Powered by Deep Web Technologies
Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Global Technology Roadmap on Carbon Capture and Storage in Industry |  

Open Energy Info (EERE)

A Global Technology Roadmap on Carbon Capture and Storage in Industry A Global Technology Roadmap on Carbon Capture and Storage in Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Global Technology Roadmap on Carbon Capture and Storage in Industry Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Topics: Pathways analysis, Technology characterizations Resource Type: Publications Website: www.unido.org/index.php?id=1000821 References: A Global Technology Roadmap on Carbon Capture and Storage in Industry[1] CO2 Capture and Storage (CCS) is a key technology option for greenhouse gas (GHG) emissions mitigation. Recent studies suggest that CCS would contribute 19% of the total global mitigation that is needed for halving global GHG emissions by 2050. Overview

2

Building technology roadmaps  

SciTech Connect

DOE's Office of Building Technology, State and Community Programs (BTS) is facilitating an industry-led initiative to develop a series of technology roadmaps that identify key goals and strategies for different areas of the building and equipment industry. This roadmapping initiative is a fundamental component of the BTS strategic plan and will help to align government resources with the high-priority needs identified by industry.

1999-01-27T23:59:59.000Z

3

IEA Technology Roadmaps | Open Energy Information  

Open Energy Info (EERE)

IEA Technology Roadmaps IEA Technology Roadmaps Jump to: navigation, search Tool Summary Name: IEA Technology Roadmaps Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, Industry, Solar, Transportation, Wind Topics: Finance, Implementation, Low emission development planning, Market analysis, Pathways analysis, Technology characterizations Resource Type: Guide/manual Website: www.iea.org/subjectqueries/keyresult.asp?KEYWORD_ID=4156 References: IEA Technology Roadmaps[1] "... the IEA is developing a series of global low-carbon energy technology roadmaps covering the most important technologies. The IEA is leading the process, under international guidance and in close consultation with government and industry. The overall aim is to advance global development

4

OHVT technology roadmap [2000  

DOE Green Energy (OSTI)

The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

Bradley, R.A.

2000-02-01T23:59:59.000Z

5

OHVT technology roadmap  

DOE Green Energy (OSTI)

The Office of Heavy Vehicle Technologies (OHVT) Technology Roadmap presents the OHVT multiyear program plan. It was developed in response to recommendations by DOE`s heavy vehicle industry customers, including truck and bus manufacturers, diesel engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The technical plan is presented for three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); and (3) class 1-2 (pickups, vans, and sport utility vehicles). The Roadmap documents program goals, technical targets, and technical approaches. Issues addressed include engine efficiency, fuel efficiency, power requirements, emissions, and fuel flexibility. 8 figs., 9 tabs.

NONE

1997-10-01T23:59:59.000Z

6

OHVT Technology Roadmap  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) was created in March 1996 to address the public-interest transportation-energy aspects of a set of customers who at that time had been largely unrecognized, namely, the manufacturers, suppliers, and users of heavy transport vehicles (trucks, buses, rail, and inland marine). Previously, the DOE had focused its attention on meeting the needs of the personal-transport-vehicle customer (automobile manufacturers, suppliers, and users). Those of us who were of driving age at the time of the 1973 oil embargo and the 1979 oil price escalation vividly recall the inconvenience and irritation of having to wait in long lines for gasoline to fuel our cars. However, most of us, other than professional truck owners or drivers, were unaware of the impacts that these disruptions in the fuel supply had on those whose livelihoods depend upon the transport of goods. Recognizing the importance of heavy vehicles to the national economic health, the DOE created OHVT with a mission to conduct, in collaboration with its industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy-efficient and able to use alternative fuels while reducing emissions. The Office of Heavy Vehicle Technologies convened a workshop in April 1996 to elicit input from DOE's heavy vehicle industry customers, including truck and bus manufacturers, diesel-engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The preparation of a ''technology roadmap'' was one of the key recommendations by this customer group. Therefore, the OHVT Technology Roadmap* was developed in 1996 as a first step in crafting a common vision for a government research and development (R and D) partnership in this increasingly important transportation sector. The approach used in developing the OHVT Technology Roadmap was to: formulate goals consistent with the U.S. Department of Energy Strategic Plan required by the Government Performance and Results Act (GPRA), assess the status of the technology, identify technical targets, identify barriers to achieving the technical targets, develop an approach to overcoming the barriers, and develop schedules and milestones. This structure was followed for three groups of truck classification: Class 7 and 8: large, on-highway trucks; Class 3-6: medium-duty trucks such as delivery vans; and Class 1 and 2: pickups, vans, and sport utility vehicles (SUVs).

Bradley, R.A.

2001-10-22T23:59:59.000Z

7

Technological development under global warning : roadmap of the coal generation technology  

E-Print Network (OSTI)

This thesis explores the measures for the Japanese electric power utilities to meet the Kyoto Target, and the technological development of the coal thermal power generation to meet the further abatement of the carbon dioxide ...

Furuyama, Yasushi, 1963-

2004-01-01T23:59:59.000Z

8

Fuel Cell Technologies Office: Roadmaps  

NLE Websites -- All DOE Office Websites (Extended Search)

This page contains documents that outline U.S. DOE efforts to develop a hydrogen-based energy system. Hydrogen Production Roadmap: Technology Pathways to the Future, published...

9

National Electric Delivery Technologies Roadmap: Transforming...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America National Electric Delivery Technologies Roadmap: Transforming the Grid to...

10

Solid-State Lighting: Technology Roadmaps  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Roadmaps to someone Technology Roadmaps to someone by E-mail Share Solid-State Lighting: Technology Roadmaps on Facebook Tweet about Solid-State Lighting: Technology Roadmaps on Twitter Bookmark Solid-State Lighting: Technology Roadmaps on Google Bookmark Solid-State Lighting: Technology Roadmaps on Delicious Rank Solid-State Lighting: Technology Roadmaps on Digg Find More places to share Solid-State Lighting: Technology Roadmaps on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Technology Roadmaps This page contains links to DOE's Technology Roadmaps, multi-year plans

11

International Energy Agency Technology Roadmap for Wind Energy | Open  

Open Energy Info (EERE)

Technology Roadmap for Wind Energy Technology Roadmap for Wind Energy Jump to: navigation, search Name International Energy Agency Technology Roadmap for Wind Energy Agency/Company /Organization International Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Market analysis, Technology characterizations Resource Type Guide/manual Website http://www.iea.org/Papers/2009 References Technology Roadmap for Wind Energy[1] Summary "To achieve this ambitious goal, the IEA has undertaken an effort to develop a series of global technology roadmaps covering 19 technologies, under international guidance and in close consultation with industry. These technologies are evenly divided among demand side and supply side technologies. This wind roadmap is one of the initial roadmaps being

12

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

13

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network (OSTI)

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

14

Wind technology roadmap | OpenEI Community  

Open Energy Info (EERE)

Wind technology roadmap Wind technology roadmap Home > Groups > DOE Wind Vision Community GrandpasKnob's picture Submitted by GrandpasKnob(5) Member 13 August, 2013 - 12:58 I think it would be valuable for DOE to consider the creation of a wind technology roadmap as part of their new vision. In the semiconductor industry, Moore's Law became a self-fulfilling prophecy due to that industry's creation and adherence to a roadmap (see http://www.itrs.net/). A similar shared vision of the wind-energy future could spur the cross-industry cooperation needed to drive increases in penetration. Groups: DOE Wind Vision Community Login to post comments Latest discussions GrandpasKnob Wind technology roadmap Posted: 13 Aug 2013 - 12:58 by GrandpasKnob Groups Menu You must login in order to post into this group.

15

Case studies of technology roadmapping in mining  

Science Conference Proceedings (OSTI)

Mining is a long established art with legacy processes and institutional structures that face rapidly changing technological environments. The perception is that technology planning and forecasting receives priority attention only as far as they may ... Keywords: L23, O31, Mining, Technology planning and forecasting, Technology roadmapping

Joe Amadi-Echendu; Obbie Lephauphau; Macks Maswanganyi; Malusi Mkhize

2011-03-01T23:59:59.000Z

16

Railroad and locomotive technology roadmap.  

Science Conference Proceedings (OSTI)

Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry-government workshop in January 2001 to gauge industry interest. As a result, the railroads, their suppliers, and the federal government5 have embarked on a cooperative effort to further improve railroad fuel efficiency--by 25% between now and 2010 and by 50% by 2020, on an equivalent gallon per revenue ton-mile basis, while meeting emission standards, all in a cost-effective, safe manner. This effort aims to bring the collaborative approaches of other joint industry-government efforts, such as FreedomCAR and the 21st Century Truck partnership, to the problem of increasing rail fuel efficiency. Under these other programs, DOE's Office of FreedomCAR and Vehicle Technologies has supported research on technologies to reduce fuel use and air emissions by light- and heavy-duty vehicles. DOE plans to bring similar efforts to bear on improving locomotives. The Department of Transportation's Federal Railroad Administration will also be a major participant in this new effort, primarily by supporting research on railroad safety. Like FreedomCAR and the 21st Century Truck program, a joint industry-government research effort devoted to locomotives and railroad technology could be a 'win' for the public and a 'win' for industry. Industry's expertise and in-kind contributions, coupled with federal funding and the resources of the DOE's national laboratories, could make for an efficient, effective program with measurable energy efficiency targets and realistic deployment schedules. This document provides the necessary background for developing such a program. Potential R&D pathways to greatly improve the efficiency of freight transportation by rail, while meeting future emission standards in a cost-effective, safe manner, were developed jointly by an industry-government team as a result of DOE's January 2001 Workshop on Locomotive Emissions and System Efficiency and are presented here. The status of technology, technical targets, barriers, and technical approaches for engine, locomotive, rail systems, and advanced power plants and fuels are presented.

Stodolsky, F.; Gaines, L.; Energy Systems

2003-02-24T23:59:59.000Z

17

Technology Roadmap - Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

Technology Roadmap - Biofuels for Transport Technology Roadmap - Biofuels for Transport Jump to: navigation, search Tool Summary Name: Technology Roadmap - Biofuels for Transport Agency/Company /Organization: International Energy Agency Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf This roadmap identifies technology goals and defines key actions that stakeholders must undertake to expand biofuel production and use sustainably. It provides additional focus and urgency to international discussions about the importance of biofuels to a low CO2 future. References Retrieved from "http://en.openei.org/w/index.php?title=Technology_Roadmap_-_Biofuels_for_Transport&oldid=515032"

18

China 2050 Wind Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Wind Technology Roadmap Wind Technology Roadmap Jump to: navigation, search Name China 2050 Wind Technology Roadmap Agency/Company /Organization International Energy Agency Partner NDRC Energy Research Institute Sector Energy Focus Area Wind Topics Low emission development planning, -Roadmap, Pathways analysis, Technology characterizations Country China Eastern Asia References IEA Energy Technology Roadmaps[1] This article is a stub. You can help OpenEI by expanding it. See also: Wind Power in China The International Energy Agency is currently working with the NDRC Energy Research Institute in China to develop a China 2050 Wind Technology Roadmap. References ↑ "IEA Energy Technology Roadmaps" Retrieved from "http://en.openei.org/w/index.php?title=China_2050_Wind_Technology_Roadmap&oldid=384443"

19

China-2050 Wind Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

China-2050 Wind Technology Roadmap China-2050 Wind Technology Roadmap Jump to: navigation, search Name China-2050 Wind Technology Roadmap Agency/Company /Organization International Energy Agency Partner NDRC Energy Research Institute Sector Energy Focus Area Wind Topics Low emission development planning, -Roadmap, Pathways analysis, Technology characterizations Country China Eastern Asia References IEA Energy Technology Roadmaps[1] This article is a stub. You can help OpenEI by expanding it. See also: Wind Power in China The International Energy Agency is currently working with the NDRC Energy Research Institute in China to develop a China 2050 Wind Technology Roadmap. References ↑ "IEA Energy Technology Roadmaps" Retrieved from "http://en.openei.org/w/index.php?title=China-2050_Wind_Technology_Roadmap&oldid=699781"

20

Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009  

Fuel Cell Technologies Publication and Product Library (EERE)

Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

IEA-Technology Roadmap: Smart Grids | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Smart Grids IEA-Technology Roadmap: Smart Grids Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IEA-Technology Roadmap: Smart Grids Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Pathways analysis, Technology characterizations Resource Type: Publications, Guide/manual Website: www.iea.org/papers/2011/smartgrids_roadmap.pdf Cost: Free IEA-Technology Roadmap: Smart Grids Screenshot References: Technology Roadmap: Smart Grid[1] "This roadmap focuses on smart grids - the infrastructure that enables the delivery of power from generation sources to end-uses to be monitored and managed in real time. Smart grids are required to enable the use of a range of low-carbon technologies, such as variable renewable resources and

22

Fuel Cell Technologies Office: Fuel Cells for Buildings Roadmap...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells for Buildings Roadmap Workshop to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells for Buildings Roadmap Workshop on Facebook Tweet about Fuel Cell...

23

DOE Announces Strategic Engineering and Technology Roadmap for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste March 18, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today released an Engineering and Technology Roadmap (Roadmap), which details...

24

IEA-Technology Roadmap: Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Concentrating Solar Power IEA-Technology Roadmap: Concentrating Solar Power Jump to: navigation, search Tool Summary Name: IEA-Technology Roadmap: Concentrating Solar Power Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Solar, - Concentrating Solar Power Topics: Implementation, Pathways analysis Resource Type: Guide/manual Website: www.iea.org/papers/2010/csp_roadmap.pdf Cost: Free IEA-Technology Roadmap: Concentrating Solar Power Screenshot References: IEA-CSP Roadmap[1] "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid

25

Energy Technology Roadmaps: A Guide to Development and Implementation |  

Open Energy Info (EERE)

Energy Technology Roadmaps: A Guide to Development and Implementation Energy Technology Roadmaps: A Guide to Development and Implementation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Roadmaps: A Guide to Development and Implementation Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Pathways analysis Resource Type: Guide/manual, Lessons learned/best practices Website: www.iea.org/papers/roadmaps/guide.pdf Energy Technology Roadmaps: A Guide to Development and Implementation Screenshot References: Energy Technology Roadmaps[1] Summary "Drawing upon the IEA's extensive experience, this guide is aimed at providing countries and companies with the context, information and tools they need to design, manage and implement an effective energy roadmap

26

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

27

Vision 2020: Lighting Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Vision 2020: Lighting Technology Roadmap Vision 2020: Lighting Technology Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vision 2020: Lighting Technology Roadmap Agency/Company /Organization: United States Department of Energy, LBNL International Energy Studies, International Association of Lighting Designers, International Association of Lighting Management Companies Partner: NAED, NEMA, NEMRA, NECA, NAILD Sector: Energy Focus Area: Energy Efficiency Topics: Market analysis, Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/docs/fy00osti/27996.pdf References: Vision 2020: Lighting Technology Roadmap[1] Overview "Continued innovation in lamps and other system components, as well as in design practices, have made lighting progressively more effective,

28

CLEAN-Technology Roadmapping: Lessons, Experiences and Tools Webinar | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » CLEAN-Technology Roadmapping: Lessons, Experiences and Tools Webinar Jump to: navigation, search Tool Summary Name: Technology Roadmapping: Lessons, Experiences and Tools Webinar Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Topics: Low emission development planning, Pathways analysis, Technology characterizations Resource Type: Video, Presentation, Webinar, Training materials References: Technology Roadmapping: Lessons, Experiences and Tools Webinar[1] Logo: Technology Roadmapping: Lessons, Experiences and Tools Webinar

29

Observations on A Technology Roadmap for Generation IV Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Observations on A Technology Roadmap for Generation IV Nuclear Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV Technology Planning (GRNS) and they are: * A Near Term Development (NTD) Roadmap which is in the process of being

30

DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Engineering and Technology Roadmap for Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste March 18, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today released an Engineering and Technology Roadmap (Roadmap), which details initiatives aimed at reducing the technical risks and uncertainties associated with cleaning up Cold War era nuclear waste over the next ten years. The Roadmap also outlines strategies to minimize such risks and proposes how these strategies would be implemented, furthering the Department's goal of protecting the environment by providing a responsible resolution to the environmental legacy of nuclear weapons production.

31

Parabolic-Trough Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Parabolic-Trough Technology Roadmap Parabolic-Trough Technology Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Parabolic-Trough Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory, United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/csp/troughnet/pdfs/24748.pdf References: Parabolic-Trough Technology Roadmap[1] Overview "The working group reviewed the status of today's trough technologies, evaluated existing markets, identified potential future market opportunities, and developed a roadmap toward its vision of the industry's potential-including critical advancements needed over the long term to significantly reduce costs while further increasing

32

Hydrogen Storage Technologies Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen storage technology for transportation applications.

33

Hydrogen Delivery Technology Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

34

Implementation of a manufacturing technology roadmapping initiative  

E-Print Network (OSTI)

Strategic technology planning is a core competency of companies using technological capabilities for competitive advantage. It is also a competency with which many large companies struggle due to the cross-functional ...

Johnson, Marcus Cullen

2012-01-01T23:59:59.000Z

35

Power Tower Technology Roadmap and cost reduction plan.  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

2011-04-01T23:59:59.000Z

36

Generation IV International Forum Updates Technology Roadmap and Builds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation IV International Forum Updates Technology Roadmap and Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration December 31, 2013 - 12:14pm Addthis GIF Policy Group Meeting in Brussels, Belgium, November 2013 GIF Policy Group Meeting in Brussels, Belgium, November 2013 Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies The Generation IV International Forum (GIF) held its 36th Policy Group (PG) meeting on November 21-22 in Brussels, Belgium. The PG reviewed progress on a number of on-going actions and received progress reports from the GIF Experts Group (EG) and the GIF Senior Industry Advisory Panel (SIAP).

37

Incorporating the Technology Roadmap Uncertainties into the Project Risk Assessment  

SciTech Connect

This paper describes two methods, Technology Roadmapping and Project Risk Assessment, which were used to identify and manage the technical risks relating to the treatment of sodium bearing waste at the Idaho National Engineering and Environmental Laboratory. The waste treatment technology under consideration was Direct Vitrification. The primary objective of the Technology Roadmap is to identify technical data uncertainties for the technologies involved and to prioritize the testing or development studies to fill the data gaps. Similarly, project management's objective for a multi-million dollar construction project includes managing all the key risks in accordance to DOE O 413.3 - "Program and Project Management for the Acquisition of Capital Assets." In the early stages, the Project Risk Assessment is based upon a qualitative analysis for each risk's probability and consequence. In order to clearly prioritize the work to resolve the technical issues identified in the Technology Roadmap, the issues must be cross- referenced to the project's Risk Assessment. This will enable the project to get the best value for the cost to mitigate the risks.

Bonnema, Bruce Edward

2002-02-01T23:59:59.000Z

38

Incorporating the Technology Roadmap Uncertainties into the Project Risk Assessment  

SciTech Connect

This paper describes two methods, Technology Roadmapping and Project Risk Assessment, which were used to identify and manage the technical risks relating to the treatment of sodium bearing waste at the Idaho National Engineering and Environmental Laboratory. The waste treatment technology under consideration was Direct Vitrification. The primary objective of the Technology Roadmap is to identify technical data uncertainties for the technologies involved and to prioritize the testing or development studies to fill the data gaps. Similarly, project management's objective for a multi-million dollar construction project includes managing all the key risks in accordance to DOE O 413.3 - ''Program and Project Management for the Acquisition of Capital Assets.'' In the early stages, the Project Risk Assessment is based upon a qualitative analysis for each risk's probability and consequence. In order to clearly prioritize the work to resolve the technical issues identified in the Technology Roadmap, the issues must be cross- referenced to the project's Risk Assessment. This will enable the project to get the best value for the cost to mitigate the risks.

Bonnema, B.E.

2002-01-16T23:59:59.000Z

39

Technology Roadmap Research Program for the Steel Industry  

SciTech Connect

The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

Joseph R. Vehec

2010-12-30T23:59:59.000Z

40

EM Engineering & Technology Roadmap and Major Technology Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLC proprietary FBSR technology (currently under construction for treatment of sodium bearing waste in Idaho) to process early LAW and future WTP recycle streams and to...

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors  

Science Conference Proceedings (OSTI)

Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

Holcomb, David Eugene [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates; Miller, Don W. [Ohio State University

2009-01-01T23:59:59.000Z

42

'Mini'-Roadmapping - Ensuring Timely Sites' Cleanup/Closure by Resolving Science & Technology Issues  

Science Conference Proceedings (OSTI)

Roadmapping is a powerful tool to manage technical risks and opportunities associated with complex problems. Roadmapping identifies technical capabilities required for both project- and program-level efforts and provides the basis for plans that ensure the necessary enabling activities will be done when needed. Roadmapping reveals where to focus further development of the path forward by evaluating uncertainties for levels of complexity, impacts, and/or the potential for large payback. Roadmaps can be customized to the application, a ''graded approach'' if you will. Some roadmaps are less detailed. We have called these less detailed, top-level roadmaps ''mini-roadmaps''. These mini roadmaps are created to tie the needed enablers (e.g., technologies, decisions, etc.) to the functions. If it is found during the mini-roadmapping that areas of significant risk exist, then those can be roadmapped further to a lower level of detail. Otherwise, the mini-roadmap may be sufficient to manage the project/program risk. Applying a graded approach to the roadmapping can help keep the costs down. Experience has indicated that it is best to do mini-roadmapping first and then evaluate the risky areas to determine whether to further evaluate those areas. Roadmapping can be especially useful for programs/projects that have participants from multiple sites, programs, or other entities which are involved. Increased synergy, better communications, and increased cooperation are the results from roadmapping a program/project with these conditions.

Luke, D.E.; Dixon, B.W.; Murphy, J.A.

2003-01-14T23:59:59.000Z

43

Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors  

SciTech Connect

Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

Holcomb, David Eugene [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates; Miller, Don W. [Ohio State University

2009-01-01T23:59:59.000Z

44

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles | Open  

Open Energy Info (EERE)

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Agency/Company /Organization: International Energy Agency Focus Area: Vehicles Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf The primary role of this EV/PHEV Roadmap is to help establish a vision for technology deployment; set approximate, feasible targets; and identify steps required to get there. It also outlines the role for different stakeholders and how they can work together to reach common objectives, and the role for government policy to support the process. References

45

A National Roadmap for Vadose Zone Science and Technology  

Science Conference Proceedings (OSTI)

This roadmap is a means of achieving, to the best of our current knowledge, a reasonable scientific understanding of how contaminants of all forms move in the vadose geological environments. This understanding is needed to reduce the present uncertainties in predicting contaminant movement, which in turn will reduce the uncertainties in remediation decisions.

Kowall, Stephen Jacob

2001-08-01T23:59:59.000Z

46

'Mini'-Roadmapping - Ensuring Timely Sites' Cleanup / Closure by Resolving Science and Technology Issues  

Science Conference Proceedings (OSTI)

Roadmapping is a powerful tool to manage technical risks and opportunities associated with complex problems. Roadmapping identifies technical capabilities required for both project- and program-level efforts and provides the basis for plans that ensure the necessary enabling activities will be done when needed. Roadmapping reveals where to focus further development of the path forward by evaluating uncertainties for levels of complexity, impacts, and/or the potential for large payback. Roadmaps can be customized to the application, a graded approach if you will. Some roadmaps are less detailed. We have called these less detailed, top-level roadmaps mini-roadmaps. These miniroadmaps are created to tie the needed enablers (e.g., technologies, decisions, etc.) to the functions. If it is found during the mini-roadmapping that areas of significant risk exist, then those can be roadmapped further to a lower level of detail. Otherwise, the mini-roadmap may be sufficient to manage the project / program risk. Applying a graded approach to the roadmapping can help keep the costs down. Experience has indicated that it is best to do mini-roadmapping first and then evaluate the risky areas to determine whether to further evaluate those areas. Roadmapping can be especially useful for programs / projects that have participants from multiple sites, programs, or other entities which are involved. Increased synergy, better communications, and increased cooperation are the results from roadmapping a program / project with these conditions. And, as with any trip, the earlier you use a roadmap, the more confidence you will have that you will arrive at your destination with few, if any, problems. The longer the trip or complicated the route, the sooner the map is needed. This analogy holds true for using roadmapping for laying out program / project baselines and any alternative (contingency) plans. The mini-roadmapping process has been applied to past projects like the hydrogen gas generation roadmap and the subsurface contaminant focus area (SCFA), and its basic form is being applied in the formulation of the 2012 Plan at the Idaho National Engineering and Environmental Laboratory (INEEL). There are also plans to apply this process in the near future for other projects/programs.

Dale Luke; James Murphy

2003-02-01T23:59:59.000Z

47

Hydrogen Production Roadmap: Technology Pathways to the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

technology without additional DOE resources. This technology may be applicable to LNG with minimal additional development. Barriers discussed herein remain for industry to...

48

Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap  

SciTech Connect

Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

Holcomb, David Eugene [ORNL] [ORNL; Flanagan, George F [ORNL] [ORNL; Mays, Gary T [ORNL] [ORNL; Pointer, William David [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Yoder Jr, Graydon L [ORNL] [ORNL

2013-11-01T23:59:59.000Z

49

Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology  

DOE Green Energy (OSTI)

Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop.

Price, H.; Kearney, D.

1999-01-31T23:59:59.000Z

50

Roadmapping or development of future investments in environmental science and technology  

SciTech Connect

This paper will summarize efforts in roadmapping SCFA technical targets, which could be used for selection of future projects. The timely lessons learned and insights will be valuable to other programs desiring to roadmap large amounts of workscope, but unsure how to successfully complete it, by adequately defining a strategy to develop alternatives and core technologies to ensure needed environmental technologies are available and allow delivery of viable alternatives. In early FY02, Los Alamos National Laboratory's Environmental Science and Waste Technology Program Office was working jointly with Idaho National Environmental Engineering Laboratory to define and develop science and technology mini-roadmaps. We were defining and developing these mini-roadmaps to provide direction and guidance for DOE's Environmental Management's (DOE-EM) Subsurface Contaminants Focus Area (SCFA) in their development of target technologies. DOE EM's Strategic Plan for Science and Technology provides guidance for meeting science and technology needs with a view of the desired future and the long-term strategy to attain it. Program and technology mini-roadmapping were to be used to establish priorities, set program and project direction, and identify the high-priority science and technology need areas according to this document. In the past, EM science and technology needs collection is achieved through the DOE Site Technology Coordination Groups (STCG) across the complex. A future system for needs collection has not been defined. However, there is a need for gap analyses and a technical approach for the prioritization of these needs for DOE-EM to be strategic and successful in their technology research, development, demonstration, and deployments. To define the R&D projects needed to solve particular problems and select the project with the largest potential payoff will require analysis for project selection. Mini-roadmaps could be used for setting goals and priorities for future program planning and development of future investments in environmental science and technology, which would reduce risk by delivering additional data and technologies with possible incremental improvement to baselines.

Wilburn, D. (Dianne)

2002-01-01T23:59:59.000Z

51

Sitraer 7 (2008) LXIV-LXXIV TECHNOLOGY ROADMAP FOR THE FUTURE AIR TRANSPORT SYSTEM  

E-Print Network (OSTI)

Sitraer 7 (2008) LXIV- LXXIV LXIV TECHNOLOGY ROADMAP FOR THE FUTURE AIR TRANSPORT SYSTEM BEING and the operation of aircraft within a future air transportation system achieving these objectives. The conclusion Universität Berlin Department of Aeronautics and Astronautics Chair of Flight Guidance and Air Transportation

Berlin,Technische Universität

52

Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program  

SciTech Connect

A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology today, promising emerging technologies and references for further reading.

Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

2005-10-03T23:59:59.000Z

53

Pre-Decisional Sodium Bearing Waste Technology Development Roadmap FY-01 Update  

SciTech Connect

This report provides an update to the Sodium Bearing Waste (SBW) Technology Development Roadmap generated a year ago. It outlines progress made to date and near-term plans for the technology development work necessary to support processing SBW. In addition, it serves as a transition document to the Risk Management Plan (RMP) required by the Project per DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Technical uncertainties have been identified as design basis elements (DBEs) and captured in a technical baseline database. As the risks are discovered, assessed, and mitigated, the status of the DBEs in the database will be updated and tracked to closure.

Mc Dannel, Gary Eidson

2001-09-01T23:59:59.000Z

54

LAW ENFORCEMENT TECHNOLOGY ROADMAP: LESSONS TO DATE FROM THE NORTHWEST TECHNOLOGY DESK AND THE NORTHWEST FADE PILOTS  

SciTech Connect

The goal of this report is to provide insight into the information technology needs of law enforcement based on first hand observations as an embedded and active participant over the course of two plus years. This report is intended as a preliminary roadmap for technology and project investment that will benefit the entire law enforcement community nationwide. Some recommendations are immediate and have more of an engineering flavor, while others are longer term and will require research and development to solve.

West, Curtis L.; Kreyling, Sean J.

2011-04-01T23:59:59.000Z

55

Smart Grid Roadmap Guidebook  

Science Conference Proceedings (OSTI)

This technical report summarizes the results of the Smart Grid roadmaps developed by the Electric Power Research Institute (EPRI) from 2007 to 2011. The report's major themes are the lessons learned and the methodologies used to develop the roadmaps. Also included are a summary of the roadmaps, key points from follow-up interviews, distilled technology recommendations from the roadmaps, the purpose and benefit of developing a roadmap, the role of standards, and an updated version of the Communications Te...

2012-07-31T23:59:59.000Z

56

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

DOE Green Energy (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

57

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

DOE Green Energy (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

58

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

59

Roadmapping Workshop: Measurement of Security ...  

Science Conference Proceedings (OSTI)

Roadmapping Workshop: Measurement of Security Technology Performance Impacts for Industrial Control System. Purpose: ...

2013-10-31T23:59:59.000Z

60

A roadmap for the development ATW technology: Systems scenarios and integration  

SciTech Connect

As requested by the US Congress, a roadmap has been established for development of ATW Technology. The roadmap defines a reference system along with preferred technologies which require further development to reduce technical risk, associated deployment scenarios, and a detailed plan of necessary R and D to support implementation of this technology. Also, the potential for international collaboration is discussed which has the potential to reduce the cost of the program. In addition, institutional issues are described that must be addressed in order to successfully pursue this technology, and the benefits resulting from full implementation are discussed. This report uses as its reference a fast spectrum liquid metal cooled system. Although Lead-Bismuth Eutectic is the preferred option, sodium coolant is chosen as the reference (backup) technology because it represents the lowest technical risk and an excellent basis for estimating the life cycle cost of the systems exists in the work carried out under DOE's ALMR (PRISM) program. Metal fuel and associated pyrochemical treatment is assumed. Similarly a linear accelerator has been adopted as the reference. A reference ATW plant was established to ensure consistent discussion of technical and life cycle cost issues. Over 60 years of operation, the reference ATW plant would process about 10,000 tn of spent nuclear reactor fuel. This is in comparison to the current inventory of about 40,000 tn of spent fuel and the projected inventory of about 86,000 tn of spent fuel if all currently licensed nuclear power plants run until their license expire. The reference ATW plant was used together with an assumed scenario of no new nuclear plant orders in the US to generate the deployment scenario for ATW. In the R and D roadmap, key technical issues are identified and timescales proposed for the resolution of these issues. For the accelerator the main issue is the achievement of the necessary reliability in operation. To avoid frequent thermal transients and maintain grid stability the accelerator must reach levels of performance never previously required. For the target material the main technical choice is between solid or liquid targets. This issue is interlocked with the choice of coolant. Lead-Bismuth eutectic is potentially a superior choice for both these missions but represents a path with greater technical risk. For the blanket metal fuel has been selected. The reference method of processing of spent fuel from LWRs to provide the input material for ATW is chosen to be aqueous because of the large quantity of uranium that needs to be brought to a state that it can be treated as Class C waste. Again this is the path of least technical risk although the pyrometallurgical option will be pursued as an alternative. Processing of the fuel after irradiation in ATW will be undertaken using pyrometallurgical methods. The transmutation of Tc and I represents a special research issue and various options will be pursued to achieve these goals. Finally the system as a whole will need optimization from a reactivity and power control perspective. Varying accelerator power is feasible but can lead to overdesign of the accelerator; other options are movable control rods, burnable poison rods, and adaptations of the fuel management strategy.

Hill, D.; Van Tuyle, G.; Beller, D. [and others

1999-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Global Superior Energy Performance Partnership to someone by E-mail Share Building Technologies Office: Global Superior Energy Performance Partnership on Facebook Tweet about Building Technologies Office: Global Superior Energy Performance Partnership on Twitter Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Google Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Delicious Rank Building Technologies Office: Global Superior Energy Performance Partnership on Digg Find More places to share Building Technologies Office: Global Superior Energy Performance Partnership on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

62

2006 IEP Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

EXISTING PLANTS PROGRAM: EXISTING PLANTS PROGRAM: ENERGY - WATER R&D NOVEMBER 2009 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory Technology Roadmap & Program Plan Energy-Water Roadmap and Program Plan i November 2009 ENERGY-WATER RESEARCH AND DEVELOPMENT TECHNOLOGY ROADMAP AND PROGRAM PLAN TABLE OF CONTENTS I. Overview ........................................................................................................................................... 1 II. Water and Energy Availability ......................................................................................................... 6 A. Limited Supply of Water ................................................................................................................ 6

63

Global Technology Regulation and Potentially  

E-Print Network (OSTI)

In 2000 Bill Joy proposed that the best way to prevent technological apocalypse was to "relinquish " emerging bio-, info- and nanotechnologies. His essay introduced many watchdog groups to the dangers that futurists had been warning of for decades. One such group, ETC, has called for a moratorium on all nanotechnological research until all safety issues can be investigated and social impacts ameliorated. In this essay I discuss the differences and similarities of regulating bio- and nanotechnological innovation to the efforts to regulate nuclear and biological weapons of mass destruction. I then suggest the creation of a global technology regulatory regime to ensure the safe and equitable diffusion of genetic, molecular and information technologies, and point out the principal political obstacles to implementing such a regime. Global Technology Regulation James J. Hughes 2

Fritz Allhoff; Patrick Lin; James Moor; John Weckert; J. Hughes Ph. D

2007-01-01T23:59:59.000Z

64

Accord Global Environment Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Accord Global Environment Technology Co Ltd Accord Global Environment Technology Co Ltd Jump to: navigation, search Name Accord Global Environment Technology Co Ltd Place Beijing, China Zip 100022 Sector Services Product Accord Global Environmental Technology Co Ltd (AGET) is an independent consultancy providing a complete package of CDM consulting services,and specific technical assistance at different stages of CDM project development. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger  

Science Conference Proceedings (OSTI)

This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

2012-09-01T23:59:59.000Z

66

Program on Technology Innovation: Electric Efficiency Through Water Supply Technologies-- A Roadmap  

Science Conference Proceedings (OSTI)

Electricity consumption associated with sourcing, treating, and transporting water is expected to increase significantly in the future as a result of a growing population and an increasing need for alternative water supplies. Furthermore, there is a concern that climate change may necessitate an increase in irrigation in some areas of the United States. Consequently, there is a critical need for technologies that can reduce the electricity consumption associated with water supply. This report identifies ...

2009-06-18T23:59:59.000Z

67

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750800C Reactor Outlet Temperature  

Science Conference Proceedings (OSTI)

This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750800C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

John Collins

2009-08-01T23:59:59.000Z

68

Low-Carbon Energy: A Roadmap | Open Energy Information  

Open Energy Info (EERE)

Low-Carbon Energy: A Roadmap Low-Carbon Energy: A Roadmap Jump to: navigation, search Tool Summary Name: Low-Carbon Energy: A Roadmap Agency/Company /Organization: World Watch Institute Sector: Energy Topics: Implementation, Low emission development planning, Pathways analysis Resource Type: Publications Website: www.worldwatch.org/node/7069#summary Cost: Free, Paid Low-Carbon Energy: A Roadmap Screenshot References: Low-Carbon Energy: A Roadmap[1] Logo: Low-Carbon Energy: A Roadmap Summary "Technologies available today, and those expected to become competitive over the next decade, will permit a rapid decarbonization of the global energy economy. New renewable energy technologies, combined with a broad suite of energy-efficiency advances, will allow global energy needs to be

69

2006 IEP Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Products for Clean Power MAY 2006 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory IEP Roadmap and Program Plan i May 2006...

70

ICCT Roadmap Model | Open Energy Information  

Open Energy Info (EERE)

ICCT Roadmap Model ICCT Roadmap Model Jump to: navigation, search Tool Summary Name: ICCT Roadmap Model Agency/Company /Organization: International Council on Clean Transportation (ICCT) Sector: Climate, Energy User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.theicct.org/global-transportation-roadmap-model Cost: Free Related Tools Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Threshold 21 Model ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS An Excel-based modeling tool intended to aid policy makers with identifying trends, evaluating emissions and energy efficiency with respect to various policy options, and generate strategies to reduce greenhouse gas emissions

71

The technology roadmap for plant/crop-based renewable resources 2020  

DOE Green Energy (OSTI)

The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hit the vision target of a fivefold increase in renewable resource use by 2020.

McLaren, J.

1999-02-22T23:59:59.000Z

72

Roadmap Integration Team Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Presentation NP03-00 Slide 1 Generation IV Technology Roadmap NERAC Meeting: Washington, D.C. September 30, 2002 Roadmap Integration Team Presentation NP03-00 Slide 2 NERAC Meeting September 30, 2002 Generation IV Technology Roadmap * Identifies systems deployable by 2030 or earlier * Specifies six systems that offer significant advances towards: - Sustainability - Economics - Safety and reliability - Proliferation resistance and physical protection * Summarizes R&D activities and priorities for the systems * Lays the foundation for Generation IV R&D program plans Roadmap Integration Team Presentation NP03-00 Slide 3 NERAC Meeting September 30, 2002 The Technical Roadmap Report * Discusses the benefits, goals and challenges, and the importance of the fuel cycle * Describes evaluation and selection process

73

Solar Photovoltaic Hydrogen: The Technologies and Their Place in Our Roadmaps and Energy Economics  

DOE Green Energy (OSTI)

Future solar photovoltaics-hydrogen systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences/buildings, as well as solar parks, are presented. The economics, feasibility, and potential of these approaches are evaluated in terms of roadmap predictions on photovoltaic and hydrogen pathways-and whether solar-hydrogen fit in these strategies and timeframes. Issues with the ''hydrogen future'' are considered, and alternatives to this hydrogen future are examined.

Kazmerski, L. L.; Broussard, K.

2004-08-01T23:59:59.000Z

74

Roadmap Integration Team Presentation Generation IV Roadmap Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Presentation Generation IV Roadmap Overview NERAC Meeting: Washington, D.C. April 15, 2002 Roadmap Integration Team Presentation Definition - Generation IV Generation IV is: "...the next generation of nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide a competitively priced and reliable supply of energy to the country where such systems are deployed, while addressing nuclear safety, waste, proliferation and public perception concerns." Roadmap Integration Team Presentation Objective - Gen IV Technology Roadmap The Technology Roadmap: * Describes systems deployable by 2030 or earlier * Determines which systems offer significant advances towards:

75

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward  

SciTech Connect

This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

John Collins

2009-01-01T23:59:59.000Z

76

Using semantic technologies in digital libraries: a roadmap to quality evaluation  

Science Conference Proceedings (OSTI)

In digital libraries semantic techniques are often deployed to reduce the expensive manual overhead for indexing documents, maintaining metadata, or caching for future search. However, using such techniques may cause a decrease in a collection's quality ... Keywords: digital libraries, information quality, semantic technologies

Sascha Tnnies; Wolf-Tilo Balke

2009-09-01T23:59:59.000Z

77

Roadmap for Research, Development, and Demonstration of Instrumentation, Controls, and Human-Machine Interface Technologies  

SciTech Connect

Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by a number of concerns. Although international implementation of evolutionary nuclear power plants and the progression toward new plants in the United States have spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, design and development programs by the U.S. Department of Energy (DOE) for advanced reactor concepts, such as the Generation IV Program and Next Generation Nuclear Plant (NGNP), introduce different plant conditions and unique plant configurations that increase the need for enhanced ICHMI capabilities to fully achieve programmatic goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, there are challenges that need to be addressed to enable the nuclear power industry to effectively and efficiently complete the transition to safe and comprehensive use of digital technology.

Miller, Don W.; Arndt, Steven A.; Bond, Leonard J.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

2008-06-01T23:59:59.000Z

78

Duke Energy's Transmission Roadmap Initiative  

Science Conference Proceedings (OSTI)

Duke Energy's Transmission Roadmap Initiative advances a vision for development of a power delivery communications and automation infrastructure. The initiative describes performance of a communications upgrade to substations, implementation of select technologies and applications, and integration of enterprise applications, databases, and systems. This report provides a comprehensive view of Duke's Transmission Roadmap Initiative, with a complete technology assessment, infrastructure overview, and discu...

2009-09-18T23:59:59.000Z

79

Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

Ian McKirdy

2011-07-01T23:59:59.000Z

80

National Hydrogen Energy Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap...

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.  

Science Conference Proceedings (OSTI)

In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

1999-08-12T23:59:59.000Z

82

U.S. Department of Energy Roadmap on Instrumentation, Controls, and Human-Machine Interface Technologies in Current and Future Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) recently sponsored the creation of a roadmap for instrumentation, controls, and human-machine interface (ICHMI) technology development. The roadmap represents the collective efforts of a group of subject matter experts from the DOE national laboratories, academia, vendors, the U.S. Nuclear Regulatory Commission (NRC), and utilities. It is intended to provide the underpinnings to the government sponsored ICHMI research, development, and demonstration (RD&D) performed in the United States for the next several years. A distinguishing feature of this roadmapping effort is that it is not limited to a technology progression plan but includes a detailed rationale, aimed at the nonspecialist, for the existence of a focused ICHMI RD&D program. Eight specific technology areas were identified for focused RD&D as follows: (1) sensors and electronics for harsh environments,(2) uncertainty characterization for diagnostics/prognostics applications, (3) quantification of software quality for high-integrity digital applications, (4) intelligent controls for nearly autonomous operation of advanced nuclear plants, (5) plant network architecture, (6) intelligent aiding technology for operational support, (7) human system interaction models and analysis tools, and (8) licensing and regulatory challenges and solutions.

Holcomb, David Eugene [ORNL

2007-01-01T23:59:59.000Z

83

Recent and Current Research & Roadmapping Activities: Overview (Presentation)  

DOE Green Energy (OSTI)

December 2008 DOE Algal Biofuels Technology Roadmap Workshop plenary presentation: summarizes past and current algal biofuels activity, status of research funding, and recent roadmapping activities.

Darzins, A.

2008-09-01T23:59:59.000Z

84

AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking  

Science Conference Proceedings (OSTI)

An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

Wei-Kao Lu

2002-09-15T23:59:59.000Z

85

PNNL Global Energy Technology Strategy Program | Open Energy Information  

Open Energy Info (EERE)

Technology Strategy Program Technology Strategy Program Jump to: navigation, search Logo: Global Energy Technology Strategy Program Name Global Energy Technology Strategy Program Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://www.pnl.gov/gtsp/ References Global Energy Technology Strategy Program [1] "Since its inception in 1998, the Global Energy Technology Strategy Program (GTSP) has been assessing the important roles that technology can play in effectively managing the long-term risks of climate change. This involves an integrated approach to fully exploring all aspects of climate change - including scientific, economic, regulatory, and social impacts - and then aligning new or existing technologies to mitigate negative consequences.[1]

86

National Hydrogen Energy Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen...

87

Global Nuclear Security Technology Division (GNSTD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Nonproliferation Technology Nuclear Material Detection & Characterization Nuclear Security Advanced Technologies Safeguards & Security Technology Threat Reduction...

88

Building Technologies Office: Low-Global Warming Potential Refrigerants  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Global Warming Low-Global Warming Potential Refrigerants Research Project to someone by E-mail Share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Facebook Tweet about Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Twitter Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Google Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Delicious Rank Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Digg Find More places to share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on AddThis.com... About Take Action to Save Energy

89

Building America Roadmap to High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Name or Ancillary Text Program Name or Ancillary Text eere.energy.gov Building America Technical Update Meeting - April 29, 2013 Building America Roadmap to High Performance Homes Eric Werling Building America Coordinator Denver, CO April 29, 2013 Building Technology Office U.S. Department of Energy EERE's National Mission Mission: To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 2 | Building Technologies Office eere.energy.gov Why It Matters to America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation

90

Technology Transfer: Triggering New Global Markets and Job Growth |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer: Triggering New Global Markets and Job Growth Technology Transfer: Triggering New Global Markets and Job Growth Technology Transfer: Triggering New Global Markets and Job Growth September 20, 2011 - 11:33am Addthis The Global Positioning System (GPS) was initially a government technology developed to guide nuclear missiles, and is one of the many examples of the economic potential of successful technology transfer -- the now worldwide location technologies market is projected to grow to $75 billion by 2013. The Global Positioning System (GPS) was initially a government technology developed to guide nuclear missiles, and is one of the many examples of the economic potential of successful technology transfer -- the now worldwide location technologies market is projected to grow to $75 billion by 2013.

91

PNNL Global Energy Technology Strategy Program | Open Energy Information  

Open Energy Info (EERE)

Technology Strategy Program Technology Strategy Program (Redirected from Global Energy Technology Strategy Program) Jump to: navigation, search Logo: Global Energy Technology Strategy Program Name Global Energy Technology Strategy Program Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://www.pnl.gov/gtsp/ References Global Energy Technology Strategy Program [1] "Since its inception in 1998, the Global Energy Technology Strategy Program (GTSP) has been assessing the important roles that technology can play in effectively managing the long-term risks of climate change. This involves an integrated approach to fully exploring all aspects of climate change - including scientific, economic, regulatory, and social impacts - and then aligning new or existing technologies to mitigate negative consequences.[1]

92

R&D100 Winners * Impacts on Global Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D100 Winners * Impacts on Global Technology R&D100 Winners * Impacts on Global Technology OUTSIDE FRONT COVER 2 SANDIA NATIONAL LABOR ATORIES 3 R&D100 Winners * Impacts on Global Technology For further information, contact: Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 ABOUT THE COVER: Representative images from the R&D100- winning technologies in this brochure, all with their roots in Sandia Laboratory Directed Research and Development (LDRD). 4 SANDIA NATIONAL LABOR ATORIES 5 R&D100 Winners * Impacts on Global Technology Contents More-sophisticated Silicon Br ains

93

The DOE Vadose Zone Science and Technology Roadmap: A National Program to Address Characeterization, Monitoring and Simulation of Subsurface Contaminant Fate and Transport  

Science Conference Proceedings (OSTI)

The vadose zone comprises the region lying between the earths surface and the top of the regional seasonal aquifer. Until recently contamination in the vadose zone was believed to remain relatively immobile. Thus, little attention was paid to understanding the nature of the vadose zone or the potential pathways for contaminants to migrate through it to the water table or other accessible environments. However, recent discoveries of contaminants migrating considerable distances through the vadose zone at several Department of Energy (DOE) sites have changed many assumptions both about the nature and function of the vadose zone and the importance we place on understanding this region. As a result of several vadose zone surprises, DOE Environmental Management (EM) tasked the Idaho National Engineering and Environmental Laboratory (INEEL) to lead the development of a vadose zone science and technology roadmap. The roadmap is focused on identifying research spanning the next 25 years necessary to be able to better predict the fate and transport of contaminants in the vadose zone. This in turn will provide the basis for reducing scientific uncertainty in environmental remediation and, especially, vadose zone related long-term stewardship decisions across the DOE complex. Vadose zone issues are now recognized as a national problem affecting other federal agencies as well as state and municipal sites with similar problems. Over the next few decades, dramatic and fundamental advances in computing, communication, electronics and micro-engineered systems will transform our understanding of many aspects of the scientific and technical challenges we face today. The roadmap will serve to develop a common perspective on possible future science and technology needs in an effort to help make better R&D investment decisions.

Kowall, Stephen Jacob

2001-02-01T23:59:59.000Z

94

Video Highlights Development of Lab Technologies to Combat Global...  

NLE Websites -- All DOE Office Websites (Extended Search)

Video Highlights Development of Lab Technologies to Combat Global Poverty See video Click here to view this video Date: February 5, 2013 Presenter(s): Ashok Gadgil, Shashi...

95

Developing and Transferring Technologies for a Global Low-Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Developing and Transferring Technologies for a Global Low-Carbon Energy System Speaker(s):...

96

Vision and Roadmap Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vision and Roadmap Documents Vision and Roadmap Documents Vision and Roadmap Documents November 1, 2013 - 11:40am Addthis The combined heat and power (CHP) federal-state partnership began with the National CHP Roadmap. In response to a challenge by the CHP industry, DOE established an active program of CHP research, development, and deployment. The creation of various technology roadmaps ensued. Recent vision documents describe a bright future for CHP technologies that have the power to help the nation meet its energy and climate goals. Accelerating Combined Heat & Power Deployment, 28 pp, Aug. 2011 Annual Workshop Results for the National CHP Roadmap Baltimore, 5 pp, June 2001 and Breakout Session Summary Reports (One Year Later), 3 pp, Oct. 2001 Boston, 2 pp, Oct. 2002 Chicago, 11 pp, Sept. 2003

97

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

DOE Green Energy (OSTI)

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750C and provides electricity and/or process heat at 700C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

98

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Performance Partnership Global Superior Energy Performance Partnership Graphic of Global Superior Energy Performance working groups, including energy management led by the United States, power led by Japan, combined heat and power led by Finland, steel led by Japan, cool roofs led by the United states, and cement led by Japan. GSEP, a multi-country effort to create and coordinate nationally accredited energy performance certification programs, comprises a number of working groups. Credit: DOE The U.S. Department of Energy (DOE) supports the Superior Energy Performance (SEP) program, which provides industrial facilities and commercial buildings a framework for achieving continual improvement in energy efficiency while maintaining market competitiveness. SEP aims to provide a transparent, globally accepted system for energy management and continuous energy performance improvement.

99

Operational Space Technology for Global Vegetation Assessment  

Science Conference Proceedings (OSTI)

The main goal of global agriculture and the grain sector is to feed 6 billion people. Frequent droughts causing grain shortages, economic disturbances, famine, and losses of life limit the ability to fulfill this goal. To mitigate drought ...

Felix N. Kogan

2001-09-01T23:59:59.000Z

100

A Global Portfolio Strategy for Climate Change Technology Development  

NLE Websites -- All DOE Office Websites (Extended Search)

A Global Portfolio Strategy for Climate Change Technology Development A Global Portfolio Strategy for Climate Change Technology Development Speaker(s): Geoffrey J. Blanford Date: July 21, 2005 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Afzal Siddiqui John Stoops In this study we propose a novel formulation of a decision problem in R&D strategy. The problem is motivated by and applied to the context of technologies relevant to global climate change, but is characterized in general by an aggregate R&D decision-maker with a social welfare objective, technology diffusion markets subject to externalities in which private costs are minimized, and uncertainty in both technological and environmental factors. A technology strategy is defined as the allocation of R&D investment across several broad research programs, and the

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

From Roadmaps to Implementation Workshop | Open Energy Information  

Open Energy Info (EERE)

From Roadmaps to Implementation Workshop From Roadmaps to Implementation Workshop Jump to: navigation, search Tool Summary LAUNCH TOOL Name: From Roadmaps to Implementation Workshop Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Market analysis, Technology characterizations Resource Type: Workshop, Lessons learned/best practices Website: www.iea.org/work/workshopdetail.asp?WS_ID=433 References: IEA Workshop proceedings [1] "This workshop examined the tools that roadmaps provide and explored the necessary steps to achieve implementation. It built upon the Experts' Group's previous analysis of roadmaps, and approaches and strategies for enhancing international technology collaboration. The IEA wind roadmap was

102

Building Technologies Office: Global Cool Cities Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings News Building Technologies Office Announces 3 Million to Advance Building Automation Software Solutions in Small to Medium-Sized Commercial Buildings March 29,...

103

A Global Portfolio Strategy for Climate Change Technology Development  

NLE Websites -- All DOE Office Websites (Extended Search)

A Global Portfolio Strategy for Climate Change Technology Development Speaker(s): Geoffrey J. Blanford Date: July 21, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of...

104

Global Nuclear Energy Partnership Technology Development Plan  

Science Conference Proceedings (OSTI)

This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

David J. Hill

2007-07-01T23:59:59.000Z

105

Prebake Cell Technology: A Global Review  

Science Conference Proceedings (OSTI)

Alcan Aluminium developed three versions of end-to-end, side-work PB cell technologies that are still in use at various smelters and one side-by-side, point- feed...

