National Library of Energy BETA

Sample records for global shale gas

  1. Gas Shale Plays? The Global Transition

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in TOC, thermally mature in the gas to oil windows, and among the most prospective in Europe for shale development. Figure VIII-5 exhibits organic-rich shales that are typically...

  2. Gas Shale Plays? The Global Transition

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    wells, and install the extensive surface infrastructure needed to transport product to market. Industry is cautious regarding China's likely pace of shale gas development. Even...

  3. Gas Shale Plays? The Global Transition

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and transportation capacity in the Horn River Basin is being expanded to provide improved market access for its growing shale gas production. Pipeline infrastructure is being...

  4. Shale gas - what happened? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shale gas - what happened? Shale gas - what happened? It seems like shale gas came out of nowhere - what happened? More Documents & Publications Natural Gas from Shale: Questions...

  5. Shale Gas Glossary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glossary Shale Gas Glossary Shale Gas Glossary More Documents & Publications Natural Gas from Shale: Questions and Answers Modern Shale Gas Development in the United States: A...

  6. What is shale gas? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What is shale gas? What is shale gas? What is shale gas? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary Natural Gas Study Guide -...

  7. Natural Gas from Shale: Questions and Answers | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas from Shale: Questions and Answers Natural Gas from Shale: Questions and Answers Natural Gas from Shale: Questions and Answers More Documents & Publications Shale Gas...

  8. Shale Gas Development Challenges: Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Challenges: Water Shale Gas Development Challenges: Water Shale Gas Development Challenges: Water More Documents & Publications Natural Gas from Shale: Questions and...

  9. Production Trends of Shale Gas Wells 

    E-Print Network [OSTI]

    Khan, Waqar A.

    2010-01-14

    To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important...

  10. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  11. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

  12. Shale Gas Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012...

  13. Shale Gas Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016November 20001:Gas Production

  14. 90-day Interim Report on Shale Gas Production - Secretary of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board The Shale Gas...

  15. Modern Shale Gas Development in the United States: A Primer ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modern Shale Gas Development in the United States: A Primer Modern Shale Gas Development in the United States: A Primer This Primer on Modern Shale Gas Development in the United...

  16. Groundwater and Shale Gas Development (Updated May 29, 2015)

    E-Print Network [OSTI]

    Walter, M.Todd

    Groundwater and Shale Gas Development (Updated May 29, 2015) Background In parts of New York where shale gas extraction is possible, the Marcellus distance separates shale gas and potable water there are still risks associated

  17. Australian Shale Gas Assessment Project Reza Rezaee

    E-Print Network [OSTI]

    , Access to different pore structure evaluation techniques including low pressure nitrogen adsorptionAustralian Shale Gas Assessment Project Reza Rezaee Unconventional Gas Research Group of natural gas in many countries. According to recent assessments, Australia has around 437 trillion cubic

  18. Shale Gas Application in Hydraulic Fracturing Market is likely...

    Open Energy Info (EERE)

    on unconventional reservoirs such as coal bed methane, tight gas, tight oil, shale gas, and shale oil. Over the period of time, hydraulic fracturing technique has found...

  19. Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing

    E-Print Network [OSTI]

    Guo, Dongning

    Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing Seminar Series fracturing of horizontal wells is priceless Sidney Green, London Shale Gas Summit, 2010 #12;Vertical Well

  20. What is shale gas and why is it important?

    Reports and Publications (EIA)

    2012-01-01

    Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

  1. Engineering Methane is a major component of shale gas. Recent

    E-Print Network [OSTI]

    Chemical Engineering Methane is a major component of shale gas. Recent oversupply of shale gas has 30% of electricity from natural and shale gas, increasing from 15% in 2010. US chemical industries have begun using ethane from shale gas as a feedstock. The low methane price is expected to push its

  2. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy,...

  3. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of...

  4. Shale gas is natural gas trapped inside

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith FirstatOpportunitiesDOE forSevenShale gas is

  5. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Chen, Tsuhan

    Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New

  6. ,"Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas...

  7. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North...

  8. ,"Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska...

  9. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi...

  10. ,"Indiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana...

  11. ,"California Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California...

  12. ,"South Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South...

  13. ,"Kansas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas...

  14. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana...

  15. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  16. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

  17. ,"West Virginia Natural Gas Gross Withdrawals from Shale Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West...

  18. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan...

  19. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma...

  20. ,"Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio...

  1. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon...

  2. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana...

  3. ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida...

  4. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia...

  5. ,"Nevada Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada...

  6. ,"Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee...

  7. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland...

  8. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky...

  9. ,"Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado...

  10. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri...

  11. ,"Pennsylvania Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  12. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    O'Sullivan, Francis

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  13. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  14. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

  15. Economics and Politics of Shale Gas in Europe

    E-Print Network [OSTI]

    Chyong, Chi Kong; Reiner, David M.

    2015-01-01

    In the wake of the dramatic growth in shale gas production in the United States, interest in shale gas exploration in Europe has been driven primarily by concerns over industrial competitiveness and energy security. A number of studies have been...

  16. Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas

    E-Print Network [OSTI]

    Huang, Xun

    Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

  17. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    Reports and Publications (EIA)

    2011-01-01

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  18. Risks and Risk Governance in Unconventional Shale Gas Development

    E-Print Network [OSTI]

    Jackson, Robert B.

    Risks and Risk Governance in Unconventional Shale Gas Development Mitchell J. Small,*, Paul C, Desert Research Institute, Reno, Nevada 89512, United States 1. INTRODUCTION The recent U.S. shale gas Issue: Understanding the Risks of Unconventional Shale Gas Development Published: July 1, 2014 A broad

  19. Optimization Models for Shale Gas Water Management Linlin Yang

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimization Models for Shale Gas Water Management Linlin Yang , Jeremy Manno and Ignacio E With the advancement in directional drilling and hydraulic fracturing, shale gas is predicted to provide 46% of the United States natural gas supply by 20351 . The number of wells drilled in the Marcellus shale play has

  20. Water's Journey Through the Shale Gas Drilling and

    E-Print Network [OSTI]

    Walter, M.Todd

    Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas in the Marcellus shale natural gas industry in the Mid-Atlantic region. Using publicly available information, we

  1. Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing

    E-Print Network [OSTI]

    Guo, Dongning

    Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing Seminar Series Where are we Today: Reservoir and Completion Quality Is Tight Shale Gas and Oil the Answer ? Sidney and with different economic and environmental impacts · Tight Shale Gas and Oil is at least part of the answer

  2. Spills and leaks Associated with Shale Gas Development

    E-Print Network [OSTI]

    Walter, M.Todd

    1 Spills and leaks Associated with Shale Gas Development (Updated April 27th , 2012) Brief of toxic chemicals, contaminated water, or hazardous materials. Spills and leaks associated with shale gas associated with shale gas development will depend on the pace and scale with which the industry grows

  3. Microbial Dynamics and Control in Shale Gas Production Jason Gaspar,

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Microbial Dynamics and Control in Shale Gas Production Jason Gaspar, Jacques Mathieu, Yu Yang, Ross effects in shale gas production, such as reservoir souring, plugging, equipment corrosion, and a decrease fluids, drilling mud, and impoundment water likely introduce deleterious microorganisms into shale gas

  4. Stormwater, Erosion and Shale Gas Development (Updated May 11, 2014)

    E-Print Network [OSTI]

    Walter, M.Todd

    Stormwater, Erosion and Shale Gas Development (Updated May 11, 2014) Why and erosion at shale gas well sites do not receive a great deal of attention from are a major reason for the proposed ban on shale gas development within the New

  5. CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER

    E-Print Network [OSTI]

    Jackson, Robert B.

    257 CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER STATES SARAH K. ADAIR Carolina Geological Survey (NCGS) announced the existence of shale gas underlying the Deep and Dan River and the state legislature began to consider policy changes that would be necessary to develop the shale gas

  6. Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig Matthew

    2013-11-25

    . These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas...

  7. Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources 

    E-Print Network [OSTI]

    Morales Velasco, Carlos Armando

    2013-08-02

    According to the 2011 Energy Information Agency (EIA) global assessment, Mexico ranks 4th in shale gas resources. The Eagle Ford shale is the formation with the greatest expectation in Mexico given the success it has had in the US and its liquids...

  8. Shale Gas & Tight Oil Economic and Policy

    E-Print Network [OSTI]

    Guo, Dongning

    Dependence on Fossil Fuels Fracking concerns Potential impact on water resources Will LNG exports drive more Information Michael Ratner Specialist in Energy Policy Congressional Research Service 101 Independence Avenue · Hydraulic fracturing New Technology: Shale gas deposit Source: U.S. Department of Energy Northwestern -6 #12

  9. ,"New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico...

  10. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York...

  11. Process Design and Integration of Shale Gas to Methanol 

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04

    Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

  12. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  13. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy Motionshale gas? Basically, itKey Points:

  14. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    of methane emissions from shale gas development, Proc. Natl.and northeastern Marcellus shale gas production regions, J.Haynesville and Marcellus shale gas production regions, J.

  15. ,"New Mexico Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"0630...

  16. DOE's Early Investment in Shale Gas Technology Producing Results...

    Broader source: Energy.gov (indexed) [DOE]

    sources of natural gas such as Devonian shales, coals, and low permeability or "tight" sands. Recognizing the need for research and development to quantify these unconventional...

  17. COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction and Hydraulic Fracturing" Professor Robert Jackson Duke University...

  18. Back to previous page Shale gas: Can we safely tap

    E-Print Network [OSTI]

    Deutch, John

    and potential environmental impacts of shale-gas production, not just from fracking. The proposed approach.S. energy outlook in 50 years. But realizing this opportunity will require cooperation between industry.S. energy supply. Shale gas has grown from less than 2 percent of domestic natural gas production in 2001

  19. Shale Natural Gas Estimated Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013 IndependentYear JanFeet) Year Jan Feb3,110

  20. Water management practices used by Fayetteville shale gas producers.

    SciTech Connect (OSTI)

    Veil, J. A.

    2011-06-03

    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

  1. A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1

    E-Print Network [OSTI]

    1 APPENDIX1 Contents A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES FOR FLOWBACK GAS CAPTURE IN SHALE PLAYS..9 A5. REFERENCES...................................................................................................................13 A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES Natural gas production in the United States

  2. Shale Gas Glossary | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant to theDepartmentWorkalongShale Gas Glossary

  3. Shale Gas Opportunities It's no secret that petroleum and natural gas engineers are currently in great

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Shale Gas Opportunities It's no secret that petroleum and natural gas engineers are currently in great demand, thanks in large part to the discovery of shale gas plays in the United States. Petroleum in an area impacted by the shale gas boom aren't! There are a variety of ways in which you may be able

  4. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    in the Haynesville Shale, Environ. Sci. Technol. , 44(24),of methane emissions from shale gas development, Proc. Natl.and northeastern Marcellus shale gas production regions, J.

  5. Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL in

    E-Print Network [OSTI]

    Hattori, Kéiko H.

    Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL a reservoir for shale-gas and oil. We examined organic-rich black shale, known as Macasty shale, of Upper SHALE-GAS AND OIL in THE SUBSURFACE OF ANTICOSTI ISLAND, CANADA Key Words: Provenance, Anticosti Island

  6. Forecasting long-term gas production from shale

    E-Print Network [OSTI]

    Cueto-Felgueroso, Luis

    Oil and natural gas from deep shale formations are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Administration published projections of United States natural gas ...

  7. Economic analysis of shale gas wells in the United States

    E-Print Network [OSTI]

    Hammond, Christopher D. (Christopher Daniel)

    2013-01-01

    Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

  8. Associated Shale Gas- From Flares to Rig Power 

    E-Print Network [OSTI]

    Wallace, Elizabeth Michelle

    2014-10-16

    From September 2011 to July 2013 the percentage of flared associated gas produced in the Bakken shale formation decreased from 36% to 29%. Although the percentage decreased, the volume of associated gas produced has almost tripled to 900 MMcf...

  9. New basins invigorate U.S. gas shales play

    SciTech Connect (OSTI)

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  10. Analysis of Water Flowback Data in Gas Shale Reservoirs 

    E-Print Network [OSTI]

    Aldaif, Hussain

    2014-09-24

    Properties of both shale gas reservoirs and hydraulic fractures are usually estimated by analyzing hydrocarbon production data while water data is typically ignored. This study introduces a new method to estimate the effective fracture volume...

  11. General screening criteria for shale gas reservoirs and production data analysis of Barnett shale 

    E-Print Network [OSTI]

    Deshpande, Vaibhav Prakashrao

    2009-05-15

    Shale gas reservoirs are gaining importance in United States as conventional oil and gas resources are dwindling at a very fast pace. The purpose of this study is twofold. First aim is to help operators with simple screening criteria which can help...

  12. Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas relevance to the oil and gas industry: 10 weeks in Year 1 and 5 weeks each in Years 2 and 3. Instructors will be both from expert academics from across the CDT and also experienced oil and gas industry professionals

  13. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  14. Pressure Transient Analysis and Production Analysis for New Albany Shale Gas Wells 

    E-Print Network [OSTI]

    Song, Bo

    2010-10-12

    Shale gas has become increasingly important to United States energy supply. During recent decades, the mechanisms of shale gas storage and transport were gradually recognized. Gas desorption was also realized and quantitatively ...

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    at Yuzovska in the eastern Dniepr-Donets Basin covers an area of 7,886 km 2 and assigns oil and gas rights to all strata to a depth of 10 km, including tight and basin-centered...

