National Library of Energy BETA

Sample records for government boilers building

  1. Building America Case Study: Boiler Control Replacement for Hydronical...

    Energy Savers [EERE]

    ... Similar case studies of the effectiveness of these control features in steam- heated buildings would be valuable. Description A state-of-the-art boiler control system includes a ...

  2. Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler...

    Open Energy Info (EERE)

    Oil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler"...

  3. Property:Building/SPPurchasedEngyForPeriodMwhYrOil-FiredBoiler...

    Open Energy Info (EERE)

    eriodMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyForPeriodMwhYrOil-FiredB...

  4. Property:Building/SPPurchasedEngyNrmlYrMwhYrOil-FiredBoiler ...

    Open Energy Info (EERE)

    rmlYrMwhYrOil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyNrmlYrMwhYrOil-FiredBoil...

  5. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  6. Building America Case Study: Advanced Boiler Load Monitoring...

    Energy Savers [EERE]

    Boiler Load Monitoring Controllers Chicago, Illinois PROJECT INFORMATION Project Name: ... Most of Chicago's older multifamily housing stock is heated by centrally metered steam or ...

  7. Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"

    U.S. Energy Information Administration (EIA) Indexed Site

    Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned

  8. Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned

  9. Technology Solutions Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts

    SciTech Connect (OSTI)

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency, which faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68°F) than day (73° F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  10. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  11. ,"All Buildings","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Occupancy of Nongovernment-Owned and Government Owned Buildings, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"All Nongovern- ment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unoccupied","All Govern-ment- Owned Buildings","Federal","State","Local" "All

  12. Wood Pellet-Fired Biomass Boiler Project at the Ketchikan Federal Building

    SciTech Connect (OSTI)

    Tomberlin, G.

    2014-06-01

    Biomass boiler systems have existed for many years, but the technology has advanced in recent decades and can now provide automated and efficient operation for a relatively modest investment. Key advances in system monitoring and control allow for lower operating costs, since the control systems run all aspects of the boiler, including feed, load reduction and even tube cleaning. These advances have made such systems economical on a small scale in situations where inexpensive fuels like natural gas are not available. This creates an opportunity for building operators in remote, cold-climate locations to reduce the use of expensive fuels for heating buildings. GSA Region 10 installed the system at the federal building in Ketchikan, Alaska and submitted the project to the Green Proving Ground (GPG) program. GSA's GPG program contracted with the National Renewable Energy Laboratory (NREL) to assess the installation and the technology. The system serves as a demonstration to assess actual system efficiencies, as well as operating characteristics and financial benefits. In addition to installation and operational issues, the project team/researchers examined other issues, including fuel transportation costs, building energy savings, and overall economics.

  13. Energy Efficiency Program for State Government Buildings

    Broader source: Energy.gov [DOE]

    The High-Performance Buildings Advisory Committee assisted the Finance and Administration Cabinet with setting out the standards and benchmarks by which to evaluate buildings. Leadership in Energ...

  14. Building Energy Asset Score: State and Local Governments | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy State and Local Governments Building Energy Asset Score: State and Local Governments The U.S. Department of Energy's Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based

  15. ,"All Buildings","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"All Nongovern- ment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unoccupied","All Govern-ment- Owned Buildings","Federal","State","Local" "All

  16. Government Buildings CHARTING YOUR JOURNEY REACHING MILESTONES

    Energy Savers [EERE]

    ... Motivated by growing public interest in sustainability, many government entities are taking the lead to green their facilities by incorporating energy and resource-efficient ...

  17. Santa Clara County- Green Building Policy for County Government Buildings

    Broader source: Energy.gov [DOE]

    In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009.

  18. Building Your Career in a Government Laboratory

    SciTech Connect (OSTI)

    Sullivan, Kelly O.; Snyder, Seth W.

    2014-07-22

    In this chapter we cover an eclectic mix of topics with the intent of providing you the lessons that we believe will aid in your success in a government laboratory research environment, though of course most of these cross into other sorts of work environments as well: Communication techniques Working in a team Personal development activities Following the rules The business of research Your personal brand

  19. Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    PARR

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  20. Institutional-building grants program: the county-government perspective

    SciTech Connect (OSTI)

    Flick, S.

    1982-03-01

    The National Association of Counties Research, Inc. (NACoR) energy team developed a questionnaire on the Institutional Buildings Grant Program (IBGP) and distributed it to every county government in the country. Responses were received from approximately 600 counties in 47 states (a response rate of about 20%). After completing a preliminary review of the questionnaire findings, NACoR conducted six case studies to identify the various methods state energy offices and county governments used to implement the IBGP. The case studies presented here are divided into two groups: examples of successful state IBGP's - New York, Washington, and Wisconsin; and examples of unsuccessful state IBGP's - California, North Carolina, and South Carolina. (MHR)

  1. Energy management study: A proposed case of government building

    SciTech Connect (OSTI)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-15

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  2. Building America Technology Solutions for New and Existing Homes: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois

    Broader source: Energy.gov [DOE]

    In this project, the Building America team Partnership for Advanced Residential Retrofit (PARR) installed and monitored an ALM aftermarket controller, the M2G from Greffen Systems, at two Chicago area multifamily buildings with existing OTR control.

  3. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2013-10-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

  4. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings - Phase 1: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.

    2012-04-01

    The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit's housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15 to 25 percent.

  5. Commercializing Government-sponsored Innovations: Twelve Successful Buildings Case Studies

    DOE R&D Accomplishments [OSTI]

    Brown, M. A.; Berry, L. G.; Goel, R. K.

    1989-01-01

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies.

  6. Super Boiler Update

    SciTech Connect (OSTI)

    2007-10-01

    This presentation from the 2007 American Boiler Manufacturers Association Manufacturers Conference provides an update of the First Generation Super Boiler.

  7. EECBG Success Story: New Boilers, Big Savings for Minnesota County

    Broader source: Energy.gov [DOE]

    Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. Learn more.

  8. Furnace and Boiler Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings ...

  9. Furnace and Boiler Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces...

  10. Fossil-Fired Boilers

    Energy Science and Technology Software Center (OSTI)

    1993-09-23

    Boiler Performance Model (BPM 3.0S) is a set of computer programs developed to analyze the performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, and can model coal, oil, or natural gas firing. The programs are intended for use by engineers performing analyses of alternative fuels, alternative operating modes, or boiler modifications.

  11. Boiler and cooling water basics

    SciTech Connect (OSTI)

    Ketrick, B.T.

    1995-06-01

    Boiler Water Treatment products and programs are used in boiler systems to prevent the formation of water side deposits and corrosion. Water side deposits will cause a loss of boiler efficiency, as well as, damage to the boiler internals. Corrosion can cause a loss of boiler metal integrity. Both conditions can lead to a reduced operating life for the boiler and costly annual repairs.

  12. Applying Best Practices to Florida Local Government Retrofit Programs, Central Florida (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-House Solutions for Existing Homes Applying Best Practices to Florida Local Government Retrofit Programs Central Florida During 2009, 2010, and 2011, researchers of the U.S. Department of Energy's research team Building America Partnership for Improved Residential Construction (BA-PIRC) provided analysis and recommendations to eight affordable housing entities conduct- ing comprehensive renovations in 70 distressed, foreclosed homes in central Florida. Partners achieved a mutually agreed

  13. Second Generation Super Boiler Technology for Watertube Boilers

    SciTech Connect (OSTI)

    2007-07-01

    This factsheet describes a research project to develop a high-pressure watertube boiler system that incorporates and improves upon the capabilities of the firetube Super Boiler system.