106

Global Assessment of Hydrogen Technologies - Executive Summary  

SciTech Connect

This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. Task 4 Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. Task 5 Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. Task 6 Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

2007-12-01T23:59:59.000Z

107

Colorado/Transmission/Regulatory Roadmap | Open Energy Information  

Open Energy Info (EERE)

Roadmap Roadmap < Colorado‎ | Transmission Jump to: navigation, search Colorado Transmission Transmission Regulatory Roadmap Roadmap State Data Regulatory Overview General TOOLS Regulatory Roadmap Regulatory Wizard Best Practices Document Library NEPA Database Glossary TECHNOLOGIES Geothermal Solar Water Wind TOPICS Land Use Planning Land Access Exploration Well Field Power Plant Transmission Water Rights Environment The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations. Reading the Roadmap The flowcharts are divided into General, Federal, and State columns to allow for ease of use. To use the flowcharts, start with General Flowchart

108

Roadmap Update Workshop Summaries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Delivery Systems Energy Delivery Systems Roadmap to Secure Energy Delivery Systems - i - Roadmap Development Process hile much progress has been made, the public and private partners are keenly aware that there is more work to do with today's rapid pace of change and dynamic energy delivery systems landscape. The Energy Sector Control Systems Working Group (ESCSWG) collaborated with energy sector stakeholders to update the Roadmap in four phases:  Over-the-Horizon Analysis: On July 7, 2009, nearly 20 asset owners, government leaders, vendors, and researchers convened to examine the solid foundation of the 2006 Roadmap-the vision and goal areas-and provided recommendations to better align the framework with the wide range of complex energy delivery systems security needs the sector will need to address today and in the

109

National Algal Biofuels Technology Roadmap  

E-Print Network (OSTI)

, and hydrogen are activated with energetic sources such as microwaves to generate plasmas, direct current (DC include the hot filament [2] and many types of microwave plasma [3], which typically have *Corresponding is expected to be negligible since the diamond phase of carbon is very stable and gasification of dia- mond

110

Roadmap to the Project: DOE Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiments List Experiments List Oral Histories Records Series Descriptions Overview Documents Declassified Documents Project Events ACHRE Report Uranium Miners Resources Building Public Trust Department of Defense Report HUMAN RADIATION EXPERIMENTS: The Department of Energy Roadmap to the Story and the Records United States Department of Energy Assistant Secretary for Environment, Safety, and Health February 1995 Contents Foreword Acknowledgments List of Photographs Chapter 1. Overview of the DOE Project Introduction Background DOE Archives and Records DOE Strategy for Finding Experiment Information Information as an Engine for Democratic Government Looking Forward Chapter 2. Narratives and Records Series Descriptions Introduction DOE Predecessor Agencies and Human Radiation Experimentsation: A Headquarters Overview

111

Technological Options to Address Global Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

2K-2854 RAB 4/01 2K-2854 RAB 4/01 Hydro 8% Coal 22% Coal 22% Other 1% Gas 23% Gas 23% Coal 19% Coal 19% Gas 28% Gas 28% Fossil Fuels Will Continue as Key to World Economy 1999 data from International Energy Annual 1999 (February 2001) 2020 data from International Energy Outlook 2001 (March 2001) + 6 0 % Oil 40% Hydro 7% Other 0.7% Nuclear 7% 1999 85% Fossil Energy 382 Qbtu / yr 2020 85% Fossil Energy 607 Qbtu / yr Oil 40% Nuclear 4% 2K-2854 RAB 4/01 World Energy Demand Growing Dramatically 0 2 4 6 8 12 2000 2050 2100 0 200 400 600 800 1000 1200 1400 Population (Billions) Energy Consumption (Qbtu / yr) Population Projections: United Nations "Long-Range World Population Projections: Based on the 1998 Revision" Energy Projections: "Global Energy Perspectives" ITASA / WEC World Population Population of

112

Hydrogen Production Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Production Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

113

New electric technologies to reduce global warming impacts  

SciTech Connect

Advanced electric technologies hold significant potential to reduce global warming impact through reduction of primary fuel needed to power end-use applications. These reductions can occur in two forms: (1) reduced kilowatt-hour usage and power plant emissions through efficiency improvements and technological enhancements of existing electrically-driven applications; (2) the development of new electric technologies to replace traditional fossil-fuel driven applications which can result in less overall primary energy consumption and lower overall emissions. Numerous new electric technologies are presently being developed by the Electric Power Research Institute. The technologies reviewed in this paper include: Microwave Fabric Dryer, Advanced Heat Pumps, Heat Pump Water Heater, Infrared Sand Reclaimer, Freeze Concentration, Membrane Water Recovery, Microwave Petrochemical Production, Infrared Drying, and Electric Vehicles. Full commercialization of these technologies can result in significant energy savings and CO[sub 2] reductions, in addition to improving the competitiveness of businesses using these technologies.

Courtright, H.A. (Electric Power Research Inst., Palo Alto, CA (United States))

1994-09-01T23:59:59.000Z

114

Education: The Effort Is Global - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Education: The Effort Is Global About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

115

Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy  

Open Energy Info (EERE)

Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Haiti Caribbean References CARICOM Sustainable Energy Roadmap and Strategy [1]

116

Hydrogen Delivery Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivery Delivery Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; United States Council for Automotive Research (USCAR), representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BPAmerica, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose

117

Cleveland Transportation Electrification Roadmap  

Science Conference Proceedings (OSTI)

This document defines a strategy, called a roadmap, to be used by Cleveland area stakeholders (business, government, universities, planning and economic development organizations, environmental advocates, and utilities) to shift away from fossil fuel toward electricity as the fuel of choice for vehicular transportation. It provides recommendations in the form of action plans to move the region forward to capture the value made clear in the companion to this report, Regional Economic Impacts of Electric D...

2009-07-30T23:59:59.000Z

118

SmartGrid Consortium: Smart Grid Roadmap for the State of New York |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SmartGrid Consortium: Smart Grid Roadmap for the State of New York SmartGrid Consortium: Smart Grid Roadmap for the State of New York SmartGrid Consortium: Smart Grid Roadmap for the State of New York Throughout its history, New York State has been a leader in the world of energy generation, distribution, discovery and innovation. With the rapidly evolving industry and the escalating strains being placed on the infrastructure through new technologies and ncreased consumer demands NY is in a position to be a pioneer in modernizing the electric grid. New York is the proud home of key industrial smart grid players including GE and IBM,and it represents an epicenter of major energy research within academia, industry and government. As a world leader in global finance and media, NY is strategically positioned to finance the smart grid

119

NTDG Roadmap to NERAC.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Near-Term Deployment Roadmap Near-Term Deployment Roadmap Near-Term Deployment Roadmap Presented to the Nuclear Energy Research Advisory Committee Tom Miller Office of Technology and International Cooperation November 5, 2001 Office of Nuclear Energy, Science and Technology Oct02_01 NTDG Status to GRNS (2) Near Term Deployment Group Near Term Deployment Group 6 Mission - Identify the technical, institutional and regulatory gaps to the near term deployment of new nuclear plants and recommend actions that should be taken by DOE. 6 Participants - multi-disciplined nuclear industry group * Nuclear Utilities - Duke, Southern Nuclear, Exelon * Reactor Vendors - Westinghouse, General Electric, General Atomics * National Laboratories - ANL, INEEL * Academia - Penn State * Industry - EPRI * NERAC 6 Oversight by NERAC GRNS members

120

GTI online - matching gas technologies with global gas markets  

SciTech Connect

The International Centre for Gas Technology Information (ICGTI) is a technology information centre of the International Energy Agency (IEA). Its members account for more than half the world`s natural gas production and consumption. ICGTI has established a web site, GTI Online (http://www.icgti.org). GTI Online is designed to cover all aspects of the gas industry from production to end-use as well as supporting technologies, including market assessment, national energy policies, environmental information and computing and modeling techniques. It si designed to use existing information sources whenever possible, so as not to duplicate public and/or commercial efforts. It is intended to fill the gap in providing useful international information to both the US and global market.

Lang, M., Manor, D.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Photovoltaic Industry Roadmap | Open Energy Information  

Open Energy Info (EERE)

U.S. Photovoltaic Industry Roadmap U.S. Photovoltaic Industry Roadmap Jump to: navigation, search Tool Summary Name: U.S. Photovoltaic Industry Roadmap Agency/Company /Organization: United States Photovoltaics Industry Sector: Energy Focus Area: Renewable Energy, Solar Topics: Implementation, Market analysis, Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/docs/gen/fy03/30150.pdf References: U.S. Photovoltaic Industry Roadmap[1] Overview "To meet this challenge, we - the U.S.-based PV industry - have developed this roadmap as a guide for building our domestic industry, ensuring U.S. technology ownership, and implementing a sound commercialization strategy that will yield significant benefits at minimal cost. Putting the roadmap into action will call for reasonable and

122

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

123

roadmap | OpenEI Community  

Open Energy Info (EERE)

roadmap roadmap Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 August, 2013 - 13:18 Geothermal Regulatory Roadmap featured on NREL Now geothermal NREL OpenEI regulatory roadmap Navigating the complex system of federal and state regulations to secure project approvals is one of the biggest hurdles geothermal power developers face-but not if they've got a map outlining every twist and turn. Alevine's picture Submitted by Alevine(5) Member 29 July, 2013 - 14:46 Texas Legal Review BHFS flora and fauna leasing Legal review permitting roadmap Texas The NREL roadmap team recently met with our legal team Brownstein Hyatt Farber and Schreck (www.bhfs.com) for a review of the Texas portion of the Geothermal Regulatory Roadmap (GRR). BHFS provided excellent suggestions

124

Nuclear Energy Research and Development Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

125

A Roadmap for Engineering Piezoelectricity in Graphene  

NLE Websites -- All DOE Office Websites (Extended Search)

Roadmap for Roadmap for Engineering Piezoelectricity in Graphene A Roadmap for Engineering Piezoelectricity in Graphene Doping this 'Miracle Material' May Lead to New Array of Nanoscale Devices, Simulations Reveal February 23, 2012 | Tags: Carver, Chemistry, Franklin, Materials Science Linda Vu, lvu@lbl.gov, +1 510 495 2402 This illustration shows lithium atoms (red) dopped on graphene (black hexagons) and generating electricity. Graphic courtesy of Mitchell Ong, Stanford University. Some scientists refer to graphene as the "miracle material" of the 21st century. Composed of a single sheet of carbon atoms, this material is tougher than diamond, more conductive than copper, and has potential applications in a variety of technologies. Now with the help of supercomputers at the Department of Energy's

126

Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Bahamas Caribbean

127

Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Belize Central America

128

Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Montserrat

129

Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Guyana South America

130

Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Grenada Caribbean

131

Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Dominica Caribbean

132

Saint Lucia-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Saint Lucia-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Saint Lucia-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Saint-LuciaCaribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Saint Lucia

133

Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Barbados Caribbean

134

Commercialization-Analysis-&-Roadmap-  

Industrial!Heating!Ventilation!Air!Conditioning!(HVAC),!own!meltgblown!technology! http://bit.ly/KDU3P5!! Filtration(Group(Inc.((USA)(

135

Improving mine safety technology and training: establishing US global leadership  

Science Conference Proceedings (OSTI)

In 2006, the USA's record of mine safety was interrupted by fatalities that rocked the industry and caused the National Mining Association and its members to recommit to returning the US underground coal mining industry to a global mine safety leadership role. This report details a comprehensive approach to increase the odds of survival for miners in emergency situations and to create a culture of prevention of accidents. Among its 75 recommendations are a need to improve communications, mine rescue training, and escape and protection of miners. Section headings of the report are: Introduction; Review of mine emergency situations in the past 25 years: identifying and addressing the issues and complexities; Risk-based design and management; Communications technology; Escape and protection strategies; Emergency response and mine rescue procedures; Training for preparedness; Summary of recommendations; and Conclusions. 37 refs., 3 figs., 5 apps.

NONE

2006-12-15T23:59:59.000Z

136

Creating ladders out of chains : China's technological development in a world of global production  

E-Print Network (OSTI)

With the advent of economic globalization, the terms of debate over the political and social conditions necessary to foster development in the Global South have shifted. Examining technological development, one important ...

Fuller, Douglas Brian

2005-01-01T23:59:59.000Z

137

Global Talent Program Explore High technology in Japan  

E-Print Network (OSTI)

, , , , , . . , , `GE Nuclear Energy Global Outreach', , `Make, Believe', , `New Strategy, New Audience. , . . #12;20 2011 Global Talent Program 07 Nikko Cordial Securities Inc. Nikko Cordial Securities Inc. Citi

Bahk, Saewoong

138

LIGHTS: Laboratory for Information Globalization and Harmonization Technologies and Studies  

E-Print Network (OSTI)

Three important trends - unrelenting globalization, growing worldwide electronic connectivity, and increasing knowledge intensity of economic activity - are creating new opportunities for global politics, with challenging ...

Choucri, Nazli

2004-03-05T23:59:59.000Z

139

California Independent System Operator's Smart Grid Roadmap Initiative  

Science Conference Proceedings (OSTI)

With the significant opportunities and challenges facing the California Independent Service Operator (ISO) driven by California energy and environmental goals along with emerging technologies expected to prove essential in meeting these goals, the ISO engaged the Electric Power Research Institute (EPRI) to provide input and guidance in developing a roadmap for smart grid-related technology investments. To develop the roadmap, the EPRI team used the EPRI IntelliGrid methodology through use cases to discov...

2011-06-20T23:59:59.000Z

140

Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research  

SciTech Connect

This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

Not Available

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Canadian Fuel Cell Commercialization Roadmap Update: Progress of Canada's  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Canadian Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Focus Area: Hydrogen Topics: Potentials & Scenarios Website: www.chfca.ca/files/IC_FC_PDF_final.pdf Equivalent URI: cleanenergysolutions.org/content/canadian-fuel-cell-commercialization- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This roadmap update provides an overview of global hydrogen and fuel cell markets as context for the activities of the Canadian industry. It presents

142

Energy and global warming impacts of CFC alternative technologies  

Science Conference Proceedings (OSTI)

Chlorofluorocarbons (CFCs) are used in a number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s. However, in the mid-1980s, it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric ozone. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of these alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects in the form of carbon dioxide emissions resulting from energy use for commercial and residential heating and cooling, household and commercial refrigeration, building and automobile air-conditioning, and general metal and electronics solvent cleaning. The discussion in this paper focuses on those aspects of the study relevant to refrigeration and air-conditioning. In general the use of hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact (TEWI), lifetime equivalent CO{sub 2} emissions. Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-07-01T23:59:59.000Z

143

Energy and global warming impacts of CFC alternative technologies  

Science Conference Proceedings (OSTI)

Chlorofluorocarbons (CFCs) are used in a number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s. However, in the mid-1980s, it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric ozone. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of these alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects in the form of carbon dioxide emissions resulting from energy use for commercial and residential heating and cooling, household and commercial refrigeration, building and automobile air-conditioning, and general metal and electronics solvent cleaning. The discussion in this paper focuses on those aspects of the study relevant to refrigeration and air-conditioning. In general the use of hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact (TEWI), lifetime equivalent CO{sub 2} emissions. Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-01-01T23:59:59.000Z

144

Appendix 2 - IManageRoadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the iManage Roadmap the iManage Roadmap Stakeholder Discussions 7/27/2012 - Draft 1 Stakeholder Discussions July 2012 1. Align DOE's strategic plan, and CF/MA/HC objectives, with iManage initiatives. 2. Use business goals to drive urgency and help explain the value proposition of what we are planning on the roadmap. 3. Create a framework to coordinate planning across iManage Roadmap goals 3. Create a framework to coordinate planning across multiple iManage systems and customer groups. 4. Capture cross-functional implications of the plan, such as dependencies on other systems and initiatives (a truly iManage view). 5. Determine reuse opportunities across domains. 6. Reflect consensus among all iManage stakeholders 7/27/2012 - Draft 2 1. Expand Business Process Improvement Services (DOE Strategic Plan 2011--

145

National Hydrogen Roadmap Workshop Proceedings  

Fuel Cell Technologies Publication and Product Library (EERE)

This document summarizes the presentations and suggestions put forth by officials, industry experts and policymakers in their efforts to come together to develop a roadmap for America''s clean energy

146

EPRI Smart Grid Roadmap Workshop  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) hosted the third Smart Grid Roadmap Workshop on August 7 and 8, 2012, at EPRIs office in Palo Alto, California. The objective of the workshop was to bring together the people responsible for developing and maintaining the smart grid roadmaps for their companies in order to encourage dialogue about their experiences, share lessons learned and best practices, and discuss topics of mutual interest. Workshop participants presented on their ...

2012-10-04T23:59:59.000Z

147

Tennessee Valley Smart Grid Roadmap  

Science Conference Proceedings (OSTI)

This document is the final report resulting from a Smart Grid road-mapping process conducted collaboratively by the power distributors of the Tennessee Valley in coordination with the Tennessee Valley Authority. The project spanned twelve months and was facilitated through a series of topical workshops in which domain experts from throughout the Valley met to develop the plan. The roadmap takes a ten-year look at Smart Grid developments and plans for the Valley, identifying key focus areas, specific goal...

2011-12-05T23:59:59.000Z

148

Electrochemical Energy Storage Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

149

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Kyoung Geothermal NEPA Workshop at GRC Posted by: Kyoung 14 Oct 2013 - 20:19 On Tuesday, October 2, the Geothermal Technology Office and the National Renewable Energy Laboratory held a 1/2-day NEPA workshop. The workshop was held at the MGM Grand in Las Vegas, in conjunction... Tags: Categorical Exclusions, CX, Database, EA, EIS, FONSI, GEA, GRC, GRR, NEPA Jweers New Robust References! Posted by: Jweers 7 Aug 2013 - 18:23 Check out the new Reference Form. Adding... 1 comment(s) Tags: citation, citing, developer, formatting, reference, Semantic Mediawiki, wiki Graham7781

150

Fuel Pathway Integration Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Pathway Integration Fuel Pathway Integration Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Fuel Pathway Integration Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

151

Globalizing of technology module in contextualized language instruction.  

E-Print Network (OSTI)

??The module "Technology in Contextualized Language Instruction" provides models and insights into the ways in which teachers can use technology to connect their students and (more)

Aglawe, Anjali A.

2011-01-01T23:59:59.000Z

152

Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations

153

Roadmap to Achieve Energy Delivery Systems Cybersecurity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Achieve Energy Delivery Systems Cybersecurity ii Acknowledgements The Energy Sector Control Systems Working Group (ESCSWG) developed this roadmap in support of the...

154

A Roadmap for Engineering Piezoelectricity in Graphene  

NLE Websites -- All DOE Office Websites (Extended Search)

Roadmap for Engineering Piezoelectricity in Graphene A Roadmap for Engineering Piezoelectricity in Graphene Doping this 'Miracle Material' May Lead to New Array of Nanoscale...

155

Canadian Fuel Cell Commercialization Roadmap Update: Progress...  

Open Energy Info (EERE)

Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Name Canadian Fuel Cell Commercialization Roadmap...

156

Roadmapping - A Tool for Strategic Planning and Leveraging R&D completed by other Agencies  

DOE Green Energy (OSTI)

The Department of Energy (DOE) is responsible for management of the environmental legacy of the nation's nuclear weapons and research program. This is the largest, most complex environmental cleanup program in the world. The issues and problems encountered in this program create the need to develop many scientific and technological solutions. To be effective, the process used to create these solutions must be well coordinated through DOE's Environmental Management program, the rest of DOE, and other Federal agencies. Roadmapping is one strategic planning tool to provide the needed coordination. Past roadmapping accomplishments include: (1) Issuance of the Draft EM Roadmapping Guidance; (2) Issuance of the EM R&D Program Plan and Strategic Plan which established the direction for Roadmapping; (3) Issuance of the OST Management Plan which calls out Roadmapping as a key tool in EM Research & Development (R&D) Strategic Planning; (4) Completion of or progress on key EM Roadmaps, i.e., Savannah River High Level Waste (HLW) Salt Dispositioning Roadmaps, Hanford Groundwater/Vadose Zone Roadmap, Robotics and Intelligent Machines Critical Technology Roadmap, Complex-Wide Vadose Zone Roadmap, Long-Term Stewardship Preliminary Roadmap, Hydrogen Gas Generation R&D Plan (Roadmap), Idaho National Engineering and Environmental Laboratory (INEEL) Sodium Bearing Waste Dispositioning Roadmap, INEEL Voluntary Consent Order Tanks Characterization Roadmap, INEEL Vadose Zone/Groundwater Roadmap, Calcine Treatment Alternatives Roadmap. These efforts represent a great start; however, there is more to be accomplished in using Roadmapping as a tool for planning strategic initiatives and in coordinating the R&D performed by multiple federal agencies.

Collins, J. W.

2002-02-28T23:59:59.000Z

157

Roadmapping - A Tool for Strategic Planning and Leveraging R&D completed by other Agencies  

SciTech Connect

The Department of Energy (DOE) is responsible for management of the environmental legacy of the nation's nuclear weapons and research program. This is the largest, most complex environmental cleanup program in the world. The issues and problems encountered in this program create the need to develop many scientific and technological solutions. To be effective, the process used to create these solutions must be well coordinated through DOE's Environmental Management program, the rest of DOE, and other Federal agencies. Roadmapping is one strategic planning tool to provide the needed coordination. Past roadmapping accomplishments include: (1) Issuance of the Draft EM Roadmapping Guidance; (2) Issuance of the EM R&D Program Plan and Strategic Plan which established the direction for Roadmapping; (3) Issuance of the OST Management Plan which calls out Roadmapping as a key tool in EM Research & Development (R&D) Strategic Planning; (4) Completion of or progress on key EM Roadmaps, i.e., Savannah River High Level Waste (HLW) Salt Dispositioning Roadmaps, Hanford Groundwater/Vadose Zone Roadmap, Robotics and Intelligent Machines Critical Technology Roadmap, Complex-Wide Vadose Zone Roadmap, Long-Term Stewardship Preliminary Roadmap, Hydrogen Gas Generation R&D Plan (Roadmap), Idaho National Engineering and Environmental Laboratory (INEEL) Sodium Bearing Waste Dispositioning Roadmap, INEEL Voluntary Consent Order Tanks Characterization Roadmap, INEEL Vadose Zone/Groundwater Roadmap, Calcine Treatment Alternatives Roadmap. These efforts represent a great start; however, there is more to be accomplished in using Roadmapping as a tool for planning strategic initiatives and in coordinating the R&D performed by multiple federal agencies.

Collins, J. W.

2002-02-28T23:59:59.000Z

158

DOE Openess: Human Radiation Experiments - Roadmap to the Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Experiments: Roadmap to the Project DOE Shield DOE Openness: Human Radiation Experiment Roadmap to the Project Roadmap to the Project Home Roadmap What's New Search HREX...

159

A Global Model of Technological Utilization Based on Governmental, Business-Investment, Social, and Economic Factors  

Science Conference Proceedings (OSTI)

This exploratory paper presents a conceptual model of the factors of governmental support and openness, business and technology investment, and socioeconomic level that are posited to influence technological utilization. The conceptual model and conjectures ... Keywords: Global Digital Divide, Government Investment, Societal Openness, Socioeconomic Factors, Structural Equation Modeling, Technological Utilization

James Pick; Rasool Azari

2011-07-01T23:59:59.000Z

160

Energy Policy & Technology Analysis | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Energy Technologies Department Energy Policy and Technology Analysis The group's core focus is on long-term integrated energy, environmental, and economic analysis using the MARKAL family of models, a well-established tool for energy systems analysis. With 30 years of development under the auspices of the International Energy Agency, MARKAL has approximately 100 user institutions in more than 50 countries. A bottom-up analysis with explicit technology representation, the models include a physical description of energy technologies, and allow for "well-to-wheel" comparison of technologies and technological pathways. They study the impact of technological change/progress on energy markets, and provide a technology-rich basis for estimating energy dynamics over a multi-period

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Natural gas and efficient technologies: A response to global warming  

DOE Green Energy (OSTI)

It has become recognized by the international scientific community that global warming due to fossil fuel energy buildup of greenhouse CO{sub 2} in the atmosphere is a real environmental problem. Worldwide agreement has also been reached to reduce CO{sub 2} emissions. A leading approach to reducing CO{sub 2} emissions is to utilize hydrogen-rich fuels and improve the efficiency of conversion in the power generation, transportation and heating sectors of the economy. In this report, natural gas, having the highest hydrogen content of all the fossil fuels, can have an important impact in reducing CO{sub 2} emissions. This paper explores natural gas and improved conversion systems for supplying energy to all three sectors of the economy. The improved technologies include combined cycle for power generation, the Carnol system for methanol production for the transportation sector and fuel cells for both power generation and transportation use. The reduction in CO{sub 2} from current emissions range from 13% when natural gas is substituted for gasoline in the transportation sector to 45% when substituting methanol produced by the Carnol systems (hydrogen from thermal decomposition of methane reacting with CO{sub 2} from coal-fired power plants) used in the transportation sector. CO{sub 2} reductions exceeding 60% can be achieved by using natural gas in combined cycle for power generation and Carnol methanol in the transportation sector and would, thus, stabilize CO{sub 2} concentration in the atmosphere predicted to avoid undue climate change effects. It is estimated that the total fossil fuel energy bill in the US can be reduced by over 40% from the current fuel bill. This also allows a doubling in the unit cost for natural gas if the current energy bill is maintained. Estimates of the total net incremental replacement capital cost for completing the new improved equipment is not more than that which will have to be spent to replace the existing equipment conducting business as usual.

Steinberg, M.

1998-02-01T23:59:59.000Z

162

U.S. Department of Energy PV Roadmaps | Open Energy Information  

Open Energy Info (EERE)

PV Roadmaps PV Roadmaps Jump to: navigation, search Logo: U.S. Department of Energy PV Roadmaps Name U.S. Department of Energy PV Roadmaps Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Solar Resource Type Publications, Guide/manual Website http://www1.eere.energy.gov/so References U.S. Department of Energy PV Roadmaps[1] Abstract Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from universities and private industry. "Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from

163

Object-Oriented Energy, Climate, and Technology Systems (ObjECTS) Global  

Open Energy Info (EERE)

Object-Oriented Energy, Climate, and Technology Systems (ObjECTS) Global Object-Oriented Energy, Climate, and Technology Systems (ObjECTS) Global Change Assessment Model (GCAM) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Object-Oriented Energy, Climate, and Technology Systems (ObjECTS) Global Change Assessment Model (GCAM) Agency/Company /Organization: Pacific Northwest National Laboratory, University of Maryland, Joint Global Change Research Institute Sector: Climate, Energy, Land Focus Area: Non-renewable Energy, Agriculture, Biomass, Forestry, Hydrogen, Transportation Topics: Co-benefits assessment, Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application

164

Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy |  

Open Energy Info (EERE)

Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Antigua and Barbuda, Bahamas, Barbados, Belize, Dominica, Grenada, Guyana, Haiti, Jamaica, Montserrat, St. Lucia, St. Vincent and the Grenadines, St. Kitts and Nevis, Suriname, Trinidad and Tobago

165

Report to NIST on the Smart Grid Interoperability Standards Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to NIST on the Smart Grid Interoperability Standards Roadmap to NIST on the Smart Grid Interoperability Standards Roadmap Report to NIST on the Smart Grid Interoperability Standards Roadmap Under the Energy Independence and Security Act (EISA) of 2007, the National Institute of Standards and Technology (NIST)has "primary responsibility to coordinate development of a framework that includes protocols and model standards for information management to achieve interoperability of smart grid devices and systems..." [EISA Title XIII, Section 1305] Report to NIST on the Smart Grid Interoperability Standards Roadmap More Documents & Publications NIST Activities in Support of the Energy Independence and Security Act (EISA) of 2007 Smart Grid R&D Multi-Year Program Plan (2010-2014) - September 2012 Update

166

DOE Publishes Roadmap for Developing Cleaner Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publishes Roadmap for Developing Cleaner Fuels Publishes Roadmap for Developing Cleaner Fuels DOE Publishes Roadmap for Developing Cleaner Fuels July 7, 2006 - 2:52pm Addthis Research Aimed at Making Cellulosic Ethanol a Practical Alternative to Gasoline WASHINGTON, DC -- The U.S. Department of Energy (DOE) today released an ambitious new research agenda for the development of cellulosic ethanol as an alternative to gasoline. The 200-page scientific "roadmap" cites recent advances in biotechnology that have made cost-effective production of ethanol from cellulose, or inedible plant fiber, an attainable goal. The report outlines a detailed research plan for developing new technologies to transform cellulosic ethanol-a renewable, cleaner-burning, and carbon-neutral alternative to gasoline-into an economically viable

167

Renewable Energy Technology Opportunities: Responding to Global Energy Challenges (Presentation)  

SciTech Connect

Presentation by Dr. Dan Arvizu of the National Renewable Energy Laboratory (NREL) to the Clean-Tech Investors Summit on January 23, 2007 overviews renewable energy technology opportunities.

Arvizu, D.

2007-01-23T23:59:59.000Z

168

Globalization, citizenship and new information technologies: from the MAI to Seattle  

Science Conference Proceedings (OSTI)

This chapter examines how information technologies have been used by nongovernmental organizations to contest economic globalization. The chapter uses as case studies the failed attempt to negotiate the Multilateral Agreement on Investment (1995-1998) ...

Peter J. Smith; Elizabeth Smythe

2004-01-01T23:59:59.000Z

169

Windows Industry Technology Roadmap: Executive Summary  

SciTech Connect

An industry-led initiative to identify key goals and strategies for the windows industry with an emphasis on energy conservation, enhanced quality, fast delivery, and low installed cost.