  16. Technically Recoverable Shale Oil and Shale Gas Resources

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes &15.14.298

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes &15.14.298Algeria

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes &15.14.298AlgeriaArgentina

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales Volumes

  20. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazil Independent Statistics

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazil Independent

  2. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazil IndependentChad

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazil IndependentChadChina

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazil

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazilEgypt Independent

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazilEgypt IndependentIndia

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazilEgypt

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazilEgyptJordan Independent

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazilEgyptJordan

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazilEgyptJordanLibya

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales VolumesBrazilEgyptJordanLibyaMexico

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, Sales

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco Independent Statistics &

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco Independent Statistics

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco Independent StatisticsWestern

  16. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco Independent

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco IndependentSouth America

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco IndependentSouth AmericaPoland

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco IndependentSouth

  20. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco IndependentSouthSouth Africa

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco IndependentSouthSouth

  2. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco IndependentSouthSouthThailand

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMorocco

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMoroccoTurkey Independent Statistics

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMoroccoTurkey Independent

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMoroccoTurkey IndependentKingdom

  7. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Walter, M.Todd

    , renewable sources, but at least in the short term many may be new ways of extracting and using hydrocarbons of unconventional gas resources as a result of declining supplies of conventional resources, local and regional we focused on the case of un- conventional natural gas recovery from the Marcellus shale In addition

  8. Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania

    E-Print Network [OSTI]

    Jackson, Robert B.

    Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R bioaccumulation in localized areas of shale gas wastewater disposal. INTRODUCTION The safe disposal of large States, oil and gas wastewater is managed through recycling of the wastewater for shale gas operations

  9. The fate of residual treatment water in gas shale Terry Engelder a,

    E-Print Network [OSTI]

    Engelder, Terry

    The fate of residual treatment water in gas shale Terry Engelder a, , Lawrence M. Cathles b , L Marcellus Gas shale Osmosis-diffusion a b s t r a c t More than 2 Â 104 m3 of water containing additives is commonly injected into a typical horizontal well in gas shale to open fractures and allow gas recovery

  10. Numerical Simulation and Multiple Realizations for Sensitivity Study of Shale Gas Reservoir

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 141058 Numerical Simulation and Multiple Realizations for Sensitivity Study of Shale Gas. The abstract must contain conspicuous acknowledgment of SPE copyright. Abstract Shale gas in the United States the largest conventional gas accumulations in the world. Shale gas success is directly the result

  11. Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide

    SciTech Connect (OSTI)

    Hall, V.S.

    1980-06-01

    This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  15. 90-day Interim Report on Shale Gas Production- Secretary of Energy Advisory Board

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Shale Gas Subcommittee of the Secretary of Energy Advisory Board is charged with identifying measures that can be taken to reduce the environmental impact and improve the safety of shale gas...

  16. Barnett Shale Municipal Oil and Gas Ordinance Dynamics: A Spatial Perspective 

    E-Print Network [OSTI]

    Murphy, Trey Daniel-Aaron

    2013-09-27

    Previously unattainable shale gas deposits have become accessible since the late 1990s using a technique called hydraulic fracturing — the injection of chemicals, water, and sand into subsurface shale to free extractable gas. This practice, along...

  17. Shale Gas R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideo »ServicesShale Gas R&D Shale Gas R&D

  18. Conversion of Waste CO2 & Shale Gas to High Value Chemicals

    Broader source: Energy.gov (indexed) [DOE]

    of Novomer Process: High Selectivity Catalyst (>99%) Leverages low cost shale gas & ethylene derivatives Lower energy & carbon footprint Novomer process...

  19. Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation of Gas Diffusion in Kerogen, Langmuir Desorption from

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 159250 Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation algorithm to forecast gas production in organic shale that simultaneously takes into account gas diffusion-than-expected permeability in shale-gas formations, while Langmuir desorption maintains pore pressure. Simulations confirm

  20. Strategic Planning, Design and Development of the Shale Gas Supply Chain Network

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Strategic Planning, Design and Development of the Shale Gas Supply Chain Network Diego C. Cafaro1-term planning of the shale gas supply chain is a relevant problem that has not been addressed before Shale gas, supply chain, strategic planning, MINLP, solution algorithm * Corresponding author. Tel.: +1

  1. ANALYSIS OF GAS PRODUCTION FROM HYDRAULICALLY FRACTURED WELLS IN THE HAYNESVILLE SHALE USING SCALING METHODS

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    ANALYSIS OF GAS PRODUCTION FROM HYDRAULICALLY FRACTURED WELLS IN THE HAYNESVILLE SHALE USING. The reservoir temperature is also high, up to 3000 F. These pressures are uniquely high among shale gas gas from the Haynesville Shale without horizontal wells and massive hydrofractures. In addition

  2. Lagrangian Relaxation Based Decompositon for Well Scheduling in Shale-gas Systems

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Lagrangian Relaxation Based Decompositon for Well Scheduling in Shale-gas Systems Brage Rugstad of mid and late-life wells in shale-gas systems. This state of the wells can be prevented by performing solutions in reasonable computation times. Keywords: Shale-gas production, Lagrangian relaxation, mixed

  3. Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling

    E-Print Network [OSTI]

    Walter, M.Todd

    Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated May 10th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular testing in order to more specifically document potential impacts of Marcellus Shale gas development

  4. Optimal use of Hybrid feedstock, Switchgrass and Shale gas, for the

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimal use of Hybrid feedstock, Switchgrass and Shale gas, for the Simultaneous Production for the integration of the simultaneous production of liquid fuels and hydrogen from switchgrass and shale gas. The process is based on Fischer- Tropsch technology in which the shale gas is reformed with steam, while

  5. The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling

    E-Print Network [OSTI]

    Walter, M.Todd

    The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling be the result of drilling activities, including shale gas drilling. Monitoring techniques exist for detecting discuss these techniques in more detail within the context of shale gas drilling activities in New York

  6. Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine Shoemaker

    E-Print Network [OSTI]

    Walter, M.Todd

    Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine and environmental groups. The Shale Gas Roundtable of the Institute of Politics at the University of Pittsburgh produced a report with several recommendations dealing especially with shale gas research, water use

  7. Optimal use of Hybrid feedstock, Switchgrass and Shale gas, for the

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimal use of Hybrid feedstock, Switchgrass and Shale gas, for the Simultaneous Production of the production of liquid fuels and hydrogen from switchgrass and shale gas. The process is based on FT technology in which the shale gas is reformed with steam while the switchgrass is gasified, reformed (with steam

  8. World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States

    Reports and Publications (EIA)

    2011-01-01

    The Energy Information Administration sponsored Advanced Resources International, Inc., to assess 48 gas shale basins in 32 countries, containing almost 70 shale gas formations. This effort has culminated in the report: World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States.

  9. Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids 

    E-Print Network [OSTI]

    Olorode, Olufemi Morounfopefoluwa

    2012-02-14

    Various models featuring horizontal wells with multiple induced fractures have been proposed to characterize flow behavior over time in tight gas and shale gas systems. Currently, there is little consensus regarding the effects of non...

  10. Accounting for Adsorbed gas and its effect on production bahavior of Shale Gas Reservoirs 

    E-Print Network [OSTI]

    Mengal, Salman Akram

    2010-10-12

    FOR ADSORBED GAS AND ITS EFFECT ON PRODUCTION BEHAVIOR OF SHALE GAS RESERVOIRS A Thesis by SALMAN AKRAM MENGAL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 2010 Major Subject: Petroleum Engineering ACCOUNTING FOR ADSORBED GAS AND ITS EFFECT ON PRODUCTION BEHAVIOR OF SHALE GAS RESERVOIRS A Thesis by SALMAN AKRAM MENGAL Submitted to the Office...

  11. EIA responds to Nature article on shale gas projections

    Reports and Publications (EIA)

    2014-01-01

    EIA has responded to a December 4, 2014 Nature article on projections of shale gas production made by EIA and by the Bureau of Economic Geology of the University of Texas at Austin (BEG/UT) with a letter to the editors of Nature. BEG/UT has also responded to the article in their own letter to the editor.

  12. Review article Oil and gas wells and their integrity: Implications for shale and

    E-Print Network [OSTI]

    Jackson, Robert B.

    Review article Oil and gas wells and their integrity: Implications for shale and unconventional gas and shale oil exploration and exploitation using hydraulic fracturing techniques has created 25 March 2014 Keywords: Shale Fracking Integrity Barrier Integrity Wells a b s t r a c t Data from

  13. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses 

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  14. Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells 

    E-Print Network [OSTI]

    Apiwathanasorn, Sippakorn

    2012-10-19

    the presence of reopened natural fracture network can be observed in pressure and production data of shale gas wells producing from two shale formations with different well and reservoir properties. Homogeneous, dual porosity and triple porosity models...

  15. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    well sites of the Barnett shale gas play [Eastern Researchof well sites in the Barnett shale play accounted for 70% of

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  17. Trip report for field visit to Fayetteville Shale gas wells.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2007-09-30

    This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

  18. Rate Transient Analysis in Shale Gas Reservoirs with Transient Linear Behavior 

    E-Print Network [OSTI]

    Bello, Rasheed O.

    2010-07-14

    of the Major United States Shale Basins............................................ 3 1.3 Microseismic Map of Multi-Stage Hydraulically Fractured Horizontal Well... micro-seismic data used to monitor the hydraulic fractures is shown in Fig. 1.3. The different hydraulic fracture stages are indicated by the different clusters. Shale gas production data from a sample well in the Barnett shale is plotted against...

  19. Miscellaneous States Shale Gas Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved Reserves (Billion Cubic Feet)Shale Gas

  20. Frack Attack: Weighing the Debate over the Hazards of Shale Gas Production

    E-Print Network [OSTI]

    Frack Attack: Weighing the Debate over the Hazards of Shale Gas Production spasms, and other problems in the communities in which fracking occurs

  1. Conversion of Waste CO2 and Shale Gas to High-Value Chemicals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Waste CO 2 and Shale Gas to High-Value Chemicals Enabling high-yield, low-cost, low- temperature production of chemical intermediates Chemical intermediates,...

  2. Natural Gas from Shale | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartmentNatural ContaminationDepartmentNatural Gas

  3. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) andmore »associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.« less

  4. TOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen

    E-Print Network [OSTI]

    Walter, M.Todd

    the nation's energy landscape. However, the environmental impacts associated with ``fracking'' for shale gasTOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen DATE: November 20th , 12:00 -1:00pm, 300 Rice Hall Atmospheric Impacts of Expanded Natural Gas Use Hydraulic

  5. The Influence of Shale gas on U.S. Energy and Environmental Policy

    E-Print Network [OSTI]

    Jacoby, H.D.

    The emergence of U.S. shale gas resources to economic viability affects the nation’s energy outlook and the expected role of natural gas in climate policy. Even in the face of the current shale gas boom, however, questions ...

  6. What is shale gas? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.Energy Thefull swing, and the Energy Saversas defined

  7. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

  8. GEOLOGIC ASSESSMENT OF DRILLING, COMPLETION, AND STIMULATION METHODS IN SELECTED GAS SHALE PLAYS WORLDWIDE 

    E-Print Network [OSTI]

    Patel, Harsh Jay

    2014-04-11

    the gas shale formations that have been identified in the world energy consortium. The natural gas in shales and other unconventional reservoirs can be easily used to generate electricity, or it can be turned into liquids and used by the transportation...

  9. The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation 

    E-Print Network [OSTI]

    Almarzooq, Anas Mohammadali S.

    2012-02-14

    Shale gas formations are known to have low permeability. This low permeability can be as low as 100 nano darcies. Without stimulating wells drilled in the shale gas formations, it is hard to produce them at an economic rate. One of the stimulating...

  10. A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in

    E-Print Network [OSTI]

    Jackson, Robert B.

    A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development: The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources in the U.S. The rise of shale gas development has

  11. Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging International Plays

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Regional Variation in Water-Related Impacts of Shale Gas Development and Implications for Emerging understanding of the unique regional issues that shale gas development poses. This manuscript highlights the variation in regional water issues associated with shale gas development in the U.S. and the approaches

  12. Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from ambient VOC observations

    E-Print Network [OSTI]

    Dickerson, Russell R.

    Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from/Washington area. Shale natural gas operation emissions appear to be transported downwind. a r t i c l e i n f o to free and extract natural gas trapped within shale layers (USGS, 2014). According to the U.S. Energy

  13. Target-rate Tracking for Shale-gas Multi-well Pads by Scheduled Shut-ins

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Target-rate Tracking for Shale-gas Multi-well Pads by Scheduled Shut-ins Brage R. Knudsen Bjarne, Yorktown Heights, NY, USA. Abstract: The recent success of shale-gas production relies on drilling of long caused by water accumulation in the wells. Shale-gas recovery requires a large number of wells in order

  14. CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir-A Numerical Simulation Study

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir- A Numerical Simulation for storage and enhanced gas recovery may be organic-rich shales, which CO2 is preferentially adsorbed comprehensive simulation studies to better understand CO2 injection process in shale gas reservoir. This paper

  15. Shale gas, groundwater, mining, coastal erosion: Geoscientific issues are ubiquitous in the news in Quebec

    E-Print Network [OSTI]

    Shale gas, groundwater, mining, coastal erosion: Geoscientific issues are ubiquitous in the news in Quebec The increasing demand for mineral, oil and gas resources, the need for sustainable management

  16. New Advances in Shale Gas Reservoir Analysis Using Water Flowback Data 

    E-Print Network [OSTI]

    Alkouh, Ahmad

    2014-04-04

    Shale gas reservoirs with multistage hydraulic fractures are commonly characterized by analyzing long-term gas production data, but water flowback data is usually not included in the analysis. However, this work shows there can be benefits...

  17. Shale Oil and Gas, Frac Sand, and Watershed

    E-Print Network [OSTI]

    Minnesota, University of

    ;Bakken Oil Shale scope · Light, Sweet crude ­ ideal for automotive fuels and mid-size refineries (Midwest

  18. A study of the effects of stimulation on Devonian Shale gas well performance 

    E-Print Network [OSTI]

    Zuber, Michael Dean

    1985-01-01

    A STUDY OF THE EFFECTS OF STIMULATION ON DEVONIAN SHALE GAS WELL PERFORMANCE A Thesis by MICHAEL DEAN ZUBER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... of Devonian Shale reser- voir types. This paper presents the results of a study of the effect of borehole shooting, hydraulic fracturing and radial fracturing techniques on typical Devonian Shale reservoirs and compares the economics of the stimulation...

