National Library of Energy BETA

Sample records for global warming gases

  1. Table 1. U.S. emissions of greenhouse gases, based on global warming potential,

    U.S. Energy Information Administration (EIA) Indexed Site

    emissions of greenhouse gases, based on global warming potential, 1990-2009" " (Million Metric Tons of Carbon Dioxide Equivalent)" " Greenhouse Gas",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 "Carbon

  2. Table 5. Greenhouse gases and 100-year net global warming potentials

    U.S. Energy Information Administration (EIA) Indexed Site

    Greenhouse gases and 100-year net global warming potentials" "Greenhouse Gas Name","Formula","GWP" ,,"SAR1","TAR2","AR43" "(1) Carbon Dioxide","CO2",1,1,1 "(2) Methane","CH4",21,23,25 "(3) Nitrous Oxide","N2O",310,296,298 "(4) Hydroflourocarbons" "HFC-23 (trifluoromethane)","CHF3",11700,12000,14800 "HFC-32

  3. ARM - What Causes Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ThinkersWhat Causes Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What Causes Global Warming? What is the basis for the predictions concerning global warming? There are several gases in the air, collectively called greenhouse gases, that trap the infrared radiation emitted

  4. ARM - Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  5. ARM - Lesson Plans: Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Warming Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global ...

  6. Global warming from HFC

    SciTech Connect (OSTI)

    Johnson, E.

    1998-11-01

    Using a variety of public sources, a computer model of hydrofluorocarbon (HFC) refrigerant emissions in the UK has been developed. This model has been used to estimate and project emissions in 2010 under three types of scenarios: (1) business as usual; (2) voluntary agreements to reduce refrigerant leakage; and (3) comprehensive regulations to reduce refrigerant leakage. This resulting forecast is that UK emissions of HFC refrigerants in 2010 will account for 2% to 4% of the UK`s 1990 baseline global warming contribution.

  7. ARM - What is Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is Global Warming? Our earth's average temperature stays pretty much the same from year to year. Sometimes it gets very cold in the winter and very hot in the summer where you live. And some years may be a little hotter

  8. ARM - What is Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is Global Warming? The surface temperature of each of the planets in our solar system depends on a process called the heat budget. This budget, like any other type of budget, remains balanced if the amount (of energy)

  9. Global warming: Science or politics. Part 1

    SciTech Connect (OSTI)

    Dorweiler, V.P.

    1998-04-01

    ``The balance of evidence suggests that there has been a discernible influence of human activity on global climate`` is a statement employed as the foundation basis to intervene on behalf of the globe and the future. That statement, as scientific evidence of human-produced greenhouse gases (primarily CO{sub 2}) having a warming effect on global climate is a political statement only. Further, the Kyoto conference to consider intervention in human activities regarding global warming was a political conference. Political and treaty issues were the focus; scientific issues were not much discussed. What change is needed then to scientifically determine global warming and to ascertain whether human activity is involved? A better understanding of the natural climate variations related to solar variation can improve understanding of an anthropogenic greenhouse effect on the climate. The purpose of this article is to pose the scientific question. Part 2 will present an answer.

  10. Integrated assessment of global warming

    SciTech Connect (OSTI)

    Ott, K.O.

    1996-12-31

    The anomalies of sea surface temperatures, which show a warming trend since the 1850s through the decade 1960/70 of {Delta}SST {approximately} 0.3 C, are complemented by changes of the ground surface temperature ({Delta}GST). The global surface temperature change, based on these data, allows an integrated assessment of the associated increase in black-body irradiance and a comparison with the enhanced greenhouse-gas back-scattering. Information on the GST history is obtained from unfolding analyses of underground temperature distributions measured in 90 boreholes in Alaskan permafrost and Canadian bedrock. These analyses show GST increases ({Delta}GST) since the 19th century through 1960/70 of 3 C on average, with standard deviations of +1.8 C and {minus}0.9 C on the high and low end respectively. The onset of the warming trend, which is uncertain in the GST data, is timed more accurately by detailed length records of large valley glaciers in the US and the Alps. Evaluation of the heat capacities and heat transfer indicates that the temperature response to an increase in radiative forcing must be much larger on land than on the sea. Conversely, the observed large ratio of {Delta}GST and {Delta}SST can only be explained by increased radiative forcing. From 1960/70 through the warmest decade on record, 1980/90, global {Delta}SST and {Delta}SAT have further increased to 0.6 C and 0.8 C respectively, But, the most recent GST data are not accurate enough to extend the comparison through 1990. Calculation of the increase of radiative forcing from back-scattering of greenhouse gases for 1850 to 1970 yields 1.3 W/cm{sup 2}. The increase in black-body irradiance from 3.6 C warming on land and 0.3 C on sea provides the required balance. The warming on land of 3.6 C is larger than the average value of 3.0 C, but well within the observed range.

  11. ARM - What Are the Effects of Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What Are the Effects of Global Warming? As greenhouse gases continue to increase, the earth may experience significant climate changes. In addition, there are many other impacts that global warming can have on the earth. You can learn more

  12. Global warming, global research, and global governing

    SciTech Connect (OSTI)

    Preining, O.

    1997-12-31

    The anticipated dangers of Global Warming can be mitigated by reducing atmospheric greenhouse gas concentrations, especially CO{sub 2}. To reach acceptable, constant levels within the next couple of centuries it might be necessary to accept stabilization levels higher than present ones, The annual CO{sub 2} emissions must be reduced far below today`s values. This is a very important result of the models discussed in the 1995 IPCC report. However, any even very modest scenario for the future must take into account a substantial increase in the world population which might double during the 21st century, There is a considerable emission reduction potential of the industrialized world due to efficiency increase, However, the demand for energy services by the growing world population will, inspite of the availability of alternative energy resources, possibly lead to a net increase in fossil fuel consumption. If the climate models are right, and the science community believes they are, we will experience a global warming of the order of a couple of degrees over the next century; we have to live with it. To be prepared for the future it is essential for us to use new research techniques embracing not only the familiar fields of hard sciences but also social, educational, ethical and economic aspects, We must find a way to build up the essential intellectual capacities needed to deal with these kinds of general problems within all nations and all societies. But this is not Although, we also have to find the necessary dynamical and highly flexible structures for a global governing using tools such as the environmental regime. The first step was the Framework Convention On Climate Change, UN 1992; for resolution of questions regarding implementations the Conference of the Parties was established.

  13. ARM - What Causes Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans What Causes Global Warming? On earth we get energy from the sun's light. As you know, it gets hot outside if the sun is shining brightly on a summer ...

  14. Global Warming and Human Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Geophysical Union Global Warming and Human Health WHEN: Jul 27, 2015 5:30 PM - ... Event Description The main reason we are concerned about human-induced climate change is ...

  15. Global warming and nuclear power

    SciTech Connect (OSTI)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  16. Cosmic Rays and Global Warming

    SciTech Connect (OSTI)

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  17. Computer modeling of the global warming effect

    SciTech Connect (OSTI)

    Washington, W.M.

    1993-12-31

    The state of knowledge of global warming will be presented and two aspects examined: observational evidence and a review of the state of computer modeling of climate change due to anthropogenic increases in greenhouse gases. Observational evidence, indeed, shows global warming, but it is difficult to prove that the changes are unequivocally due to the greenhouse-gas effect. Although observational measurements of global warming are subject to ``correction,`` researchers are showing consistent patterns in their interpretation of the data. Since the 1960s, climate scientists have been making their computer models of the climate system more realistic. Models started as atmospheric models and, through the addition of oceans, surface hydrology, and sea-ice components, they then became climate-system models. Because of computer limitations and the limited understanding of the degree of interaction of the various components, present models require substantial simplification. Nevertheless, in their present state of development climate models can reproduce most of the observed large-scale features of the real system, such as wind, temperature, precipitation, ocean current, and sea-ice distribution. The use of supercomputers to advance the spatial resolution and realism of earth-system models will also be discussed.

  18. A global warning for global warming

    SciTech Connect (OSTI)

    Paepe, R.

    1996-12-31

    The problem of global warming is a complex one not only because it is affecting desert areas such as the Sahel leading to famine disasters of poor rural societies, but because it is an even greater threat to modern well established industrial societies. Global warming is a complex problem of geographical, economical and societal factors together which definitely are biased by local environmental parameters. There is an absolute need to increase the knowledge of such parameters, especially to understand their limits of variance. The greenhouse effect is a global mechanism which means that in changing conditions at one point of the Earth, it will affect all other regions of the globe. Industrial pollution and devastation of the forest are quoted as similar polluting anthropogenic activities in far apart regions of the world with totally different societies and industrial compounds. The other important factor is climatic cyclicity which means that droughts are bound to natural cycles. These natural cycles are numerous as is reflected in the study of geo-proxydata from several sequential geological series on land, ice and deepsea. Each of these cycles reveals a drought cycle which occasionally interfere at the same time. It is believed that the present drought might well be a point of interference between the natural cycles of 2,500 and 1,000 years and the man induced cycle of the last century`s warming up. If the latter is the only cycle involved, man will be able to remediate. If not, global warming will become even more disastrous beyond the 21st century.

  19. Rising Sea Levels Due to Global Warming Are Unstoppable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rising Sea Levels Due to Global Warming Are Unstoppable Rising Sea Levels Due to Global Warming Are Unstoppable Mitigation can slow down but not prevent sea level rise for centuries to come August 5, 2013 Contact: Linda Vu, Lvu@lbl.gov, +1 510 495 2402 washington.jpg Because seawater absorbs heat more slowly than the atmosphere above it, our oceans won't feel the full impact of the greenhouse gases already in the air for hundreds of years. Warm water expands, raising sea levels. (Courtesy W.

  20. Military implications of global warming. Strategy research project

    SciTech Connect (OSTI)

    Greene, P.E.

    1999-05-20

    The 1998 National Security Strategy repeatedly cites global environmental issues as key to the long-term security of the United States. Similarly, US environmental issues also have important global implications. This paper analyzes current US Policy as it pertains to global warming and climate change. It discusses related economic factors and environmental concerns. It assesses current White House policy as it relates to the US military. It reviews the Department of Defense strategy for energy conservation and reduction of greenhouse gases. Finally, it offers recommendations and options for military involvement to reduce global warming. Global warming and other environmental issues are important to the US military. As the United States leadership in environmental matters encourages global stability, the US military will be able to focus more on readiness and on military training and operations.

  1. More data needed to support or disprove global warming theory

    SciTech Connect (OSTI)

    1997-05-26

    Reports of global warming are prevalent in the popular press. With the exception of Scandinavia, no major energy tax laws have been passed to date. But environmental pressures may change this, and the change could have a profound effect on refiners. These are the views of Gerald T. Westbrook, of TSBV Consultants, Houston. Westbrook summarized recent global-warming research, and his position on the subject, at the National Petroleum Refiners Association annual meeting, held March 16--18, in San Antonio. The greenhouse effect is real, says Westbrook. It is important, however, to distinguish between the two major mechanisms of the greenhouse effect: natural warming and anthropogenic warming (changes in the concentration of greenhouse gases caused by man). Without greenhouse gases the earth`s equilibrium temperature would be {minus}18 C. The effect of the gases is to raise the equilibrium temperature to 15 C. In the early 1980s, computer models estimated global warming over the past 100 years to be as much as 2.3 C. By 1986, those estimates had been reduced to 1.0 C, and in 1988, a range of 0.63 {+-} 0.2 C was reported. In 1995, a report by the Intergovernmental Panel on Climate change (IPCC) cited a range of 0.3--0.6 C. Westbrook asserts that the earth`s motion anomalies--orbit eccentricity, axial tilt, and wobbles--lead to dramatic changes in insolation, and are the dominant force over the last 160,000 years.

  2. Global Warming Solutions Inc previously Southern Investments...

    Open Energy Info (EERE)

    Solutions Inc previously Southern Investments Inc Jump to: navigation, search Name: Global Warming Solutions Inc (previously Southern Investments Inc) Place: Houston, Texas...

  3. Global warming, insurance losses and financial industry

    SciTech Connect (OSTI)

    Low, N.C.

    1996-12-31

    Global warming causes extremely bad weather in the near term. They have already caught the attention of the insurance industry, as they suffered massive losses in the last decade. Twenty-one out of the 25 largest catastrophes in the US, mainly in the form of hurricanes have occurred in the last decade. The insurance industry has reacted by taking the risk of global warming in decisions as to pricing and underwriting decisions. But they have yet to take a more active role in regulating the factors that contributes to global warming. How global warming can impact the financial industry and the modern economy is explored. Insurance and modern financial derivatives are key to the efficient functioning of the modern economy, without which the global economy can still function but will take a giant step backward. Any risk as global warming that causes economic surprises will hamper the efficient working of the financial market and the modern economy.

  4. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Credit: National Institute of Standards Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants Research & Development Roadmap: Next-Generation Low Global Warming ...

  5. Wildfires may contribute more to global warming than previously...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot ...

  6. Potential Effect of Pollutantn Emissions on Global Warming: First...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses Potential Effect of Pollutantn Emissions on Global Warming: First ...

  7. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like ...

  8. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle ...

  9. Wildfires may contribute more to global warming than previously...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot...

  10. North Florida Global Warming Study Group | Open Energy Information

    Open Energy Info (EERE)

    Global Warming Study Group Jump to: navigation, search Name: North Florida Global Warming Study Group Address: 8342 Compass Rose Dr S Place: Jacksonville, Florida Zip: 32216 Year...

  11. Hydrological consequences of global warming

    SciTech Connect (OSTI)

    Miller, Norman L.

    2009-06-01

    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  12. Toxicological and epidemiological aspects of global warming on human health

    SciTech Connect (OSTI)

    Ando, M.; Yamamoto, S.; Wakamatsu, K.; Kawahara, I.; Asanuma, S.

    1996-12-31

    Since human activities are responsible for anthropogenic greenhouse gases emissions, climate models project an increase in the global surface temperature of 0.9 C to 4.0 C by 2100. For human health, it is projected that global warming may have a critical effect on the increased periods of severe heat stress in summer throughout the world. Global warming may have a critical issue on the increased periods of severe heat stress that have a potential impact on peroxidative damage in humans and animals. Lipid peroxidative damage is markedly related to GSH peroxidase activities, therefore the study was carried out to analyze the relationship between biochemical adaptability and the lipid peroxidative damage especially intracellular structure, such as mitochondria and endoplasmic reticulum depending on the exposure time of heat stress.

  13. Carbonyl sulfide: No remedy for global warming

    SciTech Connect (OSTI)

    Taubman, S.J.; Kasting, J.F. [Pennsylvania State Univ., University Park, PA (United States)] [Pennsylvania State Univ., University Park, PA (United States)

    1995-04-01

    The authors look at the possibility of counteracting global warming forces by the injection of carbonyl sulfide (OCS) into the stratosphere at levels high enough to balance the impact say of a doubling of carbon dioxide concentrations, which are projected to result in a global 3{degrees} C warming. OCS injections at densities to provide such cooling will result a 30 percent impact of global ozone, whereas the carbon dioxide only made a 5% impact. In addition levels which would be found on the earths surface would be in the range 10 ppmv which is questionable as a safe exposure limit for humans, in addition to its impact on the ph of rainwater.

  14. Global warming: A Northwest perspective

    SciTech Connect (OSTI)

    Scott, M.J.; Counts, C.A.

    1990-02-01

    The Northwest Power Planning Council convened a symposium in Olympia, Washington, on the subject of global climate change ( the greenhouse effect'') and its potential for affecting the Pacific Northwest. The symposium was organized in response to a need by the Power Council to understand global climate change and its potential impacts on resource planning and fish and wildlife planning for the region, as well as a need to understand national policy developing toward climate change and the Pacific Northwest's role in it. 40 figs., 15 tabs.

  15. Can reducing black carbon emissions counteract global warming?

    SciTech Connect (OSTI)

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  16. Are we seeing global warming?

    SciTech Connect (OSTI)

    Hasselmann, K.

    1997-05-09

    Despite considerable progress, the question of whether the observed gradual increase in global mean temperature over the last century is indeed caused by human activities or is simply an expression of natural climate variation on a larger spatial and temporal scales remains a controversial issue. To answer this question three things are needed: prediction of the anthropogenic climate change signal; determination of the natural climate variability noise; and computation of the signal-to-noise ratio and test of whether the ratio exceeds some predefined statistical detection threshold. This article discusses all these issues and the uncertainties involved in getting definitive answers. 12 refs., 1 fig.

  17. Global warming: Science or politics? Part 2

    SciTech Connect (OSTI)

    Dorweiler, V.P.

    1998-05-01

    Supplementing the conclusion that ``there has been a discernible influence of human activity on global climate`` is a set of dire consequences to the globe and human population. One consequence is the spread of tropical diseases. It has not been concluded whether the spread of disease is due to global conditions or to opening of tropical forests to commerce, allowing spread by travelers. Whether these forecasts abet the claimed relation of human activity to global warming, they are not a new phenomenon. In the space of several decades, dire consequences have been forecast in three sectors: natural resource consumption, energy resources and environmental fate. These three areas are reviewed.

  18. Direct health effects of global warming in Japan and China

    SciTech Connect (OSTI)

    Ando, M.; Yamamoto, S.; Tamura, K.

    1997-12-31

    Combustion of fossil fuels and industrial and agricultural activities are resulting in greater emissions of some greenhouse gases such as carbon dioxide and methane into the atmosphere, therefore contributing to global warming. Using general circulation models, it is estimated that surface temperatures in temperate regions will rise 1 to 3 degrees C during the next 100 years. Because global warming may increase the frequency and length of high temperatures during hot summer months, various health risks caused by heat stress have been studied. According to our epidemiological survey, the incidence of heat-related illness was significantly correlated to hot environments in Tokyo, Japan and in Nanjing and Wuhan, China. The epidemiological results also showed that the incidence of heat-related morbidity and mortality in the elderly increased very rapidly in summer. The regression analysis on these data showed that the number of heat stroke patients increased exponentially when the mean daily temperature and maximum daily temperature exceeded 27C and 32C in Tokyo and 31C and 36C in Wuhan and Nanjing, respectively. Since the incidence of heat-related morbidity and mortality has been shown to increase as a result of exposure to long periods of hot summer temperatures, it is important to determine to what extent the incidence of heat stress-related morbidity and mortality will be affected as a result of global warming.

  19. EIA-Voluntary Reporting of Greenhouse Gases Program - Emission...

    U.S. Energy Information Administration (EIA) Indexed Site

    Emission Factors Voluntary Reporting of Greenhouse Gases Program Emission Factors and Global Warming Potentials The greenhouse gas emission factors and global warming potentials ...

  20. ARM - Amount of Greenhouse Gases in the Global Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  1. Black carbon contribution to global warming

    SciTech Connect (OSTI)

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  2. {sup 85}Kr induced global warming

    SciTech Connect (OSTI)

    Zakharov, V.I.

    1996-12-31

    It`s well known that the trace atmospheric constituent as {sup 85}Kr is at present about 10{sup 6} cm{sup {minus}3} and increasing considerably (twice every 8--10 years) as a result of nuclear fuel utilization. This paper presents the model of influence of {sup 85}Kr accumulation in the earth atmosphere on climate perturbation and global warming. The process of increasing the concentrations in the troposphere due to the anthropogenic emission of {sup 85}Kr and its radioactive decay is analyzed, based on master kinetic equations. Results indicate that anthropogenic emissions contributing to the total equilibrium concentration of tropospheric ions due to {sup 85}Kr is about equal to the natural level of tropospheric ions. The influence of atmospheric electricity on the transformation between water vapor and clouds which result in an increase in the concentration of ions in troposphere is investigated. The paper shows that the process of anthropogenic accumulation of {sup 85}Kr in the troposphere at present rate up to 2005--2010 increases the mean of the dew-point temperature several degrees on the global scale. Relevant change of height for the lower level of clouds has been obtained. Positive feedback between the process of warming of the lower atmosphere and the concentration of tropospheric ions has been considered.

  3. Global warming and changes in ocean circulation

    SciTech Connect (OSTI)

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  4. ARM - Possible Benefits of Global Warming on Agriculture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListPossible Benefits of Global Warming on Agriculture Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Possible Benefits of Global Warming on Agriculture Pros and Cons Given the need for caution, it may still be possible to make a few general comments. With more carbon dioxide in the

  5. ARM - What Are the Effects of Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Are the Effects of Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What Are the Effects of Global Warming? Changes in Crop and Plant Life In the mid-latitudes (this includes most of the United States), the amount of moisture in the soil will probably decrease in the summer.

  6. ARM - What Will Happen as a Result of Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Will Happen as a Result of Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What Will Happen as a Result of Global Warming? Major Stratospheric Cooling Virtually certain. Because there is erosion of upper stratospheric ozone by chlorofluorocarbons (CFCs), there is less

  7. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Peer Review | Department of Energy Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants - 2013 Peer Review Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech13_mclinden_040213.pdf (2.18 MB) More Documents & Publications Credit: National Institute of Standards Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants

  8. Water trees to beat drought and global warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water trees to beat drought and global warming Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Water trees to beat drought and global warming Large trees are at risk in Northern New Mexico. May 2, 2016 Drought combined with global warming is a major threat to our trees in Northern New Mexico-and around the world-says LANL ecologist Nate McDowell. Drought combined with global warming is

  9. Call for emission limits heats debate on global warming

    SciTech Connect (OSTI)

    Singer, S.F.

    1997-08-01

    Emission limits on carbon dioxide is recommended by an Intergovernmental Panel in a discussion on global warming. (AIP) {copyright} {ital 1997 American Institute of Physics.}

  10. Water trees to beat drought and global warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water trees to beat drought and global warming Community Connections: Your link to news ... Latest Issue: September 1, 2016 all issues All Issues submit Water trees to beat ...

  11. Research & Development Roadmap: Next-Generation Low Global Warming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Global Warming Potential Refrigerants Research & Development Roadmap: Next-Generation ... This research and development (R&D) roadmap for next-generation low-GWP refrigerants ...

  12. Global crop yield losses from recent warming

    SciTech Connect (OSTI)

    Lobell, D; Field, C

    2006-06-02

    Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach

  13. Wildfires may contribute more to global warming than previously predicted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and

  14. A policy synthesis approach for slowing global warming

    SciTech Connect (OSTI)

    Timilsina, G.R.

    1996-12-31

    Global warming is a burning environmental issue today but confronting with subjective as well as policy conflicts. The findings of various studies indicate that developed countries that are capable of affording effective measures towards the global warming mitigation have fewer incentives for doing so because they will have a minimal damage from global warming. The developing countries, although they will have greater damage, are unlikely to divert their development budget for taking preventive actions towards global warming. The only solution in this situation is to design a policy that encourages all the nation in the world to participate in the programs for slowing global warming. Without active participation of all nations, it seems unlikely to reduce the global warming problem in an effective way. This study presents a qualitative policy recommendation extracted from a comprehensive analysis of the findings of several studies conducted so far in this field. This study has categorized the policy approaches for mitigating the global warming in three groups: Engineering approach, forestry approach and economic approach.

  15. Press Pass - Press Release - Fermilab Hosts Global Warming Presentatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Office, 630-840-5588 For immediate release Fermilab Hosts Presentation on Global Warming on Feb. 28 Program is free and open to the public Dr. David Carlson,...

  16. Potential Effect of Pollutantn Emissions on Global Warming: First

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparisong Using External Costs on Urban Buses | Department of Energy Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Aaqius and Aaqius 2004_deer_joubert1.pdf (480.91 KB) More Documents & Publications A New Active DPF System for "Stop

  17. Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech12_vineyard_040313.pdf (868.64 KB) More Documents & Publications Brian Fricke conducts research in ORNL's Building Technologies Research & Integration Center. Low-GWP Refrigerants for Refrigeration Systems Image

  18. NERSC Calculations Provide Independent Confirmation of Global Land Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Since 1901 Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by

  19. The 7. global warming international conference and expo: Abstracts

    SciTech Connect (OSTI)

    1996-12-31

    This conference was held April 1--3, 1996 in Vienna, Austria. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on global warming. Topics of interest include the following: global and regional natural resource management; energy, transportation, minerals and natural resource management; industrial technology and greenhouse gas emission; strategies for the mitigation of greenhouse gas emission; greenhouse gas production/utilization and carbon budgets; strategies for promoting the understanding of global change; international policy strategy and economics; and global warming and public health. Individual papers have been processed separately for inclusion in the appropriate data bases.

  20. Global warming. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The bibliography contains citations concerning policies and general studies on global warming. Topics include the greenhouse effect, global climatic models, and climatic effects from combustion of fossil fuels. (Contains a minimum of 173 citations and includes a subject term index and title list.)

  1. Geographical features of global water cycle during warm geological epochs

    SciTech Connect (OSTI)

    Georgiadi, A.G.

    1996-12-31

    The impact of global warming on the water cycle can be extremely complex and diverse. The goal of the investigation was to estimate the geographic features of the mean annual water budget of the world during climatic optimums of the Holocene and the Eemian interglacial periods. These geological epochs could be used as analogs of climatic warming on 1 degree, centigrade and 2 degrees, centigrade. The author used the results of climatic reconstructions based on a simplified version of a GCM.

  2. COLLOQUIUM: Extreme Global Warming: Examples from the Past | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab April 16, 2014, 4:00pm to 5:30pm MBG Auditorium COLLOQUIUM: Extreme Global Warming: Examples from the Past Professor Mark Pagani Yale University Earth's climate 50 million years ago was the warmest time of the Cenozoic and characterized by expansive high-latitude warmth and low meridional temperature gradients. Starting at about 55 million years ago, a series of rapid and extreme carbon-induced global warming events, known as hyperthermals, are evident. This presentation

  3. SUBTASK 7.2 GLOBAL WARMING AND GREEHOUSE GASES

    SciTech Connect (OSTI)

    Jaroslav Solc; Kurt Eylands; Jaroslav Solc Jr.

    2005-01-01

    Evaluation of current climatic trends and reconstruction of paleoclimatic conditions for Devils Lake have been conducted based on diatom-inferred salinity for the last 2000 years. The 3-year cross-disciplinary research, funded by the U.S. Department of Energy (DOE) was carried out by the Energy & Environmental Research Center (EERC) and St. Croix Watershed Research Station (SCWRS) at the Science Museum of Minnesota. The results indicate that frequent climatic fluctuations resulting in alternating periods of drought and wet conditions are typical for the northern Great Plains and suggest that the severity and length of extremes exceeded those on modern record. Devils Lake has experienced five fresh periods and two minor freshening periods in the last 2000 years. Transitions between fresh and saline periods have been relatively fast, representing lake level changes that have been similar to those observed in the last 150 years. From 0 to 1070 A.D., Devils Lake showed more variable behavior, with fresh phases centered at 200, 500, 700, and 1000 A.D. From 1070 A.D. to present, Devils Lake was generally saline, experiencing two minor freshening periods at 1305-1315 and 1800-1820 A.D and the major current freshening from 1960 A.D. to present.

  4. Working Fluids Low Global Warming Potential Refrigerants

    Broader source: Energy.gov (indexed) [DOE]

    Panelists say inspired leadership is shaping nuclear industry careers. Left to right, Carol Johnson, Savannah River Nuclear Solutions president and CEO; Ann McCall, director of Waste Management, for Radioactive Waste Management Ltd, a subsidiary of the United Kingdom’s Nuclear Decommissioning Authority; Dyan Foss, global managing director, CH2M Nuclear Sector; and Joyce Connery, chairwoman of the Defense Nuclear Facilities Safety Board. Panelists say inspired leadership is shaping nuclear

  5. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect (OSTI)

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  6. 8th Global warming international conference and exposition

    SciTech Connect (OSTI)

    1997-12-31

    Abstracts are presented from The 8th Annual Global Warming international conference and expo. Topics centered around greenhouse gas emission and disposal methods, policy and economics, carbon budget, and resource management. Individual reports have been processed separately for the United States Department of Energy databases.

  7. Health effects of global warming: Problems in assessment

    SciTech Connect (OSTI)

    Longstreth, J.

    1993-06-01

    Global warming is likely to result in a variety of environmental effects ranging from impacts on species diversity, changes in population size in flora and fauna, increases in sea level and possible impacts on the primary productivity of the sea. Potential impacts on human health and welfare have included possible increases in heat related mortality, changes in the distribution of disease vectors, and possible impacts on respiratory diseases including hayfever and asthma. Most of the focus thus far is on effects which are directly related to increases in temperature, e.g., heat stress or perhaps one step removed, e.g., changes in vector distribution. Some of the more severe impacts are likely to be much less direct, e.g., increases in migration due to agricultural failure following prolonged droughts. This paper discusses two possible approaches to the study of these less-direct impacts of global warming and presents information from on-going research using each of these approaches.

  8. Remote sensing, global warming, and vector-borne disease

    SciTech Connect (OSTI)

    Wood, B.; Beck, L.; Dister, S.; Lobitz, B.

