear boiler-turbine unit Wen Tan a,*,1 , Horacio J. Marquez b, and the concept is applied to a boiler-turbine unit to analyze its dynamics. It is shown that the unit shows. Keywords: Boiler-turbine unit; Nonlinearity measure; Gap metric; Anti-windup bumpless transfer techniques

  19. Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA

    E-Print Network [OSTI]

    Wood Pellets for UBC Boilers Replacing Natural Gas Based on LCA Submitted to Dr. Bi By Bernard Chan Pellets for UBC Boilers Replacing Natural Gas" By Bernard Chan, Brian Chan, and Christopher Young Abstract This report studies the feasibility of replacing natural gas with wood pellets for UBC boilers. A gasification

  20. Gain-scheduled `1 -optimal control for boiler-turbine dynamics

    E-Print Network [OSTI]

    Shamma, Jeff S.

    , into the mechanical energy acting on the turbine and generator. The steam generated in the boiler system servesGain-scheduled `1 -optimal control for boiler-turbine dynamics with actuator saturation Pang; accepted 2 June 2003 Abstract This paper presents a gain-scheduled approach for boiler-turbine controller

  1. Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20

    E-Print Network [OSTI]

    Lynch, Nancy

    Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

  2. Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation

    E-Print Network [OSTI]

    Boyer, Edmond

    Revisiting the Steam-Boiler Case Study with LUTESS : Modeling for Automatic Test Generation. In this paper, we apply this modeling principle to a well known case study, the steam boiler problem which has model and to assess the difficulty of such a process in a realistic case study. The steam boiler case

  3. Assertional Specification and Verification using PVS of the Steam Boiler Control System

    E-Print Network [OSTI]

    Hooman, Jozef

    Assertional Specification and Verification using PVS of the Steam Boiler Control System Jan Vitt 1 of the steam boiler control system has been derived using a formal method based on assumption/commitment pairs Introduction The steam boiler control system, as described in chapter AS of this book, has been designed

  4. Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37

    E-Print Network [OSTI]

    Lynch, Nancy

    Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

  5. Wood-Coal Fired "Small" Boiler Case Study

    E-Print Network [OSTI]

    Pincelli, R. D.

    1980-01-01T23:59:59.000Z

    extremely attrac t:i.ve to today's capital investment market. 7. Several states, including North Carolina, have enacted 15% State Tax Credits to further the use of wood fuel boilers. Specific examples of the utilization of wood as a boiler fuel include... on the fact that Galaxy would be purchasing all of its waste wood fuel, as well as supplemental coal if needed. Efficiency guarantees of 80% on wood waste with less than 10% moisture content were given, as well as 78.5% on coal. These efficiencies were...

  6. Assessing energy behaviours in Queensland schools : a study of the Queensland Solar Schools initiative (2001-2008).

    E-Print Network [OSTI]

    Tabert, Stacey.

    2009-01-01T23:59:59.000Z

    ??"A strategy adopted by the Australian and Queensland Governments to reduce the carbon footprint of schools involved installing solar energy systems on selected schools. The (more)

  7. NOx Control for Utility Boiler OTR Compliance

    SciTech Connect (OSTI)

    Hamid Farzan; Jennifer L. Sivy

    2005-07-30T23:59:59.000Z

    Babcock & Wilcox Power Generation Group (B&W) and Fuel Tech, Inc. (Fuel Tech) teamed to evaluate an integrated solution for NO{sub x} control comprised of B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a selective non-catalytic reduction (SNCR) technology, capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu. In a previous project sponsored by the U.S. Department of Energy (DOE), promising results were obtained with this technology from large-scale testing in B&W's 100-million Btu/hr Clean Environment Development Facility (CEDF) which simulates the conditions of large coal-fired utility boilers. Under the most challenging boiler temperatures at full load conditions, NO{sub x} emissions of 0.19 lb/10{sup 6} Btu were achieved firing Powder River Basin coal while controlling ammonia slip to less than 5 ppm. At a 40 million Btu/hr firing rate, NO{sub x} emissions were as low as 0.09 lb/10{sup 6} Btu. Improved performance with this system was proposed for this new program with injection at full load via a convective pass multiple nozzle lance (MNL) in front of the superheater tubes or in the convective tube bank. Convective pass lances represent the current state-of-the-art in SNCR and needed to be evaluated in order to assess the full potential of the combined technologies. The objective of the program was to achieve a NO{sub x} level below 0.15 lb/10{sup 6} Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign} System. Commercial installations of B&W's low-NO{sub x} burner, in combination with overfire air ports using PRB coal, have demonstrated a NO{sub x} level of 0.15 to 0.2 lb/10{sup 6} Btu under staged combustion conditions. The proposed goal of the combustion system (no SNCR) for this project is a NO{sub x} level at 0.15 lb/10{sup 6} Btu. The NO{sub x} reduction goal for SNCR is 25% from the low-NO{sub x} combustion emission levels. Therefore, overall NO{sub x} emissions would approach a level of 0.11 lb/10{sup 6} Btu in commercial installation. The goals of the program were met. At 100% load, using the MNL for very low baseline NO{sub x} (0.094 to 0.162 lb/10{sup 6} Btu depending on burner stoichiometry), an approximately 25% NO{sub x} reduction was achieved (0.071 to 0.124 lb/10{sup 6} Btu) while maintaining NH{sub 3} slip less than 6.4 ppm. At 60% load, using MNL or only wall-injectors for very low baseline NO{sub x} levels, more than 30% NO{sub x} reduction was achieved. Although site specific economic evaluation is required for each unit, our economic evaluation of DRB-4Z{reg_sign} burner and SNCR for a 500 MW{sub e} plant firing PRB shows that the least cost strategy is low-NO{sub x} burner and OFA at a cost of $210 to $525 per ton of NO{sub x} removed. Installation of SNCR allows the utilities to sell more NO{sub x} credit and it becomes economical when NO{sub x} credit cost is more than $5,275 per ton of NO{sub x}.

  8. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOE Patents [OSTI]

    Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

    2010-01-12T23:59:59.000Z

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  9. Best Management Practice #8: Boiler and Steam Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  10. Choosing the right boiler air fans at Weston 4

    SciTech Connect (OSTI)

    Spring, N.

    2009-04-15T23:59:59.000Z

    When it came to choosing the three 'big' boiler air fans - forced draft, induced draft and primary air, the decision revolved around efficiency. The decision making process for fan selection for the Western 4 supercritical coal-fired plant is described in this article. 3 photos.

  11. Improving School Governance | 1 Summary report

    E-Print Network [OSTI]

    Rambaut, Andrew

    Attitudes to Personal Data and Linking Personal Data July 2013 #12;1 THE WELLCOME TRUST SUMMARY REPORT OF QUALITATIVE RESEARCH INTO PUBLIC ATTITUDES TO PERSONAL DATA AND LINKING PERSONAL DATA July 2013 A. RESEARCH to understand the general public's attitudes to different types of personal data and data linking. The research

  12. Improving School Governance | 3 Open access publishing

    E-Print Network [OSTI]

    Rambaut, Andrew

    Access Article Processing Charges Bo-Christer Björk and David Solomon March 2014 #12;1 Developing, Finland and Haslett, Michigan, USA Bo-Christer Björk, Dr. Tech. David J Solomon, PhD Professor Professor.............................................................................................................................................................7 1.2 Methodology

  13. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    SciTech Connect (OSTI)

    Levasseur, Armand

    2014-01-01T23:59:59.000Z

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  14. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10T23:59:59.000Z

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  15. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    SciTech Connect (OSTI)

    David W. Gandy; John P. Shingledecker

    2011-05-11T23:59:59.000Z

    Coal-fired power plants are a significant part of the nation???¢????????s power generating capacity, currently accounting for more than 55% of the country???¢????????s total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760???????°C (1400???????°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

  16. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    SciTech Connect (OSTI)

    Ovidiu Marin; Fabienne Chatel-Pelage

    2003-04-01T23:59:59.000Z

    This document reviews the work performed during the quarter January-March 2003. The main objectives of the project are: To demonstrate the feasibility of the full-oxy combustion with flue gas recirculation on Babcock & Wilcox's 1.5MW pilot boiler, To measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection strategies, To perform an economical feasibility study, comparing this solution with alternate technologies, and To design a new generation, full oxy-fired boiler. The main objective of this quarter was to initiate the project, primarily the experimental tasks. The contractor and its subcontractors have defined a working plan, and the first tasks have been started. Task 1 (Site Preparation) is now in progress, defining the modifications to be implemented to the boiler and oxygen delivery system. The changes are required in order to overcome some current limitations of the existing system. As part of a previous project carried out in 2002, several changes have already been made on the pilot boiler, including the enrichment of the secondary and tertiary air with oxygen or the replacement of these streams with oxygen-enriched recycled flue gas. A notable modification for the current project involves the replacement of the primary air with oxygen-enriched flue gas. Consequently, the current oxygen supply and flue gas recycle system is being modified to meet this new requirement. Task 2 (Combustion and Emissions Performance Optimization) has been initiated with a preliminary selection of four series of tests to be performed. So far, the project schedule is on-track: site preparation (Task 1) should be completed by August 1st, 2003 and the tests (Task 2) are planned for September-October 2003. The Techno-Economic Study (Task 3) will be initiated in the following quarter.

  17. Growth Versus Government Management Improvement During

    E-Print Network [OSTI]

    Podobnik, Boris

    , we find that the growth rate of GDP per capita, g, decreases with p, and increases with DGCI. Further 33% of govern- ment employees has increased its GDP per capita by approximately 4% (corrected and Thermal Energy Science, School of Physical Science and Engineering, Tongji University, 200092, Shanghai

  18. Siena College Web Governance

    E-Print Network [OSTI]

    Siena College Web Governance Web Governance: Roles & Responsibilities. WEB ADVISORY COMMITTEE (WAC) The Web Advisory Committee is the Owner of the Siena homepage. The Web Advisory Committee is responsible for: Providing the process that will move Siena College

  19. Geothermal Government Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

  20. PSE&G- Government Facility Efficiency Program (New Jersey)

    Broader source: Energy.gov [DOE]

    The PSE&G Municipal Direct Install Program provides recommended efficiency upgrades up front with a program budget of $50 million to government and non-profit facilities including schools with...

  1. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    SciTech Connect (OSTI)

    Sharp, William (Sandy) [SharpConsultant

    2011-12-01T23:59:59.000Z

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superh

  2. Annual Energy Consumption Analysis Report for Richland Middle School

    SciTech Connect (OSTI)

    Liu, Bing

    2003-12-18T23:59:59.000Z

    Richland Middle School is a single story, 90,000 square feet new school located in Richland, WA. The design team proposed four HVAC system options to serve the building. The proposed HVAC systems are listed as following: (1) 4-pipe fan coil units served by electrical chiller and gas-fired boilers, (2) Ground-source closed water loop heat pumps with water loop heat pumps with boiler and cooling tower, and (3) VAV system served by electrical chiller and gas-fired boiler. This analysis estimates the annual energy consumptions and costs of each system option, in order to provide the design team with a reasonable basis for determining which system is most life-cycle cost effective. eQuest (version 3.37), a computer-based energy simulation program that uses the DOE-2 simulation engine, was used to estimate the annual energy costs.

  3. Advanced, Low/Zero Emission Boiler Design and Operation

    SciTech Connect (OSTI)

    Babcock/Wilcox; Illinois State Geological; Worley Parsons; Parsons Infrastructure/Technology Group

    2007-06-30T23:59:59.000Z

    In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers. This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published by DOE in Oct 2007.

  4. Patient Education 1 The NIH Children's School The NIH Children's School

    E-Print Network [OSTI]

    Baker, Chris I.

    Patient Education 1 The NIH Children's School The NIH Children's School Since 1953, pediatric Children's School. The NIH Children's School is funded by the Federal government and is available free. The School is staffed by teachers from the Home and Hospital Instruction Office of the Montgomery County

  5. Steam driven centrifugal pump for low cost boiler feed service

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    This article describes a steam driven centrifugal pump for boiler feed-water and other high pressure water applications, which was awarded Top Honors in the special pumps category of the 1982 Chemical processing Vaaler competition, because the simple design with turbine, pump and controls combined in an integral unit provides high operating efficiency and reliable performance with minimal maintenance. Single source responsibility for all components when the pump may have to be serviced is another advantage. These features meet the requirements for boiler feed pumps that are critical to maintaining a consistent steam supply in a process plant where downtime can be extremely expensive. The annual cost to operate the pump for 8000 hours is about $100,000, if electricity costs 5 cents/kwh. These pumps can be run for about $30,000 on steam, if natural gas costs $4.00/mcf. Cost savings are $70,000 annually.

  6. Thermal Behavior of Floor Tubes in a Kraft Recovery Boiler

    SciTech Connect (OSTI)

    Barker, R.E.; Choudhury, K.A.; Gorog, J.P.; Hall, L.M.; Keiser, J.R.; Sarma, G.B.

    1999-09-12T23:59:59.000Z

    The temperatures of floor tubes in a slope-floored black liquor recovery boiler were measured using an array of thermocouples located on the tube crowns. It was found that sudden, short duration temperature increases occurred with a frequency that increased with distance from the spout wall. To determine if the temperature pulses were associated with material falling from the convective section of the boiler, the pattern of sootblower operation was recorded and compared with the pattern of temperature pulses. During the period from September, 1998, through February, 1999, it was found that more than 2/3 of the temperature pulses occurred during the time when one of the fast eight sootblowers, which are directed at the back of the screen tubes and the leading edge of the first superheater bank, was operating.

  7. Heat Recovery Considerations for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    ) Chemicals (223) 0.81xlO 15 81xl0 6 3) Pulp & Paper (8) 1.30xlO 15 2.2xI0 6 4) ~leta1s (32) O.07xlO 15 6.4x10 6 O.28xl0 15 308 291xl0 6 2.46xlO 15 Sec =Specific energy consumption * Calculated as %reduction in SEC - value 10TOR "OUSI.. SEi...Heat Recovery Considerations for Process Heaters and Boilers Ash Kumar, Pennzoil Company, Shreveport, Louisiana The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers...

  8. Boiler tube failures in municipal waste-to-energy plants

    SciTech Connect (OSTI)

    Krause, H.H.; Wright, I.G. [Battelle, Columbus, OH (United States)

    1996-01-01T23:59:59.000Z

    Waste-to-energy plants experienced increased boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls using superheat. Fireside attack by chlorine and sulfur compounds in refuse combustion products caused many forced outages in early European plants operating at high steam temperatures and pressures. Despite conservative steam conditions in the first US plants, failures occurred. As steam temperatures increased, corrosion problems multiplied. The problems have been alleviated by covering the waterwalls with either refractory or weld overlays of nickel-based alloys and using high nickel-chromium alloys for superheater tubes. Changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped minimize corrosion.

  9. Wood/coal cofiring in industrial stoker boilers

    SciTech Connect (OSTI)

    Cobb, J.T. Jr.; Elder, W.W.; Freeman, M.C.

    1999-07-01T23:59:59.000Z

    Realizing that a significant reduction in the global emissions of fossil carbon dioxide may require the installation of a wide variety of control technologies, options for large and small boilers are receiving attention. With over 1,500 coal-fired stoker boilers in the US, biomass co-firing is of interest, which would also open markets for waste wood which is presently landfilled at significant costs ranging from $20--200/ton. While much cofiring occurs inside the fence, where industrial firms burn wastes in their site boilers, other opportunities exist. Emphasis has been placed on stoker boilers in the northeastern US, where abundant supplies of urban wood waste are generally known to exist. Broken pallets form a significant fraction of this waste. In 1997, the cofiring of a volumetric mixture of 30% ground broken pallet material and 70% coal was demonstrated successfully at the traveling-grate stoker boilerplant of the Pittsburgh Brewing Company. Fourteen test periods, with various wood/coal mixtures blended on site, and two extended test periods, using wood/coal mixtures blended at the coal terminal and transported by truck to the brewery, were conducted. The 30% wood/70% coal fuel was conveyed through the feed system without difficulty, and combusted properly on the grate while meeting opacity requirements with low SO{sub 2} and NO{sub x} emissions. Efforts are underway to commercialize a wood/coal blend at the brewery, to identify specific urban wood supplies in the Pittsburgh region and to conduct a demonstration at a spreader stoker.

  10. Single-loop controllers bring boilers in line

    SciTech Connect (OSTI)

    Harrelson, D.; Piechota, B.

    1995-08-01T23:59:59.000Z

    The boiler process seems simple. Some type of fuel is burned in the presence of air, forming heat and combustion gases. The heat is then absorbed by the boiler drum and transferred to the water inside. The heated water changes to steam and is exhausted, which spins an electrical turbine that produces electricity, and exhausts lower pressure steam for condensing in the process. Although this process seems simple, anything could go wrong at any time. The flame could go out, the fuel could run low, or the drum could get dirty. Let`s take a look at how to avoid these problems. The first step is to take accurate measurements. Typically, these measurements include flow, pressure, conductivity, temperature, stack analysis, and a level or two. Ambient conditions can affect performance of each measuring device, so be sure to consider the hot, drafty conditions of boiler houses when selecting/installing devices. The second step is to bring the measurement signals back to the control room. Use two-wire, loop-powered devices to transmit all signals except the stack analysis signals. Two-wire, loop-powered technology increases reliability, lowers installation costs, and eliminates ground loops. Signal conditioning takes place at the microcontroller input points. Signal conditioning is done to provide a linear, overall loop response to the controller. It also simplified measurement. Examining four types of input signal characterization will help explain the signal conditioning process. The first signal is a zero-based pressure signal with a linear characteristic. The second is a temperature measurement made by a thermocouple whose output is nonlinear. Next is a flow measurement made with a conventional d/p cell and orifice plate. It needs a square root characterization. Last is a combustion air flow measurement from the pressure drop across part of the boiler or preheater. This flow measurement is quite tricky because of a large deviation from the simple square root relationship.

  11. Condensing economizers for small coal-fired boilers and furnaces

    SciTech Connect (OSTI)

    Butcher, T.A.; Litzke, W.

    1994-01-01T23:59:59.000Z

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  12. Waste heat boiler optimization by entropy minimization principle

    SciTech Connect (OSTI)

    Reddy, B.V.; Murali, J.; Satheesh, V.S. [Vellore Engineering Coll. (India). Mechanical Engineering Dept.; Nag, P.K. [Indian Inst. of Tech., Kharagpur (India). Mechanical Engineering Dept.

    1996-12-31T23:59:59.000Z

    A second law analysis has been undertaken for a waste heat boiler having an economizer, evaporator and superheater. Following the principle of minimization of entropy generation, a general equation for entropy generation number is derived, which incorporates all the operating variables. By differentiating the entropy generation number equation with respect to the operating parameters, various optimization parameters can be obtained. Few illustrations have been made to see the effect of various parameters on entropy generation number.

  13. Covered Product Category: Commercial Boilers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment ofBoilers Covered Product Category:

  14. Mercury control challenge for industrial boiler MACT affected facilities

    SciTech Connect (OSTI)

    NONE

    2009-09-15T23:59:59.000Z

    An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

  15. The environmental impact of orimulsion combustion in large utility boilers

    SciTech Connect (OSTI)

    Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom)

    1997-07-01T23:59:59.000Z

    There is considerable worldwide interest in the practical use of Orimulsion as a replacement fuel in both oil and coal fired utility boilers. Practical experience of such applications has been gained in Canada, UK, Japan, Europe and USA. Fundamental work has demonstrated the different combustion characteristics of Orimulsion which has been termed the {open_quotes}fourth{close_quotes} fossil fuel to the fossil fuels normally used for power generation and how, in certain circumstances, these can be used to advantage in the application of Orimulsion in utility boiler combustion systems. Orimulsion is an emulsify ed fuel prepared from naturally occurring bitumen deposits located in the Orinoco Basin in Venezuela and comprises approximately 70% bitumen and 30% water. Compared to the heavier fuel oils the sulphur content of Orimulsion is medium to high, the ash content is high with high levels of Vanadium and Nickel. The ash content is enhanced by the addition of Magnesium compounds, to the commercial fuel, to mitigate against the potential in boiler corrosion effects arising form the Va, Na and S content in the fuel.

  16. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    SciTech Connect (OSTI)

    David W. Gandy; John P. Shingledecker

    2011-04-11T23:59:59.000Z

    Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.

  17. Design of an expert system to aid in the selection of a wood fired boiler system.

    E-Print Network [OSTI]

    Morris, Melissa L.

    2008-01-01T23:59:59.000Z

    ??Currently most industrial and institutional facilities rely on fossil fuels to power their boiler systems. As the quantity of these non-renewable resources is depleted, and (more)

  18. A methodology for in-situ calibration of steam boiler instrumentation.

    E-Print Network [OSTI]

    Wei, Guanghua

    2012-01-01T23:59:59.000Z

    ??This thesis presents a broadly useful diagnostic methodology to engineers and plant managers for finding the in-situ operating characteristics of power plant boilers when metered (more)

  19. Second law analysis of a natural gas-fired steam boiler and cogeneration plant.

    E-Print Network [OSTI]

    Conklin, Eric D

    2010-01-01T23:59:59.000Z

    ??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of (more)

  20. Planning and setup for the implementation of coal and wood co-fired boilers.

    E-Print Network [OSTI]

    Gump, Christopher D.

    2007-01-01T23:59:59.000Z

    ??Coal and wood co-fired boiler technology has been significantly advancing in the past years, but many of their capabilities remain unknown to much of the (more)

  1. Distribution of bed material in a Horizontal Circulating Fluidised Bed boiler.

    E-Print Network [OSTI]

    Ekvall, Thomas

    2011-01-01T23:59:59.000Z

    ??A conventional circulating fluidised bed (CFB) boiler has a limitation due to the height of the furnace, when implemented in smaller industrial facilities. The design (more)

  2. Continuous Measurement of Carbon Monoxide Improves Combustion Efficiency of CO Boilers

    E-Print Network [OSTI]

    Gilmour, W. A.; Pregler, D. N.; Branham, R. L.; Prichard, J. J.

