National Library of Energy BETA

Sample records for government building insulation

  1. Basement Insulation Systems- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  2. Building America Expert Meeting: Interior Insulation Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extensive information was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks. It ...

  3. Exterior Rigid Insulation Best Practices - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exterior Rigid Insulation Best Practices - Building America Top Innovation Exterior Rigid Insulation Best Practices - Building America Top Innovation Effec guid-exterior rigid ...

  4. A New Generation of Building Insulation by Foaming Polymer Blend...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2 A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2 ISTN ...

  5. Building America Top Innovations 2012: Basement Insulation Systems

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  6. Building America Expert Meeting: Interior Insulation Retrofit of Mass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Masonry Wall Assemblies | Department of Energy Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies The Building Science Corporation team held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. Featured speakers included John Straube, Christopher Schumacher and Kohta Ueno of Building Science

  7. Building America Expert Meeting: Cladding Attachment Over Exterior Insulation

    Broader source: Energy.gov [DOE]

    This expert meeting was conducted by Building Science Corporation on July 28, 2012 and focused on issues surrounding cladding attachment and performance of walls with exterior insulating sheathing.

  8. Exterior Rigid Insulation Best Practices- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    Field and lab studies by Building America teams BSC, PHI, and Northern STAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.

  9. Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"

    U.S. Energy Information Administration (EIA) Indexed Site

    Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned

  10. Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned

  11. Thermal insulation for buildings. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (Contains 250 citations and includes a subject term index and title list.)

  12. Buildings Energy Data Book: 5.1 Building Materials/Insulation

    Buildings Energy Data Book [EERE]

    2 Industry Use Shares of Mineral Fiber (Glass/Wool) Insulation (1) 1997 1999 2001 2003 2004 2005 Insulating Buildings (2) Industrial, Equipment, and Appliance Insulation Unknown Total Note(s): 1) Based on value of shipments. 2) Including industrial. Source(s): DOC, Annual Survey of Manufacturers: Value of Product Shipments 2005, Nov. 2006, Table 1, p. 54 for 2003-2005; and DOC, 2001 Annual Survey of Manufacturers: Value of Product Shipments, Dec. 2002, p. 65 for 1997-2001. 100% 100% 100% 100%

  13. Cost-Optimized Attic Insulation Solution for Factory-Built Homes - Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Top Innovation | Department of Energy Optimized Attic Insulation Solution for Factory-Built Homes - Building America Top Innovation Cost-Optimized Attic Insulation Solution for Factory-Built Homes - Building America Top Innovation Increasing attic insulation in manufactured housing has been a significant challenge due to cost, production, and transportation constraints. This 2014 Top Innovation highlights research conducted by the Top Innov Manufact home attic insul -guy blowing

  14. ,"All Buildings","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Occupancy of Nongovernment-Owned and Government Owned Buildings, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"All Nongovern- ment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unoccupied","All Govern-ment- Owned Buildings","Federal","State","Local" "All

  15. Building America Technology Solutions for New and Existing Homes: Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  16. Building America Technology Solutions for New and Existing Homes: Excavationless: Exterior-Side Foundation Insulation for Existing Homes (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This project describes an innovative, minimally invasive building foundation insulation upgrade technique on an existing home that uses hydrovac excavation technology combined with a liquid insulating foam.

  17. Energy Efficiency Program for State Government Buildings

    Broader source: Energy.gov [DOE]

    The High-Performance Buildings Advisory Committee assisted the Finance and Administration Cabinet with setting out the standards and benchmarks by which to evaluate buildings. Leadership in Energ...

  18. Building Energy Asset Score: State and Local Governments | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy State and Local Governments Building Energy Asset Score: State and Local Governments The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based

  19. ,"All Buildings","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"All Nongovern- ment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unoccupied","All Govern-ment- Owned Buildings","Federal","State","Local" "All

  20. Building America Case Study: Innovative Retrofit Foundation Insulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The team evaluated a retroft insulation strategy that is designed for use with open-core ... The water-control layer and the insulation extend 1 ft below grade. The core fll is ...

  1. Government Buildings CHARTING YOUR JOURNEY REACHING MILESTONES

    Energy Savers [EERE]

    ... Motivated by growing public interest in sustainability, many government entities are taking the lead to green their facilities by incorporating energy and resource-efficient ...

  2. Santa Clara County- Green Building Policy for County Government Buildings

    Broader source: Energy.gov [DOE]

    In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009.

  3. A Protocol for Lifetime Energy and Environmental Impact Assessment of Building Insulation Materials

    SciTech Connect (OSTI)

    Shrestha, Som S; Biswas, Kaushik; Desjarlais, Andre Omer

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors, and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist that provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines.

  4. Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector Berkeley Lab's Gas-filled Insulation Rivals Fiber in Buildings Sector October 19, 2011 - 1:10pm Addthis An insulation worker installs argon-filled panels behind the radiators in the LEED Gold-rated New York Power Authority building in White Plains. The unique construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as

  5. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    SciTech Connect (OSTI)

    Shrestha, Som S. Biswas, Kaushik; Desjarlais, Andre O.

    2014-04-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined.

  6. Building America Case Study: Insulated Siding Retrofit in a Cold...

    Energy Savers [EERE]

    Projected energy cost savings: 170year Insulated siding has been available in the marketplace since 1997; both ASHRAE 90.1 and the International Energy Conservation Code qualify ...

  7. Thermal insulation for Buildings. September 1982-September 1988 (Citations from the COMPENDEX data base). Report for September 1982-September 1988

    SciTech Connect (OSTI)

    Not Available

    1988-10-01

    This bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (This updated bibliography contains 244 citations, 92 of which are new entries to the previous edition.)

  8. Technology Solutions for Existing Homes Case Study: Trade-Friendly Retrofit Insulated Panels for Existing Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    For this project with the U.S. Department of Energy Building America team Home Innovation Research Labs, the retrofit insulated panels relied on an enhanced expanded polystyrene (EPS) for thermal...

  9. A New Generation of Building Insulation by Foaming Polymer Blend Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with CO2 | Department of Energy A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2 A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2 ISTN extruded polystyrene (XPS) board produced in factory demonstration ISTN extruded polystyrene (XPS) board produced in factory demonstration Lead Performer: Industrial Science & Technology Network - Lancaster, PA DOE Funding: $400,000 Cost Share: $80,000 Project Term: 1/1/2014 -

  10. Building Your Career in a Government Laboratory

    SciTech Connect (OSTI)

    Sullivan, Kelly O.; Snyder, Seth W.

    2014-07-22

    In this chapter we cover an eclectic mix of topics with the intent of providing you the lessons that we believe will aid in your success in a government laboratory research environment, though of course most of these cross into other sorts of work environments as well: • Communication techniques • Working in a team • Personal development activities • Following the rules • The business of research • Your personal brand

  11. Income Tax Deduction for the Installation of Building Insulation

    Office of Energy Efficiency and Renewable Energy (EERE)

    A residential taxpayer is entitled to an Indiana income tax deduction on the materials and labor used to install insulation in a taxpayer’s principal place of residence in Indiana. 

  12. Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts

    SciTech Connect (OSTI)

    Biswas, Kaushik; Shrestha, Som S.; Bhandari, Mahabir S.; Desjarlais, Andre Omer

    2015-12-12

    In the United States, commercial buildings accounted for about 19 percent of the total primary energy consumption in 2012. Further, 29 percent of the site energy in commercial buildings was consumed for space heating and cooling. Applying insulation materials to building envelopes is an effective way of reducing energy consumption for heating and cooling, and limiting the negative environmental impacts from the buildings sector. While insulation materials have a net positive impact on the environment due to reduced energy consumption, they also have some negative impacts associated with their 'embodied energy'. The total lifetime environmental impacts of insulation materials are a summation of: (1) direct impacts due to their embodied energy, and (2) indirect or impacts avoided due to the reduced building energy consumption. Here, assessments of the lifetime environmental impacts of selected insulation materials are presented. Direct and indirect environmental impact factors were estimated for the cradle-to-grave insulation life cycle stages. Impact factors were calculated for two categories: primary energy consumption and global warming potential. The direct impact factors were calculated using data from existing literature and a life cycle assessment software. The indirect impact factors were calculated through simulations of a set of standard whole-building models.

