Sample records for global pv grid

  1. Grid integrated distributed PV (GridPV).

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle [Georgia Institute of Technology, Atlanta, GA

    2013-08-01T23:59:59.000Z

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  2. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733

  3. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733141

  4. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01T23:59:59.000Z

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  5. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    63  Off?Grid (Stand?Alone) PV Power System not well established. OFF-GRID (STAND-ALONE) PV POWER SYSTEMvariability characteristics of off-grid PV power systems and

  6. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01T23:59:59.000Z

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  7. Performance Parameters for Grid-Connected PV Systems

    SciTech Connect (OSTI)

    Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Shugar, D.; Wenger, H.; Kimber, A.; Mitchell, L.; Rich, G.; Townsend, T.

    2005-02-01T23:59:59.000Z

    The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.

  8. Battery Management for Grid-Connected PV Systems with a Battery

    E-Print Network [OSTI]

    Pedram, Massoud

    components such as the PV array and PV inverters. The mainstream research is related to maxi- mum power pointBattery Management for Grid-Connected PV Systems with a Battery Sangyoung Park1, Yanzhi Wang2}@usc.edu ABSTRACT Photovoltaic (PV) power generation systems are one of the most promising renewable power sources

  9. QUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID-CONNECTED PV SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    QUALIFIED FORECAST OF ENSEMBLE POWER PRODUCTION BY SPATIALLY DISPERSED GRID- CONNECTED PV SYSTEMS: The contribution of power production by Photovoltaic (PV) systems to the electricity supply is constantly of the electricity grids and for energy trading. This paper presents an approach to predict regional PV power output

  10. Environmental impacts of large-scale grid-connected ground-mounted PV installations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environmental impacts of large-scale grid-connected ground-mounted PV installations Antoine Beylota-scale ground-mounted PV installations by considering a life-cycle approach. The methodology is based. Mobile PV installations with dual-axis trackers show the largest impact potential on ecosystem quality

  11. THE INTEGRATION AND CONTROL OF MULTIFUNCTIONAL STATIONARY PV-BATTERY SYSTEMS IN SMART DISTRIBUTION GRID

    E-Print Network [OSTI]

    Berning, Torsten

    ) in presence of photovoltaic (PV) panel on the view of techno economic optimal sizing taking the considerationTHE INTEGRATION AND CONTROL OF MULTIFUNCTIONAL STATIONARY PV-BATTERY SYSTEMS IN SMART DISTRIBUTION stationary battery energy storage systems (BESS) in the public low-voltage distribution grid in order

  12. Monitoring and analysis of two grid connected PV systems Michael BRESSAN* Valrie DUPE**, Bruno JAMMES**, Thierry TALBERT*, Corinne ALONSO**

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Adapted to all kinds of equipment, it can be installed on any inverter or PV array. This monitoring system l building ha u" (1 inverte mum power ur rideau" a monitoring (latitude 43 V technolog PV array. A microco meter can m PV inverte re 1: Monitor grid con el systems study PV s a non linear everal pape

  13. The inverter is a major component of photovoltaic (PV) systems either autonomous or grid connected. It affects the

    E-Print Network [OSTI]

    Oregon, University of

    ABSTRACT The inverter is a major component of photovoltaic (PV) systems either autonomous or grid connected. It affects the overall performance of the PV system. Any problems or issues with an inverter. INTRODUCTION For any grid tied photovoltaic (PV) system, the inverter is the essential piece of equipment

  14. High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01T23:59:59.000Z

    Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

  15. OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY

    E-Print Network [OSTI]

    Perez, Richard R.

    OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY Richard Perez-shore wind and PV generation using the city of New York as a test case. While wind generation is not known one year's worth of hourly site & time-specific data including electrical demand PV and off-shore wind

  16. FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev Heinemann*, Hashini Wickramarathne*, Hans Georg Beyer +

    E-Print Network [OSTI]

    Heinemann, Detlev

    FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev HeinemannH, Spicherer Straße 48, D-86157 Augsburg, Germany ABSTRACT: The contribution of power production by PV systems and evaluate an approach to forecast regional PV power production. The forecast quality was investigated

  17. PV AND GRID RELIABILITY: AVAILABILITY OF PV POWER DURING CAPACITY SHORTFALLS

    E-Print Network [OSTI]

    Perez, Richard R.

    from a stream of actual load and PV output data: (1) The effective load carrying capability (ELCC output was simulated using high-resolution satellite cloud cover data [7]. The results are reported; (3) the solar load controller's (SLC) minimum temperature adjustment [6], is an other indirect

  18. Utility-scale grid-tied PV inverter reliability workshop summary report.

    SciTech Connect (OSTI)

    Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Atcitty, Stanley

    2011-07-01T23:59:59.000Z

    A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

  19. Abstract--This paper deals with the design of a nonlinear con-troller for single-phase grid-connected photovoltaic (PV) systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    of solar irradiations and interfacing of inverters with the grid. The intermittent PV generation varies-connected photovoltaic (PV) systems to maintain the current injected into the grid in phase with grid voltage. This paper also deals with the stability of internal dynamics of PV systems which is a basic requirement

  20. 20 IAEI NEWS January.February 2006 www.iaei.org back to the grid, designing pv systems for code complance

    E-Print Network [OSTI]

    Johnson, Eric E.

    20 IAEI NEWS January.February 2006 www.iaei.org back to the grid, designing pv systems for code complance Perspectives on PV Code Compliance Back to the Grid, Designing PV Systems for A series of articles January.February 2006 www.iaei.org #12;www.iaei.org January.February 2006 IAEI NEWS 21 back to the grid

  1. Direct power control of grid connected PV systems with three level NPC inverter

    SciTech Connect (OSTI)

    Alonso-Martinez, Jaime; Eloy-Garcia, Joaquin; Arnaltes, Santiago [Dept. of Electrical Engineering, University Carlos III of Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain)

    2010-07-15T23:59:59.000Z

    This paper presents the control of a three-level Neutral Point Clamped (NPC) voltage source inverter for grid connected photovoltaic (PV) systems. The control method used is the Extended Direct Power Control (EDPC), which is a generic approach for Direct Power Control (DPC) of multilevel inverters based on geometrical considerations. Maximum Power Point Tracking (MPPT) algorithms, that allow maximal power conversion into the grid, have been included. These methods are capable of extracting maximum power from each of the independent PV arrays connected to each DC link voltage level. The first one is a conventional MPPT which outputs DC link voltage references to EDPC. The second one is based on DPC concept. This new MPPT outputs power increment references to EDPC, thus avoiding the use of a DC link voltage regulator. The whole control system has been tested on a three-level NPC voltage source inverter connected to the grid and results confirm the validity of the method. (author)

  2. On-grid PV implementation program. Phase I report, August 1994--January 1995

    SciTech Connect (OSTI)

    NONE

    1994-11-29T23:59:59.000Z

    Southern California Edison Company (Edison) is finalizing a Cooperative Agreement with the U.S. Department of Energy (DOE) to develop high value On-Grid applications for electricity from Photovoltaics (PV). Edison`s efforts are the result of Edison`s long-standing commitment to the pursuit of Renewable Energy. Edison has been a world leader in the development and use of PV. As the technology becomes more commercial, Edison has been actively seeking more applications for PV. After strenuous effort, Edison has now received approval to offer off-grid PV packages within its service territory. In addition, Edison has been very interested in finding high-value on-grid PV applications that may have the potential to become cost effective as PV applications increase and prices decline. Such high-value applications at Edison and other utilities will accelerate the price reductions, which in turn will increase the number of cost-effective applications, driving towards a market competitive with traditional sources of energy. Edison`s efforts build upon the work done by Pacific Gas & Electric (PG&E) at their Kerman substation, but goes much further than that effort. Edison submitted its original proposal to the DOE on June 30, 1993. A revised proposal was submitted on February 1, 1994, in response to a letter from the DOE`s Director of Solar Energy, Robert H. Annan. In a letter dated March 30, 1994, from Paul K. Kearns, Head of Contracting Activity for the DOE`s Golden Field Office, the DOE conditionally approved certain pre-award contract costs. The Cooperative Agreement with DOE was executed on August 16, 1994.

  3. Smart Grid Ready PV Inverters with Utility Communication | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI Public Comments

  4. Performance Parameters for Grid-Connected PV Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalmsthe Price (Percent)5National Renewable

  5. Power Grid Optimization | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics Power w w w.pv

  6. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan [Vlaamse Instelling voor Technologisch Onderzoek, Unit Energy Technology, Mol (Belgium); Ridder, Fjo De [Vrije Universiteit Brussel (Belgium)

    2010-07-15T23:59:59.000Z

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  7. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    component removal (i.e. inverter, PV panel etc. ) since63  Desired PV Inverter voltage stability. The PV inverter reactive power control

  8. Sacramento Municipal Utility District PV and Smart Grid Pilot at Anatolia

    SciTech Connect (OSTI)

    Rawson, Mark; Sanchez, Eddie Paul

    2013-12-30T23:59:59.000Z

    Under DE-FOA-0000085 High Penetration Solar Deployment, the U. S. Department of Energy funded agreements with SMUD and Navigant Consulting, SunPower, GridPoint, the National Renewable Energy Laboratory, and the California Energy Commission for this pilot demonstration project. Funding was $5,962,409.00. Cost share of $500,000 was also provided by the California Energy Commission. The project has strategic implications for SMUD, other utilities and the PV and energy-storage industries in business and resource planning, technology deployment and asset management. These implications include: -At this point, no dominant business models have emerged and the industry is open for new ideas. -Demonstrated two business models for using distributed PV and energy storage, and brainstormed several dozen more, each with different pros and cons for SMUD, its customers and the industry. -Energy storage can be used to manage high penetrations of PV and mitigate potential issues such as reverse power flow, voltage control violations, power quality issues, increased wear and tear on utility equipment, and system wide power supply issues. - Smart meters are another tool utilities can use to manage high penetrations of PV. The necessary equipment and protocols exist, and the next step is to determine how to integrate the functionality with utility programs and what level of utility control is required. - Time-of-use rates for the residential customers who hosted energy storage systems did not cause a significant change in energy usage patterns. However, the rates we used were not optimized for PV and energy storage. Opportunities exist for utilities to develop new structures.