    1981-01-01T23:59:59.000Z

    The paper describes the application of in-situ flue gas CO measurement in the operation of CO Boilers and details the steps needed to optimize combustion efficiency....

  3. E-Print Network 3.0 - advanced coal-fired boilers Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHLORINE LINK IN COMMERCIAL SCALE SYSTEM FLUE GASES? Summary: that Battelle measured dioxins in coal fired utility boiler stack emissions in the United States and by ETSU... in...

  4. Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    PARR

    2014-09-01T23:59:59.000Z

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  5. Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on installing turbulators on firetube boilers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  6. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator, the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.

  7. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  8. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30T23:59:59.000Z

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  9. Water governance: Critique, Theory and Evidence from Asia 1 Eduardo Araral

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    Water governance: Critique, Theory and Evidence from Asia 1 Eduardo Araral Lee Kuan Yew School of Water Policy of the Lee Kuan Yew School of Public Policy #12;Abstract Most scholars agree that improving water governance is the key to addressing water insecurity in developing countries. However, in the last

  10. A New Scheme on Robust Observer Based Control Design for Nonlinear Interconnected Systems with Application to an Industrial Utility Boiler

    E-Print Network [OSTI]

    Marquez, Horacio J.

    with Application to an Industrial Utility Boiler Adarsha Swarnakar, Horacio Jose Marquez and Tongwen Chen Abstract. The controller design is evaluated on a natural circulation drum boiler, where the nonlinear model describes

  11. New 90,000 PPH Coal Fired Boiler Plant at Liggett & Myers Tobacco Company, Durham North Carolina

    E-Print Network [OSTI]

    Kaskey, G. T.

    1984-01-01T23:59:59.000Z

    Liggett & Myers Tobacco Company in Durham, North Carolina is installing a future cogeneration, coal fired boiler system designed and built by Energy Systems (ESI) of Chattanooga, Tennessee. The complete boiler plant is comprised of a 90,000 pph Dorr...

  12. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31T23:59:59.000Z

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  13. Why the Accuracy of Analytical Instrumentation Affects Boiler Combustion Efficiency

    E-Print Network [OSTI]

    McFadden, R. W.

    1984-01-01T23:59:59.000Z

    carbon monoxide level. A testing firm can provide this instrumentation or it can be purchased. The size and type of combustor to be tested will usually dictate the buy or contract decision. Small to medium boilers will usually be the ones involved... fan's damper linkage, that is adjusted by the operator on a shift-by-shift basis, to a dedicated microcomputer that looks at the load, oxygen, carbon monoxide/ carbon dioxide and even the flue gas opacity. The selection of the type of trim...

  14. Effects of copper deposition on boiler waterside surfaces

    SciTech Connect (OSTI)

    Wangerin, M.C.; Rondum, K.D. [Ashland Chemical Co., Boonton, NJ (United States)

    1995-12-01T23:59:59.000Z

    The relative importance of metal oxide corrosion products in waterside deposits, as opposed to traditional scale-forming constituents, is discussed, and the sources of copper and copper oxide boiler deposits are reviewed. Also reviewed are explanations of some of the problems associated with the presence of deposits and especially, copper-containing deposits. These include those due to a reduction in heat transfer and tube metal overheating, as well as various corrosion mechanisms. Case histories, which illustrate certain deleterious mechanisms due to the presence of such deposition, are also presented.

  15. Why Do Kraft Recovery Boiler Composite Floor Tubes Crack?

    SciTech Connect (OSTI)

    Keiser, J.R.

    2001-10-22T23:59:59.000Z

    Cracks were first reported in 1992 in co-extruded 304L stainless steel/SA210 Gd Al carbon steel floor tubes of North American black liquor recovery boilers. Since then, a considerable amount of information has been collected on the tube environment, crack characteristics, the stress state of the tubes, and the crack initiation and propagation mechanisms. These studies have identified both operating procedures that apparently can greatly lessen the likelihood of crack formation in the stainless steel layer and alternate materials that appear to be much more resistant to cracking than is 304L stainless.

  16. Synergistic air port corrosion in kraft recovery boilers

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2001-08-01T23:59:59.000Z

    Localized hot corrosion can occur on the cold-side of air-ports in Kraft recovery boilers. Depending on the basicity of the molten salt, either acidic or basic fluxing takes place, with a solubility minima at the transition between the two reactions. For stainless steel, if the basicity of the fused salt is between the iron and chromium oxide solubility minima, then a synergistic effect can occur that leads to rapid corrosion. The products of one reaction are the reactants of the other, which eliminates the need for rate-controlling diffusion. This effect can explain why stainless steel is attacked more readily than carbon steel.

  17. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    SciTech Connect (OSTI)

    Fabienne Chatel-Pelage

    2004-01-01T23:59:59.000Z

    This document reviews the work performed during the quarter October-December 2003. Task 1 (Site Preparation) had been completed in the previous reporting period. In this reporting period, one week of combustion parameters optimization has been performed in Task 2 (experimental test performance) of the project. Under full-oxy conditions (100% air replacement with O{sub 2}-enriched flue gas) in 1.5MW{sub th} coal-fired boiler, the following parameters have been varied and their impact on combustion characteristics measured: the recirculated flue gas flow rate has been varied from 80% to 95% of total flue gas flow, and the total oxygen flow rate into the primary air zone of the boiler has been set to levels ranging from 15% to 25% of the total oxygen consumption in the overall combustion. In current reporting period, significant progress has also been made in Task 3 (Techno-Economic Study) of the project: mass and energy balance calculations and cost assessment have been completed on plant capacity of 533MW{sub e} gross output while applying the methodology described in previous reporting periods. Air-fired PC Boiler and proposed Oxygen-fired PC Boiler have been assessed, both for retrofit application and new unit. The current work schedule is to review in more details the experimental data collected so far as well as the economics results obtained on the 533MWe cases, and to develop a work scope for the remainder of the project. Approximately one week of pilot testing is expected during the first quarter of 2004, including mercury emission measurement and heat transfer characterization. The project was on hold from mid-November through December 2003 due to non-availability of funds. Out of the {approx}$785k allocated DOE funds in this project, $497k have been spent to date ($480 reported so far), mainly in site preparation, test performance and economics assessment. In addition to DOE allocated funds, to date approximately $330k has been cost-shared by the participants, bringing the total project cost up to $827k ($810k reported so far) as on December 31st, 2003.

  18. Heat Recovery Considerations for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    and boilere. A number of methods can be I~loyed to recover heat. The moat COI8)D are by use of recuperative air preheat.'la, regenerative air preheate'la and economizers. Relative advantages and applicability of the three IDIthoda are discuased... be designed for any steam pres~ur~, including sup~rc.riti('al, "1. A wic1er range ur- dcs-ign::. LS . J. Hore eificient that a iire-tub~ unit. 4. They do not l~nd th~m5elves to cOul in~) o:;!lo:;!-? vated...

  19. Building America Technology Solutions for New and Existing Homes: Boiler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4,BrentFeedbackPerformance of aBoilerControl

  20. Standby cooling system for a fluidized bed boiler

    DOE Patents [OSTI]

    Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

    1990-01-01T23:59:59.000Z

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  1. New Boilers, Big Savings for Minnesota County | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRate principlesPierpont StudentsBoilers, Big

  2. Value of electrical heat boilers and heat pumps for wind power integration

    E-Print Network [OSTI]

    Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link between the heat and power production in combined heat and power plants. Each of these measures has

  3. Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones

    E-Print Network [OSTI]

    Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

  4. Energy Conservation Through Use of Boiler Economizers (Economic and Practical Considerations)

    E-Print Network [OSTI]

    Roethe, L. A.

    1982-01-01T23:59:59.000Z

    One of the most productive means of obtaining conservation of energy lies in the improvement of the fuel-to-steam efficiency of high pressure steam generating boilers. Boilers operating at steam pressures of 100 psig and above are viable prospects...

  5. Studies, Transport and Treatment Concept for Boilers from Berkeley NPP, England - 13599

    SciTech Connect (OSTI)

    Wirendal, Bo [Studsvik Nuclear AB (Sweden)] [Studsvik Nuclear AB (Sweden); Saul, David; Robinson, Joe; Davidson, Gavin [Studsvik UK Ltd (United Kingdom)] [Studsvik UK Ltd (United Kingdom)

    2013-07-01T23:59:59.000Z

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. Four boilers have been processed and the fifth is planned for completion by end of December 2012.The project had many challenges including a very tight timescale and has been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the first four boilers. It is the first UK project to send large components overseas for recycling and provides new insight into the processing of Magnox gas-circuit components. (authors)

  6. New source performance standards for industrial boilers. Volume 2. Review of industry operating practices

    SciTech Connect (OSTI)

    Bryan, R.J.; Weisenberg, I.J.; Wilson, K.

    1980-09-01T23:59:59.000Z

    The applicability is evaluated of several possible versions of a revised New Source Performance Standards (NSPS) for industrial boilers to boilers that are operated according to typical industry practices. A survey of operating practices is presented, and it is concluded that an NSPS that includes too high a percent removal requirement for SO/sub 2/ (90%) might be excessively costly and cause operating problems for the industrial operator. More field evaluations of low excess air and low Btu gasification are required to validate these techniques for pollution control under industrial boiler operating conditions. The cost of two small boilers with no SO/sub 2/ controls was less than one large boiler of twice the capacity with SO/sub 2/ controls. The annual cost of operating and maintaining the control system accounted for the difference.

  7. Modular approach for modelling a multi-energy district boiler Julien Eynard, Stphane Grieu1 and Monique Polit

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modular approach for modelling a multi-energy district boiler Julien Eynard, Stéphane Grieu1 with the modelling of a district boiler (city of La Rochelle, west coast of France), as part of the OptiEnR research project. This "multi- energy" boiler supplies domestic hot water and heats residential and public

  8. Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle, Alexander Romanovsky

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle-The-Shelf) item. The case study used a Simulink model of a steam boiler system together with an OTS PID in practice, employing software models of the PID controller and the steam boiler system rather than

  9. Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle, Alexander Romanovsky

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    1 Error Recovery for a Boiler System with OTS PID Controller Tom Anderson, Mei Feng, Steve Riddle employing an OTS (Off-The-Shelf) item. The case study used a Simulink model of a steam boiler system, employing software models of the PID controller and the steam boiler system rather than conducting

  10. Efficient model-based leak detection in boiler steam-water systems Xi Sun, Tongwen Chen *, Horacio J. Marquez

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Efficient model-based leak detection in boiler steam-water systems Xi Sun, Tongwen Chen *, Horacio detection in boiler steam-water systems. The algorithm has been tested using real industrial data from Syncrude Canada, and has proven to be effective in detection of boiler tube or steam leaks; proper

  11. Research, Development and Demonstration of Bio-Mass Boiler for Food Industry

    SciTech Connect (OSTI)

    Fisher, Steve; Knapp, David

    2012-03-31T23:59:59.000Z

    Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a ??biomass-fired? boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using ??carbon neutral? fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO{sub 2}) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO{sub 2} emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO{sub 2} emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO{sub 2}. The boiler does require auxiliary ??functions,? however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO{sub 2} emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO{sub 2} per year.

  12. Pattern of Thermal Fluctuations in a Recovery Boiler Floor

    SciTech Connect (OSTI)

    Abdullah, Z.; Gorog, J.P.; Keiser, J.R.; Meyers, L.E.; Swindeman, R.W.

    1999-04-25T23:59:59.000Z

    The floor of a black liquor recovey boiler at a mill in central Canada has experienced cracking and delamination of the composite tubing near the spout wall and deformation of the floor panels that is most severe in the vicinity of the spout wall. One possible explanation for the observed damage is impacts of salt cake falling from the convective section onto the floor. In order to determine if such impacts do occur, strain gauges and thermocouples were installed on the boiler floor in areas where cracking and deformation were most frequent. The data obtained from these instruments indicate that brief, sudden temperature fluctuations do occur, and changes in the strain experienced by the affected tube occur simultaneously. These fluctuations appear to occur less often along the spout wall and more frequently with increasing distance from the wall. The frequency of these temperature fluctuations is insufficient for thermal fatigue to be the sole cause of the cracking observed on the tubes, but the data are consistent with what might be expected from pieces of falling salt cake.

  13. Pattern of thermal fluctuations in a recovery boiler floor

    SciTech Connect (OSTI)

    Keiser, J.R.; Meyers, L.E.; Swindeman, R.W.; Gorog, J.P.; Abdullah, Z.

    1999-07-01T23:59:59.000Z

    The floor of a black liquor recovery boiler at a mill in central Canada has experienced cracking and delamination of the composite tubing near the spout wall and deformation of the floor panels that is most severe in the vicinity of the spout wail. One possible explanation for the observed damage is impacts of salt cake falling from the convective section onto the floor. In order to determine if such impacts do occur, strain gauges and thermocouples were installed on the boiler floor in areas where cracking and deformation were most frequent. The data obtained from these instruments indicate that brief, sudden temperature fluctuations do occur, and changes in the strain experienced by-the affected tube occur simultaneously. These fluctuations appear to occur less often along the spout wall and more frequently with increasing distance from the wall. The frequency of these temperature fluctuations is insufficient for thermal fatigue to be the sole cause of the cracking observed on the tubes, but the data are consistent with what might be expected from pieces of falling salt cake.

  14. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Martin Denison; Connie Senior; Hong-Shig Shim; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker

    2005-06-30T23:59:59.000Z

    This is the twentieth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At the beginning of this quarter, the corrosion probes were removed from Gavin Station. Data analysis and preparation of the final report continued this quarter. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ FTIR lab, and includes the first results from tests run on samples cut from the commercial plate catalysts. The SCR slipstream reactor at Plant Gadsden was removed from the plant, where the total exposure time on flue gas was 350 hours. A computational framework for SCR deactivation was added to the SCR model.

  15. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Babcock Wilcox engineering studies followed by pilot-scale testing has developed/confirmed the potential of utilizing gas, oil or coal reburning as a viable NO{sub x} reduction technology. To date, two US sponsored programs promote natural gas/oil as a reburning fuel because it was believed that gas/oil will provide significantly higher combustion efficiency than using coal at the reburn zone. Although B W has shown that gas/oil reburning will play a role in reducing NO{sub x} emissions from cyclone boilers, B W coal reburning research has also shown that coal as a reburning fuel performs nearly as well as gas/oil without deleterious effects on combustion efficiency. This means that boilers using reburning for NO, control can maintain 100% coal usage instead of switching to 20% gas/oil for reburning. As a result of the B W performed coal reburning research, the technology has advanced to the point which it is now ready for demonstration on a commercial scale.

  16. Circulating fluidized-bed boiler makes inroads for waste recycling

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

  17. Governance & Policies Effective: October 1997

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Governance & Policies Effective: October 1997 University Governance DEANS' COUNCIL Approved: October 1997 Revised: November 22, 2006 University Provost The Deans' Council is an assembly of the chief

  18. Development of a prediction tool for utility boiler performance.

    E-Print Network [OSTI]

    Rees-Gralton, Thomas Michael

    2007-01-01T23:59:59.000Z

    ??Coal combustion looks set to continue in the near future, however, with the pressure being put on power generators, by the UK government, to reduce (more)

  19. Compliance testing of Grissom AFB, Central Heating Plant coal-fired boilers 3, 4 and 5, Grissom AFB, Indiana. Final report, 3-13 Dec 90

    SciTech Connect (OSTI)

    Vaughn, R.W.

    1991-03-01T23:59:59.000Z

    Source compliance testing (particulates and visible emissions) of boiler 3, 4 and 5 in the Grissom AFB Central Heating Plant was accomplished 3-13 Dec 90. The boilers were all tested through the bypass stack. Visible emissions from the three boilers met applicable opacity regulations. However, particulate emissions from the three boilers were above their applicable emission standards.

  20. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    SciTech Connect (OSTI)

    Chau, J. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Preto, F. [Natural Resources Canada; Melin, Staffan [University of British Columbia, Vancouver

    2009-01-01T23:59:59.000Z

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

  1. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    SciTech Connect (OSTI)

    James Markham; Joseph Cosgrove; David Marran; Jorge Neira; Chad Nelson; Peter Solomon

    1999-05-31T23:59:59.000Z

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustion flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.

  2. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21T23:59:59.000Z

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  3. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Schobert, H.H.

    1990-09-28T23:59:59.000Z

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) demonstration and evaluation. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress is reported. 7 refs., 7 figs., 1 tab.

  4. SMART SCHOOLS SYMPOSIUM 2013 PG&E SUPPORT OF SCHOOLS

    E-Print Network [OSTI]

    California at Davis, University of

    -ups ­ Lighting, motors, water heaters, PC power management ­ Chillers, boilers, controls, pool heaters, pool

  5. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    SciTech Connect (OSTI)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01T23:59:59.000Z

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  6. User's manual for the INDCEPT code for estimating industrial steam boiler plant capital investment costs

    SciTech Connect (OSTI)

    Bowers, H I; Fuller, L C; Hudson, II, C R

    1982-09-01T23:59:59.000Z

    The INDCEPT computer code package was developed to provide conceptual capital investment cost estimates for single- and multiple-unit industrial steam boiler plants. Cost estimates can be made as a function of boiler type, size, location, and date of initial operation. The output includes a detailed breakdown of the estimate into direct and indirect costs. Boiler plant cost models are provided to reflect various types and sources of coal and alternate means of sulfur and particulate removal. Cost models are also included for low-Btu and medium-Btu gas produced in coal gasification plants.

  7. Upgrade of Multiple Boiler/Turbine Plant to Microprocessor Control- A Case History

    E-Print Network [OSTI]

    Schenk, J. R.; Sommer, A. C.

    'lis is done by first calculating the sum of the losses efficiency 0 line and using that and auxiliaries costs to determine the cost I curve function for each boiler. The incremental co~ts for each are CjPared 231 I 1 I ESL-IE-85-05-44 Proceedings from... into equipment maintenance. Boiler efficiency degradation can be monitored and actions taken before an unexpected outage occurs. A -loose- boiler really didn't matter before, now the maintenance staff is able to keep the system operat.ing at peak...

  8. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    SciTech Connect (OSTI)

    Levasseur, Armand

    2014-04-30T23:59:59.000Z

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstoms 15 MWth tangentially fired Boiler Simulation Facility (BSF). Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of fuels, oxyprocess variables and boiler design parameters. Significant improvement of CFD modeling tools and validation against 15 MWth experimental data has been completed. Oxy-boiler demonstration and large reference designs have been developed, supported with the information and knowledge gained from the 15 MWth testing. The results from the 15 MWth testing in the BSF and complimentary bench-scale testing are addressed in this volume (Volume II) of the final report. The results of the modeling efforts (Volume III) and the oxy boiler design efforts (Volume IV) are reported in separate volumes.

  9. TA-2 water boiler reactor decommissioning (Phase 1)

    SciTech Connect (OSTI)

    Elder, J.C.; Knoell, C.L.

    1986-12-01T23:59:59.000Z

    Removal of external structures and underground piping associated with the gaseous effluent (stack) line from the TA-2 Water Boiler Reactor was performed as Phase I of reactor decommissioning. Six concrete structures were dismantled and 435 ft of contaminated underground piping was removed. Extensive soil contamination by /sup 137/Cs was encountered around structure TA-2-48 and in a suspected leach field near the stream flowing through Los Alamos Canyon. Efforts to remove all contaminated soil were hampered by infiltrating ground water and heavy rains. Methods, cleanup guidelines, and ALARA decisions used to successfully restore the area are described. The cost of the project was approximately $320K; 970 m/sup 3/ of low-level solid radioactive waste resulted from the cleanup operations.

  10. Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers

    SciTech Connect (OSTI)

    J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan

    2011-06-21T23:59:59.000Z

    Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al diffusion from the coating into the substrate. An effective diffusion barrier interlayer coating was developed to prevent inward Al diffusion. The fire-side corrosion test results showed that the nanocrystalline coatings with a minimum number of defects have a great potential in providing corrosion protection. The coating tested in the most aggressive environment showed no evidence of coating spallation and/or corrosion attack after 1050 hours exposure. In contrast, evidence of coating spallation in isolated areas and corrosion attack of the base metal in the spalled areas were observed after 500 hours. These contrasting results after 500 and 1050 hours exposure suggest that the premature coating spallation in isolated areas may be related to the variation of defects in the coating between the samples. It is suspected that the cauliflower-type defects in the coating were presumably responsible for coating spallation in isolated areas. Thus, a defect free good quality coating is the key for the long-term durability of nanocrystalline coatings in corrosive environments. Thus, additional process optimization work is required to produce defect-free coatings prior to development of a coating application method for production parts.

  11. Design and development for a low emission boiler system

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The Department of Energy initiated the Combustion 2000 program to develop the next generation of coal-fired power plants. Sargent & Lundy (S&L) is working on the Low Emission Boiler System (LEBS) portion of the program led by Riley Stoker Corporation, with support from Textron Defense Systems, Tecogen, and Reaction Engineering International. Together these organizations form {open_quotes}the Riley Team.{close_quotes} There are four phases of the LEBS development program. Currently, we are working in Phase I, which involves the design of a 400 MWe unit. Phase II through IV will involve pilot scale component testing and a Proof-of-Concept facility ({approximately}40MWe) design, construction, and operation. This document comprises the Design and Development Report for the LEBS. The report describes the design basis, design uncertainties and development plan for each of the major LEBS subsystems.

  12. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    SciTech Connect (OSTI)

    Ovidiu Marin; Fabienne Chatel-Pelage

    2003-07-01T23:59:59.000Z

    This document reviews the work performed during the quarter April-June 2003. The main focus of this quarter has been the site preparation (task 1) for the test campaign scheduled in September/October 2003. Task 3 (Techno-economical assessment) has also been initiated while selecting the methodology to be used in the economics analysis and specifying the plants to be compared: In Task 1 (Site Preparation), the process definition and design activities have been completed, the equipment and instruments required have been identified, and the fabrication and installation activities have been initiated, to implement the required modifications on the pilot boiler. As of today, the schedule calls for completion of construction by late-July. System check-down is scheduled for the first two weeks of August. In Task 2 (Combustion and Emissions Performance Optimization), four weeks of testing are planned, two weeks starting second half of August and two weeks starting at the end of September. In Task 3 (Techno-Economic Study), the plants to be evaluated have been specified, including baseline cases (air fired PC boilers with or without CO{sub 2} capture), O{sub 2}-fired cases (with or without flue gas recirculation) and IGCC cases. Power plants ranging from 50 to 500MW have been selected and the methodology to be used has been described, both for performance evaluation and cost assessment. The first calculations will be performed soon and the first trends will be reported in the next quarter. As part of Task 5 (Project Management & Reporting), the subcontract between Babcock&Wilcox and American Air Liquide has been finalized. The subcontract between ISGS and American Air Liquide is in the final stages of completion.