    1997-12-31

    The relationship between climate change and the pattern of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are changes such as global warming, which are continental in scale and occur over periods of years, decades, or longer. At the opposite extreme are changes associated with severe weather events, which can occur at local and regional scales over periods of days, weeks, or months. Key ecological factors affecting the distribution of vector-borne diseases include temperature, precipitation, and habitat availability, and their impact on vectors, pathogens, reservoirs, and hosts. Global warming can potentially alter these factors, thereby affecting the spatial and temporal patterns of disease.

  9. GIS applications to evaluate public health effects of global warming

    SciTech Connect (OSTI)

    Regens, J.L.; Hodges, D.G.

    1996-12-31

    Modeling projections of future climatic conditions suggest changes in temperature and precipitation patterns that might induce direct adverse effects on human health by altering the extent and severity of infectious and vector-borne diseases. The incidence of mosquito-borne diseases, for example, could increase substantially in areas where temperature and relative humidity rise. The application of Geographic Information Systems (GIS) offers new methodologies to evaluate the impact of global warming on changes in the incidence of infectious and vector-borne diseases. This research illustrates the potential analytical and communication uses of GIS for monitoring historical patterns of climate and human health variables and for projecting changes in these health variables with global warming.

  10. Management of Philippine tropical forests: Implications to global warming

    SciTech Connect (OSTI)

    Lasco, R.D.

    1997-12-31

    The first part of the paper presents the massive changes in tropical land management in the Philippines as a result of a {open_quotes}paradigm shift{close_quotes} in forestry. The second part of the paper analyzes the impacts of the above management strategies on global warming, in general, preserved forests are neither sinks not sources of greenhouse gasses (GHG). Reforestation activities are primarily net sinks of carbon specially the use of fast growing reforestation species. Estimates are given for the carbon-sequestering ability of some commonly used species. The last part of the paper policy recommendations and possible courses of action by the government to maximize the role of forest lands in the mitigation of global warming. Private sector initiatives are also explored.

  11. Signal and noise in global warming detection. Final report

    SciTech Connect (OSTI)

    North, G.R.

    1998-11-01

    The specific objectives of this study were the following: (1) What is the expected sampling error and bias incurred in estimation of the global average temperature from a finite number of point gauges? (2) What is the best one can do by optimally arranging N point gauges, how can one make best use of existing data at N point gauges by optimally weighting them? (3) What is a good estimation of the signal of global warming based upon simple models of the climate system? (4) How does one develop an optimal signal detection technique from the knowledge of signal and noise?

  12. Scientific American: "Tall Trees Sucked Dry by Global Warming"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods. June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle describing how water

  13. Winners and losers in a world with global warming: Noncooperation, altruism, and social welfare

    SciTech Connect (OSTI)

    Caplan, A.J.; Ellis, C.J.; Silva, E.C.D.

    1999-05-01

    In this paper, global warming is an asymmetric transboundary externality which benefits some countries or regions and harms others. Few environmental problems have captured the public`s imagination as much and attracted as much scrutiny as global warming. The general perception is that global warming is a net social bad, and that across-the-board abatement of greenhouse gas emissions is therefore desirable. Despite many interesting academic contributions, not all of the basic economics of this phenomenon have been fully worked out. The authors use a simple two-country model to analyze the effects of global warming on resource allocations, the global-warming stock, and national and global welfare.

  14. Analysis of energy conversion systems, including material and global warming aspects

    SciTech Connect (OSTI)

    Zhang, M.; Reistad, G.M.

    1998-12-31

    This paper addresses a method for the overall evaluation of energy conversion systems, including material and global environmental aspects. To limit the scope of the work reported here, the global environmental aspects have been limited to global warming aspects. A method is presented that uses exergy as an overall evaluation measure of energy conversion systems for their lifetime. The method takes the direct exergy consumption (fuel consumption) of the conventional exergy analyses and adds (1) the exergy of the energy conversion system equipment materials, (2) the fuel production exergy and material exergy, and (3) the exergy needed to recover the total global warming gases (equivalent) of the energy conversion system. This total, termed Total Equivalent Resource Exergy (TERE), provides a measure of the effectiveness of the energy conversion system in its use of natural resources. The results presented here for several example systems illustrate how the method can be used to screen candidate energy conversion systems and perhaps, as data become more available, to optimize systems. It appears that this concept may be particularly useful for comparing systems that have quite different direct energy and/or environmental impacts. This work should be viewed in the context of being primarily a concept paper in that the lack of detailed data available to the authors at this time limits the accuracy of the overall results. The authors are working on refinements to data used in the evaluation.

  15. Global warming and the regions in the Middle East

    SciTech Connect (OSTI)

    Alvi, S.H.; Elagib, N.

    1996-12-31

    The announcement of NASA scientist James Hansen made at a United States Senate`s hearing in June 1988 about the onset of global warming ignited a whirlwind of public concern in United States and elsewhere in the world. Although the temperature had shown only a slight shift, its warming has the potential of causing environmental catastrophe. According to atmosphere scientists, the effect of higher temperatures will change rainfall patterns--some areas getting drier, some much wetter. The phenomenon of warming in the Arabian Gulf region was first reported by Alvi for Bahrain and then for Oman. In the recent investigations, the authors have found a similar warming in other regions of the Arabian Gulf and in several regions of Sudan in Africa. The paper will investigate the observed data on temperature and rainfall of Seeb in Oman, Bahrain, International Airport in Kuwait as index stations for the Arabian Gulf and Port Sudan, Khartoum and Malakal in the African Continent of Sudan. Based on various statistical methods, the study will highlight a drying of the regions from the striking increase in temperature and decline of rainfall amount. Places of such environmental behavior are regarded as desertifying regions. Following Hulme and Kelly, desertification is taken to mean land degradation in dryland regions, or the permanent decline in the potential of the land to support biological activity, and hence human welfare. The paper will also, therefore, include the aspect of desertification for the regions under consideration.

  16. Global Warming: A Science Overview for the A/C Industry

    SciTech Connect (OSTI)

    MacCracken, M.C.

    1999-12-06

    Fossil fuels (i.e., coal, oil, and natural gas) provide about 85% of the world's energy, sustaining our standard-of-living. They are inexpensive, transportable, safe, and relatively abundant. At the same time, their use contributes to problems such as air quality and acid rain that are being addressed through various control efforts and to the problem of global warming, which is now being considered by governments of the world. This talk will focus on six key aspects of the scientific findings that are leading to proposals for significant limitation of the emissions of fossil-fuel-derived carbon dioxide and limitations on emissions of other greenhouse gases that can influence the global climate, including substances used in the refrigeration and air-conditioning industries.

  17. Current status and direction of US global warming policy

    SciTech Connect (OSTI)

    Gardiner, D.

    1997-12-31

    The pace and intensity of U.S. global warming efforts have been increasing over the past few years for three main reasons: (1) steady improvement in the underlying science that is in turn strengthening public support for action; (2) the likelihood that the United States will fall short of our national goal of stabilizing greenhouse gas emissions at 1990 levels by the year 2000; and (3) U.S. participation in international negotiations to address global climate change. The expansion of U.S. global warming activities can be seen at the state, federal, and international levels. At the state level, for example, a majority of states have completed greenhouse gas emissions inventories, several have undertaken analyses of mitigation options, and some are already beginning to take action to reduce greenhouse gas emissions. At the federal level, all federal agencies with an interest in global warming are working together to define the likely consequences of continued increases in greenhouse gas emissions, inform the public about Such consequences, and assess the costs and benefits of different response options. Among the response options being assessed are actions to expand the use of energy efficient technologies; new controls on greenhouse gas emissions through -- for example - government standards, regulations, or emissions trading programs; and increased research and development of technologies less dependent on fossil fuels. Finally, at the international level, the United States is continuing to develop the position it will take to the climate change negotiations to be held in Japan this December. Among, other things, we have proposed enforceable emissions targets for developed countries, a strong program of reporting and compliance, new efforts by developing countries to prepare emissions inventories and mitigate emissions, and an international emissions trading program.

  18. The stability of the thermohaline circulation in global warming experiments

    SciTech Connect (OSTI)

    Schmittner, A.; Stocker, T.F.

    1999-04-01

    A simplified climate model of the coupled ocean-atmosphere system is used to perform extensive sensitivity studies concerning possible future climate change induced by anthropogenic greenhouse gas emissions. Supplemented with an active atmospheric hydrological cycle, experiments with different rates of CO{sub 2} increase and different climate sensitivities are performed. The model exhibits a threshold value of atmospheric CO{sub 2} concentration beyond which the North Atlantic Deep Water formation stops and never recovers. For a climate sensitivity that leads to an equilibrium warming of 3.6 C for a doubling of CO{sub 2} and a rate of CO{sub 2} increase of 1% yr{sup {minus}1}, the threshold lies between 650 and 700 ppmv. Moreover, it is shown that the stability of the thermohaline circulation depends on the rate of increase of greenhouse gases. For a slower increase of atmospheric pCO{sub 2} the final amount that can be reached without a shutdown of the circulation is considerably higher. This rate-sensitive response is due to the uptake of heat and excess freshwater from the uppermost layers to the deep ocean. The increased equator-to-pole freshwater transport in a warmer atmosphere is mainly responsible for the cessation of deep water formation in the North Atlantic. Another consequence of the enhanced latent heat transport is a stronger warming at high latitudes. A model version with fixed water vapor transport exhibits uniform warming at all latitudes. The inclusion of a simple parameterization of the ice-albedo feedback increases the model sensitivity and further decreases the pole-to-equator temperature difference in a greenhouse climate. The possible range of CO{sub 2} threshold concentrations and its dependency on the rate of CO{sub 2} increase, on the climate sensitivity, and on other model parameters are discussed.

  19. ARM - What is the ARM Climate Research Facility Doing About Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WarmingWhat is the ARM Climate Research Facility Doing About Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is the ARM Climate Research Facility Doing About Global Warming? Atmospheric Radiation Measurement (ARM) scientists are studying the effects of clouds on weather

  20. Subarctic warming: Results from the global treeline project

    SciTech Connect (OSTI)

    Siren, G.; Shen, S.

    1996-12-31

    The authors reported last year at the 6th Global Warming Science and Policy Conference (GW6), April 3--6, 1995, San Francisco USA, the Global Treeline Project (BLECSCO) has definitively established the northward movement in the 20th century of the northernmost limit for pine trees in Finland. this movement is due to climate warming. The Finnish Forest Research Institute has been working on this problem between 1951 and 1996. The authors have observed over half a century the movements of the coniferous treeline. The subarctic pine tree line is used as a permanent bioindicator of climate change. The dynamic pine tree line in the subarctic of Finland serves as a reliable indicator of expected climate change in the future as well as of climatic fluctuations in the past. The FFRI has tracked comprehensively seed year frequencies, performed dendrochronological studies, fire studies, and ecological studies since the abundant seed year of 1948--50 to the present, and discovered that climate change has favored the northward movement of the pine limit. The authors report the detailed scientific methodology, data, and conclusions.

  1. Interpretation of simulated global warming using a simple model

    SciTech Connect (OSTI)

    Watterson, I.G.

    2000-01-01

    A simple energy balance model with two parameters, an effective heat capacity and an effective climate sensitivity, is used to interpret six GCM simulations of greenhouse gas-induced global warming. By allowing the parameters to vary in time, the model can be accurately calibrated for each run. It is found that the sensitivity can be approximated as a constant in each case. However, the effective heat capacity clearly varies, and it is important that the energy equation is formulated appropriately, and thus unlike many such models. For simulations with linear forcing and from a cold start, the capacity is in each case close to that of a homogeneous ocean with depth initially 200 m, but increasing some 4.3 m each year, irrespective of the sensitivity and forcing growth rate. Analytic solutions for t his linear capacity function are derived, and these reproduce the GCM runs well, even for cases where the forcing is stabilized after a century or so. The formation of a subsurface maximum in the mean ocean temperature anomaly is a significant feature of such cases. A simple model for a GCM run with a realistic forcing scenario starting from 1,880 is constructed using component results for forcing segments. Given this, an estimate of the cold start error of a simulation of the warming due to forcing after the present would be given by the negative of the temperature drift of the anomaly due to the past forcing. The simple model can evidently be used to give an indication of likely warming curves, at lest for this range of scenarios and GCM sensitivities.

  2. Cold stress on Russian territory during last global warming

    SciTech Connect (OSTI)

    Vinogradov, V.V.

    1996-12-31

    A great part of Russian territory is characterized by climate discomfort of life. In winter cold stress covers nearly all territory. The purpose of this work is to learn how the climatic discomfort of life is affected by climate change. The effect of global warming for the period 1981--1990 on geographical distribution of bioclimatic indexes by seasons (compared with average figures) is analyzed. Indexes of enthalpy, dry cooling, wind chill, wet cooling, effective temperature, physiological deficit index for monthly average figures were calculated and the data bank for the period 1981--1990 was made up. The indexes of enthalpy, wet cooling, and dry cooling according to Bodman were chosen as the most informative and independent. Maps of the climatic indexes taking into account temperature, humidity and wind speed were made up on the basis of the calculated figures.

  3. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect (OSTI)

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  4. Valuation of mountain glaciation response on global warming

    SciTech Connect (OSTI)

    Ananicheva, M.D.; Davidovich, N.V.

    1997-12-31

    Quantitative estimates of main climatic parameters, influencing the glacier regime (summer air temperature and annual solid precipitation), and glaciologic characteristics (mass balance components, equilibrium line altitude and rate of air temperature at this height), received on the basis of the scenario for a climate development according to R. Wetherald and S. Manabe (1982) are submitted. The possible reaction of mountain glaciation on global warming is considered for two mountain countries: South-eastern Alaska and Pamir-Alay (Central Asia). In given paper we have tried to evaluate changes of the mountain glaciation regime for a time of CO{sub 2} doubling in the atmosphere, basing on the scenario of climate development and modern statistical relationships between climatic and glaciologic parameters. The GCM scenario of R. Wetherald and C. Manabe (GFDL model) which is made with respect of mountain territories is in the basis our calculations. As initial materials we used data of long-term observations and the maps of World Atlas of Snow and Ice Resources (WASIR).

  5. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Warming Potential Refrigerants Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption.
    Photo Credit: Mechanical ...

  6. How America can look within to achieve energy security and reduce global warming.

    SciTech Connect (OSTI)

    Richter, B.; Goldston, D.; Crabtree, G.; Glicksman, L.; Goldstein, D.; Greene, D.; Kammen, D.; Levin, M.; Lubell, M.; Savitz, M.; Sperling, D.; Schlachter, F.; Scofield, J.; Dawson, J.

    2008-12-01

    Making major gains in energy efficiency is one of the most economical and effective ways our nation can wean itself off its dependence on foreign oil and reduce its emissions of greenhouse gases. Transportation and buildings, which account for two thirds of American energy usage, consume far more than they need to, but even though there are many affordable energy efficient technologies that can save consumers money, market imperfections inhibit their adoption. To overcome the barriers, the federal government must adopt policies that will transform the investments into economic and societal benefit. And the federal government must invest in research and development programs that target energy efficiency. Energy efficiency is one of America's great hidden energy reserves. We should begin tapping it now. Whether you want the United States to achieve greater energy security by weaning itself off foreign oil, sustain strong economic growth in the face of worldwide competition or reduce global warming by decreasing carbon emissions, energy efficiency is where you need to start. Thirty-five years ago the U.S. adopted national strategies, implemented policies and developed technologies that significantly improved energy efficiency. More than three decades have passed since then, and science and technology have progressed considerably, but U.S. energy policy has not. It is time to revisit the issue. In this report we examine the scientific and technological opportunities and policy actions that can make the United States more energy efficient, increase its security and reduce its impact on global warming. We believe the findings and recommendations will help Congress and the next administration to realize these goals. Our focus is on the transportation and buildings sectors of the economy. The opportunities are huge and the costs are small.

  7. Global Research Alliance on Agricultural Greenhouse Gases | Open...

    Open Energy Info (EERE)

    Topics GHG inventory, Policiesdeployment programs Resource Type Guidemanual, Lessons learnedbest practices Website http:globalresearchalliance. References Global...

  8. ARM - What are Greenhouse Gases?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What are Greenhouse Gases? Carbon Dioxide Methane Gas Oxides of Nitrogen Halocarbons Ozone Water Vapor Greenhouse gases are atmospheric gases that trap infrared radiation emitted from the earth, lower atmosphere, or clouds or aerosols and, as

  9. Natural gas and efficient technologies: A response to global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-02-01

    It has become recognized by the international scientific community that global warming due to fossil fuel energy buildup of greenhouse CO{sub 2} in the atmosphere is a real environmental problem. Worldwide agreement has also been reached to reduce CO{sub 2} emissions. A leading approach to reducing CO{sub 2} emissions is to utilize hydrogen-rich fuels and improve the efficiency of conversion in the power generation, transportation and heating sectors of the economy. In this report, natural gas, having the highest hydrogen content of all the fossil fuels, can have an important impact in reducing CO{sub 2} emissions. This paper explores natural gas and improved conversion systems for supplying energy to all three sectors of the economy. The improved technologies include combined cycle for power generation, the Carnol system for methanol production for the transportation sector and fuel cells for both power generation and transportation use. The reduction in CO{sub 2} from current emissions range from 13% when natural gas is substituted for gasoline in the transportation sector to 45% when substituting methanol produced by the Carnol systems (hydrogen from thermal decomposition of methane reacting with CO{sub 2} from coal-fired power plants) used in the transportation sector. CO{sub 2} reductions exceeding 60% can be achieved by using natural gas in combined cycle for power generation and Carnol methanol in the transportation sector and would, thus, stabilize CO{sub 2} concentration in the atmosphere predicted to avoid undue climate change effects. It is estimated that the total fossil fuel energy bill in the US can be reduced by over 40% from the current fuel bill. This also allows a doubling in the unit cost for natural gas if the current energy bill is maintained. Estimates of the total net incremental replacement capital cost for completing the new improved equipment is not more than that which will have to be spent to replace the existing equipment conducting

  10. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect (OSTI)

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  11. Global warming and the challenge of international cooperation: An interdisciplinary assessment

    SciTech Connect (OSTI)

    Bryner, G.C.

    1995-07-01

    This book focuses on ozone depletion first, global warming second. It is a collection of perspectives from a variety of disciplines and includes a limited amount of technical assessment information.

  12. American exceptionalism? Similarities and differences in national attitudes toward energy policy and global warming

    SciTech Connect (OSTI)

    D.M. Reiner; T.E. Curry; M.A. de Figueiredo; H.J. Herzog; S.D. Ansolabehere; K. Itaoka; F. Johnsson; M. Odenberger

    2006-04-01

    Despite sharp differences in government policy, the views of the U.S. public on energy and global warming are remarkably similar to those in Sweden, Britain, and Japan. Americans do exhibit some differences, placing lower priority on the environment and global warming, and with fewer believing that 'global warming has been established as a serious problem and immediate action is necessary'. There also remains a small hard core of skeptics (<10%) who do not believe in the science of climate change and the need for action, a group that is much smaller in the other countries surveyed. The similarities are, however, pervasive. Similar preferences are manifest across a wide range of technology and fuel choices, in support of renewables, in research priorities, in a basic understanding of which technologies produce or reduce carbon dioxide (or misunderstandings in the case of nuclear power), and in willingness to pay for solving global warming. 29 refs., 3 figs., 2 tabs.

  13. The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost: An Experimental and Field Based Study Citation Details In-Document Search Title: The Impact...

  14. Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression | Department of Energy Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption.<br />Photo Credit: Mechanical Solutions, Inc. Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption. Photo Credit:

  15. High-efficiency Low Global-Warming Potential (GWP) Compressor | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy efficiency Low Global-Warming Potential (GWP) Compressor High-efficiency Low Global-Warming Potential (GWP) Compressor Image courtesy of United Technologies Research Center and BTO Peer Review. Image courtesy of United Technologies Research Center and BTO Peer Review. Lead Performer: United Technologies Research Center - East Hartford, CT DOE Total Funding: $974,000 Cost Share: $417,000 Project Term: Sep 2015 - Aug 2017 Funding Opportunity: Building Energy Efficiency Frontiers and

  16. SPECIAL EARTH DAY COLLOQUIUM: How Global Warming Is Heating Things Up at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work | Princeton Plasma Physics Lab April 18, 2013, 12:00pm to 1:30pm Colloquia MBG Auditorium SPECIAL EARTH DAY COLLOQUIUM: How Global Warming Is Heating Things Up at Work Dr. John P. Dunne Geophysical Fluid Dynamics Laboratory Presentation: PDF icon Earth_Day_18APR2013.pdf A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in

  17. Global warming: A geothermal evidence from northern Finland

    SciTech Connect (OSTI)

    Bodri, L.

    1996-12-31

    The greatest potential climatic changes induced by an increasing greenhouse effect are expected to occur in the high latitudes. Due to the great natural climatic variability in such areas, it is difficult to detect the greenhouse signal from meteorologic records. A reliable documentation of climate changes requires the examining of all available climatic records. In present study, temperature-depth profiles from two Finnish boreholes from over the Arctic circle have been considered to reconstruct ground surface temperature histories. The holes have been carefully selected to exclude any possible disturbances from underground water circulation, and to minimize the human effects as completely as possible. Both boreholes indicate continuous warming by {approximately}1--1.5 K through the last hundred years. The rate of warming increases from about the 1960`s. The results are in good agreement with those obtained for the Alaskan Arctic in a similar study by Lachenbruch and Marshall.

  18. Evidences of global warming for various regions of Russia

    SciTech Connect (OSTI)

    Batyreva, O.V.; Pischehko, V.A.; Vilfand, R.M.; Vasiliev, A.A.

    1997-12-31

    The automatical classification of mean monthly temperature fields of Russia was carried out. The data of 42 years in regular grid-points 5 x 10{degree} of Northern Hemisphere were used. The combination of land`s algorithm of K-averages was applied. The increasing of prevailing occurrence of warm types during last decades was discovered. It turned out that different regions had different dynamics of type occurrences.

  19. On modification of global warming by sulfate aerosols

    SciTech Connect (OSTI)

    Mitchell, J.F.B.; Johns, T.C.

    1997-02-01

    There is increasing evidence that the response of climate to increasing greenhouse gases may be modified by accompanying increases in sulfate aerosols. In this study, the patterns of response in the surface climatology of a coupled ocean-atmosphere general circulation model forced by increases in carbon dioxide alone is compared with those obtained by increasing carbon dioxide and aerosol forcing. The simulations are run from early industrial times using the estimated historical forcing and continued to the end of the twenty-first century assuming a nonintervention emissions scenario for greenhouse gases and aerosols. The comparison is made for the period 2030-2050 when the aerosol forcing is a maximum. In winter, the cooling due to aerosols merely tends to reduce the response to carbon dioxide, whereas in summer, it weakens the monsoon circulations and reverses some of the changes in the hydrological cycle on increasing carbon dioxide. This response is in some respects similar to that found in simulations with changed orbital parameters, as between today and the middle Holocene. The hydrological response in the palaeosimulations is supported by palaeoclimatic reconstructions. The results of changes in aerosol concentrations of the magnetic projected in the scenarios would have a major effect on regional climate, especially over Europe and Southeast Asia. 74 refs., 12 figs., 6 tabs.

  20. Global warming commitment concept and its application for relative evaluation of greenhouse gas current and future radiative forcing

    SciTech Connect (OSTI)

    Karol, I.L.; Frolkis, V.A.; Kiselev, A.A.

    1996-12-31

    The Global Warming Commitment (GWC) of gas X relative to standard gas A for time period T is proposed, as determined by the formula GWC{sub X}{sup T} = {integral}RF{sub X}(t)dt/{integral}RF{sub A}(t)dt both integrals between limits 0 and T, where RF{sub X}(t) = {Delta}F{sub X}(t) is the Radiative Forcing (RF) of gas X (the net total radiation flux change at the tropopause level caused by the gas X content variation during the 0 to t time period). The well known Global Warming Potential (GWP) is determined by the same formula, where {Delta}F{sub x}(t) is due to instantaneous releases into the atmosphere of the same definite mass (1 kg) of gas X and of standard gas A. In GWC the actual measured or modeled gas contents evolutions are used for estimation of gas X relative input into the current and future greenhouse warming. GWC of principal Greenhouse Gases (GG) are calculated and analyzed for the time period before 1990, based on observed GG content evolution. For periods from now to 2050 the modeled global GG content projections from radiative photochemical atmospheric model are used for several of IPCC-94 scenarios of GG anthropogenic emissions up to 2050. The GWC of CH{sub 4}, N{sub 2}O and CFCs with CO{sub 2} as standard GG are 2--4 times lower, and they are much more accurately reflecting the reality in the above periods than the widely used RFs of these GG relative to GG of CO{sub 2}, when the GG content evolutions during the time period T is not considered.

  1. Clouds and climate: Unraveling a key piece of global warming

    SciTech Connect (OSTI)

    Seinfeld, J.H.

    2000-02-01

    Federal policy decisions relating to mitigation of greenhouse gas and other emissions have the potential to exert an enormous impact on industries in which chemical engineers play a prominent role. Many in these industries keep close watch on the development of scientific understanding associated with predictions of global climate change. The authors review one of the most critical, and most uncertain, pieces of the climate puzzle, the role of aerosols and clouds in the global energy balance.

  2. Dust Bowl migration as an analog for possible global warming-induced migration from Mexico

    SciTech Connect (OSTI)

    Turner, M.H.; Longstreth, J.D.; Johnson, A.K.; Rosenberg, N.J.

    1994-06-01

    As a result of increases in CO{sub 2} and other radiatively important trace gases, scientists have predicted increases in mean worldwide temperatures of 2--5 degrees C over the next 50 to 100 years. Such temperature increases may result in climate modifications that would in turn be associated with increases in drought and desertification and could even change the patterns of the monsoons and tropical rains, which are important to agriculture throughout the world. They predicted that the rise in sea level caused by melting and thermal expansion of glaciers and polar icecaps could flood large population centers, destroying habitation and displacing populations. This will result in approximately 50 million ``environmental refugees`` worldwide, triple the number of today. The expected shifts in precipitation are also likely to result in (1) increased runoff contaminated with pesticides, salts, garbage, sewage, and eroded soil, and (2) drought also leading to increased soil erosion and salinization, as well as depletion of limited water resources. The total impact of global warming on agriculture and human habitation could considerably slow the economic development of some nations and would particularly affect agricultural production. Loss of homes, the inability to raise food, an increased prevalence of disease and worsened economic conditions may drive people to leave their homelands, seeking entry into countries which have more resources and greater resistance to the economic consequences of climatic change. This report looks at the possible environmental impacts and economic impacts of the greenhouse effect on Mexico while using the American Dust Bowl event as an analog.

  3. Global warming policy: A coherent-sequential approach

    SciTech Connect (OSTI)

    Manicke, R.L.

    1996-12-31

    This paper addresses these two closely related themes: (1) the need for structuring and evaluating global climate policy sequentially and (2) the need to incorporate the analysis of real options which may contribute significantly to global climate policy. This paper is organized into four sections. The first section deals with benefit-cost analysis and capital budgeting as they are generally practiced and discusses the reasons why the traditional benefit-cost formulation is inadequate. The second section then discusses the case of one financial option, namely, the European Call Option and discusses some important results. The third section of the paper addresses some of the important results or principles derived in the literature on real options, and while most of the mathematics is not easily transferred nor relevant to the global climate policy, there are many principles that can be applied. In the fourth section the author discusses the implications of a real option environment for the policy process.

  4. An Inconvenient Truth. The Planetary Emergency of Global Warming and What We Can Do About It

    SciTech Connect (OSTI)

    Gore, Al

    2006-06-15

    This book is published to tie in with a documentary film of the same name. Both the book and film were inspired by a series of multimedia presentations on global warming that the author created and delivers to groups around the world. With this book, Gore, brings together leading-edge research from top scientists around the world; photographs, charts, and other illustrations; and personal anecdotes and observations to document the fast pace and wide scope of global warming. He presents, with alarming clarity and conclusiveness, and with humor, too, that the fact of global warming is not in question and that its consequences for the world we live in will be disastrous if left unchecked.

  5. BioFacts: Fueling a stronger economy, Global warming and biofuels emissions

    SciTech Connect (OSTI)

    1994-12-01

    The focus of numerous federal and state regulations being proposed and approved today is the reduction of automobile emissions -- particularly carbon dioxide (CO{sub 2}), which is the greenhouse gas considered responsible for global warming. Studies conducted by the USDOE through the National Renewable Energy Laboratory (NREL) indicate that the production and use of biofuels such as biodiesel, ethanol, and methanol could nearly eliminate the contribution of net CO{sub 2} from automobiles. This fact sheet provides and overview of global warming, followed by a summary of NREL`s study results.

  6. After Kyoto, science still probes global warming causes

    SciTech Connect (OSTI)

    Westbrook, G.

