National Library of Energy BETA

Sample records for global system modeling

  1. Integrated Global System Modeling Framework | Open Energy Information

    Open Energy Info (EERE)

    System Modeling Framework AgencyCompany Organization: MIT Joint Program on the Science and Policy of Global Change Sector: Climate, Energy Focus Area: Renewable Energy...

  2. Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Climate & Earth Systems Climate Measurement & Modeling Arctic Climate Measurements Global ...

  3. System for the Analysis of Global Energy Markets - Vol. II, Model Documentation

    Reports and Publications (EIA)

    2003-01-01

    The second volume provides a data implementation guide that lists all naming conventions and model constraints. In addition, Volume 1 has two appendixes that provide a schematic of the System for the Analysis of Global Energy Markets (SAGE) structure and a listing of the source code, respectively.

  4. System for the Analysis of Global Energy Markets - Vol. I, Model Documentation

    Reports and Publications (EIA)

    2003-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of projections for the International Energy Outlook. The first volume of this report describes the System for the Analysis of Global Energy Markets (SAGE) methodology and provides an in-depth explanation of the equations of the model.

  5. Development of the first nonhydrostatic nested-grid grid-point global atmospheric modeling system on parallel machines

    SciTech Connect (OSTI)

    Kao, C.Y.J.; Langley, D.L.; Reisner, J.M.; Smith, W.S.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Evaluating the importance of global and regional climate response to increasing atmospheric concentrations of greenhouse gases requires a comprehensive global atmospheric modeling system (GAMS) capable of simulations over a wide range of atmospheric circulations, from complex terrain to continental scales, on high-performance computers. Unfortunately, all of the existing global circulation models (GCMs) do not meet this requirements, because they suffer from one or more of the following three shortcomings: (1) use of the hydrostatic approximation, which makes the models potentially ill-posed; (2) lack of a nested-grid (or multi-grid) capability, which makes it difficult to consistently evaluate the regional climate response to the global warming, and (3) spherical spectral (opposed to grid-point finite-difference) representation of model variables, which hinders model performance for parallel machine applications. The end product of the research is a highly modularized, multi-gridded, self-calibratable (for further parameterization development) global modeling system with state-of-the-science physics and chemistry. This system will be suitable for a suite of atmospheric problems: from local circulations to climate, from thunderstorms to global cloud radiative forcing, from urban pollution to global greenhouse trace gases, and from the guiding of field experiments to coupling with ocean models. It will also provide a unique testbed for high-performance computing architecture.

  6. Global/Local Dynamic Models

    SciTech Connect (OSTI)

    Pfeffer, A; Das, S; Lawless, D; Ng, B

    2006-10-10

    Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.

  7. Collaborative Proposal: Transforming How Climate System Models are Used: A Global, Multi-Resolution Approach

    SciTech Connect (OSTI)

    Estep, Donald

    2013-04-15

    Despite the great interest in regional modeling for both weather and climate applications, regional modeling is not yet at the stage that it can be used routinely and effectively for climate modeling of the ocean. The overarching goal of this project is to transform how climate models are used by developing and implementing a robust, efficient, and accurate global approach to regional ocean modeling. To achieve this goal, we will use theoretical and computational means to resolve several basic modeling and algorithmic issues. The first task is to develop techniques for transitioning between parameterized and high-fidelity regional ocean models as the discretization grid transitions from coarse to fine regions. The second task is to develop estimates for the error in scientifically relevant quantities of interest that provide a systematic way to automatically determine where refinement is needed in order to obtain accurate simulations of dynamic and tracer transport in regional ocean models. The third task is to develop efficient, accurate, and robust time-stepping schemes for variable spatial resolution discretizations used in regional ocean models of dynamics and tracer transport. The fourth task is to develop frequency-dependent eddy viscosity finite element and discontinuous Galerkin methods and study their performance and effectiveness for simulation of dynamics and tracer transport in regional ocean models. These four projects share common difficulties and will be approach using a common computational and mathematical toolbox. This is a multidisciplinary project involving faculty and postdocs from Colorado State University, Florida State University, and Penn State University along with scientists from Los Alamos National Laboratory. The completion of the tasks listed within the discussion of the four sub-projects will go a long way towards meeting our goal of developing superior regional ocean models that will transform how climate system models are used.

  8. Leaf respiration (GlobResp) - global trait database supports Earth System Models

    SciTech Connect (OSTI)

    Wullschleger, Stan D.; Warren, Jeffrey; Thornton, Peter E.

    2015-03-20

    Here we detail how Atkin and his colleagues compiled a global database (GlobResp) that details rates of leaf dark respiration and associated traits from sites that span Arctic tundra to tropical forests. This compilation builds upon earlier research (Reich et al., 1998; Wright et al., 2006) and was supplemented by recent field campaigns and unpublished data.In keeping with other trait databases, GlobResp provides insights on how physiological traits, especially rates of dark respiration, vary as a function of environment and how that variation can be used to inform terrestrial biosphere models and land surface components of Earth System Models. Although an important component of plant and ecosystem carbon (C) budgets (Wythers et al., 2013), respiration has only limited representation in models. Seen through the eyes of a plant scientist, Atkin et al. (2015) give readers a unique perspective on the climatic controls on respiration, thermal acclimation and evolutionary adaptation of dark respiration, and insights into the covariation of respiration with other leaf traits. We find there is ample evidence that once large databases are compiled, like GlobResp, they can reveal new knowledge of plant function and provide a valuable resource for hypothesis testing and model development.

  9. Global Energy Futures Model

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  10. High-Resolution Global Modeling of the Effects of Subgrid-Scale Clouds and Turbulence on Precipitating Cloud Systems

    SciTech Connect (OSTI)

    Bogenschutz, Peter; Moeng, Chin-Hoh

    2015-10-13

    The PI’s at the National Center for Atmospheric Research (NCAR), Chin-Hoh Moeng and Peter Bogenschutz, have primarily focused their time on the implementation of the Simplified-Higher Order Turbulence Closure (SHOC; Bogenschutz and Krueger 2013) to the Multi-scale Modeling Framework (MMF) global model and testing of SHOC on deep convective cloud regimes.

  11. Computer modeling of the global warming effect

    SciTech Connect (OSTI)

    Washington, W.M.

    1993-12-31

    The state of knowledge of global warming will be presented and two aspects examined: observational evidence and a review of the state of computer modeling of climate change due to anthropogenic increases in greenhouse gases. Observational evidence, indeed, shows global warming, but it is difficult to prove that the changes are unequivocally due to the greenhouse-gas effect. Although observational measurements of global warming are subject to ``correction,`` researchers are showing consistent patterns in their interpretation of the data. Since the 1960s, climate scientists have been making their computer models of the climate system more realistic. Models started as atmospheric models and, through the addition of oceans, surface hydrology, and sea-ice components, they then became climate-system models. Because of computer limitations and the limited understanding of the degree of interaction of the various components, present models require substantial simplification. Nevertheless, in their present state of development climate models can reproduce most of the observed large-scale features of the real system, such as wind, temperature, precipitation, ocean current, and sea-ice distribution. The use of supercomputers to advance the spatial resolution and realism of earth-system models will also be discussed.

  12. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less

  13. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    SciTech Connect (OSTI)

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganic carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.

  14. Global nuclear material flow/control model

    SciTech Connect (OSTI)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-10-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies.

  15. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is delayed and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  16. Development of an Integrated Global Energy Model

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1999-07-08

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E{sup 3}) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term ({approximately}2,100) context. The E{sup 3} model so developed was applied to create a Los Alamos presence in this E{sup 3} area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E{sup 3} model have been presented at a variety of national and international conferences and workshops. Through use of the E{sup 3} model Los Alamos was afforded the opportunity to participate in a multi-national E{sup 3} study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E{sup 3} model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project.

  17. Application of global weather and climate model output to the design and operation of wind-energy systems

    SciTech Connect (OSTI)

    Curry, Judith

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  18. World Energy Projection System Plus (WEPS ): Global Activity Module

    Reports and Publications (EIA)

    2013-01-01

    World Energy Projection System Plus Model Documentation: Global Activity Module Documents the objectives, analytical approach, and development of the World Energy Projection Plus (WEPS ) Global Activity Module (GAM) used to develop the International Energy Outlook for 2013 (IEO2013). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code.

  19. Development of mpi_EPIC Model for Global Agroecosystem Modeling

    SciTech Connect (OSTI)

    Kang, Shujiang; Wang, Dali; Nichols, Jeff A. {Cyber Sciences}; Schuchart, Joseph; Kline, Keith L; Wei, Yaxing; Ricciuto, Daniel M; Wullschleger, Stan D; Post, Wilfred M; Izaurralde, Dr. R. Cesar

    2015-01-01

    Models that address policy-maker concerns about multi-scale effects of food and bioenergy production systems are computationally demanding. We integrated the message passing interface algorithm into the process-based EPIC model to accelerate computation of ecosystem effects. Simulation performance was further enhanced by applying the Vampir framework. When this enhanced mpi_EPIC model was tested, total execution time for a global 30-year simulation of a switchgrass cropping system was shortened to less than 0.5 hours on a supercomputer. The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analysis of agricultural production systems, management alternatives and environmental effects.

  20. Development of mpi_EPIC model for global agroecosystem modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kang, Shujiang; Wang, Dali; Jeff A. Nichols; Schuchart, Joseph; Kline, Keith L.; Wei, Yaxing; Ricciuto, Daniel M.; Wullschleger, Stan D.; Post, Wilfred M.; Izaurralde, R. Cesar

    2014-12-31

    Models that address policy-maker concerns about multi-scale effects of food and bioenergy production systems are computationally demanding. We integrated the message passing interface algorithm into the process-based EPIC model to accelerate computation of ecosystem effects. Simulation performance was further enhanced by applying the Vampir framework. When this enhanced mpi_EPIC model was tested, total execution time for a global 30-year simulation of a switchgrass cropping system was shortened to less than 0.5 hours on a supercomputer. The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analysis of agricultural production systems, management alternatives and environmentalmore » effects.« less

  1. Global Wind Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Global Wind Systems, Inc. Place: Novi, Michigan Zip: 48375 Product: Michigan-based startup company that plans to develop a turbine assembly plant in the town of Novi, using a...

  2. Supercomputers Fuel Global High-Resolution Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Fuel Global High-Resolution Climate Models Supercomputers Fuel Global High-Resolution Climate Models Berkeley Lab Researcher Says Climate Science is Entering New ...

  3. ARM Data Help Improve Precipitation in Global Climate Models...

    Office of Science (SC) Website

    ARM Data Help Improve Precipitation in Global Climate Models Biological and Environmental ... ARM Data Help Improve Precipitation in Global Climate Models Cloud, radiation, and drizzle ...

  4. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Part of a 100 million ...

  5. GWPS Global Wind Power Systems | Open Energy Information

    Open Energy Info (EERE)

    GWPS Global Wind Power Systems Jump to: navigation, search Name: GWPS (Global Wind Power Systems) Place: Hamburg, Germany Zip: 20095 Sector: Wind energy Product: Company...

  6. Global Alignment System for Large Genomic Sequencing

    Energy Science and Technology Software Center (OSTI)

    2002-03-01

    AVID is a global alignment system tailored for the alignment of large genomic sequences up to megabases in length. Features include the possibility of one sequence being in draft form, fast alignment, robustness and accuracy. The method is an anchor based alignment using maximal matches derived from suffix trees.

  7. Global Biofuels Modeling and Land Use

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Modeling and Land Use DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Strategic Analysis & Cross-cutting Sustainability March 25 2015 Gbadebo Oladosu (PI) Oak Ridge National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information GOAL STATEMENT * Primary goal of the project is to demonstrate the viability of biofuels in the context of the national/global economy. * Metrics include: - Cost effectiveness:

  8. Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... International Strategy for Water and Land Resources in Iraq Model US-Canada Algae Biofuel ... Generation Cost Simulation Model Iraq Water-Energy-Food Model The USMexico ...

  9. Modeling the earth system

    SciTech Connect (OSTI)

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  10. Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

    2005-05-27

    The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation

  11. Rapid deployable global sensing hazard alert system

    DOE Patents [OSTI]

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  12. Global positioning system recorder and method

    DOE Patents [OSTI]

    Hayes, D.W.; Hofstetter, K.J.; Eakle, R.F. Jr.; Reeves, G.E.

    1998-12-22

    A global positioning system recorder (GPSR) is disclosed in which operational parameters and recorded positional data are stored on a transferable memory element. Through this transferrable memory element, the user of the GPSR need have no knowledge of GPSR devices other than that the memory element needs to be inserted into the memory element slot and the GPSR must be activated. The use of the data element also allows for minimal downtime of the GPSR and the ability to reprogram the GPSR and download data therefrom, without having to physically attach it to another computer. 4 figs.

  13. Aeras: A next generation global atmosphere model

    SciTech Connect (OSTI)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  14. Aeras: A next generation global atmosphere model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  15. Sandia Is Developing a Doppler Global Velocimetry System to Understand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is Developing a Doppler Global Velocimetry System to Understand Fundamental Wind-Turbine ... System to Understand Fundamental Wind-Turbine Wake Phenomena HomeComputational ...

  16. Global Ocean Circulation Modeling with an Isopycnic Coordinate Model. Final Report for May 1, 1998 - April 30, 2002

    SciTech Connect (OSTI)

    Bleck, R.

    2004-05-19

    The overall aim of this project was to continue development of a global version of the Miami Isopycnic Coordinate Ocean Model (MICOM) with the intent of turning it into a full-fledged oceanic component of an earth system model.