  13. The reapplication of energetic materials as boiler fuels

    SciTech Connect (OSTI)

    Buckley, S.G.; Sclippa, G.C.; Ross, J.R. [and others

    1997-02-01T23:59:59.000Z

    Decommissioning of weapons stockpiles, off-specification production, and upgrading of weapons systems results in a large amount of energetic materials (EM) such as rocket propellant and primary explosives that need to be recycled or disposed of each year. Presently, large quantities of EM are disposed of in a process known as open-burn/open-detonation (OB/OD), which not only wastes their energy content, but may release large quantities of hazardous material into the environment. Here the authors investigate the combustion properties of several types of EM to determine the feasibility of reapplication of these materials as boiler fuels, a process that could salvage the energy content of the EM as well as mitigate any potential adverse environmental impact. Reapplication requires pretreatment of the fuels to make them safe to handle and to feed. Double-base nitrocellulose and nitroglycerin, trinitrotoluene (TNT), nitroguanidine, and a rocket propellant binder primarily composed of polybutidiene impregnated with aluminum flakes have been burned in a 100-kW downfired flow reactor. Most of these fuels have high levels of fuel-bound nitrogen, much of it bound in the form of nitrate groups, resulting in high NO{sub x} emissions during combustion. The authors have measured fuel-bound nitrate conversion efficiencies to NO{sub x} of up to 80%, suggesting that the nitrate groups do not follow the typical path of fuel nitrogen through HCN leading to NO{sub x}, but rather form NO{sub x} directly. They show that staged combustion is effective in reducing NO{sub x} concentrations in the postcombustion gases by nearly a factor of 3. In the rocket binder, measured aluminum particle temperatures in excess of 1700{degrees}C create high levels of thermal NO{sub x}, and also generate concern that molten aluminum particles could potentially damage boiler equipment. Judicious selection of the firing method is thus required for aluminum-containing materials.

  14. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    SciTech Connect (OSTI)

    Fabienne Chatel-Pelage

    2003-10-01T23:59:59.000Z

    This document reviews the work performed during the quarter July--September 2003. Significant progress has been made in Task 1 (Site Preparation), Task 2 (Test performance) and Task 3 (Techno-Economic Study) of the project: the site preparation has been completed, two weeks of tests have been performed and the power generating units to be compared from an economical standpoint have been selected and accurately described. In the experimental part of this effort (task1), the partners in this project demonstrated the feasibility of 100% air replacement with O{sub 2}-enriched flue gas on 1.5MW coal-fired boiler. The air infiltration have been reduced to approximately 5% of the stoichiometry, enabling to reach around 70% of CO{sub 2} in the flue gases. Higher air in-leakage reduction is expected using alternative boiler operating procedure in order to achieve higher CO{sub 2} concentration in flue gas for further sequestration or reuse. The NO{sub x} emissions have been shown considerably lower in O{sub 2}-fired conditions than in air-baseline, the reduction rate averaging 70%. An additional week of tests is scheduled mid October 2003 for combustion parameter optimization, and some more days of operation will be dedicated to mercury emission measurement and heat transfer characterization. Out of the $485k already allocated in this project, $300k has been spent and reported to date, mainly in site preparation ({approx}$215k) and test performance ({approx}$85k). In addition to DOE allocated funds, to date approximately $240k has been cost-shared by the participants, bringing the total project cost up to $540k as on September 30, 2003.

  15. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-06-30T23:59:59.000Z

    This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

  16. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

    2003-01-30T23:59:59.000Z

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

  17. Governance & Policies Effective: 1997

    E-Print Network [OSTI]

    Hardy, Christopher R.

    stakeholders, review, evaluate, and recommend changes, adjustments, and updates to the General EducationGovernance & Policies Effective: 1997 Faculty Senate General Education Review Committee Approved of the term. 2. Faculty Representatives: Two members from each of the four academic units (Education

  18. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

  19. Benefits of Industrial Boiler Control and Economic Load Allocation at AMOCO Chemicals, Decatur, Alabama

    E-Print Network [OSTI]

    Winter, J.

    The objective of this paper is to provide an overview of the economic benefits realized by Amoco's Decatur plant from the utilization of Honeywell's Industrial Boiler Control solution and Turbo Economic Load Allocation packages on an integrated four...

  20. 2014-02-07 Issuance: Test Procedure for Commercial Packaged Boilers; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures for commercial packaged boilers, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  1. Recovery Boiler Modeling: An Improved Char Burning Model Including Sulfate Reduction and Carbon Removal

    E-Print Network [OSTI]

    Grace, T. M.; Wag, K. J.; Horton, R. R.; Frederick, W. J.

    gasification, reactions between oxygen and combustibles in the boundary layer, and integration of sulfate reduction and sulfide reoxidation into the char burning process. Simulations using the model show that for typical recovery boiler conditions, char burning...

  2. 2014-01-31 Issuance: Energy Conservation Standards for Residential Boilers; Notice of Data Availability

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of data availability regarding energy conservation standards for residential boilers, as issued by the Deputy Assistant Secretary for Energy Efficiency on January 31, 2014.

  3. A methodology for in-situ calibration of steam boiler instrumentation

    E-Print Network [OSTI]

    Wei, Guanghua

    1997-01-01T23:59:59.000Z

    This thesis presents a broadly useful diagnostic methodology to engineers and plant managers for finding the in-situ operating characteristics of power plant boilers when metered data is either missing or obviously erroneous. The methodology is able...

  4. Task 2: Materials for Advanced Boiler and Oxy-combustion Systems

    SciTech Connect (OSTI)

    G. R. Holcomb and B. McGhee

    2009-05-01T23:59:59.000Z

    Characterize advanced boiler (oxy-fuel combustion, biomass cofired) gas compositions and ash deposits Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardisation

  5. A centurial history of technological change and learning curves or pulverized coal-fired utility boilers

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.

    2007-01-01T23:59:59.000Z

    change; Steam plant; Steam turbine; Electricity 1.housed ?ve 10,000 kW steam turbines and typically requiredAdvances in boiler and steam turbine technology, materials

  6. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  7. Effective Uses of CSP Grant Funds in Tennessee Charter Schools.

    E-Print Network [OSTI]

    Webb, Leigh|Williams, Andrew

    2014-01-01T23:59:59.000Z

    ?? The topic of educational spending and its connection to student achievement was long-debated before charter schools entered the conversation. With the rise in government (more)

  8. Use of (high temperature) ammoniated citric acid for boiler chemical cleaning

    SciTech Connect (OSTI)

    Smith, C.W. [Georgia Power Co., Atlanta, GA (United States)

    1995-01-01T23:59:59.000Z

    Georgia Power`s primary boiler cleaning solvent in the past has been hydrochloric acid. Citric acid has recently been used on two boilers in an effort to move to a safer and more environmentally acceptable cleaning solvent. As with any change, there is a learning curve and the (new) cleaning process has to be proven with regard to process consistency and cleaning effectiveness. This paper describes our experiences with citric acid along with comparisons of past hydrochloric acid cleanings.

  9. Combustion control in boilers. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations concerning utility and industrial boiler combustion control systems and methods. Topics include methods to meet emission standards, energy savings, and safety. The use of microcomputers, mathematical models, algorithms, artificial intelligence, and fuzzy logic is considered. Citations on boilers and furnaces fueled by coal, oil, gas, refuse, and multiple fuels are included. (Contains a minimum of 128 citations and includes a subject term index and title list.)

  10. Post-remedial action report for the Water Boiler Reactor Site

    SciTech Connect (OSTI)

    Montoya, G.M.

    1991-05-01T23:59:59.000Z

    The TA-2 Water Boiler Reactor Decommissioning Project decontaminated and decommissioned the Water Boiler Reactor, TA-2-1-122, at Los Alamos National Laboratory in Los Alamos, New Mexico, to provide reusable space at the TA-2 site and to eliminate the hazard of accidental intrusion into a contaminated structure. This report documents the radiological condition of the site after the decommissioning and decontamination between June 1989 and April 1990. 7 refs., 3 figs., 5 tabs.

  11. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  12. SDN Governance Policy Introduction

    E-Print Network [OSTI]

    Bristol, University of

    , schools and individuals have in ensuring the security of the SDN. 2. To ensure that the SDN stays within. To clearly define authorities, both decision making and auditing so that required activities can be performed the desired room temperature. Systems linked to a BMS typically represent 40% of a building's energy usage

  13. Modeling energy consumption of residential furnaces and boilers in U.S. homes

    SciTech Connect (OSTI)

    Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

    2004-02-01T23:59:59.000Z

    In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

  14. Final Report: Guided Acoustic Wave Monitoring of Corrosion in Recovery Boiler Tubing

    SciTech Connect (OSTI)

    Chinn, D J; Quarry, M J; Rose, J L

    2005-03-31T23:59:59.000Z

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the cold side or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  15. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner's combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  16. Measure Guideline: Condensing Boilers - Control Strategies for Optimizing Performance and Comfort in Residential Applications

    SciTech Connect (OSTI)

    Arena, L.

    2013-05-01T23:59:59.000Z

    The combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater has become a common option for high-efficiency residential space heating in cold climates. While there are many condensing boilers available on the market with rated efficiencies in the low to mid 90% efficient range, it is imperative to understand that if the control systems are not properly configured, these heaters will perform no better than their non-condensing counterparts. Based on previous research efforts, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency (Arena 2010). It was found that there is a significant lack of information for contractors on how to configure the control systems to optimize overall efficiency. For example, there is little advice on selecting the best settings for the boiler reset curve or how to measure and set flow rates in the system to ensure that the return temperatures are low enough to promote condensing. It has also been observed that recovery from setback can be extremely slow and, at times, not achieved. Recovery can be affected by the outdoor reset control, the differential setting on the boiler and over-sizing of the boiler itself. This guide is intended for designers and installers of hydronic heating systems interested in maximizing the overall system efficiency of condensing boilers when coupled with baseboard convectors. It is applicable to new and retrofit applications.

  17. Government Agency Contacts | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermalGo Back to SchoolGovernment Agency

  18. Valuation of Government Policies and Projects

    E-Print Network [OSTI]

    Lucas, Deborah J.

    Governments play a central role in the allocation of capital and risk in the economy. Evaluating the cost to taxpayers of government investments requires an assumption about the governments cost of capital. Governments ...

  19. Advanced, Low/Zero Emission Boiler Design and Operation

    SciTech Connect (OSTI)

    Fabienne Chatel-Pelage; Rajani Varagani

    2004-06-30T23:59:59.000Z

    This document reviews the work performed during the quarter April-June 2004. Task 1 (Site Preparation) had been completed 2003, along with three weeks of oxycombustion tests in Task 2 (experimental test performance) of the project. In current reporting period, the experimental testing has been completed: one additional week of tests has been performed to finalize the optimization of the combustion characteristics in O{sub 2}/CO{sub 2} environment ; two more days of testing were dedicated to mercury sampling in air-fired or O{sub 2}-fired conditions, and to characterization of heat transfer in O{sub 2} conditions vs. to air-blown conditions. Task 3 (Techno-Economic Study) has also been completed in current quarter: 250MWe, 500MWe and 1000MWe oxygen-fired PC unit have been simulated and quoted, and their performance and cost have been compared to same-capacity air-fired pulverized coal (PC) unit and IGCC. New and retrofit cases have been evaluated. The comparison has been completed in terms of capital cost, operating cost, cost of electricity and cost of CO{sub 2} avoided. The scope of task 4 (Conceptual Boiler Design) had been modified as per DOE request in previous quarter. Engineering calculations are currently in progress. Next steps include detail review of the experimental data collected during the entire testing campaign, finalization of detailed report on economic task, and reporting of the preliminary results in the boiler design task. Two papers summarizing the project main achievements have been presented at Clearwater coal conference in April 2004 (overall project results), and at the CO{sub 2} sequestration conference in May 2004 (emphasis on economics). Out of the {approx}$785k allocated DOE funds in this project, $545k have been spent to date, mainly in site preparation, test performance and economics assessment. In addition to DOE allocated funds, to date approximately $400k have been cost-shared by the participants, bringing the total project cost up to $945k as on June 30, 2004.

  20. The Governance of Clean Development Working Paper 006 June 2010

    E-Print Network [OSTI]

    Matthews, Adrian

    to a clean energy transition but faces complex energy decisions. This paper identifies the key decision Renewable Energy Technologies, while not moving themselves to dependence on clean energy. The article trajectory Key words: Botswana, Renewable Energy, Coal, Governance. About the author: School of International

  1. Corporate governance and banking regulation

    E-Print Network [OSTI]

    Alexander, Kern

    The globalisation of banking markets has raised important issues regarding corporate governance regulation for banking institutions. This research paper addresses some of the major issues of corporate governance as it relates to banking regulation...

  2. Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate-Fired Boiler

    E-Print Network [OSTI]

    Rosendahl, Lasse

    -Fired Boiler Chungen Yin,*, Lasse Rosendahl, Søren K. Kær, Sønnik Clausen, Søren L. Hvid,§ and Torben Hille, Denmark ReceiVed NoVember 16, 2007. ReVised Manuscript ReceiVed January 4, 2008 Grate boilers are widely) model for an industrial biomass-fired grate boiler, which can be used for diagnosis and optimization

  3. High Performance Governing Body slides

    E-Print Network [OSTI]

    Nalbandian, John

    2013-02-01T23:59:59.000Z

    Identifies political values, working conditions of council, and different perspectives of local government elected officials and staff.

  4. Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect (OSTI)

    Andrew Seltzer; Zhen Fan

    2005-09-01T23:59:59.000Z

    Coal is presently the world's primary fuel for generating electrical power and, being more abundant and less expensive than oil or natural gas, is expected to continue its dominance into the future. Coal, however, is more carbon intensive than natural gas and oil and consequently coal-fired power plants are large point source emitters of carbon dioxide (CO{sub 2}). Since CO{sub 2} is a greenhouse gas, which may have an adverse impact on the world's climate/weather patterns, studies have been conducted to determine the feasibility and economic impact of capturing power plant CO{sub 2} emissions for pipeline transport to a sequestration/storage site. The stack gas that exhausts from a modern coal-fired power plant typically contains about 15% CO{sub 2} on a dry volume basis. Although there are numerous processes available for removing CO{sub 2} from gas streams, gas scrubbing with amine solvent is best suited for this application because of the large gas volumes and low CO{sub 2} concentrations involved. Unfortunately the energy required to regenerate the solvent for continued use as a capturing agent is large and imposes a severe energy penalty on the plant. In addition this ''back end'' or post combustion cleanup requires the addition of large vessels, which, in retrofit applications, are difficult to accommodate. As an alternative to post combustion scrubbing, Foster Wheeler (FW) has proposed that the combustion process be accomplished with oxygen rather than air. With all air nitrogen eliminated, a CO{sub 2}-water vapor rich flue gas will be generated. After condensation of the water vapor, a portion of the flue gas will be recirculated back to the boiler to control the combustion temperature and the balance of the CO{sub 2} will be processed for pipeline transport. This proposed oxygen-carbon dioxide (O{sub 2}/CO{sub 2}) combustion process eliminates the need for CO{sub 2} removal/separation and reduces the cost of supplying a CO{sub 2} rich stream for sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas sw

  5. Scale-up of commercial PCFB boiler plant technology

    SciTech Connect (OSTI)

    Lamar, T.W.

    1993-10-01T23:59:59.000Z

    The DMEC-1 Demonstration Project will provide an 80 MWe commercial-scale demonstration of the Pressurized Circulating Fluidized Bed (PCFB) technology. Following confirmation of the PCFB design in the 80 MWe scale, the technology with be scaled to even larger commercial units. It is anticipated that the market for commercial scale PCFB plants will exist most predominantly in the utility and independent power producer (IPP) sectors. These customers will require the best possible plant efficiency and the lowest achievable emissions at competitive cost. This paper will describe the PCFB technology and the expected performance of a nominal 400 MWe PCFB power plant Illinois No. 6 coal was used as a representative fuel for the analysis. The description of the plant performance will be followed by a discussion of the scale-up of the major PCFB components such as the PCFB boiler, the pressure vessel, the ceramic filter, the coal/sorbent handling steam, the gas turbine, the heat recovery unit and the steam turbine, demonstrating the reasonableness of scale-up from demonstration plant to a nominal 400 MWe unit.

  6. Hot Corrosion at Air-Ports in Kraft Recovery Boilers

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2003-01-01T23:59:59.000Z

    Hot corrosion can occur on the cold-side of airports in Kraft recovery boilers. The primary corrosion mechanism involves the migration of sodium hydroxide and potassium hydroxide vapors through leaks in the furnace wall at the airports and their subsequent condensation. It has been reported that stainless steel is attacked much faster than carbon steel in composite tubes, and that carbon steel tubing, when used with a low-chromium refractory, does not exhibit this type of corrosion. For hot corrosion fluxing of metal oxides, either acidic or basic fluxing takes place, with a solubility minimum at the basicity of transition between the two reactions. For stainless steel, if the basicity of the fused salt is between the iron and chromium oxide solubility minima, then a synergistic effect can occur that leads to rapid corrosion. The products of one reaction are the reactants of the other, which eliminates the need for rate-controlling diffusion. This effect can explain why stainless steel is attacked more readily than carbon steel.

  7. An analysis of ilmenite particles used as bed material for combustion of biomass in a CFB boiler.

    E-Print Network [OSTI]

    Corcoran, Angelica

    2013-01-01T23:59:59.000Z

    ??Combustion of biomass in a fluidized bed boiler with silica sand as bed material is related to problems such as agglomeration of bed material and (more)

  8. Utredning av primrluftfrvrmning till tv avfallseldade pannor; Investigation of primary air preheating for two waste incineration boilers.

    E-Print Network [OSTI]

    Bjrkman, Mattias

    2008-01-01T23:59:59.000Z

    ?? The purpose of this degree-project was to investigate the possibilities for primary air preheating into the two smallest waste incineration boilers of Halmstad Energy (more)

  9. Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)

    E-Print Network [OSTI]

    Demirel, Melik C.

    Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

  10. Demonstration of sorbent injection technology on a tangentially coal-fired utility boiler (Yorktown Limb Demonstration)

    SciTech Connect (OSTI)

    Clark, J.P.; Koucky, R.W.; Gogineni, M.R. [Combustion Engineering, Inc., Windsor, CT (United States)] [and others

    1995-06-01T23:59:59.000Z

    Limestone Injection Multistage Burner (LIMB) technology has been successfully demonstrated on a tangentially fired coal-burning utility boiler, Virginia Power`s 180 MWe Yorktown Unit No. 2. This document summarizes the activities conducted, and results achieved, under this EPA-sponsored demonstration program. LIMB combines furnace injection of a calcium-based sorbent for moderate reductions of sulfur dioxide with a low nitrogen oxide firing system for NO{sub x} emissions reduction. The process is attractive for retrofit of existing coal-burning utility boilers, since the capital equipment requirements and overall sulfur reduction costs per ton of SO{sub 2} removed are less than for most other options, such as wet flue gas desulfurization. Five sorbents were tested: commercial hydrated lime, with and without calcium lignosulfonate treatment, each from two suppliers, and finely pulverized limestone. The effects of LIMB operation on boiler, electrostatic precipitator (ESP), and ash handling system performance are also discussed. The most significant impact on boiler performance was the deposition rate of LIMB solids plus flyash on boiler convective surfaces during continuous operation, resulting in poorer boiler heat transfer performance and higher temperatures leaving the boiler. Continuous operation of the sootblowing system minimized this effect. The results of two ESP performance tests which were conducted during continuous LIMB operation are discussed and compared to results from similar testing conducted without LIMB operation. Ash conditioning and disposal during LIMB operation at Yorktown was significantly affected by the unreacted lime in the ash. These problems, as well as suggested precautions to avoid them, are discussed. Recommendations for LIMB commercialization, and an evaluation of the economics of the technology in comparison to a conventional flue gas desulfurization system, are discussed.

  11. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOE Patents [OSTI]

    Kychakoff, George (Maple Valley, WA); Afromowitz, Martin A. (Mercer Island, WA); Hogle, Richard E. (Olympia, WA)

    2008-10-14T23:59:59.000Z

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  12. Effect of bed pressure drop on performance of a CFB boiler

    SciTech Connect (OSTI)

    Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu [Tsinghua University, Beijing (China). Department of Thermal Engineering

    2009-05-15T23:59:59.000Z

    The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

  13. EECBG Success Story: Biomass Boiler to Heat Oregon School | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9: DraftPlant,Community' | Department ofSensors

  14. Mechanical Design of Steel Tubing for Use in Black Liquor Recovery Boilers

    SciTech Connect (OSTI)

    Taljat, B.; Zacharaia, T.; Wang, X.; Kesier, J.; Swindeman, R.; Hubbard, C.

    1999-05-26T23:59:59.000Z

    Finite element models were developed for thermal-mechanical analysis of black liquor recovery boiler floor tubes. Residual stresses in boiler floors due to various manufacturing processes were analyzed. The modeling results were verified by X-ray and neutron diffraction measurements at room temperature on as-manufactured tubes as well as tubes after service. The established finite element models were then used to evaluate stress conditions during boiler operation. Using these finite element models, a parametric response surface study was performed to investigate the influence of material properties of the clad layer on stresses in the floor tubes during various boiler operating conditions, which yielded a generalized solution of stresses in the composite tube floors. The results of the study are useful for identifying the mechanisms of cracking experienced by recovery boilers. Based on the results of the response surface study, a recommendation was made for more suitable materials in terms of the analyzed mechanical properties. Alternative materials and manufacturing processes are being considered to improve the resistance to cracking and the in-service life of composite tubes. To avoid numerous FE stress-strain analyses of composite tubes made of different material combinations, a response surface study was performed that considered two essential mechanical properties of the clad material - coefficient of thermal expansion and yield stress - as independent variables. The response surface study provided a generalized solution of stresses in the floor in terms of the two selected parameters.