  13. Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Biswas, Kaushik; Shrestha, Som S.; Bhandari, Mahabir S.; Desjarlais, Andre Omer

    2015-12-12

    In the United States, commercial buildings accounted for about 19 percent of the total primary energy consumption in 2012. Further, 29 percent of the site energy in commercial buildings was consumed for space heating and cooling. Applying insulation materials to building envelopes is an effective way of reducing energy consumption for heating and cooling, and limiting the negative environmental impacts from the buildings sector. While insulation materials have a net positive impact on the environment due to reduced energy consumption, they also have some negative impacts associated with their 'embodied energy'. The total lifetime environmental impacts of insulation materials aremore » a summation of: (1) direct impacts due to their embodied energy, and (2) indirect or impacts avoided due to the reduced building energy consumption. Here, assessments of the lifetime environmental impacts of selected insulation materials are presented. Direct and indirect environmental impact factors were estimated for the cradle-to-grave insulation life cycle stages. Impact factors were calculated for two categories: primary energy consumption and global warming potential. The direct impact factors were calculated using data from existing literature and a life cycle assessment software. The indirect impact factors were calculated through simulations of a set of standard whole-building models.« less

  14. An analysis of different insulation strategies for earth-sheltered buildings

    SciTech Connect (OSTI)

    Forowicz, T.Z. [Warsaw Univ. of Technology (Poland). Dept. of Architecture; [Polish Academy of Sciences, Warsaw (Poland). Inst. of Fundamental Technological Research; [Univ. of Colorado, Boulder, CO (United States). Joint Center for Energy Management

    1994-12-31

    This paper provides a comparative analysis of the energy performance of various insulation configurations for earth-sheltered buildings. It discusses the effectiveness of each insulation configuration in reducing the heating and cooling load. The long-term unsteady thermal processes between the building and the surrounding soil are considered. The mathematical model of the problem consists of a heat conduction equation with appropriate boundary and initial conditions. The variations in outside air temperature are driven by a harmonic function. The set of algebraic equations obtained by balancing the elementary heat flows into control elements is solved by an explicit scheme. The simulation program enables a two-dimensional thermal analysis in two cross sections for an underground building of any size situated at any depth. It predicts the heat flow between the building and the surrounding soil and through the ground`s surface. Internal building surface and soil temperatures are also calculated.

  15. Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cladding Attachment Over Thick Exterior Insulating Sheathing Project InformatIon: Project name: Cladding Attachment Over Thick Exterior Insulating Sheathing Partners: Building Science Corporation www.buildingscience.com The Dow Chemical Company www.dow.com James Hardie Building Products www.jameshardie.com Building component: Building envelope component application: New and/or retrofit; Single and/or multifamily Year research conducted: 2011 through 2012 applicable climate Zone(s): All The

  16. Institutional-building grants program: the county-government perspective

    SciTech Connect (OSTI)

    Flick, S.

    1982-03-01

    The National Association of Counties Research, Inc. (NACoR) energy team developed a questionnaire on the Institutional Buildings Grant Program (IBGP) and distributed it to every county government in the country. Responses were received from approximately 600 counties in 47 states (a response rate of about 20%). After completing a preliminary review of the questionnaire findings, NACoR conducted six case studies to identify the various methods state energy offices and county governments used to implement the IBGP. The case studies presented here are divided into two groups: examples of successful state IBGP's - New York, Washington, and Wisconsin; and examples of unsuccessful state IBGP's - California, North Carolina, and South Carolina. (MHR)

  17. Buildings Energy Data Book: 5.1 Building Materials/Insulation

    Buildings Energy Data Book [EERE]

    1 U.S. Insulation Demand, by Type (Million Pounds) (1) Insulation Type 1992 2001 2006 (1) Fiberglass 2,938 55% 3,760 54% 4,085 53% Foamed Plastic 1,223 23% 1,775 25% 1,955 26% Cellulose 485 9% 665 9% 730 10% Mineral Wool 402 8% 445 6% 480 6% Other 309 6% 370 5% 395 5% Total 5,357 100% 7,015 100% 7,645 100% Note(s): 1) Projected. Source(s): National Insulation Association, www.insulation.org, Aug. 2006.

  18. Energy management study: A proposed case of government building

    SciTech Connect (OSTI)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-15

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  19. Buildings Energy Data Book: 5.1 Building Materials/Insulation

    Buildings Energy Data Book [EERE]

    3 Thermal Performance of Insulation Fiberglass (2) Perlite/Vermiculite Batts (3) Loose-Fill 2.1 - 3.7 Loose-Fill Foam Boards Spray-Applied Expanded Polystyrene 3.9 - 4.4 Rock Wool (2) Polyisocyanurate/Polyurethane 5.6 - 7.0 Loose-Fill Phenolic 4.4 - 8.2 Cellulose Reflective Insulation 2 - 17 Loose-Fill Vacuum Powder Insulation 25 - 30 Spray-Applied Vacuum Insulation Panel 20 - 100 Note(s): Source(s): 3.1 - 3.7 2.9 - 3.5 1) Hr-SF-F/Btu-in. Does not include the effects of aging and settling. 2)

  20. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  1. Building America Top Innovations 2014 Profile: Cost-Optimized Attic Insulation Solution for Factory-Built Homes

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovation profile describes a low-cost, low-tech attic insulation technique developed by the ARIES Building America team with help from Southern Energy Homes and Johns Manville. Increasing attic insulation in manufactured housing has been a significant challenge due to cost, production and transportation constraints. The simplicity of this dense-pack solution to increasing attic insulation R-value promises real hope for widespread industry adoption.

  2. Thermal insulation for buildings. September 1982-May 1990 (A Bibliography from the COMPENDEX data base). Report for September 1982-May 1990

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (This updated bibliography contains 299 citations, 55 of which are new entries to the previous edition.)

  3. Effectiveness of duct sealing and duct insulation in multi-family buildings. Final report

    SciTech Connect (OSTI)

    Karins, N.H.; Tuluca, A.; Modera, M.

    1997-07-01

    This research investigated the cost-effectiveness of sealing and insulating the accessible portions of duct systems exposed to unconditioned areas in multifamily housing. Airflow and temperature measurements were performed in 25 apartments served by 10 systems a 9 multi-family properties. The measurements were performed before and after each retrofit, and included apartment airflow (supply and return), duct system temperatures, system fan flow and duct leakage area. The costs for each retrofit were recorded. The data were analyzed and used to develop a prototypical multifamily house. This prototype was used in energy simulations (DOE-2.1E) and air infiltration simulations (COMIS 2.1). The simulations were performed for two climates: New York City and Albany. In each climate, one simulation was performed assuming the basement was tight, and another assuming the basement was leaky. Simulation results and average retrofit costs were used to calculate cost-effectiveness. The results of the analysis indicate that sealing leaks of the accessible ductwork is cost-effective under all conditions simulated (simple payback was between 3 and 4 years). Insulating the accessible ductwork, however, is only cost-effective for buildings with leaky basement, in both climates (simple paybacks were less than 5 years). The simple payback period for insulating the ducts in buildings with tight basements was greater than 10 years, the threshold of cost-effectiveness for this research. 13 refs., 5 figs., 27 tabs.

  4. Building America Case Study: Excavationless Exterior-Side Foundation Insulation for Existing Homes, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect (OSTI)

    NorthernSTAR

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  5. Corrosiveness of wet residential building thermal insulation---Mechanisms and evaluation of electrochemical methods for assessing corrosion behavior

    SciTech Connect (OSTI)

    Stansbury, E.E. , Knoxville, TN )

    1991-10-01

    An evaluation has been made of the corrosiveness of selected wet residential building thermal insulation materials in contact with low carbon steel. Investigations were conducted both in wet insulations and in filtered leachates from insulations derived from thirteen cellulosic, three mineral fiber and four foam products. Potentiodynamic polarization measurements are reported from which the overall corrosion response was assessed and then the techniques of Tafel and polarization resistance analysis applied to estimate corrosion rates. Corrosion rates were also estimated electrochemically using a direct reading instrument which performs the rate calculation based on the polarization resistance principle. Direct determinations of corrosion rate were based on weight loss measurements.

  6. A procedure for analyzing energy and global warming impacts of foam insulation in U.S. commercial buildings

    SciTech Connect (OSTI)

    Kosny, J.; Yarbrough, D.W.; Desjarlais, A.O.

    1998-11-01

    The objective of this paper is to develop a procedure for evaluating the energy and global warming impacts of alternative insulation technologies for US commercial building applications. The analysis is focused on the sum of the direct contribution of greenhouse gas emissions from a system and the indirect contribution of the carbon dioxide emission resulting from the energy required to operate the system over its expected lifetime. In this paper, parametric analysis was used to calculate building related CO{sub 2} emission in two US locations. A retail mail building has been used as a model building for this analysis. For the analyzed building, minimal R-values of insulation are estimated using ASHRAE 90.1 requirements.