  9. Energy Aware Grid: Global Workload Placement based on Energy Efficiency

    E-Print Network [OSTI]

    Simunic, Tajana

    Energy Aware Grid: Global Workload Placement based on Energy Efficiency Chandrakant Patel, Ratnesh.graupner}@hp.com Grid Computing, energy- efficiency, workload placement, cooling, data center, utility computing a global utility infrastructure explicitly incorporating energy efficiency and thermal management among

  10. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    for use in solar PV systems (inverters listed to UL 1741)disconnection of PV inverters during system transients thatModeling systems will need detailed PV inverter models in

  11. Abstract--Current grid standards seem to largely require low power (e.g. several kilowatts) single-phase photovoltaic (PV)

    E-Print Network [OSTI]

    Berning, Torsten

    --Grid requirements; photovoltaic systems; low voltage ride through; ancillary services; grid support; reliability I-phase photovoltaic (PV) systems to operate at unity power factor with maximum power point tracking, and disconnect. INTRODUCTION Due to the declining photovoltaic (PV) module price and the strong feed-in tariff policies

  12. PVGIS approach for assessing the performances of the first PV grid-connected power plant in Morocco

    E-Print Network [OSTI]

    Barhdadi, Abdelfettah

    2012-01-01T23:59:59.000Z

    In this paper, we apply the PVGIS method for estimating the performance of the first grid-connected PV micro-power plant in Morocco. PVGIS approach provides analysis and assessment of in-site solar energy resources and predicts with good accuracy the potential of PV systems in term of electricity production. We find that annual total power generation of the micro-power is slightly higher than that initially expected at the installation stage and actually measured. The yearly predicted and measured power production values agree to about 2 %. However, individual monthly production can have larger discrepancy.

  13. Global Solar Photovoltaic (PV) Installation Market to be Propelled...

    Open Energy Info (EERE)

    of humid climatic conditions and irregular intensities of solar radiations. The key companies operating in the global solar photovoltaic installation market are Trina Solar...

  14. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    as demand charges that solar customers cannot easily avoid,increases, future solar PV customers will likely facethere were 127,000 customer-side solar projects; totaling

  15. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    solar PV and distributed generation. UTILITY RATE DESIGN ANDutility concerns that a high penetration of inverter-based solar energy systems along with other distributed generation

  16. A First-Ever Global Examination of Successful Wind Energy Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A First-Ever Global Examination of Successful Wind Energy Grid Integration Practices A First-Ever Global Examination of Successful Wind Energy Grid Integration Practices December...

  17. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    15,1998 pp. 1424-1431 [140] Grid 2020: Towards a Policy ofInverter connected to the Grid via LCL Filter Papavasiliou,Act, Title XIII- Smart Grid, Section 1301-Statement of

  18. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    solar disk size, solar spectrum and tracking errors. TheThree Positions Tracking Solar PV with Low ConcentrationPOWER POINT TRACKING The amount of solar energy available is

  19. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    electrical transmission and distribution systems can also destroy these grid system components and cause power outages

  20. Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J. (National Renewable Energy Laboratory); Weaver, N.L. (InterWeaver Consulting)

    2001-02-27T23:59:59.000Z

    This is one of two companion papers that describe the ENERGY-10 PV design tool computer simulation program. The other paper is titled ''ENERGY-10 Photovoltaics: A New Capability.'' Whereas this paper focuses on the PV aspects of the program, the companion paper focuses on the implementation method. The case study in this paper is a commercial building application, whereas the case study in the companion paper is a residential application with an entirely different building load characteristic. Together they provide a balanced view.

  1. FAILURE DETECTION ROUTINE FOR GRID CONNECTED PV SYSTEMS AS PART OF THE PVSAT-2 PROJECT

    E-Print Network [OSTI]

    Heinemann, Detlev

    Dept. Of Electrical Engineering, University of Applied Science (FH) Magdeburg-Stendal. D-39114 failures, e.g. shading, string or module failure, part time outages, snow cover, soiling and wrong inverter, the maintenance effort of PV systems is reduced und system outage time is minimised. The Failure Detection Routine

  2. PV Incentive Program

    Broader source: Energy.gov [DOE]

    The New York State Energy Research and Development Authority (NYSERDA) provides an incentive eligible installers for the installation of approved, grid-connected photovoltaic (PV) systems. The base...

  3. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations and Maintenance Reporting, ... PV Contacts On April 20, 2011, in Photovoltaic and Grid Integration Manager Charles Hanley 505.844.4435 cjhanle at...

  4. A Global Maximum Power Point Tracking Method for PV Module Integrated Converters

    E-Print Network [OSTI]

    Liberzon, Daniel

    with large arrays of series-connected PV mod- ules connected to a central inverter. Figure 1(a) depicts, it is conceivable that these systems do not extract the maximum possible power from the PV array when individual PV to partial shading. In such systems, power electronics circuits are integrated directly with PV modules

  5. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Jacobson, Mark

    in order to follow the de- mand, wind and solar PV power output is largely determined by weather conditions Large-scale integration of renewable power generation Wind power generation Solar PV power generation Power transmission a b s t r a c t A future energy system is likely to rely heavily on wind and solar PV

  6. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    SciTech Connect (OSTI)

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26T23:59:59.000Z

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  7. Ukiah Utilities- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Through Ukiah Utilities’ PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of...

  8. Title: Gridded Population of World and Global Rural-Urban Mapping Project Data Creator /

    E-Print Network [OSTI]

    Title: Gridded Population of World and Global Rural-Urban Mapping Project Data Creator / Copyright Data Format: BIL, ASCII, Grid, Shapefile, CSV, XLS, E00 Datum / Map Projection: N/A Resolution: N Science Information Network (CIESIN). "Gridded Population of World and Global Rural-Urban Mapping Project

  9. Blanc, I., Beloin-Saint-Pierre, D., Payet, J., Jacquin, P., Adra, N., Mayer, D., Espace-PV: key sensitive parameters for environmental impacts of grid-connected PV systems with LCA , In Proceedings of the 23rd

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    global warming (g. of CO2 eq./kWh) and non- renewable energy (MJ/kWh) indicators as key LCA outputs AND HYPOTHESIS 2.1 Scope of Espace-PV study The LCA is done for the production of electricity with an integrated electricity with more than a 100% of the impact of a southern system. Other important factors are the lifetime

  10. Sandia National Laboratories: increase PV deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV deployment ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  11. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Power characteristics of PV ensembles: experiences from theproduction of 100 grid connected PV systems distributed overHoff and R. Perez, "Modeling PV Fleet Output Variability,"

  12. The Role of Subtropical Irreversible PV Mixing in the Zonal Mean Circulation Response to Global Warming-like Thermal Forcing

    SciTech Connect (OSTI)

    Lu, Jian; Sun, Lantao; Wu, Yutian; Chen, Gang

    2014-03-15T23:59:59.000Z

    The atmospheric circulation response to the global warming-like tropical upper tropospheric heating is revisited using a dry atmospheric general circulation model (AGCM) in light of a new diagnostics based on the concept of finite-amplitude wave activity (FAWA) on equivalent latitude. For a given tropical heating profile, the linear Wentzel-Kramers-Brillouin (WKB) wave refraction analysis sometimes gives a very different and even opposite prediction of the eddy momentum flux response to that of the actual full model simulation, exposing the limitation of the traditional linear approach in understanding the full dynamics of the atmospheric response under global warming. The implementation of the FAWA diagnostics reveals that in response to the upper tropospheric heating, effective diffusivity, a measure of the mixing efficiency, increases and advances upward and poleward in the subtropics and the resultant enhancement and the poleward encroachment of eddy potential vorticity mixing leads to a poleward displaced potential vorticity (PV) gradient peak in the upper troposphere. The anomalous eddy PV flux, in balance with the PV dissipation, gives rise to a poleward shift in the eddy-driven jet and eddy-driven mean meridional circulation. Sensitivity experiments show that these irreversible dissipation processes in the upper troposphere are robust, regardless of the width of the tropical heating.

  13. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Zeyer, Timo; Schramm, Stefan; Greiner, Martin; Jacobson, Mark Z

    2014-01-01T23:59:59.000Z

    Wind and solar PV generation data for the entire contiguous US are calculated, on the basis of 32 years of weather data with temporal resolution of one hour and spatial resolution of 40x40km$^2$, assuming site-suitability-based as well as stochastic wind and solar PV capacity distributions throughout the country. These data are used to investigate a fully renewable electricity system, resting primarily upon wind and solar PV power. We find that the seasonal optimal mix of wind and solar PV comes at around 80% solar PV share, owing to the US summer load peak. By picking this mix, long-term storage requirements can be more than halved compared to a wind only mix. The daily optimal mix lies at about 80% wind share due to the nightly gap in solar PV production. Picking this mix instead of solar only reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to their differing resour...

  14. An Economy Driven Resource Management Architecture for Global Computational Power Grids

    E-Print Network [OSTI]

    Buyya, Rajkumar

    An Economy Driven Resource Management Architecture for Global Computational Power Grids Rajkumar and scheduling driven by computational economy in the emerging grid computing context. They also apply this limitation, we have proposed an infrastructure called GRid Architecture for Computational Economy (GRACE

  15. axonopodis pv passiflorae: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effective capacity of grid-connected PV power plants. The predicted and actual utility peak load reduction performance of PV power plants are compared for two case studies:...

  16. axonopodis pv citri: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effective capacity of grid-connected PV power plants. The predicted and actual utility peak load reduction performance of PV power plants are compared for two case studies:...