  15. Materials for the pulp and paper industry. Section 1: Development of materials for black liquor recovery boilers

    SciTech Connect (OSTI)

    Keiser, J.R.; Hubbard, C.R.; Payzant, E.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01T23:59:59.000Z

    Black liquor recovery boilers are essential components of kraft pulp and paper mills because they are a critical element of the system used to recover the pulping chemicals required in the kraft pulping process. In addition, the steam produced in these boilers is used to generate a significant portion of the electrical power used in the mill. Recovery boilers require the largest capital investment of any individual component of a paper mill, and these boilers are a major source of material problems in a mill. The walls and floors of these boilers are constructed of tube panels that circulate high pressure water. Molten salts (smelt) accumulate on the floor of recovery boilers, and leakage of water into the boiler can result in a violent explosion when the leaked water instantly vaporizes upon contacting the molten smelt. Because corrosion of the conventionally-used carbon steel tubing was found to be excessive in the lower section of recovery boilers, use of stainless steel/carbon steel co-extruded tubing was adopted for boiler walls to lessen corrosion and reduce the likelihood of smelt/water explosions. Eventually, this co-extruded or composite (as it is known in the industry) tubing was selected for use as a portion or all of the floor of recovery boilers, particularly those operating at pressures > 6.2 MPa (900 psi), because of the corrosion problems encountered in carbon steel floor tubes. Since neither the cause of the cracking nor an effective solution has been identified, this program was established to develop a thorough understanding of the degradation that occurs in the composite tubing used for walls and floors. This is being accomplished through a program that includes collection and review of technical reports, examination of unexposed and cracked tubes from boiler floors, computer modeling to predict residual stresses under operating conditions, and operation of laboratory tests to study corrosion, stress corrosion cracking, and thermal fatigue.

  16. Corporate Governance, the Environment, and the Internet

    E-Print Network [OSTI]

    Andrew, Jane

    2003-01-01T23:59:59.000Z

    contemporary society: Corporate governance at a crossroads.R. (1997). A survey of corporate governance. The Journal ofCorporate Governance, the Environment, and the Internet Jane

  17. Lesson from Fiascos in Russian Corporate Governance

    E-Print Network [OSTI]

    Fox, Merritt; Heller, Michael

    2000-01-01T23:59:59.000Z

    Cause Corporate Governance Failures . . . . . . . . . 1.understanding of how corporate governance works. See Heller,Shareholders in Corporate Governance (1999) (mimeo on file

  18. Lesson from Fiascos in Russian Corporate Governance

    E-Print Network [OSTI]

    Fox, Merritt B.; Heller, Michael A.

    1999-01-01T23:59:59.000Z

    Cause Corporate Governance Failures . . . . . . . . . 1.understanding of how corporate governance works. See Heller,Shareholders in Corporate Governance (1999) (mimeo on file

  19. Capital Structure Implications for Corporate Governance

    E-Print Network [OSTI]

    Rajan, Nishanth

    2012-01-01T23:59:59.000Z

    A. Roell, 2002, Corporate governance and control, ECGI-Enjoying the quiet life? Corporate governance and managerialGrinstein, 2007, Corporate governance and firm value: The

  20. NICKEL SPECIES EMISSION INVENTORY FOR OIL-FIRED BOILERS

    SciTech Connect (OSTI)

    Kevin C. Galbreath; Richard L. Schulz; Donald L. Toman; Carolyn M. Nyberg

    2004-01-01T23:59:59.000Z

    Representative duplicate fly ash samples were obtained from the stacks of 400-MW and 385-MW utility boilers (Unit A and Unit B, respectively) using a modified U.S. Environmental Protection Agency (EPA) Method 17 sampling train assembly as they burned .0.9 and 0.3 wt% S residual oils, respectively, during routine power plant operations. Residual oil fly ash (ROFA) samples were analyzed for nickel (Ni) concentrations and speciation using inductively coupled plasma-atomic emission spectroscopy, x-ray absorption fine structure (XAFS) spectroscopy, x-ray diffraction (XRD), and a water-soluble Ni extraction method. ROFA water extraction residues were also analyzed for Ni speciation using XAFS and XRD. Total Ni concentrations in the ROFAs were similar, ranging from 1.3 to 1.5 wt%; however, stack gas Ni concentrations in the Unit A were {approx}990 {micro}g/Nm{sup 3} compared to {approx}620 {micro}g/Nm{sup 3} for Unit B because of the greater residual oil feed rates employed at Unit A to attain higher load (i.e., MW) conditions with a lower heating value oil. Ni speciation analysis results indicate that ROFAs from Unit A contain about 3 wt% NiSO{sub 4} {center_dot} xH{sub 2}O (where x is assumed to be 6 for calculation purposes) and a Ni-containing spinel compound, similar in composition to (Mg,Ni)(Al,Fe){sub 2}O{sub 4}. ROFAs from Unit B contain on average 2.0 wt% NiSO{sub 4} {center_dot} 6H{sub 2}O and 1.1 wt% NiO. XAFS and XRD analyses did not detect any nickel sulfide compounds, including nickel subsulfide (Ni{sub 3}S{sub 2}) (XAFS detection limit is 5% of the total Ni concentration). In addition, XAFS measurements indicated that inorganic sulfate and organic thiophene species account for >97% of the total sulfur in the ROFAs. The presence of NiSO{sub 4} {center_dot} xH{sub 2}O and nickel oxide compound mixtures and lack of carcinogenic Ni{sub 3}S{sub 2} or nickel sulfide compounds (e.g., NiS, NiS{sub 2}) in ROFAs stack-sampled from 400- and 385-MW boilers are contrary to EPA's Ni inhalation cancer risk assessment (''Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress'', February 1998), where it is assumed that the Ni compound mixture emitted from oil-fired utilities is 50% as carcinogenic as Ni{sub 3}S{sub 2}. Apparently, this assumption greatly overestimates the Ni inhalation cancer risk from oil-fired utilities.

  1. Gas mixing in the wall layer of a CFB boiler

    SciTech Connect (OSTI)

    Sterneus, J.; Johnsson, F. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-12-31T23:59:59.000Z

    Tracer-gas measurements were carried out in the transport zone of a 12 MW CFB boiler with special emphasis on the wall-layer flow. Helium (He) was used as tracer gas and a mass spectrometer was used to determine the He-concentrations. The primary gas velocity, U{sub 0}, was 1.2, 2.6 and 4.3 m/s (no secondary air) and the bed material was silica sand with an average particle diameter of 0.32 mm. Tracer gas was injected at different distances from one of the furnace walls and sampled above and below the injection level. In the wall layer, tracer-gas concentrations were detected above (C{sub above}) as well as below (C{sub below}) the injection height for all operating conditions, i.e., the gas flows both up and down from the injection point. The data show that the net flow of tracer gas in the wall layer depends on the operating conditions, and the concentration ratio of the down- and up-flowing gas, {psi} = C{sub below}/C{sub above}, decreases with increased gas velocity ({psi} > 1 for U{sub 0} = 1.2 m/s, {psi} {approx} 1 for U{sub 0} = 2.6 m/s and {psi} < 1 for U{sub 0} = 4.3 m/s). There exists a gas exchange between the core region and the wall-layer. A plug flow model applied to the core region gives a radial dispersion coefficient, D{sub r}, in the range of 0.015--0.025 m{sup 2}/s which is higher than the D{sub r} values reported in literature which are below 0.01 m{sup 2}/x. However, the latter values were obtained in tall and narrow risers.

  2. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31T23:59:59.000Z

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  3. Optimal life-extending control of a boiler system D. Li, H.J. Marquez, T. Chen and R.K. Gooden

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Optimal life-extending control of a boiler system D. Li, H.J. Marquez, T. Chen and R.K. Gooden hierarchical LEC structure and apply it to a typical boiler system. There are two damage models

  4. Technical and economic analysis: Gas cofiring in industrial boilers. Final report, November 1995-September 1996

    SciTech Connect (OSTI)

    Potter, F.J.

    1996-09-01T23:59:59.000Z

    This report presents an analysis of the technical and marketing issues associated with the deployment of natural gas cofiring technology in stoker boilers. As part of the work effort, a composite database of stoker boilers was developed using state and federal emission inventories over the years 1985 - 1995. Information sources included the most recent AIRS Facility Subsystem database, the Ozone Transport Region 1990 database, the 1990 Ohio Permit database and the 1985 NAPAP database--all are electronic databases of facilities with air emission permits. The initial data set included almost 3,000 stokers at about 1,500 locations. Stoker facilities were contacted to verify the operating status, capacity, fuel capability, efficiency and other stoker-specific data. The report presents the current stoker boiler distribution by SIC, industrial groups, primary solid fuel (coal, wood, waste, refuse), operating status, and state. Maps are included.

  5. Maximum Achievable Control Technology for New Industrial Boilers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    As part of Clean Air Act 90 (CAAA90, the EPA on February 26, 2004, issued a final rulethe National Emission Standards for Hazardous Air Pollutants (NESHAP) to reduce emissions of hazardous air pollutants (HAPs) from industrial, commercial, and institutional boilers and process heaters. The rule requires industrial boilers and process heaters to meet limits on HAP emissions to comply with a Maximum Achievable Control Technology (MACT) floor level of control that is the minimum level such sources must meet to comply with the rule. The major HAPs to be reduced are hydrochloric acid, hydrofluoric acid, arsenic, beryllium, cadmium, and nickel. The EPA predicts that the boiler MACT rule will reduce those HAP emissions from existing sources by about 59,000 tons per year in 2005.

  6. ISSUANCE: 2014-11-13 Energy Conservation Standards for Commercial Packaged Boilers: Public Meeting and Availability of the Preliminary Technical Support Document

    Broader source: Energy.gov [DOE]

    Energy Conservation Standards for Commercial Packaged Boilers: Public Meeting and Availability of the Preliminary Technical Support Document

  7. Detection and control of deposition on pendant tubes of Kraft chemical recovery boilers. Quarterly report for the period July-September 1999

    SciTech Connect (OSTI)

    Kychakoff, George

    1999-10-01T23:59:59.000Z

    Activities during this period continued to focus on obtaining a clear image of deposits inside an operating recovery boiler.

  8. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 3, NO. 1, FEBRUARY 2007 73 Constraint-Based Control of Boiler Efficiency

    E-Print Network [OSTI]

    Kusiak, Andrew

    -Based Control of Boiler Efficiency: A Data-Mining Approach Zhe Song and Andrew Kusiak, Member, IEEE Abstract--In this paper, a data-mining approach is used to de- velop a model for optimizing the efficiency of an electric-utility boiler subject to operating constraints. Selection of process vari- ables to optimize combustion

  9. Speci cation and Veri cation of a Steam-Boiler with Signal-Coq Micka l Kerb uf1

    E-Print Network [OSTI]

    Boyer, Edmond

    Speci cation and Veri cation of a Steam-Boiler with Signal-Coq Micka l Kerb uf1 , David Nowak2 assistant, Coq, for the speci cation and the veri cation of co-inductive properties of the well-known steam cation tools. Keywords: synchronous programming, theorem proving, the steam- boiler problem. 1

  10. Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01T23:59:59.000Z

    A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

  11. Black liquor combustion validated recovery boiler modeling, five-year report

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01T23:59:59.000Z

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  12. Government Personal Property Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-11T23:59:59.000Z

    Establishes procedures for managing Government personal property owned or leased by and in the custody of Department of Energy (DOE) Headquarters employees. Cancels HQ 1400.1.

  13. Governance & Policies Effective: October 1997

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Governance & Policies Effective: October 1997 Academic Policy: Undergraduate Studies ACADEMIC AMNESTY Approved: October 1997 Revised: May 16, 2007, Deans' Council March 20, 2007, Faculty Senate Former

  14. Governance & Policies Effective: October 1997

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Governance & Policies Effective: October 1997 Academic Policy: Undergraduate Studies LEAVE of ABSENCE Approved: October 1997 Reviewed: June 4, 2007 Deans' Council, Faculty Senate Students who wish

  15. Governance & Policies Effective: October 1997

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Governance & Policies Effective: October 1997 Academic Policy INDEPENDENT STUDY Approved: October 1997 Reviewed: June 1, 2007 Deans' Council, Faculty Senate Independent study allows the student

  16. Governance & Policies Effective: October 1997

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Governance & Policies Effective: October 1997 Academic Policy STUDY at OTHER INSTITUTIONS Approved: October 1997 Revised: Spring 2000 Reviewed: June 1, 2007 Deans' Council, Faculty Senate Undergraduate

  17. Governance & Policies Effective: October 1997

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Governance & Policies Effective: October 1997 Academic Policy: Graduate Studies GRADUATE ASSISTANTSHIPS Approved: October 1997 Revised: May 24, 2007 Deans' Council Graduate assistantships are awarded

  18. Local Government Revenue Bonds (Montana)

    Broader source: Energy.gov [DOE]

    Limited obligation local government bonds ("special revenue bonds") may be issued for qualified electric energy generation facilities, including those powered by renewables. These bonds generally...

  19. To connect to Boiler Television, you will need to provide a coaxial cable to connect your television set to the cable wall outlet. In connecting the coaxial

    E-Print Network [OSTI]

    Ginzel, Matthew

    To connect to Boiler Television, you will need to provide a coaxial cable to connect your? By providing this initial information, you help Boiler Television staff assess and resolve this issue as soon for use with any University Residences work request -- not just for the Boiler Television system. Set

  20. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 5, SEPTEMBER 2002 735 Multivariable Robust Controller Design for a Boiler System

    E-Print Network [OSTI]

    Marquez, Horacio J.

    Robust Controller Design for a Boiler System Wen Tan, Horacio J. Marquez, and Tongwen Chen Abstract--In an industrial boiler system, multiloop (decen- tralized) proportional-integral (PI) control is used because and performance of the overall system. In particular, under normal boiler operating conditions, we de- sign

  1. 202 IEEE TRANS.4CTIONS Oh'AUTOMATIC CONTROL, VOL. AC-18,NO. 3, J U K E 1973 Design and Analysis of Boiler-Turbine-Generator

    E-Print Network [OSTI]

    Kwatny, Harry G.

    of Boiler-Turbine-Generator Controls Using Optimal Linear Regulator Theory JOHN P. McDOKALD AND HARRY G of a nonlinear mathematical model of a drum-type, twin furnace, reheat boiler-turbine-generator (RBTG) system- tiveoperatingandcontrolstrategies for boiler-t.urbine- generator systems to meet different, system operating ob- jectives. Among

  2. Conversion of a black liquor recovery boiler to wood firing: A case history

    SciTech Connect (OSTI)

    Eleniewski, M.A. [Detroit Stoker Company, Monroe, MI (United States)

    1994-12-31T23:59:59.000Z

    In 1983 a large integrated pulp and paper mill in southeastern United States retired an older chemical recovery boiler when it was replaced by a newer and larger unit as part of a mill expansion. At that time the mill was generating steam and power using wood waste, natural gas and black liquor, a common fuel mix for pulp mills. The retirement of the recovery boiler presented an opportunity for the mill and corporate engineering to evaluate various mixes of fuels for the mill.

  3. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.

    SciTech Connect (OSTI)

    Walsh, Peter M. (University of Alabama at Birmingham and Southern Research Institute, Birmingham, AL); Shaddix, Christopher R.; Sickafoose, Shane M.; Blevins, Linda Gail

    2003-02-01T23:59:59.000Z

    Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning natural gas and oxygen, and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

  4. National Center for Digital Government National Center for Digital Government

    E-Print Network [OSTI]

    Schweik, Charles M.

    -545-1108 www.umass.edu/digitalcenter September 28, 2007 NCDG Hosts Officials from Kazakhstan The National Kazakhstan on Wednesday, September 26, 2007. Amherst, MA The National Center for Digital Government (NCDG) welcomed a delegation of business and government leaders from the Republic of Kazakhstan on Wednesday

  5. Transition Strategies: Government Options and Market Penetration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies: Government Options and Market Penetration Scenarios Transition Strategies: Government Options and Market Penetration Scenarios Presentation on Transition Strategies:...

  6. Colorado School of Mines Service Center Procedures

    E-Print Network [OSTI]

    will usually develop and incorporate its own indirect cost rate in order to recover utilities, space School of Mines Service Center Procedures - 2 - I. PURPOSE CSM conducts research under Government sponsored awards. Therefore, service center procedures must reflect government regulatory costing principles

  7. University of Toronto Governing Council

    E-Print Network [OSTI]

    Boonstra, Rudy

    fiVO AR BO R VELUT University of Toronto Governing Council W eb C opy UNIVERSITY FUNDS INVESTMENT://www.governingcouncil.utoronto.ca/ #12;UNIVERSITY FUNDS INVESTMENT POLICY June 21, 2007 Table of Contents 1. DESCRIPTION OF UNIVERSITY.....................................................................................................6 W eb C opy University of Toronto Governing Council--Web version 2 #12;UNIVERSITY FUNDS INVESTMENT

  8. Commercializing Science at Harvard Business School

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    ;~ Invent and execute both profit and not-for-profit business models, based on Harvard breakthroughsCommercializing Science at Harvard Business School Innovative Harvard Business School course open of business, medicine, science, engineering, law, public health, government, and teaching hospitals. The focus

  9. Compliance testing of Grissom AFB Central Heating Plant coal-fired boilers 3, 4, and 5, Grissom AFB, Indiana. Final report, 29 January-15 February 1989

    SciTech Connect (OSTI)

    Garrison, J.A.

    1989-06-01T23:59:59.000Z

    At the request of HQ, SAC/SGPB source compliance testing (particulate and visible emissions) of boilers 3, 4, and 5 in the Grissom AFB Central Heating Plant was accomplished 29 Jan-15 Feb 89. The survey was conducted to determine compliance with regards to Indiana Administrative Code, Title 325 - Air Pollution Control Board, Article 5, Opacity Regulations, and Article 6, Particulate Regulations. Boiler 3 was tested through scrubber B, Boiler 4 through scrubber A, and Boiler 5 through scrubber B and the bypass stack. Results indicate that each boiler met applicable visible and particulate emission standards.

  10. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Emission Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect (OSTI)

    Cox, Daryl [ORNL; Papar, Riyaz [Hudson Technologies; Wright, Dr. Anthony [ALW Consulting

    2012-07-01T23:59:59.000Z

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  11. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Efficiency Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect (OSTI)

    Cox, Daryl [ORNL; Papar, Riyaz [Hudson Technologies; Wright, Dr. Anthony [ALW Consulting

    2013-02-01T23:59:59.000Z

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  12. The effects of sliding pressure operation on utility boiler tube integrity

    SciTech Connect (OSTI)

    Dewitt-Dick, D.B.; Wangerin, M.C. [Ashland Chemical Co., Boonton, NJ (United States). Ashland Chemical Co.

    1996-08-01T23:59:59.000Z

    Sliding pressure operation is employed by utilities to optimize efficiency during periods of reduced load demand. However, this mode of operation can lead to a deterioration in boiler tube integrity. The various mechanisms involved and their effects on tube integrity are discussed. Case histories are also provided, which illustrate these phenomena.

  13. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  14. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

  15. Method of prevention of deposits in the pipes of waste heat boilers

    SciTech Connect (OSTI)

    Gettert, H.; Kaempfer, K.

    1983-12-13T23:59:59.000Z

    A process is disclosed for preventing deposits in the pipes of waste heat boilers employed for cooling gases in the partial autothermal oxidation of fossil fuels to prepare hydrogen or synthesis gases, wherein the pipes are flushed, at the operating temperature, with hydrogen-containing gases which contain little or no H/sub 2/S.

  16. Fuel Cost Savings Through Computer Control of a Boiler Complex - - Two Case Histories

    E-Print Network [OSTI]

    Worthley, C. M.

    1979-01-01T23:59:59.000Z

    large pulp and paper mill complex in which multiple power boilers and turbine generators are controlled so as to meet the total energy demand of the mill at minimum cost. Also discussed are results from a second installation involving control of a...

  17. Influence of combustion parameters on NOx production in an industrial boiler

    E-Print Network [OSTI]

    Aldajani, Mansour A.

    Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M; accepted 14 April 2007 Available online 24 June 2007 Abstract NOx formation during the combustion process occurs mainly through the oxidation of nitrogen in the combustion air (thermal NOx) and through oxidation

  18. Particulate emission abatement for Krakow boiler houses. Quarterly technical report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Wysk, S.R.

    1997-01-01T23:59:59.000Z

    This project involves the implementation of a new particulate control technology called a ``Core Separator`` for low emission sources (LES) in Krakow. With several hundred boiler sites in the city burning low grade coal, existing pollution control equipment consists primarily of low efficiency cyclones. Such equipment cannot meet the emission standards of most industrial nations. More importantly, these conditions have been the cause of low ambient air quality in Krakow from suspended particles. The Core Separator can be retrofitted onto these boiler houses to substantially reduce particulate emissions, particularly those consisting of the fraction classified as PM10. In this project, Core Separator technology will be demonstrated for boiler house applications in the Krakow region. Phase I entailed business planning and infrastructure studies to determine the market for this equipment. In the second phase, the technology is to be demonstrated in several boilers of different capacity and firing various grades of coal. Later, a joint venture company was to be established with capability of manufacturing and supplying this equipment in Krakow and throughout Poland.

  19. Development of Cost Effective Oxy-Combustion Retrofitting for Coal-Fired Boilers

    SciTech Connect (OSTI)

    Hamid Farzan

    2010-12-31T23:59:59.000Z

    The overall objective of this project is to further develop the oxy-combustion technology for commercial retrofit in existing wall-fired and Cyclone boilers by 2012. To meet this goal, a research project was conducted that included pilot-scale testing and a full-scale engineering and economic analysis.