  14. Minimize Boiler Blowdown

    Broader source: Energy.gov [DOE]

    This tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  15. Minimize Boiler Blowdown

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  16. Promising Technology: Condensing Gas Boilers

    Broader source: Energy.gov [DOE]

    Condensing boilers achieve higher efficiencies than conventional boilers by capturing the latent heat from water vapor contained in the flue gases.

  17. Boiler MACT | Department of Energy

    Office of Environmental Management (EM)

    Boiler MACT Boiler MACT DOE currently provides technical assistance on combined heat and power (CHP) technologies to commercial and industrial facilities through its seven ...

  18. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Historically, only Industrial Facilities (ISO 50003 Industry - light to medium and ... is allowing Commercial Buildings (ISO 50003 - Buildings and Building Complexes) ...

  19. TA-2 Water Boiler Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

  20. Buildings Energy Data Book: 8.5 Federal Government Water Usage

    Buildings Energy Data Book [EERE]

    5 Federal Government Water Usage March 2012 8.5.1 Federal Water Consumption Intensity and Costs (Millions of Gallons) Agency Total Source(s): 164,382.9 536,301.9 3,129,134.9 52.5 FEMP, Annual Report to Congress on Federal Government Energy Management and Conservation Programs FY 2007, Table 9, p. 26, Jan. 2010. HUD 21.8 139.1 1,432.0 15.2 RRB 5.5 19.5 346.9 15.9 SSA 125.0 617.1 9,262.0 13.5 Archives 107.9 552.9 4,062.0 26.6 State 169.0 762.2 4,476.7 37.8 EPA 168.1 1,196.0 3,723.3 45.2 Treasury

  1. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, ... Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution ...

  2. Establishing an energy efficiency recommendation for commercial boilers

    SciTech Connect (OSTI)

    Ware, Michelle J.

    2000-08-01

    To assist the federal government in meeting its energy reduction goals, President Clinton's Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25th percentile of efficiency. Under the direction of DOE's Federal Energy Management Program (FEMP), the Procurement Challenge's goal is to create efficiency recommendations for all energy-using products that could substantially impact the government's energy reduction goals, like commercial boilers. A typical 5,000,000 Btuh boiler, with a thermal efficiency of 83.2%, can have lifetime energy cost savings of $40,000 when compared to a boiler with a thermal efficiency of 78%. For the federal market, which makes up 2% of the boiler market, this means lifetime energy cost savings of over $25,600,000. To establish efficiency recommendations, FEMP uses standardized performance ratings for products sold in the marketplace. Currently, the boiler industry uses combustion efficiency and, sometimes, thermal efficiency performance measures when specifying a commercial boiler. For many years, the industry has used these efficiency measures interchangeably, causing confusion about boiler performance measurements, and making it difficult for FEMP to establish the top 25th percentile of efficiency. This paper will illustrate the method used to establish FEMP's recommendation for boilers. The method involved defining a correlation between thermal and combustion efficiency among boiler classifications; using the correlation to model a data set of all the boiler types available in the market; and identifying how the correlation affected the top 25th percentile analysis. The paper also will discuss the applicability of this method for evaluating other equipment for which there are limited data on performance ratings.

  3. Biomass Boiler for Food Processing Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the ...

  4. Coal-fired boiler for petroleum refinery

    SciTech Connect (OSTI)

    Ketterman, W.R.; Heinzmann, D.A.

    1982-01-01

    There has been a significant amount of interest in conversion from oil/gas fired boilers to coal-fired equipment since the Arab oil embargo of 1973. The CRA Incorporated Coffeyville Refinery decided in 1977 to proceed with the installation of a 86.183 Kg/h coal fired boiler to generate process steam at 650 psig (4,482 k Pa) 596/sup 0/F (313/sup 0/C). A significant portion of this steam is passed through steam turbines to obtain mechanical power. Building and operating a coal-fired steam plant is a ''Different Kettle of Fish'' from building and operating an oil/gas-fired steam plant. The intention of this paper is to deal with some of the ''Why's and Wherefores'' of the conversion to coal-fired equipment.

  5. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect (OSTI)

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  6. Improve Your Boiler's Combustion Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines how to improve boiler combustion efficiency as part of an optimized steam system.

  7. Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Air Station Oceana | Department of Energy Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana January 7, 2015 - 4:52pm Addthis Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Addthis Related Articles Building Science Corporation worked with Transformations, Inc., on a subdivision of

  8. The multifamily building evaluation project

    SciTech Connect (OSTI)

    1995-03-01

    In 1991 the New York State Energy Office embarked on a comprehensive multi-year study of multifamily housing in New York City. The principal objective of the evaluation was to determine the degree to which new windows and boiler/burner retrofits installed in 22 multifamily buildings located in the New York City region save energy and whether the savings persist over a minimum of two years. Window and boiler retrofits were selected because they are popular measures and are frequently implemented with assistance from government and utility energy programs. Approaches prospectively, energy consumption monitoring and a series of on-site inspections helped explain why energy savings exceeded or fell short of expectations. In 1993, the scope of the evaluation expanded to include the monitoring of domestic hot water (DHW) consumption in order to better understand the sizing of combined heating/DHW boilers and water consumption patterns. The evaluation was one of ten proposals selected from over 100 candidates in a nationwide competition for a US Department of Energy Building Efficiency Program Grant. The Energy Office managed the project, analyzed the data and prepared the reports, Lawrence Berkeley Laboratory served as technical advisor, and EME Group (New York City) installed meters and dataloggers, collected data, and inspected the retrofits. The New York State Energy Research and Development Authority collaborated with the Energy Office on the DHW monitoring component. Results did not always follow predictable patterns. Some buildings far exceeded energy saving estimates while others experienced an increase in consumption. Persistence patterns were mixed. Some buildings showed a steady decline in energy savings while others demonstrated a continual improvement. A clear advantage of the research design was a frequent ability to explain results.

  9. Recover Heat from Boiler Blowdown, Energy Tips: STEAM, Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Recover Heat from Boiler Blowdown Heat can be recovered from boiler blowdown by using a heat exchanger to preheat boiler makeup water. Any boiler with continuous blowdown ...

  10. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  11. Professional","Government ","All Other Office"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"All Buildings*","Office Buildings" ,,"All Office","Administrative Professional","Government ","All Other Office" "All Buildings",64783,12208,6628,1549,4031 "Building...

  12. Professional","Government ","All Other Office"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"All Buildings*","Office Buildings" ,,"All Office","Administrative Professional","Government ","All Other Office" "All Buildings",4645,824,442,84,298 "Building Floorspace"...

  13. Building.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in ITER refers to plant systems located outside the Tokamak Building. A thick wall ... The cooling water system provides for the rejection of heat from a variety of ITER systems ...

  14. Minimize Boiler Short Cycling Losses

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  15. Return Condensate to the Boiler

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  16. Improve Your Boiler's Combustion Efficiency

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect (OSTI)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  18. Boiler Maximum Achievable Control Technology (MACT) Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, April 2015 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact ...