  19. FreezeFrac Improves the Productivity of Gas Shales S. Enayatpour, E. Van Oort, T. Patzek, University of Texas At Austin

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    SPE 166482 FreezeFrac Improves the Productivity of Gas Shales S. Enayatpour, E. Van Oort, T. Patzek to unconventional hydrocarbon reservers such as oil shales, gas shales, tight gas sands, coalbed methane, and gas; Keaney et al., 2004). Successful production of oil and gas from shales with nano-Darcy range permeability

  20. By Terry Engelder and Gary G. Lash UNIVERSITY PARK, PA.The shale gas rush is on. Excitement over natural gas production from a

    E-Print Network [OSTI]

    Engelder, Terry

    By Terry Engelder and Gary G. Lash UNIVERSITY PARK, PA.­The shale gas rush is on. Excitement over natural gas production from a number of Devonian-Mississippian black shales such as the Barnett by the Eastern Gas Shales Project (EGSP), a U.S. Department of Energy-sponsored investigation of gas potential

  1. Multiscale model reduction for shale gas transport in fractured media

    E-Print Network [OSTI]

    Akkutlu, I Y; Vasilyeva, Maria

    2015-01-01

    In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work \\cite{aes14}, where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method. In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. We developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations on a Cartesian fine grid. In this paper, we consider arbitrary fracture orientations and use triangular fine grid and developed GMsFEM for nonlinear flows. Moreover, we develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region ...

  2. Gas seal for an in situ oil shale retort and method of forming thermal barrier

    DOE Patents [OSTI]

    Burton, III, Robert S. (Mesa, CO)

    1982-01-01

    A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

  3. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy Motionshale gas? Basically, it is naturalAir

  4. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy Motionshale gas? Basically, it is

  5. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01

    during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

  6. Regulation of shale gas development : an argument for state preeminence with federal support

    E-Print Network [OSTI]

    Kansal, Tushar, M.C.P. Massachusetts Institute of Technology

    2012-01-01

    Shale gas development has become big business in the United States during the past decade, introducing drilling to parts of the country that have not seen it in decades and provoking an accelerating shift in the country's ...

  7. Application of Fast Marching Method in Shale Gas Reservoir Model Calibration 

    E-Print Network [OSTI]

    Yang, Changdong

    2013-07-26

    and reservoir heterogeneity but also is time consuming. In this thesis, we propose and apply an efficient technique, fast marching method (FMM), to analyze the shale gas reservoirs. Our proposed approach stands midway between analytic techniques and numerical...

  8. Comparison of Single, Double, and Triple Linear Flow Models for Shale Gas/Oil Reservoirs 

    E-Print Network [OSTI]

    Tivayanonda, Vartit

    2012-10-19

    There have been many attempts to use mathematical method in order to characterize shale gas/oil reservoirs with multi-transverse hydraulic fractures horizontal well. Many authors have tried to come up with a suitable and practical mathematical model...

  9. Comparison of Various Deterministic Forecasting Techniques in Shale Gas Reservoirs with Emphasis on the Duong Method 

    E-Print Network [OSTI]

    Joshi, Krunal Jaykant

    2012-10-19

    There is a huge demand in the industry to forecast production in shale gas reservoirs accurately. There are many methods including volumetric, Decline Curve Analysis (DCA), analytical simulation and numerical simulation. Each one of these methods...

  10. A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs 

    E-Print Network [OSTI]

    Yan, Bicheng

    2013-07-15

    The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control...

  11. Precise inversion of logged slownesses for elastic parameters in a gas shale formation

    E-Print Network [OSTI]

    Miller, Douglas E.

    Dipole sonic log data recorded in a vertical pilot well and the associated production well are analyzed over a 200×1100-ft section of a North American gas shale formation. The combination of these two wells enables angular ...

  12. Characterizing shale gas and tight oil drilling and production performance variability

    E-Print Network [OSTI]

    Montgomery, Justin B. (Justin Bruce)

    2015-01-01

    Shale gas and tight oil are energy resources of growing importance to the U.S. and the world. The combination of horizontal drilling and hydraulic fracturing has enabled economically feasible production from these resources, ...

  13. Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations

    SciTech Connect (OSTI)

    Zoback, Mark; Kovscek, Anthony; Wilcox, Jennifer

    2013-09-30

    This project investigates the feasibility of geologic sequestration of CO2 in depleted shale gas reservoirs from an interdisciplinary viewpoint. It is anticipated that over the next two decades, tens of thousands of wells will be drilled in the 23 states in which organic-rich shale gas deposits are found. This research investigates the feasibility of using these formations for sequestration. If feasible, the number of sites where CO2 can be sequestered increases dramatically. The research embraces a broad array of length scales ranging from the ~10 nanometer scale of the pores in the shale formations to reservoir scale through a series of integrated laboratory and theoretical studies.

  14. Simulating the Effect of Water on the Fracture System of Shale Gas Wells 

    E-Print Network [OSTI]

    Hamam, Hassan Hasan H.

    2011-10-21

    THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 2010 Major Subject: Petroleum Engineering SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate Studies of Texas A...

  15. Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use

    E-Print Network [OSTI]

    in water consumption if the increased natural gas production is used at natural gas combined cycle power water consumption in natural gas production have focused on quantifying the total water used4Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use Adam

  16. Natural Gas Gross Withdrawals from Shale Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYearthrough2,290,4896-2015 Illinois

  17. Natural Gas Gross Withdrawals from Shale Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYearthrough2,290,4896-2015 Illinois2007-2015

  18. California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSales (BillionFeet) Decade Year-0

  19. California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSales (BillionFeet) Decade

  20. Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522 35 42Feet) DecadeFeet)

  1. Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522 35 42Feet)

  2. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    SciTech Connect (OSTI)

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  3. Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig M.

    2010-07-14

    Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small...

  4. Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process in Marcellus Shale

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Continuous, low-permeability, fractured, organic-rich gas shale units are widespread and are possible, organic-rich rocks that are both the source and trap for natural gas (primarily methane). In shale gas1 Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process

  5. Dynamics of Matrix-Fracture Coupling During Shale Gas Production 

    E-Print Network [OSTI]

    Wasaki, Asana

    2015-07-08

    In this work, a dynamic permeability model for organic-rich shale matrix is constructed and implemented into a flow simulation to investigate the impact on production. Effective stress and molecular transport effects on the permeability...

  6. Oil and Gas CDT Are non-marine organic-rich shales suitable exploration

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Are non-marine organic-rich shales suitable exploration targets? The University will receive 20 weeks residential training of broad relevance to the oil and gas industry: 10 weeks in Year 1 and also experienced oil and gas industry professionals. The supervisors at Oxford and Exeter have

  7. Table 4. U.S. shale gas plays: natural gas production and proved reserves, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocksU.S. shale gas plays: natural gas production and proved

  8. Modelling the deployment of CO? storage in U.S. gas-bearing shales

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.; McGrail, B. Peter

    2014-12-31

    The proliferation of commercial development in U.S. gas-bearing shales helped to drive a twelve-fold increase in domestic gas production between 2000 and 2010, and the nation's gas production rates continue to grow. While shales have long been regarded as a desirable caprock for CCS operations because of their low permeability and porosity, there is increasing interest in the feasibility of injecting CO? into shales to enhance methane recovery and augment CO? storage. Laboratory work published in recent years observes that shales with adsorbed methane appear to exhibit a stronger affinity for CO? adsorption, offering the potential to drive additional CH?more »recovery beyond primary production and perhaps the potential to store a larger volume of CO? than the volume of methane displaced. Recent research by the authors on the revenues associated with CO?-enhanced gas recovery (CO?-EGR) in gas-bearing shales estimates that, based on a range of EGR response rates, the average revenue per ton of CO? for projects managed over both EGR and subsequent storage-only phases could range from $0.50 to $18/tCO?. While perhaps not as profitable as EOR, for regions where lower-cost storage options may be limited, shales could represent another “early opportunity” storage option if proven feasible for reliable EGR and CO? storage. Significant storage potential exists in gas shales, with theoretical CO? storage resources estimated at approximately 30-50 GtCO?. However, an analysis of the comprehensive cost competitiveness of these various options is necessary to understand the degree to which they might meaningfully impact U.S. CCS deployment or costs. This preliminary analysis shows that the degree to which EGR-based CO? storage could play a role in commercial-scale deployment is heavily dependent upon the offsetting revenues associated with incremental recovery; modeling the low revenue case resulted in only five shale-based projects, while under the high revenue case, shales accounted for as much as 20 percent of total U.S. storage in the first 20 years of deployment. Interestingly, even in this highest revenue case, there appear to be no negative-cost projects that would be profitable in a no-policy environment as modeled under the assumptions employed. While this reflects a very first look at the potential for shales, it is clear that more laboratory and experimental work are needed to reduce uncertainty in key variables and begin to differentiate and identify high-potential shales for early pilot study.« less

  9. Modelling the deployment of CO? storage in U.S. gas-bearing shales

    SciTech Connect (OSTI)

    Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.; McGrail, B. Peter

    2014-12-31

    The proliferation of commercial development in U.S. gas-bearing shales helped to drive a twelve-fold increase in domestic gas production between 2000 and 2010, and the nation's gas production rates continue to grow. While shales have long been regarded as a desirable caprock for CCS operations because of their low permeability and porosity, there is increasing interest in the feasibility of injecting CO? into shales to enhance methane recovery and augment CO? storage. Laboratory work published in recent years observes that shales with adsorbed methane appear to exhibit a stronger affinity for CO? adsorption, offering the potential to drive additional CH? recovery beyond primary production and perhaps the potential to store a larger volume of CO? than the volume of methane displaced. Recent research by the authors on the revenues associated with CO?-enhanced gas recovery (CO?-EGR) in gas-bearing shales estimates that, based on a range of EGR response rates, the average revenue per ton of CO? for projects managed over both EGR and subsequent storage-only phases could range from $0.50 to $18/tCO?. While perhaps not as profitable as EOR, for regions where lower-cost storage options may be limited, shales could represent another “early opportunity” storage option if proven feasible for reliable EGR and CO? storage. Significant storage potential exists in gas shales, with theoretical CO? storage resources estimated at approximately 30-50 GtCO?. However, an analysis of the comprehensive cost competitiveness of these various options is necessary to understand the degree to which they might meaningfully impact U.S. CCS deployment or costs. This preliminary analysis shows that the degree to which EGR-based CO? storage could play a role in commercial-scale deployment is heavily dependent upon the offsetting revenues associated with incremental recovery; modeling the low revenue case resulted in only five shale-based projects, while under the high revenue case, shales accounted for as much as 20 percent of total U.S. storage in the first 20 years of deployment. Interestingly, even in this highest revenue case, there appear to be no negative-cost projects that would be profitable in a no-policy environment as modeled under the assumptions employed. While this reflects a very first look at the potential for shales, it is clear that more laboratory and experimental work are needed to reduce uncertainty in key variables and begin to differentiate and identify high-potential shales for early pilot study.

  10. Modelling the deployment of CO2 storage in U.S. gas-bearing shales

    SciTech Connect (OSTI)

    Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.; McGrail, B. Peter

    2014-10-23

    The proliferation of commercial development in U.S. gas-bearing shales helped to drive a twelve-fold increase in domestic gas production between 2000 and 2010, and the nation’s gas production rates continue to grow. While shales have long been regarded as a desirable caprock for CCS operations because of their low permeability and porosity, there is increasing interest in the feasibility of injecting CO2 into shales to enhance methane recovery and augment CO2 storage. Laboratory work published in recent years observes that shales with adsorbed methane appear to exhibit a stronger affinity for CO2 adsorption, offering the potential to drive additional CH4 recovery beyond primary production and perhaps the potential to store a larger volume of CO2 than the volume of methane displaced. Recent research by the authors on the revenues associated with CO2-enhanced gas recovery (CO2-EGR) in gas-bearing shales estimates that, based on a range of EGR response rates, the average revenue per ton of CO2 for projects managed over both EGR and subsequent storage-only phases could range from $0.50 to $18/tCO2. While perhaps not as profitable as EOR, for regions where lower-cost storage options may be limited, shales could represent another “early opportunity” storage option if proven feasible for reliable EGR and CO2 storage. Significant storage potential exists in gas shales, with theoretical CO2 storage resources estimated at approximately 30-50 GtCO2. However, an analysis of the comprehensive cost competitiveness of these various options is necessary to understand the degree to which they might meaningfully impact U.S. CCS deployment or costs. This preliminary analysis shows that the degree to which EGR-based CO2 storage could play a role in commercial-scale deployment is heavily dependent upon the offsetting revenues associated with incremental recovery; modeling the low revenue case resulted in only five shale-based projects, while under the high revenue case, shales accounted for as much as 20 percent of total U.S. storage in the first 20 years of deployment. Interestingly, even in this highest revenue case, there appear to be no negative-cost projects that would be profitable in a no-policy environment as modeled under the assumptions employed. While this reflects a very first look at the potential for shales, it is clear that more laboratory and experimental work are needed to reduce uncertainty in key variables and begin to differentiate and identify high-potential shales for early pilot study.

  11. INTEGRATION OF HIGH TEMPERATURE GAS REACTORS WITH IN SITU OIL SHALE RETORTING

    SciTech Connect (OSTI)

    Eric P. Robertson; Michael G. McKellar; Lee O. Nelson

    2011-05-01

    This paper evaluates the integration of a high-temperature gas-cooled reactor (HTGR) to an in situ oil shale retort operation producing 7950 m3/D (50,000 bbl/day). The large amount of heat required to pyrolyze the oil shale and produce oil would typically be provided by combustion of fossil fuels, but can also be delivered by an HTGR. Two cases were considered: a base case which includes no nuclear integration, and an HTGR-integrated case.

  12. Study of gas production potential of New Albany Shale (group) in the Illinois basin

    SciTech Connect (OSTI)

    Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01

    The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

  13. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    of its prolific shale gas resources. GIS data were obtainedestimated recoverable shale gas resources of 20 trillionrecoverable shale gas and shale oil resources are in

  14. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    International Coalbed and Shale Gas Symposium, Paper 808.Shale RVSP, New Albany Shale Gas Project, RVSP SeismicWave Analysis from Antrim Shale Gas Play, Michigan Basin,

  15. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Middleton, Richard S.; Carey, James William; Currier, Robert P.; Hyman, Jeffrey De'Haven; Kang, Qinjun; Karra, Satish; Jiménez-Martínez, Joaquín; Porter, Mark L.; Viswanathan, Hari S.