  20. Predictive control and thermal energy storage for optimizing a multi-energy district boiler

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and used when demand is high, instead of engaging the gas-fuel oil boiler. Keywords: multi-energy district believe that by 2015 the supply of oil and natural gas will be unable to keep up with demand [1 of La Rochelle (France) adding to the plant a controlled thermal storage tank. This plant supplies

  1. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  2. Model of penetration of coal boilers and cogeneration in the paper industry

    SciTech Connect (OSTI)

    Reister, D.B.

    1982-01-01T23:59:59.000Z

    A model has been developed to forecast the penetration of coal boilers and cogeneration of electricity in the paper industry. Given the demand for energy services (process steam and electricity) by the paper industry, the Penetration Model forecasts the demand for purchased fuel and electricity. The model splits the demand for energy service between energy carriers (coal, fuel oil/natural gas, bark, and spent liquor) on the basis of the installed capacity of 16 types of boilers (combinations of four types of energy carriers and four types of throttle conditions). Investment in new boilers is allocated by an empirical distribution function among the 16 types of boilers on the basis of life cycle cost. In the short run (5 years), the Penetration Model has a small price response. The model has a large price response in the long run (30 years). For constant fuel prices, the model forecasts a 19-percent share for coal and a 65-percent share for residual oil in the year 2000. If the real price of oil and gas doubles by the year 2000, the model forecasts a 68-percent share for coal and a 26-percent share for residual oil.

  3. UW SCHOOL OF PHARMACY COMMITTEE ON ACADEMIC STAFF ISSUES (CASI)

    E-Print Network [OSTI]

    Sheridan, Jennifer

    UW SCHOOL OF PHARMACY COMMITTEE ON ACADEMIC STAFF ISSUES (CASI) 2013-2014 Committee Members Jeremy for participation by academic staff members in division/unit and School governance and committee work and strategic priorities of the School; and in the development of mentoring and professional development

  4. Predictive modelling of boiler fouling. Quarterly technical progress report, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    In this reporting period, efforts were initiated to supplement the comprehensive flow field description obtained from the RNG-Spectral Element Simulations by incorporating, in a general framework, appropriate modules to model particle and condensable species transport to the surface. Specifically, a brief survey of the literature revealed the following possible mechanisms for transporting different ash constituents from the host gas to boiler tubes as deserving prominence in building the overall comprehensive model: (1) Flame-volatilized species, chiefly sulfates, are deposited on cooled boiler tubes via the mechanism of classical vapor diffusion. This mechanism is more efficient than the particulate ash deposition, and as a result there is usually an enrichment of condensable salts, chiefly sulfates, in boiler deposits; (2) Particle diffusion (Brownian motion) may account for deposition of some fine particles below 0. 1 mm in diameter in comparison with the mechanism of vapor diffusion and particle depositions, however, the amount of material transported to the tubes via this route is probably small. (3) Eddy diffusion, thermophoretic and electrophoretic deposition mechanisms are likely to have a marked influence in transporting 0.1 to 5{mu}m particles from the host gas to cooled boiler tubes; (4) Inertial impaction is the dominant mechanism in transporting particles above 5{mu}m in diameter to water and steam tubes in pulverized coal fired boiler, where the typical flue gas velocity is between 10 to 25 m/s. Particles above 10{mu}m usually have kinetic energies in excess of what can be dissipated at impact (in the absence of molten sulfate or viscous slag deposit), resulting in their entrainment in the host gas.

  5. (SAN DIEGO ASSOCIATION OF GOVERNMENTS)

    E-Print Network [OSTI]

    and green building programs available. This action plan was developed with assistance from CCSESANDAG (SAN DIEGO ASSOCIATION OF GOVERNMENTS) SUSTAINABLE REGION PROGRAM ACTION PLAN CONSULTANTREPORT Prepared For: California Energy Commission Prepared By: SANDAG, California Center for Sustainable

  6. Corporate governance and insider trading

    E-Print Network [OSTI]

    Rozanov, Konstantin A

    2008-01-01T23:59:59.000Z

    I investigate the relation between corporate governance and insider trading by corporate executives. Despite the general view that trade on non-public information adversely affects capital market participants, the impact ...

  7. Governance & Policies Effective: October 1997

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Governance & Policies Effective: October 1997 Faculty Senate COMMITTEE on COOPERATIVE EDUCATION/INTERNSHIP PROGRAMS Approved: as of 1997 review Faculty Senate Membership 1. The co-op coordinators from each

  8. Green Schools Project Final Report

    SciTech Connect (OSTI)

    Verdict, M.

    2000-09-27T23:59:59.000Z

    The Alliance to Save Energy has responded to interest in the Green Schools concept from the New England states of Maine, New Hampshire and Vermont. The Alliance conducted a train-the-trainers workshop in Augusta, Maine March 17--18, 1999. This work is part of a Green Schools replication project leveraged by funds from another source, NORDAX, which contributed $80,000 to provide partial support to staff at the Maine Energy Education Project (MEEP), Vermont Energy Education Program (VEEP), and New Hampshire Governor's Office to develop Green Schools Projects. DOE funds were used to conduct training, develop a network of state and local government, business and school partners to support school efficiency activities in those three states.

  9. Historical Demographics, Student Origins, and Recruitment at Off-Reservation Indian Boarding Schools, 1900

    E-Print Network [OSTI]

    Meisel, Joshua Jerome

    2014-08-31T23:59:59.000Z

    Beginning in 1878, the United States government funded the establishment of off-reservation industrial training schools for Native American youth. Much has been written about the histories of the schools, but information ...

  10. Developing Government Renewable Energy Projects

    SciTech Connect (OSTI)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01T23:59:59.000Z

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INLs renewable energy experiences date back to the 1980s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the dos and donts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  11. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect (OSTI)

    Kung, Steven; Rapp, Robert

    2014-08-31T23:59:59.000Z

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., Active Sulfidation Corrosion Mechanism, has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., Active Sulfide-to-Oxide Corrosion Mechanism, has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 acidic fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by basic fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

  12. International Development Department, IDD School of Government and Society

    E-Print Network [OSTI]

    Heinke, Dietmar

    or other banks such as HSBC or NatWest around the city. Medical Practice: The university medical practice

  13. Dr Joanildo Burity School of Government and International Affairs;

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    in their public engagements in four countries (Brazil, Argentina, United States and United Kingdom), he to the justification and structuring of policies regarding genetically modified food (crops and products) in three, culture and identity; religion and social policy making (Latin America); and religion, citizenship

  14. Fiscal stimulus through state and local governments

    E-Print Network [OSTI]

    Feiveson, Laura (Laura Judith)

    2012-01-01T23:59:59.000Z

    State and local governments in the United States make up more than half of total government consumption and investment and almost 90 percent of total government employment. Despite these facts, the debates surrounding ...

  15. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    SciTech Connect (OSTI)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1996-03-01T23:59:59.000Z

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  16. Fort Yukon, Chalkyitsik, & Venetie Biomass Boiler Feasibility Study

    SciTech Connect (OSTI)

    Greg Koontz, ME William A. Wall, PhD

    2009-03-31T23:59:59.000Z

    The Council of Athabascan Tribal Governments (CATG) is a consortium of ten Gwich'in and Koyukon Athabascan tribes settled in 10 remote villages and are linked by the Yukon River System. The CATG mission is to maintain the Yukon Flats region as Indian Country by asserting traditional rights and taking responsibility for developing tribal technical capacity to manage the land and resources. It is the intent of CATG to explore and develop all opportunities for a renewable and self-sufficient energy program for each of the villages. CATG envisions utilization of forest resources both for construction and energy as one of the best long-term strategies for integrating the economic goals for the region as well as supporting the cultural and social issues. The intent for this feasibility project is to focus specifically on biomass utilization for heat, first, and for future electrical generation within the region, second. An initial determination has already been made regarding the importance of wood energy as a primary source of renewable energy to displace diesel fuel in the Yukon Flats region. A desktop study of other potential renewable resources was conducted in 2006.

  17. Utilization of coal-water fuels in fire-tube boilers. Final report, October 1990--August 1994

    SciTech Connect (OSTI)

    Sommer, T.; Melick, T.; Morrison, D.

    1994-12-31T23:59:59.000Z

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.

  18. National Dioxin Study Tier 4 - combustion sources: final test report - Site 8, Black-liquor boiler BLB-C

    SciTech Connect (OSTI)

    Jamgochian, C.L.; Keller, L.E.

    1987-04-01T23:59:59.000Z

    This report summarizes the results of a dioxin/furan emissions test of a black-liquor recovery boiler equipped with a drybottom electrostatic precipitator for particulate emissions control. Black-liquor recovery boilers are used at kraft pulp mills to produce process steam and to reclaim inorganic chemicals from spent wood pulping liquors. The dioxin/furan emissions test was conducted under Tier 4 of the National Dioxin Study. The primary objective of Tier 4 is to determine if various combustion sources are sources of dioxin and/or furan emissions. If any of the combustion sources are found to emit dioxin or furan, the secondary objective of Tier 4 is to quantify these emissions. Black-liquor recovery boilers are one of 8 combustion-source categories that have been tested in the Tier 4 program. The tested black-liquor boiler, BLB-C, was selected for the test after an initial information screening and a one-day pretest survey visit. Boiler BLB-C is considered representative of black-liquor recovery boilers with dry-bottom electrostatic precipitators. The amount of chloride present in the black-liquor circuit at this site is considered intermediate to high relative to that found at other kraft pulp mills. Data presented in the report include dioxin (tetra through octa homologue +2378 TCDD) and furan (tetra through octa homologue +2378 TCDF) results for both stack samples and ash samples. In addition, process data collected during sampling are also presented.

  19. Life assessment product catalog for boilers, steam pipes, and steam turbines

    SciTech Connect (OSTI)

    Hoffman, S. (Hoffman (S.), Santa Clara, CA (United States))

    1992-07-01T23:59:59.000Z

    Aging fossil power plants, escalating costs of new plant construction, and load growth rate uncertainties are motivating utilities to make the most effective use of critical components in existing power plants. To help meet this need, EPRI has refined existing methods and developed new methods of predicting the remaining life of key fossil plant components with greater accuracy and confidence. This report describes 16 EPRI products (guidelines, computer programs, and other tools) that apply these techniques to boiler tubes, boiler headers, steam lines, and turbine rotors, blades, and casings. Utility personnel, including plant engineers, maintenance supervisor, engineering department staff, plant operating staff, and performance engineers, can use these products to assess remaining component life, as well as to set cost-effective maintenance procedures, inspection schedules, and operating procedures.

  20. Thermal and hydraulic code verification: ATHOS2 and Model Boiler No. 2 data. Final report. [PWR

    SciTech Connect (OSTI)

    Hopkins, G.W.; Lee, A.Y.; Mendler, O.J.

    1983-02-01T23:59:59.000Z

    As part of the EPRI/Westinghouse Project S168-1, Westinghouse was contracted to conduct steady-state and transient tests on the Westinghouse Model Boiler No. 2 (MB-2) steam genertor test model at the Engineering Test Facility in Tampa, Florida, and to use the data obtained in these tests for the verification of the ATHOS2 (an updated version of URSULA2) code developed for EPRI by CHAM of North America, Inc. This document presents a description of: (1) the model boiler and the associated test facility; (2) the ATHOS2 code analytical model of MB-2; (3) the tests performed for the code verification program; (4) the comparisons of the test data with ATHOS2 calculations; and (5) recommendations for improving the ATHOS2 code.

  1. Thermal and hydraulic code verification: ATHOS2 and Model Boiler No. 2 data. Final report. [PWR

    SciTech Connect (OSTI)

    Hopkins, G.W.; Lee, A.Y.; Mendler, O.J.

    1983-02-01T23:59:59.000Z

    As part of the EPRI/Westinghouse Project S168-1, Westinghouse was contracted to conduct steady-state and transient tests on the Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, and to use the data obtained in these tests for the verification of the ATHOS2 (an updated version of URSULA2) code developed for EPRI by CHAM of North America, Inc. This document presents a description of (1) the model boiler and the associated test facility, (2) the ATHOS2 code analytical model of MB-2, (3) the tests performed for the code verification program, (4) the comparisons of the test data with ATHOS2 calculations, and (5) recommendations for improving the ARHOS2 code.

  2. An experimental correlation for temperature distribution at the membrane wall of CFB boilers

    SciTech Connect (OSTI)

    Golriz, M.R. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics

    1995-12-31T23:59:59.000Z

    An experimental investigation was carried out to study and correlate temperature distribution at the membrane wall in the combustion chamber of circulating fluidized bed (CFB) boilers. The present results and their previously published data on the temperature distribution are correlated. The experimental data corresponded to operating conditions ranging from 2.6 to 6.6 m/s superficial gas velocity, 740 to 920 C bulk bed temperature, and 3 to 70 kg/m{sup 3} suspension density for 270 {micro}m and 290 {micro}m silica sand particles. Finally, experimental data in the available literature on temperature measurements at the membrane wall of CFB boilers have been compared with the experimental results and the correlation.

  3. Constraint-based control of boiler efficiency: A data-mining approach

    SciTech Connect (OSTI)

    Song, Z.; Kusiak, A. [University of Iowa, Iowa City, IA (United States)

    2007-02-15T23:59:59.000Z

    In this paper, a data-mining approach is used to develop a model for optimizing the efficiency of an electric-utility boiler subject to operating constraints. Selection of process variables to optimize combustion efficiency is discussed. The selected variables are critical for control of combustion efficiency of a coal-fired boiler in the presence of operating constraints. Two schemes of generating control settings and updating control variables are evaluated. One scheme is based on the controllable and noncontrollable variables. The second one incorporates response variables into the clustering process. The process control scheme based on the response variables produces the smallest variance of the target variable due to reduced coupling among the process variables. An industrial case study, and its implementation illustrate the control approach developed in this paper.

  4. Boiler tube failures in municipal waste-to-energy plants: Case histories

    SciTech Connect (OSTI)

    Krause, H.H.; Wright, I.G. [Battelle, Columbus, OH (United States)

    1995-12-01T23:59:59.000Z

    Waste-to-energy plants experienced boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls with superheat, adopted from coal-firing technology. The fireside attack by chlorine and sulfur compounds in the refuse combustion products caused many forced outages in early European plants with high steam temperatures and pressures. In spite of conservative steam conditions in the first US plants, some failures occurred. As steam temperatures increased in later US plants, corrosion problems multiplied. Over the years these problems have been alleviated by covering the waterwalls with either refractories or weld overlays of nickel-base alloys and using high nickel-chromium alloys for superheater tubes. Various changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped to minimize corrosion.

  5. Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports

    SciTech Connect (OSTI)

    Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jett, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

    2006-10-01T23:59:59.000Z

    Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

  6. Economic Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    SciTech Connect (OSTI)

    Andrew Seltzer; Archie Robertson

    2006-09-01T23:59:59.000Z

    This report determines the capital and operating costs of two different oxygen-based, pulverized coal-fired (PC) power plants and compares their economics to that of a comparable, air-based PC plant. Rather than combust their coal with air, the oxygen-based plants use oxygen to facilitate capture/removal of the plant CO{sub 2} for transport by pipeline to a sequestering site. To provide a consistent comparison of technologies, all three plants analyzed herein operate with the same coal (Illinois No 6), the same site conditions, and the same supercritical pressure steam turbine (459 MWe). In the first oxygen-based plant, the pulverized coal-fired boiler operates with oxygen supplied by a conventional, cryogenic air separation unit, whereas, in the second oxygen-based plant, the oxygen is supplied by an oxygen ion transport membrane. In both oxygen-based plants a portion of the boiler exhaust gas, which is primarily CO{sub 2}, is recirculated back to the boiler to control the combustion temperature, and the balance of the flue gas undergoes drying and compression to pipeline pressure; for consistency, both plants operate with similar combustion temperatures and utilize the same CO{sub 2} processing technologies. The capital and operating costs of the pulverized coal-fired boilers required by the three different plants were estimated by Foster Wheeler and the balance of plant costs were budget priced using published data together with vendor supplied quotations. The cost of electricity produced by each of the plants was determined and oxygen-based plant CO{sub 2} mitigation costs were calculated and compared to each other as well as to values published for some alternative CO{sub 2} capture technologies.

  7. Performance of composite coatings in a coal-fired boiler environment

    SciTech Connect (OSTI)

    Nava, J.C. [ME Technical Services, Bridgeton, MO (United States)

    2009-09-15T23:59:59.000Z

    Four samples of thermal spray coatings, each made from different core wire consumables by twin wire arc spray, were exposed for 18 months in a coal-fired boiler environment. The tests are described and the performance of each coating is evaluated. Results indicated that the four consumable wire alloys showed remarkable resistance to fly ash erosion and corrosion over the period of the test.

  8. Boiler and steam generator corrosion. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  9. Boiler and steam generator corrosion. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Evaluation of coal-derived liquids as boiler fuels. Volume 3. Emissions test results. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01T23:59:59.000Z

    A combustion demonstration using six coal-derived fuels was conducted on a utility boiler located at the plant, Sweatt Electric Generating Station of Mississippi Power Company, in Meridian, Mississippi. Volume 1, of a 5 volume report, contains a comprehensive report of the whole test program - see abstract of Volume 1 for a detailed abstract of the whole program. Volume 3 contains detailed emissions testing results. 41 figs., 6 tabs. (LTN)

  11. A new coordinated control strategy for boiler-turbine system of coal-fired power plant

    SciTech Connect (OSTI)

    Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H. [Shanghai Jiao Tong University, Shanghai (China)

    2005-11-01T23:59:59.000Z

    This paper presents the new development of the boiler-turbine coordinated control strategy using fuzzy reasoning and autotuning techniques. The boiler-turbine system is a very complex process that is a multivariable, nonlinear, slowly time-varying plant with large settling time and a lot of uncertainties. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. Proportional-integral derivative (PID) type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. A special subclass of fuzzy inference systems, called the Gaussian partition with evenly (GPE) spaced midpoints systems, is used to self-tune the main steam pressure PID controller's parameters online based on the error signal and its first difference, aimed at overcoming the uncertainties due to changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors. For the large variation of operating condition, a supervisory control level has been developed by autotuning technique. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process. Indeed, better control performance and economic benefit have been achieved.

  12. Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler

    SciTech Connect (OSTI)

    Not Available

    1991-04-26T23:59:59.000Z

    This clean coal technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and (to some extent) SO{sub x} emissions: Gas reburning and low NO{sub x} burners. The demonstrations will be conducted on a pre-NSPS utility boiler representative of US boilers that contribute significantly to the inventory of acid rain precursor emissions: a wall fired unit. Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is burned. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 75 percent or more as a result of combining LNB and GR to a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

  13. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 5: Appendix V

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  14. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers

    SciTech Connect (OSTI)

    Keiser, J.R.

    2001-10-22T23:59:59.000Z

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining.

  15. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers

    SciTech Connect (OSTI)

    Keiser, J.R.

    2000-04-18T23:59:59.000Z

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining.

  16. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 4: Appendix IV

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  17. Coal Reburning for Cyclone Boiler NO[sub x] Control Demonstration

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The project involves retrofitting/testing the reburning technology at Wisconsin Power Light's 100 MWe Nelson Dewey Unit [number sign]2 in Cassville, Wisconsin to determine the commercial applicability of this technology to reduce NO[sub x] emission levels. Based upon the data collected and evaluated f or reburn No[sub x] reduction performance with the Lamar Indiana bituminous coal f or boiler loads of 110 MW, 82 MW, and 60 MW, average NO[sub x] reductions of 52.4%, 50.1% and 35.8%, respectively were achieved. Average emissions of NO[sub x]with reburn in operation were 290 ppm (.39 lb/million Btu) , 265 ppm (.36 lb/million Btu) and 325 ppm (.44 lb/million Btu) respectively, all corrected to 3% 02 content. Boiler efficiency losses due to increased unburned carbon in the ash were 0.1% at 110 NW, .25% at 83 MW and 1.5% at 60 MW. Reburn performance results with western sub-bituminous coal at 110 MW, 82 MW and 60 MW boiler loads indicated NO[sub x] reductions of 55.4%, 52.1% and 52.6% respectively. Under optimal conditions, NO[sub x] reductions approaching 63% were achieved with the more reactive western sub-bituminous coal. Boiler efficiency losses due to increased unburned carbon in the ash were unchanged at full load, a loss of 0.2% at 83 MW and a loss of .3% at low load, much improved over results with the Lamar coal.

  18. Measurements of POM emissions from coal-fired utility boilers. Final report

    SciTech Connect (OSTI)

    Sonnichsen, T.W.

    1983-02-01T23:59:59.000Z

    Emissions of polycyclic organic matter (POM) from fossil-fuel combustion systems are of concern due to the potential carcinogenic activity of specific POM species. The initial objectives of this research program were to (1) conduct a limited laboratory verification of state-of-the-art POM sampling and analysis techniques for pulverized coal-fired combustion exhausts and (2) measure the POM emissions of up to four coal-fired utility boilers. Initial laboratory tests, involving the injection of synthetic POM tracers into the sampling and analytical procedures were capable of accurate POM measurements. However, subsequent tracer recovery results and measurements of combustion generated POM from a coal-fired laboratory test furnace and a utility boiler were highly erratic. The program was consequently redirected to include a comprehensive evaluation of the analytical techniques and interfering factors in the flue gas or sampling train that may have impacted the POM measurements. State-of-the-art GC/MS analytical technical techniques were shown to be generally adequate, but some questions remain concerning sample preparation and adaptability for routine measurements. Review of the literature identified the potential for interaction of POM with the fly ash in either the flue-gas stream or the sampling system. The results of these evaluations were incorporated into a final field-test program on a coal-fired utility boiler. While some improvement in tracer recoveries and combustion-generated POM were obtained, several inconsistencies in the data were still apparent. Recommendations for future POM-measurement programs on utility boilers are presented.

  19. The Enbridge "Steam Saver" Program: Steam Boiler Plant Efficiency-Update to Year End 2005

    E-Print Network [OSTI]

    Griffin, B.; Johnson, D.