  17. Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  18. BETR Global - A geographically explicit global-scale multimedia contaminant fate model

    SciTech Connect (OSTI)

    Macleod, M.; Waldow, H. von; Tay, P.; Armitage, J. M.; Wohrnschimmel, H.; Riley, W.; McKone, T. E.; Hungerbuhler, K.

    2011-04-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15{sup o} x 15{sup o} grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).

  19. Climate Models from the Joint Global Change Research Institute

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Staff at the Joint Institute develop and use models to simulate the economic and physical impacts of global change policy options. The GCAM, for example, gives analysts insight into how regional and national economies might respond to climate change mitigation policies including carbon taxes, carbon trading, and accelerated deployment of energy technology. Three available models are Phoenix, GCAM, and EPIC. Phoenix is a global, dynamic recursive, computable general equilibrium model that is solved in five-year time steps from 2005 through 2100 and divides the world into twenty-four regions. Each region includes twenty-six industrial sectors. Particular attention is paid to energy production in Phoenix. There are nine electricity-generating technologies (coal, natural gas, oil, biomass, nuclear, hydro, wind, solar, and geothermal) and four additional energy commodities: crude oil, refined oil products, coal, and natural gas. Phoenix is designed to answer economic questions related to international climate and energy policy and international trade. Phoenix replaces the Second Generation Model (SGM) that was formerly used for general equilibrium analysis at JGCRI. GCAM is the Global Change Assessment Model, a partial equilibrium model of the world with 14 regions. GCAM operates in 5 year time steps from 1990 to 2095 and is designed to examine long-term changes in the coupled energy, agriculture/land-use, and climate system. GCAM includes a 151-region agriculture land-use module and a reduced form carbon cycle and climate module in addition to its incorporation of demographics, resources, energy production and consumption. The model has been used extensively in a number of assessment and modeling activities such as the Energy Modeling Forum (EMF), the U.S. Climate Change Technology Program, and the U.S. Climate Change Science Program and IPCC assessment reports. GCAM is now freely available as a community model. The Environmental Policy Integrated Climate (EPIC) Model

  20. A DATA-DRIVEN MODEL FOR THE GLOBAL CORONAL EVOLUTION

    SciTech Connect (OSTI)

    Feng Xueshang; Jiang Chaowei; Xiang Changqing; Zhao Xuepu; Wu, S. T. E-mail: cwjiang@spaceweather.ac.cn E-mail: xpzhao@sun.stanford.edu

    2012-10-10

    This work is devoted to the construction of a data-driven model for the study of the dynamic evolution of the global corona that can respond continuously to the changing of the photospheric magnetic field. The data-driven model consists of a surface flux transport (SFT) model and a global three-dimensional (3D) magnetohydrodynamic (MHD) coronal model. The SFT model is employed to produce the global time-varying and self-consistent synchronic snapshots of the photospheric magnetic field as the input to drive our 3D numerical global coronal AMR-CESE-MHD model on an overset grid of Yin-Yang overlapping structure. The SFT model and the 3D global coronal model are coupled through the boundary condition of the projected characteristic method. Numerical results of the coronal evolution from 1996 September 4 to October 29 provide a good comparison with multiply observed coronal images.

  1. Posters Radiation Impacts on Global Climate Models F. Baer, N...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters Radiation Impacts on Global Climate Models F. Baer, N. Arsky, and K. Rocque ... Heating Rates Generated from Longwave Radiation Algorithms LWR algorithms calculate ...

  2. Geoscience Australia Continuous Global Positioning System (CGPS...

    Office of Scientific and Technical Information (OSTI)

    applications including maintenance of the Geospatial Reference Frame, both national and international, continental and tectonic plate motions, sea level rise, and global warming. ...

  3. A global scale mechanistic model of the photosynthetic capacity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ali, A. A.; Xu, C.; Rogers, A.; Fisher, R. A.; Wullschleger, S. D.; McDowell, N. G.; Massoud, E. C.; Vrugt, J. A.; Muss, J. D.; Fisher, J. B.; et al

    2015-08-10

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc, max25) and the maximum electron transport rate (i.e., Jmax25) at a reference temperature (generally 25 C) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture,moreelectron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55 % of the variation in observed Vc, max25 and 65 % of the variation in observed Jmax25 across the globe. Our model simulations under current and future climate conditions indicated that Vc, max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed Vc, max25 or Jmax25 by plant functional types were likely to substantially overestimate future global photosynthesis.less

  4. Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permalink EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Analysis, Capabilities, Facilities, Global, Infrastructure Security, Modeling, Modeling & Analysis, NISAC, Partnership, Research & Capabilities EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Natural disasters create emergency situations that must be dealt with quickly and effectively in order to minimize injury and loss of life. Simulating such events before they occur can

  5. 2012 Community Earth System Model (CESM) Tutorial - Proposal...

    Office of Scientific and Technical Information (OSTI)

    The Community Earth System Model (CESM) is a fully-coupled, global climate model that ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 54 ...

  6. The Community Earth System Model: A Framework for Collaborative...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: Community Earth System Model; global coupled model; atmosperic chemistry Word Cloud More Like ...

  7. Supercomputers Fuel Global High-Resolution Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Fuel Global High-Resolution Climate Models Supercomputers Fuel Global High-Resolution Climate Models Berkeley Lab Researcher Says Climate Science is Entering New Golden Age November 12, 2014 Contact: Julie Chao, jchao@lbl.gov, 510.486.6491 wehnerclimate2 Simulated and observed annual maximum 5 day accumulated precipitation over land points, averaged. Observations are calculated from the period 1979 to 1999. Model results are calculated from the period 1979 to 2005. Not long ago,

  8. Global Biofuels Modeling and Land Use

    Broader source: Energy.gov (indexed) [DOE]

    ... equilibrium models * Oil, natural gas and coal supply curves are explicitly modeled to ... supplyuse of biofuels depends on how consumers respond in the transportation market. ...

  9. Building global HEP systems on Kerberos

    SciTech Connect (OSTI)

    Crawford, Matt; /Fermilab

    2004-12-01

    As an underpinning of AFS and Windows 2000, and as a formally proven security protocol [1] in its own right, Kerberos is ubiquitous among HEP sites. Fermilab and users from other sites have taken advantage of this and built a diversity of distributed applications over Kerberos v5. We present several projects in which this security infrastructure has been leveraged to meet the requirements of geographically dispersed collaborations. These range from straightforward ''Kerberization'' of applications such as database and batch services, to quick tricks like simulating a user-authenticated web service with AFS and the ''file'': schema, to more complex systems. Examples of the latter include experiment control room operations and the Central Analysis Farm (CAF). We present several use cases and their security models, and examine how they attempt to address some of the outstanding problems of secure distributed computing: delegation of the least necessary privilege; establishment of trust between a user and a remote processing facility; credentials for long-queued or long-running processes, and automated processes running without any user's presence; security of remotely-stored credentials; and ability to scale to the numbers of sites, machines and users expected in the collaborations of the coming decade.

  10. Geoscience Australia Continuous Global Positioning System (GPS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including maintenance of the Geospatial Reference Frame, both national and ... the maintenance of the National Geospatial Reference Systems, tectonic plate ...

  11. Transportation Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  12. Radiative heating in global climate models

    SciTech Connect (OSTI)

    Baer, F.; Arsky, N.; Rocque, K.

    1996-04-01

    LWR algorithms from various GCMs vary significantly from one another for the same clear sky input data. This variability becomes pronounced when clouds are included. We demonstrate this effect by intercomparing the various models` output using observed data including clouds from ARM/CART data taken in Oklahoma.

  13. Robotic Intelligent System | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intelligent System Could Save Hospitals Millions Click to email this to a friend (Opens in ... accuracy, all of the medical devices doctors need to perform life-saving procedures. ...

  14. Growth Rates of Global Energy Systems and Future Outlooks

    SciTech Connect (OSTI)

    Hoeoek, Mikael; Li, Junchen; Johansson, Kersti; Snowden, Simon

    2012-03-15

    The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems' growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid 'oil boom'-development-i.e. they mimic the most extreme historical events-their contribution to global energy supply by 2050 will be marginal.

  15. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect (OSTI)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  16. Modeling of geothermal systems

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  17. Macro System Model (MSM)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Macro System Model (MSM) (National Renewable Energy Laboratory) Objectives Perform rapid cross-cutting analysis that utilizes and links other models. Ensure all aspects of hydrogen pathway and cost analysis is included such as hydrogen purity, leakage, etc. Key Attributes & Strengths Easily and rapidly links modeling experts with DOE's other models that are included in the MSM. Platform, Requirements & Availability MSM is a static, cross-cutting model which links models from various

  18. System Advisor Model

    Energy Science and Technology Software Center (OSTI)

    2010-03-01

    The System Advisor Model (SAM) is a performance and economic model designed to facilitate decision making for people involved in the renewable energy industry, ranging from project managers and engineers to incentive program designers, technology developers, and researchers.

  19. Global Energy Management System Implementation: General Dynamics Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Energy Management System Implementation: Case Study 1 USA, Superior Energy Performance Defense contractor improves energy performance nearly 12%, achieving a six-month payback and earning Gold- level certification by Superior Energy Performance Business Benefits Achieved General Dynamics Ordnance and Tactical Systems (GD-OTS) worked with the U.S. Department of Energy's Advanced Manufacturing Office to successfully implement an energy management system (EnMS) at a federal ammunition plant

  20. The sustainable system for global nuclear energy utilization

    SciTech Connect (OSTI)

    Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Kawashima, Masatoshi; Nakayama, Yoshiyuki; Ishiguma, Kazuo; Fuji-ie, Yoichi

    2007-07-01

    The sustainable system for global nuclear energy utilization has been developed based on the concept of the Self-Consistent Nuclear Energy System. As the results, it is clarified that metallic fuel fast reactor cycle with recycling of actinides and five LLFPs is one of the most promising systems for the sustainable nuclear utilization. It is important to develop the related technologies toward its realization. (authors)

  1. Modeling international cooperation for the global environmental problematique

    SciTech Connect (OSTI)

    Sadeh, E.

    1997-12-31

    The focus of this study is on international cooperative decision-making related to global change issues concerning stratospheric ozone depletion and global climate warming. Such anthropogenic alteration of the Earth`s biosphere has given rise to a global environmental problematique that is demarcated by two dimensions. The first dimension is that global environmental Issues are demarcated by international environmental commons. Commons are defined as physical or biological systems that lie outside the jurisdiction of any individual state and are valued environmental resources globally. A second dimension pertains to tile collective action problem which results from a {open_quotes}tragedy of the commons.{close_quotes} According to traditional realist conception of international relations, that states behave in their rational self-interest, a {open_quotes}tragedy of the commons{close_quotes} ensues. The tragedy is a function of damage to the global environment, such as the production of economic resources that release greenhouse gases into the Earth`s biosphere, that is nonappropriable. Commons resources relative to the Earth`s biosphere are not limitless. At issue, is the realization of sustainable economic development promoted by cooperative political patterns that mitigate the negative consequences of this tragedy.

  2. Global garbage collection for distributed heap storage systems

    SciTech Connect (OSTI)

    Ali, K.A.M.; Haridi, S.

    1986-10-01

    The authors present a garbage-collection algorithm, suitable for loosely-coupled multi-processor systems, in which the processing elements (PEs) share only the communication medium. The algorithm is global, i.e., it involves all the PEs in the system. It allows space compaction, and it uses a system-wide marking phase to mark all accessible objects where a combination of parallel breadth-first/depth-first strategies is used for tracing the object-graphs according to a decentralized credit mechanism that regulates the number of garbage collections messages in the system. The credit mechanism is crucial for determining the space requirement of the garbage-collection messages. Also a variation of this algorithm is presented for systems with high locality of reference. It allows each PE to perform first its local garbage collection and only invokes the global garbage collection when the freed space by the local collector is insufficient.

  3. The waveform correlation event detection system global prototype software design

    SciTech Connect (OSTI)

    Beiriger, J.I.; Moore, S.G.; Trujillo, J.R.; Young, C.J.

    1997-12-01

    The WCEDS prototype software system was developed to investigate the usefulness of waveform correlation methods for CTBT monitoring. The WCEDS prototype performs global seismic event detection and has been used in numerous experiments. This report documents the software system design, presenting an overview of the system operation, describing the system functions, tracing the information flow through the system, discussing the software structures, and describing the subsystem services and interactions. The effectiveness of the software design in meeting project objectives is considered, as well as opportunities for code refuse and lessons learned from the development process. The report concludes with recommendations for modifications and additions envisioned for regional waveform-correlation-based detector.

  4. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  5. An improvement to the global standard for modeling fusion plasmas |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab An improvement to the global standard for modeling fusion plasmas By Raphael Rosen April 27, 2015 Tweet Widget Google Plus One Share on Facebook Schematic of NSTX tokamak at PPPL with a cross-section showing perturbations of the plasma profiles caused by instabilities. Without instabilities, energetic particles would follow closed trajectories and stay confined inside the plasma (blue orbit). With instabilities, trajectories can be modified and some particles may

  6. Canister Model, Systems Analysis

    Energy Science and Technology Software Center (OSTI)

    1993-09-29

    This packges provides a computer simulation of a systems model for packaging nuclear waste and spent nuclear fuel in canisters. The canister model calculates overall programmatic cost, number of canisters, and fuel and waste inventories for the Idaho Chemical Processing Plant (other initial conditions can be entered).

  7. Sandia Is Developing a Doppler Global Velocimetry System to Understand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamental Wind-Turbine Wake Phenomena Is Developing a Doppler Global Velocimetry System to Understand Fundamental Wind-Turbine Wake Phenomena - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage

  8. A New Global River Network Database for Macroscale Hydrologic modeling

    SciTech Connect (OSTI)

    Wu, Huan; Kimball, John S.; Li, Hongyi; Huang, Maoyi; Leung, Lai-Yung R.; Adler, Robert F.