  17. axonopodis pv malvacearum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effective capacity of grid-connected PV power plants. The predicted and actual utility peak load reduction performance of PV power plants are compared for two case studies:...

  18. Characterization of the rpoN global regulatory gene of Pseudomonas syringae pv. syringae B728a and its impact on the plant-pathogen interaction

    E-Print Network [OSTI]

    Lorge, Amber L.

    2010-07-14T23:59:59.000Z

    N GLOBAL REGULATORY GENE OF Pseudomonas syringae pv. syringae B728A ?????????????....... 6 Introduction ????????????????????. 6 Results ??????????????????????. 13 Materials and methods ???????????????? 33 III CONCLUSIONS.... syringae B728a rpoN mutant using Southern Blot analysis???????????????????.. 21 2.5 Location of the rpoN mutation with in P.s. pv. syringae B728a ???. 22 2.6 Growth of P.s. pv. syringae B728a affected by a mutation to rpoN ?... 24 2.7 Motility assay...

  19. Characterization of the rpoN global regulatory gene of Pseudomonas syringae pv. syringae B728a and its impact on the plant-pathogen interaction 

    E-Print Network [OSTI]

    Lorge, Amber L.

    2010-07-14T23:59:59.000Z

    N GLOBAL REGULATORY GENE OF Pseudomonas syringae pv. syringae B728A ?????????????....... 6 Introduction ????????????????????. 6 Results ??????????????????????. 13 Materials and methods ???????????????? 33 III CONCLUSIONS.... syringae B728a rpoN mutant using Southern Blot analysis???????????????????.. 21 2.5 Location of the rpoN mutation with in P.s. pv. syringae B728a ???. 22 2.6 Growth of P.s. pv. syringae B728a affected by a mutation to rpoN ?... 24 2.7 Motility assay...

  20. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  1. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul [Ideal Power

    2013-03-23T23:59:59.000Z

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the industry’s first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

  2. Sub-Rossby and Sub-Grid in Global Climate

    E-Print Network [OSTI]

    Fox-Kemper, Baylor

    this talk) Internal Waves, Deep Convection, Energy Sinks, PV Sinks & Sources Wednesday, September 22, 2010 Wednesday, September 22, 2010 #12;Sym Part=Anisotropic* Redi Blue factors in Redi (1982) are symmetric involving the neutral to z coordinate conversion (in S&G theory, at least) The eigenvectors give

  3. Summary Review of Advanced Inverter Technologies for Residential PV Systems

    E-Print Network [OSTI]

    Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter................................................................................................ 7 3. Grid-Connected PV inverters available in US

  4. City of Healdsburg- PV Incentive Program

    Broader source: Energy.gov [DOE]

    Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California...

  5. Utility Computing on Global Grids Chee Shin Yeo, Rajkumar Buyya1

    E-Print Network [OSTI]

    Buyya, Rajkumar

    . Utility computing is envisioned to be the next generation of Information Technology (IT) evolution1 Utility Computing on Global Grids Chee Shin Yeo, Rajkumar Buyya1 , Marcos Dias de Assunção, Jia Yu, Anthony Sulistio, Srikumar Venugopal, and Martin Placek Grid Computing and Distributed Systems

  6. A Set Coverage-based Mapping Heuristic for Scheduling Distributed Data-Intensive Applications on Global Grids

    E-Print Network [OSTI]

    Buyya, Rajkumar

    A Set Coverage-based Mapping Heuristic for Scheduling Distributed Data-Intensive Applications on Global Grids Srikumar Venugopal and Rajkumar Buyya Grid Computing and Distributed Systems (GRIDS Email:{srikumar, raj}@csse.unimelb.edu.au Abstract Data-intensive Grid applications need access to large

  7. Sandia Energy - Sandia Will Host PV Bankability Workshop at Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Home Renewable Energy Energy Facilities Grid Integration Partnership News Distribution Grid Integration...

  8. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  9. Opening Remarks, Grid Integration Initiative Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loads Power Systems Integration Lab PV and Grid Simulators Energy Systems Integration Lab Fuel Cells, Electrolyzers Outdoor Test Area EVs, MV equipment Rooftop PV & Wind Energy...

  10. Präsentation Bernhard Gatzka PV*SOL Expert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    design and calculation of photovoltaic systems, including grid-connected, off-grid and battery backed-up systems. "Shading Calculation in PV*SOL Expert" presented at the 2013...

  11. Distribution System Analysis Tools for Studying High Penetration of PV

    E-Print Network [OSTI]

    Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support Features Electric Energy System #12;#12;Distribution System Analysis Tools for Studying High Penetration of PV project titled "Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support

  12. AC PV Modules Take a standard DC PV module and connect a microinverter

    E-Print Network [OSTI]

    Johnson, Eric E.

    , and secure a listing to UL1741 for a pre-assembled module/inverter device, and you have an AC PV module No discussion of PV systems would be complete without a look at the newest inverter technologies that installers Most grid-tied inverters are "string inverters"--they operate with a string of series-connected PV

  13. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Ing, Edwin

    2006-01-01T23:59:59.000Z

    Exploring the Economic Value of EPAct 2005’s PV Tax CreditsEconomic Value of EPAct 2005’s PV Tax Credits Mark Bolingerfor grid-connected photovoltaics (PV) in the US has grown

  14. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    E-Print Network [OSTI]

    Bolinger, Mark A

    2010-01-01T23:59:59.000Z

    to support a greater number PV systems at the reduced grantEconomic Value of EPAct 2005’s PV Tax Credits Mark Bolingerfor grid-connected photovoltaics (PV) in the US has grown

  15. Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    CCEF Small PV Program System Modules Inverters InstallationUL-1703 for PV modules and UL-1741 for inverters and otherfor Grid-Connected PV Systems Rated Output Modules Inverters

  16. Power Systems Engineering Research Center Modeling, Analysis and Deployment of High PV

    E-Print Network [OSTI]

    Van Veen, Barry D.

    and equipment using GIS data, loads using AMI data and PV systems using measured PV output from extensive data electronics and grid integration of renew- able resources mainly solar PV and wind. Dr. Ayyanar received

  17. Global model of a gridded-ion thruster powered by a radiofrequency inductive coil

    SciTech Connect (OSTI)

    Chabert, P.; Arancibia Monreal, J.; Bredin, J.; Popelier, L.; Aanesland, A. [LPP, CNRS, Ecole Polytechnique, UPMC, Paris XI, 91128 Palaiseau (France)

    2012-07-15T23:59:59.000Z

    A global (volume-averaged) model of a gridded-ion thruster is proposed. The neutral propellant (xenon gas) is injected into the thruster chamber at a fixed rate and a plasma is generated by circulating a radiofrequency current in an inductive coil. The ions generated in this plasma are accelerated out of the thruster by a pair of DC biased grids. The neutralization downstream is not treated. Xenon atoms also flow out of the thruster across the grids. The model, based on particle and energy balance equations, solves for four global variables in the thruster chamber: the plasma density, the electron temperature, the neutral gas (atom) density, and the neutral gas temperature. The important quantities to evaluate the thruster efficiency and performances are calculated from these variables and from the voltage across the grids. It is found that the mass utilization efficiency rapidly decreases with the gas flow rate. However, the radiofrequency power transfer efficiency increases significantly with the injected gas flow rate. Therefore, there is a compromise to be found between these two quantities.

  18. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean...

  19. Cost-based Scheduling for Data-Intensive Applications on Global Grids Srikumar Venugopal and Rajkumar Buyya

    E-Print Network [OSTI]

    Melbourne, University of

    Cost-based Scheduling for Data-Intensive Applications on Global Grids Srikumar Venugopal an algorithm for cost-based scheduling for a data-intensive Bag-of-Tasks(BoT) applica- tion on a Data Grid multiple data sources. The algorithm minimizes ei- ther the overall cost or the time of execution depending

  20. An updated global grid point surface air temperature anomaly data set: 1851--1990

    SciTech Connect (OSTI)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01T23:59:59.000Z

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  1. Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2008-01-01T23:59:59.000Z

    with Large-scale Implementation of Domestic PV Systems andwith Large PV Systems on Buildings in Japan. Progress inPerformance of Grid-connected PV Systems on Buildings in

  2. PV Integration by Building Energy Management System

    E-Print Network [OSTI]

    Boyer, Edmond

    stands for any variable that could be PV, grid power, or load power if calculation is valid for allPV Integration by Building Energy Management System Rim.Missaouią, Ghaith.Warkozeką, Seddik. BachaLab.grenoble-inp.fr Abstract- This paper focuses on Energy Management System (EMS) applied to the residential sector. The EMS

  3. Sensitivity analysis for optimal sizing of a PV grid connected home G.WARKOZEK S.PLOIX* M.JACOMINO* F.WURTZ

    E-Print Network [OSTI]

    Boyer, Edmond

    : solver Xg Xs XbPpv PLoad GridBatteryPhotovoltaic panel solver Xg Xs XbPpv PLoad GridBatteryPhotovoltaic, published in "European Energy Conference 2010, Barcelone : Spain (2010)" #12;temperature, possible

  4. Solar Energy International Solar PV 101 Training

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  5. SMUD- PV Residential Retrofit Buy-Down

    Broader source: Energy.gov [DOE]

    SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved...