DOE Office of Building Technology, State and Community Programs

2001-01-08T23:59:59.000Z

170

Home Smoke Alarms A Technology Roadmap  

E-Print Network (OSTI)

additional sensors into alarms. Besides aerosols, other primary products of combustion, including carbon and implemented with various proprietary modifications, depending upon the manufacturer. Virtually all ionization as improving fire recognition with minimal false alarms. With mass manufacturing and low-cost, solid

171

The impacts of technology on global unconventional gas supply  

E-Print Network (OSTI)

As energy supplies from known resources are declining, the development of new energy sources is mandatory. One reasonable source is natural gas from unconventional resources. This study focus on three types of unconventional gas resources: coalbeds, tight sands, and shales. Whereas these resources are abundant, they have largely been overlooked and understudied, especially outside of North America. New technologies, including those needed to unlock unconventional gas (UCG) resources, have been acknowledged to be the most significant factor in increasing natural gas supply in the United States. This study evaluates advances in critical technology that will most likely increase supply the most. Advanced technology is one of the main drivers in increasing unconventional natural gas production, as observed in the United States, Canada, and Australia. 3D seismic, horizontal drilling, multilateral completion, water and gel based fracturing, coiled tubing rig, enhanced recovery, and produced water treatments are current important technologies critical in developing unconventional gas resources. More advanced technologies with significant impacts are expected to be available in the next decades. Fit-to-purpose technology reduces the cost to recover gas from unconventional resources. The better the unconventional gas resources are characterized, the better we can tailor specific technology to recover the gas, and less cost are needed. Analogy assumption is a good start in deciding which critical technology to be transferred to undeveloped unconventional reservoirs. If the key properties of two unconventional gas basins or formations are more or less similar, it is expected that the impact of certain technology applied in one basin or formation will resemble the impact to the other basin or formation.

Yanty, Evi

2007-08-01T23:59:59.000Z

172

OpenEI Community - roadmap  

Open Energy Info (EERE)

2 at http://en.openei.org/community Texas Legal Review 2 at http://en.openei.org/community Texas Legal Review http://en.openei.org/community/blog/texas-legal-review The NREL roadmap team recently met with our legal team Brownstein Hyatt Farber and Schreck (www.bhfs.com) for a review of the Texas portion of the Geothermal Regulatory Roadmap (GRR).  BHFS provided excellent suggestions to the Section 3 flowcharts for geothermal leases on Texas state lands.  The Texas portion of the GRR now encompasses a flowchart for Texas state land leasing on Permanent School Fund Lands, Texas Parks and Wildlife Department Lands, Land Trade Lands, and Relinquishment Act Lands.  Additionally, BHFS provided many other helpful tips for clarifying other issue

173

Scaling up: global technology deployment to stabilize emissions  

SciTech Connect

Climate change is becoming a defining fact of economic development. Three areas need to coalesce into a coherent vision in order to achieve adequate levels of emissions reductions: The technologies involved, including the physical and capacity-related constraints to deploying them; The investment required: who will provide it, the mechanisms they will use, and its cost; The policies that will offer the most effective incentives to providers of both technology and capital to implement lower-emission solutions. A paper by two Princeton researchers Pacala and Socolow provided a mental framework to discuss these solutions by breaking the required emission reductions down into manageable (though still large) 'wedges,' each provided by a different technology or set of technologies. Owing to its solution-oriented framework, the wedges approach has captured the imagination of those eager to tackle climate change. These include among the 15 options: replacing coal baseload power plants with gas plants, capturing CO{sub 2} at coal and gas power plants, capturing CO{sub 2} at coal-to-synfuels plant and increasing use of renewables. This paper presents an overview, using the wedges framework, on how technology, investment and policy interact. It is intended to engage actors in the policy and investment communities as the key enables of clean technology deployment worldwide. 30 refs., 5 figs., 2 tabs.

Fred Wellington; Rob Bradley; Britt Childs; Clay Rigdon; Jonathan Pershing

2007-04-13T23:59:59.000Z

174

New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts January 11, 2011 - 12:00pm Addthis Washington, DC - An overview of research, development, and demonstration (RD&D) efforts to supply cost-effective, advanced carbon capture and storage (CCS) technologies for coal-based power systems is the focus of a new roadmap published by the U.S. Department of Energy (DOE). Link to the 2010 CCS Roadmap Prepared by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), the latest DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap outlines the program's efforts to develop advanced CCS technology. CCS is considered by many experts as an important component in

175

Technology adoption and content consumption in Chinese television: Local city, national city, and global city  

Science Conference Proceedings (OSTI)

Advances in media technologies allow people to restructure their relations across a broad range of time and space. As a result, modern communities are organized on local, national, and global bases. These communities are sustained and developed by media ... Keywords: China, Community, New media technology, Programming, Space, Television, Time

Jia Lu, Ian Weber

2013-11-01T23:59:59.000Z

176

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES  

E-Print Network (OSTI)

and sequestration as natural gas prices rise. INTRODUCTION Heightened concerns about global climate change have were added to EPPA for 1) coal power generation with CCS (coal capture), 2) natural gas combined cycle pulverized coal technology and the 3 #12;advanced natural gas technology. Compared with the pulverized coal

177

DUF6 Materials Use Roadmap  

Science Conference Proceedings (OSTI)

The U.S. government has {approx}500,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms stored at U.S. Department of Energy (DOE) sites across the United States. This DU, most of which is DU hexafluoride (DUF{sub 6}) resulting from uranium enrichment operations, is the largest amount of nuclear material in DOE's inventory. On July 6, 1999, DOE issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap'' in order to establish a strategy for the products resulting from conversion of DUF{sub 6} to a stable form. This report meets the commitment in the Final Plan by providing a comprehensive roadmap that DOE will use to guide any future research and development activities for the materials associated with its DUF{sub 6} inventory. The Roadmap supports the decision presented in the ''Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride'', namely to begin conversion of the DUF{sub 6} inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for future uses of as much of this inventory as possible. In particular, the Roadmap is intended to explore potential uses for the DUF{sub 6} conversion products and to identify areas where further development work is needed. It focuses on potential governmental uses of DUF{sub 6} conversion products but also incorporates limited analysis of using the products in the private sector. The Roadmap builds on the analyses summarized in the recent ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride''. It also addresses other surplus DU, primarily in the form of DU trioxide and DU tetrafluoride. The DU-related inventory considered here includes the following: (1) Components directly associated with the DUF{sub 6} presently being stored at gaseous diffusion plant sites in Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee--470,500 MT of DU, 225,000 MT of fluorine chemically combined with the DU, and 74,000 MT of carbon steel comprising the storage cylinders; (2) Approximately 27,860 MT of DU in the form of uranium trioxide, tetrafluoride, and various other forms containing varying amounts of radioactive and chemical impurities, presently stored primarily at DOE's Savannah River Site. This Roadmap characterizes and analyzes alternative paths for eventual disposition of these materials, identifies the barriers that exist to implementing the paths, and makes recommendations concerning the activities that should be undertaken to overcome the barriers. The disposition paths considered in this roadmap and shown in Fig. ES.1 are (a) implementation of cost-effective and institutionally feasible beneficial uses of DU using the products of DUF{sub 6} conversion and other forms of DU in DOE's inventory, (b) processing the fluorine product resulting from DUF{sub 6} conversion to yield an optimal mix of valuable fluorine compounds [e.g., hydrogen fluoride (hydrofluoric acid), boron trifluoride] for industrial use, and (c) processing emptied cylinders to yield intact cylinders that are suitable for reuse, while maintaining an assured and cost-effective direct disposal path for all of the DU-related materials. Most paths consider the potential beneficial use of the DU and other DUF{sub 6} conversion products for the purpose of achieving overall benefits, including cost savings to the federal government, compared with simply disposing of the materials. However, the paths provide for assured direct disposal of these products if cost-effective and institutionally feasible beneficial uses are not found.

Haire, M.J.

2002-09-04T23:59:59.000Z

178

Microsoft Word - IESP-roadmap-1.1.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Contents Contents 1. Introduction ................................................................................ 1 2. Destination of the IESP Roadmap ................................................ 3 3. Technology Trends and Their Impact on Exascale ....................... 3 3.1 Technology Trends ........................................................................... 4 3.2 Science Trends ................................................................................. 6 3.3 Key Requirements Imposed by Trends on the X-Stack ..................... 7 3.4 Relevant Politico-Economic Trends................................................... 8 4. Formulating Paths Forward for X-Stack Component Technologies9 4.1 System Software ..............................................................................

179

Built-Environment Wind Turbine Roadmap  

SciTech Connect

Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

2012-11-01T23:59:59.000Z

180

Built-Environment Wind Turbine Roadmap  

DOE Green Energy (OSTI)

Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Global warming: An energy technology R and D challenge  

SciTech Connect

It is pointed out that two major uncertainties cloud the picture of future energy technology needs: (1) growth of energy demand and (2) the seriousness and urgency of the Greenhouse effect. The outlook for research and development (R and D) projects to meet the problems resulting from these two uncertainties is great. Even if the problems do not exist, new and better energy sources that reduce CO{sub 2} emissions are very desirable. Funds to finance R and D in this field should come from a combination of effort from private and public sector. 16 refs., 2 figs.

Fulkerson, W.; Reister, D.B.; Auerbach, S.I.; Perry, A.M. (Oak Ridge National Lab., TN (USA)); Crane, A.T. (Office of Technology Assessment, Washington, DC (USA)); Kash, D.E. (Univ. of Oklahoma, Norman (USA))

1989-11-17T23:59:59.000Z

182

Poland-Roadmap 2050 | Open Energy Information  

Open Energy Info (EERE)

Poland-Roadmap 2050 Poland-Roadmap 2050 Jump to: navigation, search Name Poland-Roadmap 2050 Agency/Company /Organization European Climate Foundation Sector Energy Focus Area Non-renewable Energy, Buildings, Buildings - Commercial, Buildings - Residential, Transportation Topics Low emission development planning, -Roadmap Website http://www.roadmap2050.eu/ Country Poland Eastern Europe References ECF-Poland-Roadmap 2050[1] "The roadmap will concentrate on those sectors that are key for low-carbon transition: Initial analysis for the overall economy including buildings and transport to figure out the role played by the power sector in providing for this demand. First phase will look at technical scenarios for the power system including generation grid, efficiency and demand side management

183

International Workshop: MFE Roadmapping in the ITER Era | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

International Workshop: MFE Roadmapping in the ITER Era International Workshop: MFE Roadmapping in the ITER Era Contact Information Website: International Workshop: MFE Roadmapping...

184

Separations and Actinide Science -- 2005 Roadmap  

SciTech Connect

The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by advanced reactors and reprocessing methods based on pyrochemical methods and by using different fuel cycles that do not readily produce plutonium. SASR will facilitate the deployment of advanced pyrochemical separation technology and support development of reprocessing of thorium-based reactor fuels.

2005-09-01T23:59:59.000Z

185

Report to NIST on the Smart Grid Interoperability Standards Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About This Document: About This Document: Report to NIST on the Smart Grid Interoperability Standards Roadmap-Post Comment Period Version Under the Energy Independence and Security Act (EISA) of 2007, the National Institute of Standards and Technology (NIST) has "primary responsibility to coordinate development of a framework that includes protocols and model standards for information management to achieve interoperability of smart grid devices and systems..." [EISA Title XIII, Section 1305] In late March 2009, NIST awarded the Electric Power Research Institute (EPRI) a contract to engage Smart Grid stakeholders developing a draft interim standards roadmap. On June 17, EPRI delivered its Report to NIST on the Smart Grid Interoperability Standards Roadmap.* This document

186

Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations

187

A Roadmap to Funding Infrastructure Development | Open Energy Information  

Open Energy Info (EERE)

Roadmap to Funding Infrastructure Development Roadmap to Funding Infrastructure Development Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Roadmap to Funding Infrastructure Development Agency/Company /Organization: OECD/ITF Complexity/Ease of Use: Not Available Website: www.internationaltransportforum.org/jtrc/DiscussionPapers/DP201209.pdf Related Tools European Green Cars Initiative Asian Development Bank - Transport TRANSfer - Towards climate-friendly transport technologies and measures ... further results Find Another Tool FIND TRANSPORTATION TOOLS This paper discusses the initiatives and procedures necessary for the successful development of large-scale transportation Public Private Partnership projects from a developer's point of view. The topics covered in this paper include: Project Procurement, Proper Risk Allocation, and

188

DNV Global Energy Concepts | Open Energy Information  

Open Energy Info (EERE)

DNV Global Energy Concepts DNV Global Energy Concepts Jump to: navigation, search Name DNV Global Energy Concepts Place Seattle, Washington Zip 98101 Sector Services Product Global Energy Concepts LLC (GEC) is a multi-discipline engineering and technology consulting firm providing services to clients involved in the energy industry. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Fossil fuel decarbonization technology for mitigating global warming  

SciTech Connect

It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

Steinberg, M.

1998-09-01T23:59:59.000Z

190

Common challenge, collaborative response: a roadmap for US-China cooperation on energy and climate change  

SciTech Connect

This Report which was produced in partnership between Asia Society's Center on U.S.-China Relations and Pew Center on Global Climate Change, in collaboration with The Brookings Institution, Council on Foreign Relations, National Committee on U.S.-China Relations, and Environmental Defense Fund presents both a vision and a concrete Roadmap for such Sino-U.S. collaboration. With input from scores of experts and other stakeholders from the worlds of science, business, civil society, policy, and politics in both China and the United States, the Report, or 'Roadmap', explores the climate and energy challenges facing both nations and recommends a concrete program for sustained, high-level, bilateral engagement and on-the-ground action. The Report recommends that, as a first step in forging this new partnership, the leaders of the two countries should convene a leaders summit as soon as practically possible following the inauguration of Barack Obama to launch a 'U.S.-China Partnership on Energy and Climate Change'. This presidential summit should outline a major plan of joint-action and empower relevant officials in each country to take the necessary actions to ensure its implementation. Priority areas of collaboration include: deploying low-emissions coal technologies; improving energy efficiency and conservation; developing an advanced electric grid; promoting renewable energy; and quantifying emissions and financing low-carbon technologies. 5 figs., 1 tab., 2 apps.

NONE

2009-01-15T23:59:59.000Z

191

A Strategic Metal for Green Technology: The Geologic Occurrence and Global Life Cycle of Lithium  

E-Print Network (OSTI)

A Strategic Metal for Green Technology: The Geologic Occurrence and Global Life Cycle of Lithium. Mainly due to the growing demand for lightweight and powerful batteries, lithium has become such a metal. While supplies of lithium have historically been mined from pegmatites, brine extraction from salars

192

Tennessee Valley Smart Grid Roadmap Workshops  

Science Conference Proceedings (OSTI)

The power distributors of the Tennessee Valley are developing a smart grid roadmap in coordination with the Tennessee Valley Authority. The road-mapping process included the identification of a set of key applications, each of which served as the topic of a dedicated workshop. This report provides a compilation of the reports that resulted from these workshops. The report was produced to ensure that the meeting minutes are maintained and available for future reference. The overall smart grid roadmap is d...

2011-10-11T23:59:59.000Z

193

HECO-DR-roadmap-FinalReport-040313  

NLE Websites -- All DOE Office Websites (Extended Search)

5E Hawaiian Electric Company Demand Response Roadmap Project Roger Levy and Sila Kiliccote Lawrence Berkeley National Laboratory January 2013 DISCLAIMER This document was prepared...

194

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

195

Arizona/Transmission/Roadmap | Open Energy Information  

Open Energy Info (EERE)

Roadmap Roadmap < Arizona‎ | Transmission Jump to: navigation, search ArizonaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations. Reading the Roadmap The flowcharts are divided into General, Federal, and State columns to allow for ease of use. To use the flowcharts, start with General Flowchart for Section 8: Transmission. The General Flowchart will lead you to the

196

Microsoft Word - IESP-roadmap.docx - IESP-roadmap.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Exascale Software Exascale Software Project Roadmap 1   

197

Roadmap for the Next Generation Protective Devices  

Science Conference Proceedings (OSTI)

This report presents a high-level industry roadmap for the design and management of protective relaying and substation control system products and installations by manufacturers and utilities. The roadmap follows directly from the current state of the industry, as given in a companion document, EPRI Current State Assessment Report, EPRI report 1017773.

2009-11-04T23:59:59.000Z

198

Emerging Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps *...

199

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: flora and fauna Type Term Title Author Replies Last Post sort icon Blog entry flora and fauna Texas Legal Review Alevine 29 Jul 2013 - 14:46 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

200

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Categorical Exclusions Type Term Title Author Replies Last Post sort icon Blog entry Categorical Exclusions Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Blog entry Categorical Exclusions GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry Categorical Exclusions GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: EA Type Term Title Author Replies Last Post sort icon Blog entry EA Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

202

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Colorado Type Term Title Author Replies Last Post sort icon Blog entry Colorado Colorado Meeting Kyoung 21 Mar 2013 - 10:24 Blog entry Colorado Happy New Year! Kyoung 21 Mar 2013 - 10:09 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

203

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: FY12 Type Term Title Author Replies Last Post sort icon Blog entry FY12 Thank You! Kyoung 21 Mar 2013 - 08:40 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142253755

204

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: CX Type Term Title Author Replies Last Post sort icon Blog entry CX Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

205

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: feedback Type Term Title Author Replies Last Post sort icon Blog entry feedback Geothermal Stakeholder Feedback on the GRR Kyoung 21 Mar 2013 - 10:01 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

206

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Fish and Wildlife Type Term Title Author Replies Last Post sort icon Blog entry Fish and Wildlife Idaho Meeting #2 Kyoung 4 Sep 2012 - 21:36 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

207

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: EIS Type Term Title Author Replies Last Post sort icon Blog entry EIS Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

208

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Database Type Term Title Author Replies Last Post sort icon Blog entry Database Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

209

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Cost Recovery Type Term Title Author Replies Last Post sort icon Blog entry Cost Recovery GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry Cost Recovery GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers

210

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: analysis Type Term Title Author Replies Last Post sort icon Blog entry analysis GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry analysis GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Blog entry analysis Happy New Year! Kyoung 21 Mar 2013 - 10:09 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers:

211

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: FWS Type Term Title Author Replies Last Post sort icon Blog entry FWS Idaho Meeting #2 Kyoung 4 Sep 2012 - 21:36 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142253965

212

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: BHFS Type Term Title Author Replies Last Post sort icon Blog entry BHFS Texas Legal Review Alevine 29 Jul 2013 - 14:46 Blog entry BHFS Happy New Year! Kyoung 21 Mar 2013 - 10:09 Blog entry BHFS Legal Reviews are Underway Kyoung 21 Mar 2013 - 09:17 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill

213

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

214

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

215

A Report of the EMF 19 Study on Technology and Global Climate Change Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

REPORT ON THE EMF 19 STUDY ON REPORT ON THE EMF 19 STUDY ON TECHNOLOGY AND GLOBAL CLIMATE CHANGE POLICIES David J. Beecy (david.beecy@hq.doe.gov; 301-903-2786) Office of Environmental Systems Technology U.S. Department of Energy 19901 Germantown Road GTN, FE-23, E-133 Germantown, MD 20545 Andy S. Kydes (akydes@eia.doe.gov; 202-586-0883) Integrated Analysis and Forecasting, EI-80 Energy Information Administration U.S. Department of Energy 100 Independence Avenue, SW Washington, DC 20585 Richard G. Richels (rrichels@epri.com; 650-855-2602) Global Climate Change Program Electric Power Research Institute 3412 Hillview Avenue Palo Alto, CA 94304 John P. Weyant (weyant@stanford.edu; 650-723-3506) Department of Management Science & Engineering Terman Building: Room 406 Stanford University Stanford, CA 94305-4026

216

The Soils and Groundwater EM-20 S&T Roadmap Quality Assurance Project Plan  

Science Conference Proceedings (OSTI)

The Soils and Groundwater EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

Fix, N. J.

2008-02-11T23:59:59.000Z

217

A Roadmap for NEAMS Capability Transfer  

SciTech Connect

The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place requirements gathering from prospective users on a more formal footing, updating requirements on a regular basis and incorporate them into planning and execution of the project in a traceable fashion; (4) Seek out the best available data for validation purposes, and work with experimental programs to design and carry out new experiments that satisfy the need for data suitable for validation of high-fidelity M&S codes; (5) Develop and implement program-wide plans and policies for export control, licensing, and distribution of NEAMS software products; (6) Establish a program of sponsored alpha testing by experienced users in order to obtain feedback on NEAMS codes; (7) Provide technical support for NEAMS software products; (8) Develop and deliver documentation, tutorial materials, and live training classes; and (9) Be prepared to support outside users who wish to contribute to the codes.

Bernholdt, David E [ORNL

2011-11-01T23:59:59.000Z

218

Roadmap to Achieve Energy Delivery Systems Cybersecurity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Achieve Energy Delivery Systems Cybersecurity Roadmap to Achieve Energy Delivery Systems Cybersecurity ii Acknowledgements The Energy Sector Control Systems Working Group (ESCSWG) developed this roadmap in support of the Electricity Sub-sector Coordinating Council, Oil and Natural Gas Sector Coordinating Council, and the Government Coordinating Council for Energy under the Critical Infrastructure Partnership Advisory Council (CIPAC) Framework; the roadmap has been approved for release by these councils. The ESCSWG members volunteered their time and expertise to this effort and would like to thank the other participants for their valuable perspectives and contributions to this important effort. Special thanks go to the U.S. Department of Energy, which provided the funds and support needed to convene participants

219

Idaho/Transmission/Roadmap | Open Energy Information  

Open Energy Info (EERE)

Idaho/Transmission/Roadmap Idaho/Transmission/Roadmap < Idaho‎ | Transmission Jump to: navigation, search IdahoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations. Reading the Roadmap The flowcharts are divided into General, Federal, and State columns to allow for ease of use. To use the flowcharts, start with General Flowchart for Section 8: Transmission. The General Flowchart will lead you to the

220

Cultural Roadmap Meeting | OpenEI Community  

Open Energy Info (EERE)

Cultural Roadmap Meeting Cultural Roadmap Meeting Home > Groups > Geothermal Regulatory Roadmap Kyoung's picture Submitted by Kyoung(155) Contributor 31 August, 2012 - 08:05 Yesterday, members of the GRR Team met with members of the geothermal permitting community who had experience and involvement in navigating the tribal and cultural process. During the afternoon workshop, participants mapped out the process in a series of flowcharts, discussing simiarities and differences in the way various agencies address these issues. The meeting was very successful and we have a clean series of flowcharts that we will be posting to the GRR Site on OpenEI soon. Groups: Geothermal Regulatory Roadmap Login to post comments Kyoung's blog Latest blog posts Kyoung Geothermal NEPA Workshop at GRC

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Groups > Groups > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order to post into this group. Groups Menu You must login in order to post into this group. Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

222

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term Content Group Activity By term Q & A Feeds 1031 regulations (1) Alaska (1) analysis (3) appropriations (1) BHFS (3) Categorical Exclusions (3) citation (1) citing (1) Colorado (2) Coordinating Permit Office (2) Cost Mechanisms (2) Cost Recovery (2) CX (1) D.C. (1) data (1) Database (1) developer (2) EA (1) EIS (1) endangered species (1) Fauna (1) feedback (1) Fish and Wildlife (1) Flora (1) flora and fauna (1) 1 2 3 next › last » Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12)

223

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

224

Benefits to the United States of Increasing Global Uptake of Clean Energy Technologies  

SciTech Connect

A previous report describes an opportunity for the United States to take leadership in efforts to transform the global energy system toward clean energy technologies (CET). An accompanying analysis to that report provides estimates of the economic benefits to the United States of such a global transformation on the order of several hundred billion dollars per year by 2050. This report describes the methods and assumptions used in developing those benefit estimates. It begins with a summary of the results of the analysis based on an updated and refined model completed since the publication of the previous report. The framework described can be used to estimate the economic benefits to the U.S. of coordinated global action to increase the uptake of CETs worldwide. Together with a Monte Carlo simulation engine, the framework can be used to develop plausible ranges for benefits, taking into account the large uncertainty in the driving variables and economic parameters. The resulting estimates illustrate that larger global clean energy markets offer significant opportunities to the United States economy.

Kline, D.

2010-07-01T23:59:59.000Z

225

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

Singer, Brett C.

2010-01-01T23:59:59.000Z

226

Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III  

Science Conference Proceedings (OSTI)

The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

Sand, J.R.; Fischer, S.K.; Baxter, V.D.

1997-06-01T23:59:59.000Z

227

Global Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Security Global Security LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent;...

228

First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop was held to assist the energy sector in assessing alignment of current industry projects with the goals outlined in the Roadmap to Secure Control Systems in the...

229

Hawaiian Electric Company Demand Response Roadmap Project Final...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaiian Electric Company Demand Response Roadmap Project Final Report Title Hawaiian Electric Company Demand Response Roadmap Project Final Report Publication Type Report LBNL...

230

Energy and global warming impacts of next generation refrigeration and air conditioning technologies  

SciTech Connect

Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

Sand, J.R.; Fischer, S.K.; Baxter, V.D.

1996-10-01T23:59:59.000Z

231

Fusion roadmapping | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion roadmapping Fusion roadmapping Subscribe to RSS - Fusion roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design Read more about PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design

232

California/Transmission/Roadmap | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » California/Transmission/Roadmap < California‎ | Transmission Jump to: navigation, search CaliforniaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations.

233

Colorado/Transmission/Roadmap | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Colorado/Transmission/Roadmap < Colorado‎ | Transmission Jump to: navigation, search ColoradoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations.

234

Roadmap to the Project: Uranium Miners Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Roadmap DOE Roadmap Experiments List Oral Histories Records Series Descriptions Overview Documents Declassified Documents Project Events ACHRE Report Uranium Miners Resources Building Public Trust Department of Defense Report FINAL REPORT OF THE RADIATION EXPOSURE COMPENSATION ACT COMMITTEE SUBMITTED TO THE HUMAN RADIATION INTERAGENCY WORKING GROUP JULY, 1996 CONTENTS Executive Summary Proposed Amendments to the Statute Recommended Modifications to the Department of Justice Regulations Introduction Issues Relating to Compensation for Lung Cancer Statutory and Regulatory Framework for Compensation Fairness of the Present Statutory Compensation Criteria Alternative Compensation Criteria Description of the Relative Risk Model Used to Derive Proposed Alternative Criteria, and Model Parameters

235

The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector  

E-Print Network (OSTI)

This paper presents an analysis of possible uses of climate policy instruments for the decarbonisation of the global electricity sector in a non-equilibrium economic and technology innovation-diffusion perspective. Emissions reductions occur through changes in technology and energy consumption; in this context, investment decision-making opportunities occur periodically, which energy policy can incentivise in order to transform energy systems and meet reductions targets. Energy markets are driven by innovation, dynamic costs and technology diffusion; yet, the incumbent systems optimisation methodology in energy modelling does not address these aspects nor the effectiveness of policy onto decision-making since the dynamics modelled take their source from the top-down `social-planner' assumption. This leads to an underestimation of strong technology lock-ins in cost-optimal scenarios of technology. Our approach explores the global diffusion of low carbon technology in connection to a highly disaggregated sector...