    2012-09-28

    Coarse resolution (upscaled) river networks are critical inputs for runoff routing in macroscale hydrologic models. Recently, Wu et al. (2011) developed a hierarchical Dominant River Tracing (DRT) algorithm for automated extraction and spatial upscaling of basin flow directions and river networks using fine-scale hydrography inputs (e.g., flow direction, river networks, and flow accumulation). The DRT was initially applied using HYDRO1K baseline fine-scale hydrography inputs and the resulting upscaled global hydrography maps were produced at several spatial scales, and verified against other available regional and global datasets. New baseline fine-scale hydrography data from HydroSHEDS are now available for many regions and provide superior scale and quality relative to HYDRO1K. However, HydroSHEDS does not cover regions above 60°N. In this study, we applied the DRT algorithms using combined HydroSHEDS and HYDRO1K global fine-scale hydrography inputs, and produced a new series of upscaled global river network data at multiple (1/16° to 2°) spatial resolutions in a consistent (WGS84) projection. The new upscaled river networks are internally consistent and congruent with the baseline fine-scale inputs. The DRT results preserve baseline fine-scale river networks independent of spatial scales, with consistency in river network, basin shape, basin area, river length, and basin internal drainage structure between upscaled and baseline fine-scale hydrography. These digital data are available online for public access (ftp://ftp.ntsg.umt.edu/pub/data/DRT/) and should facilitate improved regional to global scale hydrological simulations, including runoff routing and river discharge calculations.

  9. Global horizontal irradiance clear sky models : implementation and analysis.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

  10. Critical Infrastructure Modeling System

    Energy Science and Technology Software Center (OSTI)

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  11. Nuclear Fuel Leasing, Recycling and proliferation: Modeling a Global View

    SciTech Connect (OSTI)

    Crozat, M P; Choi, J; Reis, V H; Hill, R

    2004-03-10

    would extend the spirit of President Eisenhower's ''Atoms for Peace'' vision toward solving some of the major international problems of the 21st Century--global climate change and the creation of a peaceful and stable world political regime. Needless to say, this is a very complex problem, encompassing all of the issues involved in nuclear power--economics, proliferation, waste management and safety--and a myriad of public and diplomatic policy issues as well. To gain a better understanding of the leasing concept we have built an interactive system dynamics model, Multinuke, using STELLA software. (STELLA is particularly useful for this type of analysis because of its capability to create user-friendly interfaces.) Multinuke simulates two separate nuclear entities and possible interactions between them, and therefore can be used to investigate the fuel-leasing concept. In this paper we will apply the results of Multinuke to a few simplified scenarios to help understand how fuel leasing might affect the future global growth of nuclear power, proliferation concern and spent fuel management.

  12. Evaluation of Black Carbon Estimations in Global Aerosol Models

    SciTech Connect (OSTI)

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.

  13. Distributed generation systems model

    SciTech Connect (OSTI)

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  14. Global positioning system recorder and method government rights

    DOE Patents [OSTI]

    Hayes, David W.; Hofstetter, Kenneth J.; Eakle, Jr., Robert F.; Reeves, George E.

    1998-01-01

    A global positioning system recorder (GPSR) is disclosed in which operational parameters and recorded positional data are stored on a transferable memory element. Through this transferrable memory element, the user of the GPSR need have no knowledge of GPSR devices other than that the memory element needs to be inserted into the memory element slot and the GPSR must be activated. The use of the data element also allows for minimal downtime of the GPSR and the ability to reprogram the GPSR and download data therefrom, without having to physically attach it to another computer.

  15. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    SciTech Connect (OSTI)

    Hansen, Clifford W.; Martin, Curtis E.

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature; (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.

  16. A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios

    SciTech Connect (OSTI)

    Lu, Wei; Liu, Cheng; Thomas, Neil; Bhaduri, Budhendra L; Han, Lee

    2015-01-01

    Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. For left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.

  17. Earth System Modeling (ESM) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Earth System Modeling (ESM) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  18. California Wintertime Precipitation in Regional and Global Climate Models

    SciTech Connect (OSTI)

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  19. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mahowald, N.; Scanza, R.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J.; Zhuang, G.; Chen, Y.; Cohen, D. D.; et al

    2014-12-17

    Trace element deposition from desert dust has important impacts on ocean primary productivity. In this study, emission inventories for 8 elements, which are primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si were determined based on a global mineral dataset and a soils dataset. Datasets of elemental fractions were used to drive the desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions was evident on a global scale, particularly for Ca. Simulations of global variations in the Camore » / Al ratio, which typically ranged from around 0.1 to 5.0 in soil sources, were consistent with observations, suggesting this ratio to be a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different that estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observational elemental aerosol concentration data from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions ranged from 0.7 to 1.6 except for 3.4 and 3.5 for Mg and Mn, respectivly. Using the soil data base improved the correspondence of the spatial hetereogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust associated element fluxes into different ocean basins and ice sheets regions have been estimated, based on the model results. Annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using mineral dataset were 0.28 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less

  20. A global scale mechanistic model of photosynthetic capacity (LUNA V1.0)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ali, A. A.; Xu, C.; Rogers, A.; Fisher, R. A.; Wullschleger, S. D.; Massoud, E. C.; Vrugt, J. A.; Muss, J. D.; McDowell, N. G.; Fisher, J. B.; et al

    2016-02-12

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc, max25) and the maximum electron transport rate (i.e., Jmax25) at a reference temperature (generally 25 °C) is known to vary considerably in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated with plant functional types. In this study, we have developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA) to predict photosynthetic capacity at the global scale under different environmental conditions. We adopt an optimality hypothesis to nitrogen allocation among light capture, electron transport,more » carboxylation and respiration. The LUNA model is able to reasonably capture the measured spatial and temporal patterns of photosynthetic capacity as it explains  ∼  55 % of the global variation in observed values of Vc, max25 and  ∼  65 % of the variation in the observed values of Jmax25. Model simulations with LUNA under current and future climate conditions demonstrate that modeled values of Vc, max25 are most affected in high-latitude regions under future climates. ESMs that relate the values of Vc, max25 or Jmax25 to plant functional types only are likely to substantially overestimate future global photosynthesis.« less

  1. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earths atmosphere and influence the Earths energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  2. Interpretation of simulated global warming using a simple model

    SciTech Connect (OSTI)

    Watterson, I.G.

    2000-01-01

    A simple energy balance model with two parameters, an effective heat capacity and an effective climate sensitivity, is used to interpret six GCM simulations of greenhouse gas-induced global warming. By allowing the parameters to vary in time, the model can be accurately calibrated for each run. It is found that the sensitivity can be approximated as a constant in each case. However, the effective heat capacity clearly varies, and it is important that the energy equation is formulated appropriately, and thus unlike many such models. For simulations with linear forcing and from a cold start, the capacity is in each case close to that of a homogeneous ocean with depth initially 200 m, but increasing some 4.3 m each year, irrespective of the sensitivity and forcing growth rate. Analytic solutions for t his linear capacity function are derived, and these reproduce the GCM runs well, even for cases where the forcing is stabilized after a century or so. The formation of a subsurface maximum in the mean ocean temperature anomaly is a significant feature of such cases. A simple model for a GCM run with a realistic forcing scenario starting from 1,880 is constructed using component results for forcing segments. Given this, an estimate of the cold start error of a simulation of the warming due to forcing after the present would be given by the negative of the temperature drift of the anomaly due to the past forcing. The simple model can evidently be used to give an indication of likely warming curves, at lest for this range of scenarios and GCM sensitivities.

  3. Balancing global water availability and use at basin scale in an integrated assessment model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Son H.; Hejazi, Mohamad; Liu, Lu; Calvin, Katherine; Clarke, Leon; Edmonds, Jae; Kyle, Page; Patel, Pralit; Wise, Marshall; Davies, Evan

    2016-01-22

    Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economicmore » growth, energy, land, and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater and desalinated water sources —across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. Lastly, this study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in integrated assessment models and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.« less

  4. World Energy Projection System Plus (WEPS ): Global Activity Module

    Reports and Publications (EIA)

    2016-01-01

    The World Energy Projection System Plus (WEPS ) is a comprehensive, mid?term energy forecasting and policy analysis tool used by EIA. WEPS projects energy supply, demand, and prices by country or region, given assumptions about the state of various economies, international energy markets, and energy policies. The Global Activity Module (GLAM) provides projections of economic driver variables for use by the supply, demand, and conversion modules of WEPS . GLAM’s baseline economic projection contains the economic assumptions used in WEPS to help determine energy demand and supply. GLAM can also provide WEPS with alternative economic assumptions representing a range of uncertainty about economic growth. The resulting economic impacts of such assumptions are inputs to the remaining supply and demand modules of WEPS .

  5. Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... sheet, 12 verification of a generalized Sweet-Parker model, 13 studies of ion heating ... with the plasma parameters listed in Table I result in a Sweet-Parker- type current sheet. ...

  6. System of systems modeling and analysis.

    SciTech Connect (OSTI)

    Campbell, James E.; Anderson, Dennis James; Longsine, Dennis E.; Shirah, Donald N.

    2005-01-01

    This report documents the results of an LDRD program entitled 'System of Systems Modeling and Analysis' that was conducted during FY 2003 and FY 2004. Systems that themselves consist of multiple systems (referred to here as System of Systems or SoS) introduce a level of complexity to systems performance analysis and optimization that is not readily addressable by existing capabilities. The objective of the 'System of Systems Modeling and Analysis' project was to develop an integrated modeling and simulation environment that addresses the complex SoS modeling and analysis needs. The approach to meeting this objective involved two key efforts. First, a static analysis approach, called state modeling, has been developed that is useful for analyzing the average performance of systems over defined use conditions. The state modeling capability supports analysis and optimization of multiple systems and multiple performance measures or measures of effectiveness. The second effort involves time simulation which represents every system in the simulation using an encapsulated state model (State Model Object or SMO). The time simulation can analyze any number of systems including cross-platform dependencies and a detailed treatment of the logistics required to support the systems in a defined mission.

  7. Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Co-Hosts "Climate Risk Forum: Bridging Climate Science and Actuarial Practice" This Fall event was a follow-up to a Climate and Environment Program Area meeting with the California governor's office in July. There, the California Insurance Commissioner, Dave Jones, recognized the value of Sandia's climate-impact modeling and analysis work, led by Stephen Conrad (manager of Sandia's Resilience and Regulatory Effects Dept.), and wanted to connect that [...] By admin|

  8. Modeling the Global Trade and Environmental Impacts of Biofuel...

    Open Energy Info (EERE)

    Global Trade and Environmental Impacts of Biofuel Policies AgencyCompany Organization: International Food Policy Research Institute Sector: Energy Focus Area: Biomass Topics:...

  9. Global and Regional Ecosystem Modeling: Databases of Model Drivers and Validation Measurements

    SciTech Connect (OSTI)

    Olson, R.J.

    2002-03-19

    Understanding global-scale ecosystem responses to changing environmental conditions is important both as a scientific question and as the basis for making policy decisions. The confidence in regional models depends on how well the field data used to develop the model represent the region of interest, how well the environmental model driving variables (e.g., vegetation type, climate, and soils associated with a site used to parameterize ecosystem models) represent the region of interest, and how well regional model predictions agree with observed data for the region. To assess the accuracy of global model forecasts of terrestrial carbon cycling, two Ecosystem Model-Data Intercomparison (EMDI) workshops were held (December 1999 and April 2001). The workshops included 17 biogeochemical, satellite-driven, detailed process, and dynamic vegetation global model types. The approach was to run regional or global versions of the models for sites with net primary productivity (NPP) measurements (i.e., not fine-tuned for specific site conditions) and analyze the model-data differences. Extensive worldwide NPP data were assembled with model driver data, including vegetation, climate, and soils data, to perform the intercomparison. This report describes the compilation of NPP estimates for 2,523 sites and 5,164 0.5{sup o}-grid cells under the Global Primary Production Data Initiative (GPPDI) and the results of the EMDI review and outlier analysis that produced a refined set of NPP estimates and model driver data. The EMDI process resulted in 81 Class A sites, 933 Class B sites, and 3,855 Class C cells derived from the original synthesis of NPP measurements and associated driver data. Class A sites represent well-documented study sites that have complete aboveground and below ground NPP measurements. Class B sites represent more numerous ''extensive'' sites with less documentation and site-specific information available. Class C cells represent estimates of NPP for 0.5{sup o

  10. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mahowald, N.; Scanza, R. A.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J. F.; Zhuang, G.; Chen, Y.; Cohen, D. D.; et al

    2015-10-12

    Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are

  11. Modeling Global Wetlands and Their Methane Emissions | U.S. DOE...

    Office of Science (SC) Website

    Summary To study the importance of wetlands in the global water and carbon cycles, a variety of hydrological and biogeochemical models have been developed over the last three ...

  12. Improving models to predict phenological responses to global change

    SciTech Connect (OSTI)

    Richardson, Andrew D.