  6. Experience Curves and Solar PV Fred Heutte, Senior Policy Associate

    E-Print Network [OSTI]

    Experience Curves and Solar PV Fred Heutte, Senior Policy Associate NW Energy Coalition September 3 resources costs as being ranges rather than fixed values. It is evident that the question of future solar PV small percentage of all resources at present, there is a strong sense that once solar PV reaches "grid

  7. backfed from utility-interactive PV inverters. This equation expresses this ratings requirement

    E-Print Network [OSTI]

    Johnson, Eric E.

    backfed from utility-interactive PV inverters. This equation expresses this ratings requirement: PV Changing Codes & Grid Connection by John Wiles PV Inverter 15 A 100 A 400 A 100 A 400 A 1,000 A Grid 100 to at least 1,400 A (400 + 1,000 > 1,000) - - - PV Inverter 15 A 100 A 400 A 100 A 400 A 1,000 A Grid 100 A 10

  8. Outdoor PV Degradation Comparison

    SciTech Connect (OSTI)

    Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

    2011-02-01T23:59:59.000Z

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

  9. Sandia Energy - PV Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshore Wind RD&D:PV

  10. PSCAD Modules Representing PV Generator

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01T23:59:59.000Z

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  11. IEEE TRANSACTIONS ON POWER ELECTRONICS 1 A Hybrid Power Control Concept for PV Inverters with Reduced

    E-Print Network [OSTI]

    Kerekes, Tamas

    IEEE TRANSACTIONS ON POWER ELECTRONICS 1 Letters A Hybrid Power Control Concept for PV Inverters- cept for grid-connected Photovoltaic (PV) inverters. The control strategy is based on either a Maximum utilization factor of PV inverters, and thus to cater for a higher penetration level of PV systems

  12. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  13. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Prusa, Joseph

    2012-05-08T23:59:59.000Z

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG�s advanced dynamics core with the �physics� of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  14. Global Environmental Change 14 (2004) 105123 Downscaling and geo-spatial gridding of socio-economic projections

    E-Print Network [OSTI]

    Global Environmental Change 14 (2004) 105­123 Downscaling and geo-spatial gridding of socio Broadway, New York, NY 10025, USA b Center for International Earth Science Information Network (CIESIN), 61 work. r 2004 Elsevier Ltd. All rights reserved. Keywords: Greenhouse gas emissions scenarios

  15. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08T23:59:59.000Z

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the demonstrated range of validity of soundproof models, showing that they are more broadly applicable than some had previously thought. Substantial testing of EULAG included application and extension of the Jablonowski-Williamson baroclinic wave test - an archetype of planetary weather - and further analysis of multi-scale interactions arising from collapse of temperature fronts in both the baroclinic wave test and simulations of the Held-Suarez idealized climate. These analyses revealed properties of atmospheric gravity waves not seen in previous work and further demonstrated the ability of EULAG to simulate realistic behavior over several orders of magnitude of length scales. Additional collaborative work enhanced capability for modeling atmospheric flows with adaptive moving meshes and demonstrated the ability of EULAG to move into petascale computing. 3b. CAM-EULAG Advances We have developed CAM-EULAG in collaboration with former project postdoc, now University of Cape Town Assistant Professor, Babatunde Abiodun. Initial study documented good model performance in aqua-planet simulations. In particular, we showed that the grid adaptivity (stretching) implemented in CAM-EULAG allows higher resolution in selected regions without causing anomalous behavior such as spurious wave reflection. We then used the stretched-grid version to analyze simulated extreme precipitation events in West Africa, comparing the precipitation and event environment with observed behavior. The model simulates fairly well the spatial scale and the interannual and intraseasonal variability of the extreme events, although its extreme precipitation intensity is weaker than observed. In addition, both observations and the simulations show possible forcing of extreme events by African easterly waves. 3c. Other Contributions Through our collaborations, we have made contributions to a wide range of outcomes. For research focused on terrestrial behavior, these have included (1) upwind schemes for gas dynamics, (2) a nonlinear perspective on the dynamics of the Madden-Julian Oscillation, (3) numerical realism of thermal co

  16. IRRADIANCE MAPS APPLIED FOR THE PERFORMANCE ASSESSMENT OF PV SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    IRRADIANCE MAPS APPLIED FOR THE PERFORMANCE ASSESSMENT OF PV SYSTEMS - A CASE STUDY FOR THE GERMAN energy yield of a PV system,methods based on irradiance maps published by weather services or others-connected PV systems. DATA USED Hourly time series from ground and satellite-derived horizontal global

  17. Supported PV module assembly

    DOE Patents [OSTI]

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15T23:59:59.000Z

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  18. Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability

    SciTech Connect (OSTI)

    Li, Huijuan [ORNL] [ORNL; Xu, Yan [ORNL] [ORNL; Adhikari, Sarina [ORNL] [ORNL; Rizy, D Tom [ORNL] [ORNL; Li, Fangxing [ORNL] [ORNL; Irminger, Philip [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

  19. Impact of increased penetration of wind and PV solar resources on the

    E-Print Network [OSTI]

    to the BES through a power electronic inverter · Residential roof top PV solar also has an inverter whichImpact of increased penetration of wind and PV solar resources on the bulk power system Vijay;Wind and PV solar grid interface · Modern wind turbine generators are typically rated between 1.5 MW

  20. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel [Department of Electronics, Faculty of Sciences and Technology, LAMEL, Jijel University, Ouled-aissa, P.O. Box 98, Jijel 18000 (Algeria); Pavan, Alessandro Massi [Department of Materials and Natural Resources, University of Trieste Via A. Valerio, 2 - 34127 Trieste (Italy)

    2010-05-15T23:59:59.000Z

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  1. Sandia National Laboratories: PV Value®

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and PV industry sales staff. For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV...

  2. Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

    2012-04-09T23:59:59.000Z

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  3. Energy 101: Solar PV

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  4. Energy 101: Solar PV

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  5. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Venture Capitalists, Manufacturers, System Integrators, Consumers * What: PV Cells, PVCPV modules, inverters, balance of system hardware, PV system, installation * What:...

  6. Sandia Energy - PV Program Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshore Wind RD&D:PV ModelingProgram

  7. Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    reliability-related industry standards exist for inverters. Other equipment andEquipment and Installation Standards for Grid-Connected PV Systems Rated Output Modules Inverters Systems (grid-connected) Product ReliabilityEquipment and installation standards ensure that PV system components and installations meet minimum industry standards related to safety, reliability,

  8. Stabilized PV system

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Piedmont, CA)

    2002-12-17T23:59:59.000Z

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  9. An Economy-based Algorithm for Scheduling Data-Intensive Applications on Global Grids

    E-Print Network [OSTI]

    Melbourne, University of

    of Computer Science and Software Engineering The University of Melbourne, Australia Email grid increases, scheduling of applications in order to make the most efficient use of the available will be executed and for its processing. The algorithm builds a resource set for a job that minimizes the cost

  10. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect (OSTI)

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01T23:59:59.000Z

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  11. Fire resistant PV shingle assembly

    DOE Patents [OSTI]

    Lenox, Carl J.

    2012-10-02T23:59:59.000Z

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  12. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29T23:59:59.000Z

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  13. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    SciTech Connect (OSTI)

    Qian, Yun; Gustafson, William I.; Fast, Jerome D.

    2010-07-29T23:59:59.000Z

    One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV) of trace gases and aerosols within a typical global climate model grid cell, i.e. 75x75 km2. Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs) for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV) over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV) over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases are very efficiently transported and mixed vertically by turbulence. But, simulated horizontal variability indicates that trace gases and aerosols are not well mixed horizontally in the PBL. During nighttime the SGV for trace gases is maximum at the surface, and quickly decreases with height. Unlike the trace gases, the SGV of BC and secondary aerosols reaches a maximum at the PBL top during the day. The SGV decreases with distance away from the polluted urban area, has a more rapid decrease for long-lived trace gases and aerosols than for secondary ones, and is greater during daytime than nighttime. The SGV of trace gases and aerosols is generally larger than for meteorological quantities. Emissions can account for up to 50% of the SGV over urban areas such as Mexico City during daytime for less-reactive trace gases and aerosols, such as CO and BC. The impact of emission spatial variability on SGV decays with altitude in the PBL and is insignificant in the free troposphere. The emission variability affects SGV more significantly during daytime (rather than nighttime) and over urban (rather than rural or remote) areas. The terrain, through its impact on meteorological fields such as wind and the PBL structure, affects dispersion and transport of trace gases and aerosols and their SGV.

  14. PV array simulator development and validation.

    SciTech Connect (OSTI)

    Kuszmaul, Scott S.; Gonzalez, Sigifredo; Lucca, Roberto (Ametek Programmable Power, San Diego, CA); Deuel, Don (Ametek Programmable Power, San Diego, CA)

    2010-06-01T23:59:59.000Z

    The ability to harvest all available energy from a photovoltaic (PV) array is essential if new system developments are to meet levelized cost of energy targets and achieve grid parity with conventional centralized utility power. Therefore, exercising maximum power point tracking (MPPT) algorithms, dynamic irradiance condition operation and startup and shutdown routines and evaluating inverter performance with various PV module fill-factor characteristics must be performed with a repeatable, reliable PV source. Sandia National Laboratories is collaborating with Ametek Programmable Power to develop and demonstrate a multi-port TerraSAS PV array simulator. The simulator will replicate challenging PV module profiles, enabling the evaluation of inverter performance through analyses of the parameters listed above. Energy harvest algorithms have traditionally implemented methods that successfully utilize available energy. However, the quantification of energy capture has always been difficult to conduct, specifically when characterizing the inverter performance under non-reproducible dynamic irradiance conditions. Theoretical models of the MPPT algorithms can simulate capture effectiveness, but full validation requires a DC source with representative field effects. The DC source being developed by Ametek and validated by Sandia is a fully integrated system that can simulate an IV curve from the Solar Advisor Model (SAM) module data base. The PV simulator allows the user to change the fill factor by programming the maximum power point voltage and current parameters and the open circuit voltage and short circuit current. The integrated PV simulator can incorporate captured irradiance and module temperature data files for playback, and scripted profiles can be generated to validate new emerging hardware embedded with existing and evolving MPPT algorithms. Since the simulator has multiple independent outputs, it also has the flexibility to evaluate an inverter with multiple MPPT DC inputs. The flexibility of the PV simulator enables the validation of the inverter's capability to handle vastly different array configurations.

  15. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Photovoltaic Technology and Tour of PV Test Facilities On February 12, 2013, in The Photovoltaics and Distributed Systems Integration Department at Sandia National...