    1998-01-19

    The Kyoto meeting has come and gone. In the US, the treaty still has to be signed by President Bill Clinton and ratified by the Senate, an action that is most unlikely in view of last year`s 95-0 vote on the issue. In the short term 36 senators are up for reelection in November and therefore likely to come under intense pressure to change their positions, to support the Kyoto treaty, and to push for Senate action. Senators will need support, additional inputs, and overall reinforcement of their positions. One area that this writer believes still has much to offer in this context is the quality--more specifically, the lack of quality--of much of the scientific evidence behind this treaty. Part of that subject is the natural variability in the climate. Natural climate variability is based on cyclical forces, random events, and the Earth`s response to these two factors. These forces create the variability in the climate, the background noise above which any signal of anthropogenic warming must rise in order to be detected. A review of key climatic cycles is the subject of this article.

  7. Investigations into Wetland Carbon Sequestration as Remediation for Global Warming

    SciTech Connect (OSTI)

    Thom, Ronald M.; Blanton, Susan L.; Borde, Amy B.; Williams, Greg D.; Woodruff, Dana L.; Huesemann, Michael H.; KW Nehring and SE Brauning

    2002-01-01

    Wetlands can potentially sequester vast amounts of carbon. However, over 50% of wetlands globally have been degraded or lost. Restoration of wetland systems may therefore result in increased sequestration of carbon. Preliminary results of our investigations into atmospheric carbon sequestration by restored coastal wetlands indicate that carbon can be sequestered in substantial quantities in the first 2-50 years after restoration of natural hydrology and sediment accretion processes.

  8. The role of water vapor feedback in unperturbed climate variability and global warming

    SciTech Connect (OSTI)

    Hall, A.; Manabe, Syukuro

    1999-08-01

    To understand the role of water vapor feedback in unperturbed surface temperature variability, a version of the Geophysical Fluid Dynamics Laboratory coupled ocean-atmosphere model is integrated for 1,000 yr in two configurations, one with water vapor feedback and one without. To understand the role of water vapor feedback in global warming, two 500-yr integrations were also performed in which CO{sub 2} was doubled in both model configurations. The final surface global warming in the model with water vapor feedback is 3.38 C, while in the one without it is only 1.05 C. However, the model`s water vapor feedback has a larger impact on surface warming in response to a doubling of CO{sub 2} than it does on internally generated, low-frequency, global-mean surface temperature anomalies. Water vapor feedback`s strength therefore depends on the type of temperature anomaly it affects. Finally, the authors compare the local and global-mean surface temperature time series from both unperturbed variability experiments to the observed record. The experiment without water vapor feedback does not have enough global-scale variability to reproduce the magnitude of the variability in the observed global-mean record, whether or not one removes the warming trend observed over the past century. In contrast, the amount of variability in the experiment with water vapor feedback is comparable to that of the global-mean record, provided the observed warming trend is removed. Thus, the authors are unable to simulate the observed levels of variability without water vapor feedback.

  9. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-09-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  10. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-07-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or in or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRB and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  11. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-04-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming process, mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or in or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  12. Coastal-zone biogeochemical dynamics under global warming

    SciTech Connect (OSTI)

    Mackenzie, F.T.; Ver, L.M.; Lerman, A.

    2000-03-01

    The coastal zone, consisting of the continental shelves to a depth of 200 meters, including bays, lagoons, estuaries, and near-shore banks, is an environment that is strongly affected by its biogeochemical and physical interactions with reservoirs in the adjacent domains of land, atmosphere, open ocean, and marine sediments. Because the coastal zone is smaller in volume and area coverage relative to the open ocean, it traditionally has been studied as an integral part of the global oceans. In this paper, the authors show by numerical modeling that it is important to consider the coastal zone as an entity separate from the open ocean in any assessment of future Earth-system response under human perturbation. Model analyses for the early part of the 21st century suggest that the coastal zone plays a significant modifying role in the biogeochemical dynamics of the carbon cycle and the nutrient cycles coupled to it. This role is manifested in changes in primary production, storage, and/or export of organic matter, its remineralization, and calcium carbonate precipitation--all of which determine the state of the coastal zone with respect to exchange of CO{sub 2} with the atmosphere. Under a scenario of future reduced or complete cessation of the thermohaline circulation (THC) of the global oceans, coastal waters become an important sink for atmospheric CO{sub 2}, as opposed to the conditions in the past and present, when coastal waters are believed to be a source of CO{sub 2} to the atmosphere. Profound changes in coastal-zone primary productivity underscore the important role of phosphorus as a limiting nutrient. In addition, calculations indicate that the saturation state of coastal waters with respect to carbonate minerals will decline by {approximately}15% by the year 2030. Any future slowdown in the THC of the oceans will increase slightly the rate of decline in saturation state.

  13. Global warming impact of gasoline and alcohol use in light-duty highway vehicles in Brazil

    SciTech Connect (OSTI)

    Uria, L.A.B.; Schaeffer, R.

    1997-12-31

    This paper examines the direct and indirect global warming impact of gasoline and alcohol use in light-duty highway vehicles in Brazil. In order to do that, it quantifies emissions of CO{sub 2}, CO{sub 2} HC and NO{sub x} in terms of CO{sub 2}-equivalent units for time spans of 20, 100 and 500 years. It shows that the consideration of CO{sub 2} HC and NO{sub x} emissions in addition to CO{sub 2} provides an important contribution for better understanding the total warming impact of transportation fuels in Brazil.

  14. Where contributes most to the present century-scale global warming?

    SciTech Connect (OSTI)

    Zhaomei Zeng; Zhongwei Yan; Duzheng Ye

    1997-12-31

    In recent years, the temporal and spatial patterns of climate changes have received serious attention, by which some authors tried to recognize anthropogenic influences on climate and others tended to explain signals as resulted from natural processes. Yet, there are still many features of the present climate changes remaining open to be explained. As implied in many numerical modeling reviewed in recent literature, the warming induced by enhanced atmospheric greenhouse effect should be larger at higher latitudes. Proxy data indicated also that during past warm periods temperature anomalies at high latitudes were larger than at low latitudes. It gives people the impression that the enhanced greenhouse effect induced global warming should be more easily looked for in near-polar regions. However, this paper will show some new findings.

  15. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect (OSTI)

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  16. Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass burning, water treatment facilities, waste ... 1800. Increases in atmospheric methane roughly parallel ... be burned via a flare or used to run electrical generators. ...

  17. Implications of televised news coverage of global warming for organizational decisions

    SciTech Connect (OSTI)

    Nitz, M.

    1997-12-31

    Television is an important source of information for political issues in the eyes of many people. This also holds true for environmental issues. Television news is also deemed more credible than print news because {open_quotes}seeing is believing{close_quotes}. This research is also buttressed by evidence that one of the primary conversation topics among individuals is television content. So how well does television cover global warming? Unfortunately, previous research indicates that television news suffers from some serious inadequacies in its portrayal of global warming issues. This paper examines the potential impact of this coverage on organizational decisions. Organizations include businesses, government agencies, environmental action groups, media organizations, and other parties interested with the environment. The paper proposes framing theory and involvement theory as springboards for organizational decision-making.

  18. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    SciTech Connect (OSTI)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.

  19. Research & Development Roadmap for Next-Generation Low Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Low Global Warming Potential Refrigerants W. Goetzler, T. Sutherland, M. Rassi, J. Burgos November 2014 Prepared by Navigant Consulting, Inc. (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied,

  20. Warming up to solar energy

    SciTech Connect (OSTI)

    Biondo, B.

    1996-07-01

    Increasingly alarmed by threats to their financial security posed by an escalating number of weather-related catastrophes, major insurance companaies, particularly those in Europe and Asia, are starting to support a variety of measures that would slowe the production of grenhouse gases worlwide. As the insurance and banking industries turn their attention to global warming, investments in solar energy take on growing appeal.

  1. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    SciTech Connect (OSTI)

    Habib, Komal; Schmidt, Jannick H.; Christensen, Per

    2013-09-15

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup −1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup −1} of MSWM.

  2. Modelling estimation on the impacts of global warming on rice production in China

    SciTech Connect (OSTI)

    Wang Futang

    1997-12-31

    In this paper, based on the validation and sensitivity analyses of two rice growth models (ORYZA1 and DRISIC--Double Rice Cropping Simulation Model for China), and their joining with global warming scenarios projected by GCMs (GFDL, UKMO-H, MPI and DKRZ OPYC, DKRZ LSG, respectively), the modelling experiments were carried out on the potential impacts of global warming on rice production in China. The results show that although there are the some features for each rice cropping patterns because of different models and estimated methods, the rice production for all cropping patterns in China will trend to decrease with different degrees. In average, early, middle and later rice production, as well as, double-early and double-later rice production in different areas of China will decrease 3.7%, 10.5% and 10.4%, as well as, 15.9% and 14.4%, respectively. It do illustrates that the advantage effects induced by elevated CO{sub 2} concentration on photosynthesis does not compensate the adverse effects of temperature increase. Thus, it is necessary to adjusting rice cropping patterns, cultivars and farming techniques to the global warming timely.

  3. Public responses to global warming in Newcastle, Australia: Environmental values and environmental decision making

    SciTech Connect (OSTI)

    Bulkeley, H.

    1997-12-31

    This paper seeks to address tile social and cultural dimensions of the global warming issue through an analysis of `public` responses in Newcastle, Australia, based on recent research undertaken for a PhD thesis. Given the history of Australian involvement in the F.C.C.C process this case-study will provides an interesting context in which to analyse discourses of environmental values. It is argued that these discourses shape and are shaped by public responses to global environmental issues in ways which have important implications for the definition of issues as `problems` with acceptable solutions, for the implementation of such solutions and for their political consequences.

  4. Global Warming and Ice Ages: I. Prospects For Physics Based Modulation of Global Change

    DOE R&D Accomplishments [OSTI]

    Teller, E.; Wood, L.; Hyde, R.

    1996-08-15

    It has been suggested that large-scale climate changes, mostly due to atmospheric injection of greenhouse gases connected with fossil-fired energy production, should be forestalled by internationally-agreed reductions in, e.g., electricity generation. The potential economic impacts of such limitations are obviously large: greater than or equal to $10{sup 11}/year. We propose that for far smaller - less than 1% - the mean thermal effects of greenhouse gases may be obviated in any of several distinct ways, some of them novel. These suggestions are all based on scatterers that prevent a small fraction of solar radiation from reaching all or part of the Earth. We propose research directed to quite near-term realization of one or more of these inexpensive approaches to cancel the effects of the greenhouse gas injection. While the magnitude of the climatic impact of greenhouse gases is currently uncertain, the prospect of severe failure of the climate, for instance at the onset of the next Ice Age, is undeniable. The proposals in this paper may lead to quite practical methods to reduce or eliminate all climate failures.

  5. The contribution of Paris to limit global warming to 2 °C

    SciTech Connect (OSTI)

    Iyer, Gokul C.; Edmonds, James A.; Fawcett, Allen A.; Hultman, Nathan; Alsalam, Jameel; Asrar, Ghassem R.; Calvin, Katherine V.; Clarke, Leon E.; Creason, Jared; Jeong, Minji; McFarland, Jim; Mundra, Anupriya; Patel, Pralit L.; Shi, Wenjing; McJeon, Haewon C.

    2015-11-24

    International negotiators have clearly articulated a goal to limit global warming to 2°C. In preparation for the 21st Conference of Parties (COP21) in Paris in December 2015, countries are submitting their Intended Nationally Determined Contributions (INDCs) to the United Nations Framework Convention on Climate Change indicating their emissions reduction commitments through 2025 or 2030. Limiting global warming to 2°C is a challenging goal and will entail a dramatic transformation of the global energy system, largely complete by 2040. The deliberations in Paris will help determine the balance of challenges faced in the near-term and long-term. We use GCAM, a global integrated assessment model, to analyze the energy and economic-cost implications of INDCs. The INDCs imply near-term actions that reduce the level of mitigation needed in the post-2030 period, particularly when compared with an alternative path, in which nations are unable to undertake emissions mitigation until after 2030. We find that the latter case could require up to 2300 GW of premature retirements of fossil fuel power plants and up to 2900 GW of additional low-carbon power capacity installations within a five-year period of 2031 to 2035. INDCs have the effect of reducing premature retirements and new-capacity installations after 2030 by 50% and 34% respectively. However, if presently announced INDCs were strengthened to achieve greater near-term emissions mitigation, the 2031-2035 transformation could be tempered to require 84% fewer premature retirements of power generation capacity and 56% fewer new-capacity additions. Our results suggest that the ensuing COP21 in Paris will be critical in shaping the challenges of limiting global warming to 2°C.

  6. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    SciTech Connect (OSTI)

    Gan, T.Y.; Ahmad, Z.

    1997-12-31

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  7. The role of clouds and oceans in global greenhouse warming. Final report

    SciTech Connect (OSTI)

    Hoffert, M.I.

    1996-10-01

    This research focuses on assessing connections between anthropogenic greenhouse gas emissions and global climatic change. it has been supported since the early 1990s in part by the DOE ``Quantitative Links`` Program (QLP). A three-year effort was originally proposed to the QLP to investigate effects f global cloudiness on global climate and its implications for cloud feedback; and to continue the development and application of climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by clouds and oceans. It is well-known that cloud and ocean processes are major sources of uncertainty in the ability to predict climatic change from humankind`s greenhouse gas and aerosol emissions. And it has always been the objective to develop timely and useful analytical tools for addressing real world policy issues stemming from anthropogenic climate change.

  8. Global warming risk assessment as it is taught at the university level

    SciTech Connect (OSTI)

    Tarassova, N.P.; Malkov, A.V.

    1997-12-31

    It has already become a common place that global warming is the price payed by the civilization for the commodities of the modem life. Various branches of human activities, different types of industrial enterprises make their contributions (direct or indirect) to the Global Warming process, the impact being quite different under the {open_quote}normal{close_quotes} and {open_quote}accident{close_quotes} modes of functioning. The development of industry resulted in the considerable number of techogenic catastrophes, the consequences of the man-made disasters exceeding the ones of the natural disasters. Our statement is that in the modern education at the university level the problems of the risk analysis must be dealt with in the standard curriculum especially if technical universities are under consideration. The students are to be tought how to access the risk at the local, regional and global levels, and how to apply the skills and knowledge gained at the university to the already existing technologies, as well as to the ones under projection. The reliability of risk assessment approaches will determine the level of risk and the amount of economic resources needed to manage the risk.

  9. Response of snow-dependent hydrologic extremes to continued global warming

    SciTech Connect (OSTI)

    Diffenbaugh, Noah; Scherer, Martin; Ashfaq, Moetasim

    2012-01-01

    Snow accumulation is critical for water availability in the Northern Hemisphere1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions1,3. Although regional hydrologic changes have been observed (for example, refs 1,3 5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate- change impacts3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during the near- termdecadesandat2 Cglobalwarming.Theoccurrenceof extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 C above the pre-industrial baseline.

  10. Global Climate Change Response Program: Potential regional impacts of global warming on precipitation in the western United States. Final report

    SciTech Connect (OSTI)

    Leverson, V.

    1997-01-01

    This study was designed to build upon a previous Global Climate Change Response Program investigation in which an initial `first guess` climate change scenario was derived for the Western United States. Using the scenario`s hypothesized northward shift in the mean wintertime storm track, historical upper-air patterns in the atmosphere were searched to identify winter months (December, January, or February) that would serve as appropriate global warming analogues (GWA). Contour charts were generated of four geopotential height parameters. Specific pattern configurations of the four parameters were identified that reflected the altered storm track pattern, and guidelines for selecting suitable analogues based on the configurations were developed. Monthly mean precipitation values for the GWA months at three climatological divisions in Western Montana, northern Utah, and east central Arizona were compared with median values for the 1946-89 period to determine if any significant differences existed.

  11. Predictive study on the risk of malaria spreading due to global warming

    SciTech Connect (OSTI)

    Ono, Masaji

    1996-12-31

    Global warming will bring about a temperature elevation, and the habitat of vectors of infectious diseases, such as malaria and dengue fever, will spread into subtropical or temperate zone. The purpose of this study is to simulate the spreading of these diseases through reexamination of existing data and collection of some additional information by field survey. From these data, the author will establish the relationship between meteorological conditions, vector density and malaria occurrence. And then he will simulate and predict the malaria epidemics in case of temperature elevation in southeast Asia and Japan.

  12. Global warming and the potential spread of vector-borne diseases

    SciTech Connect (OSTI)

    Patz, J.

    1996-12-31

    Climatic factors influence many vector-borne infectious diseases, in addition to demographic, biological, and ecological determinants. The United Nation`s Intergovernmental Panel on Climate Change (IPCC) estimates an unprecedented global rise of 2.0 C by the year 2100. Of major concern is that these changes can affect the spread of many serious infectious diseases, including malaria and dengue fever. Global warming would directly affect disease transmission by shifting the mosquito`s geographic range, increasing reproductive and biting rates, and shortening pathogen incubation period. Human migration and damage to health infrastructures from the projected increase in climate variability and sea level rise could indirectly contribute to disease transmission. A review of this literature, as well as preliminary data from ongoing studies will be presented.

  13. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming

    SciTech Connect (OSTI)

    Shen, W.; Tuleya, R.E.; Ginis, I.

    2000-01-01

    In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to {+-}4 C and sea surface temperatures ranging from 26 to 31 C given the same relative humidity profile. The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO{sub 2} is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity if highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane-ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO{sub 2}.

  14. Remarkable waxing, waning, and wandering of populations of Mimulus guttatus: An unexpected example of global warming

    SciTech Connect (OSTI)

    Vickery, R.K. Jr.

    1999-04-01

    The purpose of this study was to observe the dynamics of a meta-population of Mimulus guttatus. Changes in size and location of 16 original populations and the new populations established in their vicinities in Big Cottonwood Canyon, Salt Lake county, Utah, were observed for 25 yr. Twenty-three new populations appeared. Seven original populations and 13 new populations had become extinct by the end of the observation period in 1996. Many populations died out and were reestablished, often repeatedly, during the observation period. Altogether there were 54 population disappearances and 34 reappearances. Many populations changed size as much as 100-fold or more from year to year. There were spectacular examples of populations expanding to fill newly available, large habitats. Frequent extinctions were due overwhelmingly to the canyon drying trend, which led to the drying up of most Mill D North drainage springs, creeks, and ponds. Precipitation and minimum temperatures increased moderately during the observation period. The growing season lengthened almost 50%, a typical consequence of global warming. The drying trend, lengthened growing season, and disappearance of Mimulus populations in Big Cottonwood Canyon appear to be a clear, local example of global warming.

  15. Global warming, January 1988-March 1991 (citations from the NTIS database). Rept. for Jan 88-Mar 91

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The bibliography contains citations concerning policies and general studies on global warming. Topics include the greenhouse effect, global climatic models, and climatic effects from combustion of fossil fuels. (The new bibliography contains 150 citations.) (Also includes title list and subject index.)

  16. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  17. Long-range global warming impact of gaseous diffusion plant operation

    SciTech Connect (OSTI)

    Trowbridge, L.D.

    1992-09-01

    The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection of a near-term substitute to two fully fluorinated material, FC-318 and FC-3110, which are likely to be strong, long-lived greenhouse gases. In this document, calculations are presented showing, for a number of plausible scenarios of diffusion plant operation and coolant replacement strategy, the future course of coolant use, greenhouse gas emissions (including coolant and power-related indirect CO{sub 2} emissions), and the consequent global temperature impacts of these scenarios.

  18. Global warming implications of non-fluorocarbon technologies as CFC replacements

    SciTech Connect (OSTI)

    Fischer, S.K.; Tomlinson, J.J.

    1993-12-31

    Many technologies could be developed for use in place of conventional compression systems for refrigeration and air conditioning. Comparisons of the global warming impacts using TEWI (Total Equivalent Warming Impact) can be used to identify alternatives that have the potential for lower environmental impacts than electric-driven vapor compression systems using HCFCs and HFCs. Some options, such as secondary heat transfer loops in commercial refrigeration systems to reduce refrigerant charge and emission rates, could be useful in reducing the losses of refrigerants to the atmosphere. Use of ammonia instead of a fluorocarbon in a system with a secondary loop offers only a small potential for decreasing TEWI, and this may not warrant the increased complexity and risks of using ammonia in a retail sales environment. A few technologies, such as adsorption heat pumps, have efficiency levels that show reduced TEWI levels compared to conventional and state of the art compression systems, and further development could lead to an even more favorable comparison. Health and safety risks of the alternative technologies and the materials they employ must also be considered.

  19. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    SciTech Connect (OSTI)

    Yoon, Jin-Ho; Wang, S-Y; Gillies, Robert R.; Kravitz, Benjamin S.; Hipps, Lawrence; Rasch, Philip J.

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1) and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. The projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.

  20. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; Kravitz, Benjamin S.; Hipps, Lawrence; Rasch, Philip J.

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  1. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    SciTech Connect (OSTI)

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; Kravitz, Benjamin S.; Hipps, Lawrence; Rasch, Philip J.

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1) and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.

  2. International potential of IGCC technology for use in reducing global warming and climate change emissions

    SciTech Connect (OSTI)

    Lau, F.S.

    1996-12-31

    High efficiency advanced coal-based technologies such as Integrated Gasification Combined Cycle (IGCC) that can assist in reducing CO{sub 2} emissions which contribute to Global Warming and Climate Change are becoming commercially available. U-GAS is an advanced gasification technology that can be used in many applications to convert coal in a high efficiency manner that will reduce the total amount of CO{sub 2} produced by requiring less coal-based fuel per unit of energy output. This paper will focus on the status of the installation and performance of the IGT U-GAS gasifiers which were installed at the Shanghai Cooking and Chemical Plant General located in Shanghai, China. Its use in future IGCC project for the production of power and the benefits of IGCC in reducing CO{sub 2} emissions through its high efficiency operation will be discussed.

  3. Global warming and the future of coal carbon capture and storage

    SciTech Connect (OSTI)

    Ken Berlin; Robert M. Sussman

    2007-05-15

    The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

  4. U.S. commitments and responsibilities to reduce global warmings: Contributions of state-level policies and programs

    SciTech Connect (OSTI)

    Wilt, C.A.; Feldman, D.L.

    1995-12-01

    Global warming is one of the most contentious and complex environmental issues confronting scientists and public policy makers. The scope and potential impacts of global warming are immense, affecting virtually all natural processes at many levels, including coastal zone erosion, estuarine habitat, forests, and agriculture. We hypothesize that managing the natural and societal impacts of global warming, including the costs of its management, abatement, and adaptation, requires not only the cooperation of international agencies and national government, but of individual states and provinces as well. There has been a considerable increase in state-level activity to reduce global warming in the United States, but there has been little assessment of its extent or state motivations. This paper will provide an overview of possible U.S. states` commitments and responsibilities under international treaties and agreements, as well as national policy decrees such as the Clinton Administrations` Climate Change Action Plan. A review of current states` activities with brief case studies of the more progressive state programs (Connecticut, Iowa, California, Missouri, Oregon), their achievements, and their significance. We focus upon federally-mandated global change activities imposed upon states (e.g., national regulations to conserve energy or reduce emissions) and state-motivated policies not required by any national regulation (e.g., land use, transportation, regional planning policies with impacts on global change.) The latter policies may be aimed specifically at global warming prevention or mitigation or they may be incidental, beneficial by-products of policies intended for other purposes--so called `no regrets` policies. We compare the performance of state policies in these two categories in order to ascertain their relative effectiveness and promise for addressing climate change problems.

  5. Marine methane cycle simulations for the period of early global warming

    SciTech Connect (OSTI)

    Elliott, S.; Maltrud, M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2011-01-02

    Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH{sub 4} distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics.

  6. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  7. Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2006-07-03

    The most stringent emission scenarios published by the Intergovernmental Panel on Climate Change (IPCC) would result in the stabilization of atmospheric carbon dioxide (CO2) at concentrations of approximately 550 ppm which would produce a global temperature increase of at least 2 C by 2100. Given the large uncertainties regarding the potential risks associated with this degree of global warming, it would be more prudent to stabilize atmospheric CO2 concentrations at or below current levels which, in turn, would require a greater than 20-fold reduction (i.e., ?95%) in per capita carbon emissions in industrialized nations within the next 50 to 100 years. Using the Kaya equation as a conceptual framework, this paper examines whether CO2 mitigation approaches such as energy efficiency improvements, carbon sequestration, and the development of carbon-free energy sources would be sufficient to bring about the required reduction in per capita carbon emissions without creating unforeseen negative impacts elsewhere. In terms of energy efficiency, large improvements (?5-fold) are in principle possible given aggressive investments in R&D and if market imperfections such as corporate subsidies are removed. However, energy efficiency improvements per se will not result in a reduction in carbon emissions if, as predicted by the IPCC, the size of the global economy has expanded 12-26 fold by 2100. Terrestrial carbon sequestration via reforestation and improved agricultural soil management has many environmental advantages but has only limited CO2 mitigation potential because the global terrestrial carbon sink (ca. 200 Gt C) is small relative to the size of fossil fuel deposits (?4000 Gt C). By contrast, very large amounts of CO2 can potentially be removed from the atmosphere via sequestration in geologic formations and oceans, but carbon storage is not permanent and is likely to create many unpredictable environmental consequences. Renewable solar energy can in theory provide

  8. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    SciTech Connect (OSTI)

    Luo, Yiyong; Lu, Jian; Liu, Fukai; Liu, Wei

    2015-10-10

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although the weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.

  9. Global warming and climate change - predictive models for temperate and tropical regions

    SciTech Connect (OSTI)

    Malini, B.H.

    1997-12-31

    Based on the assumption of 4{degree}C increase of global temperature by the turn of 21st century due to the accumulation of greenhouse gases an attempt is made to study the possible variations in different climatic regimes. The predictive climatic water balance model for Hokkaido island of Japan (a temperate zone) indicates the possible occurrence of water deficit for two to three months, which is a unknown phenomenon in this region at present. Similarly, India which represents tropical region also will experience much drier climates with increased water deficit conditions. As a consequence, the thermal region of Hokkaido which at present is mostly Tundra and Micro thermal will change into a Meso thermal category. Similarly, the moisture regime which at present supports per humid (A2, A3 and A4) and Humid (B4) climates can support A1, B4, B3, B2 and B1 climates indicating a shift towards drier side of the climatic spectrum. Further, the predictive modes of both the regions have indicated increased evapotranspiration rates. Although there is not much of change in the overall thermal characteristics of the Indian region the moisture regime indicates a clear shift towards the aridity in the country.

  10. EIA - Greenhouse Gas Emissions - High-GWP gases

    Gasoline and Diesel Fuel Update (EIA)

    5. High-GWP gases 5.1. Total emissions Greenhouse gases with high global warming potential (high-GWP gases) are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), which together represented 3 percent of U.S. greenhouse gas emissions in 2009. Emissions estimates for the high-GWP gases are provided to EIA by the EPA's Office of Air and Radiation. The estimates for emissions of HFCs not related to industrial processes or electric transmission are derived from the EPA

  11. Response of the regional water cycle to an increase of atmosphere moisture related to global warming

    SciTech Connect (OSTI)

    Frei, C.; Widmann, M.; Luethi, D.

    1997-11-01

    This study examines the sensitivity of the mid-latitude regional hydrological cycle to an imposed warming. Mesoscale limited-area climate simulations over Europe are performed. The modelling study is complemented with a detailed analysis of the observed precipitation and circulation trends in the same region. It is demonstrated that an increase of the moisture content leads to an enhancement of the model`s water cycle during the synoptically active seasons. The simulations suggest that this mechanism may contribute towards an increase in mean precipitation and more frequency occurrence of heavy precipitation events. Observational analysis results illustrate that the relationship between precipitation and atmospheric moisture seen in the climate simulations constitutes a possible physical mechanism relevant for the interpretation of the observed trends. A key feature of the model results is the pronounced increase in the frequency of strong precipitation events associated with the intensification of the water cycle. This large sensitivity highlights the vulnerability of the precipitation climate with respect to global climate change. 19 refs., 2 figs., 1 tab.

  12. Impacts of global warming on climate change over East Asia as simulated by 15 GCMs

    SciTech Connect (OSTI)

    Zong-ci Zhao; Xiaodong Li

    1997-12-31

    About 15 GCMs (GFDL1, GISS, LLNL, MPI, OSU, UKMOL, UKMOH, GCMs90-92, GFDL2, NCAR, OPYC, LSG, HADL, GCMs95) obtained from the IPCC WG 1 1990, 1992 and 1995 reports have been chosen to examine the impacts of global warming, on the climate chance over East Asia. Although the models scenarios of the human activities were different for the different GCMs, the climate change over East Asia (70E-140E, 15N-60N) for tile doubled CO{sub 2} as simulated by about 15 GCMs have been analysed. The Simulations shown that the temperature might increased by about 0.5 - 1.5 C over East Asia, especially in winter and northwestern parts of East Asia. The precipitation might increase in northwestern and northeastern parts of East Asia and decrease in the central part of East Asia. The evaluations and assessments of the GCMs over East Asia have indicated that the GCMs have the abilities to simulate the climate change over East Asia, especially for the temperature and the winter season. There are some uncertainties for the simulations to compare with the observations, especially for tile precipitation and tile summer season.