    2015-11-25

    The term phenology describes both the seasonal rhythms of plants and animals, and the study of these rhythms. Plant phenological processes, including, for example, when leaves emerge in the spring and change color in the autumn, are highly responsive to variation in weather (e.g. a warm vs. cold spring) as well as longer-term changes in climate (e.g. warming trends and changes in the timing and amount of rainfall). We conducted a study to investigate the phenological response of northern peatland communities to global change. Field work was conducted at the SPRUCE experiment in northern Minnesota, where we installed 10 digital cameras. Imagery from the cameras is being used to track shifts in plant phenology driven by elevated carbon dioxide and elevated temperature in the different SPRUCE experimental treatments. Camera imagery and derived products (“greenness”) is being posted in near-real time on a publicly available web page (http://phenocam.sr.unh.edu/webcam/gallery/). The images will provide a permanent visual record of the progression of the experiment over the next 10 years. Integrated with other measurements collected as part of the SPRUCE program, this study is providing insight into the degree to which phenology may mediate future shifts in carbon uptake and storage by peatland ecosystems. In the future, these data will be used to develop improved models of vegetation phenology, which will be tested against ground observations collected by a local collaborator.

  13. Towards a Fine-Resolution Global Coupled Climate System for Prediction...

    Office of Scientific and Technical Information (OSTI)

    58 GEOSCIENCES climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale eddies climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale...

  14. Enabling a Highly-Scalable Global Address Space Model for Petascale Computing

    SciTech Connect (OSTI)

    Apra, Edoardo; Vetter, Jeffrey S; Yu, Weikuan

    2010-01-01

    Over the past decade, the trajectory to the petascale has been built on increased complexity and scale of the underlying parallel architectures. Meanwhile, software de- velopers have struggled to provide tools that maintain the productivity of computational science teams using these new systems. In this regard, Global Address Space (GAS) programming models provide a straightforward and easy to use addressing model, which can lead to improved produc- tivity. However, the scalability of GAS depends directly on the design and implementation of the runtime system on the target petascale distributed-memory architecture. In this paper, we describe the design, implementation, and optimization of the Aggregate Remote Memory Copy Interface (ARMCI) runtime library on the Cray XT5 2.3 PetaFLOPs computer at Oak Ridge National Laboratory. We optimized our implementation with the flow intimation technique that we have introduced in this paper. Our optimized ARMCI implementation improves scalability of both the Global Arrays (GA) programming model and a real-world chemistry application NWChem from small jobs up through 180,000 cores.

  15. Nacelle Systems Engineering Model and Hub Systems Engineering Model

    Energy Science and Technology Software Center (OSTI)

    2012-09-30

    nacelleSE and hubSE are a set of models that size wind turbine hub system and drivetrain components based on key turbine design parameters and load inputs from a rotor model.

  16. Modeling the Oil Transition: A Summary of the Proceedings of the DOE/EPA Workshop on the Economic and Environmental Implications of Global Energy Transitions

    SciTech Connect (OSTI)

    Greene, David L

    2007-02-01

    The global energy system faces sweeping changes in the next few decades, with potentially critical implications for the global economy and the global environment. It is important that global institutions have the tools necessary to predict, analyze and plan for such massive change. This report summarizes the proceedings of an international workshop concerning methods of forecasting, analyzing, and planning for global energy transitions and their economic and environmental consequences. A specific case, it focused on the transition from conventional to unconventional oil and other energy sources likely to result from a peak in non-OPEC and/or global production of conventional oil. Leading energy models from around the world in government, academia and the private sector met, reviewed the state-of-the-art of global energy modeling and evaluated its ability to analyze and predict large-scale energy transitions.

  17. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect (OSTI)

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  18. Macro-System Model Overview

    Broader source: Energy.gov (indexed) [DOE]

    Macro System Model (MSM) (National Renewable Energy Laboratory) Objectives Perform rapid cross-cutting analysis that utilizes and links other models. Ensure all aspects of hydrogen pathway and cost analysis is included such as hydrogen purity, leakage, etc. Key Attributes & Strengths Easily and rapidly links modeling experts with DOE's other models that are included in the MSM. Platform, Requirements & Availability MSM is a static, cross-cutting model which links models from various

  19. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect (OSTI)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  20. Modeling Fluid Flow in Natural Systems, Model Validation and...

    Energy Savers [EERE]

    Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Clay and granitic units are ...

  1. System Dynamics Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics Model content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of...

  2. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    SciTech Connect (OSTI)

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.

  3. Global energy and water balance: Characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1)

    SciTech Connect (OSTI)

    Zhou, Linjiong; Bao, Qing; Liu, Yimin; Wu, Guoxiong; Wang, Wei-Chyung; Wang, Xiaocong; He, Bian; Yu, Haiyang; Li, Jiandong

    2015-03-01

    This paper documents version 1 of the Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1), which has a flexible horizontal resolution up to a quarter of 1°. The model, currently running on the ‘‘Tianhe 1A’’ supercomputer, is the atmospheric component of the third-generation Flexible Global Ocean-Atmosphere-Land climate System model (FGOALS3) which will participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition to describing the dynamical core and physical parameterizations of FAMIL1, this paper describes the simulated characteristics of energy and water balances and compares them with observational/reanalysis data. The comparisons indicate that the model simulates well the seasonal and geographical distributions of radiative fluxes at the top of the atmosphere and at the surface, as well as the surface latent and sensible heat fluxes. A major weakness in the energy balance is identified in the regions where extensive and persistent marine stratocumulus is present. Analysis of the global water balance also indicates realistic seasonal and geographical distributions with the global annual mean of evaporation minus precipitation being approximately 10⁻⁵ mm d⁻¹. We also examine the connections between the global energy and water balance and discuss the possible link between the two within the context of the findings from the reanalysis data. Finally, the model biases as well as possible solutions are discussed.

  4. Global energy and water balance: Characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Linjiong; Bao, Qing; Liu, Yimin; Wu, Guoxiong; Wang, Wei-Chyung; Wang, Xiaocong; He, Bian; Yu, Haiyang; Li, Jiandong

    2015-03-01

    This paper documents version 1 of the Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1), which has a flexible horizontal resolution up to a quarter of 1°. The model, currently running on the ‘‘Tianhe 1A’’ supercomputer, is the atmospheric component of the third-generation Flexible Global Ocean-Atmosphere-Land climate System model (FGOALS3) which will participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition to describing the dynamical core and physical parameterizations of FAMIL1, this paper describes the simulated characteristics of energy and water balances and compares them with observational/reanalysis data. The comparisons indicate that the model simulates well the seasonalmore » and geographical distributions of radiative fluxes at the top of the atmosphere and at the surface, as well as the surface latent and sensible heat fluxes. A major weakness in the energy balance is identified in the regions where extensive and persistent marine stratocumulus is present. Analysis of the global water balance also indicates realistic seasonal and geographical distributions with the global annual mean of evaporation minus precipitation being approximately 10⁻⁵ mm d⁻¹. We also examine the connections between the global energy and water balance and discuss the possible link between the two within the context of the findings from the reanalysis data. Finally, the model biases as well as possible solutions are discussed.« less

  5. Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements

    SciTech Connect (OSTI)

    Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Datta, Susmita; Payne, Samuel H.; Kang, Jiyun; Bramer, Lisa M.; Nicora, Carrie D.; Shukla, Anil K.; Metz, Thomas O.; Rodland, Karin D.; Smith, Richard D.; Tardiff, Mark F.; McDermott, Jason E.; Pounds, Joel G.; Waters, Katrina M.

    2014-12-01

    As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.

  6. Demonstration of Next Generation PEM CHP Systems for Global Markets Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PBI Membrane Technology | Department of Energy Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 7a_plugpwr.pdf (22.69 KB) More Documents & Publications International Stationary Fuel Cell Demonstration Intergovernmental Stationary Fuel Cell System

  7. The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McCabe, M. F.; Ershadi, A.; Jimenez, C.; Miralles, D. G.; Michel, D.; Wood, E. F.

    2016-01-26

    Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m–2; 0.65), followed closely by GLEAM

  8. The Future of Food Demand: Understanding Differences in Global Economic Models

    SciTech Connect (OSTI)

    Valin, Hugo; Sands, Ronald; van der Mensbrugghe, Dominique; Nelson, Gerald; Ahammad, Helal; Blanc, Elodie; Bodirsky, Benjamin; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Mason d'Croz, Daniel; Paltsev, S.; Rolinski, Susanne; Tabeau, Andrzej; van Meijl, Hans; von Lampe, Martin; Willenbockel, Dirk

    2014-01-01

    Understanding the capacity of agricultural systems to feed the world population under climate change requires a good prospective vision on the future development of food demand. This paper reviews modeling approaches from ten global economic models participating to the AgMIP project, in particular the demand function chosen and the set of parameters used. We compare food demand projections at the horizon 2050 for various regions and agricultural products under harmonized scenarios. Depending on models, we find for a business as usual scenario (SSP2) an increase in food demand of 59-98% by 2050, slightly higher than FAO projection (54%). The prospective for animal calories is particularly uncertain with a range of 61-144%, whereas FAO anticipates an increase by 76%. The projections reveal more sensitive to socio-economic assumptions than to climate change conditions or bioenergy development. When considering a higher population lower economic growth world (SSP3), consumption per capita drops by 9% for crops and 18% for livestock. Various assumptions on climate change in this exercise do not lead to world calorie losses greater than 6%. Divergences across models are however notable, due to differences in demand system, income elasticities specification, and response to price change in the baseline.

  9. Integrated Model to Access the Global Environment | Open Energy...

    Open Energy Info (EERE)

    models like TIMER and FAIR. It also uses results from agroeconomic models like LEITAP or IMPACT. When to Use This Tool This tool is most useful for development impacts assessments...

  10. Global vegetation model diversity and the risks of climate-driven ecosystem shifts

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin

    2013-11-08

    Climate change is modifying global biogeochemical cycles, and is expected to exert increasingly large effects in the future. How these changes will in turn affect and interact with the structure and function of particular ecosystems is unclear, however, both because of scientific uncertainties and the very diversity of global vegetation models in use. Writing in Environmental Research Letters, Warszawski et al. (1) aggregate results from a group of models, across a range of emissions scenarios and climate data, to investigate these risks. Although the models frequently disagree about which specific regions are at risk, they consistently predict a greater chance of ecosystem restructuring with more warming; this risk roughly doubles between 2 and 3 °C increases in global mean temperature. The innovative work of Warszawski et al. represents an important first step towards fully consistent multi-model, multi-scenario assessments of the future risks to global ecosystems.

  11. An advective atmospheric mixed layer model for ocean modeling purposes: Global simulation of surface heat fluxes

    SciTech Connect (OSTI)

    Seager, jR., Benno Blumenthal, M.; Kushnir, Y.

    1995-08-01

    A simple model of the lowest layer of the atmosphere is developed for coupling to ocean models used to simulate sea surface temperature (SST). The model calculates the turbulent fluxes of sensible and latent heat in terms of variables that an ocean model either calculates (SST) or is forced by (winds). It is designed to avoid the need to specify observed atmospheric data (other than surface winds), or the SST, in the surface flux calculations of ocean models and, hence, to allow a realistic representation of the feedbacks between SST and the fluxes. The modeled layer is considered to be either a dry convective layer or the subcloud layer that underlies marine clouds. The turbulent fluxes are determined through a balance of horizontal advection and diffusion, the surface flux and the flux at the mixed layer top, and, for temperature, radiative cooling. Reasonable simulations of the global distribution of latent and sensible heat flux are obtained. This includes the large fluxes that occur east of the Northern Hemisphere continents in winter that were found to be related to both diffusion (taken to be a parameterization of baroclinic eddies) and advection of cold, dry air from the continent. However, east of North America during winter the sensible heat flux is underestimated and, generally, the region of enhanced fluxes does not extend far enough east compared to observations. Reasons for these discrepancies are discussed and remedies suggested. 47 refs., 10 figs.

  12. ENERGY INVESTMENTS UNDER CLIMATE POLICY: A COMPARISON OF GLOBAL MODELS

    SciTech Connect (OSTI)

    McCollum, David; Nagai, Yu; Riahi, Keywan; Marangoni, Giacomo; Calvin, Katherine V.; Pietzcker, Robert; Van Vliet, Jasper; van der Zwaan, Bob

    2013-11-01

    The levels of investment needed to mobilize an energy system transformation and mitigate climate change are not known with certainty. This paper aims to inform the ongoing dialogue and in so doing to guide public policy and strategic corporate decision making. Within the framework of the LIMITS integrated assessment model comparison exercise, we analyze a multi-IAM ensemble of long-term energy and greenhouse gas emissions scenarios. Our study provides insight into several critical but uncertain areas related to the future investment environment, for example in terms of where capital expenditures may need to flow regionally, into which sectors they might be concentrated, and what policies could be helpful in spurring these financial resources. We find that stringent climate policies consistent with a 2C climate change target would require a considerable upscaling of investments into low-carbon energy and energy efficiency, reaching approximately $45 trillion (range: $30$75 trillion) cumulative between 2010 and 2050, or about $1.1 trillion annually. This represents an increase of some $30 trillion ($10$55 trillion), or $0.8 trillion per year, beyond what investments might otherwise be in a reference scenario that assumes the continuation of present and planned emissions-reducing policies throughout the world. In other words, a substantial "clean-energy investment gap" of some $800 billion/yr exists notably on the same order of magnitude as present-day subsidies for fossil energy and electricity worldwide ($523 billion). Unless the gap is filled rather quickly, the 2C target could potentially become out of reach.

  13. System Cost Model

    Energy Science and Technology Software Center (OSTI)

    1996-03-27

    SCM is used for estimation of the life-cycle impacts (costs, health and safety risks) of waste management facilities for mixed low-level, low-level, and transuranic waste. SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at Department of Energy (DOE) installations. SCM also provides transportation costs for intersite transfer of DOE wastes. SCM covers the entire DOE waste management complex tomore » allow system sensitivity analysis including: treatment, storage, and disposal configuration options; treatment technology selection; scheduling options; transportation options; waste stream and volume changes; and site specific conditions.« less

  14. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K. J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; et al

    2015-02-11

    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification ofmore » key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.« less

  15. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0)

    SciTech Connect (OSTI)

    Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K. J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; Izaurralde, R. C.; Mueller, N. D.; Ray, D. K.; Rosenzweig, C.; Ruane, A. C.; Sheffield, J.