    2006-01-01T23:59:59.000Z

    industrial sectors are represented. The automotive, pulp-and -paper, petrochemical and steel industries are particularly large energy and steam users. Food and beverage processors are also heavy steam consumers. The Enbridge franchise service area... summary of the results of the boiler plant audit program. This data excludes other programs such as steam trap surveys and insulation surveys to be presented later in this paper. In summary, 13.7% of the total fuel can be saved if all identified...

  20. CONDENSING ECONOMIZERS FOR SMALL COAL-FIRED BOILERS AND FURNACES PROJECT REPORT - JANUARY 1994

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    1994-01-04T23:59:59.000Z

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impacts are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  1. Expert Meeting: Optimized Heating Systems Using Condensing Boilers and Baseboard Convectors

    SciTech Connect (OSTI)

    Arena, L.

    2013-01-01T23:59:59.000Z

    On August 11, 2011, in Denver, CO, a Building America Expert Meeting was held in conjunction with the Building America Residential Energy Efficiency Technical Update Meeting, to review and discuss results and future plans for research to improve the performance of hydronic heating systems using condensing boilers and baseboard convectors. A meeting objective was to provide an opportunity for other Building America teams and industry experts to provide feedback and specific suggestions for the planned research.

  2. Assessment of government tribology programs

    SciTech Connect (OSTI)

    Peterson, M.B.; Levinson, T.M.

    1985-09-01T23:59:59.000Z

    An assessment has been made to determine current tribology research and development work sponsored or conducted by the government. Data base surveys and discussions were conducted to isolate current projects sponsored primarily by 21 different government organizations. These projects were classified by subject, objective, energy relevance, type of research, phenomenon being investigated, variables being studied, type of motion, materials and application. An abstract of each project was prepared which included the classification, sponsor, performing organization and a project description. It was found that current work is primarily materials oriented to meet military requirements. Other than the high temperature programs very few of the tribology projects accomplish energy related objectives.

  3. Advanced Oxyfuel Boilers and Process Heaters for Cost Effective CO2 Capture and Sequestration

    SciTech Connect (OSTI)

    Max Christie; Rick Victor; Bart van Hassel; Nagendra Nagabushana; Juan Li; Joseph Corpus; Jamie Wilson

    2007-03-31T23:59:59.000Z

    The purpose of the advanced boilers and process heaters program is to assess the feasibility of integrating Oxygen Transport Membranes (OTM) into combustion processes for cost effective CO{sub 2} capture and sequestration. Introducing CO{sub 2} capture into traditional combustion processes can be expensive, and the pursuit of alternative methods, like the advanced boiler/process heater system, may yield a simple and cost effective solution. In order to assess the integration of an advanced boiler/process heater process, this program addressed the following tasks: Task 1--Conceptual Design; Task 2--Laboratory Scale Evaluation; Task 3--OTM Development; Task 4--Economic Evaluation and Commercialization Planning; and Task 5--Program Management. This Final report documents and summarizes all of the work performed for the DOE award DE-FC26-01NT41147 during the period from January 2002-March 2007. This report outlines accomplishments for the following tasks: conceptual design and economic analysis, oxygen transport membrane (OTM) development, laboratory scale evaluations, and program management.

  4. Results from Alloy 600 And Alloy 690 Caustic SCC Model Boiler Tests

    SciTech Connect (OSTI)

    Miller, Frederick D.; Thomas, Larry E.

    2009-08-03T23:59:59.000Z

    A versatile model boiler test methodology was developed and used to compare caustic stress corrosion cracking (SCC) of mill annealed Alloy 600 and thermally treated Alloy 690. The model boiler included simulated crevice devices that efficiently and consistently concentrated Na2CO3, resulting in volatilization of CO2 with the steam and concentration of NaOH at the tube surfaces. The test methodology also included variation in tube stress, either produced by the primary to secondary side pressure differential, or by a novel method that reproducibly yields a higher stress condition on the tube. The significant effect of residual stress on tube SCC was also considered. SCC of both Alloy 600 and Alloy 690 were evaluated as a function of temperature and stress. Analytical transmission electron microscopy (ATEM) evaluations of the cracks and the grain boundaries ahead of the cracks were performed, providing insight into the SCC mechanism. This model boiler test methodology may be applicable to a range of bulkwater secondary chemistries that concentrate to produce aggressive crevice environments.

  5. Characteristics and sources of intermediate size particles in recovery boilers : final project report.

    SciTech Connect (OSTI)

    Baxter, Larry L. (Brigham Young University, Provo, UT); Shaddix, Christopher R.; Verrill, Christopher L. (Georgia Institute of Technology, Institute of Paper Science and Technology, Atlanta, GA); Wessel, Richard A. (Babcock & Wilcox Company, Barberton, OH)

    2005-02-01T23:59:59.000Z

    As part of the U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) Industries of the Future (IOF) Forest Products research program, a collaborative investigation was conducted on the sources, characteristics, and deposition of particles intermediate in size between submicron fume and carryover in recovery boilers. Laboratory experiments on suspended-drop combustion of black liquor and on black liquor char bed combustion demonstrated that both processes generate intermediate size particles (ISP), amounting to 0.5-2% of the black liquor dry solids mass (BLS). Measurements in two U.S. recovery boilers show variable loadings of ISP in the upper furnace, typically between 0.6-3 g/Nm{sup 3}, or 0.3-1.5% of BLS. The measurements show that the ISP mass size distribution increases with size from 5-100 {micro}m, implying that a substantial amount of ISP inertially deposits on steam tubes. ISP particles are depleted in potassium, chlorine, and sulfur relative to the fuel composition. Comprehensive boiler modeling demonstrates that ISP concentrations are substantially overpredicted when using a previously developed algorithm for ISP generation. Equilibrium calculations suggest that alkali carbonate decomposition occurs at intermediate heights in the furnace and may lead to partial destruction of ISP particles formed lower in the furnace. ISP deposition is predicted to occur in the superheater sections, at temperatures greater than 750 C, when the particles are at least partially molten.

  6. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 5 (Appendix V)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 5 contains model validation simulations and comparison with data.

  7. Advanced combustion system for industrial boilers. Phase 2, Quarterly technical progress report, October--December 1990

    SciTech Connect (OSTI)

    Wagoner, C.L.; Foote, J.P.; Millard, W.P.; Attig, R.C.; Schulz, R.J.

    1990-12-31T23:59:59.000Z

    This During this quarter, work continued on development/improvement of the low-NO{sub x} coal combustor for the boiler system. Reburning tests were conducted in the external, water-cooled test duct with a length of 15 feet using ultra fine coal with propane to reduce the NO{sub x} levels to as low as 0.295 lb-NO{sub x}/MBtu. Work also continued on design/construction of the new coal-feed system that will be used for the 100-hour demonstration test with the on-line refillable coal hopper operating in air at atmospheric pressure. Coal will be loaded into the hopper from bulk bags. Initial testing of the UTSI boiler control and automation system was successful. Normally-pulverized coal with approximately 70% passing a number 200 sieve was burned in the external test duct. Initial flame-visualization tests were successful, and the burner was able to handle coal without being micronized to the ultra fine level. Refractory was poured for a new combustor second-stage assembly. Subsequently, the combustor was installed inside the 200 hp fire-tube boiler.

  8. Technical and economic feasibility of alternative fuel use in process heaters and small boilers

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined and the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.

  9. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Final project report

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    As part of the US Department of Energy`s (DOE`s) Innovative Clean Coal Technology Program, under Round 2, a project for Full Scale Demonstration of Coal Reburning for Cyclone Boiler Nitrogen Oxide (NO{sub x},) Control was selected. DOE sponsored The Babcock & Wilcox (B&W) Company, with Wisconsin Power & Light (WP&L) as the host utility, to demonstrate coal reburning technology at WP&L`s 110 MW{sub c}, cyclone-fired Unit No.2 at the Nelson Dewey Generating Station in Cassville, Wisconsin. The coal reburning demonstration was justified based on two prior studies. An Electric Power Research Institute (EPRI) and B&W sponsored engineering feasibility study indicated that the majority of cyclone-equipped boilers could successfully apply reburning technology to reduce NO{sub x}, emissions by 50 to 70%. An EPRI/Gas Research Institute (GRI)/B&W pilot-scale evaluation substantiated this conclusion through pilot-scale testing in B&W`s 6 million Btu/hr Small Boiler Simulator. Three different reburning fuels, natural gas, No. 6 oil, and pulverized coal were tested. This work showed that coal as a reburning fuel performs nearly as well as gas/oil without deleterious effects of combustion efficiency. Coal was selected for a full scale demonstration since it is available to all cyclone units and represents the highest level of technical difficulty-in demonstrating the technology.

  10. University of Toronto Governing Council

    E-Print Network [OSTI]

    Sun, Yu

    , overall cost estimate and sources of funds) as defined in the Project Planning Report Business BoardfiVO AR BO R VELUT University of Toronto Governing Council W eb C opy Policy on Capital Planning and Capital Projects June 28, 2001 To request an official copy of this policy, contact: The Office

  11. Florida Atlantic University Student Government

    E-Print Network [OSTI]

    Fernandez, Eduardo

    : The purpose of club funding is to assist Florida Atlantic University recognized student clubs2 #12;2 Florida Atlantic University Student Government Council of Student Organizations (COSO) Boca Raton Campus Funding and Emergency Funding Policies and Procedures CHAPTER I: STATEMENTS Title A

  12. Government Personal Property Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-09-23T23:59:59.000Z

    To establish procedures for managing Government personal owned or leased by the Department of Energy (DOE) and in the custody of DOE Headquarters employees, including those in the National Nuclear Security Administration (NNSA), in accordance with Federal and Departmental regulations. Cancels HQ O 580.1.

  13. governance

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A en Responding to Emergencies7/%2A7

  14. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    None

    1998-07-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

  15. Gas reburning in tangentially-fired, wall-fired and cyclone-fired boilers

    SciTech Connect (OSTI)

    May, T.J. [Illinois Power Co., Decatur, IL (United States); Rindahl, E.G. [Public Service Co. of Colorado, Denver, CO (United States); Booker, T. [City Water Light and Power, Springfield, IL (United States)] [and others

    1994-12-31T23:59:59.000Z

    Gas Reburning has been successfully demonstrated for over 4,428 hours on three coal fired utility boilers as of March 31, 1994. Typically, NO{sub x} reductions have been above 60% in long-term, load-following operation. The thermal performance of the boilers has been virtually unaffected by Gas Reburning. At Illinois Power`s Hennepin Station, Gas Reburning in a 71 MWe tangentially-fired boiler achieved an average NO{sub x} reduction of 67% from the original baseline NO{sub x} level of 0.75 lb NO{sub x}/10{sup 6} Btu over a one year period. The nominal natural gas input was 18% of total heat input. Even at 10% gas heat input, NO{sub x} reduction of 55% was achieved. At Public Service Company of Colorado`s Cherokee Station, a Gas Reburning-Low NO{sub x} Burner system on a 172 MWe wall-fired boiler has achieved overall NO{sub x} reductions of 60--73% in parametric and long-term testing, based on the original baseline NO{sub x} level of 0.73 lb/10{sup 6} Btu. NO{sub x} reduction is as high as 60--65% even at relatively low natural gas usage (5--10% of total heat input). The NO{sub x} reduction by Low NO{sub x} Burners alone is typically 30--40%. NO{sub x} reduction has been found to be insensitive to changes in recirculated flue gas (2--7% of total flue gas) injected with natural gas. At City Water, Light and Power Company`s Lakeside Station in Springfield, Illinois, Gas Reburning in a 33 MWe cyclone-fired boiler has achieved an average NO{sub x} reduction of 66% (range 52--77%) at gas heat inputs of 20--26% in long-term testing, based on a baseline NO{sub x} level of 1.0 lb/10{sup 6} Btu (430 mg/MJ). This paper presents a summary of the operating experience at each site and discusses the long term impacts of applying this technology to units with tangential, cyclone and wall-fired (with Low NO{sub x} Burner) configurations.

  16. Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator

    E-Print Network [OSTI]

    1976-01-01T23:59:59.000Z

    Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator

  17. Improved Recovery Boiler Performance Through Control of Combustion, Sulfur, and Alkali Chemistry

    SciTech Connect (OSTI)

    Baxter, Larry L.

    2008-06-09T23:59:59.000Z

    This project involved the following objectives: 1. Determine black liquor drying and devolatilization elemental and total mass release rates and yields. 2. Develop a public domain physical/chemical kinetic model of black liquor drop combustion, including new information on drying and devolatilization. 3. Determine mechanisms and rates of sulfur scavenging in recover boilers. 4. Develop non-ideal, public-domain thermochemistry models for alkali salts appropriate for recovery boilers 5. Develop data and a one-dimensional model of a char bed in a recovery boiler. 6. Implement all of the above in comprehensive combustion code and validate effects on boiler performance. 7. Perform gasification modeling in support of INEL and commercial customers. The major accomplishments of this project corresponding to these objectives are as follows: 1. Original data for black liquor and biomass data demonstrate dependencies of particle reactions on particle size, liquor type, gas temperature, and gas composition. A comprehensive particle submodel and corresponding data developed during this project predicts particle drying (including both free and chemisorbed moisture), devolatilization, heterogeneous char oxidation, char-smelt reactions, and smelt oxidation. Data and model predictions agree, without adjustment of parameters, within their respective errors. The work performed under these tasks substantially exceeded the original objectives. 2. A separate model for sulfur scavenging and fume formation in a recovery boiler demonstrated strong dependence on both in-boiler mixing and chemistry. In particular, accurate fume particle size predictions, as determined from both laboratory and field measurements, depend on gas mixing effects in the boilers that lead to substantial particle agglomeration. Sulfur scavenging was quantitatively predicted while particle size required one empirical mixing factor to match data. 3. Condensed-phase thermochemistry algorithms were developed for salt mixtures and compared with sodium-based binary and higher order systems. Predictions and measurements were demonstrated for both salt systems and for some more complex silicate-bearing systems, substantially exceeding the original scope of this work. 4. A multi-dimensional model of char bed reactivity developed under this project demonstrated that essentially all reactions in char beds occur on or near the surface, with the internal portions of the bed being essentially inert. The model predicted composition, temperature, and velocity profiles in the bed and showed that air jet penetration is limited to the immediate vicinity of the char bed, with minimal impact on most of the bed. The modeling efforts substantially exceeded the original scope of this project. 5. Near the completion of this project, DOE withdrew the BYU portion of a multiparty agreement to complete this and additional work with no advanced warning, which compromised the integration of all of this material into a commercial computer code. However, substantial computer simulations of much of this work were initiated, but not completed. 6. The gasification modeling is nearly completed but was aborted near its completion according to a DOE redirection of funds. This affected both this and the previous tasks.

  18. Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications

    SciTech Connect (OSTI)

    Lu, X.F.; Amano, R.S. [University of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

    2006-12-15T23:59:59.000Z

    CFB boiler ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. The disposal in landfills has been the most common means of handling ash in circulating fluidized bed boiler power plants. However for a 300 MW CFB boiler power plant, there will be 600,000 tons of ash discharged per year and will result in great volumes and disposal cost of ash byproduct. It was very necessary to solve the utilization of CFB ash and to decrease the disposal cost of CFB ash. The feasible experimental study results on the utilization of the bottom ashes of a 300 MW CFB boiler in Baima power plant in China were reported in this paper. The bottom ashes used for test came from the discharged bottom ashes in a 100 MW CFB boiler in which the anthracite and limestone designed for the 300 MW CFB project was burned. The results of this study showed that the bottom ash could be used for cementitious material, road concrete, and road base material. The masonry cements, road concrete with 30 MPa compressive strength and 4.0 MPa flexural strength, and the road base material used for base courses of the expressway, the main road and the minor lane were all prepared with milled CFB bottom ashes in the lab. The better methods of utilization of the bottom ashes were discussed in this paper.

  19. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 3 (Appendices II, sections 2--3 and III)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 3 contains the following appendix sections: Formation and destruction of nitrogen oxides in recovery boilers; Sintering and densification of recovery boiler deposits laboratory data and a rate model; and Experimental data on rates of particulate formation during char bed burning.

  20. Waste minimization and pollution prevention initiatives within Argonne National Laboratory-East (ANL-E) boiler house operations

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The mission of ANL-E Plant Facility and Services-Utilities and Systems (PFS-US) is to operate and maintain utility services in a cost-effective manner, while utilizing new and innovative methods whenever possible. PFS-US operates an on-site coal burning boiler plant that generates steam for use throughout the Laboratory as a source to heat buildings, as well as for use in research experiments. In the recent past, PFS-US has embarked upon a series of initiatives to improve operating efficiency of boiler house operations. The results of these projects have had the following impacts on boiler house performance and operations: (1) boiler house efficiency and operations have improved, (2) boiler house operating costs have been reduced, (3) specific operating and maintenance costs have been avoided or eliminated, and (4) the amount of waste and pollution generated has been reduced. Through the implementation of these initiatives, over $250,000 of revenue and cost savings have been incurred by ANL-E. In addition, the Laboratory and DOE will benefit annually from revenues, cost savings, and the reduction of environmental liability resulting from these initiatives.

  1. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect (OSTI)

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

    2007-01-15T23:59:59.000Z

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  2. STUDENT GOVERNMENT ASSOCIATION The Student Government Association, or "SGA", has the greatest student representative

    E-Print Network [OSTI]

    Selmic, Sandra

    _____________________________________________________________________________ STUDENT GOVERNMENT ASSOCIATION The Student Government Association, or "SGA", has the greatest student representative authority on campus. The Student Government Association receives a $4.50 per student per quarter student-assessed fee

  3. UNC Charlotte Government Property Management Plan 1 Government Property Management Plan

    E-Print Network [OSTI]

    Howitt, Ivan

    . MANAGEMENT AND ACQUISITION Under the University's property management system, the Materials ManagementUNC Charlotte Government Property Management Plan 1 Government Property Management Plan Initially approved: 21 October 2011 Updated: August 24, 2012 SCOPE This Government Property Management Plan applies

  4. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    None

    1998-09-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

  5. FY 2008 E-Government Act Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 E-Government Act Report FY 2008 E-Government Act Report FY 2008 E-Government Act Report FY 2008 E-Government Act Report More Documents & Publications FY 2008 E-Government Act...

  6. Optimization of Trona/Limestone Injection for SO2 Control in Coal-Fired Boilers

    SciTech Connect (OSTI)

    None

    2005-09-01T23:59:59.000Z

    Mobotec USA develops and markets air pollution control systems for utility boilers and other combustion systems. They have a particular interest in technologies that can reduce NOx, SOx, and mercury emissions from coal-fired boilers, and have been investigating the injection of sorbents such as limestone and trona into a boiler to reduce SOx and Hg emissions. WRI proposed to use the Combustion Test Facility (CTF) to enable Mobotec to conduct a thorough evaluation of limestone and trona injection for SO{sub 2} control. The overall goal of the project was to characterize the SO{sub 2} reductions resulting from the injection of limestone and trona into the CTF when fired with a high-sulfur eastern bituminous coal used in one of Mobotec's Midwest installations. Results revealed that when limestone was injected at Ca:S molar ratios of 1.5 to 3.0, the resulting SO{sub 2} reductions were 35-55%. It is believed that further reductions can be attained with improved mixing of the sorbent with the combustion gases. When limestone was added to the coal, at Ca:S molar ratios of 0.5 to 1.5, the SO{sub 2} reductions were 13-21%. The lower reductions were attributed to dead-burning of the sorbent in the high temperature flame zone. In cases where limestone was both injected into the furnace and added to the coal, the total SO{sub 2} reductions for a given Ca:S molar ratio were similar to the reductions for furnace injection only. The injection of trona into the mid-furnace zone, for Na:S molar ratios of 1.4 to 2.4, resulted in SO{sub 2} reductions of 29-43%. Limestone injection did not produce any slag deposits on an ash deposition probe while trona injection resulted in noticeable slag deposition.

  7. Alkali salt ash formation during black liquor combustion at kraft recovery boilers

    SciTech Connect (OSTI)

    Mikkanen, P. Kauppinen, E.I.; Pyykoenen, J.; Jokiniemi, J.K. [VTT (Finland); Maekinen, M. [Finnish Meterological Inst., Helsinki (Finland)

    1996-12-31T23:59:59.000Z

    Recovery boiler is an essential part of paper pulping process, where waste sludge called black liquor is burned for chemical recovery and energy production. This study was carried out at an operating industrial recovery boiler in Finland. Measurement of aerosol particles was carried out at bullnose level of furnace, at boiler exit, and at outlet of electrostatic precipitator (ESP). Aerosol mass size distributions in size range 0.02--50 {micro}m were measured with Berner type low pressure impactor (BLPI) operated with precyclone. BLPI samples were further analyzed with ion chromatography for water soluble Na, K, SO{sub 4}, and Cl. Particle morphology was studied with scanning electron microscopy (SEM). Phase composition of crystalline salts was measured with X-ray diffraction (XRD). Particles larger than 1 {micro}m were analyzed with computer controlled scanning electron microscopy (CCSEM) to derive particle composition classes. At ESP inlet mass size distribution was bimodal with a major mode at about 1.2 {micro}m and a minor mode at about 5 {micro}m (aerodynamic diameter). At ESP outlet the mass size distribution showed only one peak at about 1.2 {micro}m. Both submicron and supermicron particles were agglomerates formed from 0.3 to 0.5 {micro}m spherical primary particles. XRD analyses indicated that particles were crystalline with two phases of Na{sub 2}SO{sub 4} (thenardite and sodium sulphate) and K{sub 3}Na(SO{sub 4}){sub 2}. CCSEM results of individual particles larger than 1 {micro}m showed that 79 to 88 volume percent of particles contained mainly Na and S, 7 to 10 volume percent Na, K, and S with minor amount of particles containing Na, S, and Ca.