    2015-06-01

    Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO? as a working fluid for shale gas production. We theorize and outline potential advantages of CO? including enhanced fracturing and fracture propagation, reductionmore »of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO?. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO? proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.« less

  16. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO?

    SciTech Connect (OSTI)

    Middleton, Richard S.; Carey, James William; Currier, Robert P.; Hyman, Jeffrey De'Haven; Kang, Qinjun; Karra, Satish; Jiménez-Martínez, Joaquín; Porter, Mark L.; Viswanathan, Hari S.

    2015-06-01

    Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO? as a working fluid for shale gas production. We theorize and outline potential advantages of CO? including enhanced fracturing and fracture propagation, reduction of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO?. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO? proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.

  17. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  18. Back to previous page Shale gas: Can we safely tap

    E-Print Network [OSTI]

    Deutch, John

    and associated hydrocarbon liquids are produced by hydraulic fracturing, or "fracking." One million to 5 million gallons of fracking fluid -- a mixture of water, sand and chemical additives -- is injected along that fracking fluid can contaminate shallow underground drinking-water supplies, the distance between deep shale

  19. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    situ oil shale combustion experiment con- A gas chro- Thisspent shales were waters were studied, retort water and gasof retort waters and gas condensate. Spent shale reduces the

  20. Launching a Cornell Examination of the Marcellus System The issues related to the development of the Marcellus Shale unconventional gas resource are

    E-Print Network [OSTI]

    Walter, M.Todd

    of the Marcellus Shale unconventional gas resource are emblematic of a whole family of extremely complicated Energy. The development plans for the Marcellus Shale are unfolding immediately in our backyards and require of different ways of developing the Marcellus Shale and the economics of not developing the Marcellus Shale. We

  1. Process Design, Simulation and Integration of Dimethyl Ether (DME) Production from Shale Gas by Direct and Indirect Methods 

    E-Print Network [OSTI]

    Karagoz, Secgin

    2014-08-11

    of sustainable energy. Over the last decade, the U.S has witnessed substantial growth in shale gas production. Consequently, shale gas has become a competitive feedstock for usage as energy and production of chemicals and petrochemicals. A valuable product which...

  2. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford Cartwright Project description: Recovery of natural gas from mudstone (shale) formations has triggered

  3. Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick, P.E., M.ASCE and Lynn E. Brown2

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick, P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

  4. A Technical and Economic Study of Completion Techniques In Five Emerging U.S. Gas Shale Plays 

    E-Print Network [OSTI]

    Agrawal, Archna

    2010-07-14

    , energy companies, both majors and independents, are turning to unconventional resources to produce the hydrocarbons required to meet market demand. From coalbed methane to low permeability (tight) gas reservoirs and gas shales, energy companies are making...

  5. Modelling Shale Gas Flow Using the Concept of Dynamic Apparent Permeability 

    E-Print Network [OSTI]

    Farid, Syed Munib Ullah

    2015-05-12

    The basic idea behind this research is to propose a work flow to model gas flow in numerical simulators, which would take into consideration all the complexities of the multiple porosity systems that exist in shale matrix and the different dynamics...

  6. Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    -Champaign 1241 Newmark Civil Engineering Lab, MC-250, 205 N. Mathews Avenue, Urbana, IL 61801, U.S.A., E Engineering, Inc., 8005 Hallet Street, Lenexa, KS 66215, U.S.A., E-mail: lynn.brown@hdrinc.com. ABSTRACT of crude oil and natural gas are trapped beneath the ground surface in non-permeable shale rock

  7. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  8. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  10. ,"Miscellaneous States Shale Gas Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA -Liquids Lease Condensate, ProvedShaleUnderground NaturalGas, WetShale

  11. Shale Gas Development Challenges: Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectDataSecretary Moniz'sSeparation ProgramsFellowships |FractureWater Shale

  12. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01

    products, percent: Oil Gas Spent Shale TOTAL Average tracecontent of the gases for the lean shale exceeded that for

  13. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques

    SciTech Connect (OSTI)

    Mastalerz, Maria; He, Lilin; Melnichenko, Yuri B; Rupp, John A

    2012-01-01

    Two Pennsylvanian coal samples (Spr326 and Spr879-IN1) and two Upper Devonian-Mississippian shale samples (MM1 and MM3) from the Illinois Basin were studied with regard to their porosity and pore accessibility. Shale samples are early mature stage as indicated by vitrinite reflectance (R{sub o}) values of 0.55% for MM1 and 0.62% for MM3. The coal samples studied are of comparable maturity to the shale samples, having vitrinite reflectance of 0.52% (Spr326) and 0.62% (Spr879-IN1). Gas (N{sub 2} and CO{sub 2}) adsorption and small-angle and ultrasmall-angle neutron scattering techniques (SANS/USANS) were used to understand differences in the porosity characteristics of the samples. The results demonstrate that there is a major difference in mesopore (2-50 nm) size distribution between the coal and shale samples, while there was a close similarity in micropore (<2 nm) size distribution. Micropore and mesopore volumes correlate with organic matter content in the samples. Accessibility of pores in coal is pore-size specific and can vary significantly between coal samples; also, higher accessibility corresponds to higher adsorption capacity. Accessibility of pores in shale samples is low.

  14. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    SciTech Connect (OSTI)

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) and associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.

  15. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01

    the carbon, oil, and gas from the shale are combusted; andceases •t II Burner gas and shale heat shale ll>" ~Air AirFigure 2. Oil recovery Vent gas '\\Raw shale oil Recycled gas

  16. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  17. Techno-economic analysis of water management options for unconventional natural gas developments in the Marcellus Shale

    E-Print Network [OSTI]

    Karapataki, Christina

    2012-01-01

    The emergence of large-scale hydrocarbon production from shale reservoirs has revolutionized the oil and gas sector, and hydraulic fracturing has been the key enabler of this advancement. As a result, the need for water ...

  18. Using Decline Curve Analysis, Volumetric Analysis, and Bayesian Methodology to Quantify Uncertainty in Shale Gas Reserve Estimates 

    E-Print Network [OSTI]

    Gonzalez Jimenez, Raul 1988-

    2012-11-30

    Probabilistic decline curve analysis (PDCA) methods have been developed to quantify uncertainty in production forecasts and reserves estimates. However, the application of PDCA in shale gas reservoirs is relatively new. Limited work has been done...

  19. EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that...

  20. A New Type Curve Analysis for Shale Gas/Oil Reservoir Production Performance with Dual Porosity Linear System 

    E-Print Network [OSTI]

    Abdulal, Haider Jaffar

    2012-02-14

    With increase of interest in exploiting shale gas/oil reservoirs with multiple stage fractured horizontal wells, complexity of production analysis and reservoir description have also increased. Different methods and models were used throughout...

  1. Experimentation and application of directional solvent extraction for desalination of seawater and shale gas 'frac' flowback water

    E-Print Network [OSTI]

    Kleinguetl, Kevin (Kevin G.)

    2011-01-01

    A recently demonstrated directional solvent technique for desalination of water has been tested for desalting seawater and shale gas 'frac' flowback water. The premise behind directional solvent extraction is that when ...

  2. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Angenent, Lars T.

    hydrocarbons such as natural gas. Whereas an over- all goal for the century is to achieve a sustainable system to increased use of unconventional gas resources as a result of declining supplies of conventional resources case study of energy transitions we focused on the case of un- conventional natural gas recovery from

  3. Stimulation rationale for shale gas wells: a state-of-the-art report

    SciTech Connect (OSTI)

    Young, C.; Barbour, T.; Blanton, T.L.

    1980-12-01

    Despite the large quantities of gas contained in the Devonian Shales, only a small percentage can be produced commercially by current production methods. This limited production derives both from the unique reservoir properties of the Devonian Shales and the lack of stimulation technologies specifically designed for a shale reservoir. Since October 1978 Science Applications, Inc. has been conducting a review and evaluation of various shale well stimulation techniques with the objective of defining a rationale for selecting certain treatments given certain reservoir conditions. Although this review and evaluation is ongoing and much more data will be required before a definitive rationale can be presented, the studies to date do allow for many preliminary observations and recommendations. For the hydraulic type treatments the use of low-residual-fluid treatments is highly recommended. The excellent shale well production which is frequently observed with only moderate wellbore enlargement treatments indicates that attempts to extend fractures to greater distances with massive hydraulic treatments are not warranted. Immediate research efforts should be concentrated upon limiting production damage by fracturing fluids retained in the formation, and upon improving proppant transport and placement so as to maximize fracture conductivity. Recent laboratory, numerical modeling and field studies all indicate that the gas fracturing effects of explosive/propellant type treatments are the predominate production enhancement mechanism and that these effects can be controlled and optimized with properly designed charges. Future research efforts should be focused upon the understanding, prediction and control of wellbore fracturing with tailored-pulse-loading charges. 36 references, 7 figures, 2 tables.

  4. Zero Discharge Water Management for Horizontal Shale Gas Well...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States Government or any agency thereof." Abstract Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas...

  5. DOE's Shale Gas and Hydraulic Fracturing Research | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Natural Gas research program develops technological solutions for the prudent and sustainable development of our unconventional domestic resources. These resources, which...

  6. A study of natural gas extraction in Marcellus shale

    E-Print Network [OSTI]

    Boswell, Zachary (Zachary Karol)

    2011-01-01

    With the dramatic increases in crude oil prices there has been a need to find reliable energy substitutions. One substitution that has been used in the United States is natural gas. However, with the increased use of natural ...

  7. Occurrence of Multiple Fluid Phases Across a Basin, in the Same Shale Gas Formation – Eagle Ford Shale Example 

    E-Print Network [OSTI]

    Tian, Yao

    2014-04-29

    .......................................................................... 97 Relative Permeability ........................................................................ 99 Transmissibility Multiplier ............................................................. 101 Pressure/Volume/Temperature (PVT) Data Acquisition.... Data from Drillinginfo (2013). ........................................................................................ 23 Fig. 20—Eagle Ford Shale reservoir pressure of from PVT analysis results. Data from TRC (2013...

  8. Shale Natural Gas Proved Reserves as of Dec. 31

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016November 20001:Gas

  9. Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves AdjustmentsDecade Year-0 Year-1 Year-21440 1 0

  10. Assessment of Eagle Ford Shale Oil and Gas Resources 

    E-Print Network [OSTI]

    Gong, Xinglai

    2013-07-30

    ...................................................................................... ... 56 3.2.2. Geological Data ...................................................................................... ... 58 3.2.3. PVT Data ................................................................................................ ... 60 3... ................................................................. 73 Fig. 3.20? Type logs for production regions 1 (a) to 8 (h) ......................................... 75 Fig. 3.21? Comparison between EOS generated PVT curves and lab measurements from a full PVT report in PR4 (green: oil properties, red: gas...

  11. Shale Gas Spreads to the South | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 Unlimited Release4:Seymour Sack, 2003

  12. How is shale gas produced? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,SecurityHome solarEnergy |Simple tipsDepartment|If

  13. Alabama Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670Same0 1 2 2 15 2007 2008

  14. Alaska Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month Previous Year(Million633 6222009

  15. Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per Thousand Cubic Feet) Decade1 0 112009

  16. California Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (Million Cubic Feet)per272 522 2011

  17. Colorado Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct,622,434 1,634,58742 1802009

  18. Kansas Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014 View History Proved Reserves as of Dec.

  19. Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand CubicYearThousand Cubic0 0 055

  20. LA, South Onshore Shale Gas Proved Reserves, Reserves Changes, and

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand343 342 328 370 3962,9699

  1. Louisiana Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020 4,583 4,920(Million

  2. Michigan Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 152009Sameper Thousand6 0

  3. Miscellaneous Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522 35 42 44 46 287 5 7 12 9 6134

  4. Mississippi Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522Decade(Million Cubic Feet)

  5. Montana Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2 74 59 95 104137

  6. Why is shale gas important? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.Energy Thefull swing, and theofWho UsesConcept toshale

  7. Producing Natural Gas From Shale | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWest KentuckyRestorationThat SaveRM Exit ProceduresDoes

  8. Shale Gas Development in the Susquehanna River Basin

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016November 20001:

  9. Challenges associated with shale gas production | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiencyCOP 21:Department of Chairs Meeting

  10. DOE's Early Investment in Shale Gas Technology Producing Results Today |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOEDepartment ApprovesScott

  11. DOE's Shale Gas and Hydraulic Fracturing Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | version of the Frequently Asked Questions about

  12. Shale-Gas Experience as an Analog for Potential Wellbore Integrity Issues in CO2 Sequestration

    SciTech Connect (OSTI)

    Carey, James W.; Simpson, Wendy S.; Ziock, Hans-Joachim

    2011-01-01

    Shale-gas development in Pennsylvania since 2003 has resulted in about 19 documented cases of methane migration from the deep subsurface (7,0000) to drinking water aquifers, soils, domestic water wells, and buildings, including one explosion. In all documented cases, the methane leakage was due to inadequate wellbore integrity, possibly aggravated by hydrofracking. The leakage of methane is instructive on the potential for CO{sub 2} leakage from sequestration operations. Although there are important differences between the two systems, both involve migrating, buoyant gas with wells being a primary leakage pathway. The shale-gas experience demonstrates that gas migration from faulty wells can be rapid and can have significant impacts on water quality and human health and safety. Approximately 1.4% of the 2,200 wells drilled into Pennsylvania's Marcellus Formation for shale gas have been implicated in methane leakage. These have resulted in damage to over 30 domestic water supplies and have required significant remediation via well repair and homeowner compensation. The majority of the wellbore integrity problems are a result of over-pressurization of the wells, meaning that high-pressure gas has migrated into an improperly protected wellbore annulus. The pressurized gas leaks from the wellbore into the shallow subsurface, contaminating drinking water or entering structures. The effects are localized to a few thousands of feet to perhaps two-three miles. The degree of mixing between the drinking water and methane is sufficient that significant chemical impacts are created in terms of elevated Fe and Mn and the formation of black precipitates (metal sulfides) as well as effervescing in tap water. Thus it appears likely that leaking CO{sub 2} could also result in deteriorated water quality by a similar mixing process. The problems in Pennsylvania highlight the critical importance of obtaining background data on water quality as well as on problems associated with previous (legacy) oil and gas operations. The great majority of the leakage issues in Pennsylvania are due to improperly abandoned wells, however in the media there is no clear distinction between past and present problems. In any case, significant analytical work is required to attribute differing sources of methane (or CO{sub 2} in the case of sequestration). In Pennsylvania, a relatively lax regulatory environment appears to have contributed to the problem with inadequate oversight of well design and testing to ensure well integrity. New rules were adopted at the end of 2010, and it will be interesting to observe whether methane leakage problems are significantly reduced.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  17. Klinkenberg Slippage Effect in the Permeability Computations of Shale Gas by the Pore-scale Simulations

    E-Print Network [OSTI]

    Li, Jun

    2015-01-01

    The prediction of permeability (i.e. apparent permeability) for the shale gas is challenging due to the Klinkenberg slippage effect which depends on the pore size and gas pressure. A novel Monte Carlo molecular simulation method (i.e. DSBGK method) is employed to accurately compute the permeability by the pore-scale simulations at different pressures. The computed results of a benchmark problem proposed here are used to verify the accuracy of the simple Klinkenberg correlation model, which relates the permeability to the intrinsic permeability (i.e. liquid permeability) and pressure. The verification shows that the Klinkenberg correlation model is appropriate for the industry applications since the relative error is small in the whole range of the flow regime as long as the correlation parameters are accurately determined for each particular rock sample using two reference results that can be obtained by the scheme presented herein.