  13. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect (OSTI)

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  14. Borehole temperatures and a baseline for 20th-century global warming estimates

    SciTech Connect (OSTI)

    Harris, R.N.; Chapman, D.S.

    1997-03-14

    Lack of a 19th-century baseline temperature against which 20th-century warming can be referenced constitutes a deficiency in understanding recent climate change. Combination of borehole temperature profiles, which contain a memory of surface temperature changes in previous centuries, with the meteorologicl archive of surface air temperatures can provide a 19th-century baseline temperature tied to the current observational record. A test case in Utah, where boreholes are interspersed with meteorological stations belonging to the Historical Climatological network, Yields a noise reduction in estimates of 20th-century warming and a baseline temperature that is 0.6{degrees} {+-} 0.1{degrees}C below the 1951 to 1970 mean temperature for the region. 22 refs., 3 figs., 1 tab.

  15. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea

    SciTech Connect (OSTI)

    Kim, Mi-Hyung; Song, Yul-Eum; Song, Han-Byul; Kim, Jung-Wk; Hwang, Sun-Jin

    2011-09-15

    Highlights: > Various food waste disposal options were evaluated from the perspective of global warming. > Costs of the options were compared by the methodology of life cycle assessment and life cycle cost analysis. > Carbon price and valuable by-products were used for analyzing environmental credits. > The benefit-cost ratio of wet feeding scenario was the highest. - Abstract: The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO{sub 2} reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest.

  16. The Role of Subtropical Irreversible PV Mixing in the Zonal Mean Circulation Response to Global Warming-like Thermal Forcing

    SciTech Connect (OSTI)

    Lu, Jian; Sun, Lantao; Wu, Yutian; Chen, Gang

    2013-11-21

    The atmospheric circulation response to the global warming-like tropical upper tropospheric heating is revisited using a dry atmospheric general circulation model (AGCM) in light of a new diagnostics based on the concept of finite-amplitude wave activity (FAWA) on equivalent latitude. For a given tropical heating profile, the linear Wentzel-Kramers-Brillouin (WKB) wave refraction analysis sometimes gives a very different and even opposite prediction of the eddy momentum flux response to that of the actual full model simulation, exposing the limitation of the traditional linear approach in understanding the full dynamics of the atmospheric response under global warming. The implementation of the FAWA diagnostics reveals that in response to the upper tropospheric heating, effective diffusivity, a measure of the mixing efficiency, increases and advances upward and poleward in the subtropics and the resultant enhancement and the poleward encroachment of eddy potential vorticity mixing leads to a poleward displaced potential vorticity (PV) gradient peak in the upper troposphere. The anomalous eddy PV flux, in balance with the PV dissipation, gives rise to a poleward shift in the eddy-driven jet and eddy-driven mean meridional circulation. Sensitivity experiments show that these irreversible dissipation processes in the upper troposphere are robust, regardless of the width of the tropical heating.

  17. How America Can Look Within to Achieve Energy Security and Reduce Global Warming

    SciTech Connect (OSTI)

    Richter, Burton; Savitz, Maxine; Schlachter, Fred; Dawson, James; Crabtree, George; Greene, David L; Levine, Mark; Sperling, Daniel; Scofield, John; Glicksman, Leon; Goldstein, David; Goldston, David

    2008-01-01

    Making major gains in energy efficiency is one of the most economical and effective ways our nation can wean itself off its dependence on foreign oil and reduce its emissions of greenhouse gases. Transportation and buildings, which account for two thirds of American energy usage, consume far more than they need to, but even though there are many affordable energy efficient technologies that can save consumers money, market imperfections inhibit their adoption. To overcome the barriers, the federal government must adopt policies that will transform the investments into economic and societal benefit. And the federal government must invest in research and development programs that target energy efficiency. Energy efficiency is one of America s great hidden energy reserves. We should begin tapping it now.

  18. Practical ways to abate air and water pollution worldwide including a unique way to significantly curb global warming

    SciTech Connect (OSTI)

    Snell, J.R.

    1998-07-01

    This paper points out that in the next 50 years it will largely be the developing countries of the world which will continue to industrialize rapidly and hence pollute the water and air of not only their countries but that this pollution is becoming global (80% of the World's population.) From the author's 25 years of consulting experience in the developing countries, their greatest need is to have available to them low cost, innovative processes for pollution abatement will be neglected and the whole world will suffer immensely. The paper discusses in some detail the type of innovative low cost methods which have successfully been used in the categories of wastewater and solid wastes and names 6 other categories where many others exist. All these innovative methods need to be discovered, listed, and tested for quality and dependability, and then made widely available. Large Environmental Engineering Universities and International Consulting Engineering firms need to be organized to undertake these important tasks. The paper also points out the connection between Global Warming and the Solid waste industry and shows how it can be controlled inexpensively by employing a new, unique, and rapid method of converting municipal refuse into methane and then using that to make electricity. Information given in this paper could lead to a vast reduction in future pollution, with the resulting better global health and at the same time save trillions of dollars.

  19. Environmental screening tools for assessment of infrastructure plans based on biodiversity preservation and global warming (PEIT, Spain)

    SciTech Connect (OSTI)

    Garcia-Montero, Luis G.

    2010-04-15

    Most Strategic Environmental Assessment (SEA) research has been concerned with SEA as a procedure, and there have been relatively few developments and tests of analytical methodologies. The first stage of the SEA is the 'screening', which is the process whereby a decision is taken on whether or not SEA is required for a particular programme or plan. The effectiveness of screening and SEA procedures will depend on how well the assessment fits into the planning from the early stages of the decision-making process. However, it is difficult to prepare the environmental screening for an infrastructure plan involving a whole country. To be useful, such methodologies must be fast and simple. We have developed two screening tools which would make it possible to estimate promptly the overall impact an infrastructure plan might have on biodiversity and global warming for a whole country, in order to generate planning alternatives, and to determine whether or not SEA is required for a particular infrastructure plan.

  20. A procedure for analyzing energy and global warming impacts of foam insulation in U.S. commercial buildings

    SciTech Connect (OSTI)

    Kosny, J.; Yarbrough, D.W.; Desjarlais, A.O.

    1998-11-01

    The objective of this paper is to develop a procedure for evaluating the energy and global warming impacts of alternative insulation technologies for US commercial building applications. The analysis is focused on the sum of the direct contribution of greenhouse gas emissions from a system and the indirect contribution of the carbon dioxide emission resulting from the energy required to operate the system over its expected lifetime. In this paper, parametric analysis was used to calculate building related CO{sub 2} emission in two US locations. A retail mail building has been used as a model building for this analysis. For the analyzed building, minimal R-values of insulation are estimated using ASHRAE 90.1 requirements.

  1. US adopts {open_quote}Wise{close_quote} program to combat global warming

    SciTech Connect (OSTI)

    Herman, P.; Kenchington, H.

    1996-12-31

    Relying on their Yankee ingenuity, some 60 American companies have pledged to reduce greenhouse-gas emissions by more than 5 million metric tons by 2000. Inspired by the Clinton administration`s Climate Change Action Plan, companies such as Dupont and General Motors have joined with the Department of Energy and the Environmental Protection Agency to implement voluntary reductions in pollution, say Pamela Herman and Hank Kenchington, co-directors of the Climate Wise Program. {open_quotes}Climate Wise provides a flexible program that encourages industries to put forth their best ideas. The government, in turn, offers companies access to technical information and help in learning from the experience of others,{close_quotes} the authors say. Conservation of resources translates into financial savings as well. In curbing its emissions of greenhouse gases, Dupont {open_quotes}anticipates savings $30 million this year,{close_quotes} say Herman and Kechington. As a result, such cooperative initiatives as Climate Wise boost both the nation`s productivity and competitiveness.

  2. Technological options of Taiwan to mitigate global warming: Perspectives of a newly industrialized economy

    SciTech Connect (OSTI)

    Young, R.T.; Fang, L.J.

    1996-12-31

    While there is no shortage of studies on whether and how OECD countries can stabilize their CO{sub 2} emissions, the situation in developing countries has been subjected to much less scrutiny. Although current emission levels in developing countries are low, they can vastly increase in the future due to higher economic growth rates. Of particular interest are newly industrializing economies; they are positioned to be the first group of countries to catch up with OECD emission levels. In this paper, the authors examine the CO{sub 2} emission scenarios in Taiwan, whose economy is still growing at more than 6% after years of impressive performance. A dynamic, multi-period optimization model was constructed to evaluate various energy system development paths. Both currently utilized technologies and advanced technologies that may become available are considered. The model meets externally specified final energy sectoral demands while keeping the objective function minimal. For devising a practical program to control greenhouse gases emissions, relative advantages of the conventional regulation approach with incentive-based approaches are compared. The comparison is made by running the model using different objective functions.

  3. Measures used to tackle environmental problems related to global warming and climate change resulting from the use of coal

    SciTech Connect (OSTI)

    Hoppe, J.A.

    1996-12-31

    Environmental issues continue to play a major role in strategic planning associated with the use of coal for power generation. Problems, such as Acid Rain resulting from SO{sub 2} emissions produced from the sulfur content of coal during coal combustion, have recently cornered the attention of policy makers and planners. More recently the carbon content of coal, which provides for most of the coals heating value, has been identified as the major contributor to the production of CO{sub 2} and other emissions associated with Global Warming and Climate Change. Total world carbon emissions resulting from the burning of fossil fuels were approximately 6 billion metric tons in 1990, of which 44% were from the consumption of oil, 39% from coal, and 17% from natural gas. Assuming no change in current regulations, carbon emissions are anticipated to grow by 1.5% per year, and are predicted to reach more than 8 billion tons by the year 2010. Most of this increase in carbon emissions is expected to come from developing countries in the Asian Pacific Region such as China where coal use dominates the power production industry and accounts for 71% of its total CO{sub 2} emissions. Asian Pacific coal demand is expected to double over the next 15 years accounting for a 46% increase in total primary energy demand, and China currently produces approximately 11% of the world`s global greenhouse gas emissions which is expected to grow to 15% by the year 2010.

  4. Greenhouse Gases Converted to Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gases Converted to Fuel Greenhouse Gases Converted to Fuel carbon-conversion-fig-1.jpg Key Challenges: An important strategy for reducing global CO2 emissions calls for...

  5. Possible Impacts of Global Warming on Hydrology of the Ogallala Aquifer Region

    SciTech Connect (OSTI)

    Rosenberg, Norman J. ); Epstein, Daniel J. ); Wang, Dahong; Vail, Lance W. ); Srinivasan, Ragahvan; Arnold, J G.

    1998-12-01

    The Ogallala or High Plains aquifer provides water for about 20% of the irrigated land in the United States. About 20 km{sup 3} (16.6 million acre-feet) of water are withdrawn annually from this aquifer. In general, recharge has not compensated for withdrawals since major irrigation development began in this region in the 1940s. The mining of the Ogallala has been pictured as an analogue to climate change in that many GCMs predict a warmer and drier future for this region. We anticipate the possible impacts of climate change on the sustainability of the aquifer as a source of water for irrigation and other purposes in the region. We have applied HUMUS, the Hydrologic Unit Model of the U.S. to the Missouri and Arkansas-White-Red water resource regions that overlie the Ogallala. We have imposed three general circulation model (GISS, UKTR and BMRC) projections of future climate change on this region and simulated the changes that may be induced in water yields (runoff plus lateral flow) and ground water recharge. Each GCM was applied to HUMUS at three levels of global mean temperature (GMT) to represent increasing severity of climate change (a surrogate for time). HUMUS was also run at three levels of atmospheric CO2 concentration (hereafter denoted by[CO2]) in order to estimate the impacts of direct CO2 effects on photosynthesis and evapotranspiration. Since the UKTR and GISS GCMs project increased precipitation in the Missouri basin, water yields increase there. The BMRC GCM predicts sharply decreased precipitation and, hence, reduced water yields. Precipitation reductions are even greater in the Arkansas basin under BMRC as are the consequent water yield losses. GISS and UKTR climates lead to only moderate yield losses in the Arkansas. CO2-fertilization reverses these losses and yields increase slightly. CO2 fertilization increases recharge in the base (no climate change) case in both basins. Recharge is reduced under all three GCMs and severities of climate change.

  6. Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain

    SciTech Connect (OSTI)

    Radhi, Hassan; Sharples, Stephen

    2013-01-15

    On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle

  7. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Greenhouse Gases into Gold Greenhouse Gases into Gold NERSC simulations reveal reaction mechanism behind CO₂ conversion into carbon-neutral fuels and chemicals November 6, 2013 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Environmentalists have long lamented the destructive effects of greenhouse gases, with carbon dioxide (CO2) often accused of being the primary instigator of global climate change. As a result, numerous efforts are under way to find ways to prevent,

  8. Atmospheric lifetimes and global warming potentials of hydrofluoroethers: Reactivity toward OH, UV spectra, and IR absorption cross sections

    SciTech Connect (OSTI)

    Orkin, V.L.; Villenave, E.; Huie, R.E.; Kurylo, M.J.

    1999-12-02

    The rate constants for the reactions of OH radicals with the fluorinated ethers, CHF{sub 2}-O-CHF{sub 2} (HFOC-134) and CF{sub 3}CH{sub 2}-O-CH{sub 2}CF{sub 3} (HFOC-356mff), were measured using the flash photolysis resonance fluorescence technique over the temperature range 277--370 K to give the following Arrhenius expressions: k{sub HFOC-356mff}(T) = (2.32{sub {minus}0.41}{sup +0.46}) x 10{sup {minus}12} exp{l{underscore}brace}{minus}(790 {+-} 47)/T{r{underscore}brace} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. On the basis of the analysis of the available experimental results, the following Arrhenius expression can be recommended for the rate constant of the reaction between OH and HFOC-134: k{sub HFOC-134}(T) = (0.82{sub {minus}0.24}{sup +0.34}) x 10{sup {minus}12} exp{l{underscore}brace}{minus}(1,730 {+-} 110)/T{r{underscore}brace} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Atmospheric lifetimes were estimated to be 24.8 years for HFOC-134 (23.8 years based on the results of this study alone) and 0.3 years for HFOC-356mff. Infrared absorption cross sections of HFOC-134, HFOC-356mff, and HFOC-125 (CHF{sub 2}-O-CF{sub 3}) were measured at T = 295 K from 500 to 1,600 cm{sup {minus}1} and the global warming potentials of the three compounds were estimated. Ultraviolet absorption spectra of the ethers were measured between 160 and 220 nm. The general pattern of reactivity of hydrofluoroethers toward OH is discussed.

  9. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  10. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  11. State environmental law and carbon emissions: Do public utility commissions use environmental statutes to fight global warming?

    SciTech Connect (OSTI)

    Sautter, John A.

    2010-10-15

    In many states environmental statutes provide the authority for public utility commissioners to make decisions to reduce greenhouse gases from electricity generation. This article looks at six such laws and how the presence of these laws affected CO{sub 2} emissions during a nine-year period from 1997 to 2005. (author)

  12. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    SciTech Connect (OSTI)

    Race, Caitlin; Steinbach, Michael; Ganguly, Auroop R; Semazzi, Fred; Kumar, Vipin

    2010-01-01

    The connections among greenhouse-gas emissions scenarios, global warming, and frequencies of hurricanes or tropical cyclones are among the least understood in climate science but among the most fiercely debated in the context of adaptation decisions or mitigation policies. Here we show that a knowledge discovery strategy, which leverages observations and climate model simulations, offers the promise of developing credible projections of tropical cyclones based on sea surface temperatures (SST) in a warming environment. While this study motivates the development of new methodologies in statistics and data mining, the ability to solve challenging climate science problems with innovative combinations of traditional and state-of-the-art methods is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the relationship between sea surface temperatures and hurricane frequencies, and generate the most likely projections with uncertainty bounds for storm counts in the 21st-century warming environment based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that remains tailored to the climate domain and complements physics-based climate model simulations with a combination of existing and new computational and data science approaches.

  13. Response of precipitation extremes to idealized global warming in an aqua-planet climate model: Towards robust projection across different horizontal resolutions

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.

    2011-04-15

    Current climate models produce quite heterogeneous projections for the responses of precipitation extremes to future climate change. To help understand the range of projections from multimodel ensembles, a series of idealized 'aquaplanet' Atmospheric General Circulation Model (AGCM) runs have been performed with the Community Atmosphere Model CAM3. These runs have been analysed to identify the effects of horizontal resolution on precipitation extreme projections under two simple global warming scenarios. We adopt the aquaplanet framework for our simulations to remove any sensitivity to the spatial resolution of external inputs and to focus on the roles of model physics and dynamics. Results show that a uniform increase of sea surface temperature (SST) and an increase of low-to-high latitude SST gradient both lead to increase of precipitation and precipitation extremes for most latitudes. The perturbed SSTs generally have stronger impacts on precipitation extremes than on mean precipitation. Horizontal model resolution strongly affects the global warming signals in the extreme precipitation in tropical and subtropical regions but not in high latitude regions. This study illustrates that the effects of horizontal resolution have to be taken into account to develop more robust projections of precipitation extremes.

  14. Emissions of greenhouse gases in the United States, 1985--1990

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  15. PPPL wins Department of Energy award for reducing greenhouse gases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab wins Department of Energy award for reducing greenhouse gases By Jeanne Jackson DeVoe October 2, 2012 Tweet Widget Google Plus One Share on Facebook PPPL engineer Tim Stevenson checks for possible leaks of sulfur hexafluoride (SF6), the gas used to insulate electronic equipment that has the potential to cause global warming at many times the rate of carbon dioxide. PPPL reduced leaks of SF6 by 65 percent over three years - reducing overall greenhouse gas

  16. Airborne measurements of total sulfur gases during NASA global tropospheric experiment/chemical instrumentation test and evaluation 3

    SciTech Connect (OSTI)

    Farwell, S.O.; MacTaggart, D.L.; Chatham, W.H.

    1995-04-20

    A metal foil collection/flash desorption/flame photometric detection (MFC/FD/FPD) technique was used by investigators from the University of Idaho (UI) to measure ambient total sulfur gas concentrations from an aircraft platform during the NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 3 (GTE/CITE 3) program. The MFC/FD/FPD technique allowed rapid quantitation of tropospheric background air masses using sample integration times of 1-3 min with little or no gap between measurements. The rapid and continual sampling nature of this technique yielded data covering approximately 75% of the entire CITE 3 program`s air track. Ambient air measurement data obtained during northern hemisphere (NH) flights often exhibited relatively high total sulfur gas values (up to 19 ppb) and an extremely high degree of sample heterogeneity, especially in coastal locations. Data from southern hemisphere (SH) flights typically exhibited relatively low total sulfur gas concentrations and a low degree of sample heterogeneity. A bimodal interhemispheric total sulfur gas gradient was observed using data obtained during transit flights between the two CITE 3 program ground bases. Comparisons were made of UI total sulfur gas measurements with composite sulfur gas values generated using speciated sulfur gas measurements from other CITE 3 participants. Only a relatively small number of overlap periods for comparison were obtained from all the available CITE 3 data because of large differences in measurement integration times and lack of synchronization of sample start/stop times for the various investigators. These effects were compounded with extreme sample heterogeneity in the NH and the speed at which the aircraft traversed the air masses being sampled. Comparison of NH UI total with composite sulfur gas values showed excellent correlation and linear curve fit, indicating substantial qualitative agreement. 20 refs., 10 figs., 7 tabs.

  17. EDDY RESOLVING NUTRIENT ECODYNAMICS IN THE GLOBAL PARALLEL OCEAN PROGRAM AND CONNECTIONS WITH TRACE GASES IN THE SULFUR, HALOGEN AND NMHC CYCLES

    SciTech Connect (OSTI)

    S. CHU; S. ELLIOTT

    2000-08-01

    Ecodynamics and the sea-air transfer of climate relevant trace gases are intimately coupled in the oceanic mixed layer. Ventilation of species such as dimethyl sulfide and methyl bromide constitutes a key linkage within the earth system. We are creating a research tool for the study of marine trace gas distributions by implementing coupled ecology-gas chemistry in the high resolution Parallel Ocean Program (POP). The fundamental circulation model is eddy resolving, with cell sizes averaging 0.15 degree (lat/long). Here we describe ecochemistry integration. Density dependent mortality and iron geochemistry have enhanced agreement with chlorophyll measurements. Indications are that dimethyl sulfide production rates must be adjusted for latitude dependence to match recent compilations. This may reflect the need for phytoplankton to conserve nitrogen by favoring sulfurous osmolytes. Global simulations are also available for carbonyl sulfide, the methyl halides and for nonmethane hydrocarbons. We discuss future applications including interaction with atmospheric chemistry models, high resolution biogeochemical snapshots and the study of open ocean fertilization.

  18. What is the ARM Climate Research Facility: Is Global Warming a Real Bias or a Statistical Anomaly?

    SciTech Connect (OSTI)

    Egami, Takeshi; Sisterson, Douglas L.

    2010-03-10

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) is a U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research national user facility. With multi-laboratory management of distributed facilities worldwide, the ACRF does not fit the mold of a traditional user facility located at a national laboratory. The ACRF provides the world's most comprehensive 24/7 observational capabilities for obtaining atmospheric data specifically for climate change research. Serving nearly 5,000 registered users from 15 federal and state agencies, 375 universities, and 67 countries, the ACRF Data Archive collects and delivers over 5 terabytes of data per month to its users. The ACRF users provide critical information about cloud formation processes, water vapor, and aerosols, and their influence on radiative transfer in the atmosphere. This information is used to improve global climate model predictions of climate change.

  19. ARM - Lesson Plans: Dissolved Gases in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  20. ARM - Danger of Increased Greenhouse Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  1. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    SciTech Connect (OSTI)

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

    2014-01-01

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

  2. A valuation of possible glacio-hydrological characteristics changes under global warming for Pamiro-Alay glaciation

    SciTech Connect (OSTI)

    Ananicheva, M.D.

    1996-12-31

    Scenarios of global climate change for doubled carbon dioxide in the atmosphere is transformed into isoline maps for glaciated mountain region. Model data of monthly air temperature and precipitation are recalculated to values of annual solid precipitation and mean summer air temperature reduced to the level of 4,000 meters a.s.l. with the help of contemporary vertical gradients of air temperature and solid precipitation. The calculation algorithm is based on new techniques which analyze relationships between the spatial and altitudinal variability of meteorological parameters and their influence on snow and ice extent. Results form the basis for the calculation of the primary glaciologic and hydrologic characteristics: accumulation, ablation, melt runoff. New altitudes of main glaciological levels are calculated together with corresponding ablation and accumulation in the condition of doubled CO{sub 2}. These data are then used to produce a new spatial distribution of the input variables which can be used for improved melt water and heat resources calculation. The time period over which the model is run to obtain spatial distribution of pointed characteristics is the middle of 21 century, the situation of doubled CO{sub 2} in the atmosphere. Model output is in the form of isoline maps as well as digital data and covers the territory of Pamiro-Alay mountains and adjacent areas.

  3. CO2 Reduction by Dry Methane Reforming Over Hexaluminates: A Promising Technology for Decreasing Global Warming in a Cost Effective Manner

    SciTech Connect (OSTI)

    Salazar-Villalpando, M.D.; Gardner, T.H.

    2008-03-01

    Efficient utilization of CO2 can help to decrease global warming. Methane reforming using carbon dioxide has been of interest for many years, but recently that interest has experienced a rapid increase for both environmental and commercial reasons. The use of CO2 provides a source of clean oxygen, which eliminates the need for costly oxygen separation plants. The product of dry reforming is useful syn-gas, which can be used to generate electrical power in a SOFC or in the production of synthetic fuels (hydrocarbons and alcohols). Hexaaluminate catalysts prepared at NETL may represent a product that can be utilized for the conversion of CO2 to syn-gas. In this work, transition metals dispersed in barium hexaaluminate have shown to be promising new catalysts for dry methane reforming. In this investigation, a series of BaNixAl12-yO19-? catalysts with varying Ni content were prepared by co-precipitation followed by calcination at 1400C. CO2 reduction by dry methane reforming was carried out to determine catalyst performance as a function of temperature and carbon formation was also quantified after the reforming tests. Results of catalysts characterization, dispersion and surface area, were correlated to catalytic performance.

  4. NERSC Calculations Provide Independent Confirmation of Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, ...

  5. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    Archer, David

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  6. Global Warming in Geologic Time

    ScienceCinema (OSTI)

    David Archer

    2010-01-08

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  7. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    David Archer

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  8. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning Greenhouse Gases into Gold Greenhouse Gases into Gold NERSC simulations reveal reaction mechanism behind CO conversion into carbon-neutral fuels and chemicals November ...

  9. A process oriented analysis of the ``declaration of German industry on global warming prevention'' and its implications for the role of voluntary approaches in post-Kyoto climate policy

    SciTech Connect (OSTI)

    Ramesohl, S.; Kristof, K.

    1999-07-01

    Challenged by industry's growing claim for higher self-responsibility and more flexibility, energy and climate policy-makers need to define a future role of voluntary approaches (VA) which realizes the benefits but guarantees environmental effectiveness and political efficiency of these initiatives. Taking the 1996 ``Declaration of German industry on global warming prevention (DGWP)'' as an example of an energy related VA, the paper pursues a dual approach for policy analysis in order to evaluate the static performance and the dynamic process features of the DFWP approach. Transferred to a dynamic model of co-evolutionary climate policy-making, the general conclusions of the German case for climate policy are discussed.

  10. Why the Earth has not warmed as much as expected?

    SciTech Connect (OSTI)

    Schwartz, S.E.

    2010-05-01

    The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change. Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15%. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation, by empirical determination of the earth's climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluted by their performance over this period, is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.

  11. Why hasn't earth warmed as much as expected?

    SciTech Connect (OSTI)

    Schwartz, S.E.; Charlson, R.; Kahn, R.; Ogren, J.; Rodhe, H.

    2010-03-15

    The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change. Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15%. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation by empirical determination of Earths climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluated by their performance over this period is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.

  12. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M.; Canadell, Josep G.; Saikawa, Eri; Huntzinger, Deborah N.; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; et al

    2016-03-09

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate1. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change2, 3. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively4, 5, 6, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain.more » Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Lastly, our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.« less

  13. Greenhouse gases emission from municipal waste management: The role of separate collection

    SciTech Connect (OSTI)

    Calabro, Paolo S.

    2009-07-15

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO{sub 2}, CH{sub 4}, N{sub 2}O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  14. Emissions of greenhouse gases in the United States 1995

    SciTech Connect (OSTI)

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  15. Effect of global warming and increases in atmospheric [CO{sub 2}] on water stress in soybeans during critical reproductive stages: A regional study of Iowa

    SciTech Connect (OSTI)

    Haskett, J.D.; Pachepsky, Y.A.; Acock, B.

    1997-12-31

    The anthropogenic increase in radiatively active gases in the atmosphere has been well documented. Recently the impact of this increase on the earth`s climate has been confirmed. Agriculture is vulnerable to climatic change, and estimating the likely response to such changes is critical. Many studies of these responses have included soybeans both because they are an important commodity and because they are sensitive to changes in atmospheric CO, concentration. Such studies have generally focused on yield response. While this is critical it does not provide information on the underlying causal link between climate and atmospheric change and changes in soybean yield. The current work examines the impact of climatic change on water stress during the critical periods of soybean reproductive development.

  16. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  17. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  18. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  19. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi; Kulkarni, Sudhir S.

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  20. Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permalink EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Analysis, Capabilities, Facilities, Global, Infrastructure Security, Modeling, Modeling & Analysis, NISAC, Partnership, Research & Capabilities EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Natural disasters create emergency situations that must be dealt with quickly and effectively in order to minimize injury and loss of life. Simulating such events before they occur can

  1. ARM - Global Experts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  2. ARM - Global Thinkers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  3. ARM - Global Beginners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  4. Methods, systems, and devices for deep desulfurization of fuel gases

    DOE Patents [OSTI]

    Li, Liyu; King, David L.; Liu, Jun; Huo, Qisheng

    2012-04-17

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  5. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  6. National Environmental Health Association position on global climate change adopted July 2, 1997

    SciTech Connect (OSTI)

    Radtke, T.; Gist, G.L.; Wittkopf, T.E.

    1997-11-01

    The National Environmental Health Association (NEHA) supports the precept that anthropogenic sources, specifically greenhouse gases, are responsible for a significant portion of the measured change in global climate. Further, NEHA supports the concept of an association between global warming and an increased risk to public health. Reducing the amount of greenhouse gases released into the atmosphere will benefit human health. This position paper reviews current information on the status of global climate change with particular emphasis on the implications for environmental and public health. It is intended to be used as a basis from which environmental and public health practitioners and colleagues in related fields can initiate discussions with policy makers at all levels -- local, state, national, and worldwide.