    2015-02-11

    We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project consist of global simulations of yields, phenologies, and many land-surface fluxes using 12–15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.

  16. Applied Dynamic Analysis of the Global Economy (ADAGE) Model...

    Open Energy Info (EERE)

    model capable of examining many types of economic, energy, environmental, climate change mitigation, and trade policies at the international, national, U.S. regional, and U.S....

  17. Global Trade and Analysis Project (GTAP) Model | Open Energy...

    Open Energy Info (EERE)

    standard model. In addition, GTAP-E incorporates carbon emissions from the combustion of fossil fuels and provides for a mechanism to trade these emissions internationally. When...

  18. Sandia Energy - Tutorial on PV System Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tutorial on PV System Modeling Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis Tutorial on PV System Modeling Tutorial on PV...

  19. Regional & Global Climate Modeling (RGCM) Program | U.S. DOE...

    Office of Science (SC) Website

    and select coupled systems, such as water resources, critical for the energy mission. ... Regional focus: Analysis of the integrated water cycle as climate changes will be done in ...

  20. Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression | Department of Energy Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption.<br />Photo Credit: Mechanical Solutions, Inc. Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption. Photo Credit:

  1. Really Cool Models of Ice Nucleation | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Really Cool Models of Ice Nucleation Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Really Cool Models of Ice Nucleation Rick Arthur 2013.08.20 I'm excited to highlight some progress GE Research has made in modeling the formation of ice from water droplets in contact with cold surfaces. For several years, a

  2. "Big Picture" Process Modeling Tools |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using process modeling tools to attain cost-effective results for GE customers Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click ...

  3. Development of global sea ice 6.0 CICE configuration for the Met Office global coupled model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rae, J. . G. L; Hewitt, H. T.; Keen, A. B.; Ridley, J. K.; West, A. E.; Harris, C. M.; Hunke, E. C.; Walters, D. N.

    2015-03-05

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally-based datasets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST dataset. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is requiredmore » to rectify this in future configurations.« less

  4. Development of global sea ice 6.0 CICE configuration for the Met Office global coupled model

    SciTech Connect (OSTI)

    Rae, J. . G. L; Hewitt, H. T.; Keen, A. B.; Ridley, J. K.; West, A. E.; Harris, C. M.; Hunke, E. C.; Walters, D. N.

    2015-03-05

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally-based datasets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST dataset. In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is required to rectify this in future configurations.

  5. Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model

    SciTech Connect (OSTI)

    Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.; Ridley, J. K.; West, A. E.; Harris, C. M.; Hunke, E. C.; Walters, D. N.

    2015-07-24

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extent and volume; further work is required to rectify this in future configurations.

  6. Development of the global sea ice 6.0 CICE configuration for the Met Office global coupled model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rae, J. G. L.; Hewitt, H. T.; Keen, A. B.; Ridley, J. K.; West, A. E.; Harris, C. M.; Hunke, E. C.; Walters, D. N.

    2015-07-24

    The new sea ice configuration GSI6.0, used in the Met Office global coupled configuration GC2.0, is described and the sea ice extent, thickness and volume are compared with the previous configuration and with observationally based data sets. In the Arctic, the sea ice is thicker in all seasons than in the previous configuration, and there is now better agreement of the modelled concentration and extent with the HadISST data set. As a result, in the Antarctic, a warm bias in the ocean model has been exacerbated at the higher resolution of GC2.0, leading to a large reduction in ice extentmore » and volume; further work is required to rectify this in future configurations.« less

  7. TMA Global Wind Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Zip: 82001 Sector: Wind energy Product: Involved in the development, manufacture, and marketing of vertical axis wind energy turbines and hybrid energy systems. References: TMA...

  8. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  9. Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models

    SciTech Connect (OSTI)

    McNeil, Michael A.; de la Rue du Can, Stephane; McMahon, James E.

    2009-05-29

    This paper presents efforts to date and prospective goals towards development of a modelling and analysis framework which is comprehensive enough to address the global climate crisis, and detailed enough to provide policymakers with concrete targets and achievable outcomes. In terms of energy efficiency policy, this requires coverage of the entire world, with emphasis on countries and regions with large and/or rapidly growing energy-related emissions, and analysis at the 'technology' level-building end use, transport mode or industrial process. These elements have not been fully addressed by existing modelling efforts, which usually take either a top-down approach, or concentrate on a few fully industrialized countries where energy demand is well-understood. Inclusion of details such as appliance ownership rates, use patterns and efficiency levels throughout the world allows for a deeper understanding of the demand for energy today and, more importantly, over the coming decades. This is a necessary next step for energy analysts and policy makers in assessment of mitigation potentials. The modelling system developed at LBNL over the past 3 years takes advantage of experience in end use demand and in forecasting markets for energy-consuming equipment, in combination with known technology-based efficiency opportunities and policy types. A particular emphasis has been placed on modelling energy growth in developing countries. Experiences to date include analyses covering individual countries (China and India), end uses (refrigerators and air conditioners) and policy types (standards and labelling). Each of these studies required a particular effort in data collection and model refinement--they share, however, a consistent approach and framework which allows comparison, and forms the foundation of a comprehensive analysis system leading to a roadmap to address the greenhouse gas mitigation targetslikely to be set in the coming years.

  10. The Intelligence Behind the Robotic-Enabled System | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intelligence Behind the Robotic-Enabled System Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  11. Global DC Power System Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  12. Global DC Power System Market Growth | OpenEI Community

    Open Energy Info (EERE)

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  13. Global DC Power System Market Space | OpenEI Community

    Open Energy Info (EERE)

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  14. Complex Adaptive Systems of Systems (CASoS) engineering and foundations for global design.

    SciTech Connect (OSTI)

    Brodsky, Nancy S.; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Linebarger, John Michael; Moore, Thomas W.; Glass, Robert John, Jr.; Maffitt, S. Louise; Mitchell, Michael David; Ames, Arlo Leroy

    2012-01-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understanding and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS

  15. Posters Cloud Parameterizations in Global Climate Models: The Role of Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters Cloud Parameterizations in Global Climate Models: The Role of Aerosols J. E. Penner and C. C. Chuang Lawrence Livermore National Laboratory Livermore, California Introduction Aerosols influence warm clouds in two ways. First, they determine initial drop size distributions, thereby influencing the albedo of clouds. Second, they determine the lifetime of clouds, thereby possibly changing global cloud cover statistics. At the present time, neither effect of aerosols on clouds is included

  16. Global ICRF system designs for ITER and TPX

    SciTech Connect (OSTI)

    Goulding, R.H.; Hoffman, D.J.; Ryan, P.M.; Durodie, F.

    1995-09-01

    The design of feed networks for ICRF antenna arrays on ITER and TPX are discussed. Features which are present in one or both of the designs include distribution of power to several straps from a single generator, the capability to vary phases of the currents on antenna elements rapidly without the need to rematch, and passive elements which present a nearly constant load to the generators during ELM induced loading transients of a factor of I0 or more. The FDAC (Feedline/Decoupler/Antenna Calculator) network modeling code is described, which allows convenient modeling of the electrical performance of nearly arbitrary ICRF feed networks.

  17. Generalized Environment for Modeling Systems

    Energy Science and Technology Software Center (OSTI)

    2012-02-07

    Part (CW-12-04) created at INL to work inside SharePoint. The GUI tool links slider bars and drop downs to specific inputs and output of the ModelCenter model that is executable from SharePoint. The modeler also creates in SAS, dashboards, graphs and tables that are exposed by links and SAS and ModelCenter Web Parts into the SharePoint system. The user can then log into SharePoint, move slider bars and select drop down lists to configure the model parameters, click to run the model, and then view the output results that are based on their particular input choices. The main point is that GEMS eliminates the need for a programmer to connect and create the web artifacts necessary to implement and deliver an executable model or decision aid to customers.« less

  18. Analysis of energy conversion systems, including material and global warming aspects

    SciTech Connect (OSTI)

    Zhang, M.; Reistad, G.M.

    1998-12-31

    This paper addresses a method for the overall evaluation of energy conversion systems, including material and global environmental aspects. To limit the scope of the work reported here, the global environmental aspects have been limited to global warming aspects. A method is presented that uses exergy as an overall evaluation measure of energy conversion systems for their lifetime. The method takes the direct exergy consumption (fuel consumption) of the conventional exergy analyses and adds (1) the exergy of the energy conversion system equipment materials, (2) the fuel production exergy and material exergy, and (3) the exergy needed to recover the total global warming gases (equivalent) of the energy conversion system. This total, termed Total Equivalent Resource Exergy (TERE), provides a measure of the effectiveness of the energy conversion system in its use of natural resources. The results presented here for several example systems illustrate how the method can be used to screen candidate energy conversion systems and perhaps, as data become more available, to optimize systems. It appears that this concept may be particularly useful for comparing systems that have quite different direct energy and/or environmental impacts. This work should be viewed in the context of being primarily a concept paper in that the lack of detailed data available to the authors at this time limits the accuracy of the overall results. The authors are working on refinements to data used in the evaluation.

  19. R&D Needs for Global Technical Regulations for Hydrogen Vehicle Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Needs for Global Technical Regulations for Hydrogen Vehicle Systems R&D Needs for Global Technical Regulations for Hydrogen Vehicle Systems These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpv_nguyen.pdf (658.17 KB) More Documents & Publications Test Protocol for Hydrogen Storage Systems in SAE J2579 and GTR Requirements for Cycling Testing and Its Effects on Type 3 and 4

  20. SciTech Connect: "earth system models"

    Office of Scientific and Technical Information (OSTI)

    earth system models" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "earth system models" Semantic Semantic Term Title: Full Text: Bibliographic...

  1. The Brief History and Future Development of Earth System Models:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brief History and Future Development of Earth System Models: Resolution and Complexity Warren M. Washington National Center for Atmospheric Research NERSC Lecture Series at Berkeley Lab May, 2014 Overview * Brief history of climate modeling * Brief discussion of computational methods * Environmental Justice connected to climate change * Behind the scenes White House origin of the U. S. Global Change Research Program (USGCRP) * The future of the USGCRP and National Climate Assessment The next two

  2. Uncertainty and sensitivity analysis for photovoltaic system modeling.

    SciTech Connect (OSTI)

    Hansen, Clifford W.; Pohl, Andrew Phillip; Jordan, Dirk

    2013-12-01

    We report an uncertainty and sensitivity analysis for modeling DC energy from photovoltaic systems. We consider two systems, each comprised of a single module using either crystalline silicon or CdTe cells, and located either at Albuquerque, NM, or Golden, CO. Output from a PV system is predicted by a sequence of models. Uncertainty in the output of each model is quantified by empirical distributions of each model's residuals. We sample these distributions to propagate uncertainty through the sequence of models to obtain an empirical distribution for each PV system's output. We considered models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane-of-array irradiance; (2) estimate effective irradiance from plane-of-array irradiance; (3) predict cell temperature; and (4) estimate DC voltage, current and power. We found that the uncertainty in PV system output to be relatively small, on the order of 1% for daily energy. Four alternative models were considered for the POA irradiance modeling step; we did not find the choice of one of these models to be of great significance. However, we observed that the POA irradiance model introduced a bias of upwards of 5% of daily energy which translates directly to a systematic difference in predicted energy. Sensitivity analyses relate uncertainty in the PV system output to uncertainty arising from each model. We found that the residuals arising from the POA irradiance and the effective irradiance models to be the dominant contributors to residuals for daily energy, for either technology or location considered. This analysis indicates that efforts to reduce the uncertainty in PV system output should focus on improvements to the POA and effective irradiance models.

  3. Graph modeling systems and methods

    SciTech Connect (OSTI)

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  4. A Global Climate Model Agent for High Spatial and Temporal Resolution Data

    SciTech Connect (OSTI)

    Wood, Lynn S.; Daily, Jeffrey A.; Henry, Michael J.; Palmer, Bruce J.; Schuchardt, Karen L.; Dazlich, Donald A.; Heikes, Ross P.; Randall, David

    2015-02-01

    Fine cell granularity in modern climate models can produce terabytes of data in each snapshot, causing significant I/O overhead. To address this issue, a method of reducing the I/O latency of high-resolution climate models by identifying and selectively outputting regions of interest is presented. Working with a Global Cloud Resolving Model and running with up to 10240 processors on a Cray XE6, this method provides significant I/O bandwidth reduction depending on the frequency of writes and size of the region of interest. The implementation challenges of determining global parameters in a strictly core-localized model and properly formatting output files that only contain subsections of the global grid are addressed, as well as the overall bandwidth impact and benefits of the method. The gains in I/O throughput provided by this method allow dual output rates for high-resolution climate models: a low-frequency global snapshot as well as a high-frequency regional snapshot when events of particular interest occur.

  5. Existence of global weak solution for a reduced gravity two and a half layer model

    SciTech Connect (OSTI)

    Guo, Zhenhua Li, Zilai Yao, Lei

    2013-12-15

    We investigate the existence of global weak solution to a reduced gravity two and a half layer model in one-dimensional bounded spatial domain or periodic domain. Also, we show that any possible vacuum state has to vanish within finite time, then the weak solution becomes a unique strong one.