  18. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    SciTech Connect (OSTI)

    Kim, Jihoon; Moridis, George

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gas causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production scenarios.

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  20. Generic Argillite/Shale Disposal Reference Case

    E-Print Network [OSTI]

    Zheng, Liange

    2014-01-01

    Shale Disposal Reference Case August 2014 Borehole activity: Oil and gas drilling targets for hydrocarbon resource

  1. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    Pashin, J.C. , 2008. Gas shale potential of Alabama.International Coalbed and Shale Gas Symposium, Paper 808.permeable are clays and shales? Water Resources Research,

  2. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  3. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W.; Vidic, Radisav D; Gregory, Kelvin B.

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, ?-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  4. Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    of SPE copyright. Abstract Pressure testing in very-low-mobility reservoirs is challengingSPE 159172 Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach Hamid Hadibeik, The University of Texas

  5. Investigation of methane adsorption and its effect on gas transport in shale matrix through microscale and mesoscale simulations

    E-Print Network [OSTI]

    Li, ZhongZhen; Chen, Li; Kangd, Qinjun; He, Ya-Ling; Tao, Wen-Quan

    2015-01-01

    Methane adsorption and its effect on fluid flow in shale matrix are investigated through multi-scale simulation scheme by using molecular dynamics (MD) and lattice Boltzmann (LB) methods. Equilibrium MD simulations are conducted to study methane adsorption on the organic and inorganic walls of nanopores in shale matrix with different pore sizes and pressures. Density and pressure distributions within the adsorbed layer and the free gas region are discussed. The illumination of the MD results on larger scale LB simulations is presented. Pressure-dependent thickness of adsorbed layer should be adopted and the transport of adsorbed layer should be properly considered in LB simulations. LB simulations, which are based on a generalized Navier-Stokes equation for flow through low-permeability porous media with slippage, are conducted by taking into consideration the effects of adsorbed layer. It is found that competitive effects of slippage and adsorbed layer exist on the permeability of shale matrix, leading to di...

  6. The role of global dynamics on gas

    E-Print Network [OSTI]

    Johnson, Robert E.

    Escape flux is inferred for each gas under given eddy coefficient Global winds can locally considerably affect gas distributions How would winds affect inferred escape fluxes? Tuesday, 28 February 12 #12 structure (from GCM) and zero winds (only molecular & eddy diffusion) Upper boundary condition: Lower

  7. The Production of High Levels of Renewable Natural Gas from Biomass Using Steam Hydrogasification

    E-Print Network [OSTI]

    Thanmongkhon, Yoothana

    2014-01-01

    shale gas .in the development on US shale gas resources and theHydraulic fracturing from shale gas Shale gas refers to

  8. 61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts Rockies Gas & Oil Conference, Denver, CO, April

    E-Print Network [OSTI]

    Gani, M. Royhan

    61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts Rockies Gas & Oil Conference, Denver, CO, April 26-27, 2007. 134 Chapter 7 111111111,· II I 11', I I; ' I I, II Modeling of the In-Situ Production of Oil from .',1 l ',".1" Oil Shale ilil 'I' 'I~ :' l

  9. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

    2012-02-24

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  10. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01

    IPCC Guidelines for National Greenhouse Gas Inventories.Greenhouse Gas Inventory Reference Manual, Volume III. IPCC/Global Energy Use and Greenhouse Gas Emissions Lynn Price,

  11. Stretched Exponential Decline Model as a Probabilistic and Deterministic Tool for Production Forecasting and Reserve Estimation in Oil and Gas Shales 

    E-Print Network [OSTI]

    Akbarnejad Nesheli, Babak

    2012-07-16

    , this work suggests a physics-based regularization approach, based on critical velocity concept. Applied to selected Barnett Shale gas wells, the suggested method leads to reliable and consistent EURs. To further understand the interaction of the different...

  12. Using Decline Map Anlaysis (DMA) to Test Well Completion Influence on Gas Production Decline Curves in Barnett Shale (Denton, Wise, and Tarrant Counties) 

    E-Print Network [OSTI]

    Alkassim, Ibrahim

    2010-01-14

    The increasing interest and focus on unconventional reservoirs is a result of the industry's direction toward exploring alternative energy sources. It is due to the fact that conventional reservoirs are being depleted at a fast pace. Shale gas...

  13. A New Method for History Matching and Forecasting Shale Gas/Oil Reservoir Production Performance with Dual and Triple Porosity Models 

    E-Print Network [OSTI]

    Samandarli, Orkhan

    2012-10-19

    Different methods have been proposed for history matching production of shale gas/oil wells which are drilled horizontally and usually hydraulically fractured with multiple stages. These methods are simulation, analytical models, and empirical...

  14. Secretary of Energy Advisory Board Hosts Conference Call on Shale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report Secretary of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report November 10, 2011 -...

  15. Secretary of Energy Advisory Board Subcommittee Releases Shale...

    Energy Savers [EERE]

    Releases Shale Gas Recommendations Secretary of Energy Advisory Board Subcommittee Releases Shale Gas Recommendations August 11, 2011 - 8:54am Addthis WASHINGTON, D.C. - A diverse...

  16. 2012 by the American Academy of Arts & Sciences Is Shale Gas Good for Climate Change?

    E-Print Network [OSTI]

    Schrag, Daniel

    - ography, energy technology, and energy policy. Over the last ten years, technological innovation has transformed U.S. energy resources. Geologists have long known that organic-rich shales contain large fracturing ("fracking") techniques that greatly increase the permeability of the shale, vast reserves

  17. Global Natural Gas Market Trends, 2. edition

    SciTech Connect (OSTI)

    2007-07-15

    The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

  18. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Huron Shale - Gas production from Devonian Shale in Eastern Kentucky goes all the way back to 1892, when of the reservoir, efficient gas production was established. The most prolific horizon of Devonian Shale in Eastern Kentucky is the Lower Huron Shale, which is Ohio Shale member. Over 80% of Devonian gas production comes

  19. The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: a review

    E-Print Network [OSTI]

    Wang, Junjian; Kang, Qinjun; Rahman, Sheik S

    2015-01-01

    The lattice Boltzmann method (LBM) has experienced tremendous advances and been well accepted as a popular method of simulation of various fluid flow mechanisms on pore scale in tight formations. With the introduction of an effective relaxation time and slip boundary conditions, the LBM has been successfully extended to solve micro-gaseous related transport and phenomena. As gas flow in shale matrix is mostly in the slip flow and transition flow regimes, given the difficulties of experimental techniques to determine extremely low permeability, it appears that the computational methods especially the LBM can be an attractive choice for simulation of these micro-gaseous flows. In this paper an extensive overview on a number of relaxation time and boundary conditions used in LBM-like models for micro-gaseous flow are carried out and their advantages and disadvantages are discussed. Furthermore, potential application of the LBM in flow simulation in shale gas reservoirs on pore scale and representative elementary...

  20. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01

    measured mercury levels in shale gases and waters. The TLV'srecovery shale Spent shale gas (wet) CS~35 cs~s6 CS-57 CS-59on large areas of the shale bed if gas channeling and

  1. DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS

    SciTech Connect (OSTI)

    Johnson, F.; Fox, K.

    2013-10-02

    The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

  2. World Shale Resource Assessments

    Reports and Publications (EIA)

    2015-01-01

    Four countries: Chad, Kazakhstan, Oman and the United Arab Emirates (UAE) have been added to report “Technically Recoverable Shale Oil and Shale Gas Resources.” The report provides an estimate of shale resources in selected basins around the world. The new chapters cover shale basins from the Sub-Saharan Africa region, represented by Chad; the Caspian region, represented by Kazakhstan; and the Middle East region, represented by Oman and the United Arab Emirates (UAE) and are available as supplemental chapters to the 2013 report.

  3. DOE-Sponsored Software Application Assists Exploration of Gas-Rich Fayetteville Shale

    Broader source: Energy.gov [DOE]

    A project sponsored by the U.S. Department of Energy has resulted in the development of the Fayetteville Shale Infrastructure Placement Analysis System, or IPAS, which is now available online.

  4. Stochastic Modeling of a Fracture Network in a Hydraulically Fractured Shale-Gas Reservoir 

    E-Print Network [OSTI]

    Mhiri, Adnene

    2014-08-10

    The fundamental behavior of fluid production from shale/ultra-low permeability reservoirs that are produced under a constant wellbore pressure remains difficult to quantify, which is believed to be (at least in part) due to the complexity...

  5. Arizona Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYear Jan

  6. Arizona Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYear JanYear Jan

  7. Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear JanYear JanDecade Year-0

  8. Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear JanYear JanDecade

  9. Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan Feb Mar Apr

  10. Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (BillionYear Jan Feb Mar AprYear

  11. Global Liquefied Natural Gas Market: Status and Outlook, The

    Reports and Publications (EIA)

    2003-01-01

    The Global Liquefied Natural Gas Market: Status & Outlook was undertaken to characterize the global liquefied natural gas (LNG) market and to examine recent trends and future prospects in the LNG market.

  12. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction

    E-Print Network [OSTI]

    Jackson, Robert B.

    are transforming energy production, but their potential environmental effects remain contro- versial. We analyzed 91768 Edited by Susan E. Trumbore, Max Planck Institute for Biogeochemistry, Jena, Germany, and approved fingerprinting | fracking | hydrology and ecology Unconventional sources of gas and oil are transforming energy

  13. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH[sub 3] as a reductant. Oxidized Green River oil shale heated at 10[degree]C/min in an Ar/O[sub 2]/NO/NH[sub 3] mixture ([approximately]93%/6%/2000 ppM/4000 ppM) with a gas residence time of [approximately]0.6 sec removed NO between 250 and 500[degree]C, with maximum removal of 70% at [approximately]400[degree]C. Under isothermal conditions with the same gas mixture, the maximum NO removal was [approximately]64%. When CO[sub 2] was added to the gas mixture at [approximately]8%, the NO removal dropped to [approximately]50%. However, increasing the gas residence time to [approximately]1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH[sub 3] as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH[sub 3] as the reductant. Parameters calculated for implementing oxidized oil shale for NO[sub x] remediation on the current HRS retort indicate an abatement device is practical to construct.

  14. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as a reductant. Oxidized Green River oil shale heated at 10{degree}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppM/4000 ppM) with a gas residence time of {approximately}0.6 sec removed NO between 250 and 500{degree}C, with maximum removal of 70% at {approximately}400{degree}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH{sub 3} as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant. Parameters calculated for implementing oxidized oil shale for NO{sub x} remediation on the current HRS retort indicate an abatement device is practical to construct.

  15. ,"Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA -Underground Natural GasConsumed"Total

  16. Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY,ProvedFeet) Year JanYear

  17. Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY,ProvedFeet) Year JanYearYear

  18. U.S. Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData2009 2010 2011

  19. Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,713 5,475

  20. Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,713 5,475Year

  1. Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May Jun Jul Aug Sep

  2. Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May Jun Jul Aug SepYear Jan

  3. Illinois Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Feb Mar Apr May JunFeet)

  4. Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan FebperDecade Year-0 Year-1 Year-2

  5. Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan FebperDecade Year-0 Year-1 Year-2Year

  6. Kansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecade Year-0163Decade Year-0 Year-1Decade

  7. Kansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecade Year-0163Decade Year-0

  8. Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014 ViewSales (BillionU.S.Feet)

  9. Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014 ViewSales (BillionU.S.Feet)Year Jan

  10. Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear Jan Feb Mar Apr May Jun Jul

  11. Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear Jan Feb Mar Apr May Jun JulYear

  12. Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0

  13. Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0Year Jan Feb Mar Apr May Jun Jul Aug

  14. Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 15 3 2U.S.Year Jan Feb

  15. Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 15 3 2U.S.Year Jan FebYear Jan

  16. Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522Decade(Millionfrom Oil

  17. Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522Decade(Millionfrom OilYear Jan

  18. Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19FuelYear5)Year Jan Feb Mar

  19. Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19FuelYear5)Year Jan Feb MarYear Jan

  20. U.S. Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan Feb Mar AprYear Jan Feb

  1. TechLine: Newly Released Study Highlights Significant Utica Shale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    indicates that the newly explored Utica Shale, which underlies the better-known Marcellus Shale, could hold far more natural gas and oil than previously estimated. If the...

  2. Paleoecology of the Devonian-Mississippian black-shale sequence...

    Office of Scientific and Technical Information (OSTI)

    54 ENVIRONMENTAL SCIENCES; 03 NATURAL GAS; 04 OIL SHALES AND TAR SANDS; BLACK SHALES; GEOLOGY; PALEONTOLOGY; KENTUCKY; DEVONIAN PERIOD; FOSSILS; GEOLOGIC HISTORY; BITUMINOUS...