  19. Boiler Combustion Control and Monitoring System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... What Were the Benefits? boilercombustionchart.jpg The boiler combustion control and monitoring system was installed on a 25 MMBtuhr steam boiler located at the Watervliet ...

  20. Small boiler uses waste coal

    SciTech Connect (OSTI)

    Virr, M.J.

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  1. All Office Administrative/ Professional Government All Other

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey All Office Administrative Professional Government All Other Office All Buildings... 4,645 824 442 84...

  2. All Office Administrative/ Professional Government All Other

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey All Office Administrative Professional Government All Other Office All Buildings... 64,783 12,208...

  3. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    tank where heat produced from the combustion of fuels such as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while...

  4. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings...

    Energy Savers [EERE]

    All Apartments OVERHEATING IN HOT WATER AND STEAM HEATED MULTIFAMILY BUILDINGS HYDRONIC ... the effect of various multifamily boiler control strategies Method: In three ...

  5. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    increased main line air venting, radiator vent replacement, and boiler control system upgrades. Steam System Balancing and Tuning for Multifamily Residential Buildings ...

  6. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Advanced Boiler Load Monitoring Controllers (615.52 KB) More Documents & Publications Building America Technology Solutions for New and Existing Homes: Steam System Balancing and ...

  7. Office Buildings - Types of Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    administration building Insurance company headquarters building Local insurance agency Social services office Attorney's office Real estate sales office Government office State...

  8. Minimize Boiler Short Cycling Losses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minimize Boiler Short Cycling Losses Minimize Boiler Short Cycling Losses This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial...

  9. Minimize Boiler Short Cycling Losses, Energy Tips: STEAM, Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Minimize Boiler Short Cycling Losses Boiler "short cycling" occurs when an oversized boiler quickly satisfes process or space heating demands, and then shuts down until heat is ...

  10. Best Management Practice #8: Steam Boiler Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Steam Boiler Systems Best Management Practice 8: Steam Boiler Systems Steam boilers are commonly used in large heating systems, institutional kitchens, or in facilities where ...

  11. Purchasing Energy-Efficient Residential Gas Boilers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Boilers Purchasing Energy-Efficient Residential Gas Boilers The Federal Energy Management Program (FEMP) provides acquisition guidance for residential gas boilers, a product ...

  12. Property:Building/OwnershipCategory | Open Energy Information

    Open Energy Info (EERE)

    OwnershipCategory" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Government building + Sweden Building 05K0002 + Government building...

  13. Minimize Boiler Short Cycling Losses

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. Recover Heat from Boiler Blowdown

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  15. Boiler-turbine life extension

    SciTech Connect (OSTI)

    Natzkov, S.; Nikolov, M.

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  16. Furnaces and Boilers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Heating Systems » Furnaces and Boilers Furnaces and Boilers Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via

  17. Gas-Fired Boilers and Furnaces | Department of Energy

    Energy Savers [EERE]

    A vent damper prevents chimney losses by closing off a boiler's vent when the boiler isn't firing. Steam boilers benefit from vent dampers more than hot water boilers, and bigger ...

  18. Boiler using combustible fluid

    DOE Patents [OSTI]

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  19. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  20. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  1. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  2. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2004-10-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  3. Buildings | Open Energy Information

    Open Energy Info (EERE)

    work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. Related Links Buildings Gateway Retrieved from "http:en.openei.orgw...

  4. Office Buildings - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    administration building Insurance company headquarters building Local insurance agency Social services office Attorney's office Real estate sales office Government office State...

  5. Sootblowing optimization for improved boiler performance

    DOE Patents [OSTI]

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  6. Sootblowing optimization for improved boiler performance

    DOE Patents [OSTI]

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  7. Technology Solutions Case Study: Advanced Boiler Load Monitoring Controls, Chicago, Illinois

    SciTech Connect (OSTI)

    2014-09-01

    Most of Chicago’s older multifamily housing stock is heated by centrally metered steam or hydronic systems. The cost of heat is typically absorbed into the owner’s operating cost and is then passed to tenants. Central boilers typically have long service lifetimes; the incentive for retrofit system efficiency upgrades is greater than equipment replacement for the efficiency-minded owner. System improvements as the “low-hanging fruit” are familiar, from improved pipe insulation to aftermarket controls such as outdoor temperature reset (OTR) or lead/lag controllers for sites with multiple boilers. Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. In this project, the Building America team Partnership for Advanced Residential Retrofit (PARR) installed and monitored an ALM aftermarket controller, the M2G from Greffen Systems, at two Chicago area multifamily buildings with existing OTR control. Results show that energy savings depend on the degree to which boilers are oversized for their load, represented by cycling rates. Also, savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, oversized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less oversized boilers at another site showed muted savings.

  8. Annual Report to Congress on Federal Government Energy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Boiler Building ALF W ater Intake Structure PAF Scrubber Control Bldg CUF Utility Bldg ... COF Conveyor Control Bldg JSF Conveyor Switchgear Bldg COF Dry Fly Ash Eqpt Bldg Cab le ...

  9. Covered Product Category: Commercial Boilers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for commercial boilers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  10. Expert Meeting: Optimized Heating Systems Using Condensing Boilers and Baseboard Convectors

    SciTech Connect (OSTI)

    Arena, L.

    2013-01-01

    On August 11, 2011, in Denver, CO, a Building America Expert Meeting was held in conjunction with the Building America Residential Energy Efficiency Technical Update Meeting, to review and discuss results and future plans for research to improve the performance of hydronic heating systems using condensing boilers and baseboard convectors. A meeting objective was to provide an opportunity for other Building America teams and industry experts to provide feedback and specific suggestions for the planned research.

  11. Expert Meeting. Optimized Heating Systems Using Condensing Boilers and Baseboard Convectors

    SciTech Connect (OSTI)

    Arena, L.

    2013-01-01

    On August 11, 2011, in Denver, CO, a Building America Expert Meeting was held in conjunction with the Building America Residential Energy Efficiency Technical Update Meeting, to review and discuss results and future plans for research to improve the performance of hydronic heating systems using condensing boilers and baseboard convectors. A meeting objective was to provide an opportunity for other Building America teams and industry experts to provide feedback and specific suggestions for the planned research.

  12. Boiler - tuning basics, part 1

    SciTech Connect (OSTI)

    Leopold, T.

    2009-03-15

    Tuning power plant controls takes nerves of steel and an intimate knowledge of plant systems gained only by experience. Tuning controls also requires equal parts art and science, which probably is why there are so few tuning experts in the power industry. In part 1 of a two-part series, the author explores a mix of the theoretical and practical aspects of tuning boiler control. 5 figs.

  13. Fluidized bed boiler feed system

    DOE Patents [OSTI]

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  14. Unmanned boiler operation a reality in Europe

    SciTech Connect (OSTI)

    Ilg, E.

    1996-08-01

    With the rise in liquid level technology in Europe comes new standards for boiler operation. SMART technology for level probes and auxiliary equipment, means many European countries allow a boiler to operate completely unmanned (without operators) for up to 72 hours at a time. It is not just a level control system, but a total boiler control scheme. This incorporates level control, continuous TDS monitoring with blowdown, automatic timed bottom blowdown, feed water control, contamination detection systems for monitoring of incoming feed water, monitoring of exhaust stack temperatures, over pressure alarms and timed automatic blowdown of level pots. One of the main reasons for the development of the SMART equipment and the new boiler codes was to increase reliability of boiler operation. Surveys in Germany and England showed that almost 90 percent of boiler failures was due to operator error, this has almost been eliminated through the use of new equipment based on the new codes.