  7. Building America Technology Solutions for New and Existing Homes Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles

    Broader source: Energy.gov [DOE]

    This case study by the U.S. Department of Energy’s Building America research team Building Science Corporation is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, Florida; zone 2A), insulated with air-permeable insulation (netted and blown fiberglass).

  8. Building America Technology Solutions for New and Existing Homes: Insulated Siding Retrofit in a Cold Climate, New Paltz, New York

    Broader source: Energy.gov [DOE]

    In this study, the U.S. Department of Energy’s team Building America Partner¬ship for Improved Residential Construction (BA-PIRC) worked with Kinsley Construction Company to evaluate the real-world performance of insulated sid¬ing when applied to an existing home. A 1960s home was selected for analysis. It is located in a cold climate (zone 6) where the addition of insulated siding and a carefully detailed water-resistive barrier have the potential to offer significant benefits. In particular, the team quantified building airtightness and heating energy use as a function of outdoor temperatures before and after the installa¬tion of the insulated siding.

  9. Pushing the Envelope: A Case Study of Building the First Manufactured Home Using Structural Insulated Panels

    SciTech Connect (OSTI)

    Baechler, Michael C.; Hadley, Donald L.; Sparkman, Ronald; Lubliner, Michael

    2002-06-01

    This paper for the ACEEE Summer Study describes construction of the first manufactured home ever produced from structural insulated panels. The home was built in July 2000 by Champion Enterprises at its Silverton, Oregon, plant. The house was completed on the assembly line in 9 days including a 300-mile road test. The paper examines the design and approval process leading to the project, the manufacturing process and its adjustment to SIPs, and the transportation and energy performance of the house after it was built. PNNL coordinated this project and conducted long-term monitoring on the house. The WSU Energy Program conducted building diagnostics testing once the house was occupied. PNNL’s and WSU’s involvement was funded by the U.S. DOE Building America Program. The Oregon Office of Energy conducted blower door and duct blaster tests. The completed home was estimated to reduce energy consumption by 50% and to have twice the structural strength required by HUD code for manufactured homes. The demonstration proved that the manufactured home production line could support SIPs production simultaneously with traditional construction and without major modifications, the line work in parallel with SIPs and traditional materials. The project revealed severl possibilities for further improving cost and time savings with SIPs construction, that might translate into increased capacity.

  10. Building America Case Study: Retrofit Measure for Embedded Wood Members in Insulated Mass Masonry Walls, Lawrence, Massachusetts

    SciTech Connect (OSTI)

    2015-10-01

    ?There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content and relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100 percent RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15 percent) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  11. Commercializing Government-sponsored Innovations: Twelve Successful Buildings Case Studies

    DOE R&D Accomplishments [OSTI]

    Brown, M. A.; Berry, L. G.; Goel, R. K.

    1989-01-01

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies.

  12. The technical viability of alternative blowing agents in polyisocyanurate roof insulation: A cooperative industry/government project

    SciTech Connect (OSTI)

    Christian, J.E.; Courville, G.E.; Desjarlais, A.O.; Graves, R.S.; Linkous, R.L.; McElroy, D.L.; Weaver, F.J.; Wendt, R.L.; Yarbrough, D.W.

    1993-06-01

    This report is a summary of the cooperative industry/government program to establish the viability of alternative blowing agents to chlorofluorocarbons (CFCs). The project was initiated in 1989 following two workshops that focused on needed research on thermal insulation blown with substitutes for CFC-11 and CFC-12. The project is directed by a steering committee of representatives of the sponsors and of Oak Ridge National Laboratory (ORNL). The purpose of the project is to determine if the performance of polyisocyanurate (PIR) roof insulation foam boards blown with alternate agents differs from the performance of boards blown with CFC-1. This report describes apparent thermal conductivity (k) results obtained from field and laboratory tests from 1989 to 1992 on a set of experimental PIR laminate boardstock produced to evaluate the viability of alternative hydrochlorofluorocarbons (HCFCs) as blowing agents. All boardstock was manufactured from similar formulations that were not optimized for thermal performance. Commercial broadstock made in the future may differ in performance from this set. The PIR boards were prepared with CFC-11, HCFC-123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b.

  13. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which saves money. Structural Insulated Panels Structural insulated panels (SIPs) are prefabricated insulated structural elements for use in building walls, ceilings, floors,...

  14. Building America Case Study: Excavationless Exterior-Side Foundation Insulation for Existing Homes, Minneapolis, Minnesota (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excavationless: Exterior-Side Foundation Insulation for Existing Homes Minneapolis, Minnesota PROJECT INFORMATION Project Name: Excavationless Exterior Foundation Insulation Field Study Location: Minneapolis, MN Partners: Cocoon, cocoon-solutions.com Urban Homeworks, urbanhomeworks.org/ BASF, basf.us American Environmental, LLC NorthernSTAR Building America Partnership Building Component: Foundation insulation Application: Retrofit; single-family Year Tested: 2013 Applicable Climate Zones: All

  15. Building America Top Innovations 2013 Profile – Exterior Rigid Insulation Best Practices

    SciTech Connect (OSTI)

    none,

    2013-09-01

    In this Top Innovation profile, field and lab studies by BSC, PHI, and NorthernSTAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.

  16. Tips: Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    blown into walls, on attic surfaces, or under floors to insulate and reduce air leakage. ... Consequently, the levels may differ from current local building codes. How Much Insulation ...

  17. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing PROJECT aPPliCaTiON Construction: Existing homes with unvented cathedralized roofs. Type: Residential Climate Zones: All TEam mEmbERs Building Science Corporation www.buildingscience.com BASF www.basf.com Dow Chemical Company www.dow.com Honeywell http://honeywell.com Icynene www.icynene.com COdE COmPliaNCE 2012 International Code Council, International Residential Code Spray polyurethane foams (SPFs) have advantages over

  18. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durability of Vapor Permeable Insulating Sheathing PROJECT INFORMATION Construction: Existing homes with vapor open wall assemblies Type: Residential Climate Zones: All PERFORMANCE DATA Insulation Ratio The R-value ratio of exterior to interior insulation (e.g., R-15 exterior insulation on R-11 cavity insulation has a ratio of 0.58). This variable controls sheathing temperature. Vapor Permeable Insulation An insulation with vapor permeance greater than five U.S. perms (e.g., rigid mineral fiber

  19. Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade – Madison Residence (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This basement insulation project included a dimple map conveying inbound moisture to a draintile, airtight spray polyurethane foam wall and floor insulation, and radiant floor heat installation.

  20. Building America Expert Meeting: Cladding Attachment Over Exterior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Expert Meeting: Cladding Attachment Over Exterior Insulation Building America Expert Meeting: Cladding Attachment Over Exterior Insulation Building Science...

  1. Development of a Process to Build Polyimide Insulated Magnets For Operation at 350C

    SciTech Connect (OSTI)

    Zatz, Irving J.

    2013-07-09

    An extensive R&D program has been conducted that has confirmed the feasibility of designing and fabricating copper alloy magnets that can successfully operate at temperatures as high as 350C. The process, originally developed for the possibility of manufacturing in-vessel resonant magnetic field perturbation (RMP) coils for JET, has been optimized for insulated magnet (and, potentially, other high temperature component) applications. One of the benefits of high temperature operation is that active cooling may no longer be required, greatly simplifying magnet/component design. These elevated temperatures are beyond the safe operating limits of conventional OFHC copper and the epoxies that bond and insulate the turns of typical magnets. This would necessitate the use an alternative copper alloy conductor such as C18150 (CuCrZr). Coil manufacture with polyimide is very similar to conventional epoxy bonded coils. Conductors would be dry wound then impregnated with polyimide of low enough viscosity to permit saturation, then cured; similar to the vacuum pressure impregnation process used for conventional epoxy bonded coils. Representative polyimide insulated coils were mechanically tested at both room temperature and 350C. Mechanical tests included turn-to-turn shear bond strength and overall polyimide adhesion strength, as well as the flexural strength of a 48-turn polyimide-bonded coil bundle. This paper will detail the results of the testing program on coil samples. These results demonstrate mechanical properties as good, or better than epoxy bonded magnets, even at 350C.