  16. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improve photovoltaic (PV) materials efficiency and help make solar electricity cost-competitive with other energy sources. The work builds on Sandia's recent successes...

  17. ATLAS off-Grid sites (Tier 3) monitoring. From local fabric monitoring to global overview of the VO computing activities

    E-Print Network [OSTI]

    PETROSYAN, A; The ATLAS collaboration; BELOV, S; ANDREEVA, J; KADOCHNIKOV, I

    2012-01-01T23:59:59.000Z

    The ATLAS Distributed Computing activities have so far concentrated in the "central" part of the experiment computing system, namely the first 3 tiers (the CERN Tier0, 10 Tier1 centers and over 60 Tier2 sites). Many ATLAS Institutes and National Communities have deployed (or intend to) deploy Tier-3 facilities. Tier-3 centers consist of non-pledged resources, which are usually dedicated to data analysis tasks by the geographically close or local scientific groups, and which usually comprise a range of architectures without Grid middleware. Therefore a substantial part of the ATLAS monitoring tools which make use of Grid middleware, cannot be used for a large fraction of Tier3 sites. The presentation will describe the T3mon project, which aims to develop a software suite for monitoring the Tier3 sites, both from the perspective of the local site administrator and that of the ATLAS VO, thereby enabling the global view of the contribution from Tier3 sites to the ATLAS computing activities. Special attention in p...

  18. PV PLANNER A DESIGN AND

    E-Print Network [OSTI]

    Delaware, University of

    PV PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS FINAL Center for Energy and Environmental Policy University of Delaware December 2006 #12;#12;PV...............................................................................................................................1 1.2 PV Planner: An Overview

  19. Sandia National Laboratories: PV evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluation PV Plant Performance Technical Briefing Published in PV Power Tech On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

  20. Physical Effects of Distributed PV Generation on California's Distribution System

    E-Print Network [OSTI]

    Cohen, Michael A

    2015-01-01T23:59:59.000Z

    Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...

  1. Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research www Photovoltaics Environmental Research Center Brookhaven National Laboratory #12;2 Source: PV Market Outlook

  2. ENERGY-10 PV: Photovoltaics, A New Capability (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J. (National Renewable Energy Laboratory); Weaver, N.L. (InterWeaver Consulting)

    2001-02-16T23:59:59.000Z

    This is one of two companion papers that describe the ENERGY-10 PV design-tool computer simulation program. The other paper is titled ''Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads.'' While this paper focuses on the implementation method, the companion paper focuses on the PV aspects of the program. The case study in this paper is a residential building application, whereas the case study in the companion paper is a commercial application with an entirely different building load characteristic. Together, they provide a balanced view.

  3. The transformation of modern electricity grids at the local and global scale into smart grids is at the core of sustainable economic, environmental and societal growth worldwide. This migration to more intelligent, user-friendly and responsive grids aroun

    E-Print Network [OSTI]

    Fang, Yuguang "Michael"

    , Control and Operation for Smart Grids, Microgrids and Distributed Resources 4. Data Management and Grid with C3 technologies - Communication, Control and Computing - playing key roles. Smart Grid Communications support such applications as control and information processing systems to support two-way energy

  4. AUSTRIAN GRID AUSTRIAN GRID

    E-Print Network [OSTI]

    AUSTRIAN GRID 1/18 AUSTRIAN GRID THE INITIAL VERSION OF SEE-GRID Document Identifier: AG-DA1c-1) #12;AUSTRIAN GRID 2/18 Delivery Slip Name Partner Date Signature From Károly Bósa RISC 31 See cover on page 3 #12;AUSTRIAN GRID 3/18 THE INITIAL VERSION OF SEE-GRID Karoly Bosa Wolfgang

  5. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

  6. Earth System Grid Center for Enabling Technologies: Building a Global Infrastructure for Climate Change Research

    SciTech Connect (OSTI)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ahrens, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ananthakrishnan, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bharathi, S. [Univ. of Southern California, Marina del Ray, CA (United States). Information Science Institute; Brown, D. [National Center for Atmospheric Reserch, Boulder, CO (United States); Chen, M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chervenak, A. L. [Univ. of Southern California, Marina del Ray, CA (United States). Information Science Institute; Cinquini, L. [National Aeronautics and Space Administration, Pasadena, CA (United States); Drach, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foster, I. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Fox, P. [Rensselaer Polytechnic Inst., Troy, NY (United States); Hankin, S. [National Oceanic and Atmospheric Administration (PMEL), Seattle, WA (United States); Harper, D. [National Center for Atmospheric Reserch, Boulder, CO (United States); Hook, N. [National Center for Atmospheric Reserch, Boulder, CO (United States); Jones, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Middleton, D. E. [National Center for Atmospheric Reserch, Boulder, CO (United States); Miller, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nienhouse, E. [National Center for Atmospheric Reserch, Boulder, CO (United States); Schweitzer, R. [National Oceanic and Atmospheric Administration (PMEL), Seattle, WA (United States); Schuler, R. [Univ. of Southern California, Marina del Ray, CA (United States). Information Science Institute; Shipman, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shoshani, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siebenlist, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Sim, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Strand, W. G. [National Center for Atmospheric Reserch, Boulder, CO (United States); Wang, F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilcox, H. [National Center for Atmospheric Reserch, Boulder, CO (United States); Wilhelmi, N. [National Center for Atmospheric Reserch, Boulder, CO (United States)

    2010-08-16T23:59:59.000Z

    Established within DOE’s Scientific Discovery through Advanced Computing (SciDAC-) 2 program, with support from ASCR and BER, the Earth System Grid Center for Enabling Technologies (ESG-CET) is a consortium of seven laboratories (Argonne National Laboratory [ANL], Los Alamos National Laboratory [LANL], Lawrence Berkeley National Laboratory [LBNL], Lawrence Livermore National Laboratory [LLNL], National Center for Atmospheric Research [NCAR], Oak Ridge National Laboratory [ORNL], and Pacific Marine Environmental Laboratory [PMEL]), and two institutes (Rensselaer Polytechnic Institute [RPI] and the University of Southern California, Information Sciences Institute [USC/ISI]). The consortium’s mission is to provide climate researchers worldwide with a science gateway to access data, information, models, analysis tools, and computational capabilities required to evaluate extreme-scale data sets. Its stated goals are to (1) make data more useful to climate researchers by developing collaborative technology that enhances data usability; (2) meet the specific needs that national and international climate projects have for distributed databases, data access, and data movement; (3) provide a universal and secure web-based data access portal for broad-based multi-model data collections; and (4) provide a wide range of climate data-analysis tools and diagnostic methods to international climate centers and U.S. government agencies. To this end, the ESG-CET is working to integrate all highly publicized climate data sets—from climate simulations to observations—using distributed storage management, remote high-performance units, high-bandwidth wide-area networks, and user desktop platforms in a collaborative problem-solving environment.

  7. Research of PV Application on

    E-Print Network [OSTI]

    Netoff, Theoden

    Research of PV Application on UMore Park Community Design Arch 8563:Getting Blow the Surface Xiaoyu Liu #12;Getting Blow Surface: PV opportunity on the UMore Park 2 Research of PV application on U More community on the aspect of PV application. There are four parts in this report: (1) Introduction of UMore

  8. A multilevel energy buffer and voltage modulator for grid-interfaced micro-inverters

    E-Print Network [OSTI]

    Chen, Minjie

    Micro-inverters operating into the single-phase grid from solar photovoltaic (PV) panels or other low-voltage sources must buffer the twice-line-frequency variations between the energy sourced by the PV panel and that ...

  9. A Multilevel Energy Buffer and Voltage Modulator for Grid-Interfaced Microinverters

    E-Print Network [OSTI]

    Chen, Minjie

    Microinverters operating into the single-phase grid from solar photovoltaic (PV) panels or other low-voltage sources must buffer the twice-line-frequency variations between the energy sourced by the PV panel and that ...

  10. High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint

    SciTech Connect (OSTI)

    Basso, T. S.

    2008-05-01T23:59:59.000Z

    This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

  11. Solar Grid Integration Industrial Research Perspectives

    E-Print Network [OSTI]

    Homes, Christopher C.

    with 25 inverters) Substation 1 Substation 2 Solar Power Generation Wind Generation 100 MW Wide variety of power levels and grid connections #12;5 Presenter and Event 3/30/2011 PV Generation Segmentation 1 and Event 3/30/2011 Essential PV power plant features Reliable power conversion Extensive service network

  12. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model On October 10, 2011, in This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance Model (PV-RPM) currently in development at Sandia...

  13. World Renewable Energy Congress 2011 Sweden Photovoltaic Technology (PV) 8-11 May 2011, Linkping, Sweden

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    energy and natural-gas-fuel power plants [3,4], new LCA databases have been built to complyWorld Renewable Energy Congress 2011 ­ Sweden Photovoltaic Technology (PV) 8-11 May 2011, Linköping, Sweden Environmental impacts of large-scale grid-connected ground-mounted PV installations Antoine Beylot

  14. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

    2012-01-01T23:59:59.000Z

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  15. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect (OSTI)

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29T23:59:59.000Z

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  16. Open PV Project: Unlocking PV Installation Data (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

  17. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and disseminating technical knowledge and understanding related to grid performance, reliability, forecasting, and costs of integration; developing integrated solutions to...

  18. Minnesota Power- Solar-Electric (PV) Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  19. Energy 101: Solar PV | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel...

  20. PV System Performance and Standards

    SciTech Connect (OSTI)

    Osterwald, C. R.

    2005-11-01T23:59:59.000Z

    This paper presents a brief overview of the status and accomplishments during fiscal year (FY) 2005 of the Photovoltaic (PV) System Performance and Standards Subtask, which is part of the PV Systems Engineering Project (a joint NREL-Sandia project).

  1. Sandia Energy - PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Reliability Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Systems ReliabilityCoryne Tasca2015-05-08T03:40:54+00:00...

  2. Transforming PV Installations toward Dispatchable, Schedulable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Advanced Energy...