Mercure, J -F; Foley, A M; Chewpreecha, U; Pollitt, H

2013-01-01T23:59:59.000Z

236

Feasibility of integrating other federal information systems into the Global Network of Environment and Technology, GNET{reg_sign}  

SciTech Connect

The Global Environment and Technology Enterprise (GETE) of the Global Environment and Technology Foundation (GETF) has been tasked by the US Department of Energy`s (DOE), Federal Energy Technology Center (FETC) to assist in reducing DOE`s cost for the Global Network of Environment and Technology (GNET{reg_sign}). As part of this task, GETE is seeking federal partners to invest in GNET{reg_sign}. The authors are also seeking FETC`s commitment to serve as GNET`s federal agency champion promoting the system to potential agency partners. This report assesses the benefits of partnering with GNET{reg_sign} and provides recommendations for identifying and integrating other federally funded (non-DOE) environmental information management systems into GNET{reg_sign}.

NONE

1998-05-01T23:59:59.000Z

237

RESEARCH ROADMAP FOR GREENHOUSE GAS INVENTORY  

E-Print Network (OSTI)

RESEARCH ROADMAP FOR GREENHOUSE GAS INVENTORY METHODS Prepared For: California Energy Commission Consulting · Riitta Pipatti, IPCC Task Force on National Greenhouse Gas Inventories · Dennis Rolston Agency · Fabian Wagner, IPCC Task Force on National Greenhouse Gas Inventories · Wilfried Winiwarter

238

Global warming implications of non-fluorocarbon technologies as CFC replacements  

SciTech Connect

Many technologies could be developed for use in place of conventional compression systems for refrigeration and air conditioning. Comparisons of the global warming impacts using TEWI (Total Equivalent Warming Impact) can be used to identify alternatives that have the potential for lower environmental impacts than electric-driven vapor compression systems using HCFCs and HFCs. Some options, such as secondary heat transfer loops in commercial refrigeration systems to reduce refrigerant charge and emission rates, could be useful in reducing the losses of refrigerants to the atmosphere. Use of ammonia instead of a fluorocarbon in a system with a secondary loop offers only a small potential for decreasing TEWI, and this may not warrant the increased complexity and risks of using ammonia in a retail sales environment. A few technologies, such as adsorption heat pumps, have efficiency levels that show reduced TEWI levels compared to conventional and state of the art compression systems, and further development could lead to an even more favorable comparison. Health and safety risks of the alternative technologies and the materials they employ must also be considered.

Fischer, S.K.; Tomlinson, J.J.

1993-12-31T23:59:59.000Z

239

Roadmapping Process Improvements by Experience at the Idaho National Engineering and Environmental Laboratory High Level Waste Program and Synergistic Interfaces with Decision-Making  

SciTech Connect

Six technology roadmaps were developed for various technologies under consideration for the treatment of sodium bearing liquid and calcine wastes. In the process of creating these roadmaps, a number of process improvements were identified for each of the formal roadmapping phases as described in the Department of Energys draft roadmapping guidance. The lessons learned, presented as beneficial improvements to the Idaho National Engineering and Environmental Laboratory (INEEL) High Level Waste Program, are proposed to be added to the draft guidance. Additionally, synergistic interfaces between the roadmapping and decision-making processes were observed and reported on. With these improvements, technology roadmapping has become an effective integration tool at the INEEL for planning technology development.

Murphy, James Anthony; Olson, Arlin Leland

2001-02-01T23:59:59.000Z

240

Global Energy Technology Strategy: Addressing Climate Change Phase 2 Findings from an international Public-Private Sponsored Research Program  

DOE Green Energy (OSTI)

This book examines the role of global energy technology in addressing climate change. The book considers the nature of the climate change challenge and the role of energy in the issue. It goes on to consider the implications for the evolution of the global energy system and the potential value of technology availability, development and deployment. Six technology systems are identified for special consideration: CO2 capture and storage, Biotechnology, Hydrogen systems, Nuclear energy, Wind and solar energy, and End-use energy technologies. In addition, consideration is given to the role of non-CO2 gases in climate change as well as the potential of technology development and deployment to reduce non-CO2 emissions. Present trends in energy R&D are examined and potentially fruitful avenues for research. The book concludes with a set of key findings.

Edmonds, James A.; Wise, Marshall A.; Dooley, James J.; Kim, Son H.; Smith, Steven J.; Runci, Paul J.; Clarke, Leon E.; Malone, Elizabeth L.; Stokes, Gerald M.

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

National Aeronautics and Space Administration Space Technology RoadmapS STR  

E-Print Network (OSTI)

& Hybrid Cold/Warm Gas & Micro Non-Chemical Propulsion: Low-TRL Advanced Propulsion: ONGOING RESEARCH Orbital System Demo ISS EP&P Testbed FTD SEP DARPA NTP 25 klbf Demo 1MW Demo Fusion Flight 50 MW, 1 kg VASIMR VF-1000 NTR 25klbf Engine test Advanced Fission/Fusion Research

242

Geothermal Regulatory Roadmap Workshop at GRC | Open Energy Information  

Open Energy Info (EERE)

Roadmap Workshop at GRC Roadmap Workshop at GRC Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections GRR Project Review and Workshop Register for this Event The Geothermal Regulatory Roadmap project team will be holding a project review and summary workshop in Reno in early October. We are inviting all industry and agency personnel who have participated in this process, and any other interested parties to attend and continue to participate in this roadmapping process. Note that although this workshop is timed to be held during the GRC/GEA Conference and Tradeshow, this workshop is not part of that conference; therefore, conference registration is not required to attend the Regulatory Roadmapping workshop. From 10 AM to noon, come and view the permitting roadmaps from the 8 states

243

ECF-Europe-Roadmap 2050 | Open Energy Information  

Open Energy Info (EERE)

ECF-Europe-Roadmap 2050 ECF-Europe-Roadmap 2050 Jump to: navigation, search Name Europe - Roadmap 2050 Agency/Company /Organization European Climate Foundation Partner ClimateWorks Sector Energy Topics Low emission development planning, -Roadmap, Pathways analysis Resource Type Case studies/examples Website http://www.roadmap2050.eu/ Program End 2011 References Roadmap 2050[1] Europe - Roadmap 2050 Screenshot "The mission of Roadmap 2050 is to provide a practical, independent and objective analysis of pathways to achieve a low-carbon economy in Europe, in line with the energy security, environmental and economic goals of the European Union. The Roadmap 2050 project is an initiative of the European Climate Foundation (ECF) and has been developed by a consortium of experts

244

Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges  

SciTech Connect

The most stringent emission scenarios published by the Intergovernmental Panel on Climate Change (IPCC) would result in the stabilization of atmospheric carbon dioxide (CO2) at concentrations of approximately 550 ppm which would produce a global temperature increase of at least 2 C by 2100. Given the large uncertainties regarding the potential risks associated with this degree of global warming, it would be more prudent to stabilize atmospheric CO2 concentrations at or below current levels which, in turn, would require a greater than 20-fold reduction (i.e., ?95%) in per capita carbon emissions in industrialized nations within the next 50 to 100 years. Using the Kaya equation as a conceptual framework, this paper examines whether CO2 mitigation approaches such as energy efficiency improvements, carbon sequestration, and the development of carbon-free energy sources would be sufficient to bring about the required reduction in per capita carbon emissions without creating unforeseen negative impacts elsewhere. In terms of energy efficiency, large improvements (?5-fold) are in principle possible given aggressive investments in R&D and if market imperfections such as corporate subsidies are removed. However, energy efficiency improvements per se will not result in a reduction in carbon emissions if, as predicted by the IPCC, the size of the global economy has expanded 12-26 fold by 2100. Terrestrial carbon sequestration via reforestation and improved agricultural soil management has many environmental advantages but has only limited CO2 mitigation potential because the global terrestrial carbon sink (ca. 200 Gt C) is small relative to the size of fossil fuel deposits (?4000 Gt C). By contrast, very large amounts of CO2 can potentially be removed from the atmosphere via sequestration in geologic formations and oceans, but carbon storage is not permanent and is likely to create many unpredictable environmental consequences. Renewable solar energy can in theory provide large amounts of carbon-free power. However, biomass and hydroelectric energy can only be marginally expanded and large-scale solar energy installations (i.e., wind, photovoltaics, and direct thermal) are likely to have significant negative environmental impacts. Expansion of nuclear energy is highly unlikely due to concerns over reactor safety, radioactive waste management, weapons proliferation, and cost. In view of the serious limitations and liabilities of many proposed CO2 mitigation approaches it appears that there remain only few no-regrets options such as drastic energy efficiency improvements, extensive terrestrial carbon sequestration, and cautious expansion of renewable energy generation. These promising CO2 mitigation technologies have the potential to bring about the required 20-fold reduction in per capita carbon emission only if population and economic growth are halted without delay. Thus, addressing the problem of global warming requires not only technological research and development but also a reexamination of core values that mistakenly equate material consumption and economic growth to happiness and well-being.

Huesemann, Michael H.

2006-07-03T23:59:59.000Z

245

Electrical and Electronics Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

33This 33This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). Electrical and Electronics Technical Team Roadmap June 2013 HV Battery 120/220 V AC On-Board Battery Charger Bi-directional DC/DC Converter Electric Motor Inverter DC-DC

246

EPA's Liquefied Natural Gas Regulatory Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquefied Natural Gas Liquefied Natural Gas Regulatory Roadmap July 2006 EPA230-B-06-001 About this Roadmap Natural gas continues to play an important role in meeting our nation's growing energy needs. In 2005, natural gas accounted for 23% of our nation's total energy consumption. 1 The Department of Energy's Energy Information Administration (EIA) projects that domestic consumption of natural gas will continue to increase and that imports of liquefied natural gas (LNG) will meet much of the increased demand. 2 LNG, created when natural gas is converted into a liquid state by cooling it to a temperature close to negative 260°F, presents an efficient way to transport natural gas via ship from foreign production areas to the United States. The cooling process reduces the

247

Built-Environment Wind Turbine Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Built-Environment Wind Turbine Built-Environment Wind Turbine Roadmap J. Smith, T. Forsyth, K. Sinclair, and F. Oteri Technical Report NREL/TP-5000-50499 November 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Built-Environment Wind Turbine Roadmap J. Smith, T. Forsyth, K. Sinclair, and F. Oteri Prepared under Task No. WE11250 Technical Report NREL/TP-5000-50499 November 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

248

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

geothermal geothermal Type Term Title Author Replies Last Post sort icon Blog entry geothermal Geothermal Regulatory Roadmap featured on NREL Now Graham7781 5 Aug 2013 - 13:18 Blog entry geothermal GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry geothermal GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

249

Princeton Plasma Physics Lab - Fusion roadmapping  

NLE Websites -- All DOE Office Websites (Extended Search)

roadmapping The process of roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. en Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science http://www.pppl.gov/news/2013/09/premiere-issue-quest-magazine-details-pppls-strides-toward-fusion-energy-and-advances-0

250

FTT:Power : A global model of the power sector with induced technological change and natural resource depletion  

E-Print Network (OSTI)

. The decarbonisation of the global power system depends first and foremost on the rate at which highly emitting technologies based on fossil fuels can be substituted for cleaner ones. While fossil fueled electricity generation technologies are mature and well... determine the 90% confidence level, and the blue curve corresponds to the most probable set of values. Uncertainty in the determination of natural resource avail- ability is notable in the case of fossil fuel reserves and re- sources. Rogner (1997) paints a...

Mercure, Jean-Francois

2011-08-25T23:59:59.000Z

251

CO2 capture, reuse, and sequestration technologies for mitigating global climate change  

SciTech Connect

Fossil fuels currently supply over 85% of the world`s energy needs. They will remain in abundant supply well into the 21st century. They have been a major contributor to the high standard of living enjoyed by the industrialized world. We have learned how to extract energy from fossil fuels in environmentally friendly ways, controlling the emissions of NO{sub x}, S0{sub 2}, unburned hydrocarbons, and particulates. Even with these added pollution controls, the cost of fossil energy generated power keeps falling. Despite this good news about fossil energy, its future is clouded because of the environmental and economic threat posed by possible climate change, commonly referred to as the `greenhouse effect`. The major greenhouse gas is carbon dioxide (CO{sub 2}) and the major source of anthropogenic C0{sub 2} is combustio of fossil fuels. The potential impacts of global climate change are many and varied, though there is much uncertainty as to the timing and magnitude (Watson et al., 1996). Because of the potential adverse impacts, the world community has adopted the Framework Convention on Climate Change (see Box 1). The urgency of their work was recently underscored when the Intergovernmental Panel on Climate Change (IPCC) issued their Second Assessment Report which stated that `the balance of evidence suggests a discernible human influence on global climate`. The goal of stabilization of greenhouse gas emissions at their 1990 levels in the year 2000 will not be met by the vast majority of countries. Based on this experience, it is obvious that more aggressive technology responses are required if we want to control greenhouse gas emissions.

Herzog, H.J., MIT Energy Laboratory

1998-01-01T23:59:59.000Z

252

Energy and global warming impacts of CFC alternative technologies for foam building insulations  

Science Conference Proceedings (OSTI)

Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C0{sub 2} emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-09-01T23:59:59.000Z

253

Energy and global warming impacts of CFC alternative technologies for foam building insulations  

SciTech Connect

Chlorofluorocarbons (CFCS) have been used as blowing agents in foam insulation, as the working fluids in cooling and refrigeration equipment, and as solvents in general and precision cleaning applications since their introduction in the 1930s. The number of applications and volumes of CFCs used grew at a tremendous pace during the 1960s and 1970s, but in the mid-1980s it was confirmed that these extremely useful chemicals contribute to the destruction of stratospheric zone and that they are the primary cause of the CFCs have also been found to be second only to carbon dioxide as a factor causing increased greenhouse warming. These chemicals are being phased out of use rapidly to protect the ozone layer and it is very important that the replacements for CFCs do not result in a net increase in global warming by introducing less efficient processes that lead to higher energy use and increased carbon dioxide emissions. A study was conducted to identify those alternative chemicals and technologies that could replace CFCs in energy related applications before the year 2000, and to assess the total potential impact of those alternatives on global warming. The analysis for this project included an estimate of the direct effects from the release of blowing agents, refrigerants, and solvents into the atmosphere and the indirect effects of carbon dioxide emissions resulting from energy use for commercial and residential building insulation, household and commercial refrigeration, building and automobile air conditioning, and general metal and electronics solvent cleaning. This paper focuses on those aspects of the study relevant to building insulation. In general the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon alternatives for CFCs lead to large and sometimes dramatic reductions in total equivalent warming impact, lifetime equivalent C0{sub 2} emissions (TEWI). Most of the reductions result from decreased direct effects without significant changes in energy use.

Fischer, S.K.; Fairchild, P.D.; Hughes, P.J.

1992-01-01T23:59:59.000Z

254

Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies  

SciTech Connect

International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

Fischer, S.; Sand, J.; Baxter, V.

1997-12-01T23:59:59.000Z

255

Obama Administration Releases Roadmap for Solar Energy Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Roadmap for Solar Energy Development on Public Lands Obama Administration Releases Roadmap for Solar Energy Development on Public Lands July 24, 2012 - 4:00pm Addthis News...

256

Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science  

E-Print Network (OSTI)

Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT

Sheridan, Scott

257

Codes and Standards Research, Development and Demonstration Roadmap, May 2006  

Fuel Cell Technologies Publication and Product Library (EERE)

C&S RD&D Roadmap - 2008: This Roadmap is a guide to the Research, Development & Demonstration activities that will provide data required for Standards Development Organizations (SDOs) to develop perfo

258

United Technologies Corp | Open Energy Information  

Open Energy Info (EERE)

Technologies Corp Technologies Corp Jump to: navigation, search Name United Technologies Corp Place Hartford, Connecticut Zip CT 06101 Sector Hydro, Hydrogen Product UTC is a global technology corporation with activities in aerospace, aviation, helicopter design, climate control, elevator design and hydrogen fuel cells. Coordinates 41.763325°, -72.674069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.763325,"lon":-72.674069,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

IntelliGrid Smart Grid Roadmap Methodology and Lessons Learned  

Science Conference Proceedings (OSTI)

This white paper summarizes the key findings of the EPRI Smart Grid Roadmap Guidebook which synthesizes the results of the company-specific Smart Grid roadmaps developed by EPRI from 2007 to 2011. The reports major themes are the lessons learned and the methodologies used to develop the roadmaps.

2012-12-31T23:59:59.000Z

260

Roadmap to Secure Control Systems in the Energy Sector 2006- Presentation to the 2008 ieRoadmap Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Hank Kenchington on the 2006 roadmap to secure control systems in the energy sector at the ieRoadmap Workshop in Chicago, May 28-29, 2008.

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Global Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Global Energy Inc Place Cincinnati, Ohio Zip 45202-4048 Sector Hydro, Hydrogen Product Gasification technology and engineering firm, with activities in hydrogen production and Integrated Gasification Combined Cycle (IGCC) facilities. Coordinates 39.106614°, -84.504552° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.106614,"lon":-84.504552,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Global Clean Energy | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Clean Energy Jump to: navigation, search Name Global Clean Energy Place Denver, Colorado Zip 80231 Sector Biofuels Product Denver-based waste-to-energy and waste-to-biofuels technology developer. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Vehicle Technologies Office: Partnership Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

objectives, and milestones. U.S. DRIVE Technology Roadmaps Roadmap and Technical White Papers Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last...

264

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, nonbinding, and nonlegal

265

ORNL_TM360_Concrete_NDE_Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 60 Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap September 2012 Prepared by Dwight Clayton Michael Hileman DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.gov Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

266

ECF-Poland-Roadmap 2050 | Open Energy Information  

Open Energy Info (EERE)

ECF-Poland-Roadmap 2050 ECF-Poland-Roadmap 2050 Jump to: navigation, search Name ECF-Poland-Roadmap 2050 Agency/Company /Organization European Climate Foundation Sector Energy Focus Area Non-renewable Energy, Buildings, Buildings - Commercial, Buildings - Residential, Transportation Topics Low emission development planning, -Roadmap Website http://www.roadmap2050.eu/ Country Poland Eastern Europe References ECF-Poland-Roadmap 2050[1] "The roadmap will concentrate on those sectors that are key for low-carbon transition: Initial analysis for the overall economy including buildings and transport to figure out the role played by the power sector in providing for this demand. First phase will look at technical scenarios for the power system including generation grid, efficiency and demand side management

267

Microsoft Word - ieRoadmap Workshop_FINAL.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap Goals First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap Goals On May 28-29, 2008, the first ieRoadmap Workshop was held to assist the energy sector in assessing alignment of current industry projects with the goals outlined in the Roadmap to Secure Control Systems in the Energy Sector. Held in Chicago, Illinois, the workshop was sponsored by the Energy Sector Control Systems Working Group (ESCSWG), made up of private sector and government leaders working to facilitate and guide the implementation of the Roadmap Approximately 50 participants, including asset owners, project leaders, vendors, researchers, and program managers, attended the two-day workshop. Project leads from 25 industry projects focusing on securing energy control systems presented their research

268

A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Roadmap to Deploy New Nuclear Power Plants in the United States A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report The objective of this document is to provide the Department of Energy (DOE) and the nuclear industry with the basis for a plan to ensure the availability of near-term nuclear energy options that can be in operation in the U.S. by 2010. This document identifies the technological, regulatory, and institutional gaps and issues that need to be addressed for new nuclear plants to be deployed in the U.S. in this timeframe. It also identifies specific designs that could be deployed by 2010, along with the actions and resource requirements that are needed to ensure their

269

A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Roadmap to Deploy New Nuclear Power Plants in the United States A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report The objective of this document is to provide the Department of Energy (DOE) and the nuclear industry with the basis for a plan to ensure the availability of near-term nuclear energy options that can be in operation in the U.S. by 2010. This document identifies the technological, regulatory, and institutional gaps and issues that need to be addressed for new nuclear plants to be deployed in the U.S. in this timeframe. It also identifies specific designs that could be deployed by 2010, along with the actions and resource requirements that are needed to ensure their

270

Scientists meet to chart roadmap to fusion | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists meet to chart roadmap to fusion Scientists meet to chart roadmap to fusion By John Greenwald October 12, 2012 Tweet Widget Facebook Like Google Plus One The crucial next steps on the roadmap to developing fusion energy will be the focus of more than 70 top fusion scientists and engineers from around the world who will gather at the University of California-Los Angeles (UCLA) this month. The Oct. 15-18 session will kick off a series of annual workshops under the auspices of the International Atomic Energy Agency (IAEA) that will address key scientific and technological challenges facing countries developing fusion as a source of clean and abundant energy for producing electricity. "There's nothing like face-to-face talk and presentations to help people resolve common challenges," said Hutch Neilson, who directs advanced

271

Government and Industry a Force for Collaboration at the Energy Roadmap Update Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industry A Force for Collaboration at the Energy Roadmap Update Workshop and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Sept. 16, 2009 Energy sector leaders in the public and private sectors have once again come together to identify high- priority collaborative actions that will further secure control systems in the electric, oil, and natural gas sectors. More than 80 asset owners and operators, researchers, technology developers, security specialists, equipment vendors, and government stakeholders joined forces at a workshop to help update the Roadmap to Secure Control Systems in the Energy Sector on Sept. 2-3 in La Jolla, CA. Hosted by the Energy Sector Control Systems Working Group, the workshop was supported by the DOE Office of Electricity Delivery and Energy Reliability (OE).

272

Roadmap to the Project: Experiments List  

NLE Websites -- All DOE Office Websites (Extended Search)

List of Experiments Plutonium Injection PI-1. Plutonium Injection Studies DURING 1945 TO 1947, 18 persons were injected with amounts of plutonium at the Manhattan Engineer District Hospital in Oak Ridge, Tennessee, (1 patient), at Strong Memorial Hospital in Rochester, New York (11 patients), at Billings Hospital of the University of Chicago (3 patients), and at the University Hospital of the University of California in San Francisco (3 patients). Excreta were obtained from patients and sent to Los Alamos for plutonium analysis. These data were used to establish mathematical equations describing plutonium excretion rates. This research was funded by the Manhattan Engineer District; follow-up studies were supported by the U.S. Atomic Energy Commission and the U.S. Energy Research and Development Administration. (This experiment was referenced in the Markey report and included in The DOE Roadmap of February 1995.)

273

Roadmap to the Project: Oral Histories  

NLE Websites -- All DOE Office Websites (Extended Search)

Search HREX Multimedia Related Sites Feedback Search HREX Multimedia Related Sites Feedback DOE Roadmap Experiments List Oral Histories Records Series Descriptions Overview Documents Declassified Documents Project Events ACHRE Report Uranium Miners Resources Building Public Trust Department of Defense Report Human Radiation Experiments Oral Histories Health Physicist William J. Bair, Ph.D. covers the University of Rochester's radiation biology program; Bair's radionuclide inhalation research at Hanford Site; and his management of Hanford's Biology Department and Life Sciences Program. Biochemist Waldo E. Cohn, Ph.D. covers Cohn's wartime work as Biochemistry Group leader at the University of Chicago's Metallurgical Laboratory and his tenure at Oak Ridge National Laboratory, where he helped shape America's postwar isotope production and distribution policy.

274

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Coordinating Permit Office Coordinating Permit Office Type Term Title Author Replies Last Post sort icon Blog entry Coordinating Permit Office GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry Coordinating Permit Office GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

275

Depleted Uranium Hexafluoride Materials Use Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 U.S. Department of Energy DUF 6 MATERIALS USE ROADMAP Edited by: M. Jonathan Haire Allen G. Croff August 27, 2001 DUF 6 Materials Use Workshop Participants August 24-25, 1999 Name Organization Halil Avci ANL Bob Bernero Consultant Lavelle Clark PNNL Carl Cooley DOE/EM-50 Allen Croff ORNL Juan Ferrada ORNL Charles Forsberg ORNL John Gasper ANL Bob Hightower ORNL Julian Hill PNNL Ed Jones LLNL Asim Khawaja PNNL George Larson Consultant Paul Lessing INEEL Dan O'Connor ORNL Robert Price DOE/NE-30 Nancy Ranek ANL Mark Senderling DOE/RW-46 Roger Spence ORNL John Tseng DOE/EM-21 John Warren DOE/NE-30 Ken Young LLNL iii CONTENTS ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . .

276

Research and Development Roadmap for Water Heating Technologies  

Science Conference Proceedings (OSTI)

Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

2011-10-01T23:59:59.000Z

277

Roadmap: Systems/Industrial Engineering Technology Associate of Applied Science  

E-Print Network (OSTI)

Manufacturing Processes 3 COMM 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Notes Semester One: [17 Credit Hours] IERT 22010 Computer Integrated Manufacturing 3 MERT 12000 MATH 11022 Trigonometry 3 Fulfills Kent Core Additional for bachelor's degree Semester Three: [16

Sheridan, Scott

278

Roadmap: Mechanical Engineering Technology Systems Associate of Applied Science  

E-Print Network (OSTI)

Credit Hours] IERT 22010 Computer Integrated Manufacturing 3 MERT 12000 Engineering Drawing 3 CS 10061 Reasoning MATH 11022 Trigonometry 3 Fulfills Kent Core Additional for bachelor's degree Semester Three: [17 Credit Hours] EERT 22014 Microprocessors and Robotics 3 MERT 12004 Manufacturing Processes 3 Technical

Sheridan, Scott

279

Observations on A Technology Roadmap for Generation IV Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to...

280

CONTEXTUAL ROADMAP: Policy Institute Visibility, Presence, Impact  

E-Print Network (OSTI)

. STIP: Program in Science, Technology, and Innovation Policy (joint effort of EI2 and School of Public

Li, Mo

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

U.S. National Hydrogen Energy Roadmap | Open Energy Information  

Open Energy Info (EERE)

U.S. National Hydrogen Energy Roadmap U.S. National Hydrogen Energy Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: U.S. National Hydrogen Energy Roadmap Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Hydrogen Resource Type: Guide/manual Website: hydrogendoedev.nrel.gov/pdfs/national_h2_roadmap.pdf References: U.S. National Hydrogen Energy Roadmap[1] Overview "This Roadmap is neither a government research and development plan nor an industrial commercialization plan. Rather, it explores the wide range of activities required to realize hydrogen's potential in solving U.S. energy security, diversity, and environmental needs. It is intended to inspire the organizations that invest in hydrogen energy systems-public

282

Category:Geothermal Regulatory Roadmap Sections | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal Regulatory Roadmap Sections Jump to: navigation, search GRR-logo.png Looking for the Geothermal Regulatory Roadmap? Click here for a user-friendly list of Geothermal Regulatory Roadmap pages. Add.png Add a Section Pages in this category are created or edited using the RRSection form. Subcategories This category has the following 2 subcategories, out of 2 total. R [×] Regulatory Roadmap Overview Sections‎ 22 pages [×] Regulatory Roadmap State Sections‎ 362 pages Pages in category "Geothermal Regulatory Roadmap Sections" The following 200 pages are in this category, out of 432 total. (previous

283

Category:Regulatory Roadmap State Sections | Open Energy Information  

Open Energy Info (EERE)

Regulatory Roadmap State Sections Regulatory Roadmap State Sections Jump to: navigation, search GRR-logo.png Looking for the Geothermal Regulatory Roadmap? Click here for a user-friendly list of Geothermal Regulatory Roadmap pages. This is the Regulatory Roadmap State Sections category. Add.png Add an Section Pages in category "Regulatory Roadmap State Sections" The following 200 pages are in this category, out of 339 total. (previous 200) (next 200) G GRR/Section 1-AK-a - Land Use Considerations GRR/Section 1-CA-a - State Land Use Planning GRR/Section 1-HI-a - Land Use Considerations GRR/Section 1-ID-a - Land Use Considerations GRR/Section 1-MT-a - Land Use Considerations GRR/Section 1-NV-a - State Land Use Planning GRR/Section 1-OR-a - Land Use Considerations GRR/Section 11-AK-a - State Cultural Considerations

284

Research, Development, and Demonstration Roadmap for Deep Borehole Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research, Development, and Demonstration Roadmap for Deep Borehole Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to advance deep borehole disposal (DBD) from its current conceptual status to potential future deployment as a disposal system for spent nuclear fuel (SNF) and high-level waste (HLW). The objectives of the DBD RD&D roadmap include providing the technical basis for fielding a DBD demonstration project, defining the scientific research activities associated with site characterization and postclosure safety, as well as defining the engineering demonstration activities associated with deep borehole drilling, completion, and surrogate waste canister emplacement. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

285

Idaho National Engineering Laboratory installation roadmap assumptions document. Revision 1  

SciTech Connect

This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL.