  2. Building America Case Study: Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This guide provides information and recommendations to the following groups: Insulation contractors, General contractors, Builders, Home remodelers, Mechanical contractors, and Homeowners as a guide to the work that needs to be done. The order of work completed during home construction and retrofit improvements is important. Health and safety issues must be addressed first and are more important than durability issues. And durability issues are more important than saving energy. Not all techniques can apply to all houses. Special conditions will require special action. Some builders or homeowners will wish to do more than the important but basic retrofit strategies outlined by this guide. The following are best practice and product recommendations from the interviewed contractors and home builders who collectively have a vast amount of experience. Three significant items were discussed with the group which are required to make taped insulating sheathing a simple, long term, and durable drainage plane: 4. Horizontal joints should be limited or eliminated wherever possible 5. Where a horizontal joint exists use superior materials 6. Frequent installation inspection and regular trade training are required to maintain proper installation Section 5 of this measure guideline contains the detailed construction procedure for the three recommended methods to effectively seal the joints in exterior insulating sheathing to create a simple, long term, and durable drainage plane.

  3. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  4. Building America Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles, Orlando, Florida

    SciTech Connect (OSTI)

    2015-11-01

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).

  5. Solar Decathlon Technology Spotlight: Structural Insulated Panels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs. Made of foam insulation sandwiched between two layers of ...

  6. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    SciTech Connect (OSTI)

    Neuhauser, K.

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  7. Experimental study of thermal resistance values (R-values) of low-density mineral-fiber building insulation batts commercially available in 1977

    SciTech Connect (OSTI)

    Tye, R.P.; Desjarlais, A.O.; Yarbrough, D.W.; McElroy, D.L.

    1980-04-01

    This study was initiated in June 1977 to obtain and evaluate full-thickness thermal performance data on mineral fiber, i.e., fiberglass and rock wool, batt-type insulations. The study aimed to obtain full-thickness thermal performance data and to assess other properties of mineral fiber building insulations. The physical property measurements discussed in this report provide a measure of the range of values for density, thickness, and R-value based on a sampling of low-density mineral-fiber building insulation batts purchased in the marketplace in 1977. The experimental data were used to establish mean R-values at nominal (label) thickness of R-11 and R-19 fiberglass batts and R-11 rock wool batts. The full-thickness and sliced testing techniques provided a set of R-values on the purchased samples that were converted to R-values at label thickness by using a particular correlation of apparent thermal conductivity and density. The full thickness results indicate surprisingly large percentages below labeled R-value for these four types of mineral fiber insulation. A statistical analysis of these data based on the assumption of normally distributed properties is included. This yielded estimates of similar magnitude for the population from which the samples were purchased. An urgency for continued sampling and further testing of mineral fiber insulations by many laboratories was identified. The differences between results obtained with the sliced technique and results obtained with full-thickness testing must be thoroughly understood and documented so that adjustment factors for the thickness effect can be accurately established. (LCL)

  8. Multilayer insulation (MLI) in the Superconducting Super Collider: A practical engineering approach to physical parameters governing MLI thermal performance

    SciTech Connect (OSTI)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-03-01

    Multilayer insulation (MLI) is employed in cryogenic devices to control the heat load of those devices. The physics defining the thermal performance of an MLI system is extremely complex due to the thermal dynamics of numerous interdependent parameters which in themselves contribute differently depending on whether boundary conditions are transient or steady-state. The Multilayer Insulation system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film, fabricated in the form of blankets, and installed as blankets to the 4.5K cold mass, and the 20K and 80K thermal radiation shields. Approximately 40,000 blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket will be nearly 56 feet long by 6 feet wide and will consist of as many as 32 reflective and 31 spacer layers of material. Discussed are MLI material choices, and the physical parameters which contribute to the operational performance of MLI systems. Disclosed is a method for fabricating MLI blankets by employing a large diameter winding mandrel having a circumference sufficient for the required blanket length. The blanket fabrication method assures consistency in mass produced MLI blankets by providing positive control of the dimensional parameters which contribute to the MLI blanket thermal performance. The fabrication method can be used to mass produce prefabricated MLI blankets that by virtue of the product have inherent features of dimensional stability, three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 9 refs., 4 figs., 2 tabs.

  9. Building America Best Practices Series. Volume 17 - Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners

    SciTech Connect (OSTI)

    Baechler, Michael C.; Adams, K. T.; Hefty, M. G.; Gilbride, T. L.; Love, Pat M.

    2012-05-01

    This guide will help contractors and homeowners identify ways to make their homes more comfortable, more energy efficient, and healthier to live in. It also identifies the steps to take, with the help of a qualified home performance contractor, to increase their home’s insulation, ensure healthy levels of ventilation, and prevent moisture problems. Contractors can use this document to explain the value of these insulation measures to their customers. The references in this document provide further explanation of insulation techniques and technologies.

  10. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    SciTech Connect (OSTI)

    Neuhauser, Ken

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago—a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area, in which high heating energy use typical in these buildings threaten housing affordability, and uninsulated mass masonry wall assemblies are uncomfortable for residents. In this project, the Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by DOE to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  11. Stud Walls With Continuous Exterior Insulation for Factory Built Housing: New York, New York (Fact Sheet), NREL (National Renewable Energy Laboratory), Building America Case Study Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stud Walls With Continuous Exterior Insulation for Factory Built Housing New York, New York PROJECT INFORMATION Project Name: Advanced Envelope Research for Factory Built Housing Location: New York, NY Partners: Manufactured and modular home building companies The Levy Partnership, Inc., www.levypartnership.com SBRA, www.research-alliance.org AFM Corp., www.afmcorporation.com BASF, www.basf.com Dow Corp., www.dow.com Johns Manville, www.jm.com Owens Corning, www.owenscorning.com CertainTeed,

  12. Expert Meeting Report: Cladding Attachment Over Exterior Insulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cladding Attachment Over Exterior Insulation P. Baker Building Science Corporation October 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

  13. Building America Top Innovations 2014 Profile: Cost-Optimized Attic Insulation Solution for Factory-Built Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INNOVATIONS BUILDING AMERICA Recognizing Top Innovations in Building Science - The U.S. Department of Energy's Building America program was started in 1995 to provide research and development to the residential new construction and remodeling industry. As a national center for world-class research, Building America funds integrated research in market- ready technology solutions through collaborative partnerships between building and remodeling industry leaders, nationally recognized building

  14. Applying Best Practices to Florida Local Government Retrofit Programs, Central Florida (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-House Solutions for Existing Homes Applying Best Practices to Florida Local Government Retrofit Programs Central Florida During 2009, 2010, and 2011, researchers of the U.S. Department of Energy's research team Building America Partnership for Improved Residential Construction (BA-PIRC) provided analysis and recommendations to eight affordable housing entities conduct- ing comprehensive renovations in 70 distressed, foreclosed homes in central Florida. Partners achieved a mutually agreed

  15. R25 Polyisocyanurate Composite Insulation Material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material Lead Performer: Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN Partners: -- NanoPore Inc. - Albuquerque, NM; -- Firestone Building Products Company - Indianapolis, IN DOE Funding:

  16. Physical properties of residential insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.

    1980-01-01

    Research to evaluate properties, test methods and operating environments for thermal insulations used in residences is an important part of the Building Thermal Envelope Systems and Insulating Materials (BTESIM) program sponsored by the US DOE. Three projects were carried out under the Insulating Materials part of BTESIM. The areas discussed are: (1) the thermal performance of mineral fiber insulating batts, (2) the design density for loose-fill insulations, and (3) the operatio of recesses light fixtures covered by loose-fill cellulosic insulation.

  17. Building America Best Practices Series: Volume 12. Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide will help contractors and homeowners identify ways to make their homes more comfortable, more energy efficient, and healthier to live in. It also identifies the steps to take, with the help of a qualified home performance contractor, to increase their home’s insulation, ensure healthy levels of ventilation, and prevent moisture problems.

  18. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  19. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Historically, only Industrial Facilities (ISO 50003 Industry - light to medium and ... is allowing Commercial Buildings (ISO 50003 - Buildings and Building Complexes) ...