  3. Solar PV and Glare Factsheet

    Broader source: Energy.gov [DOE]

    A common misconception about solar photovoltaic (PV) panels is that they inherently cause or create "too much" glare, posing a nuisance to neighbors and a safety risk for pilots. While solar PV systems can produce glare, light absorption - rather than reflection - is central to the function of solar PV panels. This fact sheet describes the basic issues surrounding glare from solar PV panels, the new Federal Aviation Administration guidance, and the implications for local governments.

  4. Testing for PV Reliability (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Bansal, S.

    2014-09-01T23:59:59.000Z

    The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

  5. Considerations for PV Site Surveys

    E-Print Network [OSTI]

    Johnson, Eric E.

    array. #12;Conductor Routing & Inverter Location The location of the inverter in relation to the PV of the conductors between the PV array and the inverter, and between the inverter and the AC load centerConsiderations for PV Site Surveys John Wiles Sponsored by the U.S. Department of Energy this loss

  6. Sandia Energy - PV Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshore Wind RD&D:PV Modeling &

  7. Sandia Energy - PV Value®

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshore Wind RD&D:PVReliabilitySystemsPV

  8. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01T23:59:59.000Z

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  9. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect (OSTI)

    None

    1995-10-01T23:59:59.000Z

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  10. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  11. Novel MIMO Linear Zero Dynamic Controller for the Grid-connected Photovoltaic System with

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    connected PV system also has its own draw- backs, the conversion efficiency of the inverter is low under low (PV) system. The relative degree is investigated through the concept of Lie derivative to execute the LZDC for three phase grid connected PV system. To implement the control theory, system stability

  12. 20 IAEI NEWS July.August 2008 www.iaei.org grid interconnections

    E-Print Network [OSTI]

    Johnson, Eric E.

    breakers be- ing back fed from utility-interactive PV inverters. We can use an equation of breaker ratings.iaei.org T he final connection between the pho- tovoltaic (PV) power system and the electrical utility grid are responsible for safety. These connections vary significant- ly from PV system to system due to the size

  13. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ���¢��������networks���¢������� in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1���¢��������PV Deployment Analysis for New York City���¢��������we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2���¢��������A Briefing for Policy Makers on Connecting PV to a Network Grid���¢��������presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3���¢��������Technical Review of Concerns and Solutions to PV Interconnection in New Y

  14. Berkeley Program Offers New Option for Financing Residential PV Systems

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Vehicle for Residential PV Installations: Opportunities andfor Financing Residential PV Systems Mark Bolinger, Lawrencefor residential photovoltaic (PV) systems. Though financing

  15. Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2010-09-23T23:59:59.000Z

    Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

  16. ATLAS off-Grid sites (Tier 3) monitoring. From local fabric monitoring to global overview of the VO computing activities

    E-Print Network [OSTI]

    PETROSYAN, A; The ATLAS collaboration; BELOV, S; ANDREEVA, J; KADOCHNIKOV, I

    2012-01-01T23:59:59.000Z

    ATLAS is a particle physics experiment on Large Hadron Collider at CERN. The experiment produces petabytes of data every year. The ATLAS Computing model embraces the Grid paradigm and originally included three levels of computing centres to be able to operate such large volume of data. With the formation of small computing centres, usually based at universities, the model was expanded to include them as Tier3 sites. The experiment supplies all necessary software to operate typical Grid-site, but Tier3 sites do not support Grid services of the experiment or support them partially. Tier3 centres comprise a range of architectures and many do not possess Grid middleware, thus, monitoring of storage and analysis software used on Tier2 sites becomes unavailable for Tier3 site system administrator and, also, Tier3 sites activity becomes unavailable for virtual organization of the experiment. In this paper we present ATLAS off-Grid sites monitoring software suite, which enables monitoring on sites, which are not unde...

  17. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    None

    2012-01-25T23:59:59.000Z

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  18. Full Steam Ahead for PV in US Homes?

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Full Steam Ahead for PV in US Homes? Mark Bolinger, Galenutility-scale photovoltaic (PV) installations in the yearsimplications for PV rebate program administrators, PV system

  19. FPGA Based Sinusoidal Pulse Width Modulated Waveform Generation for Solar (PV) Rural Home Power Inverter

    E-Print Network [OSTI]

    Singh, S N

    2010-01-01T23:59:59.000Z

    With the increasing concern about global environmental protection and energy demand due to rapid growth of population in developing countries and the diminishing trend of resources of conventional grid supply, the need to produce freely available pollution free natural energy such as solar/wind energy has been drawing increasing interest in every corner of the world. In an effort to utilize these energies effectively through Power converter, a great deal of research is being carried out by different researchers / scientist and engineers at different places in the world to meet the increasing demand of load. The study presents methodology to integrate solar (PV) energy (which is freely available in every corner of the world) with grid source and supplement the existing grid power in rural houses during its cut off or restricted supply period. In order to get consistency in supply a DG is also added as a standby source in the proposed integration of network. The software using novel Direct PWM modulation strate...

  20. Design of a Net-Metering and PV Exhibit for the 2005 Solar Decathlon

    SciTech Connect (OSTI)

    Wassmer, M.; Warner, C.

    2005-01-01T23:59:59.000Z

    In the 2005 Solar Decathlon competition, 19 collegiate teams will design, build, and operate grid-independent homes powered by photovoltaic (PV) arrays on the National Mall. The prominence of grid-interconnected systems in the marketplace has provided the impetus for the development of a net-metering exhibit to be installed and operated during the competition. The exhibit will inform the visiting public about PV basics and appropriate alternatives to grid-independent systems. It will consist of four interactive components. One will be designed to educate people about the principles of net metering using a small PV array, a grid-interactive inverter, and a variable load. Additional components of the exhibit will demonstrate the effects of orientation, cloud cover, and nighttime on performance. The nighttime component will discuss appropriate storage options for different applications.

  1. Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2008-01-01T23:59:59.000Z

    Equipment and Installation Standards for Grid-Connected PV Systems Rated Output Product Reliabilityreliability-related industry standards exist for inverters. Other equipment andEquipment and installation standards ensure that PV system components and installations meet minimum industry standards related to safety, reliability,

  2. PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity

    E-Print Network [OSTI]

    PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity is much and the low one to thin-film cadmium telluride PV systems. Fossil fuel power plants PV displaces. 5.8 External

  3. Sandia National Laboratories: PV Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Sandia Research on PV Arc-Fault Detection Submitted for US Patent On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

  4. How Stochastic Network Calculus Concepts Help Green the Power Grid

    E-Print Network [OSTI]

    Low, Steven H.

    optimization techniques for hybrid PV/wind systems sizing have been proposed in the liter- ature [12 the feasibility of integrating solar photovoltaic (PV) panels and wind turbines into the grid. To deal into the power system of an island off the coast of Southern California. Performance of the hybrid system under

  5. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect (OSTI)

    Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

    2009-08-01T23:59:59.000Z

    This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions.1 We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

  6. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions

    E-Print Network [OSTI]

    Muntean, Marilena

    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, ...

  7. Esthetically Designed Municipal PV System Maximizes Energy Production and Revenue Return

    Broader source: Energy.gov [DOE]

    In late 2008, the City of Sebastopol, CA installed a unique 42 kW grid-interactive photovoltaic (PV) system to provide electricity for pumps of the Sebastopol municipal water system. The resulting innovative Sun Dragon PV system, located in a public park, includes design elements that provide optimized electrical performance and revenue generation for the energy produced while also presenting an artistic and unique appearance to park visitors.

  8. Modelling PV Deployment: A Tool Developed at CEEP to

    E-Print Network [OSTI]

    Delaware, University of

    ............................................. 6 Figure 3: PV Planner© Simulation of PV Impact on Building Electric Load Profile

  9. Sandia/EPRI PV Symposium - Save the Date!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch Briefs The annuallyNationalseeksSandia/EPRI PV

  10. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01T23:59:59.000Z

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  11. Interpolation of scattered temperature data measurements onto a worldwide regular grid using radial basis functions with applications to global warming

    SciTech Connect (OSTI)

    Kansa, E.J.; Axelrod, M.C.; Kercher, J.R.

    1994-05-01T23:59:59.000Z

    Our current research into the response of natural ecosystems to a hypothesized climatic change requires that we have estimates of various meteorological variables on a regularly spaced grid of points on the surface of the earth. Unfortunately, the bulk of the world`s meteorological measurement stations is located at airports that tend to be concentrated on the coastlines of the world or near populated areas. We can also see that the spatial density of the station locations is extremely non-uniform with the greatest density in the USA, followed by Western Europe. Furthermore, the density of airports is rather sparse in desert regions such as the Sahara, the Arabian, Gobi, and Australian deserts; likewise the density is quite sparse in cold regions such as Antarctica Northern Canada, and interior northern Russia. The Amazon Basin in Brazil has few airports. The frequency of airports is obviously related to the population centers and the degree of industrial development of the country. We address the following problem here. Given values of meteorological variables, such as maximum monthly temperature, measured at the more than 5,500 airport stations, interpolate these values onto a regular grid of terrestrial points spaced by one degree in both latitude and longitude. This is known as the scattered data problem.

  12. Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M. Barros

    E-Print Network [OSTI]

    Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M-090 S~ao Paulo, Brazil Abstract Numerical grid imprinting errors have often been observed in global atmospheric models on icosahedral grids. In this paper we analyse the sources of grid imprinting error related

  13. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | DepartmentINLDepartmentPV Value PV Value PV

  14. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01T23:59:59.000Z

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  15. Pressure-equalizing PV assembly and method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2004-10-26T23:59:59.000Z

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  16. PV module mounting method and mounting assembly

    DOE Patents [OSTI]

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23T23:59:59.000Z

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  17. Gulf Power- Solar PV Program

    Broader source: Energy.gov [DOE]

    '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more...