  7. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon bearing trace gases Carbon Bearing Trace Gases A critical scientific and policy oriented question is what are the present day sources and sinks of carbon dioxide (CO2) in the natural environment and how will these sinks evolve under rising CO2 concentrations and expected climate change and ecosystem response. Sources and sinks of carbon dioxide impart their signature on the distribution, concentration, and isotopic composition of CO2. Spatial and temporal trends (variability) provide

  8. Combating global warming while the Senate fiddles

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-12-15

    No action in Congress? A simpler, more effective solution would be to allow utilities to use existing economic dispatch but require cost to include a price of pollution. Dispatchers would use current pricing models to calibrate the costs of various plants, so that cheaper units equal cleaner units. Working within current rules avoids the complexity of EPA regulation and the disruption of enacting new dispatch rules. It offers a more comprehensive solution than state-by-state permit proceedings. (author)

  9. ARM - Greenhouse Effect and Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The most that statistics can tell us at present is that there does appear to be a genuine ... Changes in tilt of the earth's axis (period of 41,000 years). Closeness of earth to sun ...

  10. Working Fluids: Low Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Integration and Collaboration Project Integration: * ASHRAE MTG on low GWP refrigerant research * AHRI AREP testing * International Institute of Refrigeration (IIR) working ...

  11. Implementation of global energy sustainability

    SciTech Connect (OSTI)

    Grob, G.R.

    1998-02-01

    The term energy sustainability emerged from the UN Conference on Environment and Development in Rio 1992, when Agenda 21 was formulated and the Global Energy Charter proclaimed. Emission reductions, total energy costing, improved energy efficiency, and sustainable energy systems are the four fundamental principles of the charter. These principles can be implemented in the proposed financial, legal, technical, and education framework. Much has been done in many countries toward the implementation of the Global Energy Charter, but progress has not been fast enough to ease the disastrous effects of the too many ill-conceived energy systems on the environment, climate, and health. Global warming is accelerating, and pollution is worsening, especially in developing countries with their hunger for energy to meet the needs of economic development. Asian cities are now beating all pollution records, and greenhouse gases are visibly changing the climate with rising sea levels, retracting glaciers, and record weather disasters. This article presents why and how energy investments and research money have to be rechanneled into sustainable energy, rather than into the business-as-usual of depleting, unsustainable energy concepts exceeding one trillion dollars per year. This largest of all investment sectors needs much more attention.

  12. The Climate Policy Narrative for a Dangerously Warming World

    SciTech Connect (OSTI)

    Sanford, Todd; Frumhoff, Peter; Luers, Amy; Gulledge, Jay

    2014-01-01

    It is time to acknowledge that global average temperatures will likely rise above the 2 C policy target and consider how that deeply troubling prospect should affect priorities for communicating and managing the risks of a dangerously warming climate.

  13. Global climate change and the mitigation challenge

    SciTech Connect (OSTI)

    Frank Princiotta

    2009-10-15

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  14. Confederated Tribes of Warm Springs - Biomass Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    05 June 2005 A Case Study: A Case Study: Warm Springs Warm Springs Cal Mukumoto Cal Mukumoto Warm Springs Forest Warm Springs Forest Products Industries Products Industries Warm Springs Indian Warm Springs Indian Reservation of Oregon Reservation of Oregon Warm Springs Forest Warm Springs Forest Products Industries (WSFPI) Products Industries (WSFPI) Enterprise of the Confederated Enterprise of the Confederated Tribes of the Warm Springs Tribes of the Warm Springs Reservation of Oregon

  15. Status of fossil energy resources: A global perspective

    SciTech Connect (OSTI)

    Balat, M.

    2007-07-01

    This article deals with recently status of global fossil energy sources. Fossil energy sources have been split into three categories: oil,coal, and natural gas. Fossil fuels are highly efficient and cheap. Currently oil is the fastest primary energy source in the world (39% of world energy consumption). Coal will be a major source of energy for the world for the foreseeable future (24% of world energy consumption). In 2030, coal covers 45% of world energy needs. Natural gas is expected to be the fastest growing component of world energy consumption (23% of world energy consumption). Fossil fuel extraction and conversion to usable energy has several environmental impacts. They could be a major contributor to global warming and greenhouse gases and a cause of acid rain; therefore, expensive air pollution controls are required.

  16. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  17. Geoscience Australia Continuous Global Positioning System (CGPS...

    Office of Scientific and Technical Information (OSTI)

    applications including maintenance of the Geospatial Reference Frame, both national and international, continental and tectonic plate motions, sea level rise, and global warming. ...

  18. Voluntary Reporting of Greenhouse Gases

    Reports and Publications (EIA)

    2011-01-01

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  19. Development of the first nonhydrostatic nested-grid grid-point global atmospheric modeling system on parallel machines

    SciTech Connect (OSTI)

    Kao, C.Y.J.; Langley, D.L.; Reisner, J.M.; Smith, W.S.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Evaluating the importance of global and regional climate response to increasing atmospheric concentrations of greenhouse gases requires a comprehensive global atmospheric modeling system (GAMS) capable of simulations over a wide range of atmospheric circulations, from complex terrain to continental scales, on high-performance computers. Unfortunately, all of the existing global circulation models (GCMs) do not meet this requirements, because they suffer from one or more of the following three shortcomings: (1) use of the hydrostatic approximation, which makes the models potentially ill-posed; (2) lack of a nested-grid (or multi-grid) capability, which makes it difficult to consistently evaluate the regional climate response to the global warming, and (3) spherical spectral (opposed to grid-point finite-difference) representation of model variables, which hinders model performance for parallel machine applications. The end product of the research is a highly modularized, multi-gridded, self-calibratable (for further parameterization development) global modeling system with state-of-the-science physics and chemistry. This system will be suitable for a suite of atmospheric problems: from local circulations to climate, from thunderstorms to global cloud radiative forcing, from urban pollution to global greenhouse trace gases, and from the guiding of field experiments to coupling with ocean models. It will also provide a unique testbed for high-performance computing architecture.

  20. Modeling international cooperation for the global environmental problematique

    SciTech Connect (OSTI)

    Sadeh, E.

    1997-12-31

    The focus of this study is on international cooperative decision-making related to global change issues concerning stratospheric ozone depletion and global climate warming. Such anthropogenic alteration of the Earth`s biosphere has given rise to a global environmental problematique that is demarcated by two dimensions. The first dimension is that global environmental Issues are demarcated by international environmental commons. Commons are defined as physical or biological systems that lie outside the jurisdiction of any individual state and are valued environmental resources globally. A second dimension pertains to tile collective action problem which results from a {open_quotes}tragedy of the commons.{close_quotes} According to traditional realist conception of international relations, that states behave in their rational self-interest, a {open_quotes}tragedy of the commons{close_quotes} ensues. The tragedy is a function of damage to the global environment, such as the production of economic resources that release greenhouse gases into the Earth`s biosphere, that is nonappropriable. Commons resources relative to the Earth`s biosphere are not limitless. At issue, is the realization of sustainable economic development promoted by cooperative political patterns that mitigate the negative consequences of this tragedy.

  1. Emissions of greenhouse gases in the United States 1997

    SciTech Connect (OSTI)

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  2. ,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Nonhydrocarbon Gases Removed ... 2:52:09 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed ...

  3. Welcome to Greenhouse Gases: Science and Technology: Editorial

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Maroto-Valer, M.M.

    2011-02-01

    This editorial introduces readers and contributors to a new online journal. Through the publication of articles ranging from peer-reviewed research papers and short communications, to editorials and interviews on greenhouse gas emissions science and technology, this journal will disseminate research results and information that address the global crisis of anthropogenic climate change. The scope of the journal includes the full spectrum of research areas from capture and separation of greenhouse gases from flue gases and ambient air, to beneficial utilization, and to sequestration in deep geologic formations and terrestrial (plant and soil) systems, as well as policy and technoeconomic analyses of these approaches.

  4. Impact of Geoengineering Schemes on the Global Hydrological Cycle

    SciTech Connect (OSTI)

    Bala, G; Duffy, P; Taylor, K

    2007-12-07

    The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changes in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.

  5. Investigating and Using Biomass Gases

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

  6. EIA's Energy in Brief: What are greenhouse gases and how much are emitted

    Gasoline and Diesel Fuel Update (EIA)

    by the United States? greenhouse gases and how much are emitted by the United States? Last Updated: January 20, 2016 Greenhouse gases trap heat from the sun and warm the planet's surface. Most U.S. greenhouse gas emissions are related to energy production and consumption. Most of those emissions are carbon dioxide (CO2) from the burning of fossil fuels. From 1990 to 2014, energy-related carbon dioxide emissions in the United States increased on average by about 0.3% per year. Because

  7. Warm Springs Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility...

  8. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coordination. Gases are stored either in the racks between buildings 6 and 7; toxic and corrosive gases are stored in Building 6, room 6C across the walkway from beamline...

  9. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the...

  10. Green House Gases | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green House Gases Did You Know? If it were not for naturally occurring greenhouse gases, the Earth would be too cold to support life as we know it. Without the greenhouse effect,...

  11. Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701

    SciTech Connect (OSTI)

    Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D.

    2005-07-16

    It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

  12. Energy Efficiency and Greenhouse Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Mission The team establishes an energy conservation program, as ...

  13. EIA-Voluntary Reporting of Greenhouse Gases Program

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program Voluntary Reporting of Greenhouse Gases Program ***THE VOLUNTARY REPORTING OF GREENHOUSE GASES ("1605(b)") PROGRAM HAS BEEN SUSPENDED.*** This affects ...

  14. EIA-Voluntary Reporting of Greenhouse Gases Program - What are...

    U.S. Energy Information Administration (EIA) Indexed Site

    What are Greenhouse Gases? Voluntary Reporting of Greenhouse Gases Program What are Greenhouse Gases? Many chemical compounds found in the Earth's atmosphere act as "greenhouse ...

  15. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  16. Emissions of greenhouse gases in the United States 1996

    SciTech Connect (OSTI)

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  17. Global environmental change: Its nature and impact

    SciTech Connect (OSTI)

    Hidore, J.J.

    1996-12-31

    This book is intended as an entry-level textbook on environmental science for nonscience majors. Twenty chapters address topics from historical geology and climatic change to population dynamics, land-use, water pollution, ozone depletion and biodiversity, global warming.

  18. Rising Sea Levels Due to Global Warming Are Unstoppable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the most aggressive scenario, the world's energy needs are met largely through renewable energy, nuclear power, and carbon sequestration-a combination that is technologically ...

  19. Working Fluids Low Global Warming Potential Refrigerants - 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brian Fricke conducts research in ORNL's Building Technologies Research & Integration Center. Low-GWP Refrigerants for Refrigeration Systems Image of the compressor rack and system ...

  20. Global warming accelerates drought-induced forest death

    ScienceCinema (OSTI)

    McDowell, Nathan; Pockman, William

    2014-06-02

    Many southwestern forests in the United States will disappear or be heavily altered by 2050, according to a series of joint Los Alamos National Laboratory-University of New Mexico studies. Nathan McDowell, a Los Alamos plant physiologist, and William Pockman, a UNM biology professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as air temperatures rise in combination with drought. "Everybody knows trees die when there's a drought, if there's bark beetles or fire, yet nobody in the world can predict it with much accuracy." McDowell said. "What's really changed is that the temperature is going up," thus the researchers are imposing artificial drought conditions on segments of wild forest in the Southwest and pushing forests to their limit to discover the exact processes of mortality and survival. The study is centered on drought experiments in woodlands at both Los Alamos and the Sevilleta National Wildlife Refuge in central New Mexico. Both sites are testing hypotheses about how forests die on mature, wild trees, rather than seedlings in a greenhouse, through the ecosystem-scale removal of 50 percent of yearly precipitation through large water-diversion trough systems.

  1. High-efficiency Low Global-Warming Potential (GWP) Compressor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Technologies (BENEFIT) - 2015, DE-FOA-0001166 Project Objective United Technologies Research Center (UTRC) proposes to demonstrate a high-efficiency compressor design ...

  2. The discovery of the risk of global warming

    SciTech Connect (OSTI)

    Weart, S.R.

    1997-01-01

    An accidental confluence of old interests and new techniques led a few scientists in the 1950s to realize that human activity might be changing the world{close_quote}s climate. {copyright} {ital 1997 American Institute of Physics.}

  3. Can land management and biomass utilization help mitigate global warming?

    SciTech Connect (OSTI)

    Schlamadinger, B.; Lauer, M.

    1996-12-31

    With rising concern about the increase of the CO{sub 2} concentration in the earth`s atmosphere there is considerable interest in various land-use based mitigation options, like afforestation of surplus agricultural land with or without subsequent harvest; improved forest management; strategies that rely on wood plantations managed in short rotation or agricultural crops with high yields to produce bioenergy, timber and other biomass products. In the first step of this study, the net carbon benefits of such strategies will be calculated per unit of land, i.e., per hectare, because it is assumed that land is the limiting resource for such strategies in the future, and thus, the benefits per unit land need to be optimized. For these calculations a computer model has been developed. The results take into account the time dependence of carbon storage in the biosphere and are shown graphically both for land and for plantation systems with constant output of biomass over time. In the second step, these results will be combined with data on available land for Austria. The potential contribution of each of the above strategies towards mitigating the Austrian CO{sub 2} emissions will be demonstrated. A comparison to other renewable mitigation options, like solar thermal or photovoltaics, will be drawn in terms of available land resources and overall CO{sub 2} reductions.

  4. Global warming science & policy: Progress 1996-1997

    SciTech Connect (OSTI)

    Sinyan, Shen

    1997-12-31

    Recent progress in science and policy is summarized. The most significant progress has been the recognition worldwide of the importance of Extreme Events (EE), short for extreme climatic events, during the earth`s current climatic transition, in which the magnitudes of the {open_quotes}oscillatory amplitude{close_quotes} in climatic patterns could easily {open_quotes}exceed{close_quotes} the difference between the end points.

  5. Global warming impact on the cement and aggregates industries

    SciTech Connect (OSTI)

    Davidovits, J. . Geopolymer Inst.)

    1994-06-01

    CO[sub 2] related energy taxes are focusing essentially on fuel consumption, not on actual CO[sub 2] emission measured at the chimneys. Ordinary Portland cement, used in the aggregates and industries, results from the calcination of limestone and silica. The production of 1 ton of cement directly generates 0.55 tons of chemical-CO[sub 2] and requires the combustion of carbon-fuel to yield an additional 0.40 tons of CO[sub 2]. The 1987 1 billion metric tons world production of cement accounted for 1 billion metric tons of CO[sub 2], i.e., 5% of the 1987 world CO[sub 2] emission. A world-wide freeze of CO[sub 2] emission at the 1990 level as recommended by international institutions, is incompatible with the extremely high cement development needs of less industrialized countries. Present cement production growth ranges from 5% to 16% and suggests that in 25 years from now, world cement CO[sub 2] emissions could equal 3,500 million tons. Eco-taxes when applied would have a spectacular impact on traditional Portland cement based aggregates industries. Taxation based only on fuel consumption would lead to a cement price increase of 20%, whereas taxation based on actual CO[sub 2] emission would multiply cement price by 1.5 to 2. A 25--30% minor reduction of CO[sub 2] emissions may be achieved through the blending of Portland cement with replacement materials such as coal-fly ash and iron blast furnace slag.

  6. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The New York Times covers "National Labs Race to Stop Iran" The New York Times covers "National Labs Race to Stop Iran" May, 15 2015 - Given the stakes in the sensitive ...

  7. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... K needed for common equipment types 62 candidates: 1 halogenated alkane (R-152a) 39 halogenated olefins (e... DC Janusz Wojtusiak, George Mason University, Fairfax, VA Chemical ...

  8. Global warming accelerates drought-induced forest death

    SciTech Connect (OSTI)

    McDowell, Nathan; Pockman, William

    2013-07-09

    Many southwestern forests in the United States will disappear or be heavily altered by 2050, according to a series of joint Los Alamos National Laboratory-University of New Mexico studies. Nathan McDowell, a Los Alamos plant physiologist, and William Pockman, a UNM biology professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as air temperatures rise in combination with drought. "Everybody knows trees die when there's a drought, if there's bark beetles or fire, yet nobody in the world can predict it with much accuracy." McDowell said. "What's really changed is that the temperature is going up," thus the researchers are imposing artificial drought conditions on segments of wild forest in the Southwest and pushing forests to their limit to discover the exact processes of mortality and survival. The study is centered on drought experiments in woodlands at both Los Alamos and the Sevilleta National Wildlife Refuge in central New Mexico. Both sites are testing hypotheses about how forests die on mature, wild trees, rather than seedlings in a greenhouse, through the ecosystem-scale removal of 50 percent of yearly precipitation through large water-diversion trough systems.

  9. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants

    Broader source: Energy.gov [DOE]

    Lead Performer: National Institute of Standards and Technology - Gaithersburg, MD Partners: -- Catholic University of America - Washington, DC -- George Mason University - Fairfax, VA

  10. Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass-specific cross-sections (m2g) at 550 nm and 10 mm for black carbon (BC), sulfuric acid (SA), aluminum (AL) aerosols (A), and mass-specific cooling for SA aerosol for mass ...

  11. Wildfires may contribute more to global warming than previously...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abundant than soot. Furthermore, the bare soot particles, which are composite porous fractal structures made of tiny spherical carbon, are modified significantly by the organics...

  12. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOE Patents [OSTI]

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  13. Warming trends: Adapting to nonlinear change

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jonko, Alexandra K.

    2015-01-28

    As atmospheric carbon dioxide concentrations rise, some regions are expected to warm more than others. Research suggests that whether warming will intensify or slow down over time also depends on location.

  14. ARM - Will There be Increased Global Precipitation?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Will There be Increased Global Precipitation? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Will There be Increased Global Precipitation? Very probable. Along with an increase in air temperature might be an increase in evaporation, which could lead to greater global precipitation. The

  15. Method of concurrently filtering particles and collecting gases

    SciTech Connect (OSTI)

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  16. Light Collection in Liquid Noble Gases

    SciTech Connect (OSTI)

    McKinsey, Dan [Yale University

    2013-05-29

    Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

  17. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    SciTech Connect (OSTI)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much

  18. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming

  19. Method of concurrently filtering particles and collecting gases (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Patent: Method of concurrently filtering particles and collecting gases Citation Details In-Document Search Title: Method of concurrently filtering particles and collecting gases A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be

  20. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  1. Method and apparatus for separating mixtures of gases using an...

    Office of Scientific and Technical Information (OSTI)

    Method and apparatus for separating mixtures of gases using an acoustic wave Title: Method and apparatus for separating mixtures of gases using an acoustic wave A thermoacoustic ...

  2. New model more accurately tracks gases for underground nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model tracks gases for underground nuclear explosion detection New model more accurately tracks gases for underground nuclear explosion detection Scientists have developed a new, ...

  3. EPA's Recent Advance Notice on Greenhouse Gases | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA's Recent Advance Notice on Greenhouse Gases EPA's Recent Advance Notice on Greenhouse Gases Summary EPA's advanced notice of proposed rulemaking on mobile sources of greenhouse ...

  4. OSTIblog Articles in the greenhouse gases Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    greenhouse gases Topic Carbon Sequestration - Helping to Save Our Beautiful World by Kathy ... Related Topics: carbon dioxide, carbon sequestration, climate change, greenhouse gases

  5. EIA-Voluntary Reporting of Greenhouse Gases Program - About the...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program About the 1605(b) Program History Established by Section 1605(b) of the Energy Policy Act of 1992, the Voluntary Reporting of Greenhouse Gases ...

  6. EIA-Voluntary Reporting of Greenhouse Gases Program - Under Constructi...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program This Page is Currently Under Construction Please check back at a later time For more information on the Voluntary Reporting of Greenhouse Gases ...

  7. EIA-Voluntary Reporting of Greenhouse Gases Program -Data and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data and Reports Voluntary Reporting of Greenhouse Gases Program Data and Reports The first reporting cycle under the revised Voluntary Reporting of Greenhouse Gases Program closed ...

  8. EIA-Voluntary Reporting of Greenhouse Gases Program - Getting...

    U.S. Energy Information Administration (EIA) Indexed Site

    Getting Started Voluntary Reporting of Greenhouse Gases Program Getting Started Form ... The Voluntary Reporting of Greenhouse Gases Program suggests that prospective reporters ...

  9. EIA-Voluntary Reporting of Greenhouse Gases Program - Contact

    U.S. Energy Information Administration (EIA) Indexed Site

    Contact Voluntary Reporting of Greenhouse Gases Program Contact For more information on the Voluntary Reporting of Greenhouse Gases Program, contact us via e-mail, phone, fax, or ...

  10. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect (OSTI)

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  11. Denitrification of combustion gases. [Patent application

    DOE Patents [OSTI]

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  12. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Ultrafast Spectroscopy of Warm Dense Matter Print Wednesday, 25 April 2012 00:00 Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material

  13. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  14. Persisting cold extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kodra, Evan A; Steinhaeuser, Karsten J K; Ganguly, Auroop R

    2011-01-01

    Analyses of climate model simulations and observations reveal that extreme cold events are likely to persist across each land-continent even under 21st-century warming scenarios. The grid-based intensity, duration and frequency of cold extreme events are calculated annually through three indices: the coldest annual consecutive three-day average of daily maximum temperature, the annual maximum of consecutive frost days, and the total number of frost days. Nine global climate models forced with a moderate greenhouse-gas emissions scenario compares the indices over 2091 2100 versus 1991 2000. The credibility of model-simulated cold extremes is evaluated through both bias scores relative to reanalysis data in the past and multi-model agreement in the future. The number of times the value of each annual index in 2091 2100 exceeds the decadal average of the corresponding index in 1991 2000 is counted. The results indicate that intensity and duration of grid-based cold extremes, when viewed as a global total, will often be as severe as current typical conditions in many regions, but the corresponding frequency does not show this persistence. While the models agree on the projected persistence of cold extremes in terms of global counts, regionally, inter-model variability and disparity in model performance tends to dominate. Our findings suggest that, despite a general warming trend, regional preparedness for extreme cold events cannot be compromised even towards the end of the century.

  15. Nuclear energy output slows as climate warms

    SciTech Connect (OSTI)

    Kramer, David

    2014-06-01

    New reports from the Intergovernmental Panel on Climate Change and the US government say the window is closing for actions to avert the worst effects of warming.

  16. Global Cooling: Effect of Urban Albedo on Global Temperature

    SciTech Connect (OSTI)

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  17. End Calorimeter Warm Tube Heater

    SciTech Connect (OSTI)

    Primdahl, K.; /Fermilab

    1991-08-06

    The Tevatron accelerator beam tube must pass through the End Calorimeter cryostats of the D-Zero Collider Detector. Furthermore, the End Calorimeter cryostats must be allowed to roll back forty inches without interruption of the vacuum system; hence, the Tev tube must slide through the End Calorimeter cryostat as it is rolled back. The Tev pass through the End Calorimeter can actually be thought of as a cluster of concentric tubes: Tev tube, warm (vacuum vessel) tube, IS layers of superinsulation, cold tube (argon vessel), and Inner Hadronic center support tube. M. Foley generated an ANSYS model to study the heat load. to the cryostat. during collider physics studies; that is, without operation of the heater. A sketch of the model is included in the appendix. The vacuum space and superinsulation was modeled as a thermal solid, with conductivity derived from tests performed at Fermilab. An additional estimate was done. by this author, using data supplied by NR-2. a superinsulation manufacturer. The ANSYS result and hand calculation are in close agreement. The ANSYS model was modified. by this author. to incorporate the effect of the heater. Whereas the earlier model studied steady state operation only. the revised model considers the heater-off steady state mode as the initial condition. then performs a transient analysis with a final load step for time tending towards infinity. Results show the thermal gradient as a function of time and applied voltage. It should be noted that M. Foley's model was generated for one half the warm tube. implying the tube to be symmetric. In reality. the downstream connection (relative to the collision point) attachment to the vacuum shell is via several convolutions of a 0.020-inch wall bellows; hence. a nearly adiabatic boundary condition. Accordingly. the results reported in the table reflect extrapolation of the curves to the downstream end of the tube. Using results from the ANSYS analysis, that is, tube temperature and

  18. ARM - PI Product - ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central

  19. Climate Effects of Global Land Cover Change

    SciTech Connect (OSTI)

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  20. Fingerprints of anthropogenic and natural variability in global-mean surface temperature

    SciTech Connect (OSTI)

    Wallace, J.M.; Zhang, Yuan

    1997-11-01

    This paper presents an analysis designed to detect greenhouse warming by distinguishing between temperature rises induced by increasing atmospheric concentrations of greenhouse gases and those induced by background variability that are present without changes in atmospheric composition. The strategy is based on the surface temperature field. At each observation time, the projection of the anomalous temperature field on the presumed anthropogenic fingerprint is removed in order to obtain a temperature deviation field; i.e., the temperature anomalies in the phase space orthogonal to the anthropogenic fingerprint, which are presumed to be entirely natural. The time series of the expansion coefficients of the fingerprint a(t) is then regressed on this temperature deviation field to identify the axis in the orthogonal phase space along which the variations are most strongly correlated, and an index n(t) of the temporal variations along that axis is generated. The index a(t) is then regressed upon n(t) and the resulting least squares fit is regarded as the component of a(t) that can be ascribed to natural causes. The analysis was performed for monthly global surface temperature anomaly fields for the period 1900-95. Results indicate that two well defined patterns of natural variability contribute to variations in global mean temperature: the synthetic cold ocean-warm land (COWL) pattern and the El Nino-Southern Oscillation (ENSO). In domains that include surface air temperature over Eurasia and North America, the COWL pattern tends to be dominant. The ENSO signature emerges as the pattern most strongly linearly correlated with global sea surface temperature and with tropospheric layer-averaged temperatures. 24 refs., 3 figs.

  1. Where do California's greenhouse gases come from?

    SciTech Connect (OSTI)

    Fischer, Marc

    2009-01-01

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  2. Where do California's greenhouse gases come from?

    ScienceCinema (OSTI)

    Fischer, Marc

    2013-05-29

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  3. Emission of biogenic sulfur gases from Chinese paddy soil and rice plant

    SciTech Connect (OSTI)

    Zhen Yang [Nanjing Univ. of Science and Technology (China); Li Kong [Nanjing Agricultural Univ. (China)

    1996-12-31

    Biogenic sulfur gases emitted from terrestrial ecosystem may play in important role in global sulfur cycle and have a profound influence on global climate change. But very little is known concerning emissions from paddy soil and rice plant, which are abundant in many parts of the world. As a big agricultural country, this is about 33 million hectare rice planted in China. With laboratory incubation and closed chamber method in the field, the biogenic sulfur gases emitted from Chinese paddy soil and rice plant were detected in both conditions: hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), methyl mercaptan (MSH), carbon disulfide (CS{sub 2}), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS). Among which, DMS was predominant part of sulfur emission. Emission of sulfur gases from different paddy field exhibit high spatial and temporal variability. The application of fertilizer and organic manure, total sulfur content in wetland, air temperature were positively correlated to the emission of volatile sulfur gases from paddy soil. Diurnal and seasonal variation of total volatile sulfur gases and DMS indicate that their emissions were greatly influenced by the activity of the rice plant. The annual emission of total volatile sulfur gases, from Nanjing paddy field is ranged from 4.0 to 9.5 mg S m{sup -2}yr{sup -1}, that of DMS is ranged from 3.1 to 6.5 mg S m{sup -2}yr{sup -1}. Rice plant could absorb COS gas, that may be one of the sinks of COS.

  4. Oxidation of ultrathin GaSe

    SciTech Connect (OSTI)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  5. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  6. Managing biogeochemical cycles to reduce greenhouse gases

    SciTech Connect (OSTI)

    Post, Wilfred M; Venterea, Rodney

    2012-01-01

    This special issue focuses on terrestrial biogeochemical cycles as they relate to North America-wide budgeting and future projection of biogenic greenhouse gases (GHGs). Understanding the current magnitude and providing guidance on the future trajectories of atmospheric concentrations of these gases requires investigation of their (i) biogeochemical origins, (ii) response to climate feedbacks and other environmental factors, and (iii) susceptibility to management practices. This special issue provides a group of articles that present the current state of continental scale sources and sinks of biogenic GHGs and the potential to better manage them in the future.

  7. Oxidation of ultrathin GaSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  8. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  9. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  10. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  11. Equilibration dynamics and conductivity of warm dense hydrogen...

    Office of Scientific and Technical Information (OSTI)

    and conductivity of warm dense hydrogen Citation Details In-Document Search Title: Equilibration dynamics and conductivity of warm dense hydrogen You are accessing a document ...

  12. Confederated Tribes of the Warm Springs Reservation- 2007 Wind Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon.