Not Available

1993-05-01T23:59:59.000Z

286

International Workshop: MFE Roadmapping in the ITER Era | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

Princeton University Princeton, NJ International Workshop: MFE Roadmapping in the ITER Era Princeton University Princeton, NJ Host: G.H. Neilson Coordinator: Pamela Hampton...

287

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research...

288

Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

- May 2006 - August 2007 Scope of work Scope of work * Roadmap - Document CNG and LNG infrastructure development to date, assess critical factors, define challenges and...

289

Roadmap to Secure Control Systems in the Energy Sector 2006 ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Energy Sector More Documents & Publications Security is Not an Option DOE National SCADA Test Bed Program Multi-Year Plan Roadmap to Achieve Energy Delivery Systems...

290

U.S. Life Cycle Inventory Database Roadmap (Brochure)  

NLE Websites -- All DOE Office Websites (Extended Search)

LIFE CYCLE INVENTORY DATABASE ROADMAP rsed e Goals of the U.S. LCI Database Project * Maintain data quality and transparency. * Cover commonly used materials, products, and...

291

NREL: News - NREL Releases New Roadmap to Reducing Solar PV ...  

NLE Websites -- All DOE Office Websites (Extended Search)

113 NREL Releases New Roadmap to Reducing Solar PV "Soft Costs" by 2020 September 25, 2013 The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) recently issued...

292

DOE Hydrogen and Fuel Cells Program: Program Plans, Roadmaps...  

NLE Websites -- All DOE Office Websites (Extended Search)

Roadmaps, and Vision Documents Program Records Annual Progress Reports Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities...

293

Roadmap to the Project: Experiments List  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Chicago - Argonne Cancer Research Hospital University of Chicago - Argonne Cancer Research Hospital UC-1. Chromium-51 and Iron-59 Used to Study Red Blood-Cell Production STUDIES WERE CARRIED OUT in the early 1950s at the Argonne Cancer Research Hospital to determine the rate of red cell production and destruction in healthy and anemic subjects. Two to 4 microcuries of iron-59 (Fe59) were added to 20 milliliters of plasma and injected into the arms of the subjects. Several days after the administration of the Fe59, the procedure was repeated using chromium-51 (Cr51)Blabeled plasma. The subjects were six healthy individuals and two anemic individuals. The combined use of Cr51 and Fe59 provided an indicator of red cell survival and total blood volume in humans. This work was carried out under a contract between the Office of the Surgeon General, the United States Army, and the Department of Medicine of the University of Chicago. The U.S. Atomic Energy Commission provided funding to the Argonne Cancer Research Hospital through the University of Chicago, its operating contractor. (Included in The DOE Roadmap of February 1995)

294

Roadmap to the Project: Experiments List  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Brookhaven National Laboratory BNL-1. Effectiveness of Iodine-131 in Diagnosing and Treating Graves = Disease and Metastatic Carcinoma of the Thyroid IN 1950, BROOKHAVEN National Laboratory conducted a study on the use of iodine-131 (I131) to treat patients with metastatic carcinoma of the thyroid or with Graves=disease. Patients for the study were sent to Brookhaven from Memorial Hospital in New York City. In the study, a therapeutic dose of 4 to 360 millicuries of I131 was given to the patients; the exact dose depended in part on the number of metastases and on previous radiation treatment. Graves=disease patients who were unsuitable for surgical therapy were treated with I131 in doses of 6 to 20 millicuries. The patients were monitored for hematological damage. Metabolic studies were also conducted, including study of the effects of radiation dose on renal tubular function. Twelve patients participated in the study, ranging in age from 15 to 63 years. Of the 12 patients, 8 were female. The study was conducted in conjunction with the Memorial Hospital and was funded by the U.S. Atomic Energy Commission. (Included in The DOE Roadmap of February 1995)

295

Codes and Standards Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Feasibility assessments of technologies and analytic techniques for wide- area and remote sensing of hydrogen need to be conducted. Such assessments could include low-cost...

296

Roadmap for Agriculture Biomass Feedstock Supply in the United States  

SciTech Connect

The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nations power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the countrys current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: Biomass Availability By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee Sustainability Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner Feedstock Infrastructure An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets System Profitability Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply processproduction, harvesting and collection, storage, preprocessing, system integration, and transportationthis roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

2003-11-01T23:59:59.000Z

297

The ETK model| Emotional, technology, and knowledge competency effects on global soccer fan satisfaction.  

E-Print Network (OSTI)

?? This study was designed to investigate emotional (E), technology (T), and knowledge (K) competencies of the Fdration Internationale de Football Association (FIFA); specifically how (more)

Cardenas Cano, Miguel Angel

2012-01-01T23:59:59.000Z

298

Microsoft Word - SG_Roadmap_9-16.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Roadmap for Smart Grid Roadmap for the State of New York September 15, 2010 Table of Contents New York State Smart Grid Consortium September 2010 i 1 Introduction ............................................................................................................................ 1 2 Executive Summary ............................................................................................................... 3 3 The Consortium Smart Grid Vision ........................................................................................ 8 4 Energy Plan Objectives and Smart Grid Priorities ............................................................... 15 5 Smart Grid Economics .........................................................................................................

299

Category:Regulatory Roadmap Federal Sections | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Regulatory Roadmap Federal Sections Jump to: navigation, search GRR-logo.png Looking for the Geothermal Regulatory Roadmap? Click here for a user-friendly list of Geothermal Regulatory Roadmap pages. This is the Regulatory Roadmap Federal Sections category. Add.png Add an Section Pages in category "Regulatory Roadmap Federal Sections" The following 48 pages are in this category, out of 48 total. G GRR/Section 1-FD-a - Land Use Planning Process GRR/Section 1-FD-b - Land Use Plan Amendment Process GRR/Section 11-FD-a - NHPA Section 106 - Resource Survey GRR/Section 11-FD-b - Tribal Consultation GRR/Section 11-FD-c - NHPA Section 106 - Effects Assessment GRR/Section 11-FD-d - NHPA Section 106 - Consultation

300

Category:Geothermal Regulatory Roadmap Elements | Open Energy Information  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Elements Geothermal Regulatory Roadmap Elements Jump to: navigation, search GRR-logo.png Looking for the Geothermal Regulatory Roadmap? Click here for a user-friendly list of Geothermal Regulatory Roadmap pages. Add.png Add an Element Pages in this category are created or edited using the RRElement form. Pages in category "Geothermal Regulatory Roadmap Elements" The following 40 pages are in this category, out of 40 total. 1 GRR/Elements/14-CA-b.1 - NPDES Permit Application GRR/Elements/14-CA-b.10 - Did majority of RWQCB approve the permit GRR/Elements/14-CA-b.11 - EPA Review of Adopted Permit GRR/Elements/14-CA-b.12 - Were all EPA objections resolved GRR/Elements/14-CA-b.13 - NPDES Permit issued GRR/Elements/14-CA-b.2 - Review of application for completeness

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Category:Regulatory Roadmap Properties | Open Energy Information  

Open Energy Info (EERE)

Regulatory Roadmap Properties Regulatory Roadmap Properties Jump to: navigation, search Properties used in the Geothermal Regulatory Roadmap. Pages in category "Regulatory Roadmap Properties" The following 15 pages are in this category, out of 15 total. E Property:EstimatedTime Property:EstimatedTimeExplained G Property:GRR/ActionableEntity Property:GRR/ActionableEntityType Property:GRR/BestPractices G cont. Property:GRR/ContactAgency Property:GRR/Elements Property:GRR/ElementType Property:GRR/ParentElement Property:GRR/PotentialRoadblocks G cont. Property:GRR/Regulation Property:GRR/SectionCode Property:GRR/SectionNumber Property:GRR/SubsectionElementNumber R Property:Reference Retrieved from "http://en.openei.org/w/index.php?title=Category:Regulatory_Roadmap_Properties&oldid=419537

302

Idaho National Engineering Laboratory installation roadmap document. Revision 1  

SciTech Connect

The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

1993-05-30T23:59:59.000Z

303

Roadmap to Achieve Energy Delivery Systems Cybersecurity - 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Achieve Energy Delivery Systems Cybersecurity - 2011 Roadmap to Achieve Energy Delivery Systems Cybersecurity - 2011 Roadmap to Achieve Energy Delivery Systems Cybersecurity - 2011 As part of the Obama Administration's goals to enhance the security and reliability of the Nation's energy infrastructure, the U.S. Department of Energy released the 2011 Roadmap to Achieve Energy Delivery Systems Cybersecurity. Developed as an update to the 2006 Roadmap to Secure Control Systems in the Energy Sector, the report outlines a strategic framework over the next decade among industry, vendors, academia and government stakeholders to design, install, operate, and maintain a resilient energy delivery system capable of surviving a cyber incident while sustaining critical functions. Developed by the Energy Sector Control Systems Working Group, a partnership

304

Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project  

Science Conference Proceedings (OSTI)

Global Land Ice Measurements from Space (GLIMS) is an international consortium established to acquire satellite images of the world's glaciers, analyze them for glacier extent and changes, and to assess these change data in terms of forcings. The consortium ... Keywords: Database, Glaciers, Open-source GIS, Remote sensing

Bruce Raup; Andreas Kb; Jeffrey S. Kargel; Michael P. Bishop; Gordon Hamilton; Ella Lee; Frank Paul; Frank Rau; Deborah Soltesz; Siri Jodha Singh Khalsa; Matthew Beedle; Christopher Helm

2007-01-01T23:59:59.000Z

305

21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS The 21 st Century Truck Partnership would like to acknowledge the time and resource investment that all our partners have made in developing this roadmap and technical white paper document, and in remaining committed to the goals and objectives outlined herein. We would also like to extend our appreciation to the industry and government teams that produced the individual technical white papers, and the leaders of those teams who are listed below. Engines: Ron Graves (Oak Ridge National Laboratory) with Dennis Siebers (Sandia National Laboratories) Hybrids: Terry Penney (National Renewable Energy Laboratory) Parasitic Losses: Jud Virden (Pacific Northwest National Laboratory) Idle Reduction: Glenn Keller (Argonne National Laboratory)

306

Broadening Uses Put MEMS Technology on the Map(s)  

Science Conference Proceedings (OSTI)

... Industry roadmaps are forecasts of technology advances and processing improvements necessary to sustain progress in enhancing the ...

2011-10-03T23:59:59.000Z

307

2008 High-Megawatt Power Converter Technology R&D ...  

Science Conference Proceedings (OSTI)

... 2008 High-Megawatt Power Converter Technology R&D Roadmap Workshop. NIST, Gaithersburg, MD. April 8, 2008. On ...

2013-05-30T23:59:59.000Z

308

Global Assessment of Hydrogen Technologies Task 6 Report Promoting a Southeast Hydrogen Consortium  

SciTech Connect

The purpose of this project task was to establish a technical consortium to promote the deployment of hydrogen technologies and infrastructure in the Southeast. The goal was to partner with fuel cell manufacturers, hydrogen fuel infrastructure providers, electric utilities, energy service companies, research institutions, and user groups to improve education and awareness of hydrogen technologies in an area that is lagging behind other parts of the country in terms of vehicle and infrastructure demonstrations and deployments. This report documents that effort.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.

2007-12-01T23:59:59.000Z

309

SO x-NO x-Rox Box TM Technology Review and Global Commercial Opportunities  

E-Print Network (OSTI)

The SO x-NO x-Rox Box TM or SNRB TM process is a combined sulfur dioxide (SO x or SO 2), nitrogen oxides (NO x) and particulate (Rox) emissions control technology developed by Babcock & Wilcox (B&W) in which high removal efficiencies for all three pollutants are achieved in a high-temperature baghouse. A 5 MW e equivalent demonstration of the technology co-sponsored by the U.S.

R. Martinelli; Babcock Wilcox; J. B. Doyle; Babcock Wilcox; K. E. Redinger; Babcock Wilcox

1995-01-01T23:59:59.000Z

310

Roadmap for Testing and Validation of Electric Vehicle Communication Standards  

SciTech Connect

Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

2012-07-12T23:59:59.000Z

311

Idaho National Engineering Laboratory Waste Management Operations Roadmap Document  

SciTech Connect

At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

Bullock, M.

1992-04-01T23:59:59.000Z

312

Empirical support for global integrated assessment modeling: Productivity trends and technological change in developing countries' agriculture and electric power sectors  

Science Conference Proceedings (OSTI)

Integrated assessment (IA) modeling of climate policy is increasingly global in nature, with models incorporating regional disaggregation. The existing empirical basis for IA modeling, however, largely arises from research on industrialized economies. Given the growing importance of developing countries in determining long-term global energy and carbon emissions trends, filling this gap with improved statistical information on developing countries' energy and carbon-emissions characteristics is an important priority for enhancing IA modeling. Earlier research at LBNL on this topic has focused on assembling and analyzing statistical data on productivity trends and technological change in the energy-intensive manufacturing sectors of five developing countries, India, Brazil, Mexico, Indonesia, and South Korea. The proposed work will extend this analysis to the agriculture and electric power sectors in India, South Korea, and two other developing countries. They will also examine the impact of alternative model specifications on estimates of productivity growth and technological change for each of the three sectors, and estimate the contribution of various capital inputs--imported vs. indigenous, rigid vs. malleable-- in contributing to productivity growth and technological change. The project has already produced a data resource on the manufacturing sector which is being shared with IA modelers. This will be extended to the agriculture and electric power sectors, which would also be made accessible to IA modeling groups seeking to enhance the empirical descriptions of developing country characteristics. The project will entail basic statistical and econometric analysis of productivity and energy trends in these developing country sectors, with parameter estimates also made available to modeling groups. The parameter estimates will be developed using alternative model specifications that could be directly utilized by the existing IAMs for the manufacturing, agriculture, and electric power sectors.

Sathaye, Jayant A.

2000-04-01T23:59:59.000Z

313

Web services roadmap: The Semantic Web perspective  

E-Print Network (OSTI)

Recently the field of Web services has gained focus both in industry and academia. While industry has been mostly interested in standardisation and promotion of the technology, academia has been looking for ways to fit the technology into other frameworks, such as the Semantic Web. Anyway, despite of the increased academic and commercial interest to Web services, there are currently only few case studies available about Web services in the Semantic Web context. Moreover, according to authors knowledge, there is no publicly available study analysing which data is currently mostly provided/required by Web services. In this paper we target these shortcomings by providing a case study of semantically annotated commercial and governmental Web services. We analyse interaction and potential synergy between commercial and governmental Web services. Also the role ontologies for semantic integration of Web services is analysed. Moreover, we identify the most common data exploited by current Web services. 1

Peep Kngas

2006-01-01T23:59:59.000Z

314

Roadmap to Secure Control Systems in the Energy: Executive Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foreword Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and government to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors over the next ten years. The Roadmap provides a strategic framework for guiding industry and government efforts based on a clear vision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. A distinctive feature of this collaborative effort is the active involvement and leadership of energy asset owners and operators in developing the Roadmap content and priorities. The Roadmap synthesizes

315

Roadmap to Secure Control Systems in the Energy Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap Roadmap to Secure Control Systems in the Energy Sector -  - Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improing cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and goernment to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors oer the next ten years. The Roadmap proides a strategic framework for guiding industry and goernment efforts based on a clear ision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. A distinctie feature of this collaboratie effort is the actie inolement and leadership of energy asset

316

Recent content in Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Recent content in Geothermal Regulatory Roadmap Recent content in Geothermal Regulatory Roadmap Home Name Post date sort icon Type Welcome! Kyoung 15 Jul 2012 - 20:33 Blog entry GRR Informational Presentations Kyoung 17 Jul 2012 - 09:35 Blog entry Thoughts after the Geothermal Regulatory Roadmap Advisory Meeting Twnrel 23 Jul 2012 - 11:51 Blog entry Town Hall Meeting August 6th, 2012 Wzeng 30 Jul 2012 - 14:37 Event Nevada Meeting #2 - Regulatory Issues Kyoung 2 Aug 2012 - 18:43 Blog entry Hawai'i Meeting #1 - Flowchart Development Kyoung 2 Aug 2012 - 22:34 Blog entry Hawai'i Meeting #2 Kwitherbee 12 Aug 2012 - 21:07 Blog entry Alaska Meeting #1 Kwitherbee 12 Aug 2012 - 21:38 Blog entry Idaho Meeting #1 Kwitherbee 27 Aug 2012 - 14:52 Blog entry Cultural Roadmap Meeting Kyoung 31 Aug 2012 - 08:05 Blog entry

317

Designing and Communicating Low Carbon Energy Roadmaps for Small Island  

Open Energy Info (EERE)

Designing and Communicating Low Carbon Energy Roadmaps for Small Island Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Jump to: navigation, search Name Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Agency/Company /Organization World Watch Institute Partner International Climate Initiative Sector Climate, Energy Focus Area Renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Solar, Wind Topics Co-benefits assessment, - Macroeconomic, Finance, GHG inventory, Low emission development planning, -LEDS, -Roadmap, Policies/deployment programs, Resource assessment Website http://www.worldwatch.org/ener Program Start 2011 Program End 2013 Country Dominican Republic, Haiti, Jamaica

318

Category:Geothermal Regulatory Roadmap Flowcharts | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal Regulatory Roadmap Flowcharts Jump to: navigation, search GRR-logo.png Looking for the Geothermal Regulatory Roadmap? Click here for a user-friendly list of Geothermal Regulatory Roadmap flowcharts. Media in category "Geothermal Regulatory Roadmap Flowcharts" The following 200 files are in this category, out of 438 total. (previous 200) (next 200) 0 - OverallFlow-1.pdf 0 - OverallFlow-1.pdf 32 KB 01-FD-a - LandUsePlanning.pdf 01-FD-a - LandUsePlann... 124 KB 01-FD-b - LandUsePlanAmendmentProcess.pdf 01-FD-b - LandUsePlanA... 136 KB 01AKALandUseConsiderations.pdf

319

Category:Regulatory Roadmap Overview Sections | Open Energy Information  

Open Energy Info (EERE)

Sections Sections Jump to: navigation, search GRR-logo.png Looking for the Geothermal Regulatory Roadmap? Click here for a user-friendly list of Geothermal Regulatory Roadmap pages. This is the Regulatory Roadmap Overview Sections category. Add.png Add an Section Pages in category "Regulatory Roadmap Overview Sections" The following 22 pages are in this category, out of 22 total. G GRR/Section 1 - Land Use Overview GRR/Section 10 - On-Site Evaluation Process GRR/Section 11 - Cultural Resource Assessment GRR/Section 12 - Flora & Fauna Resource Assessment Process GRR/Section 13 - Land Use Assessment Process GRR/Section 14 - Water Resource Assessment GRR/Section 15 - Air Quality Assessment Process GRR/Section 16 - Geological Resources Assessment Process G cont.

320

Upcoming Roadmap meeting at the GRC | OpenEI Community  

Open Energy Info (EERE)

Upcoming Roadmap meeting at the GRC Upcoming Roadmap meeting at the GRC Home > Groups > Geothermal Regulatory Roadmap Twnrel's picture Submitted by Twnrel(12) Member 27 September, 2012 - 09:58 It's crunch time preparing for the Geothermal Regulatory Roadmap session next Tuesday at the GRC. Brochures have been in preparation, thousands of hard copies (it hurts to say that given how digital everything else is on the project but there is still a role for paper products in the world) and a whole lot of pizza and caffeine. All the products are in great shape and I expect to have an excellent meeting at the GRC. The current draft agenda is attached. The team members are all listed elsewhere on the web site, and I want to extend my thanks to everyone involved. Great job. Files: application/pdf icon agenda.pdf

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Integrating the Integrators - A Roadmap to Success  

SciTech Connect

The U.S. Department of Energy Environmental Management's (DOE-EM) investments in science and technology, as well as science and technology investments associated with other parts of the DOE are aimed at meeting the Departments cleanup goals. These investments, primarily focused on EM's cleanup mission, comprise the Environmental Quality Research and Development (R&D) portfolios. Synchronizing EM's Cleanup Project Managers (operations facility and process owners throughout the DOE complex) operational needs with EM R&D including the extensive work of the six Focus Areas (major thrust areas within DOE-EM) has been a continuing challenge. This recent initiative to better integrate the R&D program is in response to evolving needs within the Department to apply proven system engineering methods to clarify requirements and define EM's process to effectively orchestrate their R&D Program. To optimize this partnership, DOE-EM's Integration Program is successfully unifying the operational needs with the R&D as described in this paper.

Olson, Craig Stott; Conner, Craig C

1999-03-01T23:59:59.000Z

322

Integrating the Integrators - A Roadmap to Success  

SciTech Connect

The U.S. Department of Energy Environmental Management's (DOE-EM) investments in science and technology, as well as science and technology investments associated with other parts of the DOE are aimed at meeting the Departments cleanup goals. These investments, primarily focused on EM's cleanup mission, comprise the Environmental Quality Research and Development (R&D) portfolios. Synchronizing EM's Cleanup Project Managers (operations facility and process owners throughout the DOE complex) operational needs with EM R&D including the extensive work of the six Focus Areas (major thrust areas within DOE-EM) has been a continuing challenge. This recent initiative to better integrate the R&D program is in response to evolving needs within the Department to apply proven systems engineering methods to clarify requirements and define EM's process to effectively orchestrate their R&D Program. To optimize this partnership, DOE-EM's Integration Program is successfully unifying the operational needs with the R&D as described in this paper.

C. Conner; C. Olson

1999-02-01T23:59:59.000Z

323

DOE Hydrogen and Fuel Cells Program: Roadmaps and R&D Status  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships Roadmaps and R&D Status Cooperative R&D Projects U.S. Department of Energy Search help Home > International > Roadmaps Printable Version Roadmaps and R&D Status Many...

324

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials  

DOE Green Energy (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing materials. Transportation regulations prohibit shipment of explosives and radioactive materials together. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials (NM), and spent nuclear fuels (SNF) programs within DOEs Environmental Management (EM) organization to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This "program level" roadmapping involves linking technology development (and deployment) efforts to the programs needs and requirements for dispositioning the material/waste that generates combustible gas through radiolysis and chemical decomposition. The roadmapping effort focused on needed technical & programmatic support to the baselines (and to alternatives to the baselines) where the probability of success is low (i.e., high uncertainty) and the consequences of failure are relatively high (i.e., high programmatic risk). A second purpose for roadmapping was to provide the basis for coordinating sharing of "lessons learned" from research and development (R&D) efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues.

Luke, Dale Elden; Rogers, Adam Zachary; Hamp, S.

2001-03-01T23:59:59.000Z

325

Microsoft Word - SSL Roadmap Full_092302.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Emitting Diodes (LEDs) for Emitting Diodes (LEDs) for General Illumination A A N N O O I I D D A A T T E E C C H H N N O O L L O O G G Y Y R R O O A A D D M M A A P P U U P P D D A A T T E E 2 2 0 0 0 0 2 2 Including Tutorial Source Material October 2002 Sponsored by: Optoelectronics Industry Development Association (OIDA) National Electrical Manufacturers Association (NEMA) Department of Energy - Office of Building Technology, State and Community Programs Edited by: Jeff Y. Tsao, Sandia National Laboratories Published by: OIDA Member Use Only  OIDA Copyright 2002 Optoelectronics Industry Development Association All data contained in this report is proprietary to OIDA and may not be distributed in either original or reproduced form to anyone outside the client's internal organization without prior written permission of the Optoelectronics

326

Department of Energy Releases New Roadmap to Guide Public-Private...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Guide Public-Private Cybersecurity Initiatives Department of Energy Releases New Roadmap to Guide Public-Private Cybersecurity Initiatives September 15, 2011 - 4:28pm...

327

Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)  

Science Conference Proceedings (OSTI)

The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) was established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.

Eipeldauer, Mary D [ORNL; Shelander Jr, Bruce R [ORNL

2012-01-01T23:59:59.000Z

328

Will Progress in Science and Technology Avert or Accelerate Global Collapse? A Critical Analysis and Policy Recommendations  

Science Conference Proceedings (OSTI)

Industrial society will move towards collapse if its total environmental impact (I), expressed either in terms of energy and materials use or in terms of pollution, increases with time, i.e., dI/dt > 0. The traditional interpretation of the I=PAT equation reflects the optimistic belief that technological innovation, particularly improvements in eco-efficiency, will significantly reduce the technology (T) factor, and thereby result in a corresponding decline in impact (I). Unfortunately, this interpretation of the I=PAT equation ignores the effects of technical change on the other two factors: population (P) and per capita affluence (A). A more heuristic formulation of this equation is I=P(T)?A(T)?T in which the dependence of P and A on T is apparent. From historical evidence, it is clear that technological revolutions (tool-making, agricultural, and industrial) have been the primary driving forces behind successive population explosions, and that modern communication and transportation technologies have been employed to transform a large proportion of the worlds inhabitants into consumers of material- and energy-intensive products and services. In addition, factor analysis from neoclassical growth theory and the rebound effect provide evidence that science and technology have played a key role in contributing to rising living standards. While technological change has thus contributed to significant increases in both P and A, it has at the same time brought about considerable eco-efficiency improvements. Unfortunately, reductions in the T-factor have generally not been sufficiently rapid to compensate for the simultaneous increases in both P and A. As a result, total impact, in terms of energy production, mineral extraction, land-use and CO2 emissions, has in most cases increased with time, indicating that industrial society is nevertheless moving towards collapse. The belief that continued and even accelerated scientific research and technological innovation will automatically result in sustainability and avert collapse is at best mistaken. Innovations in science and technology will be necessary but alone will be insufficient for sustainability. Consequently, what is most needed are specific policies designed to decrease total impact, such as (a) halting population growth via effective population stabilization plans and better access to birth control methods, (b) reducing total matter-energy throughput and pollution by removing perverse subsidies, imposing regulations that limit waste discharges and the depletion of non-renewable resources, and implementing ecological tax reform, and (c) moving towards a steady-state economy in which per-capita affluence is stabilized at lower levels by replacing wasteful conspicuous material consumption with social alternatives known to enhance subjective well-being. While science and technology must play an important role in the implementation of these policies, none will be enacted without a fundamental change in societys dominant values of growth and exploitation. Thus, value change is the most important prerequisite for avoiding global collapse.

Huesemann, Michael H.; Huesemann, Joyce A.

2008-12-01T23:59:59.000Z

329

Feasibility study and roadmap to improve residential hot water distribution systems  

DOE Green Energy (OSTI)

Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

Lutz, James D.