  3. Multi-scale Detection of Organic and Inorganic Signatures Provides Insights into Gas Shale Properties and Evolution

    SciTech Connect (OSTI)

    Bernard, S.; Horsfield, B; Schultz, H; Schreiber, A; Wirth, R; Thi AnhVu, T; Perssen, F; Konitzer, S; Volk, H; et. al.

    2010-01-01

    Organic geochemical analyses, including solvent extraction or pyrolysis, followed by gas chromatography and mass spectrometry, are generally conducted on bulk gas shale samples to evaluate their source and reservoir properties. While organic petrology has been directed at unravelling the matrix composition and textures of these economically important unconventional resources, their spatial variability in chemistry and structure is still poorly documented at the sub-micrometre scale. Here, a combination of techniques including transmission electron microscopy and a synchrotron-based microscopy tool, scanning transmission X-ray microscopy, have been used to characterize at a multiple length scale an overmature organic-rich calcareous mudstone from northern Germany. We document multi-scale chemical and mineralogical heterogeneities within the sample, from the millimetre down to the nanometre-scale. From the detection of different types of bitumen and authigenic minerals associated with the organic matter, we show that the multi-scale approach used in this study may provide new insights into gaseous hydrocarbon generation/retention processes occurring within gas shales and may shed new light on their thermal history.

  4. Sorption of Methane and Ethane on Belgian Black Shale Using a Manometric Setup

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    Sorption of Methane and Ethane on Belgian Black Shale Using a Manometric Setup Naeeme Danesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Fundamentals 3 2.1 Shales.1.2 Shale characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 Shale gas

  5. MIT Joint Program on the Science and Policy of Global Change

    E-Print Network [OSTI]

    to economic viability affects the nation's energy outlook and the expected role of natural gas in climate, the other using price to achieve a 50% emissions reduction. The shale gas is shown both to benefitMIT Joint Program on the Science and Policy of Global Change The Influence of Shale Gas on U

  6. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  7. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  8. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  9. SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    is pyrolysized to produce shale oil, gas, a solid referredshale, and aqueous effluents known as retort water and gasoil shale process waters were studied: retort water and gas

  10. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 1

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1992-06-10

    Oxidized oil shale from the combustor in the LLNL hot recycle solids oil shale retorting process has been studied as a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as areductant. Combusted Green River oil shale heated at 10{degrees}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppm/4000 ppm) with a gas residence time of {approximately}0.6 sec exhibited NO removal between 250 and 500{degrees}C, with maximum removal of 70% at {approximately}400{degrees}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was found to be {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. These results are not based on optimized process conditions, but indicate oxidized (combusted) oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant.

  11. SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS

    E-Print Network [OSTI]

    Fish, Richard H.

    2013-01-01

    Division of Oil, Gas, and Shale Technology to appropriateseven oil shale process waters including retort water, gas1d1i lc the gas condensate is condensed develop oil shale

  12. WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    may occur spent shale and the recycle gas. For of componentsmg per 100 of spent shale for inert gas runs; from 1.0 to .4material from spent shale produced inert gas runs, 011d

  13. Oil shale retorting method and apparatus

    SciTech Connect (OSTI)

    York, E.D.

    1983-03-22

    Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

  14. Unconventional Gas Market Study 2018 | OpenEI Community

    Open Energy Info (EERE)

    technical recoverable shale gas reserves, but currently does not hold any shale gas production. However, the growth is expected to commence by 2015. Growth of Shale Gas, Tight...

  15. Forecasting, Sensitivity and Economic Analysis of Hydrocarbon Production from Shale Plays Using Artificial Intelligence & Data Mining

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    and condensate) from Marcellus Shale. Instead of imposing our understanding of flow and transport in shale gas Marcellus Shale. Introduction Shale gas has attracted attention throughout the world. As a result, there has been a lot of research on the shale gas reservoirs focusing toward improving the understanding

  16. Research paper Full field reservoir modeling of shale assets using advanced

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . The success in pro- duction of shale oil and shale gas dates back to 1981 when multiple combinations-water" frac that made production from Barnett Shale economical and changed the future of the US natural gas and pad drilling are the norm in developing shale oil and shale gas assets in North America and expanding

  17. Table 14. Shale natural gas proved reserves, reserves changes, and production, w

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009CubicAnalysisYear Jana. Coal Coal Production,Shale

  18. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  19. Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

  20. Water in Alberta With Special Focus on the Oil and Gas Industry

    E-Print Network [OSTI]

    Gieg, Lisa

    ................................................................................................................................18 Shale Gas ................................................................................................................................................19 How much water is used in deep shale gas development?..................................................................20 Problems Associated with Hydraulic-Fracturing in Shale Gas Formations

  1. Can We Accurately Model Fluid Flow in Shale?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to...

  2. Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale...

    Energy Savers [EERE]

    (SEAB) on Shale Gas Production Posts Draft Report Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production Posts Draft Report November 10, 2011 - 1:12pm...

  3. Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation on Production from Shale Formations: Application to New

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    and the orientation of horizontal wells on gas production in New Albany Shale. The study was conducted using on the Net Present Value of investing on gas wells producing from New Albany Shale. Introduction New Albany Shale Gas -The New Albany Shale is predominantly an organic-rich brownish-black and grayish-black shale

  4. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    SciTech Connect (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-03-20

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  5. ,"U.S. Shale Gas Proved Reserves, Reserves Changes, and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    ScienceCinema (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-06-07

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  7. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01

    gas such as tight gas, shale gas, or coal bed methane gas tolocation. Development of shale oil and gas, tar sands, coalGas hydrates will undoubtedly also be present in shales,

  8. Shale Play Industry Transportation Challenges,

    E-Print Network [OSTI]

    Minnesota, University of

    Demand and Supply Factors ­Gas and Oil Commodity Pricing ­Finite Demand ­Rapid · It is three related, but yet independent industries: ­Fracture Sand Industry ­Oil ­ High volume commodi-es flows in and out of shale plays · Sand In....Oil

  9. New Global Oil & Gas Hub in Oklahoma City | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selects Oklahoma City Site for New Global Hub of Oil & Gas Technology Innovation Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click...

  10. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals from Shale

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun20032,485,331Gas ProvedDec.12 13 13Gas (Million

  11. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    oil, water, spent shale, and gas. These data were enteredtoxic trace elements in oil shale gases and is using thisin the raw oil shale and input gases that is accounted for

  12. PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    elements. Over 25% of the raw shale gas five groups productsthe oil, in the raw oil shale gas, consequence of retorting„good product raw oil shale and input gases that is accounted

  13. Determination of the Controls on Permeability and Transport in Shale by Use of Percolation Models 

    E-Print Network [OSTI]

    Chapman, Ian

    2012-10-19

    Page 2.1 SEM Image of Kerogen Pores from a Barnett Shale Sample ................................ 2 2.2 TEM Image of Barnett Shale Kerogen .................................................................. 3 2.3 Equivalent Pore Diameter... Histogram for Utica Shale Sample ............................. 4 2.4 Equivalent Pore Diameter for Fayetteville Shale Sample ..................................... 5 2.5 Adsorbed and Total Gas Content with Respect to TOC in Barnett Shale...

  14. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    enhancement ratios of CH 4 /benzene (>10 6 ppb/ ppb) [Kim etof CH 4 and Toluene to Benzene From Different Shale PlaysUrban emissions CH 4 /Benzene, ppb/ppb Toluene/Benzene, ppb/

  15. Effects of reservoir geometry and permeability anisotropy on ultimate gas recovery in Devonian Shale reservoirs 

    E-Print Network [OSTI]

    Starnes, Lee McKennon

    1989-01-01

    well spacing, k, =0. 1 md, k?=9k?, L, =50 feet, fracture perpendicular to k . 120 100 Comparison of cumulative gas production as a function of time with different drainage patterns, 160-acre well spacing, k, =0. 1 md, k?=9k?, Lr=100 feet, fracture... average permeabilities, 160-acre well spacing, k =25k?, Lr =100 feet, fracture perpendicular to k Comparison of cumulative gas production as a function of time with different fracture half-lengths, 160-acre well spacing, square drainage pattern, k, =0...

  16. Modeling, History Matching, Forecasting and Analysis of Shale Reservoirs Performance Using Artificial Intelligence

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    matching, forecasting and analyzing oil and gas production in shale reservoirs. In this new approach and analysis of oil and gas production from shale formations. Examples of three case studies in Lower Huron and New Albany shale formations (gas producing) and Bakken Shale (oil producing) is presented

  17. The RealGas and RealGasH2O Options of the TOUGH+ Code for the Simulation of Coupled Fluid and Heat Flow in Tight/Shale Gas Systems

    SciTech Connect (OSTI)

    Moridis, George; Freeman, Craig

    2013-09-30

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas composition changes during production.

  18. Oil and Gas Research| GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser WorkEPVisitingOil & Gas We're balancing

  19. ,"U.S. Shale Gas Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, Wet After LeaseAnnual",2014Value andGas,

  20. Modern Shale Gas Development in the United States: A Primer | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft Word1 2 - 2 0DepartmentProducts |Energy

  1. U.S. Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010 2011 2012 20132009

  2. CA, San Joaquin Basin Onshore Shale Gas Proved Reserves, Reserves Changes,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0and Production 2011

  3. Lower 48 States Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020Cubic Feet)from5,382

  4. DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOEAnalysis, March 2011 | Department ofDepartment

  5. Conversion of Waste CO2 & Shale Gas to High Value Chemicals

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparingDeep JanuaryDepartment ofSadesh

  6. Conversion of Waste CO2 and Shale Gas to High Value Chemicals

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparingDeep JanuaryDepartment ofSadeshAllen,

  7. Conversion of Waste CO2 and Shale Gas to High-Value Chemicals | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparingDeep JanuaryDepartment ofSadeshAllen,of

  8. Where is shale gas found in the United States? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.Energy Thefull swing, and the EnergyStephanieOffshorein

  9. Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations 

    E-Print Network [OSTI]

    Zhang, Junjing

    2014-07-10

    Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

  10. Can We Accurately Model Fluid Flow in Shale?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are...

  11. Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2012-03-31

    The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (â??target areaâ?), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory tracking and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a project or an area as one entity to optimize water use and minimize costs subject to regulatory and other constraints. It will facilitate analysis of options and tradeoffs, and will also simplify permitting and reporting to regulatory agencies. The system will help regulators study cumulative impacts of development, conserve water resources, and manage disposal options across a region. It will also allow them to track permits and monitor compliance. The public will benefit from water conservation, improved environmental performance as better system wide decisions are made, and greater supply of natural gas, with attendant lower prices, as costs are reduced and development is assisted through better planning and scheduling. Altogether, better economics and fewer barriers will facilitate recovery of the more than 300 trillion cubic feet of estimated recoverable natural gas resource in the Marcellus Shale in a manner that protects the environment.

  12. Sources of air pollution in a region of oil and gas exploration downwind of a large city

    E-Print Network [OSTI]

    2015-01-01

    reserved. Keywords: Barnett shale Hydraulic fracturingGas Production in the Barnett Shale Area and Opportunitiesand gas development in the Barnett Shale. The objectives of

  13. FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR

    E-Print Network [OSTI]

    Fish, Richard H.

    2013-01-01

    Shale, Division of Oil, Gas and Shale Technology of the U.S.Shale, Division of Oil, Gas and Shale Technology of the U.S.shale oil, considerable amounts of process waters which originate from mineral dehydration, combustion, groundwater steam and moisture in the input gas.

  14. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  15. Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production

    SciTech Connect (OSTI)

    Vidic, Radisav

    2015-01-24

    This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desired water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²? and Sr²? in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be controlled by the addition of appropriate antiscalants.

  16. DOE Gas Hydrate R&D: Shale Gas Déjà Vu? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional Awards More14Lynchburg,Points of

  17. CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

    E-Print Network [OSTI]

    Amy, Gary L.

    2013-01-01

    fraction associated with shale gas retorting. Batch~modeCombustion Inert gas Air gas shale s N2 N2 Air + recycle gasType 2 1s an a s.o inert~gas shale. Those data in Table 36

  18. Shale oil deemed best near-term synfuel for unmodified diesels and gas turbines. [More consistent properties, better H/C ratios

    SciTech Connect (OSTI)

    Not Available

    1980-06-16

    Among synthetic fuels expected to be developed in the next decade, shale oil appears to be the prime near-term candidate for use in conventional diesel engines and gas turbines. Its superiority is suggested in assessments of economic feasibility, environmental impacts, development lead times and compatibility with commercially available combustion systems, according to a report by the Exxon Research and Engineering Co. Other studies were conducted by the Westinghouse Electric Corp., the General Motors Corp., the General Electric Co. and the Mobil Oil Co. Coal-derived liquids and gases also make excellent fuel substitutes for petroleum distillates and natural gas, these studies indicate, but probably will be economic only for gas turbines. Cost of upgrading the coal-derived fuels for use in diesels significantly reduces economic attractiveness. Methane, hydrogen and alcohols also are suitable for turbines but not for unmodified diesels. The Department of Energy supports studies examining the suitability of medium-speed diesels for adaptation to such fuels.

  19. Liquefied Natural Gas: Global Challenges (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    U.S. imports of liquefied natural gas (LNG) in 2007 were more than triple the 2000 total, and they are expected to grow in the long term as North Americas conventional natural gas production declines. With U.S. dependence on LNG imports increasing, competitive forces in the international markets for natural gas in general and LNG in particular will play a larger role in shaping the U.S. market for LNG. Key factors currently shaping the future of the global LNG market include the evolution of project economics, worldwide demand for natural gas, government policies that affect the development and use of natural resources in countries with LNG facilities, and changes in seasonal patterns of LNG trade.

  20. Production of hydrogen from oil shale

    SciTech Connect (OSTI)

    Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

    1985-12-24

    A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

  1. Microporoelastic modeling of organic-rich shales

    E-Print Network [OSTI]

    Khosh Sokhan Monfared, Siavash

    2015-01-01

    Due to their abundance, organic-rich shales are playing a critical role in re-defining the world's energy landscape leading to shifts in global geopolitics. However, technical challenges and environmental concerns continue ...