  20. Buildings Energy Data Book: 8.5 Federal Government Water Usage

    Buildings Energy Data Book [EERE]

    5 Federal Government Water Usage March 2012 8.5.1 Federal Water Consumption Intensity and Costs (Millions of Gallons) Agency Total Source(s): 164,382.9 536,301.9 3,129,134.9 52.5 FEMP, Annual Report to Congress on Federal Government Energy Management and Conservation Programs FY 2007, Table 9, p. 26, Jan. 2010. HUD 21.8 139.1 1,432.0 15.2 RRB 5.5 19.5 346.9 15.9 SSA 125.0 617.1 9,262.0 13.5 Archives 107.9 552.9 4,062.0 26.6 State 169.0 762.2 4,476.7 37.8 EPA 168.1 1,196.0 3,723.3 45.2 Treasury

  1. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation » Types of Insulation Types of Insulation In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes

  2. Wall Insulation

    SciTech Connect (OSTI)

    2000-10-01

    This fact sheet provides information on advanced wall framing, including insulating walls, airtight construction, and moisture control.

  3. Building America Technology Solutions for New and Existing Homes: Durable Interior Foundation Insulation Retrofits for Cold Climates, Cloquet, Minnesota

    Broader source: Energy.gov [DOE]

    Thermal and moisture problems in existing basements create a unique challenge as the exterior face of the wall is not easily or inexpensively accessible. This approach by the NorthernSTAR Building America Partnership team addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. It is effective at reducing energy loss through the wall principally during the heating season.

  4. Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interior Insulation Retrofit of Mass Masonry Wall Assemblies K. Ueno and R. Van Straaten Building Science Corporation (BSC) February 2012 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  5. Issue 5: Optimizing High Levels of Insulation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  6. How Much Insulation is Too Much?

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

  7. Measure Guideline: Basement Insulation Basics

    SciTech Connect (OSTI)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  8. Measure Guideline. Basement Insulation Basics

    SciTech Connect (OSTI)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and to be a practical resource for building contractors, designers, and also to homeowners.

  9. Slab Insulation

    SciTech Connect (OSTI)

    2000-12-01

    Fact sheet for homeowners and contractors on how to insulate slab-on-grade floors and control moisture, air leakage, termites, and radon.

  10. Technology Solutions Case Study: Moisture Durability of Vapor Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  11. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  12. Two-dimensional heat transfer from earth-sheltered buildings

    SciTech Connect (OSTI)

    Krarti, M. (Steven Winter Associates, Inc., Norwalk, CT (US)); Claridge, D.E. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering)

    1990-02-01

    This paper describes use of the interzone temperature profile estimation (or ITPE) technique, an analytical calculation procedure to predict heat transfer within earth in contact with a structure. The solutions governing steady-state and steady-periodic heat conduction are derived for rectangular earth-sheltered buildings. The procedure accepts continuously variable values of geometric dimensions, insulation levels, and constant soil thermal characteristics and considers the presence of a finite water table level. Soil temperature profiles are shown for both steady-state and steady periodic conditions. The effects of insulation and water table depth on the heat losses from an earth-sheltered building envelope are discussed.

  13. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation Insulation Where to Insulate Where to Insulate Learn where to insulate in a home to save money and improve comfort. Read more Insulation Insulation Get the facts about how insulation works. Read more Moisture Control Moisture Control Learn how to control moisture in your home to improve the effectiveness of your insulation and air sealing strategies. Read more You can reduce your home's heating and cooling costs through proper insulation and air sealing techniques. These techniques

  14. Building Insulation | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  15. Professional","Government ","All Other Office"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"All Buildings*","Office Buildings" ,,"All Office","Administrative Professional","Government ","All Other Office" "All Buildings",64783,12208,6628,1549,4031 "Building...

  16. Professional","Government ","All Other Office"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"All Buildings*","Office Buildings" ,,"All Office","Administrative Professional","Government ","All Other Office" "All Buildings",4645,824,442,84,298 "Building Floorspace"...

  17. Building.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in ITER refers to plant systems located outside the Tokamak Building. A thick wall ... The cooling water system provides for the rejection of heat from a variety of ITER systems ...

  18. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  19. DOE Issues Request for Information on Advanced Thermal Insulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    industry, academia, research laboratories, government agencies, and other stakeholders on advanced thermal insulation for sub-ambient temperature alternative fuel storage systems. ...

  20. Building America Best Practices Series: Volume 12. EnergyRenovations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Series: Volume 12. Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners Building America Best Practices Series: Volume 12. Energy Renovations-Insulation: ...

  1. Building America Top Innovations Hall of Fame Profile Â… Basement...

    Energy Savers [EERE]

    When cellulose or fiberglass insulation is installed in contact with basement walls, it ... BSC. 2009. "Basement Insulation." Info- 511, Building Science Corporation. www. ...

  2. All Office Administrative/ Professional Government All Other

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey All Office Administrative Professional Government All Other Office All Buildings... 4,645 824 442 84...

  3. All Office Administrative/ Professional Government All Other

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey All Office Administrative Professional Government All Other Office All Buildings... 64,783 12,208...

  4. Unvented, Conditioned Attics - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attics - Building America Top Innovation Unvented, Conditioned Attics - Building America Top Innovation This photo shows an attic that is conditioned (insulated) and showing ...

  5. Office Buildings - Types of Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    administration building Insurance company headquarters building Local insurance agency Social services office Attorney's office Real estate sales office Government office State...

  6. High Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  7. Property:Building/OwnershipCategory | Open Energy Information

    Open Energy Info (EERE)

    OwnershipCategory" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Government building + Sweden Building 05K0002 + Government building...

  8. BSC: Building America, Building Science Consortium - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BSC: Building America, Building Science Consortium - 2015 Peer Review BSC: Building America, Building Science Consortium - 2015 Peer Review Presenter: Joe Lstiburek, Building Science Corp. View the Presentation BSC: Building America, Building Science Consortium - 2015 Peer Review (1.5 MB) More Documents & Publications Building America Technology Solutions for New and Existing Homes Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles Building

  9. Building America Technology Solutions for New and Existing Homes: Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This case study describes Building Science Corporation’s research into spray polyurethane foams in residential roofs, performing hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs.

  10. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Insulation Insulation Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Foam core structural insulated panels are built in a

  11. Analysis of the Chinese Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components

  12. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  13. Excavationless Exterior Foundation Insulation Field Study

    SciTech Connect (OSTI)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  14. Building America Webinar: High Performance Enclosure Strategies: Part II,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Construction - August 13, 2014 - Cladding Attachment Over Thick Exterior Rigid Insulation | Department of Energy Cladding Attachment Over Thick Exterior Rigid Insulation Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - Cladding Attachment Over Thick Exterior Rigid Insulation This presentation, Cladding Attachment Over Thick Rigid Exterior Insulation, was delivered at the Building America webinar, High Performance Enclosure

  15. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota | Department of Energy Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota Building America Technology Solutions for New and Existing Homes: Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota In this project, the NorthernSTAR Building America Partnership evaluated a retrofit insulation strategy for foundations that is designed for use with open-core concrete block

  16. Buildings | Open Energy Information

    Open Energy Info (EERE)

    work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. Related Links Buildings Gateway Retrieved from "http:en.openei.orgw...

  17. Office Buildings - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    administration building Insurance company headquarters building Local insurance agency Social services office Attorney's office Real estate sales office Government office State...

  18. Building America Case Study: Optimized Slab-on-Grade Foundation Insulation Retrofits, Madison, Wisconsin (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimized Slab-on-Grade Foundation Insulation Retrofits Madison, Wisconsin Existing slab-on-grade (SOG) foundations are diffcult to insulate as a retro- ft measure because of a lack of interior access to the foundation. Because SOG foundations can be insulated only on the exterior, costly and destruc- tive excavation is usually required. In addition, determining cost-effective insulation upgrade strategies has been hampered by software tools that do not accurately account for heat fow below

  19. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  20. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  1. Calcium silicate insulation structure

    DOE Patents [OSTI]

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  2. Building America Whole-House Solutions for Existing Home: Retrofitting...

    Broader source: Energy.gov (indexed) [DOE]

    Insight Homes, Seaford, Delaware Building America Technology Solutions for New and Existing Homes: Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota

  3. Technology Solutions Case Study: Retrofit Measures for Embedded Wood Members in Insulated Mass Masonry Walls

    SciTech Connect (OSTI)

    K. Ueno

    2015-10-01

    In this project, the Building Science Corporation team studied a historic brick building in Lawrence, Massachusetts, which is being renovated into 10 condominium units and adding insulation to the interior side of walls of such masonry buildings.

  4. Building America Special Research Project: High-R Walls Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 Building Science Press All rights of ... insulation levels in many new and existing buildings. ... The author and publisher make no warranty of any kind, ...

  5. Building America Whole-House Solutions for New Homes: Urbane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of Urbane Homes who worked with Building America research partner NAHBRC to build HERS-57 homes with rigid foam insulated slabs and foundation walls, advanced framed ...