  18. 2014 PV Performance Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 PV Performance Modeling Workshop Photo courtesy of Sempra Energy 8:00 AM to 9:00 PM Monday, May 5, 2014 At Biltmore Hotel, Santa Clara, California 512014 Agenda: Start Time...

  19. SunEdison Photovoltaic Grid Integration Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-302

    SciTech Connect (OSTI)

    Kroposki, B.

    2012-09-01T23:59:59.000Z

    Under this Agreement, NREL will work with SunEdison to monitor and analyze the performance of photovoltaic (PV) systems as they relate to grid integration. Initially this project will examine the performance of PV systems with respect to evaluating the benefits and impacts on the electric power grid.

  20. Secretary Chu to Discuss Importance of Electric Grid Modernization...

    Energy Savers [EERE]

    Discuss Importance of Electric Grid Modernization to U.S. Competitiveness at Gridwise Global Forum Secretary Chu to Discuss Importance of Electric Grid Modernization to U.S....

  1. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

    2013-01-01T23:59:59.000Z

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  2. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  3. Applications (Grid Tools)

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0 # * 1 PDB CDB Grid Fabric Hardware &+ '' + ) , '1 '1 ' % - * # ( Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0

  4. Sandia Energy - PV Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshore Wind RD&D:PVReliability

  5. Federal Tax Incentives for PV: Potential Implications for Program Design

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    Forthcoming. “EPAct 2005’s PV Tax Credits: What Are TheyAssumptions • Installed PV system costs exhibit economies ofFederal Tax Incentives for PV Potential Implications for

  6. Sandia National Laboratories: European PV Solar Energy Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Solar Energy Conference and Exhibition Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in...

  7. Sandia National Laboratories: Sandian Presents on PV Failure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & SimulationSandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) Sandian Presents on PV Failure Analysis...

  8. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    SciTech Connect (OSTI)

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01T23:59:59.000Z

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  9. Efficient Power Converters for PV Arrays : Scalable Submodule Power Conversion for Utility-Scale Photovoltaics

    SciTech Connect (OSTI)

    None

    2012-02-23T23:59:59.000Z

    Solar ADEPT Project: SolarBridge is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That’s because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

  10. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16T23:59:59.000Z

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  11. A Monolithic Microconcentrator Receiver For A Hybrid PV-Thermal System: Preliminary Performance

    E-Print Network [OSTI]

    ://solar.anu.edu.au Abstract: An innovative hybrid PV-thermal microconcentrator (MCT) system is being jointly developed by Chromasun Inc., San Jose, California, and at the Centre for Sustainable Energy Systems, Australian National University. The MCT aims to develop the small-scale, roof-top market for grid-integrated linear CPV systems

  12. Batteries put to test in PV plan The technology could help utilities absorb

    E-Print Network [OSTI]

    companies and the Kauai Island Utility Cooperative is the ability to absorb increasing amounts of solar of solar power produced by rooftop photovoltaic panels. The project, in a neighborhood with one energy being generated by an unprecedented number of rooftop PV systems. The solar boom is raising grid

  13. PV Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to:PUD No 1 ofPV Solar PlanetPV

  14. Webinar: Evaluating Roof Structures for Solar PV

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Connecticut's Structural Review Worksheet for Residential Rooftop Solar PV Systems. The webinar explains how the worksheet should be used and common concerns with wind and dead loads for rooftop solar PV.

  15. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

  16. City of Palo Alto Utilities- PV Partners

    Broader source: Energy.gov [DOE]

    The City of Palo Alto Utilities (CPAU) PV Partners Program offers incentives to customers that install qualifying PV systems. The program, which has a budget of approximately $13 million over 10...

  17. November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

  18. Prospects for grid-connected solar PV in Kenya

    E-Print Network [OSTI]

    Rose, Amy Michelle

    2013-01-01T23:59:59.000Z

    Kenya's electric power system is heavily reliant on hydropower, leaving it vulnerable during recurring droughts. Supply shortfalls are currently met through the use of expensive leased diesel generation. Therefore, plans ...

  19. Incorporating Aggregated PV Systems into the Power Grid | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR Jump to:

  20. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmarttheSmartSmart Ventilation

  1. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmarttheSmartSmart

  2. Solar Resource and PV Systems Performance

    E-Print Network [OSTI]

    Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department Subtask 11.1 Deliverables 2 and 4: Report on Solar Resource and PV Systems Performance at Selected Test agency thereof. #12;1 Solar Resource and PV Systems Performance at Selected Test Sites Contents 1

  3. PV Odds & Ends by John Wiles

    E-Print Network [OSTI]

    Johnson, Eric E.

    PV Odds & Ends by John Wiles Sponsored by the U.S. Department of Energy There are two primary wiring methods for connecting PV modules together--using exposed single-conductor cables, and using conduits. Each dictates a different grounding method, but in either case, PV modules must always

  4. Analysis and Design of Smart PV Module 

    E-Print Network [OSTI]

    Mazumdar, Poornima

    2012-12-10T23:59:59.000Z

    This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane...

  5. Analysis and Design of Smart PV Module

    E-Print Network [OSTI]

    Mazumdar, Poornima

    2012-12-10T23:59:59.000Z

    This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane...

  6. Sandia Energy - Photovoltaic (PV) Regional Test Center (RTC) Website Goes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshoreLive Photovoltaic (PV) Regional

  7. Sandia Energy - Photovoltaic Regional Testing Center (PV RTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshoreLive Photovoltaic (PV)

  8. Sandia Energy - Sandia PV Team Publishes Book Chapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments HomeDatabase on Engine FuelAcademy ofPV Team

  9. Sandia Energy - PV Performance Modeling Collaborative's New and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshore Wind RD&D:PV Modeling

  10. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  11. A control system for improved battery utilization in a PV-powered peak-shaving system

    SciTech Connect (OSTI)

    Palomino, E [Salt River Project, Phoenix, AZ (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-08-01T23:59:59.000Z

    Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

  12. Sandia National Laboratories: PV bankability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  13. Grid Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite ReactorGreg

  14. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Ing, Edwin

    2006-03-28T23:59:59.000Z

    The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or ''buy-down'' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). With the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government is poised to play a much more significant future role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, and--absent an extension (for which the solar industry has already begun lobbying)--will last for a period of two years: the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2008. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions. We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

  15. How sharp are PV measures?

    E-Print Network [OSTI]

    A. Jencova; S. Pulmannova

    2007-01-11T23:59:59.000Z

    Properties of sharp observables (normalized PV measures) in relation to smearing by a Markov kernel are studied. It is shown that for a sharp observable $P$ defined on a standard Borel space, and an arbitrary observable $M$, the following properties are equivalent: (a) the range of $P$ is contained in the range of $M$; (b) $P$ is a function of $M$; (c) $P$ is a smearing of $M$.

  16. Grid Security

    E-Print Network [OSTI]

    Sinnott, R.O.

    Sinnott,R.O. National Centre for e-Social Science book, Grid Computing: Technology, Service and Application, CRC Press, November 2008.

  17. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01T23:59:59.000Z

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  18. 564 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 4, OCTOBER 2012 Dynamic Stability of Three-Phase Grid-Connected

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    564 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 4, OCTOBER 2012 Dynamic Stability of Three-Phase Grid-Connected Photovoltaic System Using Zero Dynamic Design Approach M. A. Mahmud, Student Member of the dynamic response of a three-phase grid-connected photovoltaic (PV) system. To control the grid cur- rent

  19. PV prospects: thinPV prospects: thin--film cellsfilm cells Si cell costs

    E-Print Network [OSTI]

    Pulfrey, David L.

    1 PV prospects: thinPV prospects: thin--film cellsfilm cells LECTURE 8 · Si cell costs · optimizing://www.solarbuzz.com/Moduleprices.htm #12;6 Cost of PV modulesCost of PV modules The lowest retail price for a multicrystalline silicon for a monocrystalline silicon module is $1.48 per watt (1.04 per watt), from an Asian retailer. Brand, technical

  20. Overview of PV balance-of-systems technology: Experience and guidelines for utility ties in the United States of America

    SciTech Connect (OSTI)

    Bower, W. [Sandia National Labs., Albuquerque, NM (United States); Whitaker, C. [Endecon Engineering, San Ramon, CA (United States)

    1997-10-01T23:59:59.000Z

    The U.S. National Photovoltaic Program began in 1975 by supporting the development of terrestrial PV modules and hardware associated with grid-connected PV systems. Early PV-system demonstration programs were also supported and cost shared by the U.S. Department of Energy (DOE). A wide variety of PV systems were deployed, usually with utility participation. The early demonstration projects provided, and continue to provide, valuable PV system experience to utilities, designers and suppliers. As a result of experience gained, several important milestones in codes and standards pertaining to the design, installation and operation of photovoltaic (PV) systems have been completed. These code and standard activities were conducted through collaboration of participants from all sectors of the PV industry, utilities and the US DOE National Photovoltaic Program. Codes and standards that have been proposed, written, or modified include changes and additions for the 1999 National Electric Code{reg_sign} (NEC{reg_sign}), standards for fire and personnel safety, system testing, field acceptance, component qualification, and utility interconnection. Project authorization requests with the Institute of Electrical and Electronic Engineers (IEEE) have resulted in standards for component qualification and were further adapted for standards used to list PV modules and balance-of-system components. Industry collaboration with Underwriter Laboratories, Inc., with the American Society for Testing and Materials, and through critical input and review for international standards with the International Electrotechnical Commission have resulted in new and revised domestic and international standards for PV applications. Activities related to work on codes and standards through the International Energy Agency are also being supported by the PV industry and the US DOE. The paper shows relationships between activities in standards writing.

  1. Ensuring Quality of PV Modules: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

    2011-07-01T23:59:59.000Z

    Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

  2. Sandia National Laboratories: improving PV performance model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accuracy PV Performance Modeling Collaborative's New and Improved Website Is Launched On December 10, 2014, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  3. Sandia National Laboratories: improving PV performance model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technical rigor PV Performance Modeling Collaborative's New and Improved Website Is Launched On December 10, 2014, in Computational Modeling & Simulation, Energy, Facilities, News,...