  15. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  16. Metallurgical failures in fossil fired boilers

    SciTech Connect (OSTI)

    French, D.N.

    1993-01-01

    This book provides a comprehensive catalog of the types of metallurgical failures common to boilers. The author uses actual case histories of boiler shutdowns, and documents the full range of causes of boiler tube failure. A blueprint is provided for cutting maintenance costs and upgrading the efficiency and reliability of any power plant operation. Individual chapters are processed separately for inclusion in the appropriate data bases.

  17. Minimize Boiler Blowdown - Steam Tip Sheet #9

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  18. Upgrade Boilers with Energy-Efficient Burners

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  19. Stress-Assisted Corrosion in Boiler Tubes

    SciTech Connect (OSTI)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  20. Oil-Fired Boilers and Furnaces | Department of Energy

    Office of Environmental Management (EM)

    Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the ...

  1. Oil-Fired Boilers and Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container...

  2. Upgrade Boilers with Energy-Efficient Burners | Department of...

    Energy Savers [EERE]

    STEAM TIP SHEET 24 Upgrade Boilers with Energy-Efficient Burners (January 2012) (416.98 ... Improve Your Boiler's Combustion Efficiency Minimize Boiler Short Cycling Losses J.R. ...

  3. Return Condensate to the Boiler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Return Condensate to the Boiler Return Condensate to the Boiler This tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #8 Return Condensate to the Boiler (January 2012) (433.53 KB) More Documents & Publications Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Minimize Boiler Blowdown Consider Installing High-Pressure Boilers with Backpressure

  4. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect (OSTI)

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  5. Paducah Package Steam Boilers to Provide Efficiency, Environmental Benefits

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Five modern, modular steam boilers have replaced three larger coal-fired boilers that comprised the steam plant at EM’s Paducah Site.

  6. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Clean Firetube Boiler Waterside Heat Transfer Surfaces The prevention of scale formation in fretube boilers can result in substantial energy savings. Scale deposits occur when ...

  7. Improve Your Boiler's Combustion Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Your Boiler's Combustion Efficiency This tip sheet outlines how to improve boiler combustion efficiency as part of an optimized steam system. STEAM TIP SHEET 4 Improve...

  8. Improve Your Boiler's Combustion Efficiency, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Your Boiler's Combustion Efficiency Combustion Efficiency Operating your boiler with an optimum amount of excess air will minimize heat loss up the stack and improve ...

  9. Boiler Upgrades and Decentralizing Steam Systems Save Water and...

    Energy Savers [EERE]

    Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval ...

  10. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Citation Details In-Document Search Title: Recovery of Water from Boiler Flue Gas Using ...

  11. Paducah Package Steam Boilers to Provide Efficiency, Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    PADUCAH, Ky. - Five modern, modular steam boilers have replaced three larger coal-fired boilers that comprised the steam plant at EM's Paducah Site. Moving to the more ...

  12. Winning the fight against boiler tube failure

    SciTech Connect (OSTI)

    Cohen, J.; Dooley, B.

    1986-12-01

    Eliminating boiler tube failures could be worth $5 billion a year to the electric power industry. The causes and cures for the great majority of these ubiquitous failures are now known, with implications for change ranging from senior management to the maintenance crew. Methods for preventing boiler tube failure are discussed.

  13. Energy Benchmarking, Rating, and Disclosure for State Governments

    Broader source: Energy.gov [DOE]

    Existing Commercial Buildings Working Group fact sheet about energy benchmarking for state governments.

  14. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating ...

  15. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, C.L.; Foote, J.P.

    1995-07-04

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  16. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, Charles L.; Foote, John P.

    1995-01-01

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

  17. Wood fuel in fluidized bed boilers

    SciTech Connect (OSTI)

    Virr, M.J.

    1982-01-01

    Development of fluidized bed fire-tube and water-tube boilers for the burning of wood, gas, and refuse-derived fuel will be reviewed. Experience gained in already installed plants will be outlined. Research experiments results on the use of various forms of wood and other biomass fuels, such as wood chips, pellets, peach pits, nut shells and kernels and refuse-derived fuels, will be described for small and medium sized fire-tube boilers, and for larger water-tube boilers for co-generation. (Refs. 4).

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Board of Building Standards is the primary state agency that protects the public's safety by: adopting rules governing the construction, repair, and rehabilitation of buildings in the state;...

  20. Commercial Buildings Characteristics 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    the sponsor the government, utility or sponsored in-house. Energy Management and Control System Heating or cooling system monitored or controlled by a computerized building...

  1. Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs- Central Florida (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from Building America Partnership for Improved Residential Construction worked with the City of Melbourne, Florida, to develop and implement best practices for renovating distressed homes to achieve annual energy savings of 15%-30% and higher

  2. Boiler scale prevention employing an organic chelant

    DOE Patents [OSTI]

    Wallace, Steven L.; Griffin, Jr., Freddie; Tvedt, Jr., Thorwald J.

    1984-01-01

    An improved method of treating boiler water which employs an oxygen scavenging compound and a compound to control pH together with a chelating agent, wherein the chelating agent is hydroxyethylethylenediaminetriacetic acid.

  3. Clean Boiler Waterside Heat Transfer Surfaces

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  4. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications (EIA)

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  5. Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site

    SciTech Connect (OSTI)

    Daling, P.M.; Graham, T.M.

    1997-08-01

    The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

  6. Boiler MACT Technical Assistance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012. This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.

  7. Boiler house modernization through shared savings program

    SciTech Connect (OSTI)

    Breault, R.W.

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  8. Buildings","All Heated

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Heating Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",4657,4016,492,1460,894,96,581,1347,185 "Building

  9. Gwitchyaa Zhee Gwich'in Tribal Government Counteracts High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gwitchyaa Zhee Gwich'in Tribal Government Counteracts High Energy Costs, Climate Challenges with Building Energy Retrofits Gwitchyaa Zhee Gwich'in Tribal Government Counteracts...

  10. Energy Benchmarking, Rating, and Disclosure for Local Governments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Governments Energy Benchmarking, Rating, and Disclosure for Local Governments Existing Commercial Buildings Working Group fact sheet about energy benchmarking. Energy ...

  11. Conceptual Design of Supercritical O2-Based PC Boiler (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Conceptual Design of Supercritical O2-Based PC Boiler Citation Details In-Document Search Title: Conceptual Design of Supercritical O2-Based PC Boiler No abstract ...

  12. Conceptual Design of Supercritical O2-Based PC Boiler (Technical...

    Office of Scientific and Technical Information (OSTI)

    Conceptual Design of Supercritical O2-Based PC Boiler Citation Details In-Document Search Title: Conceptual Design of Supercritical O2-Based PC Boiler You are accessing a ...

  13. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Ultra-Supercritical Pressure CFB Boiler ... Although CFB boilers as large as 300 MWe are now in operation, they are drum type, ...

  14. Minimize Boiler Blowdown, Energy Tips: STEAM, Steam Tip Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    may lead to carryover of boiler water into the steam, or the formation of deposits. ... 108,696 - 106,383 2,313 lbhr Enthalpy of Boiler Water 338.5 Btulb; for ...