  6. Next Generation Building Envelope Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Envelope Materials Next Generation Building Envelope Materials Addthis 1 of 3 Vacuum insulation panels (left); Modified atmosphere panels (right) Image: Oak Ridge National...

  7. 5 Reasons to Download the New Building America Solutions App...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ducts, insulation, HVAC and over 150 specific measures for constructing high-performance, energy-efficient buildings. 4. With the Building America Solutions app, registered users...

  8. Unvented Crawlspace Code Adoption - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unvented Crawlspace Code Adoption - Building America Top Innovation Unvented Crawlspace Code Adoption - Building America Top Innovation Photo of an unvented and insulated ...

  9. Retrofit Ventilation Strategies in Multifamily Buildings Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on November 30, 2011. webinar_hybrid_insulation_20111130.pdf (3.78 MB) More Documents & Publications Building America Expert Meeting: Foundations Research Results Building America Expert Meeting: Interior Insulation Retrofit of Mass Masonry Wall Assemblies Building America Technology Solutions for

  10. Technology Solutions Case Study: Cladding Attachment Over Mineral Fiber Insulation Board

    SciTech Connect (OSTI)

    2015-03-01

    Exterior insulating sheathing for high performance building enclosures is an important strategy for meeting energy efficiency requirements in many climates and can position an existing building to perform at the level of best-in-class new construction. Insulation board is also important in high performance building retrofit situations where minimal disruption at the interior is typically desired.

  11. Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Other less common materials such as cementitious and phenolic foams and vermiculite and perlite are also available. Learn More Where to insulate in a home Insulation for new home ...

  12. Insulating polymer concrete

    DOE Patents [OSTI]

    Schorr, H. Peter; Fontana, Jack J.; Steinberg, Meyer

    1987-01-01

    A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.

  13. Building America Technology Solutions for Existing Homes: Retrofit Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Embedded Wood Member in Insulated Mass Masonry Walls | Department of Energy Existing Homes: Retrofit Measures for Embedded Wood Member in Insulated Mass Masonry Walls Building America Technology Solutions for Existing Homes: Retrofit Measures for Embedded Wood Member in Insulated Mass Masonry Walls In this project, the Building Science Corporation team studied a historic brick building in Lawrence, Massachusetts, which is being renovated into 10 condominium units and adding insulation to

  14. Building America Technology Solutions for New and Existing Homes: Cladding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet) | Department of Energy Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet) In this project, researchers from Building Science Corporation investigated issues to better understand the mechanics behind the addition of insulation to the exterior of buildings to increase

  15. Air Barriers for Residential and Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... steel studs Unpainted drywall Perimeter frame R-7.5 XPS rigid foam insulation w ... T: temperature Exterior sheathing 7 | Building Technologies Office eere.energy.gov ...

  16. Building America Webinar: High Performance Enclosure Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    performance of the building enclosure, reduce the cost of energy-efficient construction, and simplify the construction process, all while accommodating higher levels of insulation. ...

  17. National Residential Efficiency Measures Database - Building...

    Energy Savers [EERE]

    National Residential Efficiency Measures Database - Building America Top Innovation ... Image of a man insulating the ceiling of a home. Robust cost data for energy-efficiency ...

  18. Insulation Project Moves Toward Higher R-value

    Office of Energy Efficiency and Renewable Energy (EERE)

    Current commercially available insulation materials yield R-6 per inch or less with no major improvements in thermal performance since the 1970s. In collaboration with Firestone Building Products and NanoPore, an Oak Ridge National Laboratory (ORNL) team led by Kaushik Biswas and Andre Desjarlais continues to research prototype composite foam boards with modified atmosphere insulation (MAI) cores.

  19. R-5 Highly-Insulating Windows and Low-e Storm Windows Volume Purchase Program

    SciTech Connect (OSTI)

    2009-09-30

    Introduces DOE's Building Technologies fenestration RD&D program, and describes the highly insulated R-5 Windows and Low-e Storm Windows Volume Purchase solicitation.

  20. Insulated solar storage tanks

    SciTech Connect (OSTI)

    Eldighidy, S.M. )

    1991-01-01

    This paper presents the theoretical and experimental investigation of an insulated parallelepiped, outdoor solar, water-filled storage tank of size 1 m {times} 0.5 m {times} 0.3 m, that is made from galvanized iron. The absorption coefficient of the insulating material has been determined. The effects of plastic covers and insulation thickness on the water temperature and the energy gained or lost by water are investigated. Moreover, the effects of insulation thickness on the temperature profiles of the insulating material are discussed. The results show that the absorption coefficient decreases as the insulation thickness increases. Also, it is found that the glass wool insulation of 2.5 cm thickness has the best results compared with the other thicknesses (5 cm, 7.5 cm, and 10 cm) as far as the water temperature and the energy gained by water are concerned.

  1. Aerogel Impregnated Polyurethane Piping and Duct Insulation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aerogel Impregnated Polyurethane Piping and Duct Insulation Aerogel Impregnated Polyurethane Piping and Duct Insulation Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech28_hess_040413.pdf (1.11 MB) More Documents & Publications WICF Certification, Compliance and Enforcement webinar New Code Compliance Briefs Assist in Resolving Codes and Standards Concerns in Energy Innovations Building America Best Practices Series: Volume 12.

  2. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    SciTech Connect (OSTI)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  3. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    SciTech Connect (OSTI)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  4. Energy Benchmarking, Rating, and Disclosure for State Governments

    Broader source: Energy.gov [DOE]

    Existing Commercial Buildings Working Group fact sheet about energy benchmarking for state governments.

  5. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating ...

  6. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Superconducting Topological Insulators Print Wednesday, 26 January 2011 00:00 Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual

  7. Basement Insulation Systems - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces at the walls and slab. ...

  8. Building America Expert Meeting: Interior Insulation Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It was found that conflicting understanding exists, such as general assessment approaches, assessments of masonry material properties, and the inclusion of air spaces between ...

  9. Loose-fill insulations

    SciTech Connect (OSTI)

    1995-05-01

    Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

  10. Gas insulated transmission line with insulators having field controlling recesses

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

    1984-01-01

    A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

  11. Better Buildings Neighborhood Program | Department of Energy

    Energy Savers [EERE]

    of Energy Basement Insulation Systems - Building America Top Innovation Basement Insulation Systems - Building America Top Innovation This photo shows a framed basement wall with insulation in between the studs. Efficient and durable construction practices for basements are critical because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces at the walls and slab. For this Top Innovation award,

  12. Thermal properties and use of cellulosic insulation produced from recycled paper

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wilkes, K.E.

    1996-10-01

    Information regarding the use of building insulation made from recycled paper is summarized. Results of previous experimental studies to determine thermal conductivities, settled density, and flammability are outlined, and calculation methods for thermal resistivity are presented in detail. Other performance factors affecting installed insulation are discussed. Industry data and information on the production, use, and economics of cellulosic insulation for residential and commercial buildings are provided. 34 refs., 4 figs., 1 tab.

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Board of Building Standards is the primary state agency that protects the public's safety by: adopting rules governing the construction, repair, and rehabilitation of buildings in the state;...

  15. Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    SciTech Connect (OSTI)

    Ueno, K.; Van Straaten, R.

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  16. Expert Meeting Report. Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    SciTech Connect (OSTI)

    Ueno, K.; Van Straaten, R.

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  17. Technology Solutions Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles

    SciTech Connect (OSTI)

    2015-11-01

    This case study by the U.S. Department of Energy’s Building America research team Building Science Corporation is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, Florida; zone 2A), insulated with air-permeable insulation (netted and blown fiberglass).

  18. Building America Technology Solutions for Existing Homes: Initial and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Cladding Over Exterior Insulation | Department of Energy Existing Homes: Initial and Long-Term Cladding Over Exterior Insulation Building America Technology Solutions for Existing Homes: Initial and Long-Term Cladding Over Exterior Insulation This research conducted by Building Science Corporation evaluated the system mechanics and long-term performance of the use of wood furring strips attached through the insulation back to the structure to provide a convenient cladding

  19. Building America Technology Solutions for New and Existing Homes: Measure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guideline: Guidance on Taped Insulating Sheathing Drainage Planes | Department of Energy Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes Building America Technology Solutions for New and Existing Homes: Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes This project by Building Science Corporation focuses on the field implementation of taped board insulation as the drainage plane in both new and retrofit residential applications. Guidance on

  20. Commercial Buildings Characteristics 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    the sponsor the government, utility or sponsored in-house. Energy Management and Control System Heating or cooling system monitored or controlled by a computerized building...