2004-03-31T23:59:59.000Z

330

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program The Department of Energy's (DOE's) Light Water Reactor Sustainability (LWRS) Program is a five year effort that works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operation of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging

331

Obama Administration Releases Roadmap for Solar Energy Development on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Roadmap for Solar Energy Development Releases Roadmap for Solar Energy Development on Public Lands Obama Administration Releases Roadmap for Solar Energy Development on Public Lands July 24, 2012 - 4:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of President Obama's all-of-the-above energy strategy, the Department of the Interior, in partnership with the Department of Energy, will publish the Final Programmatic Environmental Impact Statement (PEIS) for solar energy development in six southwestern states-Arizona, California, Colorado, Nevada, New Mexico, and Utah. The final Solar PEIS represents a major step forward in the permitting of utility-scale solar energy on public lands throughout the west. Today's announcement builds on the historic progress made in fostering renewable energy development on public lands. When President Obama took

332

The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways  

SciTech Connect

This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

Sala, D. R.; Furhman, P.; Smith, J. D.

2002-02-26T23:59:59.000Z

333

CyberGIS software: a synthetic review and integration roadmap  

Science Conference Proceedings (OSTI)

CyberGIS defined as cyberinfrastructure-based geographic information systems (GIS) has emerged as a new generation of GIS representing an important research direction for both cyberinfrastructure and geographic information science. This study introduces a 5-year effort funded by the US National Science Foundation to advance the science and applications of CyberGIS, particularly for enabling the analysis of big spatial data, computationally intensive spatial analysis and modeling (SAM), and collaborative geospatial problem-solving and decision-making, simultaneously conducted by a large number of users. Several fundamental research questions are raised and addressed while a set of CyberGIS challenges and opportunities are identified from scientific perspectives. The study reviews several key CyberGIS software tools that are used to elucidate a vision and roadmap for CyberGIS software research. The roadmap focuses on software integration and synthesis of cyberinfrastructure, GIS, and SAM by defining several key integration dimensions and strategies. CyberGIS, based on this holistic integration roadmap, exhibits the following key characteristics: high-performance and scalable, open and distributed, collaborative, service-oriented, user-centric, and community-driven. As a major result of the roadmap, two key CyberGIS modalities gateway and toolkit combined with a community-driven and participatory approach have laid a solid foundation to achieve scientific breakthroughs across many geospatial communities that would be otherwise impossible.

Wang, Shaowen [University of Illinois, Urbana-Champaign; Anselin, Luc [Arizona State University; Bhaduri, Budhendra L [ORNL; Cosby, Christopher [University Navstar Consortium, Boulder, CO; Goodchild, Michael [University of California, Santa Barbara; Liu, Yan [University of Illinois, Urbana-Champaign; Nygers, Timothy L. [University of Washington, Seattle

2013-01-01T23:59:59.000Z

334

Integrated environmental modeling: A vision and roadmap for the future  

Science Conference Proceedings (OSTI)

Integrated environmental modeling (IEM) is inspired by modern environmental problems, decisions, and policies and enabled by transdisciplinary science and computer capabilities that allow the environment to be considered in a holistic way. The problems ... Keywords: Community of practice, Integrated environmental modeling, Model integration, Roadmap

Gerard F. Laniak; Gabriel Olchin; Jonathan Goodall; Alexey Voinov; Mary Hill; Pierre Glynn; Gene Whelan; Gary Geller; Nigel Quinn; Michiel Blind; Scott Peckham; Sim Reaney; Noha Gaber; Robert Kennedy; Andrew Hughes

2013-01-01T23:59:59.000Z

335

Power Quality Contracting Guidelines: A Roadmap to Guaranteed Service  

Science Conference Proceedings (OSTI)

In these days of electric utility deregulation and increased competition, utilities are offering and customers are demanding higher levels of service, including guaranteed power quality. This guidebook offers a roadmap to the successful negotiation of technically practical, commercially prudent power quality contracts.

1999-12-02T23:59:59.000Z

336

A roadmap for using NSF cyberinfrastructure with InCommon  

Science Conference Proceedings (OSTI)

The "Roadmap for Using NSF Cyberinfrastructure with InCommon" provides an in-depth discussion of benefits, challenges and practices for using the InCommon identity federation with National Science Foundation (NSF) cyberinfrastructure. In this abstract, ... Keywords: authentication, authorization, federated identity

Von Welch; Alan Walsh; William Barnett; Craig A. Stewart

2011-07-01T23:59:59.000Z

337

Roadmap for enhanced languages and methods to aid verification  

Science Conference Proceedings (OSTI)

This roadmap describes ways that researchers in four areas---specification languages, program generation, correctness by construction, and programming languages---might help further the goal of verified software. It also describes what advances the "verified ... Keywords: annotations, correctness by construction, program generation, programming languages, specification languages, tools, verification, verified software grand challenge

Gary T. Leavens; Jean-Raymond Abrial; Don Batory; Michael Butler; Alessandro Coglio; Kathi Fisler; Eric Hehner; Cliff Jones; Dale Miller; Simon Peyton-Jones; Murali Sitaraman; Douglas R. Smith; Aaron Stump

2006-10-01T23:59:59.000Z

338

BPL Global | Open Energy Information  

Open Energy Info (EERE)

BPL Global BPL Global Jump to: navigation, search Name BPL Global Place Pittsburgh, Pennsylvania Zip 15222 Product BPL Global is a Pittburgh based company that uses broadband over powerline (BPL) to intergrate offerings of advanced metering infrastructure and broadband internet. Coordinates 40.438335°, -79.997459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.438335,"lon":-79.997459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Endeavor Global | Open Energy Information  

Open Energy Info (EERE)

Endeavor Global Endeavor Global Jump to: navigation, search Logo: Endeavor Global Name Endeavor Global Address 900 Broadway Place New York, New York Zip 10003 Coordinates 40.7391824°, -73.9897252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7391824,"lon":-73.9897252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Low Wind Speed Technology Phase II: Reducing Cost of Energy Through Rotor Aerodynamics Control; Global Energy Concepts, LLC  

DOE Green Energy (OSTI)

This fact sheet describes a subcontract with Global Energy Concepts to evaluate a wide range of wind turbine configurations and their impact on overall cost of energy (COE).

Not Available

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Low-Cost Solar Water Heating Research and Development Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Water Heating Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Technical Report NREL/TP-5500-54793 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Prepared under Task No. SHX1.1001 Technical Report NREL/TP-5500-54793 August 2012

342

DOE Publishes Roadmap for New Biological Research for Energy and  

Office of Science (SC) Website

DOE Publishes DOE Publishes Roadmap for New Biological Research for Energy and Environmental Needs News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 10.03.05 DOE Publishes Roadmap for New Biological Research for Energy and Environmental Needs Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON, DC - The Department of Energy (DOE) today issued a comprehensive plan for a new generation of biology research that builds on genome project investments to help solve national energy and environmental challenges. Microbial enzymes could, for example, be used to improve the

343

U.S. Life Cycle Inventory Database Roadmap (Brochure)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LIFE CYCLE INVENTORY DATABASE LIFE CYCLE INVENTORY DATABASE ROADMAP rsed e Goals of the U.S. LCI Database Project * Maintain data quality and transparency. * Cover commonly used materials, products, and processes in the United States with up-to-date, critically reviewed LCI data. * Support the expanded use of LCA as an environmental decision-making tool. * Maintain compatibility with international LCI databases. * Provide exceptional data accessibility.

344

Advanced Metering Infrastructure (AMI) Roadmap for the Tennessee Valley  

Science Conference Proceedings (OSTI)

This report summarizes the findings of an advanced metering infrastructure (AMI) roadmap project that was conducted for the distributors of the Tennessee Valley. These distributors, collectively represented by the Tennessee Valley Public Power Association (TVPPA), along with the Tennessee Valley Authority, are developing a long-term Smart Grid vision for the Valley and believe that the diversity of AMI systems in the region can form a foundation for advanced applications.

2009-08-17T23:59:59.000Z

345

Used fuel disposition research and development roadmap - FY10 status.  

SciTech Connect

Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems

Nutt, W. M. (Nuclear Engineering Division)

2010-10-01T23:59:59.000Z

346

Fuel Cell Economic Development Plan Hydrogen Roadmap | Open Energy  

Open Energy Info (EERE)

Fuel Cell Economic Development Plan Hydrogen Roadmap Fuel Cell Economic Development Plan Hydrogen Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Cell Economic Development Plan Hydrogen Roadmap Agency/Company /Organization: Connecticut Department of Economic & Community Development Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Policy Impacts, Socio-Economic Website: www.chfcc.org/Publications/reports/Fuel_Cell_Plan%201-31-08_DECD.pdf Equivalent URI: cleanenergysolutions.org/content/fuel-cell-economic-development-plan-h Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: "Safety Standards,Emissions Standards" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

347

Low Wind Speed Technology Phase II: Development of an Operations and Maintenance Cost Model for LWST; Global Energy Concepts  

SciTech Connect

This fact sheet describes a subcontract with Global Energy Concepts to evaluate real-world data on O&M costs and to develop a working model to describe these costs for low wind speed sites.

Not Available

2006-03-01T23:59:59.000Z

348

NewGen Fuel Technologies Ltd | Open Energy Information  

Open Energy Info (EERE)

NewGen Fuel Technologies Ltd NewGen Fuel Technologies Ltd Jump to: navigation, search Name NewGen Fuel Technologies, Ltd Place Charlotte, North Carolina Zip 28210 Product 50:50 JV between NewGen Technologies and AG Global Partners to drive global expansion. The JV is involved in all steps of the fuel supply chain internationally. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Department of Energy Releases New Roadmap to Guide Public-Private Cybersecurity Initiatives  

Energy.gov (U.S. Department of Energy (DOE))

New Roadmap Outlines Strategy for Improving Energy Sector Cybersecurity; Latest Protective Measures Aim to Reduce Risk, Protect Consumers and Businesses

350

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

351

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

352

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

353

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

354

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

355

Roadmap to a Sustainable Structured Trusted Employee Program  

SciTech Connect

Organizations (facility, regulatory agency, or country) have a compelling interest in ensuring that individuals who occupy sensitive positions affording access to chemical biological, radiological and nuclear (CBRN) materials facilities and programs are functioning at their highest level of reliability. Human reliability and human performance relate not only to security but also focus on safety. Reliability has a logical and direct relationship to trustworthiness for the organization is placing trust in their employees to conduct themselves in a secure, safe, and dependable manner. This document focuses on providing an organization with a roadmap to implementing a successful and sustainable Structured Trusted Employee Program (STEP).

Coates, Cameron W [ORNL; Eisele, Gerhard R [ORNL

2013-08-01T23:59:59.000Z

356

Advancing Smart Grid Interoperability and Implementing NIST's Interoperability Roadmap  

Science Conference Proceedings (OSTI)

The IEEE American National Standards project P2030TM addressing smart grid interoperability and the IEEE 1547 series of standards addressing distributed resources interconnection with the grid have been identified in priority action plans in the Report to NIST on the Smart Grid Interoperability Standards Roadmap. This paper presents the status of the IEEE P2030 development, the IEEE 1547 series of standards publications and drafts, and provides insight on systems integration and grid infrastructure. The P2030 and 1547 series of standards are sponsored by IEEE Standards Coordinating Committee 21.

Basso,T.; DeBlasio, R.

2010-04-01T23:59:59.000Z

357

2013 Snapshot of NGSI Human Capital Development and Future Roadmap  

Science Conference Proceedings (OSTI)

Since its creation in 2008, the Human Capital Development (HCD) subprogram of NNSA s Next Generation Safeguards Initiative (NGSI) has been striving to develop sustainable academic and technical programs that support the recruitment, education, training, and retention of the next generation of international safeguards professionals. This effort endeavors to develop additional human resources to equip a new cadre of safeguards and nonproliferation experts to meet the needs of both the United States and the International Atomic Energy Agency (IAEA) for decades to come, specifically in response to data that indicates that 82% of the 2009 safeguards experts at U.S. Laboratories will have left the workforce within 15 years. This paper provides an update on the status of the program since its last presentation at the INMM Annual Meeting in 2010, including strengthened and integrated efforts in the areas of graduate and post-doctoral fellowships, young and mid-career professional support, additional short safeguards coursework, and expanded university engagement. In particular, the paper will cover the NGSI Human Capital Roadmap currently being developed in safeguards and nonproliferation education, training, and knowledge retention. The NGSI Human Capital Roadmap aims to provide additional data points and metrics on where the human capital demand lies, which disciplines and skill sets are needed in the field, and how NGSI HCD can best address these issues to meet future demand.

Scholz, Melissa A [ORNL; Poe, Sarah M [ORNL; Dewji, Shaheen A [ORNL; Finklea, Lauren R [ORNL

2013-01-01T23:59:59.000Z

358

ProgramTopics Technology characterizations | Open Energy Information  

Open Energy Info (EERE)

Component Library + Building Energy Tools Software Directory + Buildings Energy Data Book + CLEAN-Linked Open Data (LOD) Webinar + CLEAN-Technology Roadmapping: Lessons,...

359

7th TMS Lead Free Solder and Interconnect Technology Workshop  

Science Conference Proceedings (OSTI)

Overview. This workshop is organized to serve as the industry roadmap for Pb free solder technology in high reliability and consumer electronic packaging and.

360

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

technologies include absorption chillers that utilizeinclude use of absorption chillers when heat sources are

Singer, Brett C.

2010-01-01T23:59:59.000Z

362

Multiyear program plan for 1998-2002. [U.S. DOE, Office of Heavy Vehicle Technologies (OHVT)  

DOE Green Energy (OSTI)

Based on the 1997 OHVT Technology Roadmap, this is the initial multiyear program plan for the U.S. Department of Energy's Office of Heavy Vehicle Technologies.

None

1998-08-01T23:59:59.000Z

363

Empirical support for global integrated assessment modeling: Productivity trends and technological change in developing countries' agriculture and electric power sectors  

E-Print Network (OSTI)

Council on Energy and Environment, for Mexico, the NationalMexico, Brazil, and Indonesia), examining long-run trends in productivity, technological change, energy andenergy-intensive manufacturing sectors of five developing countries, India, Brazil, Mexico,

Sathaye, Jayant A.

2000-01-01T23:59:59.000Z

364

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

365

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

DOE Green Energy (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, D.E. (INEEL); Hamp, S. (DOE-Albuquerque Operations Office)

2002-01-04T23:59:59.000Z

366

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

SciTech Connect

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, D.E. (INEEL); Hamp, S. (DOE-Albuquerque Operations Office)

2002-01-04T23:59:59.000Z

367

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

SciTech Connect

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen- containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOEs Environmental Management (EM) organizations to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, Dale Elden; Hamp, S.

2002-02-01T23:59:59.000Z

368

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

369

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

technologies such as ground source heat pumps. Advisors Highrecovery chillers, ground-source heat pumps (newer designs

Singer, Brett C.

2010-01-01T23:59:59.000Z

370

The Roadmap for Developing Carbon Nanotube Reinforced Metal  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Nanotube Reinforced Metal Matrix Composites II. Presentation Title, The...

371

Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model Energy  

E-Print Network (OSTI)

This article presents the Iron and Steel Industry Model (ISIM). This is a world simulation model able to analyze the evolution of the industry from 1997 to 2030, focusing on steel production, demand, trade, energy consumption, CO2 emissions, technology dynamics, and retrofitting options. In the context of the Kyoto Protocol on climate change, the potential impacts of a CO2 emission market (e.g. the gains in terms of compliance costs, the country trading position, the evolution of the technology and the energy mixes) are also addressed. In particular, three emission trading scenarios are considered: an EU15 market, an enlarged EU market, and an Annex B market.

Ignacio Hidalgo; Laszlo Szabo; Juan Carlos Ciscar; Antonio Soria

2005-01-01T23:59:59.000Z

372

Emerging Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies Program Emerging Technologies Program Pat Phelan Program Manager patrick.phelan@ee.doe.gov (202)287-1906 April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy savings ET Mission: Accelerate the research, development and commercialization of emerging, high impact building technologies that are five years or less to market ready. 3 | Building Technologies Office eere.energy.gov

373

Low Carbon Green Growth Roadmap for Asia and the Pacific | Open Energy  

Open Energy Info (EERE)

Low Carbon Green Growth Roadmap for Asia and the Pacific Low Carbon Green Growth Roadmap for Asia and the Pacific Jump to: navigation, search Tool Summary Name: Low Carbon Green Growth Roadmap for Asia and the Pacific Agency/Company /Organization: Economic and Social Commission for Asia and the Pacific (ESCAP), Korea International Cooperation Agency (KOICA) Focus Area: People and Policy Topics: GHG inventory, Low emission development planning UN Region: Eastern Asia, South-Eastern Asia, Melanesia, Micronesia, Polynesia References: Low Carbon Green Growth Roadmap for Asia and the Pacific[1] Part II - A low carbon green growth roadmap for Asia and the Pacific[2] Logo: Low Carbon Green Growth Roadmap for Asia and the Pacific Overview "Developing countries in the Asia-Pacific region have experienced rapid

374

Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)  

SciTech Connect

As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

Baring-Gould, I.; Kelly, M.

2010-05-01T23:59:59.000Z

375

Offshore Technology  

E-Print Network (OSTI)

This report, and the roadmapping exercise that produced it, is the result of a series of transparent workshops held across the nation. A wealth of information was produced to compliment internal sources like the Energy Information Administration. The active participation of the Department's stakeholders is greatly appreciated. Walter Rosenbusch, Director of the Minerals Management Service (MMS) deserves special recognition. His partnership, participation and input were instrumental to the success of this effort. I also would like to thank my friend Governor Mark White for his participation and support of this effort. In addition, I thank the following workshop chairs and moderators for their participation and contribution to the roadmapping efforts: Mary Jane Wilson, WZI, Inc.; Ron Oligney, Dr. Michael Economides, and Jim Longbottom, University of Houston; John Vasselli, Houston Advanced Research Center; and Art Schroeder, Energy Valley. This report, however, does not represent the end of such long-range planning by the Department, its national labs, and its stakeholders. Rather it is a roadmap for accelerating the journey into the ultradeepwater Western Gulf of Mexico. The development of new technologies and commercialization paths, discoveries by marine biologists, and the fluctuations of international markets will continue to be important influences. With that in mind, let the journey begin. Emil Pea Deputy Assistant Secretary for Natural Gas and Petroleum Technology OFFSHORE TECHNOLOGY ROADMAP FOR THE ULTRA-DEEPWATER GULF OF MEXICO U.S. Department of Energy Maximumhistm,183 oil product,0 ratd for Gulf of Mexico wells. Taller barsindicat higherproduct44 ratdu The dat show numerous deepwat, oil wells producedat significant2 higherrate tt ever seen in t, Gulf of ...

Roadmap For The; Deepwater Gulf; Of Mexico

2000-01-01T23:59:59.000Z

376

Proceedings of the National Hydrogen Energy Roadmap Workshop: Washington, DC; April 2-3, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings Proceedings National Hydrogen Energy Roadmap Workshop WASHINGTON, DC, APRIL 2-3, 2002 Proceedings for National Hydrogen Energy Roadmap Workshop i Energetics, Incorporated PROCEEDINGS NATIONAL HYDROGEN ENERGY ROADMAP WORKSHOP Table of Contents INTRODUCTION 1. OPENING PLENARY SESSION........................................................................1 2. HYDROGEN PRODUCTION BREAKOUT SESSION............................................5 3. HYDROGEN DELIVERY BREAKOUT SESSION ..............................................12 4. HYDROGEN STORAGE BREAKOUT SESSION ...............................................20 5. HYDROGEN ENERGY CONVERSION BREAKOUT SESSION ...........................27 6. HYDROGEN APPLICATIONS BREAKOUT SESSION

377

Roadmap to Monitor Data Collected during the WSCC Breakup of August 10, 1996  

Science Conference Proceedings (OSTI)

This document describes a roadmap to assist users in using the monitoring data collected during the WSCC breakup of August 10, 1996.

Hauer, John F.; Burns, J. W.

2010-06-30T23:59:59.000Z

378

DOE Publishes Roadmap for New Biological Research for Energy...  

Office of Science (SC) Website

experiments on complex energy and environmental systems will be performed and new technologies and computing techniques will be developed, used for science and scaled up in...

379

GlobalData | Open Energy Information  

Open Energy Info (EERE)

GlobalData GlobalData Jump to: navigation, search Logo: GlobalData Name GlobalData Place New York, New York Coordinates 40.7142691°, -74.0059729° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7142691,"lon":-74.0059729,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Global Electric Motorcars | Open Energy Information  

Open Energy Info (EERE)

Global Electric Motorcars Global Electric Motorcars Jump to: navigation, search Name Global Electric Motorcars Place Fargo, North Dakota Zip 58102 Sector Vehicles Product Global Electric Motorcars (GEM), a Chrysler Company, develops and manufactures electric vehicles. Coordinates 36.37617°, -99.622804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.37617,"lon":-99.622804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geothermal Regulatory Roadmap featured on NREL Now | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap featured on NREL Now Geothermal Regulatory Roadmap featured on NREL Now Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 August, 2013 - 13:18 geothermal NREL OpenEI regulatory roadmap Navigating the complex system of federal and state regulations to secure project approvals is one of the biggest hurdles geothermal power developers face-but not if they've got a map outlining every twist and turn. DOE's Geothermal Regulatory Roadmap, a new online tool for agency, industry, and policymaker use, helps developers make it through regulatory requirements at every level of government more easily to deploy geothermal energy projects. Designed to help strengthen collaboration between federal and state agencies, the roadmap should also speed the review of proposed projects and

382

Low-Carbon Energy Roadmaps for the Greater Antilles | Open Energy  

Open Energy Info (EERE)

Roadmaps for the Greater Antilles Roadmaps for the Greater Antilles Jump to: navigation, search Name Low-Carbon Energy Roadmaps for the Greater Antilles Agency/Company /Organization World Watch Institute Partner Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, National Energy Commission Sector Climate, Energy Focus Area Economic Development, Greenhouse Gas Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, Finance, Low emission development planning, -LEDS, -Roadmap Website http://www.worldwatch.org/ener Program Start 2010 Program End 2013 Country Dominican Republic, Haiti, Jamaica Caribbean, Caribbean, Caribbean References Low-Carbon Energy Roadmaps for the Greater Antilles[1] Overview "Launched in spring 2010, Worldwatch's Caribbean project is partnering

383

Dominican Republic-Low-Carbon Energy Roadmaps for the Greater Antilles |  

Open Energy Info (EERE)

Dominican Republic-Low-Carbon Energy Roadmaps for the Greater Antilles Dominican Republic-Low-Carbon Energy Roadmaps for the Greater Antilles Jump to: navigation, search Name Dominican- Republic-Low-Carbon Energy Roadmaps for the Greater Antilles Agency/Company /Organization World Watch Institute Partner Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, National Energy Commission Sector Climate, Energy Focus Area Economic Development, Greenhouse Gas Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, Finance, Low emission development planning, -LEDS, -Roadmap Website http://www.worldwatch.org/ener Program Start 2010 Program End 2013 Country Dominican Republic Caribbean References Low-Carbon Energy Roadmaps for the Greater Antilles[1] Overview "Launched in spring 2010, Worldwatch's Caribbean project is partnering

384

Solar and Wind Technologies for Hydrogen Production Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

385

Energy Efficiency Business in China: A Roadmap For American Companies  

E-Print Network (OSTI)

China represents an emerging market for American energy efficiency technologies. Rapid growth and market reforms are driving increased demand for foreign investment and advanced technologies that will help China meet its energy needs while protecting its environment. The industrial sector is a particularly promising area for energy efficiency investments because many enterprises use equipment and processes that are decades old. Energy efficiency technologies for new buildings and appliances are also in demand. Barriers to doing business in China are significant, but can be overcome by companies that commit themselves to a long-term business development strategy. Companies interested in investigating these opportunities can take advantage of a variety of organizations, services, and events created to help them do business in China.

Hamburger, J.; Sinton, J.

1996-04-01T23:59:59.000Z

386

Low-Cost Solar Water Heating Research and Development Roadmap  

DOE Green Energy (OSTI)

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

387

National cyber defense high performance computing and analysis : concepts, planning and roadmap.  

SciTech Connect

There is a national cyber dilemma that threatens the very fabric of government, commercial and private use operations worldwide. Much is written about 'what' the problem is, and though the basis for this paper is an assessment of the problem space, we target the 'how' solution space of the wide-area national information infrastructure through the advancement of science, technology, evaluation and analysis with actionable results intended to produce a more secure national information infrastructure and a comprehensive national cyber defense capability. This cybersecurity High Performance Computing (HPC) analysis concepts, planning and roadmap activity was conducted as an assessment of cybersecurity analysis as a fertile area of research and investment for high value cybersecurity wide-area solutions. This report and a related SAND2010-4765 Assessment of Current Cybersecurity Practices in the Public Domain: Cyber Indications and Warnings Domain report are intended to provoke discussion throughout a broad audience about developing a cohesive HPC centric solution to wide-area cybersecurity problems.

Hamlet, Jason R.; Keliiaa, Curtis M.

2010-09-01T23:59:59.000Z

388

Global Energy Network Institute | Open Energy Information  

Open Energy Info (EERE)

Global Energy Network Institute Global Energy Network Institute Name Global Energy Network Institute Address 1250 6th Avenue, Suite 901 Place San Diego, California Zip 92101 Region Southern CA Area Coordinates 32.718569°, -117.159579° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.718569,"lon":-117.159579,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Hexagon Global Energy | Open Energy Information  

Open Energy Info (EERE)

Hexagon Global Energy Hexagon Global Energy Jump to: navigation, search Name Hexagon Global Energy Place Istanbul, Turkey Sector Solar, Wind energy Product Istanbul-based project developer with a focus on wind, solar and solid waste management projects. Coordinates 41.040855°, 28.986183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.040855,"lon":28.986183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Global Wind Energy Council | Open Energy Information  

Open Energy Info (EERE)

Global Wind Energy Council Global Wind Energy Council Name Global Wind Energy Council Address Wind Power House Rue d'Arlon 80 Place Brussels, Belgium Phone number +32 2 213 1897 Website http://www.gwec.net/ Coordinates 50.8415917°, 4.3733281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.8415917,"lon":4.3733281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Digilog Global Environmental LLC | Open Energy Information  

Open Energy Info (EERE)

Digilog Global Environmental LLC Digilog Global Environmental LLC Jump to: navigation, search Name Digilog Global Environmental LLC Place Chicago, Illinois Zip 60606 Product TradeLink is registered as a Futures Commission Merchant with the Commodity Futures Trading Commission. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

GlobalWatt Inc | Open Energy Information  

Open Energy Info (EERE)

GlobalWatt Inc GlobalWatt Inc Jump to: navigation, search Name GlobalWatt Inc Place Dover, Delaware Zip 19801 Product Shell company, once planned to float on AIM to raise money in order to acquire the business of semiconductor and/or PV manufacturing equipment suppliers. Coordinates 42.67954°, -88.110374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.67954,"lon":-88.110374,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Climate VISION: Private Sector Initiatives: Mining: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways As part of the mining vision process, industry develops technology roadmaps to identify critical pathways for the R&D needed to reach their goals. These roadmaps aid both industry and government in making decisions to support R&D critical to the industry's vision of the future. Industry Vision & Roadmaps The following documents are available for download as Adobe PDF documents. Download Acrobat Reader. The Mining Industry of the Future Vision (PDF 122 KB) The industry's unified Vision document outlines broad goals for the future. As part of the mining vision process, industry develops technology roadmaps to identify critical pathways for the R&D needed to reach their goals. These roadmaps aid both industry and government in making decisions to

394

Location-based services deployment and demand: a roadmap model  

Science Conference Proceedings (OSTI)

The advancements in mobile, wireless and positioning technologies have enabled applications and services such as route guiding and emergency call-out assistance. These and other similar services have become known as `location-based services' (LBS). The ... Keywords: Case study, LBS, Location-aware services, Location-based services, Mobile services

Krassie Petrova; Bin Wang

2011-01-01T23:59:59.000Z

395

A Roadmap to Deploy New Nuclear Power Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Summary Report Prepared for the United States Department of Energy Office of Nuclear Energy, Science and Technology and its Nuclear Energy Research Advisory Committee Subcommittee on Generation IV Technology Planning October 31, 2001 Disclaimer This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any of its employees make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

396

2012 Integrated Gasification Combined Cycle (IGCC) Research and Development Roadmap  

Science Conference Proceedings (OSTI)

BackgroundThe second generation of integrated gasification combined cycle (IGCC) power plants is now being built or planned following nearly two decades of commercial demonstration at multiple units. State-of-the-art IGCC plants have efficiencies equivalent to that of pulverized coal power plants while exhibiting equal or superior environmental performance and lower water usage. Precombustion CO2 capture technology is commercially available and has been ...