  15. Energy Cost Savings Calculator for Commercial Boilers: Closed...

    Office of Environmental Management (EM)

    Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtuhr* What is the ...

  16. Energy Benchmarking, Rating, and Disclosure for Local Governments

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2012-05-23

    Provides information on how access to energy use data can help local governments create policies for benchmarking and disclosing building energy performance for public and private sector buildings.

  17. Consider Installing High-Pressure Boilers with Backpressure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine-Generators | Department of Energy High-Pressure Boilers with Backpressure Turbine-Generators Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators This tip sheet outlines the benefits of high-pressure boilers with backpressure turbine-generators as part of optimized steam systems. STEAM TIP SHEET #22 Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators (January 2012) (513.44 KB) More Documents & Publications Replace

  18. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  19. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  20. Slag monitoring for utility boilers: Final report

    SciTech Connect (OSTI)

    Anson, D.; Barrett, R.E.; Litt, R.D.; Paisley, M.A.

    1988-04-01

    This report provides a detailed description of commercially available slag monitoring techniques and some developing concepts for slag monitoring. Slag monitoring is currently being evaluated by several organizations as a means of controlling and optimizing sootblowers. The potential benefits from slag monitoring can represent significant savings in utility operating costs. Six types of heat flux meters are described as they are presently being used in utility boilers. These direct monitoring techniques determine local conditions within the furnace. Each application is described with current results and future plans. Boiler heat balance models provide an indirect technique for monitoring the general cleanliness/fouling of major boiler sections. Each model is described with current results at a representative installation. Several developing concepts of slag monitoring are described and evaluated. Four promising concepts, acoustic attenuation, a simplified heat balance model, sonic pyrometry, and ultrasonic pulse reflection, are recommended for further development and evaluation. 16 refs., 34 figs., 4 tabs.

  1. Better Buildings Federal Award | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    winner of the 2013 Better Buildings Federal Award. The Federal Energy Management Program's (FEMP) Better Buildings Federal Award recognizes the federal government's ...

  2. Building Energy Code | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  3. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  4. Building Energy Codes Program | Department of Energy

    Office of Environmental Management (EM)

    The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and ...

  5. Commissioning and first operational experience with the biomass fired boiler at Sonderjyllands Hojspaendingsvaerk

    SciTech Connect (OSTI)

    Ramsgaard-Nielsen, C.

    1998-07-01

    The biomass boiler plant at Sonderjyllands Hojspaendingsvaerk consists of a Benson type boiler with a screw stoker/vibration grate combustion system generating 120 t/h of steam at 200 bar and 470 C, which is finally superheated to 542 C in a separate wood chip fired superheater with a spreaderstoker/vibration grate combustion system. The biomass boiler is coupled to the 660 MW coal fired power plant Ensted 3 (EV3) on the water/steam side, and it generates 41 MW at a net electrical efficiency of 40%. Building of the biomass boiler plant at Sonderjyllands Hojspaendingsvaerk was decided by the ELSAM power pool in December 1994, and the erection of the plant was completed in the autumn 1997. Commissioning started in the summer of 1997. This paper describes the plant with focus on the biomass handling and combustion systems and the water/steam coupling to EV3. The plant description is followed by a description of the commissioning phases and the commissioning experience with fuel handling and combustion systems. Finally, the first operational experience is described.

  6. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  7. Waste combustion in boilers and industrial furnaces

    SciTech Connect (OSTI)

    1997-12-31

    This set of conference papers deals with the combustion of hazardous wastes in boilers and industrial furnaces. The majority of the papers pertain specifically to cement industry kiln incinerators and focus on environmental issues. In particular, stack emission requirements currently enforced or under consideration by the U.S. EPA are emphasized. The papers were drawn from seven areas: (1) proposed Maximum Achievable Control Technology rule, (2) trial burn planning and experience, (3) management and beneficial use of materials, (4) inorganic emissions and continuous emission monitoring, (5) organic emissions, (6) boiler and industrial furnace operations, and (7) risk assessment and communication.

  8. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    SciTech Connect (OSTI)

    Liss, William E; Cygan, David F

    2013-04-17

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to

  9. Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

  10. Purchasing Energy-Efficient Commercial Boilers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for commercial boilers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  11. Best Management Practice #8: Steam Boiler Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  12. The next generation of oxy-fuel boiler systems

    SciTech Connect (OSTI)

    Ochs, Thomas L.; Gross, Alex; Patrick, Brian; Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  13. Leadership, Governance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership, Governance Leadership, Governance The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Science, technology, and engineering work at Los Alamos benefits from strong leaders, rigorous governance The people of Los Alamos National Laboratory are held by customers, as well as their own senior managers, to very

  14. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Project objectives: Construct a ground sourced heat pump, heating, ventilation, and air conditioning system for the new Oakland University Human Health Sciences Building utilizing variable refrigerant flow (VRF) heat pumps. A pair of dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

  15. Public Order and Safety Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    | Activity Subcategories | Energy Use Public Order and Safety Buildings... Volunteer fire stations tend not to be government owned, which probably explains why 33 percent of...

  16. Ideas that Work!. Retuning the Building Automation System

    SciTech Connect (OSTI)

    Parker, Steven

    2015-03-01

    A building automation system (BAS) can save considerable energy by effectively and efficiently operating building energy systems (fans, pumps, chillers boilers, etc.), but only when the BAS is properly set up and operated. Tuning, or retuning, the BAS is a cost effective process worthy of your time and attention.

  17. Oxy-Combustion Boiler Material Development

    SciTech Connect (OSTI)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  18. Oxy-Combustion Boiler Material Development

    SciTech Connect (OSTI)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  19. Guide to Low-Emission Boiler and Combustion Equipment Selection

    SciTech Connect (OSTI)

    Oland, CB

    2002-05-06

    Boiler owners and operators who need additional generating capacity face a number of legal, political, environmental, economic, and technical challenges. Their key to success requires selection of an adequately sized low-emission boiler and combustion equipment that can be operated in compliance with emission standards established by state and federal regulatory agencies. Recognizing that many issues are involved in making informed selection decisions, the U.S. Department of Energy (DOE), Office of Industrial Technologies (OIT) sponsored efforts at the Oak Ridge National Laboratory (ORNL) to develop a guide for use in choosing low-emission boilers and combustion equipment. To ensure that the guide covers a broad range of technical and regulatory issues of particular interest to the commercial boiler industry, the guide was developed in cooperation with the American Boiler Manufacturers Association (ABMA), the Council of Industrial Boiler Owners (CIBO), and the U.S. Environmental Protection Agency (EPA). The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussions about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. Although information in the guide is primarily applicable to new ICI boilers, it may also apply to existing boiler installations.

  20. Computers in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Government-owned buildings of all types, had, on average, more than one computer per person (1,104 computers per thousand employees). They also had a fairly high ratio of...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  2. Particulate emission abatement for Krakow boiler houses

    SciTech Connect (OSTI)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  3. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect (OSTI)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  4. Purchasing Energy-Efficient Commercial Boilers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers Purchasing Energy-Efficient Commercial Boilers The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial boilers, a product category covered by FEMP-designated efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law. FEMP's acquisition guidance and

  5. Consider Installing High-Pressure Boilers with BackpressureTurbine...

    Broader source: Energy.gov (indexed) [DOE]

    with backpressure turbine-generators as part of optimized steam systems. STEAM TIP SHEET 22 Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators (January ...