  1. Insulation Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Insulation Materials Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass

  2. Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs- Central Florida (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from Building America Partnership for Improved Residential Construction worked with the City of Melbourne, Florida, to develop and implement best practices for renovating distressed homes to achieve annual energy savings of 15%-30% and higher

  3. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications (EIA)

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  4. Dielectric insulating polyolefin compounds and conductor products insulated therewith

    DOE Patents [OSTI]

    MacKenzie, Jr., Burton T.; Prober, Maurice; Kiersztyn, Stanley E.

    1979-01-01

    Polyolefin compounds containing nitrile polysiloxane fluid which have improved electrical properties, and electrical conductors insulated therewith.

  5. Insulation fact sheet

    SciTech Connect (OSTI)

    1997-08-01

    Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

  6. Building America Efficient Solutions for Existing Homes: Case Study: Build

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Antonio Green, San Antonio, Texas | Department of Energy Homes: Case Study: Build San Antonio Green, San Antonio, Texas Building America Efficient Solutions for Existing Homes: Case Study: Build San Antonio Green, San Antonio, Texas PNNL, FSEC, and CalcsPlus provided technical assistance to Build San Antonio Green on three deep energy retrofits. For this gut rehab they replaced the old roof with a steeper roof and replaced drywall while adding insulation, new HVAC, sealed ducts, transfer

  7. Cooper Pairs in Insulators?!

    ScienceCinema (OSTI)

    James Valles

    2010-01-08

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  8. DOE Issues Request for Information on Advanced Thermal Insulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Material Compatibility | Department of Energy Advanced Thermal Insulation and Composite Material Compatibility DOE Issues Request for Information on Advanced Thermal Insulation and Composite Material Compatibility October 20, 2015 - 9:58am Addthis The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) to obtain feedback and opinions from industry, academia, research laboratories, government agencies, and other stakeholders

  9. Insulator for laser housing

    DOE Patents [OSTI]

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  10. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  11. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  12. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  13. Vacuum foil insulation system

    DOE Patents [OSTI]

    Hanson, John P.; Sabolcik, Rudolph E.; Svedberg, Robert C.

    1976-11-16

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly.

  14. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  15. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  16. Scientists Find Asymmetry in Topological Insulators - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Find Asymmetry in Topological Insulators Surprising findings bolster case for energy efficient quantum computer August 12, 2013 New research shows that a class of materials being eyed for the next generation of computers behaves asymmetrically at the sub-atomic level. This research is a key step toward understanding the topological insulators that may have the potential to be the building blocks of a super-fast quantum computer that could run on almost no electricity. Scientists from

  17. Better Buildings Residential Financing Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... including interior and exterior measures, utilizing sealants, caulks, insulating foams, gaskets, weather-stripping, mastics, and other building materials in accordance with ...

  18. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior ...

  19. Building America Whole-House Solutions for New Homes: Exterior...

    Energy Savers [EERE]

    Fresno, California Building America Whole-House Solutions for New Homes: Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California Exterior rigid ...

  20. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    understand the mechanics behind the addition of insulation to the exterior of buildings to increase the thermal resistance of wood-framed walls and mass masonry wall assemblies. ...

  1. Building America Technology Solutions for Existing Homes: Initial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This research conducted by Building Science Corporation evaluated the system mechanics and long-term performance of the use of wood furring strips attached through the insulation ...

  2. Building America Technology Solutions for Existing Homes: Retrofit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Measures for Embedded Wood Member in Insulated Mass Masonry Walls Building America Technology Solutions for Existing Homes: Retrofit Measures for Embedded Wood Member in ...

  3. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In this project, the NorthernSTAR Building America Partnership evaluated a retrofit insulation strategy for foundations that is designed for use with open-core concrete block ...

  4. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attachment Over Exterior Insulation Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies

  5. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Massachusetts Building America Technology Solutions for New and Existing Homes: Monitoring of ... when compared with high-R approaches using exterior insulating sheathing. ...

  6. Building America Case Study: Retrofit Measure for Embedded Wood...

    Energy Savers [EERE]

    Existing Homes Building America Case Study Retrofit Measures for Embedded Wood Members in Insulated Mass Masonry Walls Lawrence, Massachusetts PROJECT INFORMATION Project Name: The...

  7. Building America Efficient Solutions for Existing Homes Case...

    Energy Savers [EERE]

    sealing and insulating exterior walls and attic and installing new, efficient appliances. ... Building America Efficient Solutions for Existing Homes Case Study: Deep Energy Retrofit ...

  8. Building America Webinar: Retrofit Ventilation Strategies in Multifamily

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Webinar | Department of Energy Retrofit Ventilation Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented by research team Building Science Corporation, discussed insulating foundations and controlling water leakage as a critical measure for reducing heating load in homes in cold climates. webinar_hybrid_insulation_20111130.wmv (19.21 MB) More Documents & Publications

  9. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  10. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  11. Gwitchyaa Zhee Gwich'in Tribal Government Counteracts High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gwitchyaa Zhee Gwich'in Tribal Government Counteracts High Energy Costs, Climate Challenges with Building Energy Retrofits Gwitchyaa Zhee Gwich'in Tribal Government Counteracts...

  12. Energy Benchmarking, Rating, and Disclosure for Local Governments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Governments Energy Benchmarking, Rating, and Disclosure for Local Governments Existing Commercial Buildings Working Group fact sheet about energy benchmarking. Energy ...

  13. Energy Benchmarking, Rating, and Disclosure for Local Governments

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2012-05-23

    Provides information on how access to energy use data can help local governments create policies for benchmarking and disclosing building energy performance for public and private sector buildings.

  14. Test Report: Cost Effective Foundation Insulation

    SciTech Connect (OSTI)

    Jeffrey M. Lacy; T. E. Rahl; G. A. Twitchell; R. G. Kobbe

    2003-06-01

    A field experiment was conducted to demonstrate and quantify the thermal effectiveness of rigid insulation board when installed on the exterior of a buried concrete foundation wall. A heated, insulated box was constructed along one wall of an existing, unheated building to simulate the living space of a home. The crawl space beneath the living space was divided into two sections. One featured external foundation insulation, while the other side had none. 36 temperature and heat flux sensors were installed at predetermined locations to measure the temperature profile and heat flow out of the living space. The temperature profile through the foundation was then used to calculate the total heat flow out of the foundation for both cases. This experiment showed that a significant energy savings is available with exterior foundation insulation. Over the course of 3 months, the heat-loss differential between the insulated and non-insulated foundations was 4.95 kilowatt-hours per lineal foot of foundation wall, for a ratio of 3:1. For a 2200 sq. ft home with a foundation perimeter 200 ft. long, this would amount to a savings of 990 kW-hrs in just 3 months, or 330 kW-hrs per month. Extrapolating to an 8-month heating year, we would expect to save over 2640 kW-hrs per year for such a home. The savings for a basement foundation, rather than a crawlspace, would be approach twice that amount, nearing 5280 kW-hr per year. Because these data were not collected during the coldest months of the year, they are conservative, and greater savings may be expected during colder periods.

  15. Building America Technlogy Solutions for New and Existing Homes: Interior

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundation Insulation Upgrade - Minneapolis Residence (Fact Sheet) | Department of Energy Minneapolis Residence (Fact Sheet) Building America Technlogy Solutions for New and Existing Homes: Interior Foundation Insulation Upgrade - Minneapolis Residence (Fact Sheet) This interior foundation project employed several techniques to improve performance and mitigate moisture issues: dimple mat; spray polyurethane foam insulation; moisture and thermal management systems for the floor; and paperless

  16. Better Buildings Federal Award | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    winner of the 2013 Better Buildings Federal Award. The Federal Energy Management Program's (FEMP) Better Buildings Federal Award recognizes the federal government's ...

  17. Building Energy Code | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  18. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  19. Building Energy Codes Program | Department of Energy

    Office of Environmental Management (EM)

    The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and ...

  20. Black Mountain Insulation | Open Energy Information

    Open Energy Info (EERE)

    Mountain Insulation Jump to: navigation, search Name: Black Mountain Insulation Place: United Kingdom Sector: Carbon Product: UK-based manufacturer of sheeps wool insulation which...

  1. Types of Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Insulating Concrete Forms Insulating concrete forms (ICFs) are basically forms for poured ... Unfaced boards can then be finished with reinforced insulating cement, canvas, or ...