  6. Towards Direct Simulation of Future Tropical Cyclone Statistics in a High-Resolution Global Atmospheric Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wehner, Michael F.; Bala, G.; Duffy, Phillip; Mirin, Arthur A.; Romano, Raquel

    2010-01-01

    We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. Whilemore » this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.« less

  7. Steam System Modeler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam System Modeler Steam System Modeler April 17, 2014 - 11:34am Addthis There is often flexibility in the operational conditions and requirements of any steam system. In order to optimize performance, the impacts of potential adjustments need to be understood individually and collectively. The Steam System Modeler allows you to create up to a 3-pressure-header basic model of your current steam system. A second model can then be created by adjusting a series of characteristics simulating

  8. Modeling the role of terrestrial ecosystems in the global carbon cycle

    SciTech Connect (OSTI)

    Emanuel, W.R.; Post, W.M.; Shugart, H.H. Jr.

    1980-01-01

    A model for the global biogeochemical cycle of carbon which includes a five-compartment submodel for circulation in terrestrial ecosystems of the world is presented. Although this terrestrial submodel divides carbon into compartments with more functional detail than previous models, the variability in carbon dynamics among ecosystem types and in different climatic zones is not adequately treated. A new model construct which specifically treats this variability by modeling the distribution of ecosystem types as a function of climate on a 0.5/sup 0/ latitude by 0.5/sup 0/ longitude scale of resolution is proposed.

  9. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    SciTech Connect (OSTI)

    Chuang, C.C.; Penner, J.E.

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  10. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison

    SciTech Connect (OSTI)

    Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

    2014-01-01

    Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

  11. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect (OSTI)

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of

  12. Why Do Global Long-term Scenarios for Agriculture Differ? An overview of the AgMIP Global Economic Model Intercomparison

    SciTech Connect (OSTI)

    von Lampe, Martin; Willenbockel, Dirk; Ahammad, Helal; Blanc, Elodie; Cai, Yongxia; Calvin, Katherine V.; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; Mason d'Croz, Daniel; Nelson, Gerald; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; van der Mensbrugghe, Dominique; van Meijl, Hans

    2013-12-02

    Recent studies assessing plausible futures for agricultural markets and global food security have had contradictory outcomes. Ten global economic models that produce long-term scenarios were asked to compare a reference scenario with alternate socio-economic, climate change and bioenergy scenarios using a common set of key drivers. Results suggest that, once general assumptions are harmonized, the variability in general trends across models declines, and that several common conclusions are possible. Nonetheless, differences in basic model parameters, sometimes hidden in the way market behavior is modeled, result in significant differences in the details. This holds for both the common reference scenario and for the various shocks applied. We conclude that agro-economic modelers aiming to inform the agricultural and development policy debate require better data and analysis on both economic behavior and biophysical drivers. More interdisciplinary modeling efforts are required to cross-fertilize analyses at different scales.

  13. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect (OSTI)

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  14. National Energy Modeling System (NEMS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

  15. Modelling estimation on the impacts of global warming on rice production in China

    SciTech Connect (OSTI)

    Wang Futang

    1997-12-31

    In this paper, based on the validation and sensitivity analyses of two rice growth models (ORYZA1 and DRISIC--Double Rice Cropping Simulation Model for China), and their joining with global warming scenarios projected by GCMs (GFDL, UKMO-H, MPI and DKRZ OPYC, DKRZ LSG, respectively), the modelling experiments were carried out on the potential impacts of global warming on rice production in China. The results show that although there are the some features for each rice cropping patterns because of different models and estimated methods, the rice production for all cropping patterns in China will trend to decrease with different degrees. In average, early, middle and later rice production, as well as, double-early and double-later rice production in different areas of China will decrease 3.7%, 10.5% and 10.4%, as well as, 15.9% and 14.4%, respectively. It do illustrates that the advantage effects induced by elevated CO{sub 2} concentration on photosynthesis does not compensate the adverse effects of temperature increase. Thus, it is necessary to adjusting rice cropping patterns, cultivars and farming techniques to the global warming timely.

  16. DOE Science Showcase - Earth System Models | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information Earth System Models U.S. DOE Office of Science: Getting Forest Carbon Right in Climate Models. "Boreal Forest" Image Credit: Wikimedia Commons, peupleloup. Optimizing emerging high-performance computing and information technologies, the Department of Energy's (DOE) Earth System Modeling (ESM) Program concentrates on advancing coupled climate and earth system models for climate change projections at global-to-regional spatial scales and

  17. Geochemical Modeling Of Aqueous Systems

    Energy Science and Technology Software Center (OSTI)

    1995-09-07

    EQ3/6 is a software package for geochemical modeling of aqueous systems. This description pertains to version 7.2b. It addresses aqueous speciation, thermodynamic equilibrium, disequilibrium, and chemical kinetics. The major components of the package are EQ3NR, a speciation-solubility code, and EQ6 a reaction path code. EQ3NR is useful for analyzing groundwater chemistry data, calculating solubility limits, and determining whether certain reactions are in states of equilibrium or disequilibrium. It also initializes EQ6 calculations. EQ6 models themore » consequences of reacting an aqueous solution with a specified set of reactants (e.g., minerals or waste forms). It can also model fluid mixing and the effects of changes in temperature. Each of five supporting data files contain both standard state and activity coefficient-related data. Three support the use of the Davies or B-dot equations for the activity coefficients; the other two support the use of Pitzer''s equations. The temperature range of the thermodynamic data on the data files varies from 25 degrees C only to 0-300 degrees C.« less

  18. Integration of EBS Models with Generic Disposal System Models

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the UFD campaign.

  19. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model

    SciTech Connect (OSTI)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian

    2014-03-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50°N–50°S at relatively high spatial (~12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30°S–30°N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. Finally, there were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  20. Validation of Global Weather Forecast and Climate Models Over the North

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slope of Alaska Validation of Global Weather Forecast and Climate Models Over the North Slope of Alaska Xie, Shaocheng Lawrence Livermore National Laboratory Klein, Stephen Lawrence Livermore National Laboratory Boyle, Jim Lawrence Livermore National Laboratory Fiorino, Michael DOE/Lawrence Livermore National Laboratory Hnilo, Justin DOE/Lawrence Livermore National Laboratory Phillips, Thomas PCMDI/LLNL Potter, Gerald Lawrence Livermore National Laboratory Beljaars, Anton ECMWF Category:

  1. Improving the behavioral realism of global integrated assessment models: An application to consumers’ vehicle choices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McCollum, David L.; Wilson, Charlie; Pettifor, Hazel; Ramea, Kalai; Krey, Volker; Riahi, Keywan; Bertram, Christoph; Lin, Zhenhong; Edelenbosch, Oreane Y.; Fujisawa, Sei

    2016-05-03

    A large body of transport sector-focused research recognizes the complexity of human behavior in relation to mobility. Yet, global integrated assessment models (IAMs), which are widely used to evaluate the costs, potentials, and consequences of different greenhouse gas emission trajectories over the medium-to-long term, typically represent behavior and the end use of energy as a simple rational choice between available alternatives, even though abundant empirical evidence shows that real-world decision making is more complex and less routinely rational. This paper demonstrates the value of incorporating certain features of consumer behavior in IAMs, focusing on light-duty vehicle (LDV) purchase decisions. Anmore » innovative model formulation is developed to represent heterogeneous consumer groups with varying preferences for vehicle novelty, range, refueling/recharging availability, and variety. The formulation is then implemented in the transport module of MESSAGE-Transport, a global IAM, although it also has the generic flexibility to be applied in energy-economy models with varying set-ups. Comparison of conventional and behaviorally-realistic model runs with respect to vehicle purchase decisions shows that consumer preferences may slow down the transition to alternative fuel (low-carbon) vehicles. Consequently, stronger price-based incentives and/or non-price based measures may be needed to transform the global fleet of passenger vehicles, at least in the initial market phases of novel alternatives. Otherwise, the mitigation burden borne by other transport sub-sectors and other energy sectors could be higher than previously estimated. Moreover, capturing behavioral features of energy consumers in global IAMs increases their usefulness to policy makers by allowing a more realistic assessment of a more diverse suite of policies.« less

  2. Modeling the Earth System, volume 3

    SciTech Connect (OSTI)

    Ojima, D.

    1992-01-01

    The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.

  3. The integrated Earth System Model Version 1: formulation and functionality

    SciTech Connect (OSTI)

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.; Di Vittorio, Alan; Jones, Andrew D.; Bond-Lamberty, Benjamin; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.; Thomson, Allison M.; Patel, Pralit L.; Zhou, Yuyu; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Chini, Louise M.; Hurtt, George C.

    2015-07-23

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  4. The integrated Earth system model version 1: formulation and functionality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  5. Systems Advisor Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Advisor Model Systems Advisor Model Systems Advisor Model (SAM) makes performance predictions and cost of energy estimates for grid-connected power projects based on installation and operating costs and system design parameters that you specify as inputs to the model. Projects can be on the customer side of the utility meter - buying and selling electricity at retail rates - or on the utility side of the meter, selling electricity at a price negotiated through a power purchase agreement.

  6. Two loop neutrino model and dark matter particles with global B?L symmetry

    SciTech Connect (OSTI)

    Baek, Seungwon; Okada, Hiroshi; Toma, Takashi E-mail: hokada@kias.re.kr

    2014-06-01

    We study a two loop induced seesaw model with global U(1){sub B?L} symmetry, in which we consider two component dark matter particles. The dark matter properties are investigated together with some phenomenological constraints such as electroweak precision test, neutrino masses and mixing and lepton flavor violation. In particular, the mixing angle between the Standard Model like Higgs and an extra Higgs is extremely restricted by the direct detection experiment of dark matter. We also discuss the contribution of Goldstone boson to the effective number of neutrino species ?N{sub eff} ? 0.39 which has been reported by several experiments.

  7. Generic CSP Performance Model for NREL's System Advisor Model: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Zhu, G.

    2011-08-01

    The suite of concentrating solar power (CSP) modeling tools in NREL's System Advisor Model (SAM) includes technology performance models for parabolic troughs, power towers, and dish-Stirling systems. Each model provides the user with unique capabilities that are catered to typical design considerations seen in each technology. Since the scope of the various models is generally limited to common plant configurations, new CSP technologies, component geometries, and subsystem combinations can be difficult to model directly in the existing SAM technology models. To overcome the limitations imposed by representative CSP technology models, NREL has developed a 'Generic Solar System' (GSS) performance model for use in SAM. This paper discusses the formulation and performance considerations included in this model and verifies the model by comparing its results with more detailed models.

  8. LONG-TERM GLOBAL WATER USE PROJECTIONS USING SIX SOCIOECONOMIC SCENARIOS IN AN INTEGRATED ASSESSMENT MODELING FRAMEWORK

    SciTech Connect (OSTI)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.; Moss, Richard H.; Kim, Son H.

    2014-01-19

    In this paper, we assess future water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors, by incorporating water demands into a technologically-detailed global integrated assessment model of energy, agriculture, and climate change the Global Change Assessment Model (GCAM). Base-year water demandsboth gross withdrawals and net consumptive useare assigned to specific modeled activities in a way that maximizes consistency between bottom-up estimates of water demand intensities of specific technologies and practices, and top-down regional and sectoral estimates of water use. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. We assess future water demands representing six socioeconomic scenarios, with no constraints imposed by future water supplies. The scenarios observe increases in global water withdrawals from 3,578 km3 year-1 in 2005 to 5,987 8,374 km3 year-1 in 2050, and to 4,719 12,290 km3 year-1 in 2095. Comparing the projected total regional water withdrawals to the historical supply of renewable freshwater, the Middle East exhibits the highest levels of water scarcity throughout the century, followed by India; water scarcity increases over time in both of these regions. In contrast, water scarcity improves in some regions with large base-year electric sector withdrawals, such as the USA and Canada, due to capital stock turnover and the almost complete phase-out of once-through flow cooling systems. The scenarios indicate that: 1) water is likely a limiting factor in climate change mitigation policies, 2) many regions can be expected to increase reliance on non-renewable groundwater, water reuse, and desalinated water, but they also highlight an

  9. Improving the representation of hydrologic processes in Earth System Models

    SciTech Connect (OSTI)

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, J. C.; Bolster, Diogo; Gochis, David; Hooper, Richard P.; Kumar, Mukesh; Leung, Lai-Yung R.; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-21

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.

  10. The AeroCom evaluation and intercomparison of organic aerosol in global models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P. J.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Benedetti, A.; et al

    2014-10-15

    This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemicalmore » and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a–1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a–1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a–1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a–1; range 13–20 Tg a–1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days

  11. Comparison of Photovoltaic Models in the System Advisor Model: Preprint

    SciTech Connect (OSTI)

    Blair, N. J.; Dobos, A. P.; Gilman, P.

    2013-08-01

    The System Advisor Model (SAM) is free software developed by the National Renewable Energy Laboratory (NREL) for predicting the performance of renewable energy systems and analyzing the financial feasibility of residential, commercial, and utility-scale grid-connected projects. SAM offers several options for predicting the performance of photovoltaic (PV) systems. The model requires that the analyst choose from three PV system models, and depending on that choice, possibly choose from three module and two inverter component models. To obtain meaningful results from SAM, the analyst must be aware of the differences between the model options and their applicability to different modeling scenarios. This paper presents an overview the different PV model options and presents a comparison of results for a 200-kW system using different model options.

  12. Waiver of Mandatory Use of the Strategic Integrated Procurement Enterprise System (STRIPES) for GSA Global Supply Service Transactions

    Broader source: Energy.gov [DOE]

    Pursuant to Federal Acquisition Regulation (FAR) 8.402 (c)(1), orders placed through the General Service Administration (GSA) Global Supply System are not subject to FAR Subpart 8.4, Federal Supply Schedules. In addition, FAR 4.606 (c)(2) eliminates the requirement for orders from GSA Global Supply System be reported to the Federal Procurement Data System – Next Generation (FPDS-NG).