  13. Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Warm Springs Resort...

  14. Electronic Structure of Warm Dense Matter via Multicenter Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure of Warm Dense Matter via Multicenter Green's Function Technique Research Personnel Modeling The proposed research addresses the Warm Dense Matter area...

  15. Direct Imaging of Warm Extrasolar Planets (Technical Report)...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Direct Imaging of Warm Extrasolar Planets Citation Details In-Document ... companions to young stars, we can see thermal emission from planets that are still warm ...

  16. Equilibration dynamics and conductivity of warm dense hydrogen...

    Office of Scientific and Technical Information (OSTI)

    Equilibration dynamics and conductivity of warm dense hydrogen Citation Details In-Document Search Title: Equilibration dynamics and conductivity of warm dense hydrogen Authors: ...

  17. Confederated Tribes of the Warm Springs Reservation- 2007 Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon.

  18. Global surface temperature changes since the 1850s

    SciTech Connect (OSTI)

    Jones, P.D.

    1996-12-31

    Temperature data from land and marine areas form the basis for many studies of climatic variations on local, regional and hemispheric scales, and the global mean temperature is a fundamental measure of the state of the climate system. In this paper it is shown that the surface temperature of the globe has warmed by about 0.5{degrees}C since the mid-nineteenth century. This is an important part of the evidence in the {open_quote}global warming{close_quote} debate. How certain are we about the magnitude of the warming? Where has it been greatest? In this paper, these and related issues will be addressed.

  19. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and

  20. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme

  1. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme

  2. A tropical influence on global climate

    SciTech Connect (OSTI)

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S.

    1997-05-15

    A potential influence of tropical sea surface temperature on the global climate response to a doubling of the CO{sub 2} concentration is tested using an atmospheric general circulation model coupled to a slab mixed layer ocean. The warming is significantly reduced when sea surface temperatures in the eastern equatorial Pacific cold tongue region between latitudes 2.25{degrees}N and 2.25{degrees}S are held at the control simulation values. Warming of the global mean temperature outside of the cold tongue region is reduced from 2.4{degrees}C in the unconstrained case to 1.9{degrees}C when the sea surface temperature constraint is applied. The decrease in the warming results from a positive net heat flux into the ocean cold tongue region and implicit heat storage in the subsurface ocean, induced by horizontal atmospheric heat fluxes. The reduced surface temperature warming outside of the cold tongue region is due to reduction in the downward longwave radiative flux at the surface, caused in turn by reduced atmospheric temperature and moisture. The global mean surface temperature responds to the heat storage in the ocean as if the global mean radiative forcing due to the doubled CO{sub 2} (approximately 4 W m{sup {minus}2}) was reduced by the value of the global mean heat flux into the ocean. This mechanism also provides a possible explanation for the observed high correlation on interannual timescales between the global mean tropospheric temperature and sea surface temperature in the eastern tropical Pacific. The results emphasize the importance of correctly modeling the dynamical processes in the ocean and atmosphere that help determine the sea surface temperature in the equatorial eastern Pacific, in addition to the thermodynamical processes, in projecting global warming. 23 refs., 8 figs.

  3. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  4. Global decarbonization strategies

    SciTech Connect (OSTI)

    Messner, S.

    1996-12-31

    The presentation covers a brief summary of the research activities of the Environmentally Compatible Energy Strategies Project (ECS) at IIASA. The overall research focuses on long-term global energy development and emissions of greenhouse gases (GHG). The ultimate goal is to analyze strategies that achieve decarbonization of global energy systems during the next century. The specific activities range from mitigation of GHG emissions to an integrated assessment of climate change. One focal point is the GHG mitigation technology inventory CO{sub 2}DB, which presently covers approximately 1,400 technologies related to energy and the greenhouse effect. Another integral part is the development of global energy and emissions scenarios, an effort involving a number of formal models to assess the implications. A large number of global scenarios for the next century has been developed, that could be grouped into three families. All of them include energy efficiency improvements and some degree of decarbonization in the world. They are based on different economic and technological development trajectories, and their emissions range from very high to a stabilization of atmospheric carbon dioxide emissions. The presentation will outline the salient characteristics of the three scenario families and provide some regional implications of these alternative futures.

  5. Global extreme events and their regional economic impact: 1996 update

    SciTech Connect (OSTI)

    Shen, S.

    1996-12-31

    The meaning of global warming and its relevance to everyday life is explained. Simple thermodynamics is used to predict an oscillatory nature of the change in climate due to global warming. The regional economic impacts of global extreme events are what mankind needs to focus on in government and private sector policy and planning. The economic impact of global warming has been tracked by the Extreme Event Index (EEI) established by the Global Warming International Center (GWIC). This review will update the overall trend and the components of the EEI from 1960 to 1996. The regional components of the global EEI have provided an excellent gauge for measuring the statistical vulnerability of any geographical locality in climate related economic disasters. The author further explains why we no longer fully understand the nature and magnitudes of common phenomena such as storms and wind speeds because of these extreme events, precipitation and temperature oscillations, atmospheric thermal unrest, as well as the further stratification of clouds, and changes in the absorptive properties of clouds. Hurricane strength winds are increasingly common even in continental areas. The author links the increase in duration of the El Nino to global warming, and further predicts a high public health risk as a result of the earth`s transition to another equilibrium state in its young history.

  6. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, Charles E. (Idaho Falls, ID)

    1997-01-01

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  7. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  8. Climate Change: The Role of Particles and Gases (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Menon, Surabi

    2011-04-28

    Summer Lecture Series 2008: A member of the Atmospheric Sciences Department in the Environmental Energy Technologies Division (EETD), Surabi Menon's work focuses on the human contribution to increasing impacts of climate change. Her talk will focus on what humans can do about the effects of global warming by examining anthropogenic influences on climate and future anticipated impacts, using a climate model and her own observations.

  9. Glass Membrane For Controlled Diffusion Of Gases

    DOE Patents [OSTI]

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  10. Method for introduction of gases into microspheres

    DOE Patents [OSTI]

    Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan

    1981-01-01

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  11. Refinery Yield of Liquefied Refinery Gases

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources

  12. Method for introduction of gases into microspheres

    DOE Patents [OSTI]

    Hendricks, C.D.; Koo, J.C.; Rosencwaig, A.

    A method is described for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500..mu.. with both thin walls (0.5 to 4/sub ..mu../) and thick walls (5 to 20/sub ..mu../) that contain various fill gases, such as Ar, Kr, Xe, Br, D, H/sub 2/, DT, He, N/sub 2/, Ne, CO/sub 2/, etc., in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-form-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace.

  13. Confederated Tribes of Warm Springs - Geothermal Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Enterprises Geothermal Power Development Feasibility Study Warm Springs Indian Reservation US Department of Energy Tribal Energy Program Review October 23-27 2006 Confederated Tribes of Warm Springs Warm Springs, Oregon Project Participants Project Participants * * Jim Manion, GM, Warm Springs Power & Water Ent. Jim Manion, GM, Warm Springs Power & Water Ent. * * David McClain, DW McClain Associates David McClain, DW McClain Associates * * GeothermEx Inc. GeothermEx Inc. * * Power

  14. Global climate feedbacks

    SciTech Connect (OSTI)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  15. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2015-07-10

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In-situ observations of snow cover fraction since the 1960s suggest that the snow pack in the region have retreated significantly, accompanied by a surface warming of 22.5 C observed over the peak altitudes (5000 m). Using a high-resolution oceanatmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover fraction to various anthropogenic factors. Atmorethe Tibetan Plateau altitudes, the increase of atmospheric CO2 concentration exerted a warming of 1.7 C, BC 1.3 C where as cooling aerosols cause about 0.7 C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. Especially, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow are coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.less

  16. Emissions of greenhouse gases in the United States, 1987--1994

    SciTech Connect (OSTI)

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  17. Traveling dark solitons in superfluid Fermi gases

    SciTech Connect (OSTI)

    Liao Renyuan; Brand, Joachim

    2011-04-15

    Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.

  18. Method for detecting trace impurities in gases

    DOE Patents [OSTI]

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  19. Method for detecting trace impurities in gases

    DOE Patents [OSTI]

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  20. Warm Hydroforming of Lightweight Metal Sheets

    SciTech Connect (OSTI)

    Aginagalde, A.; Orus, A.; Esnaola, J. A.; Torca, I.; Galdos, L.; Garcia, C.

    2007-05-17

    Hydroforming is well known in steel applications for automotive industry, where complicated shapes can be get with high strength to weight ratios. Nevertheless, the poor formability of light alloys at room temperature has limited the application of hydroforming technology for aluminum and magnesium parts. Increasing the temperature of these materials allows substantially greater elongation without fracture. Warm forming strategy is applied in conventional processes, such as rolling and forging, in order to get complex shapes, but still rare in hydroforming technology. This is the technical base of this research project: the development of the hydroforming process at warm working temperatures. The main tasks of the initial phases of the research were the material characterization, and the heated fluid and tooling system design and set up for warm hydroforming of lightweight alloys. Once these goals were accomplished the present paper shows the obtained results. The uniaxial tensile deformation of 5754H111, 6082-T6, 6082-O and AZ31B at the temperature range of 25 deg. C - 250 deg. C is presented as the output of the material characterization task. Both the system features and the results obtained for a bulge test geometry carried out with a warm hydroforming system are also presented. The selected alloys show an improvement in formability at the studied temperature range under both uniaxial and biaxial state of stress.

  1. Confederated Tribes of Warm Springs - Wind Energy Power Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Springs Power and Water Enterprise Use of DOE Grant DE-PS36-06GO96037 For Engineering Cost Assessment For Wind Energy Power Development On The Warm Springs Indian Reservation of Oregon. Prepared by: Warm Springs Power & Water Enterprises The Confederated Tribes of Warm Springs * Home of the Warm Springs, Wasco, and Paiute tribes, the Warm Springs Reservation is inhabited by nearly 4,500 tribal members, most of whom live in or around the town of Warm Springs. * Within the community, the

  2. Global Climate Change and Agriculture

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 C by the end of the 21st century.

  3. Study of electron transport in hydrocarbon gases

    SciTech Connect (OSTI)

    Hasegawa, H.; Date, H.

    2015-04-07

    The drift velocity and the effective ionization coefficient of electrons in the organic gases, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, C{sub 2}H{sub 5}OH, C{sub 6}H{sub 6}, and C{sub 6}H{sub 5}CH{sub 3}, have been measured over relatively wide ranges of density-reduced electric fields (E/N) at room temperature (around 300?K). The drift velocity was measured, based on the arrival-time spectra of electrons by using a double-shutter drift tube over the E/N range from 300 to 2800 Td, and the effective ionization coefficient (?????) was determined by the steady-state Townsend method from 150 to 3000 Td. Whenever possible, these parameters were compared with those available in the literature. It has been shown that the swarm parameters for these gases have specific tendencies, depending on their molecular configurations.

  4. Global Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Solutions Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search BANGLADESH INDIA CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII SOUTH POLE ANTARCTICA NEW MEXICO SOUTH DAKOTA TEXAS GULF OF MEXICO NEW YORK PUERTO RICO AMAZON RAIN FOREST CANARY ISLANDS SWITZERLAND ETHIOPIA

  5. NASA/Ames Global Emissions Data Set (GLEMIS) | Open Energy Information

    Open Energy Info (EERE)

    sets include global maps for predicted fluxes of soil nitrogen gases (N2O and NO), methane (CH4), and carbon monoxide (CO), plus predictions of net primary production (NPP) and...

  6. Effects of experimental warming and clipping on metabolic change of microbial community in a US Great Plains tallgrass prairie

    SciTech Connect (OSTI)

    Xie, Jianping; Liu, Xinxing; Liu, Xueduan; Nostrand, Joy D. Van; Deng, Ye; Wu, Liyou; He, Zhili; Qiu, Guanzhou; Zhou, Jizhong

    2010-05-17

    While more and more studies are being conducted on the effects of global warming, little is known regarding the response of metabolic change of whole soil microbial communities to this phenomenon. In this study, functional gene changes at the mRNA level were analyzed by our new developed GeoChip 3.0. Soil samples were taken from a long-term climate warming experiment site, which has been conducted for ~;;8 years at the Kessler Farm Field Laboratory, a 137.6-ha farm located in the Central Redbed Plains, in McClain County, Oklahoma. The experiment uses a paired factorial design with warming as the primary factor nested with clipping as a secondary factor. An infrared heater was used to simulate global warming, and clipping was used to mimic mowing hay. Twelve 2m x 2m plots were divided into six pairs of warmed and control plots. The heater generates a constant output of ~;;100 Watts m-2 to approximately 2 oC increase in soil temperature above the ambient plots, which is at the low range of the projected climate warming by IPCC. Soil whole microbial communities? mRNA was extracted, amplified, labeled and hybridized with our GeoChip 3.0, a functional gene array covering genes involved in N, C, P, and S cycling, metal resistance and contaminant degradation, to examine expressed genes. The results showed that a greater number and higher diversity of genes were expressed under warmed plots compared to control. Detrended correspondence analysis (DCA) of all detected genes showed that the soil microbial communities were clearly altered by warming, with or without clipping. The dissimilarity of the communities based on functional genes was tested and results showed that warming and control communities were significantly different (P<0.05), with or without clipping. Most genes involved in C, N, P and S cycling were expressed at higher levels in warming samples compared to control samples. All of the results demonstrated that the whole microbial communities increase functional

  7. Production of greenhouse gases in the former Soviet Union

    SciTech Connect (OSTI)

    Kolchugina, T.P.; Vinson, T.S. . Civil Engineering Dept.)

    1994-09-01

    The former Soviet Union (FSU) was the largest country in the world and was one of the greatest emitters of greenhouse gases to the atmosphere. At the end of the 1980s and the beginning of the 1990s the CO[sub 2] emissions for the FSU amounted to 1.46 Pg C yr[sup [minus]1] (Pg = 10[sup 15] g). Total CH[sub 4] emissions for the FSU were 55.8 Tg C yr[sup [minus]1] (Tg = 10[sup 12] g) or approximately one-third of the global CH[sub 4] emissions; 53% of the FSU CH[sub 4] emissions was contributed by peatlands. Emissions of CFCs were 67 Gg yr[sup [minus]1] (Gg = 10[sup 9] g) and comprised 12% of the global CFCs emissions. The forest sector was a net sink for 0.48 Pg C yr[sup [minus]1] of atmospheric carbon, offsetting approximately one-half of the CO[sub 2] emissions from industrial processes. FSU peatlands accumulated 52 Tg C yr[sup [minus]1], but overall they were a net source of 48 Tg C yr[sup [minus]1] to the atmosphere considering utilization of peat. The net CO[sub 2] emissions of the FSU were 0.68 Pg C yr[sup [minus]1]. The FSU and China shared the fifth and sixth places in the world ranking of net CO[sub 2] emissions. The FSU and European countries shared the fourth and fifth places in the world ranking of net CO[sub 2] emissions per capita.

  8. Optimization of High-Volume Warm Forming for Lightweight Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Volume Warm Forming for Lightweight Sheet Alloys Optimization of High-Volume Warm Forming for Lightweight Sheet Alloys 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  9. Confederated Tribes of the Warm Springs Reservation- 2002 Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power Enterprises, a corporate entity owned and operated by the Confederated Tribes of Warm Springs, will conduct a 36-month comprehensive wind energy resource assessment and development feasibility study.

  10. Confederated Tribes of Warm Springs - Human Capacity Building

    Broader source: Energy.gov (indexed) [DOE]

    Grant DE-PS36-06G096038 Human Capacity Building for Renewable Energy Development. Warm Spring Power and Water Enterprise Mark K. Johnson Jr. Prepared by: Warm Springs Power & Water ...

  11. Greenhouse Gases - Energy Explained, Your Guide To Understanding Energy -

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration Environment > Greenhouse Gases Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  12. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S.; Krajicek, Richard W.

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  13. Biogeophysical effects of CO2-fertilization on global climate

    SciTech Connect (OSTI)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C; Phillips, T J

    2006-04-26

    CO{sub 2}-fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO{sub 2}-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multi-century simulations: a ''Control'' simulation with no emissions, and a ''Physiol-noGHG'' simulation where physiological changes occur as a result of prescribed CO{sub 2} emissions, but where CO{sub 2}-induced greenhouse warming is not included. In our simulations, CO{sub 2}-fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 years. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal time scales, the CO{sub 2} uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO{sub 2}-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century time scales, there is the prospect for net warming from CO{sub 2}-fertilization of the land biosphere. Further study is needed to confirm and better quantify our results.

  14. Confederated Tribes of Warm Springs - Wind Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Enterprises Wind Energy Development Feasibility Study Warm Springs Indian Reservation Oregon Confederated Tribes of Warm Springs Warm Springs, Oregon US Department of Energy Tribal Energy Program Review October 23-27 2006 Project Participants * Warm Springs Power & Water Enterprises * CTWS Dept. of Natural Resources * DW McClain and Associates: Project Management * OSU Energy Research Laboratory: Wind Modeling * Elcon Associates: Transmission System Studies * Northwest Wildlife

  15. Melting of ice wedges adds to arctic warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can we someday predict earthquakes? Melting of ice wedges adds to arctic warming New ways of looking at seismic information and innovative laboratory experiments are offering tantalizing clues to what triggers earthquakes-and when. March 14, 2016 Ice throughout the Arctic is vanishing due to a rapidly warming climate. Ice throughout the Arctic is vanishing due to a rapidly warming climate. Melting of ice wedges adds to arctic warming Ice wedges are a particularly cool surface feature in the

  16. Electronic Structure of Warm Dense Matter via Multicenter Green's Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technique | The Ames Laboratory Electronic Structure of Warm Dense Matter via Multicenter Green's Function Technique Research Personnel Publications Modeling The proposed research addresses the Warm Dense Matter area identified in the Report of the ReNeW in HEDLP. The electronic structure, equation of state, radiative, and transport properties of warm electrons in an amorphous or disordered configuration of ions are not well described by either solid state or plasma models. Such warm-dense

  17. Test Results For Physical Separation Of Tritium From Noble Gases...

    Office of Environmental Management (EM)

    Test Results For Physical Separation Of Tritium From Noble Gases And It's Implications For Sensitivity And Accuracy In Air And Stack Monitoring Test Results For Physical Separation ...

  18. Energetic Materials for EGS Well Stimulation (solids, liquids, gases)

    Broader source: Energy.gov [DOE]

    Energetic Materials for EGS Well Stimulation (solids, liquids, gases) presentation at the April 2013 peer review meeting held in Denver, Colorado.

  19. EIA-Voluntary Reporting of Greenhouse Gases Program - Original...

    U.S. Energy Information Administration (EIA) Indexed Site

    Schedule Voluntary Reporting of Greenhouse Gases Program Revised Launch Schedule EIA will begin accepting both Start Year and Reporting Year reports using the Workbook Form on ...

  20. EIA-Voluntary Reporting of Greenhouse Gases Program - Section...

    U.S. Energy Information Administration (EIA) Indexed Site

    Section 1605 Text Voluntary Reporting of Greenhouse Gases Program Section 1605 Text Energy ... national aggregate emissions of each greenhouse gas for each calendar year of the ...

  1. EIA-Voluntary Reporting of Greenhouse Gases Program - Original...

    U.S. Energy Information Administration (EIA) Indexed Site

    Program Voluntary Reporting of Greenhouse Gases Program Original 1605(b) Program Section 1605(b) of the Energy Policy Act of 1992 established the Voluntary Reporting of Greenhouse ...

  2. EIA-Voluntary Reporting of Greenhouse Gases Program - Original...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Greenhouse Gases Program Original 1605(b) Program Calculation Tools The workbooks below were developed to assist participants in the original Voluntary Reporting of Greenhouse ...

  3. Federal Offshore--Gulf of Mexico Nonhydrocarbon Gases Removed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals ...

  4. Deviation from the Knudsen law on quantum gases

    SciTech Connect (OSTI)

    Babac, Gulru

    2014-12-09

    Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases.

  5. BOC Lienhwa Industrial Gases BOCLH | Open Energy Information

    Open Energy Info (EERE)

    Lienhwa Industrial Gases (BOCLH) Place: Taipei, Taiwan Sector: Solar Product: BOCLH is a joint venture between the Lien Hwa Industrial Corporation and the BOC Group in the United...

  6. Latitudinal distribution of the recent Arctic warming

    SciTech Connect (OSTI)

    Chylek, Petr; Lesins, Glen K; Wang, Muyin

    2010-12-08

    Increasing Arctic temperature, disappearance of Arctic sea ice, melting of the Greenland ice sheet, sea level rise, increasing strength of Atlantic hurricanes are these impending climate catastrophes supported by observations? Are the recent data really unprecedented during the observational records? Our analysis of Arctic temperature records shows that the Arctic and temperatures in the 1930s and 1940s were almost as high as they are today. We argue that the current warming of the Arctic region is affected more by the multi-decadal climate variability than by an increasing concentration of carbon dioxide. Unfortunately, none of the existing coupled Atmosphere-Ocean General Circulation Models used in the IPCC 2007 cIimate change assessment is able to reproduce neither the observed 20th century Arctic cIimate variability nor the latitudinal distribution of the warming.

  7. Removal of mercury from waste gases

    SciTech Connect (OSTI)

    Muster, U.; Marr, R.; Pichler, G.; Kremshofer, S.; Wilferl, R.; Draxler, J.

    1996-12-31

    Waste and process gases from thermal power, incineration and metallurgical plants or those from cement and alkali chloride industries contain metallic, inorganic and organic mercury. Widespread processes to remove the major amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 {mu}g/m{sup 3} [STP] by national and European legislators, considerable efforts were made to enhance the efficiency of the main separation units of flue gas cleaning plants. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Using the ceramic reactor removal rates lower than 5 {mu}g/m{sup 3} [STP] of gaseous mercury and its compounds can be achieved. The ceramic reactor is active, regenerable and stable for a long term operation. 4 refs., 7 figs.

  8. Voluntary reporting of greenhouse gases 1997

    SciTech Connect (OSTI)

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  9. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  10. (Global energy development)

    SciTech Connect (OSTI)

    Trivelpiece, A.W.; Fulkerson, W.

    1989-11-21

    This is the report of foreign travel by Alvin W. Trivelpiece and William Fulkerson who were part of a US delegation of ten individuals who visited the Soviet Union for two weeks as part of a joint activity between the US National Academy of Sciences (NAS) and the Academy of Sciences (AS) of the USSR. Trivelpiece headed the US delegation. The trip was sponsored by the NAS under a grant from the MacArthur Foundation. It consisted of three parts: (1) a tour of energy facilities and laboratories in Siberia, including the cities of Novosibirsk, Krasnoyarsk, Nazarovo, Achinsk, Bratsk, and Irkutsk; (2) a joint seminar in Moscow called Global Energy Development and Associated Ecological (Environmental) Impacts''; and (3) a workshop to discuss areas of potential future collaboration and cooperation. A Memorandum of Record was signed on the final day. It recommended that the Presidents of the two Academies establish a joint committee for ...coordinating, recommending, and encouraging activities in accordance with this memorandum.'' Projects for possible collaboration were identified in the areas of energy data and models, global warming, technologies for more efficient use of energy, clean coal, gas turbines, tools for assessing environmental impacts, and analysis of approaches to energy decision making.

  11. Greenhouse gases: What is their role in climate change

    SciTech Connect (OSTI)

    Edmonds, J.A.; Chandler, W.U. ); Wuebbles, D. )

    1990-12-01

    This paper summarizes information relevant to understanding the role of greenhouse gases in the atmosphere. It examines the nature of the greenhouse effect, the Earth's radiation budget, the concentrations of these gases in the atmosphere, how these concentrations have been changing, natural processes which regulate these concentrations of greenhouse gases, residence times of these gases in the atmosphere, and the rate of release of gases affecting atmospheric composition by human activities. We address the issue of the greenhouse effect itself in the first section. In the second section we examine trends in atmospheric concentration of greenhouse gases and emissions sources. In the third section, we examine the natural carbon cycle and its role in determining the atmospheric residence time of carbon dioxide (CO{sub 2}). In the fourth section, we examine the role atmospheric chemistry plays in the determining the concentrations of greenhouse gases. This paper is not intended to be an exhaustive treatment of these issues. Exhaustive treatments can be found in other volumes, many of which are cited throughout this paper. Rather, this paper is intended to summarize some of the major findings, unknowns, and uncertainties associated with the current state of knowledge regarding the role of greenhouse gases in the atmosphere. 57 refs., 11 figs., 11 tabs.

  12. Continuous cryopump with a method for removal of solidified gases

    DOE Patents [OSTI]

    Carlson, Larry W.; Herman, Harold

    1989-01-01

    An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases absorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel.

  13. Continuous cryopump with a method for removal of solidified gases

    DOE Patents [OSTI]

    Carlson, L.W.; Herman, H.

    1988-05-05

    An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.

  14. Single particle density of trapped interacting quantum gases

    SciTech Connect (OSTI)

    Bala, Renu; Bosse, J.; Pathak, K. N.

    2015-05-15

    An expression for single particle density for trapped interacting gases has been obtained in first order of interaction using Greens function method. Results are easily simplified for homogeneous quantum gases and are found to agree with famous results obtained by Huang-Yang-Luttinger and Lee-Yang.

  15. Estimating present climate in a warming world: a model-based approach

    SciTech Connect (OSTI)

    Raeisaenen, J.; Ruokolainen, L. [University of Helsinki (Finland). Division of Atmospheric Sciences and Geophysics

    2008-09-30

    Weather services base their operational definitions of 'present' climate on past observations, using a 30-year normal period such as 1961-1990 or 1971-2000. In a world with ongoing global warming, however, past data give a biased estimate of the actual present-day climate. Here we propose to correct this bias with a 'delta change' method, in which model-simulated climate changes and observed global mean temperature changes are used to extrapolate past observations forward in time, to make them representative of present or future climate conditions. In a hindcast test for the years 1991-2002, the method works well for temperature, with a clear improvement in verification statistics compared to the case in which the hindcast is formed directly from the observations for 1961-1990. However, no improvement is found for precipitation, for which the signal-to-noise ratio between expected anthropogenic changes and interannual variability is much lower than for temperature. An application of the method to the present (around the year 2007) climate suggests that, as a geographical average over land areas excluding Antarctica, 8-9 months per year and 8-9 years per decade can be expected to be warmer than the median for 1971-2000. Along with the overall warming, a substantial increase in the frequency of warm extremes at the expense of cold extremes of monthly-to-annual temperature is expected.

  16. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion

    SciTech Connect (OSTI)

    Pesaran, A.A. )

    1992-11-01

    This paper presents the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions. Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving the predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7 percent to 60 percent of the dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 35 to 9 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20 percent to 60 percent. The data also indicated that at typical OC-OTEC evaporator pressures, when flash evaporation in the evaporator occurred, 75 percent to 95 percent of the dissolved oxygen was desorbed overall from the warm seawater. The results were used to find the impact of a single-stage predeaeration scheme on the power to remove noncondensable gases in an OC-OTEC plant.

  17. A warm air poultry brooding system

    SciTech Connect (OSTI)

    Nulte, W.H.

    1980-12-01

    As the energy crisis escalated during the mid-70's, it became apparent that energy intensive industries must seek alternate fuel sources. Georgia Tech realized that one of these industries was the poultry industry. Consequently, a demonstration project of a wood-fired, warm air poultry brooding system was designed and built. Since its completion in mid-1978, the system has demonstrated considerable cost savings as well as being a very functional and reliable system. The system consists of 3 main components--a wood burning furnace, a supply distribution and return duct, and 20 flexible ducts which simulate the function of the propane brooders by providing warm air close to the ground. A separate structure houses the furnace and wood supply. This house is located at the midpoint of the growout house to allow symmetrical and naturally balanced air distribution. Since the system became operational, 16 flocks of birds have been brooded. During this time, wood usage has averaged approximately 30 cords per year while in a neighboring house, that is used as a control house, the propane usage has averaged 3,800 gallons per year. In the area of Georgia where the demonstration project is located, the cost of fuelwood has remained stable over the last 2 years, whereas the price of propane has continually increased. Thus the grower has the benefit of constantly increasing cost savings while utilizing a renewable resource as fuel.

  18. Regional respiratory tract absorption of inhaled reactive gases

    SciTech Connect (OSTI)

    Miller, F.J.; Overton, J.H.; Kimbell, J.S.; Russell, M.L.