  2. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  3. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  4. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  5. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  6. Cladding Attachment Over Thick Exterior Insulating Sheathing

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.; Lepage, R.

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  7. Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    SciTech Connect (OSTI)

    Lstiburek, Joseph; Baker, Peter

    2015-04-09

    This measure guideline, written by the U.S. Department of Energy’s Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various design elements.

  8. Building America Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  9. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    1 Case Study, The Adam Joseph Lewis Center for Environmental Studies, Oberlin College, Oberlin, Ohio (Education) Building Design Floor Area: Floors: 2 Footprint: 3 Classrooms (1) 1 Conference Room 1 Adminstration Office Auditorium, 100 seats 6 Small Offices Atrium Wastewater Treatment Facility Shell Windows Material: Green Tint Triple Pane Argon Fill Insulating Glass Grey Tint Double Pane Argon Fill Insulating Glass Fenestration(square feet) Window Wall (2) window/wall l Atrium, Triple Pane (3)

  10. Building America Technology Solutions for New and Existing Homes: Cladding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attachment Over Mineral Fiber Insulation Board - Ontario, Canada | Department of Energy Cladding Attachment Over Mineral Fiber Insulation Board - Ontario, Canada Building America Technology Solutions for New and Existing Homes: Cladding Attachment Over Mineral Fiber Insulation Board - Ontario, Canada This case study describes a high performance enclosure retrofit package that uses mineral fiber insulation board and describes retrofit assembly and details for wood frame roof and walls and for

  11. Building America Whole-House Solutions for Existing Homes: Exterior

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation Pre- and Post-Retrofit, Syracuse, New York | Department of Energy Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York Building America Whole-House Solutions for Existing Homes: Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York IBACOS, in collaboration with GreenHomes America, Inc., was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions for enclosure upgrades. This case study describes

  12. Building America Whole-House Solutions for New Homes: Imagine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of Imagine Homes, who worked with the Building America research partner IBACOS to build HERS-52 homes with spray foam-insulated attics and central fan-integrated supply ...

  13. Building America Top Innovations 2012: High-R Walls

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research on high-R-value walls showing the difference between rated and whole wall R values and the need for vented cladding to reduce condensation potential with some insulation types.

  14. Building America Whole-House Solutions for New Homes: Tindall...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of Tindall Homes who worked with Building America research team IBACOS to build 20 HERS-58 homes with R-49 mixed attic insulation, poly-iso foam in advanced framed ...

  15. High voltage variable diameter insulator

    DOE Patents [OSTI]

    Vanacek, D.L.; Pike, C.D.

    1982-07-13

    A high voltage feedthrough assembly having a tubular insulator extending between the ground plane ring and the high voltage ring. The insulator is made of Pyrex and decreases in diameter from the ground plane ring to the high voltage ring, producing equipotential lines almost perpendicular to the wall of the insulator to optimize the voltage-holding capability of the feedthrough assembly.

  16. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  17. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  18. Contaminant trap for gas-insulated apparatus

    DOE Patents [OSTI]

    Adcock, J.L.; Pace, M.O.; Christophorou, L.G.

    1984-01-01

    A resinous body is placed in gas-insulated electrical apparatus to remove particulate material from the insulating gas.

  19. Leadership, Governance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership, Governance Leadership, Governance The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Science, technology, and engineering work at Los Alamos benefits from strong leaders, rigorous governance The people of Los Alamos National Laboratory are held by customers, as well as their own senior managers, to very

  20. Public Order and Safety Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    | Activity Subcategories | Energy Use Public Order and Safety Buildings... Volunteer fire stations tend not to be government owned, which probably explains why 33 percent of...

  1. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  2. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  3. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  4. Compact vacuum insulation embodiments

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  5. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  6. Gas filled panel insulation

    DOE Patents [OSTI]

    Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  7. Improved DC Gun Insulator

    SciTech Connect (OSTI)

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  8. Computers in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Government-owned buildings of all types, had, on average, more than one computer per person (1,104 computers per thousand employees). They also had a fairly high ratio of...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  10. R25 Polyisocyanurate Composite Insulation Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R25 Polyisocyanurate Composite Insulation Material 2016 Building Technologies Office Peer Review Kaushik Biswas, biswask@ornl.gov Oak Ridge National Laboratory 2 Project Summary Timeline: Start date: Oct 1, 2014 Planned end date: Sep 30, 2017 Key Milestones 1. First full-scale MAI-polyiso composite measured to be R-10/inch; 9/30/15 2. Verify R-value of improved MAI-polyiso composite produced on the production line to be R-12/inch ; 9/30/2016 3. Optimized cost of commercial composite panels with

  11. Technology Solutions Case Study: Excavationless: Exterior-Side Foundation Insulation for Existing Homes

    SciTech Connect (OSTI)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. This project describes an innovative, minimally invasive foundation insulation upgrade technique on an existing home that uses hydrovac excavation technology combined with a liquid insulating foam. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  12. High voltage variable diameter insulator

    DOE Patents [OSTI]

    Vanecek, David L.; Pike, Chester D.

    1984-01-01

    A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

  13. Insulation Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Insulation and Energy Efficiency Information: Home Energy: The Magazine of Residential Energy Conservation Addthis Related Articles In existing homes, cellulose (here) or other...

  14. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R.; Burke, Melissa S.

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  15. Building Standards Lead-by-Example Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards Lead-by-Example Resources Building Standards Lead-by-Example Resources State and local governments can lead by example by promoting energy efficiency programs and policies for public facilities, equipment, and government operations. Find building standards lead-by-example resources below. DOE Resource National Best Practices Manual For Building High Performance Schools. Other Resource Roadmap to Green Government Buildings

  16. BUILDING AMERICA PROGRAM EVALUATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BUILDING AMERICA PROGRAM EVALUATION _______________________________ Volume II: Appendices Prepared by: Energy Technology Innovation Project (ETIP) Kennedy School of Government, Harvard University Vicki Norberg-Bohm, Principal Investigator Chad White, Lead Author September 2004 Appendix A. Building America Program Intent and Scope 1 Appendix A-1. Program Overview A-1.1. Program History Building America has its origins in a 1993 pilot project between DOE and a housing products unit at General

  17. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy

  18. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the

  19. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  20. Compact vacuum insulation

    DOE Patents [OSTI]

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  1. Building America Webinar: May 21, 2014 - | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Building America Webinar: May 21, 2014 - This presentation, delivered at the webinar, High Performance Building Enclosures: Part I, Existing Homes, on May 21, 2014, provides strategies for retrofitting exterior foundation insulation without an excavator. BA_Webinar_tomschirber_5-21-14.pdf (23.8 MB) More Documents & Publications Building America Technology Solutions for New and Existing Homes: Excavationless: Exterior-Side Foundation Insulation for Existing Homes (Fact Sheet)

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Comprehensive MeasuresWhole Building Sustainable Building Design Revolving Loan Fund Recommended projects include Eligibility: Local Government,...

  3. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible ... Building on those developments, Wray et al. have now shown that adding copper to a ...

  4. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a building-sized particle accelerator. The connection between TI electrons and the physics of special relativity may at first seem like a mere mathematical oddity, but in...

  5. Recent development in green buildings

    SciTech Connect (OSTI)

    Mei, V.C.

    1996-12-31

    Because of the environmental concerns about some materials used in buildings, particularly chlorofluorocarbon (CFC) fluids used as the blowing agent for insulation materials and as refrigerants used in the air conditioning systems have led to a search for environmentally safe alternatives. For insulation materials, new non-CFC blowing agents are still under development. However, the old insulation materials in the buildings will stay because they do not pose any further environmental damage. It is a different story for refrigerants used in air conditioning systems. This study reports that the change-over from CFC to non-CFC refrigerants in the existing and future air conditioning equipment could be a chance not only to take care of the environmental concerns, but to save energy as well. Alternative air conditioning technologies, such as the desiccant dehumidification and absorption systems, and the potential of some natural substances, such as carbon dioxide, as the future refrigerants are also discussed.

  6. Wall Insulation; BTS Technology Fact Sheet

    SciTech Connect (OSTI)

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

  7. Electrical wire insulation and electromagnetic coil

    DOE Patents [OSTI]

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  8. Buildings | Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results

  9. Technology Solutions Case Study: Insulating Concrete Forms

    SciTech Connect (OSTI)

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete forms—rigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  10. Flipping Photoelectron Spins in Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The interior bulk of a topological insulator is an insulator, but electrons (grey spheres) move swiftly on the surface as if through a metal. They are spin polarized,...