  13. Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations

    SciTech Connect (OSTI)

    Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

    2014-09-23

    Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N – tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

  14. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  15. Soliton in the global color model with a sophisticated effective gluon propagator

    SciTech Connect (OSTI)

    Wang Bin; Chen Huan; Chang Lei; Liu Yuxin

    2007-08-15

    With a sophisticated effective gluon propagator, Maris-Tandy model, we solve the Dyson-Schwinger equation to get the quark propagator and then study the soliton solution in the global color model (GCM). Along the constraints on the parameters fitted to the pion decay constant, we take several sets of parameters and find that some of the properties of soliton can be produced in the GCM soliton model with a special choice of parameters. We also discuss the influences of the parameters and the ultraviolet perturbative term on the property of the soliton. We find that the interaction among quarks is the one with self-adjusting characteristic and only the fine-tuned interaction can generate an appropriate solition, but not that much stronger attraction produces more stable soliton.

  16. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; Li, Dan

    2015-04-27

    The critical bulk Richardson number (Ricr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ricr. The results show that the simulated global average of PBL height increases nearly linearly with Ricr, with a change of about 114 m for a change of 0.5 in Ricr. The surface sensible (latent) heat flux decreases (increases) as Ricr increases. The influence of Ricr on surface air temperature and specific humidity is not significant. The increasingmore » Ricr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ricr affect stratiform and convective precipitations differently. Increasing Ricr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.« less

  17. Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization

    SciTech Connect (OSTI)

    Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; Li, Dan

    2015-04-27

    The critical bulk Richardson number (Ricr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ricr. The results show that the simulated global average of PBL height increases nearly linearly with Ricr, with a change of about 114 m for a change of 0.5 in Ricr. The surface sensible (latent) heat flux decreases (increases) as Ricr increases. The influence of Ricr on surface air temperature and specific humidity is not significant. The increasing Ricr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ricr affect stratiform and convective precipitations differently. Increasing Ricr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.

  18. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, S.; Wang, M.; Ghan, S. J.; Ding, A.; Wang, H.; Zhang, K.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Takeamura, T.; et al

    2015-09-02

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (?500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascendmore(?500 ?1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm d?1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.less

  19. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications (EIA)

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  20. World Energy Projection System Plus Model Documentation: District Heat Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  1. World Energy Projection System Plus Model Documentation: Coal Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  2. World Energy Projection System Plus Model Documentation: Commercial Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Commercial Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  3. World Energy Projection System Plus Model Documentation: Natural Gas Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  4. World Energy Projection System Plus Model Documentation: Main Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  5. World Energy Projection System Plus Model Documentation: Industrial Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  6. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  7. World Energy Projection System Plus Model Documentation: World Electricity Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  8. World Energy Projection System Plus Model Documentation: Transportation Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  9. World Energy Projection System Plus Model Documentation: Greenhouse Gases Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  10. World Energy Projection System Plus Model Documentation: Residential Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  11. Network and adaptive system of systems modeling and analysis.

    SciTech Connect (OSTI)

    Lawton, Craig R.; Campbell, James E. Dr.; Anderson, Dennis James; Eddy, John P.

    2007-05-01

    This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.

  12. Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree

    SciTech Connect (OSTI)

    Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal; Blanc, Elodie; Calvin, Katherine V.; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; von Lampe, Martin; Mason d'Croz, Daniel; van Meijl, Hans; Mueller, C.; Reilly, J. M.; Robertson, Richard; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Willenbockel, Dirk

    2014-01-01

    Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.

  13. NREL: Regional Energy Deployment System (ReEDS) Model - Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Qualitative Model Description The Regional Energy Deployment System (ReEDS) is a long-term ... To determine potential expansion of electricity generation, storage, and ...

  14. Structural analysis of three global land models on carbon cycle simulations using a traceability framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rafique, R.; Xia, J.; Hararuk, O.; Luo, Y.

    2014-06-27

    Modeled carbon (C) storage capacity is largely determined by the C residence time and net primary productivity (NPP). Extensive research has been done on NPP dynamics but the residence time and their relationships with C storage are much less studied. In this study, we implemented a traceability analysis to understand the modeled C storage and residence time in three land surface models: CSIRO's Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM3.5-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools. The globally averagedmoreC storage and residence time was computed at both individual pool and total ecosystem levels. The spatial distribution of total ecosystem C storage and residence time differ greatly among the three models. The CABLE model showed a closer agreement with measured C storage and residence time in plant and soil pools than CLM3.5-CASA and CLM4. However, CLM3.5-CASA and CLM4 were close to each other in modeled C storage but not with measured data. CABLE stores more C in root whereas CLM3.5-CASA and CLM4 store more C in woody pools, partly due to differential NPP allocation in respective pools. The C residence time in individual C pools is greatly different among models, largely because of different transfer coefficient values among pools. CABLE had higher bulk residence time for soil C pools than the other two models. Overall, the traceability analysis used in this study can help fully characterizes the behavior of complex land models.less

  15. Turbine Cost Systems Engineering Model

    Energy Science and Technology Software Center (OSTI)

    2012-09-30

    turb_costSE is a set of models that link wind turbine component masses (and a few other key variables) to component costs.

  16. Runtime Tracing of The Community Earth System Model: Feasibility and Benefits

    SciTech Connect (OSTI)

    Wang, Dali [ORNL] [ORNL; Domke, Jens [ORNL] [ORNL

    2011-01-01

    Community Earth System Models (CESM) is one of US's leading earth system modeling systems, which has over decades of development history and embraced by large, active user communities. In this paper, we first review the history of CESM software development and layout the general objectives of performance analysis. Then we present an offline global community land model simulation within the CESM framework to demonstrate the procedure of runtime tracing of CESM using the Vampir toolset. Finally, we explain the benefits of runtime tracing to the general earth system modeling community. We hope those considerations can also be beneficial to many other modeling research programs involving legacy high-performance computing applications.

  17. System Advisor Model Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Advisor Model Training System Advisor Model Training The Office of Indian Energy hosted a two-day training for Indian tribes on how to use the System Advisor Model (SAM) June 7-8, 2016, at Northern Arizona University in Flagstaff, Arizona. Developed by DOE's National Renewable Energy Laboratory, SAM is a free software tool that Indian tribes can use to analyze the feasibility of renewable energy projects. This training walked participants through the various technologies that can be

  18. World Energy Projection System Plus Model Documentation: Commercial Model

    Reports and Publications (EIA)

    2016-01-01

    The Commercial Model of the World Energy Projection System Plus (WEPS ) is an energy demand modeling system of the world commercial end?use sector at a regional level. This report describes the version of the Commercial Model that was used to produce the commercial sector projections published in the International Energy Outlook 2016 (IEO2016). The Commercial Model is one of 13 components of the WEPS system. The WEPS is a modular system, consisting of a number of separate energy models that are communicate and work with each other through an integrated system model. The model components are each developed independently, but are designed with well?defined protocols for system communication and interactivity. The WEPS modeling system uses a shared database (the “restart” file) that allows all the models to communicate with each other when they are run in sequence over a number of iterations. The overall WEPS system uses an iterative solution technique that forces convergence of consumption and supply pressures to solve for an equilibrium price.

  19. Modular Ocean Instrumentation System (MOIS) CAD Models

    SciTech Connect (OSTI)

    Nelson, Eric

    2015-12-03

    SolidWorks models of the Modular Ocean Instrumentation System (MOIS) data acquisition system components in it's subsea enclosure. The zip file contains all the components necessary for the assembly.

  20. Application of Generic Disposal System Models

    Office of Energy Efficiency and Renewable Energy (EERE)

    Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling; these are directly addressed in the Generic Disposal Systems Analysis (GDSA) work. ...

  1. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  2. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    SciTech Connect (OSTI)

    Wang, P; Song, Y T; Chao, Y; Zhang, H

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds of processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.

  3. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  4. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  5. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    SciTech Connect (OSTI)

    Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  6. Accounting for Global Climate Model Projection Uncertainty in Modern Statistical Downscaling

    SciTech Connect (OSTI)

    Johannesson, G

    2010-03-17

    Future climate change has emerged as a national and a global security threat. To carry out the needed adaptation and mitigation steps, a quantification of the expected level of climate change is needed, both at the global and the regional scale; in the end, the impact of climate change is felt at the local/regional level. An important part of such climate change assessment is uncertainty quantification. Decision and policy makers are not only interested in 'best guesses' of expected climate change, but rather probabilistic quantification (e.g., Rougier, 2007). For example, consider the following question: What is the probability that the average summer temperature will increase by at least 4 C in region R if global CO{sub 2} emission increases by P% from current levels by time T? It is a simple question, but one that remains very difficult to answer. It is answering these kind of questions that is the focus of this effort. The uncertainty associated with future climate change can be attributed to three major factors: (1) Uncertainty about future emission of green house gasses (GHG). (2) Given a future GHG emission scenario, what is its impact on the global climate? (3) Given a particular evolution of the global climate, what does it mean for a particular location/region? In what follows, we assume a particular GHG emission scenario has been selected. Given the GHG emission scenario, the current batch of the state-of-the-art global climate models (GCMs) is used to simulate future climate under this scenario, yielding an ensemble of future climate projections (which reflect, to some degree our uncertainty of being able to simulate future climate give a particular GHG scenario). Due to the coarse-resolution nature of the GCM projections, they need to be spatially downscaled for regional impact assessments. To downscale a given GCM projection, two methods have emerged: dynamical downscaling and statistical (empirical) downscaling (SDS). Dynamic downscaling involves

  7. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  8. NEMS - National Energy Modeling System: An Overview

    Reports and Publications (EIA)

    2009-01-01

    The National Energy Modeling System: An Overview 2009 a summary description of NEMS and each of its components. NEMS is a computer-based, energy-economy modeling system of energy markets for the midterm period through 2030. The NEMS is used to produce the Annual Energy Outlook.

  9. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming

    SciTech Connect (OSTI)

    Shen, W.; Tuleya, R.E.; Ginis, I.

    2000-01-01

    In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to {+-}4 C and sea surface temperatures ranging from 26 to 31 C given the same relative humidity profile. The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO{sub 2} is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity if highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane-ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO{sub 2}.

  10. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; Ding, Aijun; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, Ulrike; Ferrachat, Sylvaine; Takeamura, Toshihiko; et al

    2016-03-04

    Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascentmore » (ω500  <  −25 hPa day−1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day−1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less

  11. Sandia Energy - Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Home Analysis Permalink Gallery Results from the Human Resilience Index and Modeling project were reported recently in the National Intelligence Council's Global Trends 2030...

  12. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAGâ??s advanced dynamics core with the â??physicsâ? of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  13. A model for international border management systems.

    SciTech Connect (OSTI)

    Duggan, Ruth Ann

    2008-09-01

    To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.

  14. Energy Systems Modeling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Modeling Argonne develops models and software packages that can assist fleet managers and technology developers in assessing the potential impacts of implementing new technologies. Proposed transformations to the nation's energy system will introduce astonishing new technologies into the market, cause widespread changes in our energy consumption patterns, and even physical changes to the power grid. The result? Our energy system will be altered in complex and interdependent ways

  15. An INMARSAT-C goes, and EIA485 hybrid communication system for global experiment control

    SciTech Connect (OSTI)

    Reynolds, R.B.; Behrens, W.

    1995-08-01

    The Atmosphere Radiation Measurement (ARM) program is constructing and radiation monitoring instrument that will be deployed at several island sites in the Tropical Western Pacific Ocean. The atmospheric radiation and cloud systems (ARCS) must operate the minimal maintenance for decades, producing and storing many megabytes of data per day. A reliable global communication system is an essential element of the ARCS design. It must provide immediate direct access to the equipment. High availability and reasonably low cost are essential for this very long-term deployment. Providing executive management and control, the communication system incorporates several special technologies to meet its requirements: (a) INMARSAT-C provides a simple two-way messaging capability. (b) Built-in GPS in the INMARSAT-C radio provides an accurate time standard. (c) The NOAA GOES satellite provides a one-way link for hourly health and basic measurement data. (d) An EIA485 local area network provides a digital link throughout the installation. (e) Node units located conveniently throughout the ARCS and linked by the EIA485 network allow an almost unlimited flexibility and expandability. (f) A robust packet protocol ensures message security and accuracy. The complete communication, control, and data acquisition system is described in detail. The ability of the system to adapt to other physical configurations (telephone, UHF, telnet) is discussed.

  16. transportation-system-modeling-webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar Announcement Webinar for the Intelligent Transportation Society of the Midwest (ITS Midwest) May 16, 2011 1:00 PM(CST) Hubert Ley Director, TRACC Argonne National Laboratory Argonne, Illinois High Performance Computing in Transportation Research - High Fidelity Transportation Models and More The Role of High-Performance Computing Because ITS relies on a very diverse collection of technologies, including communication and control technologies, advanced computing, information management

  17. transportation-systems-modeling-training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Table of Contents Date Location Integrated Transportation Models Workshop at ITM 2012 April 29, 2012 Hyatt Regency Tampa, FL TRANSIMS Training Course April 14-15, 2011 James E. Clyburn University Transportation Center Orangeburg, SC TRANSIMS RTSTEP Guest Lecturer March 29, 2011 Argonne TRACC Argonne, IL TRANSIMS Training Course January 19-21 2011 Argonne TRACC Argonne, IL TRANSIMS Training Course September 7-8, 2010 Turner Fairbank Highway Research Center Washington D.C. Network

  18. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentrationmore » Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations – Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations

  19. Structural system identification: Structural dynamics model validation

    SciTech Connect (OSTI)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  20. Use of global navigation satellite systems for monitoring deformations of water-development works

    SciTech Connect (OSTI)

    Kaftan, V. I.; Ustinov, A. V.