  8. Sodium reflux pool-boiler solar receiver on-sun test results

    SciTech Connect (OSTI)

    Andraka, C E; Moreno, J B; Diver, R B; Moss, T A [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1992-06-01T23:59:59.000Z

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  9. MANAGING OXIDE SCALE EXFOLIATION IN BOILERS WITH TP347H SUPERHEATER TUBES

    SciTech Connect (OSTI)

    Sabau, Adrian S [ORNL] [ORNL; Wright, Ian G. [WrightHT, Inc.] [WrightHT, Inc.; Shingledecker, John P. [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI); Tortorelli, Peter F [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    A model based on a concept of fraction of exfoliated area as a function of oxide scale strain energy was developed to predict the extent of exfoliation of steam-side scale from boiler tube superheater loops. As compared with the Armitt diagram, which can be used to predict when scale damage and exfoliation would be likely to occur, a fraction of exfoliated area approach provides an estimation of mass of scale released and the fraction of tube likely to be blocked by the exfoliation. This paper show results for the extent of blockage expected in a single bend of a superheater loop was predicted as a function of operating time, bend geometry, and outlet steam temperature under realistic service conditions that include outages. The deposits of exfoliated scale were assumed to be distributed horizontally the tubes bends. Three types of bends were considered: regular bends, short bends, and hairpin bends. The progressive increase in steam and tube temperatures along a single loop of superheater tubing and the ensuing variation of oxide scale thickness are considered. Numerical simulation results for a superheater loop made of TP347H austenitic steel indicated that tube blockage fractions larger than 50% are likely to occur within the first two years of boiler operation (with regularly scheduled outages) for outlet tube temperatures of 540-570oC, which is consistent with practical experience. Higher blockage fractions were predicted for tubes with short bends and hairpin bends than for tubes with regular bends, of length that are larger than five internal tube diameters. Finally, the blockage model presented can be used with some confidence to devise operating schedules for managing the consequences of oxide scale exfoliation based on projections of time to some critical blockage fraction for specific boiler operating conditions.

  10. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOE Patents [OSTI]

    Sheldon, Ray W. (Huntley, MT)

    2001-01-01T23:59:59.000Z

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  11. Maintaining Low Oxygen (O2) in Coal Fueled Utility Boilers Using CO Instrumentation

    E-Print Network [OSTI]

    Hopkins, D.; Downing, T.

    determination im practical. 2) The degree of stratification is increased by the reduction of excess O ? 2 3) The degree of stratification changes as some function of load. This is inferred by increased CO generation as load increases. (See Figure 3 below.... ) 1.3 12 0),-.. ~~ O~ ~~ 0 el ~ g 0.7 ..c: !C :.: 0.4 0 ..3 0.1 c c c D C COCa o Ca 0 C a aO ~ B a 8 aDO 0 ao D C O-+-----.-::.--=----=:.,----+---....---~--____1 -.5:) -10 10 Boiler Tilt Angle Degrees Fig. 4 CARBON MONOXIDE VS...

  12. Development of an advanced high efficiency coal combustor for boiler retrofit

    SciTech Connect (OSTI)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01T23:59:59.000Z

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  13. Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report

    SciTech Connect (OSTI)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01T23:59:59.000Z

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  14. Super low NO.sub.x, high efficiency, compact firetube boiler

    DOE Patents [OSTI]

    Chojnacki, Dennis A.; Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Korenberg, Jacob

    2005-12-06T23:59:59.000Z

    A firetube boiler furnace having two combustion sections and an in-line intermediate tubular heat transfer section between the two combustion sections and integral to the pressure vessel. This design provides a staged oxidant combustion apparatus with separate in-line combustion chambers for fuel-rich primary combustion and fuel-lean secondary combustion and sufficient cooling of the combustion products from the primary combustion such that when the secondary combustion oxidant is added in the secondary combustion stage, the NO.sub.x formation is less than 5 ppmv at 3% O.sub.2.

  15. Optimization of waste heat recovery boiler of a combined cycle power plant

    SciTech Connect (OSTI)

    Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

    1996-07-01T23:59:59.000Z

    This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

  16. File:Boiler permit packet s-20.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to: navigation, searchBanglmetst 221.pdf JumpBoiler

  17. Reach: A low cost-approach to reducing stack emissions and improving the performance of oil-fired boilers

    SciTech Connect (OSTI)

    Giovanni, D.V.; McElroy, M.W.; Kerho, S.E. [Electric Power Technologies, Inc., Menlo Park, CA (United States)

    1996-01-01T23:59:59.000Z

    Improved oil combustion technology, based upon optimization of oil atomizer and flame stabilizer design, has been retrofit to oil-fired boilers to reduce NO{sub x} emissions, particulate matter emissions, and opacity, and to provide operational and performance benefits. This technology, referred to as REACH, can be retrofit to wall-fired and tangential-fired boilers at a cost of less than $0.75/kW, a fraction of the cost of installing new burners. The technology is compatible with conventional NO{sub x} controls such as overfire air, flue gas recirculation, and low-NO{sub x} burners, and can be combined with these techniques to further reduce NO{sub x} emissions. REACH has been applied to eighty boilers representing over 14,000 MW of generating capacity. This paper describes REACH technology, its applicability and cost, and the emissions and performance results achieved in full scale applications.

  18. Firing microfine coal with a low NOx, RSFC burner in an industrial boiler designed for oil and gas

    SciTech Connect (OSTI)

    Thornhock, D.E.; Patel, R.; Borio, R.W. [Combustion Engineering, Inc., Windsor, CT (United States). ABB Power Plant Labs.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center

    1996-12-31T23:59:59.000Z

    ABB Power Plant Laboratories (ABB-PPL) working under a US Department of Energy-Pittsburgh Energy Technology Center (DOE-PETC) contract has carried out tests with the Radially Stratified Flame Core (RSFC) burner which was licensed from the Massachusetts Institute of Technology who developed and patented the RSFC burner. Tests were carried out in a small industrial boiler, designed for oil and natural gas, located at the Energy and Fuels Research Center of Penn State University who was working as a subcontractor to ABB-PPL. The paper presents results from the long-term testing task in the DOE-PETC program with particular attention being paid to the challenges faced in maintaining high combustion efficiencies while achieving low NOx in a small industrial boiler designed for firing oil or natural gas. The paper will also address the issue of ash management when firing coal in a boiler designed for fuels having essentially no ash.

  19. Local government citizen academies : is knowledge power?

    E-Print Network [OSTI]

    Marcus, Adam Scott

    2007-01-01T23:59:59.000Z

    Government decision-makers and especially urban planners increasingly face difficulties engaging citizens given trends of public apathy, cynicism towards government, language and cultural barriers, and the growing complexity ...

  20. GOVERNANCE DOCUMENTS BOWLING GREEN STATE UNIVERSITY

    E-Print Network [OSTI]

    Moore, Paul A.

    GOVERNANCE DOCUMENTS BOWLING GREEN STATE UNIVERSITY BOWLING GREEN, OH 43403 Governance Document I...........................................................................................I THE UNIVERSITY COMMUNITY............................................................................II Membership........................................................................................II.G THE PRESIDENT OF THE UNIVERSITY.................................................................III Presidential

  1. Corporate governance : the case for Asian REITs

    E-Print Network [OSTI]

    Tan, Denise, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    At the entity level, the design of sound corporate governance mechanisms is critical for REITs that are preparing to go public. At the industry level, issues of transparency and corporate governance are consequential to ...

  2. Conditional tests of corporate governance theories

    E-Print Network [OSTI]

    Chi, Jianxin

    2005-08-29T23:59:59.000Z

    Agency theories suggest that governance matters more when agency conflicts are potentially more severe. However, empirical studies often do not control for the potential severity of agency conflicts. I show that the marginal benefit of governance...

  3. Policies of different governments : persistence and interactions

    E-Print Network [OSTI]

    Ricka, Frantisek

    2008-01-01T23:59:59.000Z

    This dissertation consists of three chapters on persistence and interactions of policies of different governments in various settings. Chapter 1 studies government policy persistence when firms face capital installation ...

  4. Performance Contracting and Energy Efficiency in the State Government Market

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Goldman, Charles; Gilligan, Donald; Singer, Terry E.; Birr, David; Donahue, Patricia; Serota, Scott

    2008-11-14T23:59:59.000Z

    There is growing interest in energy efficiency (EE) among state policymakers as a result of increasing environmental concerns, rising electricity and natural gas prices, and lean economic times that motivate states to look more aggressively for cost-saving opportunities in public sector buildings. One logical place for state policymakers to demonstrate their commitment to energy efficiency is to 'lead by example' by developing and implementing strategies to reduce the energy consumption of state government facilities through investments in energy efficient technologies. Traditionally, energy efficiency improvements at state government facilities are viewed as a subset in the general category of building maintenance and construction. These projects are typically funded through direct appropriations. However, energy efficiency projects are often delayed or reduced in scope whereby not all cost-effective measures are implemented because many states have tight capital budgets. Energy Savings Performance Contracting (ESPC) offers a potentially useful strategy for state program and facility managers to proactively finance and develop energy efficiency projects. In an ESPC project, Energy Service Companies (ESCOs) typically guarantee that the energy and cost savings produced by the project will equal or exceed all costs associated with implementing the project over the term of the contract. ESCOs typically provide turnkey design, installation, and maintenance services and also help arrange project financing. Between 1990 and 2006, U.S. ESCOs reported market activity of {approx}$28 Billion, with about {approx}75-80% of that activity concentrated in the institutional markets (K-12 schools, colleges/universities, state/local/federal government and hospitals). In this study, we review the magnitude of energy efficiency investment in state facilities and identify 'best practices' while employing performance contracting in the state government sector. The state government market is defined to include state offices, state universities, correctional facilities, and other state facilities. This study is part of a series of reports prepared by Lawrence Berkeley National Laboratory (LBNL) and the National Association of Energy Services Companies (NAESCO) on the ESCO market and industry trends. The scope of previous reports was much broader: Goldman et al. (2002) analyzed ESCO project costs and savings in public and private sector facilities, Hopper et al. (2005) focused on ESCO project activity in all public and institutional sectors, while Hopper et al (2007) provided aggregate results of a comprehensive survey of ESCOs on current industry activity and future prospects. We decided to focus the current study on ESCO and energy efficiency activity and potential market barriers in the state government market because previous studies suggested that this institutional sector has significant remaining energy efficiency opportunities. Moreover, ESCO activity in the state government market has lagged behind other institutional markets (e.g., K-12 schools, local governments, and the federal market). Our primary objectives were as follows: (1) Assess existing state agency energy information and data sources that could be utilized to develop performance metrics to assess progress among ESPC programs in states; (2) Conduct a comparative review of the performance of selected state ESPC programs in reducing energy usage and costs in state government buildings; and (3) Delineate the extent to which state government sector facilities are implementing energy efficiency projects apart from ESPC programs using other strategies (e.g. utility ratepayer-funded energy efficiency programs, loan funds).

  5. RCRA, superfund and EPCRA hotline training module. Introduction to: Boilers and industrial furnaces (40 cfr part 266, subpart h) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module summarizes the regulations affecting hazardous waste processes in boilers and industrial furnaces (BIFs). If defines boilers and industrial furnaces and describes the criteria associated with the definitions. It describes the requirements for processing hazardous waste in BIFs, including the distinctions between permitted and interim status units. It explains the requirements for the specially regulated BIFs and gives examples of each.

  6. Post-Graduate Government Job Search

    E-Print Network [OSTI]

    Kammen, Daniel M.

    at Federal Government Agencies is over 10 years. #12;25 Federal Agencies Who Hire Entry-Level Attorneys CIA

  7. Advances of flue gas desulfurization technology for coal-fired boilers and strategies for sulfur dioxide pollution prevention in China

    SciTech Connect (OSTI)

    Yang, C.; Zeng, G.; Li, G.; Qiu, J.

    1999-07-01T23:59:59.000Z

    Coal is one of the most important kinds of energy resources at the present time and in the immediate future in China. Sulfur dioxide resulting from combustion of coal is one of the principle pollutants in the air. Control of SO{sub 2} discharge is still a major challenge for environmental protection in developing China. In this paper, research, development and application of technology of flue gas desulfurization (FGD) for coal-fired boilers in China will be reviewed with emphasis on cost-effective technology, and the development trends of FGD technology, as well as the strategy for SO{sub 2} discharge control in China, will be analyzed. A practical technology for middle-small-sized boilers developed by the primary author and the field investigation results will also be presented. At present, there are four major kinds of FGD technologies that are practical to be applied in China for their cost-effectiveness and efficiency to middle-small-sized boilers. An important development trend of the FGD technology for middle-small-sized boilers for the next decade is improvement of the existing cost-effective wet-type FGD technology, and in the future it will be the development of dry-type FGD technology. For middle-sized generating boilers, the development direction of the FGD technology is the spraying and drying process. For large-sized generating boilers, the wet-type limestone-plaster process will still be applied in the immediate future, and dry-type FGD technologies, such as ammonia with electron beam irradiation, will be developed in the future. State strategies for the control of SO{sub 2} discharge will involve the development and popularization of efficient coal-fired devices, extension of gas coal and liquefied coal, spreading coal washing, and centralized heating systems.

  8. Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-02-28T23:59:59.000Z

    The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.

  9. Open Government Plan Self Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartmentEnergy General Law (GC-56)The U.S.Department ofGovernment

  10. SHAPE YOUR FUTURE For six decades, Carleton University's School

    E-Print Network [OSTI]

    Dawson, Jeff W.

    IMMIGRATION DEMOGRAPHICS ENERGY EVALUATION TRADE #12;School of Public Policy and Administration 5224 RiverSHAPE YOUR FUTURE For six decades, Carleton University's School of Public Policy and Administration and administration -- examining what governments do, why, and how they could do it better. Our two major graduate

  11. A. Kusiak and A. Burns, Mining Temporal Data: A Coal-Fired Boiler Case Study, Proceedings of International Conference, KES 2005, Melbourne, Australia, September 14-16, 2005, in R.

    E-Print Network [OSTI]

    Kusiak, Andrew

    A. Kusiak and A. Burns, Mining Temporal Data: A Coal-Fired Boiler Case Study, Proceedings of the 9 3683, Springer, Heidelberg, Germany, 2005, pp. 953-958. Mining Temporal Data: A Coal-Fired Boiler Case. This paper presents an approach to control pluggage of a coal-fired boiler. The proposed approach involves

  12. Dynamic simulation of a circulating fluidized bed boiler of low circulating ratio with wide particle size distributions

    SciTech Connect (OSTI)

    Lu Huilin; Yang Lidan; Bie Rushan; Zhao Guangbo

    1999-07-01T23:59:59.000Z

    A steady state model of a coal fired CFB boiler considering the hydrodynamics, heat transfer and combustion is presented. This model predicts the flue gas temperature, the chemical gas species (O{sub 2}, H{sub 2}O, CO, CO{sub 2} and SO{sub 2}) and char concentration distributions in both the axial and radial location along the furnace including the bottom and upper portion. The model was validated against experimental data generated in a 35 t/h commercial CFB boiler with low circulating ratio.

  13. ADVANCED OXYFUEL BOILERS AND PROCESS HEATERS FOR COST EFFECTIVE CO{sub 2} CAPTURE AND SEQUESTRATION

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; G. Maxwell Christie

    2003-07-01T23:59:59.000Z

    This annual technical progress report summarizes the work accomplished during the first year of the program, January-December 2002, in the following task areas: Task 1--Conceptual Design, Task 2--Laboratory Scale Evaluations, Task 3--OTM Development, Task 4--Economic Evaluation and Commercialization Planning and Task 5--Program Management. The program has experienced significant delays due to several factors. The budget has also been significantly under spent. Based on recent technical successes significant future progress is expected. A number of concepts for integrating Oxygen Transport Membranes (OTMs) into boilers and process heaters to facilitate oxy-fuel combustion have been proposed. A detailed modeling plan has been proposed and early modeling work has focused on developing spreadsheet based models for quick engineering calculations. Combustion reactor laboratory scale evaluations efforts have been delayed due to the closing of Praxair's Tarrytown facility in December 2001. Experimental facilities and personnel have been relocated to Praxair's facility in Tonawanda. The facilities have recently been re-commissioned. Work with the OTM development task has also been delayed as early material selections were discarded. More recently, more promising OTM material compositions have been identified. Economic evaluation commenced. Information was acquired that quantified the attractiveness of the advanced oxygen-fired boiler. CO{sub 2} capture and compression are still estimated to be much less than $10/ton carbon.

  14. ADVANCED OXYFUEL BOILERS AND PROCESS HEATERS FOR COST EFFECTIVE CO2 CAPTURE AND SEQUESTRATION

    SciTech Connect (OSTI)

    John Sirman; Leonard Switzer; Bart van Hassel

    2004-06-01T23:59:59.000Z

    This annual technical progress report summarizes the work accomplished during the second year of the program, January-December 2003, in the following task areas: Task 1--Conceptual Design, Task 2--Laboratory Scale Evaluations, Task 3--OTM Development, Task 4--Economic Evaluation and Commercialization Planning and Task 5--Program Management. The program has experienced significant delays due to several factors. The budget has also been significantly under spent. Based on recent technical successes and confirmation of process economics, significant future progress is expected. Concepts for integrating Oxygen Transport Membranes (OTMs) into boilers and process heaters to facilitate oxy-fuel combustion have been investigated. OTM reactor combustion testing was delayed to insufficient reliability of the earlier OTM materials. Substantial improvements to reliability have been identified and testing will recommence early in 2004. Promising OTM material compositions and OTM architectures have been identified that improve the reliability of the ceramic elements. Economic evaluation continued. Information was acquired that quantified the attractiveness of the advanced oxygen-fired boiler. CO{sub 2} capture and compression are still estimated to be much less than $10/ton CO{sub 2}.

  15. Tests of combustion promoter use to improve emissions performance of oil-fired utility boilers

    SciTech Connect (OSTI)

    Cortes, V.J.; Salvador, L.A.; Sanchez, E.J. [Univ. of Seville (Spain)] [and others

    1995-09-01T23:59:59.000Z

    An extensive full-scale program has been undertaken to evaluate primary and secondary effects of a commercial combustion promoter on emissions from two oil-fired utility boilers. Results presented at the EPRI`s 1990 Fuel Oil Utilization Workshop detailed the first set of trials on a 533 MW unit burning a 2.5% sulfur residual fuel oil. This contribution describes and analyzes the experimental results obtained in this same boiler with a higher grade oil (1.7% sulfur). Data from a different unit (313 MW) using the same promoter are also included, and expected emissions with 1.0 sulfur fuel oil are justified. A distinct reduction of particulate emissions and opacity is measured. After 10,000 hours, unburnt carbon concentrations are in the practical detection limit of approved methods for stack sampling and analysis. Insensitivity of carbon emissions to excess oxygen is also found. Secondary effects are higher SO{sub 3} and NO{sub x} concentrations. SO{sub 3} can be easily controlled by MgO injection at low and precise rates, while NO{sub x} increase can be adjusted to a minimum by the reduced excess oxygen operation allowed by the promoter. The promoter offers an interesting route to counteract the incomplete combustion derived from low-NO{sub x} soft- and hardware. Predicted effects on the existing ESP indicates a number of positive interactions to be confirmed experimentally.

  16. Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler

    SciTech Connect (OSTI)

    Not Available

    1992-01-15T23:59:59.000Z

    Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

  17. Coal Reburning for Cyclone Boiler NO[sub x] Control Demonstration

    SciTech Connect (OSTI)

    Not Available

    1992-12-18T23:59:59.000Z

    The Coal Reburning for Cyclone Boiler NO[sub x], Control Demonstration project progress for July, August, and September 1992 is identified in this tenth quarterly report and pertains to the on-going activities of Phase III Operation and Disposition. The project involves retrofitting/testing the reburning technology at Wisconsin Power Light's 100 MWe Nelson Dewey Unit [number sign]2 in Cassville, Wisconsin to determine the commercial applicability of this technology to reduce NO[sub x] emission levels. Phase III activities emphasized continuation of long-term testing. WP L is operating the reburn system in full automatic in a load following mode, using Lamar coal, which is an Indiana bituminous medium sulfur content fuel. Reductions in NO[sub x] emissions continue at the 50%+ level with no apparent significant adverse impacts to boiler operation. As of the end of September, a second set of performance tests were initiated to determine if any performance impacts as a result of long-term operation have occurred. Data evaluation continued in an effort to design a testing sequence to more precisely evaluate reburn impact on unburned carbon. These tests will be carried out during the second set of performance tests in early October. Performance and mathematical modeling are being carried out to understand the cause of the reduction in furnace exit gas temperature observed during reburn testing on Lamar coal and to predict whether the same phenomenon will occur on future units where reburn technology is being considered.

  18. Split stream boilers for high-temperature/high-pressure topping steam turbine combined cycles

    SciTech Connect (OSTI)

    Rice, I.G. [Rice (I.G.), Spring, TX (United States)

    1997-04-01T23:59:59.000Z

    Research and development work on high-temperature and high-pressure (up to 1,500 F TIT and 4,500 psia) topping steam turbines and associated steam generators for steam power plants as well as combined cycle plants is being carried forward by DOE, EPRI, and independent companies. Aeroderivative gas turbines and heavy-duty gas turbines both will require exhaust gas supplementary firing to achieve high throttle temperatures. This paper presents an analysis and examples of a split stream boiler arrangement for high-temperature and high-pressure topping steam turbine combined cycles. A portion of the gas turbine exhaust flow is run in parallel with a conventional heat recovery steam generator (HRSG). This side stream is supplementary fired opposed to the current practice of full exhaust flow firing. Chemical fuel gas recuperation can be incorporated in the side stream as an option. A significant combined cycle efficiency gain of 2 to 4 percentage points can be realized using this split stream approach. Calculations and graphs show how the DOE goal of 60 percent combined cycle efficiency burning natural gas fuel can be exceeded. The boiler concept is equally applicable to the integrated coal gas fuel combined cycle (IGCC).

  19. Role of Ash Deposits in the High Temperature Corrosion of Boiler Tubes

    SciTech Connect (OSTI)

    Covino, B.S., Jr.; Russell, J.H.; Cramer, S.D.; Holcomb, G.R.; Bullard, S.J.; Ziomek-Moroz, M.; Matthes, S.A.; White, M.L.