    1992-06-29

    Highly reactive gases present unique problems due to the number of factors which must be taken into account to determine regional respiratory tract uptake. The authors reviewed some of the physical, chemical, and biological factors that affect dose and that must be understood to interpret toxicological data, to evaluate experimental dosimetry studies, and to develop dosimetry models. Selected dosimetry experiments involving laboratory animals and humans were discussed, showing the variability and uptake according to animal species and respiratory tract region for various reactive gases. New experimental dosimetry approaches, such as those involving isotope ratio mass spectroscopy and cyclotron generation reactive gases, were discussed that offer great promise for improving the ability to study regional respiratory tract absorption of reactive gases. Various dosimetry modeling applications were discussed which demonstrate: the importance of airflow patterns for site-specific dosimetry in the upper respiratory tract, the influence of the anatomical model used to make inter- and intraspecies dosimetric comparisons, the influence of tracheobronchial path length on predicted dose curves, and the implications of ventilatory unit structure and volume on dosimetry and response. Collectively, these examples illustrate important aspects of regional respiratory tract absorption of inhaled reactive gases. Given the complex nature of extent and pattern of injury in the respiratory tract from exposure to reactive gases, understanding interspecies differences in the absorption of reactive gases will continue to be an important area for study.

  19. Humidity trends imply increased sensitivity to clouds in a warming...

    Office of Scientific and Technical Information (OSTI)

    is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. ...

  20. Global environmental markets: Equity and efficiency

    SciTech Connect (OSTI)

    Chichilnisky, G.

    1997-12-31

    Global markets trading rights to emit greenhouse gases are now actively considered by the United Nations. This leads to a new phenomenon: environmental markets in a global scale. Is this new, or are these markets simply a global manifestation of a trend towards market solutions? This paper will show that there is a fundamental difference between global environmental markets and standard stock exchanges. Because the atmosphere of the planet is one and the same for all, these markets trade {open_quotes}public goods{close_quotes} which are, however, privately produced. These are different from all the goods that are traded in markets today. Efficiency in these markets dictates different rules, involving a more equitable allocation of property rights on environmental use, and this requires new institutional arrangements. There is a need for a new institution, an International Bank for Environmental Settlements (IBES), which can lead to organized trading and ensures market integrity and efficiency.

  1. Cryogenic method for measuring nuclides and fission gases

    DOE Patents [OSTI]

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  2. CO2 Sequestration short course (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical...

  3. Confederated Tribes of Warm Springs - Geothermal Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Springs The Confederated Tribes Of Warm Springs Presentation to DOE Department of Renewable Energy Presentation to DOE Department of Renewable Energy October, 2005 for Geothermal Development Potential on Confederated Tribes of Warm Springs Reservation of Oregon repared by: Warm Springs Power Enterprises History with Energy Developments History with Energy Developments * * Intro to Power business in 1955 with the development of the Pelt Intro to Power business in 1955 with the development of the

  4. Confederated Tribes of Warm Springs - Geothermal Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Springs Presentation to DOE Department of Renewable Energy October , 2007 For Geothermal Development Potential On Confederated Tribes of Warm Springs Reservation of Oregon Lands Prepared by: Warm Springs Power & Water Enterprises History With Energy Developments Intro to Power business in 1955 with the development of the Pelton Project. 1970 with the installation of three 3 MW steam turbines at Warm Springs Forest Products Industries (WSFPI). 1982 completed the installation of the Pelton

  5. Picture of the Week: Climate feedbacks from a warming arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Climate feedbacks from a warming arctic Los Alamos National Laboratory scientists work to understand the fate of this carbon using computer simulations such as this model of snowmelt draining from polygonal ground near Barrow, Alaska. April 26, 2015 Climate feedbacks from a warming arctic x Arctic soils currently store nearly 20 years worth of human emissions of carbon in frozen permafrost, but the Arctic is warming faster than most of the rest of the Earth, meaning that this carbon may soon

  6. Process for the removal of acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  7. Process for the removal of acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  8. 100 LPW 800 Lm Warm White LED

    SciTech Connect (OSTI)

    Sun, Decai

    2010-10-31

    An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramica and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package

  9. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2016-02-05

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less

  10. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2016-02-05

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5 °C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At the Tibetanmore » Plateau altitudes, the increase in atmospheric CO2 concentration exerted a warming of 1.7 °C, BC 1.3 °C where as cooling aerosols cause about 0.7 °C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less

  11. The Tropical Warm Pool International Cloud Experiment: Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool International Cloud Experiment: Overview May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob,...

  12. Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature Geothermal Facility Facility...

  13. Theory of factors limiting high gradient operation of warm acceleratin...

    Office of Scientific and Technical Information (OSTI)

    Theory of factors limiting high gradient operation of warm accelerating structures Citation Details In-Document Search Title: Theory of factors limiting high gradient operation of ...

  14. Warm Springs State Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility...

  15. Roosevelt Warm Springs Institute for Rehab. Space Heating Low...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility...

  16. First-principles opacity table of warm dense deuterium forinertial...

    Office of Scientific and Technical Information (OSTI)

    ...ial-confinement-fusion applications Citation Details In-Document Search Title: First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications ...

  17. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  18. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  19. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  20. Method of producing pyrolysis gases from carbon-containing materials

    DOE Patents [OSTI]

    Mudge, Lyle K.; Brown, Michael D.; Wilcox, Wayne A.; Baker, Eddie G.

    1989-01-01

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  1. World Energy Projection System Plus Model Documentation: Greenhouse Gases Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  2. EIA-Voluntary Reporting of Greenhouse Gases Program - Why Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Reporting of Greenhouse Gases Program Why Report What Is the Purpose of Form EIA-1605? Form EIA-1605 provides the means for the voluntary reporting of greenhouse gas emissions, ...

  3. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

  4. METHOD FOR PUMPING GASES AT LOW VACUUM PRESSURES

    DOE Patents [OSTI]

    Milleron, N.

    1962-06-01

    A method is given for pumping overpressure "pulses" or "bursts" of gases without a significant rise in base pressure within a "gettering-type" vacuum pump having surfaces within the pumping cavity coated with or comprising clean gettering metal, e.g., Mo or Ta. The cavity is first pumped down by any convenient means to an equilibrium base pressure in the range desired, generally below 10/sup -6/ mm Hg. At this pressure, the metal immediately adsorbs overpressures or "bursts" of gases striking same with thermal motion without raising the base pressure significantiy. Desorption takes place at an equilibrium rate which, of course, is dependent upon the equilibrium pressure, and such desorbed gases are continuously removed by diffuaion pump or other pumping, whereby said overpressures or "bursts" of gases are removed without a rise in the equilibrium pressure and/or back diffusion of the gaseous pulse from the pumping cavity. (AEC)

  5. Helium Isotopes In Geothermal And Volcanic Gases Of The Western...

    Open Energy Info (EERE)

    isotope ratios in gases of thirty hot springs and geothermal wells and of five natural gas wells in the western United States show no relationship to regional conductive heat...

  6. New model more accurately tracks gases for underground nuclear explosion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detection Model tracks gases for underground nuclear explosion detection New model more accurately tracks gases for underground nuclear explosion detection Scientists have developed a new, more thorough method for detecting underground nuclear explosions by coupling two fundamental elements-seismic models with gas-flow models. December 17, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and

  7. EIA - Emissions of Greenhouse Gases in the United States 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    ‹ Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses

  8. Where Greenhouse Gases Come From | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where Greenhouse Gases Come From In the United States, greenhouse gas emissions come primarily from the burning of fossil fuels in energy use. Carbon Dioxide Carbon Dioxide is the main greenhouse gas. In 2013, 82% of human-caused greenhouse gas emissions were carbon dioxide emissions, resulting from the burning of fossil fuels, solid waste, trees, wood, and other chemical reactions. Methane and Other Gases Another greenhouse gas, methane, comes from landfills, coal mines, oil and natural gas

  9. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  10. EIA - Emissions of Greenhouse Gases in the United States 2009

    Gasoline and Diesel Fuel Update (EIA)

    ‹ Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses

  11. Global Arrays

    Energy Science and Technology Software Center (OSTI)

    2006-02-23

    The Global Arrays (GA) toolkit provides an efficient and portable “shared-memory” programming interface for distributed-memory computers. Each process in a MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-dimensional arrays, without need for explicit cooperation by other processes. Unlike other shared-memory environments, the GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of the high performance computers and acknowledges that access to a remote portion of the sharedmore » data is slower than to the local portion. The locality information for the shared data is available, and a direct access to the local portions of shared data is provided. Global Arrays have been designed to complement rather than substitute for the message-passing programming model. The programmer is free to use both the shared-memory and message-passing paradigms in the same program, and to take advantage of existing message-passing software libraries. Global Arrays are compatible with the Message Passing Interface (MPI).« less

  12. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  13. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, Kenneth C.; Markun, Francis; Zawadzki, Mary T.

    1998-01-01

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  14. Process for removal of carbonyl sulfide in liquified hydrocarbon gases with absorption of acid gases

    SciTech Connect (OSTI)

    Beavon, D.K.; Mackles, M.

    1980-11-11

    Liquified hydrocarbon gases containing at least carbonyl sulfide as an impurity are purified by intimately mixing the liquified hydrocarbon gas with an aqueous absorbent for hydrogen sulfide in a hydrolysis zone maintained at a temperature and a pressure sufficient to maintain the liquified hydrocarbon gas in the liquid state and hydrolyze the carbonyl sulfide to hydrogen sulfide and carbon dioxide. The liquified hydrocarbon gas containing at least a portion of the formed carbonyl sulfide and carbon dioxide is separated from the liquid absorbent and passed to an absorption zone where it is contacted with a liquid hydrogen sulfide absorbent where at least the formed hydrogen sulfide is separated from the liquified petroleum gas. A stage of absorption of at least hydrogen sulfide may proceed mixing of the liquified hydrocarbon gas with the absorbent in the hydrolysis reaction zone. The absorbent employed does not combine irreversibly with carbonyl sulfide, hydrogen sulfide, and carbon dioxide, and preferably is an aqueous solution of diethanolamine.

  15. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOE Patents [OSTI]

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  16. Long-term soil warming and Carbon Cycle Feedbacks to the Climate System

    SciTech Connect (OSTI)

    Melillo, Jerry M.

    2014-04-30

    The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Field measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?

  17. Small inner companions of warm Jupiters: Lifetimes and legacies

    SciTech Connect (OSTI)

    Van Laerhoven, Christa; Greenberg, Richard

    2013-12-01

    Although warm Jupiters are generally too far from their stars for tides to be important, the presence of an inner planetary companion to a warm Jupiter can result in tidal evolution of the system. Insight into the process and its effects comes form classical secular theory of planetary perturbations. The lifetime of the inner planet may be shorter than the age of the system, because the warm Jupiter maintains its eccentricity and hence promotes tidal migration into the star. Thus a warm Jupiter observed to be alone in its system might have previously cleared away any interior planets. Before its demise, even if an inner planet is of terrestrial scale, it may promote damping of the warm Jupiter's eccentricity. Thus any inferences of the initial orbit of an observed warm Jupiter must include the possibility of a greater initial eccentricity than would be estimated by assuming it had always been alone. Tidal evolution involving multiple planets also enhances the internal heating of the planets, which readily exceeds that of stellar radiation for the inner planet, and may be great enough to affect the internal structure of warm Jupiters. Secular theory gives insight into the tidal processes, providing, among other things, a way to constrain eccentricities of transiting planets based on estimates of the tidal parameter Q.

  18. Method for removing acid gases from a gaseous stream

    DOE Patents [OSTI]

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  19. Hard probes of strongly-interacting atomic gases

    SciTech Connect (OSTI)

    Nishida, Yusuke

    2012-06-18

    We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

  20. Global climate change and international security.

    SciTech Connect (OSTI)

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  1. Radiolytic and thermal generation of gases from Hanford grout samples

    SciTech Connect (OSTI)

    Meisel, D.; Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Mulac, W.A.

    1993-10-01

    Gamma irradiation of WHC-supplied samples of grouted Tank 102-AP simulated nonradioactive waste has been carried out at three dose rates, 0.25, 0.63, and 130 krad/hr. The low dose rate corresponds to that in the actual grout vaults; with the high dose rate, doses equivalent to more than 40 years in the grout vault were achieved. An average G(H{sub 2}) = 0.047 molecules/100 eV was found, independent of dose rate. The rate of H2 production decreases above 80 Mrad. For other gases, G(N{sub 2}) = 0.12, G(O{sub 2}) = 0.026, G(N{sub 2}O) = 0.011 and G(CO) = 0.0042 at 130 krad/hr were determined. At lower dose rates, N{sub 2} and O{sub 2} could not be measured because of interference by trapped air. The value of G(H{sub 2}) is higher than expected, suggesting segregation of water from nitrate and nitrite salts in the grout. The total pressure generated by the radiolysis at 130 krad/h has been independently measured, and total amounts of gases generated were calculated from this measurement. Good agreement between this measurement and the sum of all the gases that were independently determined was obtained. Therefore, the individual gas measurements account for most of the major components that are generated by the radiolysis. At 90 {degree}C, H{sub 2}, N{sub 2}, and N{sub 2}O were generated at a rate that could be described by exponential formation of each of the gases. Gases measured at the lower temperatures were probably residual trapped gases. An as yet unknown product interfered with oxygen determinations at temperatures above ambient. The thermal results do not affect the radiolytic findings.

  2. Humidity trends imply increased sensitivity to clouds in a warming...

    Office of Scientific and Technical Information (OSTI)

    at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. ... and variability in clouds14, water vapour15,16 and surface emission16,17 all ...

  3. Cold weather encourages warm hearts in Kansas City | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Cold weather encourages warm hearts in Kansas City Tuesday, January 19, 2016 - 12:00am NNSA Blog Most of us just reach into the closet to pull on a warm coat to shield us from the winter weather, but for thousands of needy children in the Kansas City area who have outgrown their coats, it's not so simple. Thanks to the Coats for Kids program, which provides new and gently used coats for children who need them, many of these children will be toasty warm. Each

  4. Measuring and Mitigating Urban Warming in a Northern Metropolitan Area |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Measuring and Mitigating Urban Warming in a Northern Metropolitan Area Event Sponsor: Environmental Science Seminar Start Date: Aug 25 2016 - 11:00am Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Peter Snyder Speaker(s) Title: University of Minnesota In the United States and much of the rest of the world, cities are warming at twice the rate of outlying rural areas and the planet as a whole. While the warming can

  5. WARM MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Lu, N.; Zhao, Y.; Xu, C. K.; Mazzarella, J. M.; Howell, J.; Appleton, P.; Lord, S.; Schulz, B.; Gao, Y.; Armus, L.; Daz-Santos, T.; Surace, J.; Isaak, K. G.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Inami, H.; Iwasawa, K.; Leech, J.; Sanders, D. B.; and others

    2014-06-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the J to J1 transitions from J = 4 up to 13 from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. The observed SLEDs change on average from one peaking at J ? 4 to a broad distribution peaking around J ? 6 to 7 as the IRAS 60-to-100?m color, C(60/100), increases. However, the ratios of a CO line luminosity to the total infrared luminosity, L {sub IR}, show the smallest variation for J around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-J regime (5 ? J ? 10). As a result, the logarithmic ratios of the CO line luminosity summed over CO(54), (65), (76), (87) and (109) transitions to L {sub IR}, log R {sub midCO}, remain largely independent of C(60/100), and show a mean value of 4.13 (?log?R{sub midCO}{sup SF}) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with a small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their R {sub midCO} higher and lower than R{sub midCO}{sup SF}, respectively.

  6. Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Oklahoma Natural Gas Gross Withdrawals and Production

  7. Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 NA NA NA NA NA NA NA NA NA NA NA NA 1997 513 491 515 539 557 534 541 579 574 585 558 573 1998 578 536 591 581 517 456 486 486 471 477 457 468 1999 466 438 489 495 499 510 547 557 544 555 541 579 2000 587 539 605 587 615 570 653 629 591 627 609 611 2001 658 591 677 690 718 694 692 679

  8. Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Michigan Natural Gas Gross Withdrawals and Production

  9. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I.

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  10. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, Gunnar I.; Dietz, Russell N.

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  11. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  12. Project Reports for Confederated Tribes of the Warm Springs Reservation- 2007 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon.

  13. NREL Solar Technology Will Warm Air at 'Home' - News Feature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Solar Technology Will Warm Air at 'Home' July 30, 2010 Photo of a building coved in ... to a wall at the RSF that uses their award-winning transpired air collector technology. ...

  14. Are You Keeping Warm This Winter? | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while ... Get an energy audit and learn about your heating options to warm your home while saving ...

  15. Modeling the effects of fire severity and climate warming on...

    Office of Scientific and Technical Information (OSTI)

    in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal...

  16. Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE)

    This research and development (R&D) roadmap for next-generation low-GWP refrigerants provides recommendations to the Building Technologies Office (BTO) on R&D activities that will help accelerate the transition to low-GWP refrigerants across the entire HVAC&R industry.

  17. Research and Development Roadmap For Next-Generation Low-Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    none,

    2011-07-01

    The Department of Energy commissioned this roadmap to establish a set of high-priority research and development (R&D) activities that will accelerate the transition to low-GWP refrigerants across the entire heating, ventilation, air-conditioning and refrigeration (HVAC&R) industry. The schedule of R&D activities occurs within an accelerated five-year timeframe, and covers several prominent equipment types. The roadmap is organized around four primary objectives to: assess and mitigate safety risks, characterize refrigerant properties, understand efficiency and environmental tradeoffs, and support new refrigerant and equipment development.

  18. Energy and Economic Impacts of H.R.5049, the Keep America Competitive Global Warming Policy

    Reports and Publications (EIA)

    2006-01-01

    This report responds to a May 2, 2006 request from Congressmen Tom Udall and Tom Petri asking the Energy Information Administration to analyze the impacts of their legislation implementing a market-based allowance program to cap greenhouse gas emissions at 2009 levels.

  19. Assessment of global warming effect on the level of extremes and intra-annual structure

    SciTech Connect (OSTI)

    Lobanov, V.A.

    1997-12-31

    In this research a new approach for the parametrization of intra-annual Variations has been developed that is based on the poly-linear decomposition and relationships with average climate conditions. This method allows to divide the complex intra-annual variations during every year into two main parts: climate and synoptic processes. In this case, the climate process is presented by two coefficients (B1, B0) of linear function between the particular year data and average intra-year conditions over the long-term period. Coefficient B1 is connected with an amplitude of intra-annual function and characterizes the extremes events and BO-coefficient obtaines the level of climate conditions realization in the particular year. The synoptic process is determined as the remainders or errors of every year linear function or their generalized parameter, such as variance.

  20. Storing Carbon in Agricultural Soils to Help Head-Off Global Warming and to Combat Desertification

    SciTech Connect (OSTI)

    Rosenberg, Norman J.; Izaurralde, Roberto C.

    2001-12-31

    We know for sure that addition of organic matter to soil increases water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation and improves tilth. Depeing on it's type, organic matter contains between 40 and 60% carbon. Using agricultural management practices to increase the amount of organic matter and carbon in soils can be an effective strategy to offset carbon dioxide emissions to the atmosphere as well as to improve the quality of the soil and slow or prevent desertification.

  1. The Impact of California's Global Warming Legislation on the Electric Utility Industry

    SciTech Connect (OSTI)

    Hilton, Seth

    2006-11-15

    California's greenhouse gas legislation would appear at first glance to be a significant benefit to the development of renewable energy resources both in California and in neighboring states. However, the difficulties that California has experienced in implementing its renewable portfolio standard, as well as its urgent need for additional generation, may limit the state's ability to significantly increase its reliance on renewable generation. (author)

  2. Assessing the state-level consequences of global warming: Socio-economic and energy demand impacts

    SciTech Connect (OSTI)

    Rubin, B.M. Gailmard, S.; Marsh, D.; Septoff, A.

    1996-12-31

    The large body of research on climate change has begun to recognize a significant deficiency: the lack of analysis of the impact of climate change at a spatial level consistent with the anticipated occurrence of climate change. Climate change is likely to vary by region, while impact analysis has focused on much larger political units. Clearly, adaptation/mitigation strategies must be developed at a level consistent with political and policy-making processes. This paper specifically addresses this deficiency by identifying the potential socio-economic and energy demand consequences of climate change for subnational regions. This is accomplished via the development and application of a regional simultaneous equation, econometric simulation model that focuses on five states (Illinois, Indiana, Michigan, Ohio, and Wisconsin) in the Great Lakes region of the US. This paper presents a process for obtaining state-specific assessments of the consequences of climate change for the socio-economic system. As such, it provides an indication of which economic sectors are most sensitive to climate change for a specific state (Indiana), a set of initial mitigation/adaptation strategies for this state, and the results of testing these strategies in the policy analysis framework enabled by the model. In addition, the research demonstrates an effective methodology for assessing impacts and policy implications of climate change at a level consistent with policy making authority.

  3. Possible changes for mudflow and avalanche activity in former Soviet Union due to the global warming

    SciTech Connect (OSTI)

    Glazovskaya, T.G.; Sidorova, T.L.; Seliverstov, Y.G.

    1996-12-31

    Past research, as well as laboratory evidence have revealed a relationship between climate, mudflow, and avalanche activity. It is possible to predict changes in mudflow and avalanche activity by using climate models. In this study, the GFDL model was used which contained data on mean monthly air temperature, precipitation, and carbon dioxide concentrations.

  4. Profiting from socially beneficial green investment in an era of global warming

    SciTech Connect (OSTI)

    Navarro, Peter; Brunetto, Tom

    2007-08-15

    Monetizing the value of socially beneficial green investment is complex and will play an important role in the transformation currently sweeping through the industry. A common or agreed-to approach has yet to be developed, and options under consideration have numerous barriers, the most difficult being political ones. (author)

  5. Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Based on MSI's leading-edge research in ultra-small ... Design and develop an ultra-small, high-speed centrifugal ... heat exchanger, control methodology, "drop in" ...

  6. Analysis of climate variability at local and regional scales in the global warming context

    SciTech Connect (OSTI)

    Mares, I.; Mares, C.

    1996-12-01

    The time series of the seasonal and annual temperatures and precipitation amounts from two stations with observations for more than 100 years and from one mountain station (data since 1928), have been analyzed. For the entire territory of Romania, 33 stations have also been studied using EOFs components, for the 1950--1993 period. In order to find climate change-points, nonparametric tests Pettitt and Mann-Kendall have been used. Quantification of the significant change-points was made estimating the signal-to-noise ratio. Some of the change-points in the temperature and precipitation fields could be associated with the changes in the geopotential field at 500 hPa, represented by EOFs and blocking index calculated for the Atlantic-European region. Results are different, depending on the season and some of these are in accordance with the results obtained for the data defined at the hemispherical level or in certain regions of Europe. Other results reflect local characteristics.

  7. The analysis of climate variability at local and regional scales in the global warming context

    SciTech Connect (OSTI)

    Mares, I.; Mares, C.

    1996-12-31

    The time series of the seasonal and annual temperatures and precipitation amounts from two stations with observations for more than 100 years and from one mountain station (data since 1928), in Romania have been analyzed. For the entire territory of Romania, 33 stations have also been studied using EOF components, for the 1950--1993 period. In order to find climate change-points, nonparametric tests Pettitt and Mann-Kendall have been used. Quantification of the significant change-points was made estimating the signal-to-noise ratio. Some of the change-points in the temperature and precipitation fields could be associated with the changes in the geopotential field at 500hPa, represented by EOFs and blocking index calculated for the Atlantic-European region. The comparison with other results obtained from the European stations or from the entire Northern Hemisphere shows several common points, but also some differences in the climate jumps, reflecting the local peculiarities.

  8. Scientists uncover combustion mechanism to better predict warming by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wildfires Scientists uncover combustion mechanism to better predict warming by wildfires Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Scientists uncover combustion mechanism to better predict warming by wildfires Scientists have uncovered key attributes of so-called "brown carbon" from wildfires September 2, 2014 Wildfire fuel being burned in the fire laboratory as the aerosols from the top are being

  9. Electron-ion temperature equilibration in warm dense tantalum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doppner, T; LePape, S.; Ma, T.; Pak, A.; Hartley, N. J.; Peters, L.; Gregori, G.; Belancourt, P.; Drake, R. P.; Chapman, D. A.; et al

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  10. Measurement of electron-ion relaxation in warm dense copper

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; Correa, A. A.; Ping, Y.; Lee, J. W.; Bae, L. J.; Prendergast, D.; Falcone, R. W.; Heimann, P. A.

    2016-01-06

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.

  11. Scientists uncover combustion mechanism to better predict warming by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wildfires Combustion mechanism to better predict warming by wildfires Scientists uncover combustion mechanism to better predict warming by wildfires Scientists have uncovered key attributes of so-called "brown carbon" from wildfires. August 4, 2014 Wildfire fuel being burned in the fire laboratory as the aerosols from the top are being sucked into inlets and sampled at the Missoula Fire Sciences Laboratory in Missoula, Montana by Los Alamos and Carnegie Mellon University

  12. Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped

  13. How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem?

    SciTech Connect (OSTI)

    Dermody, Orla [University of Tennessee, Knoxville (UTK); Weltzin, Jake [University of Tennessee, Knoxville (UTK); Engel, Elizabeth C. [University of Tennessee, Knoxville (UTK); Allen, Phillip [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

    2007-01-01

    Soil moisture content and leaf area index (LAI) are properties that will be particularly important in mediating whole system responses to the combined effects of elevated atmospheric [CO2], warming and altered precipitation. Warming and drying will likely reduce soil moisture, and this effect may be exacerbated when these factors are combined. However, elevated [CO2] may increase soil moisture contents and when combined with warming and drying may partially compensate for their effects. The response of LAI to elevated [CO2] and warming will be closely tied to soil moisture status and may mitigate or exacerbate the effects of global change on soil moisture. Using open-top chambers (4-m diameter), the interactive effects of elevated [CO2], warming, and differential irrigation on soil moisture availability were examined in the OCCAM (Old-Field Community Climate and Atmospheric Manipulation) experiment at Oak Ridge National Laboratory in eastern Tennessee. Warming consistently reduced soil moisture contents and this effect was exacerbated by reduced irrigation. However, elevated [CO2] partially compensated for the effects of warming and drying on soil moisture. Changes in LAI were closely linked to soil moisture status. LAI was determined using an AccuPAR ceptometer and both the leaf area duration (LAD) and canopy size were increased by irrigation and elevated [CO2]. The climate of the southeastern United States is predicted to be warmer and drier in the future. This research suggests that although elevated [CO2] will partially ameliorate the effects of warming and drying, losses of soil moisture will increase from old field ecosystems in the future.

  14. Use of low temperature blowers for recirculation of hot gases

    DOE Patents [OSTI]

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  15. OPTIONS FOR ABATING GREENHOUSE GASES FROM EXHAUST STREAMS.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-12-01

    This report examines different alternatives for replacing, treating, and recycling greenhouse gases. It is concluded that treatment (abatement) is the only viable short-term option. Three options for abatement that were tested for use in semiconductor facilities are reviewed, and their performance and costs compared. This study shows that effective abatement options are available to the photovoltaic (PV) industry, at reasonable cost.

  16. Stronger warming effects on microbial abundances in colder regions

    SciTech Connect (OSTI)

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra, and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.

  17. Stronger warming effects on microbial abundances in colder regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra,more » and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.« less

  18. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; Hengartner, Nicholas; Higdon, Dave; Lesins, Glen; Dubey, Manvendra K.

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  19. Habitat of natural gases in Papua New Guinea

    SciTech Connect (OSTI)

    Schoell, M.; Beeunas, M.A. Baskin, D.K.; Monnier, F. ); Eisenberg, L.I.; Valenti, G.L. )

    1996-01-01

    Thermogenic natural gases in Papua New Guinea occur in hanging wall anticlines and related structures along a 160 mile section of the Papuan fold and thrust belt between S.E. Hedinia in the SE and Pnyang in the NW. Isotopic compositions of the oil associated gases in the SE between Hedinia and Mananda varies little ([delta][sup l3]C[sub CH4]=-44[+-]2[per thousand] and [delta]D[sub CH4]=-200[+-]20[per thousand]). However, subtle isotopic and compositional patterns in these gases are structurally controlled and indicate primary differences in the filling history of the individual structures. In addition, secondary redistribution of the gases between the Agogo and Iagifu structure can be traced through isotopic similarities. In S.E. Mananda, however, gas isotope patterns are affected by bacterial degradation of the gas. Tire concentration of CO[sub 2] in the oil associated gases in the SE is low (0.6-3.0 %) and the carbon isotope values ([delta][sup 13]C[sub CO2]=-10 to -19[per thousand]) suggest an organic origin with minor inorganic contributions. Gas in the Juha structure ([delta][sup 13]C[sub CH4]=-36.8[per thousand]) is likely from a more mature source and has a CO[sub 2] concentration of 9.6% with a [delta][sup 13]C[sub CO2]=-5.9[per thousand], indicating additional CO[sub 2] generating processes in this area, likely related to magmatic activity in the vicinity of the Juha structure. The Pnyang structure in the NW of the area holds a gas ([delta][sup 13]C[sub CH4]-40.5[per thousand]) which is isotopically intermediate between the Juha gas and the oil associated gases in the SE. The low CO[sub 2] concentration of 0.2% suggests that Pnyang is sourced from a gas kitchen similar to, but more mature than, the kitchen for the oil associated gases in the SE of the province. This is consistent with the high GOR in this structure and the association of the gas with a high API gravity condensate.