    2013-05-15

    The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurance of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.

  1. Models And Results Database System.

    Energy Science and Technology Software Center (OSTI)

    2001-03-27

    Version 00 MAR-D 4.16 is a program that is used primarily for Probabilistic Risk Assessment (PRA) data loading. This program defines a common relational database structure that is used by other PRA programs. This structure allows all of the software to access and manipulate data created by other software in the system without performing a lengthy conversion. The MAR-D program also provides the facilities for loading and unloading of PRA data from the relational databasemore » structure used to store the data to an ASCII format for interchange with other PRA software. The primary function of MAR-D is to create a data repository for NUREG-1150 and other permanent data by providing input, conversion, and output capabilities for data used by IRRAS, SARA, SETS and FRANTIC.« less

  2. Comparison of Global Model Results from the Carbon-Land Model Intercomparison Project (C-LAMP) with Free-Air Carbon Dioxide Enrichment (FACE) Manipulation Experiments

    SciTech Connect (OSTI)

    Hoffman, Forrest M; Randerson, Jim; Fung, Inez; Thornton, Peter E; Covey, Curtis; Bonan, Gordon; Running, Steven; Norby, Richard J

    2008-01-01

    Free-Air CO{sub 2} Enrichment (FACE) manipulation experiments have been carried out at a handful of sites to gauge the response of the biosphere to significant increases in atmospheric [CO{sub 2}]. Early synthesis results from four temperate forest sites suggest that the response of net primary productivity (NPP) is conserved across a broad range of productivity with a stimulation at the median of 23 {+-} 2% when the surrounding air [CO{sub 2}] was raised to 550{approx}ppm. As a part of the Carbon-Land Model Intercomparison Project (C-LAMP), a community-based model-data comparison activity, the authors have performed a global FACE modeling experiment using two terrestrial biogeochemistry modules, CLM3-CASA and CLM3-CN, coupled to the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). The two models were forced with an improved NCEP/NCAR reanalysis data set and reconstructed atmospheric [CO{sub 2}] and N deposition data through 1997. At the beginning of 1997 in the transient simulations, global atmospheric [CO{sub 2}] was abruptly raised to 550{approx}ppm, the target value used at the FACE sites. In the control runs, [CO{sub 2}] continued to rise following observations until 2004, after which it was held constant out to year 2100. In both simulations, the last 25 years of reanalysis forcing and a constant N deposition were applied after year 2004. Across all forest biomes, the NPP responses from both models are weaker than those reported for the four FACE sites. Moreover, model responses vary widely geographically with a decreasing trend of NPP increases from 40{sup o}N to 70{sup o}N. For CLM3-CASA, the largest responses occur in arid regions of western North America and central Asia, suggesting that responses are most strongly influenced by increased water use efficiency for this model. CLM3-CN exhibits consistently weaker responses than CLM3-CASA' with the strongest responses in central Asia, but significantly constrained by N

  3. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    SciTech Connect (OSTI)

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)'s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9° by 2.5° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of

  4. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  5. Preliminary Concept of Operations for a Global Cylinder Identification and Monitoring System

    SciTech Connect (OSTI)

    Whitaker, J. M.; White-Horton, J. L.; Morgan, J. B.

    2013-08-01

    This report describes a preliminary concept of operations for a Global Cylinder Identification and Monitoring System that could improve the efficiency of the International Atomic Energy Agency (IAEA) in conducting its current inspection activities and could provide a capability to substantially increase its ability to detect credible diversion scenarios and undeclared production pathways involving UF6 cylinders. There exist concerns that a proliferant State with access to enrichment technology could obtain a cylinder containing natural or low-enriched uranium hexafluoride (UF6) and produce a significant quantity (SQ)1 of highly enriched uranium in as little as 30 days. The National Nuclear Security Administration (NNSA) through the Next Generation Safeguards Initiative sponsored a multi-laboratory team to develop an integrated system that provides for detecting scenarios involving 1) diverting an entire declared cylinder for enrichment at a clandestine facility, 2) misusing a declared cylinder at a safeguarded facility, and 3) using an undeclared cylinder at a safeguarded facility. An important objective in developing this integrated system was to improve the timeliness for detecting the cylinder diversion and undeclared production scenarios. Developing this preliminary concept required in-depth analyses of current operational and safeguards practices at conversion, enrichment, and fuel fabrication facilities. The analyses evaluated the processing, movement, and storage of cylinders at the facilities; the movement of cylinders between facilities (including cylinder fabrication); and the misuse of safeguarded facilities.

  6. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    SciTech Connect (OSTI)

    Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2011-11-23

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea

  7. Neutrons used to study model vascular systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons used to study model vascular systems Neutrons used to study model vascular systems The study is the first to provide a direct measure of endothelial monolayer adhesion under physiologic shear stress conditions. January 22, 2014 Comparison of endothelial monolayers under static conditions (left panels) and laminar shear stress (right panels). Shear stress induces remodeling of endothelial proteins. Comparison of endothelial monolayers under static conditions (left panels) and laminar

  8. Neutrons used to study model vascular systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons used to study model vascular systems Neutrons used to study model vascular systems The study is the first to provide a direct measure of endothelial monolayer adhesion under physiologic shear stress conditions. January 22, 2014 Comparison of endothelial monolayers under static conditions (left panels) and laminar shear stress (right panels). Shear stress induces remodeling of endothelial proteins. Comparison of endothelial monolayers under static conditions (left panels) and laminar

  9. Hybrid Energy System Modeling in Modelica

    SciTech Connect (OSTI)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  10. A multilingual programming model for coupled systems.

    SciTech Connect (OSTI)

    Ong, E. T.; Larson, J. W.; Norris, B.; Tobis, M.; Steder, M.; Jacob, R. L.; Mathematics and Computer Science; Univ. of Wisconsin; Univ. of Chicago; The Australian National Univ.

    2008-01-01

    Multiphysics and multiscale simulation systems share a common software requirement-infrastructure to implement data exchanges between their constituent parts-often called the coupling problem. On distributed-memory parallel platforms, the coupling problem is complicated by the need to describe, transfer, and transform distributed data, known as the parallel coupling problem. Parallel coupling is emerging as a new grand challenge in computational science as scientists attempt to build multiscale and multiphysics systems on parallel platforms. An additional coupling problem in these systems is language interoperability between their constituent codes. We have created a multilingual parallel coupling programming model based on a successful open-source parallel coupling library, the Model Coupling Toolkit (MCT). This programming model's capabilities reach beyond MCT's native Fortran implementation to include bindings for the C++ and Python programming languages. We describe the method used to generate the interlanguage bindings. This approach enables an object-based programming model for implementing parallel couplings in non-Fortran coupled systems and in systems with language heterogeneity. We describe the C++ and Python versions of the MCT programming model and provide short examples. We report preliminary performance results for the MCT interpolation benchmark. We describe a major Python application that uses the MCT Python bindings, a Python implementation of the control and coupling infrastructure for the community climate system model. We conclude with a discussion of the significance of this work to productivity computing in multidisciplinary computational science.

  11. The National Energy Modeling System: An overview

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

  12. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth's weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  13. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth`s weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  14. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Office of Environmental Management (EM)

    Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems ...

  15. Human performance modeling for system of systems analytics :soldier fatigue.

    SciTech Connect (OSTI)

    Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter

    2005-10-01

    The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in September 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.

  16. A Cross-model Comparison of Global Long-term Technology Diffusion under a 2?C Climate Change Control Target

    SciTech Connect (OSTI)

    van der Zwaan, Bob; Rosler, Hilke; Kober, Tom; Aboumahboub, Tino; Calvin, Katherine V.; Gernaat, David; Marangoni, Giacomo; McCollum, David

    2013-11-01

    We investigate the long-term global energy technology diffusion patterns required to reach a stringent climate change target with a maximum average atmospheric temperature increase of 2C. If the anthropogenic temperature increase is to be limited to 2C, total CO2 emissions have to be reduced massively, so as to reach substantial negative values during the second half of the century. Particularly power sector CO2 emissions should become negative from around 2050 onwards according to most models used for this analysis in order to compensate for GHG emissions in other sectors where abatement is more costly. The annual additional capacity deployment intensity (expressed in GW/yr) for solar and wind energy until 2030 needs to be around that recently observed for coal-based power plants, and will have to be several times higher in the period 20302050. Relatively high agreement exists across models in terms of the aggregated low-carbon energy system cost requirements on the supply side until 2050, which amount to about 50 trillion US$.

  17. Greenland and Antarctic mass balances for present and doubled atmospheric CO{sub 2} from the GENESIS version-2 global climate model

    SciTech Connect (OSTI)

    Thompson, S.L.; Pollard, D.

    1997-05-01

    As anthropogenic greenhouse warming occurs in the next century, changes in the mass balances of Greenland and Antarctica will probably accelerate and may have significant effects on global sea level. Recent trends and possible future changes in these mass balances have received considerable attention in the glaciological literature, but until recently relatively few general circulation modeling (GCM) studies have focused on the problem. However, there are two significant problems in using GCMs to predict mass balance distributions on ice sheets: (i) the relatively coarse GCM horizontal resolution truncates the topography of the ice-sheet flanks and smaller ice sheets such as Greenland, and (ii) the snow and ice physics in most GCMs does not include ice-sheet-specific processes such as the refreezing of meltwater. Two techniques are described that attack these problems, involving (i) an elevation-based correction to the surface meteorology and (ii) a simple a posteriori correction for the refreezing of meltwater following Pfeiffer et al. Using these techniques in a new version 2 of the Global Environmental and Ecological Simulation of Interactive Systems global climate model, the authors present global climate and ice-sheet mass-balance results from two equilibrated runs for present and doubled atmospheric CO{sub 2}. This GCM is well suited for ice-sheet mass-balance studies because (a) the surface can be represented at a finer resolution (2{degrees} lat x 2{degrees} long) than the atmospheric GCM, (b) the two correction techniques are included as part of the model, and the model`s mass balances for present-day Greenland and Antarctica are realistic. 131 refs., 23 figs., 2 tabs.

  18. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the demonstrated range of

  19. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandians Published in American Chemical Society's Environmental Science & Technology Analysis, Climate, Energy, Global Climate & Energy, Modeling, Modeling & Analysis, News, News & Events, Systems Analysis, Water Security Sandians Published in American Chemical Society's Environmental Science & Technology Electricity use by water service sector and county. Shown are electricity use by (a) large-scale conveyance, (b) groundwater irrigation pumping, (c) surface water irrigation

  20. Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?

    SciTech Connect (OSTI)

    Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele

    2013-01-17

    The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physically and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.

  1. From Microbes to Global Carbon Models | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Understanding microbial community processes improves predictions of soil carbon dynamics. ... from Wieder, Bonan, and Allison. "Global soil carbon projections are improved by ...

  2. Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

  3. Hot Water Distribution System Model Enhancements

    SciTech Connect (OSTI)

    Hoeschele, M.; Weitzel, E.

    2012-11-01

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  4. Intrinsic Uncertainties in Modeling Complex Systems.

    SciTech Connect (OSTI)

    Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.

    2014-09-01

    Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrained within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project %23170979, entitled %22Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties%22, which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.

  5. Global warming and climate change - predictive models for temperate and tropical regions

    SciTech Connect (OSTI)

    Malini, B.H.

    1997-12-31

    Based on the assumption of 4{degree}C increase of global temperature by the turn of 21st century due to the accumulation of greenhouse gases an attempt is made to study the possible variations in different climatic regimes. The predictive climatic water balance model for Hokkaido island of Japan (a temperate zone) indicates the possible occurrence of water deficit for two to three months, which is a unknown phenomenon in this region at present. Similarly, India which represents tropical region also will experience much drier climates with increased water deficit conditions. As a consequence, the thermal region of Hokkaido which at present is mostly Tundra and Micro thermal will change into a Meso thermal category. Similarly, the moisture regime which at present supports per humid (A2, A3 and A4) and Humid (B4) climates can support A1, B4, B3, B2 and B1 climates indicating a shift towards drier side of the climatic spectrum. Further, the predictive modes of both the regions have indicated increased evapotranspiration rates. Although there is not much of change in the overall thermal characteristics of the Indian region the moisture regime indicates a clear shift towards the aridity in the country.

  6. Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States

    SciTech Connect (OSTI)

    Lave, Matthew; Hayes, William; Pohl, Andrew; Hansen, Clifford W.

    2015-02-02

    We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decomposition models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.

  7. APT Blanket System Model Based on Initial Conceptual Design - Integrated 1D TRAC System Model

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07

    This report documents the approaches taken in establishing a 1-dimensional integrated blanket system model using the TRAC code, developed by Los Alamos National Laboratory.

  8. Feasibility of integrating other federal information systems into the Global Network of Environment and Technology, GNET{reg_sign}

    SciTech Connect (OSTI)

    1998-05-01

    The Global Environment and Technology Enterprise (GETE) of the Global Environment and Technology Foundation (GETF) has been tasked by the US Department of Energy`s (DOE), Federal Energy Technology Center (FETC) to assist in reducing DOE`s cost for the Global Network of Environment and Technology (GNET{reg_sign}). As part of this task, GETE is seeking federal partners to invest in GNET{reg_sign}. The authors are also seeking FETC`s commitment to serve as GNET`s federal agency champion promoting the system to potential agency partners. This report assesses the benefits of partnering with GNET{reg_sign} and provides recommendations for identifying and integrating other federally funded (non-DOE) environmental information management systems into GNET{reg_sign}.

  9. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect (OSTI)

    Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

    2014-05-01

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

  10. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    SciTech Connect (OSTI)

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, C.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically, differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.