  2. SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale M. O. Eshkalak, SPE, S. D of hydrocarbons from the reservoirs, notably shale, is attributed to realizing the key fundamentals of reservoir and mineralogy is crucial in order to identify the "right" pay-zone intervals for shale gas production. Also

  3. 61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts Rockies Gas & Oil Conference, Denver, CO, April

    E-Print Network [OSTI]

    Kulp, Mark

    61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts I, II Modeling of the In-Situ Production of Oil from .',1 l ',".1" Oil Shale ilil 'I' 'I~ :' l of conventional oil reserves amidst increasing liquid fuel demand in the world have renewed interest in oil shale

  4. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    emissions from oil and gas production pads using mobileuxes over other oil and gas production regions using eddycompounds (VOCs) from oil and gas production may have large

  5. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume II. Data repository and reports published during fiscal year 1979-1980: regional structure, surface structure, surface fractures, hydrology

    SciTech Connect (OSTI)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01

    This volume comprises appendices giving regional structure data, surface structure data, surface fracture data, and hydrology data. The fracture data covers oriented Devonian shale cores from West Virginia, Ohio, Virginia, Pennsylvania, and Kentucky. The subsurface structure of the Eastern Kentucky gas field is also covered. (DLC)

  6. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  7. Multiscale strength homogenization : application to shale nanoindentation

    E-Print Network [OSTI]

    Gathier, Benjamin

    2008-01-01

    Shales are one of the most encountered materials in sedimentary basins. Because of their highly heterogeneous nature, their strength prediction for oil and gas exploitation engineering has long time been an enigma. In this ...

  8. QER- Comment of Marcellus Shale Coalition

    Broader source: Energy.gov [DOE]

    Attached please find the Marcellus Shale Coalition’s comments with regard to the U.S. Department of Energy’s Quadrennial Energy Review Task Force Hearing - Natural Gas Transmission, Storage and Distribution. Thank you

  9. Sources of air pollution in a region of oil and gas exploration downwind of a large city

    E-Print Network [OSTI]

    2015-01-01

    reserved. Keywords: Barnett shale Hydraulic fracturingGas Production in the Barnett Shale Area and Opportunitiesgas development in the Barnett Shale. The objectives of this

  10. MIT Joint Program on the Science and Policy of Global Change

    E-Print Network [OSTI]

    , on balance increasing its role from present levels. The shale gas resource is a major contributor including the scale and cost of gas resources, the costs of competing technologies, the patternMIT Joint Program on the Science and Policy of Global Change The Future of U.S. Natural Gas

  11. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    of methane emissions from oil and gas production pads using2015), In?uence of oil and gas ?eld operations on spatialux measurements over oil and gas extraction regions •

  12. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01

    Consumption iii iv Sectoral Trends in Global Energy Use andenergy consumption scenarios. In applying this approach to global

  13. LLNL oil shale project review

    SciTech Connect (OSTI)

    Cena, R.J. (ed.)

    1990-04-01

    Livermore's oil shale project is funded by two budget authorities, two thirds from base technology development and one third from environmental science. Our base technology development combines fundamental chemistry research with operation of pilot retorts and mathematical modeling. We've studied mechanisms for oil coking and cracking and have developed a detailed model of this chemistry. We combine the detailed chemistry and physics into oil shale process models (OSP) to study scale-up of generic second generation Hot-Recycled-Solid (HRS) retorting systems and compare with results from our 4 tonne-per-day continuous-loop HRS pilot retorting facility. Our environmental science program focuses on identification of gas, solid and liquid effluents from oil shale processes and development of abatement strategies where necessary. We've developed on-line instruments to quantitatively measure trace sulfur and nitrogen compounds released during shale pyrolysis and combustion. We've studied shale mineralogy, inorganic and organic reactions which generate and consume environmentally sensitive species. Figures, references, and tables are included with each discussion.

  14. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01

    Greenhouse Gas Emissions of Shale Gas, Nuraral Gas, Coal,Emissions of Marcellus Shale Gas, ENvr_. Ries. LTRs. , Aug.acknowledge, "Marcellus shale gas production is still in its

  15. Top-Down Intelligent Reservoir Modeling of New Albany Shale A. Kalantari-Dahaghi, SPE, S.D. Mohaghegh, SPE, West Virginia University

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    on individual wells in a multi-well New Albany Shale gas reservoir in Western Kentucky that has a reasonable Albany Shale Gas -The New Albany Shale is predominantly an organic-rich brownish-black and grayish-black shale that is present in the subsurface throughout the Illinois Basin. The total gas content of the New

  16. Pore-scale mechanisms of gas flow in tight sand reservoirs

    E-Print Network [OSTI]

    Silin, D.

    2011-01-01

    include tight gas sands, gas shales, and coal-bed methane.Figure 3. Although the gas-shale production grows at a

  17. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    natural gas extraction can lead to signi?cant emissions of methane (CH 4 ), volatile organic compounds (VOCs), and nitrogen

  18. Upstream Financial Review of the Global Oil and Natural Gas Industry

    Reports and Publications (EIA)

    2014-01-01

    This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

  19. A Political Ecology of Hydraulic Fracturing for Natural Gas in

    E-Print Network [OSTI]

    Scott, Christopher

    ! Background of Marcellus Shale Gas Play ! Current Events: The Case of PA ! Geography of Fracking in Study://blog.aapg.org/ learn/?p=540 #12;Why now? · Global Geopolitics · National energy demands · Local economic growth · Green energy · Water availability #12;Why now? · Global Geopolitics · National energy demands · Local economic

  20. Natural gas and efficient technologies: A response to global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-02-01

    It has become recognized by the international scientific community that global warming due to fossil fuel energy buildup of greenhouse CO{sub 2} in the atmosphere is a real environmental problem. Worldwide agreement has also been reached to reduce CO{sub 2} emissions. A leading approach to reducing CO{sub 2} emissions is to utilize hydrogen-rich fuels and improve the efficiency of conversion in the power generation, transportation and heating sectors of the economy. In this report, natural gas, having the highest hydrogen content of all the fossil fuels, can have an important impact in reducing CO{sub 2} emissions. This paper explores natural gas and improved conversion systems for supplying energy to all three sectors of the economy. The improved technologies include combined cycle for power generation, the Carnol system for methanol production for the transportation sector and fuel cells for both power generation and transportation use. The reduction in CO{sub 2} from current emissions range from 13% when natural gas is substituted for gasoline in the transportation sector to 45% when substituting methanol produced by the Carnol systems (hydrogen from thermal decomposition of methane reacting with CO{sub 2} from coal-fired power plants) used in the transportation sector. CO{sub 2} reductions exceeding 60% can be achieved by using natural gas in combined cycle for power generation and Carnol methanol in the transportation sector and would, thus, stabilize CO{sub 2} concentration in the atmosphere predicted to avoid undue climate change effects. It is estimated that the total fossil fuel energy bill in the US can be reduced by over 40% from the current fuel bill. This also allows a doubling in the unit cost for natural gas if the current energy bill is maintained. Estimates of the total net incremental replacement capital cost for completing the new improved equipment is not more than that which will have to be spent to replace the existing equipment conducting business as usual.

  1. Greenhouse Gas Management: Local Efforts to Curb a Global Phenomenon

    E-Print Network [OSTI]

    Matute, Juan

    2013-01-01

    SB 375 seeks to lower greenhouse gas emissions by changingstate- prescribed 2020 and 2035 greenhouse gas targets. Theburden to accomplish its greenhouse gas target. But setting

  2. Retorting of oil shale followed by solvent extraction of spent shale: Experiment and kinetic analysis

    SciTech Connect (OSTI)

    Khraisha, Y.H.

    2000-05-01

    Samples of El-Lajjun oil shale were thermally decomposed in a laboratory retort system under a slow heating rate (0.07 K/s) up to a maximum temperature of 698--773 K. After decomposition, 0.02 kg of spent shale was extracted by chloroform in a Soxhlet extraction unit for 2 h to investigate the ultimate amount of shale oil that could be produced. The retorting results indicate an increase in the oil yields from 3.24% to 9.77% of oil shale feed with retorting temperature, while the extraction results show a decrease in oil yields from 8.10% to 3.32% of spent shale. The analysis of the data according to the global first-order model for isothermal and nonisothermal conditions shows kinetic parameters close to those reported in literature.

  3. The Effects of Fracture Orientation and Anisotropy on Hydraulic Fracture Conductivity in the Marcellus Shale 

    E-Print Network [OSTI]

    McGinley, Mark John

    2015-05-12

    horizontal and vertical orientations. The Marcellus shale, located primarily in Pennsylvania, Ohio, West Virginia, New York, and Maryland, is the largest gas-bearing shale formation in North America, and its development has significant implications...

  4. TOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS Shahab D. Mohaghegh1 & Grant Bromhal2

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    development in the oil and gas industry and is being used on some shale formations. BAKKEN SHALE MuchTOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS based on measure data, called Top-Down, Intelligent Reservoir Modeling for the shale formations

  5. Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and Chemicals

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Suresh Babu, Senior Program Manager, Biomass Program Development, Brookhaven National Laboratory

  6. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect (OSTI)

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  7. Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities

    E-Print Network [OSTI]

    Hagan, Colin R.

    2012-01-01

    is particularly true for liquefied natural gas. LifecycleLiquefied, synthetic, and shale-derived natural gas undergofrom liquefied, synthetic, or shale-derived natural gas

  8. Oscillator or Segal-Shale-Weil representation Geometry: Associating the oscillator to symplectic manifolds

    E-Print Network [OSTI]

    Krysl, Svatopluk

    C -algebras Oscillator or Segal-Shale-Weil representation Geometry: Associating the oscillator or Segal-Shale-Weil representation Geometry: Associating the oscillator to symplectic manifolds Global and (x) = 0 implies x = 0 2 S. Krýsl #12;C -algebras Oscillator or Segal-Shale-Weil representation

  9. Lake Level Controlled Sedimentological I Heterogenity of Oil Shale, Upper Green River

    E-Print Network [OSTI]

    Gani, M. Royhan

    Chapter 3 Lake Level Controlled Sedimentological 1:'_i 'I I Heterogenity of Oil Shale, Upper Green-shale and has enormous potential to meet global energy requirements, yet a detailed sedimentological Formation is obvious. Yet, sedimentology of the oil-shale bearing units of the Green River Formation

  10. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heavy oil and tar sand, coal liquids, gas-to-liquids (GTL), hydrogen, gas hydrates, and renewable energy resources, as well as oil shale, which is the focus of this re- port....

  11. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    Greater focus needed on methane leakage from natural gasAnthropogenic emissions of methane in the United States,A. R. , et al. (2014), Methane leaks from North American

  12. Comparing the effects of greenhouse gas emissions on global warming

    E-Print Network [OSTI]

    Eckaus, Richard S.

    1990-01-01

    Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

  13. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01

    greater than a current combined-cycle natural gas plant. Inemissions level based on a Combined Cycle Gas Turbine (CCGT)profiles worse than the combined cycle gas plants upon which

  14. A combined saline formation and gas reservoir CO2 injection pilot in Northern California

    E-Print Network [OSTI]

    Trautz, Robert; Myer, Larry; Benson, Sally; Oldenburg, Curt; Daley, Thomas; Seeman, Ed

    2006-01-01

    the middle Capay Shale (depleted gas) and McCormick Sand (depleted gas reservoir located within the Middle Capay shaleCO 2 gas will occur in the 2-3 m thick Capay Shale interval

  15. The effect of natural gas supply on US renewable energy and CO2emissions

    E-Print Network [OSTI]

    Shearer, C; Bistline, J; Inman, M; Davis, SJ

    2014-01-01

    F and Paltsev S 2012 Shale gas production: potential versus46] Schrag D 2012 Is shale gas good for climate change?C 2011 Blind rush? Shale gas boom proceeds amid health

  16. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01

    States Agree to Cut Greenhouse Gases. ” Washington Post,H. Ling. 2006. “Greenhouse Gas Mitigation Technologies.In Managing Greenhouse Gas Emissions in California. Hanemann

  17. Oil & Gas Technology Center Groundbreaking | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsroom > Oil & Gas Technology Center Groundbreaking Oil & Gas Technology Center Groundbreaking Click to email this to a friend (Opens in new window) Share on Facebook (Opens in...

  18. Technology-Based Oil and Natural Gas Plays: Shale Shock! Could There Be Billions in the Bakken?

    Reports and Publications (EIA)

    2006-01-01

    This report presents information about the Bakken Formation of the Williston Basin: its location, production, geology, resources, proved reserves, and the technology being used for development. This is the first in a series intending to share information about technology-based oil and natural gas plays.

  19. The Economic Impact of the Natural Gas Industry and the Marcellus Shale Development in West Virginia in 2009

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Education Policy Commission, or the West Virginia University Board of Governors. #12; 1 Introduction, industries, and electricity producers across the United States. Natural gas is developed from either to produce electricity, steel, glass, paper, clothing, and a variety of other products.1 In the United States

  20. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

  1. H.R. 817: A Bill to authorize the Secretary of Energy to lease lands within the naval oil shale reserves to private entities for the development and production of oil and natural gas. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.

  2. Utilization of Estonian oil shale at power plants

    SciTech Connect (OSTI)

    Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

    1996-12-31

    Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

  3. Implementation of an anisotropic mechanical model for shale in Geodyn

    SciTech Connect (OSTI)

    Attaia, A.; Vorobiev, O.; Walsh, S.

    2015-05-15

    The purpose of this report is to present the implementation of a shale model in the Geodyn code, based on published rock material models and properties that can help a petroleum engineer in his design of various strategies for oil/gas recovery from shale rock formation.

  4. The Production of High Levels of Renewable Natural Gas from Biomass Using Steam Hydrogasification

    E-Print Network [OSTI]

    Thanmongkhon, Yoothana

    2014-01-01

    development on US shale gas resources and the application ofresources The other technique that allows producers to safely recover natural gas and oil from deep shale

  5. A New Global Unconventional Natural Gas Resource Assessment 

    E-Print Network [OSTI]

    Dong, Zhenzhen

    2012-10-19

    In 1997, Rogner published a paper containing an estimate of the natural gas in place in unconventional reservoirs for 11 world regions. Rogner's work was assessing the unconventional gas resource base, and is now considered to be very conservative...