  6. Recover Heat from Boiler Blowdown | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Recover Heat from Boiler Blowdown (January 2012) More Documents & Publications Install an Automatic Blowdown-Control System Flash High-Pressure Condensate to Regenerate ...

  7. Oxy-Combustion Boiler Material Development (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to ... Test coupons of boiler tube materials were coated with deposits representative of those ...

  8. Biomass Boiler and Furnace Emissions and Safety Regulations in...

    Open Energy Info (EERE)

    in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency...

  9. Gas-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    natural gas meter. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels....

  10. Clean Boiler Waterside Heat Transfer Surfaces | Department of...

    Energy Savers [EERE]

    STEAM TIP SHEET 7 Clean Boiler Waterside Heat Transfer Surfaces (April 2012) (395.4 KB) More Documents & Publications Consider Installing Turbulators on Two- and Three-Pass ...

  11. Recover Heat from Boiler Blowdown | Department of Energy

    Energy Savers [EERE]

    STEAM TIP SHEET 10 Recover Heat from Boiler Blowdown (January 2012) (372.21 KB) More Documents & Publications Install an Automatic Blowdown-Control System Consider Installing a ...

  12. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect (OSTI)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  13. Return Condensate to the Boiler - Steam Tip Sheet #8

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. Building Standards Lead-by-Example Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards Lead-by-Example Resources Building Standards Lead-by-Example Resources State and local governments can lead by example by promoting energy efficiency programs and policies for public facilities, equipment, and government operations. Find building standards lead-by-example resources below. DOE Resource National Best Practices Manual For Building High Performance Schools. Other Resource Roadmap to Green Government Buildings

  15. BUILDING AMERICA PROGRAM EVALUATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BUILDING AMERICA PROGRAM EVALUATION _______________________________ Volume II: Appendices Prepared by: Energy Technology Innovation Project (ETIP) Kennedy School of Government, Harvard University Vicki Norberg-Bohm, Principal Investigator Chad White, Lead Author September 2004 Appendix A. Building America Program Intent and Scope 1 Appendix A-1. Program Overview A-1.1. Program History Building America has its origins in a 1993 pilot project between DOE and a housing products unit at General

  16. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy

  17. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey (CBECS) 8. Heating equipment, number of buildings, 2012 Released: May 2016 Number of buildings (thousand) All buildings Buildings with space heating Heating equipment (more than one may apply) Heat pumps Furnaces Indiv- idual space heaters District heat Boilers Pack- aged heating units Other All buildings 5,557 4,722 628 755 1,247 48 544 2,802 62 Building floorspace (square feet) 1,001 to 5,000 2,777 2,257 286 359 612 Q 128 1,259 Q 5,001 to 10,000 1,229 1,046 147

  18. Materials development for ultra-supercritical boilers

    SciTech Connect (OSTI)

    2005-09-30

    Progress is reported on a US Department of Energy project to develop high temperature, corrosion resistant alloys for use in ultra-supercritical steam cycles. The aim is to achieve boiler operation at 1,400{sup o}F/5,000 psi steam conditions with 47% net cycle efficiency. Most ferritic steel tested such as T92 and Save 12 showed severe corrosion. Nickel-based alloys, especially IN 740 and CCA 617, showed greatest resistance to oxidation with no evidence of exfoliation. Laboratory and in-plant tests have begun. 2 figs.

  19. Green wood chip gasification due under boiler

    SciTech Connect (OSTI)

    Not Available

    1981-12-14

    It is reported that Applied Engineering Co. has begun installing the first greenwood chip gasification system to be used in conjunction with fossil fuels at Florida Power Corp's Suwannee generating station near Lake City, Florida. The unit's design capacity is about 37 MMBTU/hour and will provide as much as 25% of the fuel requirements of a large utility type natural gas boiler under normal load conditions. The system is expected to back out as much as 1 million gal/year of fuel oil at a savings of approximately $850,000/year.

  20. Tax Deductions for Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Deductions for Commercial Buildings Tax Deductions for Commercial Buildings This document has information regarding tax deductions for commercial building owners. bt_comm_tax_credit.pdf (183.01 KB) More Documents & Publications P Financial Incentives Available for Facilities Affected by the US EPA Boiler MACT Proposed Rule, December 2012 Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study; NREL's Technical Assistance to Greensburg, June 2007-May 2009; Appendices

  1. Buildings | Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results

  2. Gas reburn retrofit on an industrial cyclone boiler

    SciTech Connect (OSTI)

    Farzan, H.; Latham, C.E.; Maringo, G.J.

    1996-01-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, is being retrofitted with the gas reburning technology developed by Babcock & Wilcox (B & W) to reduce NO{sub x} emissions in order to comply with the Title I, ozone nonattainment, of the Clean Air Act Amendments (CAAA) of 1990. The required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit set in New York`s regulation is about 47%. Eastman Kodak and the Gas Research Institute (GRI) are cosponsoring this project. B & W is the prime contractor and contract negotiations with Chevron as the gas supplier are presently being finalized. Equipment installation for the gas reburn system is scheduled for a September 1995 outage. No. 43 Boiler`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow or approximately equivalent to 60 MW{sub e}. Because of the compact boiler design, there is insufficient gas residence time to use pulverized coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Based on successful completion of this gas reburn project, modifying the other three cyclone boilers with gas reburn technology is anticipated. The paper will describe B & W`s gas reburn data from a cyclone-equipped pilot facility (B & W`s Small Boiler Simulator), gas reburn design information specific to Eastman Kodak No. 43 Boiler, and numerical modeling experiences based on the pilot-scale Small Boiler Simulator (SBS) results along with those from a full-scale commercial boiler.

  3. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America ...

  4. Better Buildings Challenge Accelerator Support - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through the Better Buildings Energy Data Accelerator, local governments are joining forces with their utilities so that commercial and multifamily building owners can more easily ...

  5. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    SciTech Connect (OSTI)

    Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

    2013-09-30

    ) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

  6. Buildings","All Heated

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Heating Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",67338,61602,8923,14449,17349,5534,19522,25743,4073

  7. Energy Conservation Program: Energy Conservation Standards for Residential Boilers, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Residential Boilers, Notice of Proposed Rulemaking

  8. Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

  9. Boiler Maximum Achievable Control Technology (MACT) Technical Assistance- Fact Sheet, April 2015

    Broader source: Energy.gov [DOE]

    Fact sheet about the Boiler Maximum Achievable Control Technology (MACT) Technical Assistance Program

  10. 2015-12-29 Consumer Furnaces and Boilers Test Procedures Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Consumer Furnaces and Boilers

  11. DOE TAP Webcast 17: State Policies to Encourage Green Building Principles

    Broader source: Energy.gov [DOE]

    Colorado Green Government Program, recent Colorado legislation supporting renewable energy and energy efficiency, state buildings

  12. States Government

    Office of Legacy Management (LM)

    ,.' &I ,J?5.8 = , sr; i&L:E%, 7-e;, iB 1 L Unitbd ' States Government ma.morandum DATE: $I$! 24 ml1 Department of Energy y;;;z EM-421 .- Elimination of the Landis Machine Company site SVWECT: The File TO: I have reviewed the attached site summary and elimination recommendation for the Landis Machine Company site in Waynesboro, Pennsylvania. I have determined that there is little likelihood of radioactive contamination at this site. Based' on the above, the Landis Machine Company site is

  13. NOx Control for Utility Boiler OTR Compliance

    SciTech Connect (OSTI)

    Hamid Farzan

    2003-12-31

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

  14. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  15. Rapid ignition of fluidized bed boiler

    DOE Patents [OSTI]

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  16. Kenya-Danish Government Baseline Workstream | Open Energy Information

    Open Energy Info (EERE)

    Government Partner Danish Ministry for Climate, Energy, and Building; The Danish Energy Agency Sector Energy Topics Implementation, Low emission development planning Program...