  20. Habitat of natural gases in Papua New Guinea

    SciTech Connect (OSTI)

    Schoell, M.; Beeunas, M.A. Baskin, D.K.; Monnier, F.; Eisenberg, L.I.; Valenti, G.L.

    1996-12-31

    Thermogenic natural gases in Papua New Guinea occur in hanging wall anticlines and related structures along a 160 mile section of the Papuan fold and thrust belt between S.E. Hedinia in the SE and Pnyang in the NW. Isotopic compositions of the oil associated gases in the SE between Hedinia and Mananda varies little ({delta}{sup l3}C{sub CH4}=-44{+-}2{per_thousand} and {delta}D{sub CH4}=-200{+-}20{per_thousand}). However, subtle isotopic and compositional patterns in these gases are structurally controlled and indicate primary differences in the filling history of the individual structures. In addition, secondary redistribution of the gases between the Agogo and Iagifu structure can be traced through isotopic similarities. In S.E. Mananda, however, gas isotope patterns are affected by bacterial degradation of the gas. Tire concentration of CO{sub 2} in the oil associated gases in the SE is low (0.6-3.0 %) and the carbon isotope values ({delta}{sup 13}C{sub CO2}=-10 to -19{per_thousand}) suggest an organic origin with minor inorganic contributions. Gas in the Juha structure ({delta}{sup 13}C{sub CH4}=-36.8{per_thousand}) is likely from a more mature source and has a CO{sub 2} concentration of 9.6% with a {delta}{sup 13}C{sub CO2}=-5.9{per_thousand}, indicating additional CO{sub 2} generating processes in this area, likely related to magmatic activity in the vicinity of the Juha structure. The Pnyang structure in the NW of the area holds a gas ({delta}{sup 13}C{sub CH4}-40.5{per_thousand}) which is isotopically intermediate between the Juha gas and the oil associated gases in the SE. The low CO{sub 2} concentration of 0.2% suggests that Pnyang is sourced from a gas kitchen similar to, but more mature than, the kitchen for the oil associated gases in the SE of the province. This is consistent with the high GOR in this structure and the association of the gas with a high API gravity condensate.

  1. Humidity trends imply increased sensitivity to clouds in a warming Arctic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cox, Christopher J.; Walden, Von P.; Rowe, Penny M.; Shupe, Matthew D.

    2015-12-10

    Infrared radiative processes are implicated in Arctic warming and sea-ice decline. The infrared cloud radiative effect (CRE) at the surface is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. Here we show how temperature and humidity control CRE through competing influences between the mid- and far-infrared. At constant relative humidity, CRE does not decrease with increasing temperature/absolute humidity as expected, but rather is found to be approximately constant for temperatures characteristic of the Arctic. This stability is disrupted if relative humidity varies. Ourmore » findings explain observed seasonal and regional variability in Arctic CRE of order 10Wm 2. With the physical properties of Arctic clouds held constant, we calculate recent increases in CRE of 1–5Wm 2 in autumn and winter, which are projected to reach 5–15Wm 2 by 2050, implying increased sensitivity of the surface to clouds.« less

  2. Humidity trends imply increased sensitivity to clouds in a warming Arctic

    SciTech Connect (OSTI)

    Cox, Christopher J.; Walden, Von P.; Rowe, Penny M.; Shupe, Matthew D.

    2015-12-10

    Infrared radiative processes are implicated in Arctic warming and sea-ice decline. The infrared cloud radiative effect (CRE) at the surface is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. Here we show how temperature and humidity control CRE through competing influences between the mid- and far-infrared. At constant relative humidity, CRE does not decrease with increasing temperature/absolute humidity as expected, but rather is found to be approximately constant for temperatures characteristic of the Arctic. This stability is disrupted if relative humidity varies. Our findings explain observed seasonal and regional variability in Arctic CRE of order 10Wm 2. With the physical properties of Arctic clouds held constant, we calculate recent increases in CRE of 1–5Wm 2 in autumn and winter, which are projected to reach 5–15Wm 2 by 2050, implying increased sensitivity of the surface to clouds.

  3. Engineering change in global climate

    SciTech Connect (OSTI)

    Schneider, S.H.

    1996-12-31

    {open_quotes}With increased public focus on global warming and in the wake of the intense heat waves, drought, fires, and super-hurricanes that occurred in 1988 and 1989, interest in geoengineering has surged,{close_quotes} says Stephen H. Schneider, professor of biological science at Stanford University in Stanford, California. One scheme set forth in a National Research Council report proposes using 16-inch naval guns to fire aerosol shells into the stratosphere in hopes of offsetting {open_quotes}the radiative effects of increasing carbon dioxide,{close_quotes} Schneider says. Schneider, however, would prefer that we {open_quotes}seek measures that can cure our global {open_quote}addiction{close_quote} to polluting practices.{close_quotes} Rather than playing God, he says we should {open_quotes}stick to being human and pursue problem - solving methods currently within our grasp.{close_quotes} Such strategies include efforts to promote energy efficiency and reduce our reliance on automobiles.

  4. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025 Fact 825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years ...

  5. Changing the Way We Fly: Biofuels Made from Waste Gases Reaching...

    Energy Savers [EERE]

    Changing the Way We Fly: Biofuels Made from Waste Gases Reaching New Heights with Airline Industry Changing the Way We Fly: Biofuels Made from Waste Gases Reaching New Heights with ...

  6. ARM Carbon Cycle Gases Flasks at SGP Site (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Carbon Cycle Gases Flasks at SGP Site Title: ARM Carbon Cycle Gases Flasks at SGP Site Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern ...

  7. Experimental Studies of the Transport Parameters of Warm Dense Matter

    SciTech Connect (OSTI)

    Chouffani, Khalid

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  8. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 1999 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2000-03-31

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has--since its inception in 1982--enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea level. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Acting Director) of DOE's Office of Biological and Environmental Research. CDIAC's FY 1999 budget was 2.2M dollars. CDIAC represents the DOE in the multi-agency Global Change Data and Information System. Bobbi Parra, and Wanda Ferrell on an interim basis, is DOE's Program Manager with responsibility for CDIAC. CDIAC comprises three groups, Global Change Data, Computer Systems, and Information

  9. System for trapping and storing gases for subsequent chemical reduction to solids

    DOE Patents [OSTI]

    Vogel, John S.; Ognibene, Ted J.; Bench, Graham S.; Peaslee, Graham F.

    2009-11-03

    A system for quantitatively reducing oxide gases. A pre-selected amount of zinc is provided in a vial. A tube is provided in the vial. The zinc and the tube are separated. A pre-selected amount of a catalyst is provided in the tube. Oxide gases are injected into the vial. The vial, tube, zinc, catalyst, and the oxide gases are cryogenically cooled. At least a portion of the vial, tube, zinc, catalyst, and oxide gases are heated.

  10. Clostridium stain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  11. Flash pyrolysis of biomass with reactive and nonreactive gases

    SciTech Connect (OSTI)

    Sundaram, M.S.; Steinberg, M.; Fallon, P.

    1982-10-01

    Studies were done on the flash pyrolysis of Douglas fir wood in the presence of reactive and nonreactive gases including hydrogen, methane, and helium. Pyrolysis and gasification of the wood particles was done in one step, without catalysts. Almost complete (98%) gasification of the carbon in Douglas fir wood was achieved at 1000/sup 0/C and 500-psi hydrogen pressure. The reaction products were methane, ethane, ethylene, carbon monoxide, BTX, and water. Flash hydropyrolysis produced a large yield of hydrocarbon gases (up to 78% C) comprising methane and ethane. High yields of ethylene (up to 21% C) and BTX (up to 12% C) were obtained via methane pyrolysis of fir wood; a free-radical mechanism is proposed to explain the enhanced yield of ethylene in a methane atmosphere.

  12. Clostridium strain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  13. Apparatus for the plasma destruction of hazardous gases

    DOE Patents [OSTI]

    Kang, M.

    1995-02-07

    A plasma cell for destroying hazardous gases is described. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required. 4 figs.

  14. Apparatus for the plasma destruction of hazardous gases

    DOE Patents [OSTI]

    Kang, Michael

    1995-01-01

    A plasma cell for destroying hazardous gases. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required.

  15. Decontamination of combustion gases in fluidized bed incinerators

    DOE Patents [OSTI]

    Leon, Albert M.

    1982-01-01

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  16. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    SciTech Connect (OSTI)

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  17. Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,813 3,440 3,591 7,549 6,265 8,763 9,872 18,776 13,652 9,971 1990's 9,981 - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. Nanostructured carbon materials for adsorption of methane and other gases

    DOE Patents [OSTI]

    Stadie, Nicholas P.; Fultz, Brent T.; Ahn, Channing; Murialdo, Maxwell

    2015-06-30

    Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.

  19. Apparatus for hot-gas desulfurization of fuel gases

    DOE Patents [OSTI]

    Bissett, Larry A. (Morgantown, WV)

    1992-01-01

    An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

  20. A coupled theory of tropical climatology: Warm pool, cold tongue, and Walker circulation

    SciTech Connect (OSTI)

    Zhengyu Liu; Boyin Huang

    1997-07-01

    Based on results from analytic and general circulation models, the authors propose a theory for the coupled warm pool, cold tongue, and Walker circulation system. The intensity of the coupled system is determined by the coupling strength, the local equilibrium time, and latitudinal differential heating. Most importantly, this intensity is strongly regulated in the coupled system, with a saturation level that can be reached at a modest coupling strength. The saturation west-east sea surface temperature difference (and the associated Walker circulation) corresponds to about one-quarter of the latitudinal differential equilibrium temperature. This regulation is caused primarily by the decoupling of the SST gradient from a strong ocean current. The author`s estimate suggests that the present Pacific is near the saturation state. Furthermore, the much weaker Walker circulation system in the Atlantic Ocean is interpreted as being the result of the influence of the adjacent land, which is able to extend into the entire Atlantic to change the zonal distribution of the trade wind. The theory is also applied to understand the tropical climatology in coupled GCM simulations, in the Last Glacial Maximum climate, and in the global warming climate, as well as in the regulation of the tropical sea surface temperature. 41 refs., 15 figs.

  1. Global Home Filesystem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Home Global Home Filesystem Overview Global home directories (or "global homes") provide a convenient means for a user to have access to dotfiles, source files, input files, configuration files, etc., regardless of the platform the user is logged in to. Quotas, Performance, and Usage Default global home quotas are 40 GB and 1,000,000 inodes. Quota increases in global homes are approved only in extremely unusual circumstances; users are encouraged to use the various scratch,

  2. APPARATUS FOR CLEANING GASES WITH ELECTROSTATICALLY CHARGED PARTICLES

    DOE Patents [OSTI]

    Johnstone, H.F.

    1960-02-01

    An apparatus is described for cleaning gases with the help of electrostatically charged pellets. The pellets are blown past baffles in a conduit and into the center of a rotuting body of the gas to be cleaned. The pellets are charged electrostatically by impinging on the baffles. The pellets collect the particles suspended in the gas in their passage from the center of the rotating body to its edge.

  3. Flask Samplers for Carbon Cycle Gases and Isotopes (FLASK) Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Flask Samplers for Carbon Cycle Gases and Isotopes (FLASK) Handbook S Biraud March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  4. Extraction of uranium from spent fuels using liquefied gases

    SciTech Connect (OSTI)

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2007-07-01

    For reprocessing of spent nuclear fuels, a novel method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. As a fundamental study, the nitrate conversion with liquefied nitrogen dioxide and the nitrate extraction with supercritical carbon dioxide were demonstrated by using uranium dioxide powder, uranyl nitrate and tri-n-butylphosphate complex in the present study. (authors)

  5. Simulations of Deflagration-to-Detonation Transition in Reactive Gases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Simulations of Deflagration-to-Detonation Transition in Reactive Gases PI Name: Alexei Khokhlov PI Email: ajk@oddjob.uchicago.edu Institution: University of Chicago Allocation Program: INCITE Allocation Hours at ALCF: 20,000,000 Year: 2012 Research Domain: Chemistry First-principles direct numerical simulations explain and predict high-speed combustion and deflagration-to-detonation transition (DDT) in hydrogen-oxygen gaseous mixtures. DDT and the

  6. Emission of reduced malodorous sulfur gases from wastewater treatment plants

    SciTech Connect (OSTI)

    Devai, I.; DeLaune, R.D.

    1999-03-01

    The emission of malodorous gaseous compounds from wastewater collection and treatment facilities is a growing maintenance and environmental problem. Numerous gaseous compounds with low odor detection thresholds are emitted from these facilities. Sulfur-bearing gases represent compounds with the lowest odor detection threshold. Using solid adsorbent preconcentration and gas chromatographic methods, the quantity and composition of reduced malodorous sulfur gases emitted from various steps of the treatment process were determined in wastewater treatment plants in Baton Rouge, Louisiana. Hydrogen sulfide, which is a malodorous, corrosive, and potentially toxic gas, was the most dominant volatile reduced sulfur (S) compound measured. Concentrations were not only more than the odor detection threshold of hydrogen sulfide, but above levels that may affect health during long-term exposure. The concentrations of methanethiol, dimethyl sulfide, carbon disulfide, and carbonyl sulfide were significantly less than hydrogen sulfide. However, even though emissions of reduced sulfur gases other than hydrogen sulfide were low, previous studies suggested that long-term exposure to such levels may cause respiratory problems and other symptoms.

  7. Greenhouse gases mitigation options and strategies for Tanzania

    SciTech Connect (OSTI)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  8. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  9. Sandia Energy - Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Home Analysis Permalink Gallery Results from the Human Resilience Index and Modeling project were reported recently in the National Intelligence Council's Global Trends 2030...

  10. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Global Climate & Energy HomeTag:Global Climate & Energy Electricity use by water service sector and county. Shown are electricity ...

  11. Cleantech Professional Resource Global Limited CPR Global | Open...

    Open Energy Info (EERE)

    Professional Resource Global Limited CPR Global Jump to: navigation, search Name: Cleantech Professional Resource Global Limited (CPR Global) Place: London, United Kingdom Zip:...

  12. Ion-ion dynamic structure factor of warm dense mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  13. Ion-ion dynamic structure factor of warm dense mixtures

    SciTech Connect (OSTI)

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

  14. Malaria and global change: Insights, uncertainties and possible surprises

    SciTech Connect (OSTI)

    Martin, P.H.; Steel, A.

    1996-12-31

    Malaria may change with global change. Indeed, global change may affect malaria risk and malaria epidemiology. Malaria risk may change in response to a greenhouse warming; malaria epidemiology, in response to the social, economic, and political developments which a greenhouse warming may trigger. To date, malaria receptivity and epidemiology futures have been explored within the context of equilibrium studies. Equilibrium studies of climate change postulate an equilibrium present climate (the starting point) and a doubled-carbon dioxide climate (the end point), simulate conditions in both instances, and compare the two. What happens while climate changes, i.e., between the starting point and the end point, is ignored. The present paper focuses on malaria receptivity and addresses what equilibrium studies miss, namely transient malaria dynamics.

  15. Global climate change crosses state boundaries

    SciTech Connect (OSTI)

    Changnon, S.A.

    1996-12-31

    The hot, dry summer of 1988 brought the specter of global warming a bit too close for comfort. {open_quotes}Scorching heat, not scientific models, attracted media attention,{close_quotes} says Stanley A. Changnon, senior scientist with the Illinois State Water Survey in Champaign, Illinois. Rising temperatures in the late 1980`s prompted individual states to begin to take action to curb greenhouse-gas emissions. A 1990 report by the National Governors Association identified two guiding principles for addressing climate change issues. {open_quotes}First, that energy policy must be at the center of any efforts to control greenhouse-gas emissions. Second, that state can...restrict emissions through state policies related to public utilities, land use, transportation, and even taxation,{close_quotes} Changnon says. Even if concerns for global warming prove to be overblown, states decided to act for broader economic and environmental reasons. Such initiatives not only save money, but they improve air quality and leave the nation more energy independent,{close_quotes} Changnon says.

  16. Replacement of chlorofluorocarbons (CFCs) at the DOE Gaseous Diffusion Plants: An assessment of global impacts

    SciTech Connect (OSTI)

    Socolof, M.L.; Saylor, R.E.; McCold, L.N.

    1994-12-31

    The US Department of Energy (DOE) operates two uranium enrichment plants. Together, the two plants maintain an inventory of approximately 14 million pounds of a chlorofluorocarbon (CFC), dichlorote-trafluoroethane (CFC-114) as a coolant. Annual operational CFC-114 losses total over 500,000 pounds. In February, 1992, President Bush announced that the US would terminate manufacture and importation of Class 1 ozone depleting substances (including CFC-114) by the end of 1995. To comply with this requirement DOE has considered introducing a replacement coolant by the end of 1995. Two perfluorocarbons (PFCs) - namely, octofluoro-cyclobutane and decafluorobutane - are presently the only known coolants that could meet safety requirements. They would not contribute to stratospheric ozone depletion but contribute to global warming. The paper describes an analysis of the potential global impacts of the proposed replacement of CFC-114 with a PFC. A problem with analyses of global warming and ozone depletion impacts is that even large sources of compounds that contribute to these effects contribute only very small fractions of the total effect. The authors take the position that significant effects to global warming and ozone depletion have already occurred, and that any additional contribution to these effects are contributions to cumulatively significant adverse effects on the environment. The paper describes four alternatives and the extent to which each would contribute to global warming and ozone depletion.

  17. Atmospheric Chemistry and Greenhouse Gases (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Chapter 4 of the IPCC Third Assessment Report Climate Change ... Questions 2774.6 Overall Impact of Global Atmospheric ... Language: English Subject: 54 ENVIRONMENTAL SCIENCES; ...

  18. GE Global Research Leadership | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About GE Global Research > Leadership Leadership GE Global Research Centers rely on the guidance of visionary leaders with deep technical knowledge on the ground at each of our sites. A photo of Vic Abate Vic Abate Chief Technology Officer GE Global Research As senior vice president and chief technology officer for GE, Vic is responsible for one of the world's largest and most diversified industrial research and technology organizations. Vic leads GE's 50,000 engineers and scientists and G...

  19. GE Global Research Locations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations GE Global Research is innovating around the clock. Select one of our locations to learn more about operations there.GE Global Research is innovating around the clock. Select a location to learn more about our operations. Home > Locations GE Global Research is ALWAYS OPEN Already know about our locations? Experience a special look at a day in our life around the world! See What We're Doing Dhahran, Saudi Arabia Founded: 2015 Employees: 15 Focus Areas: Material Characterization,

  20. Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes

    SciTech Connect (OSTI)

    Zelikova TJ; Housman DC; Grote EE; Neher DA; Belnap J

    2012-01-01

    Changes in temperature and precipitation are expected to influence ecosystem processes worldwide. Despite their globally large extent, few studies to date have examined the effects of climate change in desert ecosystems, where biological soil crusts are key nutrient cycling components. The goal of this work was to assess how increased temperature and frequency of summertime precipitation affect the contributions of crust organisms to soil processes. With a combination of experimental 2°C warming and altered summer precipitation frequency applied over 2 years, we measured soil nutrient cycling and the structure and function of crust communities. We saw no change in crust cover, composition, or other measures of crust function in response to 2°C warming and no effects on any measure of soil chemistry. In contrast, crust cover and function responded to increased frequency of summer precipitation, shifting from moss to cyanobacteria-dominated crusts; however, in the short timeframe we measured, there was no accompanying change in soil chemistry. Total bacterial and fungal biomass was also reduced in watered plots, while the activity of two enzymes increased, indicating a functional change in the microbial community. Taken together, our results highlight the limited effects of warming alone on biological soil crust communities and soil chemistry, but demonstrate the substantially larger effects of altered summertime precipitation.

  1. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2002-10-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made up of three groups: Data

  2. Tracing ram-pressure stripping with warm molecular hydrogen emission

    SciTech Connect (OSTI)

    Sivanandam, Suresh; Rieke, Marcia J.; Rieke, George H.

    2014-12-01

    We use the Spitzer Infrared Spectrograph to study four infalling cluster galaxies with signatures of ongoing ram-pressure stripping. H{sub 2} emission is detected in all four, and two show extraplanar H{sub 2} emission. The emission usually has a warm (T ? 115-160 K) and a hot (T ? 400-600 K) component that is approximately two orders of magnitude less massive than the warm one. The warm component column densities are typically 10{sup 19} to 10{sup 20} cm{sup 2} with masses of 10{sup 6} to 10{sup 8} M {sub ?}. The warm H{sub 2} is anomalously bright compared with normal star-forming galaxies and therefore may be excited by ram-pressure. In the case of CGCG 97-073, the H{sub 2} is offset from the majority of star formation along the direction of the galaxy's motion in the cluster, suggesting that it is forming in the ram-pressure wake of the galaxy. Another galaxy, NGC 4522, exhibits a warm H{sub 2} tail approximately 4 kpc in length. These results support the hypothesis that H{sub 2} within these galaxies is shock-heated from the interaction with the intracluster medium. Stripping of dust is also a common feature of the galaxies. For NGC 4522, where the distribution of dust at 8 ?m is well resolved, knots and ripples demonstrate the turbulent nature of the stripping process. The H? and 24 ?m luminosities show that most of the galaxies have star-formation rates comparable to similar mass counterparts in the field. Finally, we suggest a possible evolutionary sequence primarily related to the strength of ram-pressure that a galaxy experiences to explain the varied results observed in our sample.

  3. Solubilities of heavy fossil fuels in compressed gases

    SciTech Connect (OSTI)

    Monge, A. Jr.

    1982-01-01

    Design of processes for upgrading heavy fossil fuels such as coal-derived liquids, heavy petroleum fractions, tar sands, and shale oil, requires quantitative information for equilibrium properties of the fossil fuel in the presence of compressed light gases at elevated temperatures. Presented here are methods to predict and measure solubilities of heavy fossil fuels in compressed gases in the region ambient to 100 bar and 600 K. A molecular-thermodynamic model is used to predict heavy fossil-fuel solubilities. The heavy fuel is fractionated ina spinning-band column at low pressure and high reflux; each fraction is considered to be a pseudo-component. Each fraction is characterized by one vapor-pressure datum (obtained during fractionation), elemental analysis, and proton-NMR spectra (to determine aromaticity). Liquid-phase properties are obtained from the SWAP equation for vapor pressure and from a density correlation. Vapor-phase properties are obtained using the virial equation of state with virial coefficients from Kaul's correlation. The molecular-thermodynamic model has been used to establish a design-oriented computer program for calculating heavy, fossil-fuel solubility for general application in process design and, in particular, for isobaric condensation as a function of temperature as required for design of a continuous-flow heat exchanger. A total-vaporization technique is used to measure the solubilities of narrow-boiling, heavy fossil-fuel fractions in compressed gases. The solubility of a heavy fraction is determined from the volume of gas required to vaporize completely a small, measured mass of fossil-fuel sample. To test the molecular-thermodynamic model, the total-vaporization technique has been used to measure the solubilities of two Lurgi coal-tar fractions in compressed methane. Predicted and experimental solubilities agree well.

  4. Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis

    SciTech Connect (OSTI)

    Zahn, S.G.

    1993-12-01

    Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

  5. Liquefaction and storage of thermal treatment off-gases

    SciTech Connect (OSTI)

    Stull, D.M. . Rocky Flats Plant); Golden, J.O. )

    1992-09-08

    A fluidized bed catalytic oxidation unit is being developed for use in the destruction of mixed waste at the Rocky Flats Plant. Cyclones, filters, in situ neutralization of acid gases, and a catalytic converter are used to meet emission standards. Because there is concern by the public that these measures may not be adequate, two off-gas capture systems were evaluated. Both systems involve liquefaction of carbon dioxide produced in the oxidation process. The carbon dioxide would be released only after analysis proved that all appropriate emission standards are met.

  6. Prospecting by sampling and analysis of airborne particulates and gases

    DOE Patents [OSTI]

    Sehmel, G.A.

    1984-05-01

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  7. MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES

    DOE Patents [OSTI]

    Josephson, V.

    1960-01-26

    A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.

  8. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, Raymond J.; Kurek, Paul R.

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  9. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, R.J.; Kurek, P.R.

    1988-07-19

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  10. Nonperturbative Predictions for Cold Atom Bose Gases with Tunable Interactions

    SciTech Connect (OSTI)

    Cooper, Fred; Chien, Chih-Chun; Mihaila, Bogdan; Timmermans, Eddy; Dawson, John F.

    2010-12-10

    We derive a theoretical description for dilute Bose gases as a loop expansion in terms of composite-field propagators by rewriting the Lagrangian in terms of auxiliary fields related to the normal and anomalous densities. We demonstrate that already in leading order this nonperturbative approach describes a large interval of coupling-constant values, satisfies Goldstone's theorem, yields a Bose-Einstein transition that is second order, and is consistent with the critical temperature predicted in the weak-coupling limit by the next-to-leading-order large-N expansion.

  11. Posters Cloud Parameterizations in Global Climate Models: The Role of Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters Cloud Parameterizations in Global Climate Models: The Role of Aerosols J. E. Penner and C. C. Chuang Lawrence Livermore National Laboratory Livermore, California Introduction Aerosols influence warm clouds in two ways. First, they determine initial drop size distributions, thereby influencing the albedo of clouds. Second, they determine the lifetime of clouds, thereby possibly changing global cloud cover statistics. At the present time, neither effect of aerosols on clouds is included

  12. Influence of impurity gases and operating conditions on PAFC performance

    SciTech Connect (OSTI)

    Hirai, K.; Iwasa, N.; Suzuki, M.; Okada, O.

    1996-12-31

    On-site Phosphoric Acid Fuel Cell (PAFC) Cogeneration system is installed at various test sites, such as at underground parking lot, within chemical plant premises and near urban streets. Since in the current PAFC system, cathode air is supplied to the cell with no particular pretreatment, impurity gases in the air might influence on cell performance. We have investigated the influence of various impurity gases in the cathode gas, on sub-scale single cells, and have found that NO{sub 2}, SO{sub 2} and toluene affect negatively on cell performance. The results of these experiments and the conceivable mechanism of these effects on cell degradation are reported. We have also investigated the influence of other operating parameters, such as temperature, current density, fuel utilization on cell performance. From these experiments, we have found that operating temperature is a significant factor, which mainly determines cell voltage decline rate. The results of sub-scale single cell tests and a short-stack verification test are also reported.

  13. Process for recovery of sulfur from acid gases

    DOE Patents [OSTI]

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  14. Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kao, Shih-Chieh; Ganguly, Auroop R

    2011-01-01

    Recent research on the projection of precipitation extremes has either focused on conceptual physical mechanisms that generate heavy precipitation or rigorous statistical methods that extrapolate tail behavior. However, informing both climate prediction and impact assessment requires concurrent physically and statistically oriented analysis. A combined examination of climate model simulations and observation-based reanalysis data sets suggests more intense and frequent precipitation extremes under 21st-century warming scenarios. Utilization of statistical extreme value theory and resampling-based uncertainty quantification combined with consideration of the Clausius-Clapeyron relationship reveals consistently intensifying trends for precipitation extremes at a global-average scale. However, regional and decadal analyses reveal specific discrepancies in the physical mechanisms governing precipitation extremes, as well as their statistical trends, especially in the tropics. The intensifying trend of precipitation extremes has quantifiable impacts on intensity-duration-frequency curves, which in turn have direct implications for hydraulic engineering design and water-resources management. The larger uncertainties at regional and decadal scales suggest the need for caution during regional-scale adaptation or preparedness decisions. Future research needs to explore the possibility of uncertainty reduction through higher resolution global climate models, statistical or dynamical downscaling, as well as improved understanding of precipitation extremes processes.

  15. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  16. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2010 DOE Vehicle Technologies and Hydrogen ...

  17. Project Reports for Confederated Tribes of the Warm Springs Reservation- 2002 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Warm Springs Power Enterprises, a corporate entity owned and operated by the Confederated Tribes of Warm Springs, will conduct a 36-month comprehensive wind energy resource assessment and development feasibility study.

  18. Comment on Free-free opacity in warm aluminum by Vinko et al...

    Office of Scientific and Technical Information (OSTI)

    Comment on Free-free opacity in warm aluminum by Vinko et al Citation Details In-Document Search Title: Comment on Free-free opacity in warm aluminum by Vinko et al Authors: ...

  19. How Do You Stay Warm While Saving Money and Energy in Extreme...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stay Warm While Saving Money and Energy in Extreme Weather? How Do You Stay Warm While Saving Money and Energy in Extreme Weather? February 3, 2011 - 6:30am Addthis Many states are ...

  20. Predictions of x-ray scattering spectra in warm dense matter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Report: Predictions of x-ray scattering spectra in warm dense matter Citation Details In-Document Search Title: Predictions of x-ray scattering spectra in warm dense ...