  6. The impacts of technology on global unconventional gas supply 

    E-Print Network [OSTI]

    Yanty, Evi

    2009-06-02

    As energy supplies from known resources are declining, the development of new energy sources is mandatory. One reasonable source is natural gas from unconventional resources. This study focus on three types of unconventional gas resources: coalbeds...

  7. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01

    patent fuel, coke oven coke, coke oven gas, blastproduction of steel. Coke oven gas is produced as byproductgas and briquettes (BKB) -- were derived as the ratio of fuel inputs at coke ovens,

  8. Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    leaking of methane from shale gas development: response to2012. “The Influence of Shale Gas on U.S. Energy andthe United States’ vast shale gas reserves in recent years

  9. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); McJannet, G.S. [Dept. of Energy, Tupman, CA (United States)

    1996-12-31

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  10. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1996-01-01

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  11. Breaking Ground for GE Oil & Gas Tech Center|GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announces New Technology Partnership with Devon Energy at Global Research Oil & Gas Technology Center in Oklahoma City Click to email this to a friend (Opens in new window) Share...

  12. Smart Sensing Networks for Renewables, Oil & Gas | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability and robustness of the data points being collected. sensor-500x333 As oil and gas production moves to unconventional environments, it will require more rugged sensors...

  13. Intergrated study of the Devonian-age black shales in eastern Ohio. Final report

    SciTech Connect (OSTI)

    Gray, J.D.; Struble, R.A.; Carlton, R.W.; Hodges, D.A.; Honeycutt, F.M.; Kingsbury, R.H.; Knapp, N.F.; Majchszak, F.L.; Stith, D.A.

    1982-09-01

    This integrated study of the Devonian-age shales in eastern Ohio by the Ohio Department of Natural Resources, Division of Geological Survey is part of the Eastern Gas Shales Project sponsored by the US Department of Energy. The six areas of research included in the study are: (1) detailed stratigraphic mapping, (2) detailed structure mapping, (3) mineralogic and petrographic characterization, (4) geochemical characterization, (5) fracture trace and lineament analysis, and (6) a gas-show monitoring program. The data generated by the study provide a basis for assessing the most promising stratigraphic horizons for occurrences of natural gas within the Devonian shale sequence and the most favorable geographic areas of the state for natural gas exploration and should be useful in the planning and design of production-stimulation techniques. Four major radioactive units in the Devonian shale sequence are believed to be important source rocks and reservoir beds for natural gas. In order of potential for development as an unconventional gas resource, they are (1) lower and upper radioactive facies of the Huron Shale Member of the Ohio Shale, (2) upper Olentangy Shale (Rhinestreet facies equivalent), (3) Cleveland Shale Member of the Ohio Shale, and (4) lower Olentangy Shale (Marcellus facies equivalent). These primary exploration targets are recommended on the basis of areal distribution, net thickness of radioactive shale, shows of natural gas, and drilling depth to the radioactive unit. Fracture trends indicate prospective areas for Devonian shale reservoirs. Good geological prospects in the Devonian shales should be located where the fracture trends coincide with thick sequences of organic-rich highly radioactive shale.

  14. PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    by interactions between the products (oil, gas, and reported1979, Analysis of oil shale of products and effluents: thethat centage good product raw oil shale and input gases that

  15. Oil shale as an energy source in Israel

    SciTech Connect (OSTI)

    Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  16. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01

    Rate/kWh Fuel type Year Gas Coal (SUB and BIT) 2000-2005type and the following regressions were calculated: Gas Plants Coalcoal (1.969 lbs/kWh as compared to 2.095lbs/kWh) and both fuel types

  17. The Ecological Society of America www.frontiersinecology.org Natural gas drilling has dramatically expanded with

    E-Print Network [OSTI]

    Entrekin, Sally

    that will help meet global energy demands. Natural gas is considered a "bridge fuel" to renew- able energy fracturing ("hydrofracking" or "fracking") now allow the extraction of vast shale gas reserves previously to surface waters that could be impacted by elevated sediment runoff from pipelines and roads, alteration

  18. Fracture-permeability behavior of shale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore »the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO? sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  19. Fracture-permeability behavior of shale

    SciTech Connect (OSTI)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO? sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  20. Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01

    do so. If the U.S. shale gas resource proves to be as robustshale gas production (i.e. , production from non-shale resources

  1. GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS

    E-Print Network [OSTI]

    Johansen, Tor Arne

    1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans, NTNU, Trondheim, Norway Abstract A mathematical program for finding the optimal oil production rates in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting

  2. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01

    physical limits on how much hydro power flows south from thethe Kyoto protocol, the hydro power in British Columbia andHydro Total WECC SB1368 Compliant Supply in WECC Gas Coal CA baseload demand Figure 2 Importing Clean Power

  3. Driving Sensing Technology in Oil & Gas | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newest APS Fellow Driving Groundbreaking Sensing Technology in Oil & Gas Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to...

  4. Limitless Hot Gas Path Cooling Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and innovate the next big trends in these technology areas. I am excited to bring my Gas Turbine Heat Transfer background to the table on these four seemingly unrelated...

  5. Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON, D.C. - The Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production released its second and final ninety-day report reviewing the progress that...

  6. Water mist injection in oil shale retorting

    DOE Patents [OSTI]

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  7. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01

    H. H. Peters, Shale Oil Waste Water Recovery by Evaporation,treatment of oil shale waste products. Consequently, bothmost difficult and costly oil shale waste stream requiring

  8. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  9. Estimating Major and Minor Natural Fracture Patterns in Gas

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

  10. Forecasting long-term gas production Luis Cueto-Felguerosoa

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Adminis in the global energy system (3). Estimates of long-term production and technically re- coverable resources are by increasing the length of a single well within the gas-bearing shale. Hydraulic fracturing, or "fracking" (9

  11. The Shale Gas Matt Ridley

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Environmental impacts ................................................................19 Fracking fluid

  12. Shale Natural Gas Estimated Production

    Gasoline and Diesel Fuel Update (EIA)

    2,116 3,110 5,336 7,994 10,371 11,415 2007-2013 Alaska 0 0 0 0 0 0 2007-2013 Lower 48 States 2,116 3,110 5,336 7,994 10,371 11,415 2007-2013 Alabama 0 0 0 2007-2010 Arkansas 279...

  13. Expectations for Oil Shale Production (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

  14. Microporomechanical modeling of shale

    E-Print Network [OSTI]

    Ortega, J. Alberto (Jose Alberta Ortega Andrade)

    2010-01-01

    Shale, a common type of sedimentary rock of significance to petroleum and reservoir engineering, has recently emerged as a crucial component in the design of sustainable carbon and nuclear waste storage solutions and as a ...

  15. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    DOE Patents [OSTI]

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  16. Characterization of an Eastern Kentucky Devonian Shales well using a naturally fractured, layered reservoir description 

    E-Print Network [OSTI]

    Jochen, John Edward

    1993-01-01

    and pressure transient data for a single gas well completed in the Devonian Shales of the Appalachian Basin in Pike Co. , KY. This well was part of a three-well research program sponsored by the Gas Research Institute (GRI) to study the Devonian Shales.... , KY). From the tests conducted on the Preece No. 1, Hopkins et al. concluded that large Devonian Shales intervals which were treated jointly in a single wellbore often were not stimulated effectively, because small intervals accepted a...

  17. Philadelphia Inquirer Op Ed Gas drilling yields a gusher of hogwash

    E-Print Network [OSTI]

    Engelder, Terry

    Philadelphia Inquirer Op Ed Gas drilling yields a gusher of hogwash Both sides of shale debate extracting natural gas from the Marcellus Shale has followed that pattern. A pocket of gas may have exploded on the Marcellus Shale is supported by nearly a dozen leaders in the shale gas industry. More than one

  18. Improved Detection of Bed Boundaries for Petrophysical Evaluation with Well Logs: Applications to Carbonate and Organic-Shale Formations

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    : Applications to Carbonate and Organic-Shale Formations Zoya Heidari, SPE, Texas A&M University and Carlos of well logs acquired in organic shales and carbonates is challenging because of the presence of thin beds acquired in thinly bedded carbonates and in the Haynesville shale-gas formation. Estimates of petrophysical

  19. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas q

    E-Print Network [OSTI]

    Jackson, Robert B.

    Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale of unconventional natural gas reservoirs such as impermeable shale basins through the use of horizontal drilling effects; the possible degradation of water quality in shallow aquifers over- lying producing shale

  20. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    SciTech Connect (OSTI)

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  1. Water Value and Environmental Implications of Hydraulic Fracturing: Eagle-Ford Shale 

    E-Print Network [OSTI]

    Allen, W.; Lacewell, R.; Zinn, M.

    2014-01-01

    Shale gas has emerged as one of the leading energy developments in the United States. Production has risen from roughly 0.9 trillion cubic feet (TCF) in 2006 to 4.8 TCF in 2010. Shale gas now encompasses 23% of U.S. natural ...

  2. Fast Track Analysis of Shale Numerical Models A. Kalantari-Dahaghi ,SPE, S. Esmaili, SPE, West Virginia University, S.D. Mohaghegh, SPE, Intelligent Solution

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 162699 Fast Track Analysis of Shale Numerical Models A. Kalantari-Dahaghi ,SPE, S. Esmaili, SPE of SPE copyright. Abstract Latest advances in shale gas reservoir simulation and modeling have made it possible to optimize and enhance the production from organic rich shale gas reservoirs. Reservoir simulator

  3. Global gas processing will strengthen to meet expanding markets

    SciTech Connect (OSTI)

    Haun, R.R.; Otto, K.W.; Whitley, S.C.; Gist, R.L.

    1996-07-01

    The worldwide LPG industry continues to expand faster than the petroleum industry -- 4%/year for LPG vs. 2%/year for petroleum in 1995 and less than 1%/year in the early 1990s. This rapid expansion of LPG markets is occurring in virtually every region of the world, including such developing countries as China. The Far East is the focus of much of the LPG industry`s attention, but many opportunities exist in other regions such as the Indian subcontinent, Southeast Asia, and Latin America. The investment climate is improving in all phases of downstream LPG marketing, including terminaling, storage, and wholesale and retail distribution. The world LPG supply/demand balance has been relatively tight since the Gulf War and should remain so. Base demand (the portion of demand that is not highly price-sensitive) is expanding more rapidly than supplies. As a result, the proportion of total LPG supplies available for price-sensitive petrochemical feedstock markets is declining, at least in the short term. The paper discusses importers, price patterns, world LPG demand, world LPG supply, US NGL supply, US gas processing, ethane and propane supply, butane, isobutane, and natural gasoline supply, and US NGL demand.

  4. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas (GHG) intensity-defined as the ratio of total U.S. GHG emissions to economic output-by 18% over the 2002 to 2012 time frame.

  5. GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)

    E-Print Network [OSTI]

    Green, Donna

    GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion- related CO2 emissions have risen 130-fold since 1850--from 200 million tons to 27 billion tons a year--and are projected to rise another 60 percent by 2030 (see Figure 1).1 Most of the world's emissions come from

  6. Nineteenth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1986-01-01

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  7. Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.

    1980-01-01

    Mineral Reactions in Colorado Oil Shale," Lawrence Livermoreof Colorado Oil Shale: II. Livermore Laboratory Report No.Effects Lawrence of Steam on Oil Shale Retorting: Livermore

  8. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    study of retorted oil shale," Lawrence Livermore Laboratoryb) using columns of spent shale. REFERENCES Burnham, Alankinetics between and oil-shale residual carbon. 1. co Effect

  9. Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.

    1980-01-01

    Mineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. LivermoreEffects Lawrence of Steam on Oil Shale Retorting: Livermore

  10. Division of Oil, Gas, and Mining Permitting

    E-Print Network [OSTI]

    Utah, University of

    " or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

  11. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  12. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W. (Morago, CA)

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  13. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  14. Slow Radio-Frequency Processing of Large Oil Shale Volumes to Produce Petroleum-Like Shale Oil

    SciTech Connect (OSTI)

    Burnham, A K

    2003-08-20

    A process is proposed to convert oil shale by radio frequency heating over a period of months to years to create a product similar to natural petroleum. Electrodes would be placed in drill holes, either vertical or horizontal, and a radio frequency chosen so that the penetration depth of the radio waves is of the order of tens to hundreds of meters. A combination of excess volume production and overburden compaction drives the oil and gas from the shale into the drill holes, where it is pumped to the surface. Electrical energy for the process could be provided initially by excess regional capacity, especially off-peak power, which would generate {approx}3 x 10{sup 5} bbl/day of synthetic crude oil, depending on shale grade. The electricity cost, using conservative efficiency assumptions, is $4.70 to $6.30/bbl, depending on grade and heating rate. At steady state, co-produced gas can generate more than half the electric power needed for the process, with the fraction depending on oil shale grade. This would increase production to 7.3 x 10{sup 5} bbl/day for 104 l/Mg shale and 1.6 x 10{sup 6} bbl/day for 146 l/Mg shale using a combination of off-peak power and power from co-produced gas.

  15. FE-Funded Study Released on Key Factors Affecting China Shale...

    Energy Savers [EERE]

    government gives priority to the development of China's shale gas sector to help fight air pollution and reduce reliance on natural gas imports; and The U.S. government supports...

  16. Production of Shale Oil 

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01

    part of 40% share up to a maximum of $1.1 billion. North of these two projects are the two prot Federal lease projects in Colorado -- the we most operated by the Rio Blanco Shale Oil Co a limited partnership between Amoco and Gulf Their early...

  17. Method for retorting oil shale

    DOE Patents [OSTI]

    Shang, Jer-Yu; Lui, A.P.

    1985-08-16

    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  18. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect (OSTI)

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  19. Int. J. Global Energy Issues, Vol. 23, No. 4, 2005 307 Canada's efforts towards greenhouse gas emission

    E-Print Network [OSTI]

    Int. J. Global Energy Issues, Vol. 23, No. 4, 2005 307 Canada's efforts towards greenhouse gas greenhouse gas emissions reductions. Without a major change in direction towards more compulsory policies, it seems unlikely that Canada will achieve significant domestic greenhouse gas reductions over and beyond

  20. The twentieth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1987-01-01

    This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.