  17. Vietnam-Danish Government Baseline Workstream | Open Energy Informatio...

    Open Energy Info (EERE)

    Government Partner Danish Ministry for Climate, Energy, and Building; The Danish Energy Agency Sector Energy Topics Implementation, Low emission development planning Program...

  18. Thailand-Danish Government Baseline Workstream | Open Energy...

    Open Energy Info (EERE)

    Government Partner Danish Ministry for Climate, Energy, and Building; The Danish Energy Agency Sector Energy Topics Implementation, Low emission development planning Program...

  19. Retro-Commissioning for State and Local Governments

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2012-05-23

    Describes how state and local governments can lead by example by retro-commissioning their own buildings and adopting retro-commissioning policies for the private sector.

  20. Open Government Plan 2.0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2.0 Open Government Plan 2.0 The Energy Department is continuing to spearhead Open Government with six new initiatives outlined in this plan. These new initiatives focus on the third pillar of Open Government: collaboration. From incentivizing developers to use utility data to build apps that help consumers better understand their electricity bills to tapping into the ingenuity of its users to build a better EIA.gov, the Energy Department seeks to use stakeholder input to improve how government

  1. Oil-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown...

  2. New Boilers, Big Savings for Minnesota County | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    However, hopes for a new set of boilers were revived in April after the county received a ... Local contractor El-Jay Plumbing & Heating of St. Cloud, Minn., will install the new ...

  3. Recover Heat from Boiler Blowdown - Steam Tip Sheet #10

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  4. Minimize Boiler Short Cycling Losses - Steam Tip Sheet #16

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  5. Minimize Boiler Short Cycling Losses - Steam Tip Sheet #16

    SciTech Connect (OSTI)

    2006-01-01

    This revised AMO tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. Improved Heat Recovery in Biomass-Fired Boilers

    SciTech Connect (OSTI)

    2009-11-01

    This factsheet describes a research project whose goal is to reduce corrosion and improve the life span of boiler superheater tubes operating at temperatures above the melting point of ash deposits.

  7. Gas-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the...

  8. Better Buildings Neighborhood Program | Department of Energy

    Energy Savers [EERE]

    selected state and local governments develop sustainable programs to upgrade the energy efficiency of homes and buildings. These leading communities used innovation and...

  9. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    the sponsor the government, utility or sponsored in-house. Energy Management and Control System Heating or cooling system monitored or controlled by a computerized building...

  10. Brief introduction of GEF efficient industrial boiler project in China

    SciTech Connect (OSTI)

    Meijian, T.

    1996-12-31

    The present situation of installed industrial boilers, their efficiency and environmental impact are assessed. And the factors contribute to the low efficiency and serious pollution are summarized. Based on WB-assisted GEF project, {open_quotes}Efficient Industrial Boiler Project{close_quotes} aimed at CO{sub 2} mitigation in China, a series of effective measures to bring the GHG emission under control are addressed, in technology, system performance, and operation management aspects.

  11. Biomass Boiler to Heat Oregon School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden

  12. Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Applications Only | Department of Energy Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable

  13. Guide to Low-Emission Boiler and Combustion Equipment Selection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussion about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. It is part of a suite of publications offered by the Department of Energy to improve steam system performance.

  14. Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings- Steam Systems, Retrofit Measure Packages, Hydronic Systems

    Broader source: Energy.gov [DOE]

    This presentation is included in the July 16, 2014, Building America webinar, and provides information about best practices, costs, and savings associated with optimizing steam and hydronic systems through increased main line air venting, replacing radiator vents, improving circulation pump efficiency, and upgrading boiler control systems.

  15. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  16. Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

    SciTech Connect (OSTI)

    None, None

    1998-12-02

    In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled "Krakow Clean Fossil Fuels and Energy Efficiency Program." The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI's cooperative agreement is to apply combustion controls to existing boiler plants in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI's combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.

  17. Cofiring Wood and Coal to Stoker Boilers in Pittsburgh

    SciTech Connect (OSTI)

    Cobb, J.T., Jr.; Elder, W.W.

    1997-07-01

    The prime objective of the University of Pittsburgh's overall wood/coal cofiring program is the successful introduction of commercial cofiring of urban wood wastes into the stoker boilers of western Pennsylvania. Central to this objective is the demonstration test at the Pittsburgh Brewing Company. In this test the project team is working to show that two commercially-available clean wood wastes - tub-ground pallet waste and chipped clearance wood - can be included in the fuel fed daily to an industrial stoker boiler. Irrespective of its economic outcome, the technical success of the demonstration at the brewery will allow the local air quality regulation agency to permit a parametric test at the Bellefield Boiler Plant. The objective of this test is to obtain comprehensive data on all key parameters of this operational boiler while firing wood with coal. The data would then be used for thorough generic technical and economic analyses. The technical analysis would be added to the open literature for the general planning and operational guidance for boiler owners and operators. The economic analysis would gage the potential for providing this stoker fuel commercially in an urban setting and for purchasing it regularly for combustion in an urban stoker boiler.

  18. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey (CBECS) 7. Occupancy of nongovernment-owned and government-owned buildings, number of buildings, 2012 Released: May 2016 Number of buildings (thousand) Nongovernment-owned buildings Government-owned buildings All buildings All buildings Owner occupied Leased to tenant(s) Owner occupied and leased Unocc-upied All buildings Federal State Local All buildings 5,557 4,781 2,466 1,745 349 221 776 33 185 558 Building floorspace (square feet) 1,001 to 5,000 2,777 2,435

  19. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ... Water ......",33,32,6,8,"Q",24,"Q","N" "Propane ......",502,489,179,40,59...

  20. Better Buildings Challenge Accelerator Support- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Monisha Shah, National Renewable Energy Laboratory Through the Better Buildings Energy Data Accelerator, local governments are joining forces with their utilities so that commercial and multifamily building owners can more easily access whole-building energy usage data.