    2003-03-16T23:59:59.000Z

    Ash deposits cause accelerated corrosion of waterwall boiler tubes in waste to energy (WTE) incinerators. To study this effect, a series of experiments were planned to determine the mechanism of corrosion of carbon steel boiler tubes under ash deposits. Results reported here were for carbon steel tubes exposed to an environment consisting of O{sub 2}, CO{sub 2}, N{sub 2}, and water vapor. Future experiments will include HCl and SO{sub 2}. Test procedures included both isothermal and thermal gradient tests. Temperatures ranged from 300 C to 510 C for the isothermal tests and a metal/gas temperature of 450/670 C for the thermal gradient test. Initial results indicated that increasing temperature caused the isothermal corrosion rates of ash-covered samples to increase. A shakedown test of a thermal gradient test apparatus was conducted at a metal/gas temperature of 450/670 C, a more severe environment than normally encountered in WTE waterwalls. Results showed that the corrosion rate under those conditions exceeds the isothermal corrosion rates at the same metal temperature by a factor of 2 or more.

  20. Investigation of Fly Ash and Activated Carbon Obtained from Pulverized Coal Boilers

    SciTech Connect (OSTI)

    Edward K. Levy; Christopher Kiely; Zheng Yao

    2006-08-31T23:59:59.000Z

    One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addressed the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addressed the possible connection between SCR reactors, fly ash properties and Hg capture. The project has determined the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed have also been determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control have been analyzed in an effort to determine the effects of SCR on the ash.

  1. Wood Pellet-Fired Biomass Boiler Project at the Ketchikan Federal Building

    SciTech Connect (OSTI)

    Tomberlin, G.

    2014-06-01T23:59:59.000Z

    Biomass boiler systems have existed for many years, but the technology has advanced in recent decades and can now provide automated and efficient operation for a relatively modest investment. Key advances in system monitoring and control allow for lower operating costs, since the control systems run all aspects of the boiler, including feed, load reduction and even tube cleaning. These advances have made such systems economical on a small scale in situations where inexpensive fuels like natural gas are not available. This creates an opportunity for building operators in remote, cold-climate locations to reduce the use of expensive fuels for heating buildings. GSA Region 10 installed the system at the federal building in Ketchikan, Alaska and submitted the project to the Green Proving Ground (GPG) program. GSA's GPG program contracted with the National Renewable Energy Laboratory (NREL) to assess the installation and the technology. The system serves as a demonstration to assess actual system efficiencies, as well as operating characteristics and financial benefits. In addition to installation and operational issues, the project team/researchers examined other issues, including fuel transportation costs, building energy savings, and overall economics.

  2. Measure Guideline: Condensing Boilers - Optimizing Efficiency and Response Time During Setback Operation

    SciTech Connect (OSTI)

    Arena, L.

    2014-02-01T23:59:59.000Z

    Conventional wisdom surrounding space heating has told us a couple of things consistently for several years now: size the mechanical systems to the heating loads and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. The implication of this is that, for setback to be successfully implemented, the heating system must be oversized. This issue is exacerbated further when an outdoor reset control is used with a condensing boiler, because not only is the system matched to the load at design, the outdoor reset control matches the output to the load under varying outdoor temperatures. Under these circumstances, the home may never recover from setback. Special controls to bypass the outdoor reset sensor are then needed. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. Determining the appropriateness of setback for a particular project is the first step. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step by step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

  3. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  4. Interest Rate Swap Policy Approved by the Colorado School of Mines Board of Trustees,

    E-Print Network [OSTI]

    forth a policy governing the use by the School of interest rate swap transactions for the purpose or planned debt. By using swaps in a prudent manner, the School can take advantage of market opportunities instruments, and the School shall not enter into swap transactions for speculative purposes. This policy shall

  5. The Greening of Government: A Study of How Governments Define the Green Agenda

    E-Print Network [OSTI]

    The Greening of Government: A Study of How Governments Define the Green Agenda Executive Summary Institute for Electronic Government, IBM Corporation Page 2 This page is intentionally blank. In the green Corporation Page 3 Foreword What are governments doing to `green' themselves? How do they define their green

  6. School School 1 Abraham Lincoln Elementary School 34 Madera Middle school

    E-Print Network [OSTI]

    Chen, Wei

    School School 1 Abraham Lincoln Elementary School 34 Madera Middle school 2 Alcott High School 35 Mahalia Jackson Elementary 3 Amundsen High School 36 Michelle Clark 4 ASPIRA Early College 37 Morgan Park High School 5 Benito Juarez High School 38 Muchin college Prep 6 Brentano Academy 39 Nash Elementary

  7. School of Architecture College of Architecture

    E-Print Network [OSTI]

    1 School of Architecture College of Architecture Georgia Institute of Technology Ph.D. WITH A MAJOR and practitioners to systematically inquire about the principles that govern the design of humane, sustainable-product technologies, including intelligent building performance monitors and control systems and enabling technologies

  8. The Graduate School PA Public Administration

    E-Print Network [OSTI]

    MacAdam, Keith

    The Graduate School PA Public Administration KEY: # = new course * = course changed = course an overview of information strategies and management approaches to government functions and public policy, and training in the health care sector. Prereq: MHA program status. PA 631 PUBLIC FINANCIAL MANAGEMENT. (3

  9. 1 School of Nursing SCHOOL OF NURSING

    E-Print Network [OSTI]

    Vertes, Akos

    1 School of Nursing SCHOOL OF NURSING Dean J. Johnson Interim Senior Associate Dean M.J. Schumann of the School of Medicine and Health Sciences established in 1825, The George Washington University School of Nursing (SON) was established in May 2010 as GW's tenth school. The School of Nursing develops nursing

  10. Essays on School Choice and the Returns to School Quality

    E-Print Network [OSTI]

    Ajayi, Kehinde Funmilola

    2011-01-01T23:59:59.000Z

    School Choice Model . . . . . . . . . . . . . .Preferences for SchoolHistory of School Choice Reforms in Ghana . . . . . . . . .

  11. Culture, Law, and Finance: Cultural Dimensions of Corporate Governance Laws

    E-Print Network [OSTI]

    Licht, Amir N.; Goldschmidt, Chanan; Schwartz, Shalom H.

    2001-01-01T23:59:59.000Z

    Protection and Corporate Governance, 58 J. Fin. Econ.the legal approach to corporate governance by presenting newlegal rules of corporate governance. 5 The need to take

  12. Corporate Governance, State-Contingent Control Rights, and Financial Distress

    E-Print Network [OSTI]

    Rasmussen, Robert K.

    2004-01-01T23:59:59.000Z

    20-6:00 pm, Boalt 13 Corporate Governance, State-ContingentRobert K. Rasmussen Corporate Governance, State-ContingentTraditional accounts of corporate governance focus on how

  13. Corruption, Firm Governance, and the Cost of Capital

    E-Print Network [OSTI]

    Garmaise, Mark J; Liu, Jun

    2005-01-01T23:59:59.000Z

    David F. Larcker, Corporate governance, chief ex- ecutiveof the world. Ine?ective corporate governance combined withof the world. Weak corporate governance therefore destroys ?

  14. U.S. Style Corporate Governance in Korea's Largest Companies

    E-Print Network [OSTI]

    Ehrlich, Craig; Kang, Dae-Seob

    2000-01-01T23:59:59.000Z

    E.g. , D. Gordon Smith, Corporate Governance and ManagerialPrinciples of Corporate Governance, http://www.oecd.orgdaf/Bank/OECD Global Corporate Governance Forum, Washington

  15. How Big a Problem is U.S. Corporate Governance?

    E-Print Network [OSTI]

    Kaplan, Steve

    2007-01-01T23:59:59.000Z

    suggests that poor corporate governance or managerial powertheories argue that corporate governance deteriorated in thestealing CEOs or poor corporate governance cannot possibly

  16. Choice as Regulatory Reform: The Case of Japanese Corporate Governance

    E-Print Network [OSTI]

    Milhaupt, Curtis

    2004-01-01T23:59:59.000Z

    Globalization of Corporate Governance: Convergence of Formthe idea that U.S. corporate governance was a model for AsiaWoochan Kim, Does Corporate Governance Predict Firms Market

  17. State Government Websites With Indian Tribe Information | Department...

    Broader source: Energy.gov (indexed) [DOE]

    State Government Websites With Indian Tribe Information State Government Websites With Indian Tribe Information This list was compiled by the federal government's Interagency...

  18. MOLTEN SALT CORROSION OF SUPERHEATERS IN BLACK LIQUOR RECOVERY BOILERS John Bohling, University of Tennessee Georgia Tech SURF 2010 Fellow

    E-Print Network [OSTI]

    Li, Mo

    MOLTEN SALT CORROSION OF SUPERHEATERS IN BLACK LIQUOR RECOVERY BOILERS John Bohling, University If the temperature is above the first melting point of the scale, severe corrosion of the tubes can result temperatures, reducing efficiency. The corrosive nature of the superheater environment arises primarily from

  19. Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system

    SciTech Connect (OSTI)

    Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 Hubei (China)

    2011-02-15T23:59:59.000Z

    This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

  20. Common Excess Air Trends in Industrial Boilers with Single-Point Positioning Control and Strategies to Optimize Efficiency

    E-Print Network [OSTI]

    Kissock, Kelly

    Common Excess Air Trends in Industrial Boilers with Single-Point Positioning Control and Strategies mechanically linking the fuel valve and combustion air damper. To match combustion air flow with fuel input, inlet dampers are typically calibrated at high fire. At part-load, combustion air generally decreases

  1. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 2 (Appendices I, section 5 and II, section 1)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 2 contains the last section of Appendix I, Radiative heat transfer in kraft recovery boilers, and the first section of Appendix II, The effect of temperature and residence time on the distribution of carbon, sulfur, and nitrogen between gaseous and condensed phase products from low temperature pyrolysis of kraft black liquor.

  2. National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation

    E-Print Network [OSTI]

    Kissock, Kelly

    energy savings from switching to modulation control mode and reducing excess air in natural gas firedNational Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify

  3. Dover Textiles - A Case History on Retrofitting Factories with a Boiler System Fueled on Coal, Wood and Waste

    E-Print Network [OSTI]

    Pincelli, R. D.

    1981-01-01T23:59:59.000Z

    The shortage of affordable gas and oil boiler fuels and the recent Iran/Iraq war underscores the urgent need for the American industrial system to convert to domestically controlled fuels and particularly coal, wood, and waste. More talk than action...

  4. To be published in Waste Management (2010) Bodnan et al. MINERALOGY AND PORE WATER CHEMISTRY OF A BOILER ASH

    E-Print Network [OSTI]

    Boyer, Edmond

    2010-01-01T23:59:59.000Z

    To be published in Waste Management (2010) Bodnan et al. MINERALOGY AND PORE WATER CHEMISTRY presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from and interaction between Cr(VI) and Al0 are interpreted on the basis of mineralogical evolutions observed over

  5. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  6. Superclean coal-water slurry combustion testing in an oil-fired boiler. Quarterly technical progress report, November 15, 1989--February 15, 1990

    SciTech Connect (OSTI)

    Miller, B.G.; Walsh, P.M.; Elston, J.T.; Scaroni, A.W.

    1990-04-06T23:59:59.000Z

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the US Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) operations and disposition. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, slagging and fouling factors, erosion and corrosion limits, and fuel transport, storage, and handling can be accommodated in an oil-designed boiler. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress for this quarter is summarized.

  7. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21T23:59:59.000Z

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  8. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    SciTech Connect (OSTI)

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30T23:59:59.000Z

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of the boiler. When combined with SNCR, a NO{sub x} emission rate of 0.12-0.14 lb/MBtu can be expected when implementing a full ALTA system on this unit. Cost effectiveness of the full ALTA system was estimated at $2,152/ton NO{sub x} removed; this was less than 75% of the cost estimated for an SCR system on a unit of this size.

  9. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    SciTech Connect (OSTI)

    Oland, CB

    2004-08-19T23:59:59.000Z

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

  10. CONTINUED DEVELOPMENT OF THE ROTARY COMBUSTOR FOR REFIRING PULVERIZED COAL BOILERS

    SciTech Connect (OSTI)

    Murray F. Abbott; Jamal B. Mereb; Simon P. Hanson; Michael J. Virr

    2000-11-01T23:59:59.000Z

    The Rotary Combustor is a novel concept for burning coal with low SO{sub 2} and NO{sub x} emissions. It burns crushed coal in a fluid bed where the bed is maintained in a rotating drum by centripetal force. Since this force may be varied, the combustor may be very compact, and thus be a direct replacement for a p.c. burner on existing boilers. The primary objective of this project is to demonstrate that a typical industrial boiler can be refired with the modified prototype Rotary Combustor to burn Ohio high-sulfur coal with low emissions of SO{sub 2} and NO{sub x}. The primary problem that must be resolved to demonstrate sustained operations with coal is temperature control in the rotating fluid bed. The prototype Rotary Combustor was assembled and installed on the T-850P CNB boiler at the CONSOL Energy site in South Park, Pennsylvania. Several design improvements were investigated and implemented during the assembly to improve the prototype Rotary Combustor operations compared to prior tests at Detroit Stoker in Monroe, Michigan. An Operating Manual and Safety Review were completed. The shakedown test phase was initiated. Two major problems were initially encountered: binding of the rotating drum at operating temperatures, and reduced fluid-bed pressure drop after short periods of operation. Plating the brush seal rotary land ring with a chrome carbide plasma spray and lubricating the seal prior to each test sufficiently resolved these problems to permit a limited number of operations tests. Unlike previous tests at Detroit Stoker, sustained operation of the prototype Rotary Combustor was accomplished burning a high-Btu fuel, metallurgical coke. The prototype Rotary Combustor was operated with coke in gasifier mode on two occasions. Fluid-bed temperature spiking was minimized with manual control of the feeds (coke, air and steam), and no clinker formation problems were encountered in either test. Emission levels of NO{sub x} were measured at about 270 ppmv which were higher those targeted for the device which were 100 ppmv. This was assumed to be because of the aforementioned temperature spiking. The primary operating problem remains control of the fluid-bed temperature. Although improvements were made, steam flow control was manual, and very coarse. To accomplish this will require finer control of the steam flow to the rotary drum air plenum, and development of an algorithm for automatic control using the Moore APACS{trademark}. This is the recommended succeeding step in the development of the Rotary Combustor for industrial or utility use.

  11. HYDRONIC BASEBOARD THERMAL DISTRIBUTION SYSTEM WITH OUTDOOR RESET CONTROL TO ENABLE THE USE OF A CONDENSING BOILER.

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    2004-10-01T23:59:59.000Z

    Use of condensing boilers in residential heating systems offers the potential for significant improvements in efficiency. For these to operate in a condensing mode the return water temperature needs to be about 10 degrees below the saturation temperature for the flue gas water vapor. This saturation temperature depends on fuel type and excess air and ranges from about 110 F to 135 F. Conventional baseboard hydronic distribution systems are most common and these are designed for water temperatures in the 180 F range, well above the saturation temperature. Operating strategies which may allow these systems to operate in a condensing mode have been considered in the past. In this study an approach to achieving this for a significant part of the heating season has been tested in an instrumented home. The approach involves use of an outdoor reset control which reduces the temperature of the water circulating in the hydronic loop when the outdoor temperature is higher than the design point for the region. Results showed that this strategy allows the boiler to operate in the condensing region for 80% of the winter heating season with oil, 90% with propane, and 95% with gas, based on cumulative degree days. The heating system as tested combines space heating and domestic hot water loads using an indirect, 40 gallon tank with an internal heat exchanger. Tests conducted during the summer months showed that the return water temperature from the domestic hot water tank heat exchanger is always below a temperature which will provide condensing operation of the boiler. In the field tests both the condensing boiler and the conventional, non-condensing boiler were in the test home and each was operated periodically to provide a direct performance comparison.

  12. Limited Energy Engineering Analysis (EEAP) study of summer boiler at high temperature hot water plants, Fort Leonard Wood, Missouri. Final report

    SciTech Connect (OSTI)

    NONE

    1993-09-02T23:59:59.000Z

    This report is a study of the existing High Temperature Hot Water Distribution Systems at Fort Leonard Wood, Missouri. There are two systems with central boilers located in Buildings 1021 and 2369. The study focuses on the operation of the boilers during the summer months which is required to provide domestic hot water and sanitizing steam to various buildings. Because the boilers are operating under a reduced load condition, it may be cost effective in terms of energy conservation to implement one of the following energy conservation opportunities (ECO`s).

  13. United States Government National Nuclear Security Administration...

    Broader source: Energy.gov (indexed) [DOE]

    United States Government National Nuclear Security Administration (NNSA) Savannah River Field Office (SRFO) Memorandum DATE: January 10, 2014 REPLY TO ATTN OF: sv (McAlhany,...

  14. Requirements Governing Water Quality Standards (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes the requirements governing the discharge or deposit of sewage, industrial wastes and other wastes into waters and establishes water quality standards.

  15. The electoral origins of governing coalitions

    E-Print Network [OSTI]

    Carroll, Royce Alexander

    2007-01-01T23:59:59.000Z

    following election of 2003, cooperative patterns continued.election alliance is the explicit public commitment to enter government together. When parties indicate a cooperative

  16. Government`s response to the competitiveness problem

    SciTech Connect (OSTI)

    Gover, J.; Huray, P.; Carayannis, E.

    1997-11-01T23:59:59.000Z

    This paper presents an analysis of how the US government responded to the concern in the 1980`s that US companies were experiencing problems of competitiveness in international markets. By the mid 1980`s there was great and growing concern throughout the US that US companies were experiencing difficulties in international competition. Pressure on Congress to take action came from constituents seeking jobs and companies that would directly benefit (this usually means receive public money) from programs that Congress might initiate. The fact that most constituent calls to Congress were about job creation was lost in the on-rush of R&D performers seeking funds for their favorite R&D project. In response, Congress created the Advanced Technology Program, the Technology Transfer Initiative, and the Technology Reinvestment Project, expanded the responsibilities of ARPA/DARPA, increased funding for the Small Business Initiative, expanded the Manufacturing Extension Partnership, funded SEMATECH, and increased NSF funding for basic research at universities. Many of these programs were later criticized for being industrial welfare and several were cut-back or stopped. Retrospective analysis shows that few of these programs addressed the root cause of competitiveness difficulties. In fact, by the time most of these programs were in place, US companies were well on their way to correcting their competitiveness problems. In addition, few were relevant to companies` often expressed concerns about workforce training, regulatory costs, and access to foreign markets. Twenty percent reductions in health care costs, regulatory costs, and education costs could annually pump $500 billion into the US economy and make companies operating in the US much more competitive in international markets.

  17. Integrated process and apparatus for control of pollutants in coal-fired boilers

    DOE Patents [OSTI]

    Hunt, T.G.; Offen, G.R.

    1992-11-24T23:59:59.000Z

    A method and apparatus are described for reducing SO[sub x] and NO[sub x] levels in flue gases generated by the combustion of coal in a boiler in which low NO[sub x] burners and air staging ports are utilized to inhibit the amount of NO[sub x] initially produced in the combustion of the coal. A selected concentration of urea is introduced downstream of the combustion zone after the temperature has been reduced to the range of 1300 F to 2000 F, and a sodium-based reagent is introduced into the flue gas stream after further reducing the temperature of the stream to the range of 200 F to 900 F. Under certain conditions, calcium injection may be employed along with humidification of the flue gas stream for selective reduction of the pollutants. 7 figs.

  18. Process to eliminate production of fly ash by wet bottom boilers

    SciTech Connect (OSTI)

    Breen, B.P.; Schrecengost, R.A.; Gabrielson, J.E.

    1991-09-03T23:59:59.000Z

    This patent describes a process for the reduction of fly ash in a wet bottom boiler of the type having a primary and secondary furnace. It comprises collecting the fly ash from one of an electrostatic precipitator, a bag house, a cyclone collector, a multi- cyclone collector, a gravity separator and a sharply curved duct; removing the fly ash in a stream of carrier gas into the furnace; adding a fuel to the stream of carrier gas and fly ash; introducing the carrier gas and fly ash and fuel into one of the primary and secondary furnaces, wherein the fuel and the heat from at least one of the surrounding gas and molten slag provide energy to melt the fly ash; and discharging the melted fly ash with slag from the furnace bottom.

  19. Method for evaluating the technical state of boilers and piping in thermal power plants

    SciTech Connect (OSTI)

    Grin', E. A. [JSC 'All-Russian Thermal Engineering Institute' (JSC 'VTI') (Russian Federation); Stepanov, V. V.; Sarkisyan, V. A.; Babkina, R. I. [JSC 'All-Russian Thermal Engineering Institute' (JSC 'VTI') (Russian Federation)

    2012-01-15T23:59:59.000Z

    An approach for evaluating the current technical state of thermal equipment in thermal power plants is discussed. A system of parameters and corresponding criteria are developed for the technical state of groups of essential components of boilers and piping. Ascale for evaluation of safety factors is proposed in terms of the relationship between state parameters and the corresponding criteria. Analytic expressions are given for an approximate evaluation of the maximum lifetime limit for operation of an object in terms of an integral safety factor and an evaluation of this type is illustrated for the case of the live steam pipeline in a 300-MW unit. An algorithm is set up for actions to be taken by equipment owners in organizing monitoring of the technical state of the equipment.

  20. Seminar on dissimilar welds in fossil-fired boilers: proceedings. [Often ferritic and austenitic steels

    SciTech Connect (OSTI)

    Viswanathan, R.; Roberts, D.A. (eds.)

    1985-07-01T23:59:59.000Z

    Failure of dissimilar metal welds (DMW) in superheater and reheater sections is a major cause of forced outage of boilers. Research and development has been in progress at several organizations throughout the world including a major project, RP 1874, sponsored by EPRI. As a result of these efforts the causes of DMW failures are now better known than before. Several viable remedies have been identified. The effects of plant operational variables on damage to the DMWs have been quantified. Methods for assessing the condition of DMWs in the field have been developed. A seminar was organized for the purpose of reviewing and consolidating all the information available relating to failure causes and remedies for the DMW failure problems. The proceedings from the seminar are presented in this report. The papers have been entered individually into EDB and ERA. (LTN)