2012-10-30T23:59:59.000Z

397

A Technology Roadmap for Generation IV Nuclear Energy Systems Executive Summary  

SciTech Connect

To meet future energy needs, ten countries--Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States--have agreed on a framework for international cooperation in research for an advanced generation of nuclear energy systems, known as Generation IV. These ten countries have joined together to form the Generation IV International Forum (GIF) to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide competitively priced and reliable energy products while satisfactorily addressing nuclear safety, waste, proliferation, and public perception concerns. The objective for Generation IV nuclear energy systems is to be available for international deployment before the year 2030, when many of the world's currently operating nuclear power plants will be at or near the end of their operating licenses.

2003-03-01T23:59:59.000Z

398

AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels  

Science Conference Proceedings (OSTI)

Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

2002-10-10T23:59:59.000Z

399

Roadmap for Power Quality Mitigation Technology Demonstration Projects at Commercial Customer Sites  

Science Conference Proceedings (OSTI)

Power quality has emerged as an important issue for the commercial customer segment. Historically, power quality issues have been the domain of electric utilities, which focused on reducing or eliminating power outages. However, the recent proliferation in office use of electronic equipment and microprocessor-based controls has caused electric utilities to redefine power quality in terms of the quality of voltage supply rather than availability of power. This document provides a screening tool for utilit...

1999-12-09T23:59:59.000Z

400

Haiti-Designing and Communicating Low Carbon Energy Roadmaps for Small  

Open Energy Info (EERE)

Haiti-Designing and Communicating Low Carbon Energy Roadmaps for Small Haiti-Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Jump to: navigation, search Name Haiti-Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Agency/Company /Organization World Watch Institute Partner International Climate Initiative Sector Climate, Energy Focus Area Renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Solar, Wind Topics Co-benefits assessment, - Macroeconomic, Finance, GHG inventory, Low emission development planning, -LEDS, -Roadmap, Policies/deployment programs, Resource assessment Website http://www.worldwatch.org/ener Program Start 2011 Program End 2013

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(LWRS) Program - R&D Roadmap (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak Ridge National Laboratory (ORNL) during July 30th to August 2nd, 2012. This activity was conducted to help develop the content of the NDE R&D roadmap for the materials aging and degradation (MAaD) pathway of the LWRS program. The workshops focused on identifying NDE R&D needs in four areas: cables, concrete, reactor pressure vessel, and piping. A selected group of subject matter experts (SMEs) from DOE national laboratories, academia, vendors, EPRI, and NRC were invited to each

402

Roadmap to Secure Control Systems in the Energy: Executive Summary - 2006 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy: Executive Summary Energy: Executive Summary - 2006 Roadmap to Secure Control Systems in the Energy: Executive Summary - 2006 This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and government to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors over the next ten years. The Roadmap provides a strategic framework for guiding industry and government efforts based on a clear vision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. Roadmap to Secure Control Systems in the Energy: Executive Summary

403

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak Ridge National Laboratory (ORNL) during July 30th to August 2nd, 2012. This activity was conducted to help develop the content of the NDE R&D roadmap for the materials aging and degradation (MAaD) pathway of the LWRS program. The workshops focused on identifying NDE R&D needs in four areas: cables, concrete, reactor pressure vessel, and piping. A selected group of subject matter experts (SMEs) from DOE national

404

Roadmap to Secure Control Systems in the Energy Sector - 2006 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 2006 - 2006 Roadmap to Secure Control Systems in the Energy Sector - 2006 This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and government to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors over the next ten years. The Roadmap provides a strategic framework for guiding industry and government efforts based on a clear vision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. Roadmap to Secure Control Systems in the Energy Sector More Documents & Publications

405

Thoughts after the Geothermal Regulatory Roadmap Advisory Meeting | OpenEI  

Open Energy Info (EERE)

Thoughts after the Geothermal Regulatory Roadmap Advisory Meeting Thoughts after the Geothermal Regulatory Roadmap Advisory Meeting Home > Groups > Geothermal Regulatory Roadmap Twnrel's picture Submitted by Twnrel(12) Member 23 July, 2012 - 11:51 meetings + advisory group The most recent meeting of the Advisory Group occurred on July 19th. This was a big event for the team, as it was the first real project review meeting since we kicked off the meetings to develop flow charts. I was really happy with the meeting outcomes. We had a lot of constructive feedback from the group, and the consensus that the project is on a good course continues to build over time. Developing the Geothermal Regulatory Roadmap requires a lot of work from many people in many organizations. I wish there was a way to thank each of you individually, but please know that we appreciate your efforts.

406

Roadmap Workshop on Manufacturing R&D for the Hydrogen Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Roadmap Workshop on Manufacturing R&D for the Hydrogen Economy Paul Gottlieb Assistant General Counsel for Tech. Transfer & IP 202-586-3439 (fax 2805) Paul.Gottlieb@HQ.DOE.GOV...

407

Developing a strategic roadmap for supply chain process improvement in a regulated utility  

E-Print Network (OSTI)

This thesis covers work done at Tracks Energy, a regulated utility, to develop a strategic roadmap for supply chain process improvement. The focus of Tracks Energy has always been on keeping the lights on and the gas flowing ...

Yoder, Brent E. (Brent Edward)

2013-01-01T23:59:59.000Z

408

Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group The Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation IV goals and (2) identify key fuel cycle issues associated with Generation IV goals. This included examination of "fuel resource inputs and waste outputs for the range of potential Generation IV fuel cycles, consistent with projected energy demand scenarios." This report summarizes the results of the studies. The membership of the FCCG comprised 8 US members and 7 members from Generation IV International Forum (GIF) countries including members from

409

Jamaica-Designing and Communicating Low Carbon Energy Roadmaps for Small  

Open Energy Info (EERE)

Jamaica-Designing and Communicating Low Carbon Energy Roadmaps for Small Jamaica-Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Jump to: navigation, search Name Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Agency/Company /Organization World Watch Institute Partner International Climate Initiative Sector Climate, Energy Focus Area Renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Solar, Wind Topics Co-benefits assessment, - Macroeconomic, Finance, GHG inventory, Low emission development planning, -LEDS, -Roadmap, Policies/deployment programs, Resource assessment Website http://www.worldwatch.org/ener Program Start 2011 Program End 2013

410

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

SciTech Connect

This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

Singer, Brett C.; Tschudi, William F.

2009-09-08T23:59:59.000Z

411

Blue Spark Technologies formerly Thin Battery Technologies Inc | Open  

Open Energy Info (EERE)

Spark Technologies formerly Thin Battery Technologies Inc Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place Westlake, Ohio Zip 44130 Sector Carbon Product Developer and licensor of carbon-zinc battery technology. Coordinates 32.980007°, -97.168831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.980007,"lon":-97.168831,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Global Seed and Crop Technology  

E-Print Network (OSTI)

Adventitious presence deserves discussion to understand whether farmers engaged in conventional, organic, and transgenic agriculture can coexist as neighbors using known and practical agronomic practices. When a farmer buys and sows certified seed of his or her chosen crop variety, the crop starts with the highest degree of purity deemed commercially achievable, which then becomes increasingly less pure as various

L. Kershen; Alan Mchughen; Earl Sneed; Centennial Professor; Law Biotechnology Specialist; Thomas Parker Redick

2005-01-01T23:59:59.000Z

413

Using Roadmapping to Meet the Challenge of Implementing the Environmental Management's 2012 Vision at the INEEL  

Science Conference Proceedings (OSTI)

Soon after becoming the Program Secretarial Officer (PSO) for the Department of Energy (DOE) Environmental Management (EM) Program, Jessie Roberson initiated a thorough Top-to-Bottom review of the EM Program and challenged the sites to conduct business differently. As an example, she emphasized risk reduction, not just risk management. INEEL's 2070 cleanup baseline was considered too long and must be completed significantly sooner. The cleanup costs must also be significantly reduced from the current baseline of $41 Billion. The challenge is to complete most of the cleanup by 2012 and to reduce the EM footprint at the INEEL to one site area, the Idaho Nuclear Technology and Engineering Center (INTEC), also by 2012. The difficulty of the challenge is increased by the requirement to perform the work within nearly flat budgets. The bottom line: do more work in less time for less money. Further complications were added when funding for EM's technology development program was greatly reduced, cutting out most of the technology support to the operational projects. To face this incredible challenge, the INEEL began a several month effort to develop an implementation strategy and the tactics required for success. The strategies to meet EM's challenge under these constraints require the scope of work to be crisply defined with a clear understanding of the completion criteria. A number of techniques will be discussed in this paper that were used to more fully define the completion criteria as well as redefine the cleanup projects and their system boundaries. The mechanics of redefining and recasting cleanup projects at the INEEL to focus on how all the work fits together for an entire site area along with some of the advantages will be discussed. This paper highlights how roadmapping techniques and processes were used to gather information about the site's cleanup programs, review the system boundaries, identify the project risks to completing the cleanup tasks, and to help recast the projects to meet the stewardship requirements for that portion of the site. This paper will discuss how site cleanup projects were recast into geographical areas. Some geographical areas were divided into several sub-projects while others site areas were completed within one project depending on the amount and type of integration required to complete the cleanup. The paper also addresses some of the other changes that are needed to facilitate implementation of the revised structuring of the cleanup project. Some of these changes include organizational modifications and resources allocation enhancements.

Murphy, J.; Mascareqas, C.; McNeel, K.; Stiger, S.; Thiel, E.

2003-02-26T23:59:59.000Z

414

INL Experimental Program Roadmap for Thermal Hydraulic Code Validation  

DOE Green Energy (OSTI)

Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a benchmark database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related to VHTRs, sodium-cooled fast reactors, and light-water reactors. These experiments range from relatively low-cost benchtop experiments for investigating individual phenomena to large electrically-heated integral facilities for investigating reactor accidents and transients.

Glenn McCreery; Hugh McIlroy

2007-09-01T23:59:59.000Z

415

Global Magma Energy Group | Open Energy Information  

Open Energy Info (EERE)

Global Magma Energy Group Global Magma Energy Group Place Houston, Texas Zip 77056 Sector Geothermal energy Product A geothermal development firm focussed on Asia and backed by Arctas Capital and John Wheble & Associates. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Global Energy Investors | Open Energy Information  

Open Energy Info (EERE)

Investors Investors Jump to: navigation, search Name Global Energy Investors Place Waltham, Massachusetts Zip 2451 Sector Biomass, Hydro, Solar, Wind energy Product Massachusetts-based Global Energy Investors was formed in 2009 to invest primarily in wind and solar power projects but it may also consider biomass and hydro projects. Coordinates 44.126439°, -73.213733° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.126439,"lon":-73.213733,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Huazhong Science Technology University Yongtai Science Technology Co Ltd |  

Open Energy Info (EERE)

Huazhong Science Technology University Yongtai Science Technology Co Ltd Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name Huazhong Science & Technology University Yongtai Science & Technology Co Ltd Place Wuhan, Hubei Province, China Zip 430074 Sector Solar Product Makes solar passive water heaters. Coordinates 30.572399°, 114.279121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.572399,"lon":114.279121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

NIST Global Standards Information Global Standards News  

Science Conference Proceedings (OSTI)

... (EPRI) to help it develop an interim "roadmap" for determining the architecture and initial key standards for an electric power "Smart Grid". ...

419

Energy Secretary Bodman Announces $119 Million in Funding and Roadmap to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$119 Million in Funding and $119 Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles Energy Secretary Bodman Announces $119 Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles January 24, 2006 - 11:11am Addthis WASHINGTON, DC - Energy Secretary Samuel W. Bodman today kicked off the Washington Auto Show with the announcement of $119 million in funding and a research "roadmap" aimed at identifying and overcoming the technical and manufacturing challenges associated with the further development of commercially available hydrogen fuel cell vehicles. The goal of developing clean, hydrogen fuel vehicles is part of the Bush Administration's ongoing effort to reduce America's dependence on foreign oil. "Investments in fuel cell and hydrogen research today will enable America

420

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Nuclear power plants in the United States currently produce about 20 percent of the nation's electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit greenhouse gases. Continued and expanded reliance on nuclear energy is one key to meeting future demand for electricity in the U.S. and is called for in the National Energy Policy. Nevertheless, no new nuclear plants have been built in the U.S. in many years, and none are currently slated for construction. The U.S. Department of Energy (DOE) has been working with the nuclear

422

Roadmaps for All Atoms in Biochemical Reactions | U.S. DOE Office of  

Office of Science (SC) Website

Roadmaps for All Atoms in Biochemical Reactions Roadmaps for All Atoms in Biochemical Reactions Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) News & Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3251 F: (301) 903-5051 E: sc.ber@science.doe.gov More Information » September 2012 Roadmaps for All Atoms in Biochemical Reactions How atoms move in biochemical reactions - a fast and accurate method to model all the atoms. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo

423

Jamaica-Low-Carbon Energy Roadmaps for the Greater Antilles | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Jamaica-Low-Carbon Energy Roadmaps for the Greater Antilles Jump to: navigation, search Name Jamaica-Low-Carbon Energy Roadmaps for the Greater Antilles Agency/Company /Organization World Watch Institute Partner Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, National Energy Commission Sector Climate, Energy Focus Area Economic Development, Greenhouse Gas Topics Adaptation, Co-benefits assessment, - Environmental and Biodiversity, - Macroeconomic, Finance, Low emission development planning, -LEDS, -Roadmap Website http://www.worldwatch.org/ener

424

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

425

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Nuclear power plants in the United States currently produce about 20 percent of the nation's electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit greenhouse gases. Continued and expanded reliance on nuclear energy is one key to meeting future demand for electricity in the U.S. and is called for in the National Energy Policy. Nevertheless, no new nuclear plants have been built in the U.S. in many years, and none are currently slated for construction. The U.S. Department of Energy (DOE) has been working with the nuclear

426

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Global, average PV module prices, all PV technologies, 1980Global, average PV module prices, all PV technologies, 1980to mid-1980s. The price of PV by 1987 was approximately $

Price, S.

2010-01-01T23:59:59.000Z

427

National Hydrogen Energy Roadmap: A National Hydrogen Vision (CD-ROM)  

DOE Green Energy (OSTI)

''The National Hydrogen Energy Roadmap'' was unveiled by the Secretary of Energy, Spencer Abraham, November 12, 2002. The Roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. This CD-ROM also includes''A National Vision of America's Transition to a Hydrogen Economy-to 2030 and Beyond'', which was published in February 2002 as a result of the Hydrogen Vision Meeting. This document summarizes the potential role for hydrogen systems in America's energy future, outlining the common vision of the ''hydrogen economy.''

Not Available

2002-12-01T23:59:59.000Z

428

Superior Energy Performance: A Roadmap for Achieving Continual Improvements in Energy Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Superior Energy Performance: Superior Energy Performance: A Roadmap for Achieving Continual Improvements in Energy Performance March 4, 2010 Joe Almaguer Dow Chemical Paul Scheihing U.S. Department of Energy Agenda: * Superior Energy Performance Overview * Program Design * Program Status and Moving Forward Superior Energy Performance What is Superior Energy Performance? A market-based, ANSI-accredited plant certification program that provides industrial facilities with a roadmap for achieving continual improvement in energy efficiency while boosting competitiveness. Goals: * Drive continual improvement in energy intensity * Develop a transparent system to validate energy intensity improvements and management practices * Encourage broad participation

429

Stanford- Global Climate and Energy Project | Open Energy Information  

Open Energy Info (EERE)

Stanford- Global Climate and Energy Project Stanford- Global Climate and Energy Project Jump to: navigation, search Logo: Stanford- Global Climate and Energy Project Name Stanford- Global Climate and Energy Project Address 473 Via Ortega Place Stanford, California Zip 94305 Region Bay Area Coordinates 37.427774°, -122.175672° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.427774,"lon":-122.175672,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Institute for Global Environmental Strategies (IGES) | Open Energy  

Open Energy Info (EERE)

Global Environmental Strategies (IGES) Global Environmental Strategies (IGES) Jump to: navigation, search Logo: Institute for Global Environmental Strategies Name Institute for Global Environmental Strategies Address Kamiyamaguchi, Hayama, Place Kanagawa, Japan Year founded 1998 Phone number +81-46-855-3700 Website http://www.iges.or.jp/en/index Coordinates 35.2708703°, 139.5888002° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2708703,"lon":139.5888002,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

MIT-Alliance for Global Sustainability | Open Energy Information  

Open Energy Info (EERE)

Global Sustainability Global Sustainability Jump to: navigation, search Logo: MIT-Alliance for Global Sustainability Name MIT-Alliance for Global Sustainability Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

A research analysis on the concept of converging technology and converging types of information technology  

Science Conference Proceedings (OSTI)

The future technological revolution is expected to be led by converging technologies, having enormous effects on economic and industrial environments in the future. But there have been few attempts to make empirical approach to the concept of converging ... Keywords: converging technology roadmap, converging theory, converging type

K. H. Choi

2009-11-01T23:59:59.000Z

433

CLEANSPACE 'Small Debris Removal By Laser Illumination And Complementary Technologies'  

SciTech Connect

Studies show that the number of debris in Low Earth Orbit is exponentially growing despite future debris release mitigation measures considered. Especially, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground based laser solution which can remove at low expense and in a non-destructive way hazardous debris of decimetric size around selected space assets appears as one highly promising answer. This solution will be studied in the frame of CLEANSPACE project which is a part of the FP7 space theme. The overall CLEANSPACE objective is threefold: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks and to establish roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the CLEANSPACE project.

Esmiller, Bruno [Astrium Space Transportation, 66 route de Verneuil, 78133 Les Mureaux (France); Jacquelard, Christophe [CILAS, 8 avenue Buffon - ZI La Source - BP 6319, 45063 Orleans (France)

2011-11-10T23:59:59.000Z

434

Developing genome-enabled sustainable lignocellulosic biofuels technologies  

E-Print Network (OSTI)

Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

435

1366 Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Logo: 1366 Technologies Name 1366 Technologies Address 45 Hartwell Avenue Place North Lexington, Massachusetts Zip 02421 Sector Solar Product Developer of technologies for enhancing PV efficiency, including new cell wiring and wafer packaging systems. Website http://www.1366tech.com/ Coordinates 42.472405°, -71.257792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.472405,"lon":-71.257792,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Mears Technology | Open Energy Information  

Open Energy Info (EERE)

Mears Technology Mears Technology Jump to: navigation, search Name Mears Technology Place Waltham, Massachusetts Zip 2451 Sector Solar Product Waltham-based developer of manufacturing technology for semiconductor chip producers. The firm's MEARS Silicon Technology can be used in solar applicaiton. Coordinates 44.126439°, -73.213733° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.126439,"lon":-73.213733,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Ubiquitous Technologies | Open Energy Information  

Open Energy Info (EERE)

Ubiquitous Technologies Ubiquitous Technologies Jump to: navigation, search Name Ubiquitous Technologies Place Victoria, Texas Zip 77903 Sector Solar Product Ubiquitous Technologies is a nano technology solar energy R&D and commercialization company. Coordinates 48.428315°, -123.364514° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.428315,"lon":-123.364514,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Roadmap to NRC Approval of Ceramic Matrix Composites in Generation IV Reactors  

SciTech Connect

This report provides an initial roadmap to obtain Nuclear Regulatory Commission (NRC) approval for using these material systems in a nuclear application. The possible paths taken to achieving NRC approval are necessarily subject to change as this is an on-going process that shifts as more data and a clearer understanding of the nuclear regulations are gathered.

M. G. Jenkins; E. Lara-Curzio; W. Windes

2006-05-01T23:59:59.000Z

439

SSL Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

new jobs. For the most part, LEDs will displace point sources such as incandescent lamps (light- bulbs), while OLEDs will displace area sources such as fluorescent lamps. OLEDs...

440

NETL: Global Environmental Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Environmental Benefits Global Environmental Benefits Gasification Systems Global Environmental Benefits Environmental performance for future energy production systems is a much greater factor as emission standards tighten in the United States and worldwide. The outstanding environmental performance of gasification systems makes it an excellent technology for the clean production of electricity and other products. In addition, the reduction of CO2 emissions is one of the major challenges facing industry in response to global climate change. Other countries with coal reserves might potentially import technologies developed in the United States to enable low-cost gasification with carbon capture and EOR or sequestration. Not only will this benefit the U.S. gasification technology industry, but it will also result in a global environmental benefit through more affordable control of greenhouse gases (GHGs). See the U.S. Environmental Protection Agency (EPA) link below for a summary of the impact of fossil fuels without carbon capture on CO2 emissions, on the GHG contributions of different countries, and of the projected impact of developing countries to 2030:

Note: This page contains sample records for the topic "global technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Global Grid  

E-Print Network (OSTI)

This paper puts forward the vision that a natural future stage of the electricity network could be a grid spanning the whole planet and connecting most of the large power plants in the world: this is the "Global Grid". The main driving force behind the Global Grid will be the harvesting of remote renewable sources, and its key infrastructure element will be the high capacity long transmission lines. Wind farms and solar power plants will supply load centers with green power over long distances. This paper focusses on the introduction of the concept, showing that a globally interconnected network can be technologically feasible and economically competitive. We further highlight the multiple opportunities emerging from a global electricity network such as smoothing the renewable energy supply and electricity demand, reducing the need for bulk storage, and reducing the volatility of the energy prices. We also discuss possible investment mechanisms and operating schemes. Among others, we envision in such a system...

Chatzivasileiadis, Spyros; Andersson, Gran

2012-01-01T23:59:59.000Z

442

R&D100 Winners * Impacts on Global...  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D100 Winners * Impacts on Global Technology OUTSIDE FRONT COVER 2 SANDIA NATIONAL LABOR ATORIES 3 R&D100 Winners * Impacts on Global Technology For further information, contact:...

443

Global and Regional Solutions Directorate  

E-Print Network (OSTI)

at Pacific NW National Lab (PNNL) ­ Founding Director Joint Global Change Research Institute (PNNL/UMd) ­ ALD (PNNL) ­ Environmental and Health Sciences Directorate; Emerging Technologies ­ Chief Scientist ­ Atmospheric Radiation Measurement Program ­ Director ­ PNNL Global Studies Program ­ Other (PNNL): Center

Homes, Christopher C.

444

Acrion Technologies | Open Energy Information  

Open Energy Info (EERE)

Acrion Technologies Acrion Technologies Jump to: navigation, search Name Acrion Technologies Place Cleveland, Ohio Zip 44125 Product Acrion Technologies focuses on landfill gas clean up and clean landfill gas use. The company developed the CO2 Wash Techology that cleans landfill gas. Coordinates 41.504365°, -81.690459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.504365,"lon":-81.690459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Greenward Technologies | Open Energy Information  

Open Energy Info (EERE)

Greenward Technologies Greenward Technologies Jump to: navigation, search Name Greenward Technologies Address PO Box 203814 Place Austin, Texas Zip 78720 Sector Wind energy Product Developing a prototype energy-generating windmill design using 4 counter-rotating turbines Website http://www.greenward-technolog Coordinates 30.2669°, -97.7428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2669,"lon":-97.7428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Greenwood Technologies | Open Energy Information  

Open Energy Info (EERE)

Greenwood Technologies Greenwood Technologies Jump to: navigation, search Name Greenwood Technologies Place Bellevue, Washington State Zip 98005 Sector Efficiency Product Greenwood Technologies sells high efficiency wood burning stoves Coordinates 47.61002°, -122.187549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.61002,"lon":-122.187549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Wakonda Technologies | Open Energy Information  

Open Energy Info (EERE)

Wakonda Technologies Wakonda Technologies Jump to: navigation, search Logo: Wakonda Technologies Name Wakonda Technologies Address 2A Gill Street Place Woburn, Massachusetts Zip 01801 Sector Solar Product High efficiency solar panels Year founded 2005 Number of employees 1-10 Website http://wakondatech.com/ Coordinates 42.5108195°, -71.1478095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5108195,"lon":-71.1478095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Pavilion Technologies | Open Energy Information  

Open Energy Info (EERE)

Pavilion Technologies Pavilion Technologies Jump to: navigation, search Name Pavilion Technologies Place Austin, Texas Zip TX 78759 Product Pavilion Technologies is a designer of model-based software to automate manufacturing processes. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Albeo Technologies | Open Energy Information  

Open Energy Info (EERE)

Albeo Technologies Albeo Technologies Jump to: navigation, search Logo: Albeo Technologies Name Albeo Technologies Address 3125 Sterling Circle Place Boulder, Colorado Zip 80301 Sector Efficiency Product LED lighting Website http://www.albeotech.com/ Coordinates 40.031501°, -105.228587° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.031501,"lon":-105.228587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Shorepower Technologies | Open Energy Information  

Open Energy Info (EERE)

Shorepower Technologies Shorepower Technologies Jump to: navigation, search Logo: Shorepower Technologies Name Shorepower Technologies Address 2351 NW York St. Place Portland, Oregon Zip 97210 Sector Services Product Transportation Electrification Infrastructure Year founded 2005 Number of employees 1-10 Phone number 5038927345 Website http://www.shorepower.com/ Coordinates 45.539256°, -122.700291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.539256,"lon":-122.700291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Contour Global L P | Open Energy Information  

Open Energy Info (EERE)

in under-served markets, such as that for renewable energy technologies and Combined Heat and Power (CHP), within developed economics. References Contour Global L.P.1...

452

Climate VISION: Private Sector Initiatives: Electric Power - Technology  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways Industry Vision & Roadmaps The following documents are available for download as Adobe PDF documents. Download Acrobat Reader A Climate Contingency Roadmap for the U.S. Electricity Sector: Phase II (PDF 192 KB) This roadmap examines the role of the electric sector in climate change and the sectoral impacts of alternative climate policy designs. The document explores the capabilities and costs of emissions reduction options and the influence of company-specific circumstances on the design of cost-effective response strategies. It also investigates mechanisms to create incentives for support of advanced climate-related technology research, development, and demonstration. Electric Power Research Institute Roadmap The Electric Power Research Institute is initiating an effort to develop an

453

Global Wind Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Wind Systems Inc Wind Systems Inc Jump to: navigation, search Name Global Wind Systems, Inc. Place No