  1. Nevada Energy Code for Buildings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  2. State & Local Government | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State & Local Government State & Local Government The roof of the 12-story Chicago City Hall building has been retrofitted with a 22,000 square-foot rooftop garden to reduce urban air temperature. | Credit: Katrin Scholz-Barth The roof of the 12-story Chicago City Hall building has been retrofitted with a 22,000 square-foot rooftop garden to reduce urban air temperature. | Credit: Katrin Scholz-Barth State and local governments play an important role in the everyday lives of people

  3. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOE Patents [OSTI]

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  4. Oregon Hospital Heats Up with a Biomass Boiler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler December 27, 2012 - 4:30pm Addthis Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler --

  5. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  6. Postcombustion and its influences in 135 MWe CFB boilers

    SciTech Connect (OSTI)

    Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue

    2009-09-15

    In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

  7. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    SciTech Connect (OSTI)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  8. Energy Information Administration (EIA)- About the Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey (CBECS) 9. Heating equipment, floorspace, 2012 Released: May 2016 Total floorspace (million square feet) All buildings Buildings with space heating Heating equipment (more than one may apply) Heat pumps Furnaces Indiv- idual space heaters District heat Boilers Pack- aged heating units Other All buildings 87,093 80,078 11,846 8,654 20,766 5,925 22,443 49,188 1,574 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 868 1,091 1,747 Q 400 3,809 Q 5,001 to

  9. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  10. Plasma-supported coal combustion in boiler furnace

    SciTech Connect (OSTI)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  11. Oil ash corrosion; A review of utility boiler experience

    SciTech Connect (OSTI)

    Paul, L.D. ); Seeley, R.R. )

    1991-02-01

    In this paper a review of experience with oil ash corrosion is presented along with current design practices used to avoid excessive tube wastage. Factors influencing oil ash corrosion include fuel chemistry, boiler operation, and boiler design. These factors are interdependent and determine the corrosion behavior in utility boilers. Oil ash corrosion occurs when vanadium-containing ash deposits on boiler tube surfaces become molten. These molten ash deposits dissolve protective oxides and scales causing accelerated tube wastage. Vanadium is the major fuel constituent responsible for oil ash corrosion. Vanadium reacts with sodium, sulfur, and chlorine during combustion to produce lower melting temperature ash compositions, which accelerate tube wastage. Limiting tube metal temperatures will prevent ash deposits from becoming molten, thereby avoiding the onset of oil ash corrosion. Tube metal temperatures are limited by the use of a parallel stream flow and by limiting steam outlet temperatures. Operating a boiler with low excess air has helped avoid oil ash corrosion by altering the corrosive combustion products. Air mixing and distribution are essential to the success of this palliative action. High chromium alloys and coatings form more stable protective scaled on tubing surfaces, which result in lower oil ash corrosion rates. However, there is not material totally resistant to oil ash corrosion.

  12. Slag monitoring system for combustion chambers of steam boilers

    SciTech Connect (OSTI)

    Taler, J.; Taler, D.

    2009-07-01

    The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

  13. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    SciTech Connect (OSTI)

    Gandy, David W.; Shingledecker, John P.

    2011-05-11

    Coal-fired power plants are a significant part of the nation's power generating capacity, currently accounting for more than 55% of the country's total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760°C (1400°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

  14. Developing Government Renewable Energy Projects

    SciTech Connect (OSTI)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  15. Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings, Saves $730 Million on Energy Bills

    Broader source: Energy.gov [DOE]

    Building on President Obama’s Climate Action Plan and the Administration’s Better Buildings Initiative, the Energy Department announced today that the Department’s Better Buildings Neighborhood Program has helped more than 40 state and local governments upgrade more than 100,000 buildings and save families and businesses over $730 million on utility bills.

  16. Task 2 Materials for Advanced Boiler and Oxy-combustion Systems...

    Office of Scientific and Technical Information (OSTI)

    Task 2 Materials for Advanced Boiler and Oxy-combustion Systems (NETL-US) Citation Details In-Document Search Title: Task 2 Materials for Advanced Boiler and Oxy-combustion Systems ...

  17. Detection and Control of Deposition on Pendant Tubes in Kraft Chemical Recovery Boilers

    Broader source: Energy.gov [DOE]

    The kraft chemical recovery boilers used for pulp processing are large and expensive and can be the limiting factor for mill capacity. Improvements in boiler efficiency with better control of...

  18. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Simulation Protocols (Building America Benchmark) - Building America Top Innovation House Simulation Protocols (Building America Benchmark) - Building America Top Innovation ...

  19. Work with Us | Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Us At NREL, industry, universities, and government agencies have many opportunities to take advantage of our residential and commercial buildings expertise. Here's how you can work with us to improve the energy efficiency of your buildings. NREL's award-winning work with the commercial and public sectors to improve building energy performance is central to its mission. Learn about our awards. Partner with Us You can work with our experts and use NREL's outstanding facilities and

  20. Mercantile Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are...

  1. Education Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high...

  2. Better Buildings

    Broader source: Energy.gov [DOE]

    The Better Buildings Initiative aims to make commercial and industrial buildings 20% more energy efficient by 2020 and accelerate private sector investment in energy efficiency.

  3. Building Performance Database | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Database Building Performance Database Building Performance Database The Building Performance Database (BPD) is the nation's largest dataset of information about the energy-related characteristics of commercial and residential buildings. The BPD combines, cleanses and anonymizes data collected by Federal, State and local governments, utilities, energy efficiency programs, building owners and private companies, and makes it available to the public. The web site allows users to explore

  4. Characterization of the U.S. Industrial/Commercial Boiler Population -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report, May 2005 | Department of Energy U.S. Industrial/Commercial Boiler Population - Final Report, May 2005 Characterization of the U.S. Industrial/Commercial Boiler Population - Final Report, May 2005 The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in the industrial and commercial sector in terms of number of units, aggregate capacity,

  5. Study of oil combustion in the TGMP-314 boiler with hearth burners

    SciTech Connect (OSTI)

    Usman, Yu.M.; Shtal'man, S.G.; Enyakin, Yu.P.; Abryutin, A.A.; Levin, M.M.; Taran, O.E.; Chuprov, V.V.; Antonov, A.Yu.

    1983-01-01

    Studies of the TGMP-314 boiler with hearth configured burners included the gas mixture in the boiler, the degree of fuel combustion at various heights in the boiler, hydrogen sulfide content in the near-wall zones of the boiler, and temperature distribution fields. Experimental data showed that the hearth burners, in conjunction with steam-mechanical atomizing burners, operate with the least possible excess air over a wide range of load changes. The operation and performance of the hearth burners are discussed.

  6. Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide presents useful information for evaluating the viability of cogeneration for new or existing ICI boiler installations.

  7. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop materials and coatings to reduce corrosion and improve the life span of boiler superheater tubes exposed to high-temperature biomass exhaust. This improvement in boiler ef ciency will reduce fuel consumption, fuel cost, and CO 2 emissions. Introduction Industrial boilers are commonly used to make process steam, provide

  8. Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines the benefits of turbulators on firetube boilers as part of optimized steam systems.

  9. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers

    Office of Energy Efficiency and Renewable Energy (EERE)

    Factsheet describing the project goal to reduce corrosion and improve the life span of boiler superheater tubes

  10. Modeling of a coal-fired natural circulation boiler

    SciTech Connect (OSTI)

    Bhambare, K.S.; Mitra, S.K.; Gaitonde, U.N.

    2007-06-15

    Modeling of a natural circulation boiler for a coal-fired thermal power station is presented here. The boiler system is divided into seven subcomponents, and for each section, models based on conservation of mass, momentum, and energy are formulated. The pressure drop at various sections and the heat transfer coefficients are computed using empirical correlations. Solutions are obtained by using SIMULINK. The model is validated by comparing its steady state and dynamic responses with the actual plant data. Open loop responses of the model to the step changes in the operating parameters, such as pressure, temperature, steam flow, feed water flow, are also analyzed. The present model can be used for the development and design of effective boiler control systems.