  4. Sandia National Laboratories: PV Performance Modeling Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Collaborative PV Performance Modeling Collaborative's New and Improved Website Is Launched On December 10, 2014, in Computational Modeling & Simulation, Energy,...

  5. Updating Interconnection Screens for PV System Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abraham Ellis, Roger Hill Sandia National Laboratories Tom Key, Kristen Nicole, Jeff Smith Electric Power Research Institute Updating Interconnection Screens for PV System...

  6. Lodi Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6...

  7. CPS Energy- Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

  8. Lassen Municipal Utility District- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the...

  9. Modeling Distribution Connected PV and Interconnection Study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    load and solar variability Modelling regulator controls Interaction between smart inverters and regulator load drop compensator control 9 Base Case With PV Percent Change...

  10. Sandia National Laboratories: PV-Tech magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Newsletter, SunShot, Systems Analysis Sandia researcher Joshua Stein (in Sandia's Photovoltaic & Distributed Systems Integration Dept.) highlighted novel PV array...

  11. Sandia National Laboratories: PV array monitoring strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Newsletter, SunShot, Systems Analysis Sandia researcher Joshua Stein (in Sandia's Photovoltaic & Distributed Systems Integration Dept.) highlighted novel PV array...

  12. Sandia National Laboratories: PV Performance Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot The state of the art in PV system monitoring is relatively...

  13. Sandia National Laboratories: organic PV materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organic PV materials Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  14. Sandia National Laboratories: flexible PV substrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV substrate Sandia, Endicott Interconnect Technologies, EMCORE, International Micro Industries, NREL, Universal Instruments: Solar Glitter On March 21, 2013, in Capabilities,...

  15. NREL: Photovoltaics Research - PV News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure John Wohlgemuth,News ThePV News The

  16. Kenmos PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabecKenduskeag, Maine: EnergyNewKenmos PV Jump

  17. PV | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama:ASES 2003,PUD No 1PUD No 2PVCoPV

  18. PV Trackers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to:PUD No 1 ofPV Solar

  19. Sunshine PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpods Inc Jump to: navigation, searchSunrayPV

  20. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Environmental Management (EM)

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

  1. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect (OSTI)

    Hanley, Charles J.; Ton, Dan T. (U.S. Department of Energy, Washington, D.C.); Boyes, John D.; Peek, Georgianne Huff

    2008-07-01T23:59:59.000Z

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  2. The Impact of Retail Rate Structures on the Economics ofCustomer-Sited PV: A Study of Commercial Installations inCalifornia

    SciTech Connect (OSTI)

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-06-01T23:59:59.000Z

    We analyze the impact of retail rate design on the economics of grid-connected commercial photovoltaic (PV) systems in California. The analysis is based on 15-minute interval building load and PV production data for 24 commercial PV installations in California, spanning a diverse set of building load shapes and geographic locations. We derive the annual bill savings per kWh generated for each PV system, under each of 21 distinct retail rates currently offered by the five largest utilities in California. We identify and explain variation in the value of bill savings attributable to differences in the structure of demand and energy charges across rates, as well as variation attributable to other factors, such as the size of the PV system relative to building load, the specific shape of the PV production profile, and the customer load profile. We also identify the optimal rate for each customer, among those rates offered as alternatives to one another, and show how the decision is driven in large measure by the size of the PV system relative to building load. The findings reported here may be of value to regulators and utilities responsible for designing retail rates, as well as to customers and PV retailers who have a need to estimate the prospective bill savings of PV systems.

  3. Storage Size Determination for Grid-Connected Photovoltaic Systems

    E-Print Network [OSTI]

    Ru, Yu; Martinez, Sonia

    2011-01-01T23:59:59.000Z

    In this paper, we study the problem of determining the size of battery storage used in grid-connected photovoltaic (PV) systems. In our setting, electricity is generated from PV and is used to supply the demand from loads. Excess electricity generated from the PV can be stored in a battery to be used later on, and electricity must be purchased from the electric grid if the PV generation and battery discharging cannot meet the demand. The objective is to minimize the electricity purchase from the electric grid while at the same time choosing an appropriate battery size. More specifically, we want to find a unique critical value (denoted as $E_{max}^c$) of the battery size such that the cost of electricity purchase remains the same if the battery size is larger than or equal to $E_{max}^c$, and the cost is strictly larger if the battery size is smaller than $E_{max}^c$. We propose an upper bound on $E_{max}^c$, and show that the upper bound is achievable for certain scenarios. For the case with ideal PV generat...

  4. Solar PV Permitting and Safety Training Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides training on two permitting resources for municipal inspectors; a prescriptive process for building inspectors and a guidance document for permitting for PV for electrical inspectors. The webinar also runs through a number of key code articles in Massachusetts 2014 electrical code and examines a variety of safety hazards commonly found during or after solar PV installations.

  5. Draft Transcript on Municipal PV Systems

    Broader source: Energy.gov [DOE]

    Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

  6. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    . It may also be implemented by means of customer-sited emergency power generation (e.g., diesel generators the case that distributed PV generation deserves a substantial portion of the credit allotted to demand response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing

  7. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Miyamoto, Yusuke (Kandenko, Ibaraki, Japan); Nakashima, Eichi (Kandenko, Ibaraki, Japan); Lave, Matthew

    2011-11-01T23:59:59.000Z

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  8. NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency" NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency" fupwgdestinwestby.pdf More...

  9. SunShot Presentation PV Module Reliabity Workshop Opening Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation PV Module Reliabity Workshop Opening Session SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally presented at...

  10. Integrating Solar PV into Energy Services Performance Contracts...

    Energy Savers [EERE]

    Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide Integrating Solar PV into Energy Services Performance Contracts: Options...

  11. advanced modular pv: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary Review of Advanced Inverter Technologies for Residential PV Systems Renewable Energy Websites Summary: Summary Review of Advanced Inverter Technologies for Residential PV...

  12. Sandia National Laboratories: PV Performance Analysis and Module...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Analysis and Module Reliability workshop Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014,...

  13. Low Cost High Concentration PV Systems for Utility Power Generation...

    Energy Savers [EERE]

    Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief...

  14. Sandia National Laboratories: Sandia to host PV Bankability workshop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECNews & EventsConferencesSandia to host PV Bankability workshop at Solar Power International (SPI) 2013 Sandia to host PV Bankability workshop at Solar Power International...

  15. Optimal Control of a Grid-Connected Hybrid Electrical Energy Storage System for Homes

    E-Print Network [OSTI]

    Pedram, Massoud

    . There are several ways to perform such a demand side management [3]. In this paper, we focus on integrating PV power companies can employ dynamic electricity pricing strategies incentivizing consumers to perform demand side management by adjusting their power demand from the Grid to match the power generation capacity of the Grid

  16. THE IMPACT OF CITY-LEVEL PERMITTING PROCESSES ON RESIDENTIAL PV INSTALLATION PRICES AND DEVELOPMENT TIMES

    E-Print Network [OSTI]

    Dong, Changgui

    2014-01-01T23:59:59.000Z

    The installed price of photovoltaic (PV) systems hasprice and development time of residential photovoltaic (PV)

  17. Grid Architecture

    Broader source: Energy.gov (indexed) [DOE]

    Integration of Distributed Generation", John McDonald, et.al. Electrical Transmission and Smart Grids, Springer, 2013. 4.25 Figure 4.17. Common Distribution Looping Arrangements In...

  18. EELE408 Photovoltaics Lecture 22: Grid Tied Systems

    E-Print Network [OSTI]

    Kaiser, Todd J.

    14 Inverter Electrical Panel Monitoring Exterior Labeled PV Disconnect Required 15 Inverter 16 Photovoltaic Generator AC Load Inverter & Metering 2 Generator Grid g Example: Most Home Systems Roof Anchor City Hall 11 Two inverters in this systems Photovoltaic & Solar Heating 12 Hot water tilted for winter

  19. Pressure-equalizing PV assembly and method | OSTI, US Dept of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressure-equalizing PV assembly and method Re-direct Destination: Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV...

  20. A grid-connected photovoltaic power conversion system with single-phase multilevel inverter

    SciTech Connect (OSTI)

    Beser, Ersoy; Arifoglu, Birol; Camur, Sabri; Beser, Esra Kandemir [Department of Electrical Engineering, Kocaeli University (Turkey)

    2010-12-15T23:59:59.000Z

    This paper presents a grid-connected photovoltaic (PV) power conversion system based on a single-phase multilevel inverter. The proposed system fundamentally consists of PV arrays and a single-phase multilevel inverter structure. First, configuration and structural parts of the PV assisted inverter system are introduced in detail. To produce reference output voltage waves, a simple switching strategy based on calculating switching angles is improved. By calculated switching angles, the reference signal is produced as a multilevel shaped output voltage wave. The control algorithm and operational principles of the proposed system are explained. Operating PV arrays in the same load condition is a considerable point; therefore a simulation study is performed to arrange the PV arrays. After determining the number and connection types of the PV arrays, the system is configured through the arrangement of the PV arrays. The validity of the proposed system is verified through simulations and experimental study. The results demonstrate that the system can achieve lower total harmonic distortion (THD) on the output voltage and load current, and it is capable of operating synchronous and transferring power values having different characteristic to the grid. Hence, it is suitable to use the proposed configuration as a PV power conversion system in various applications. (author)

  1. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

  2. Sandia Energy - PV Plant Performance Technical Briefing Published in PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Postednanorod

  3. Sandia National Laboratories: high PV deployment level

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deployment level ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  4. High-efficiency grid-connected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation

    SciTech Connect (OSTI)

    Choi, Woo-Young; Lai, Jih-Sheng (Jason) [Future Energy Electronics Center, Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States)

    2010-04-15T23:59:59.000Z

    This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current. (author)

  5. Terawatt Challenge for Thin-Film PV

    SciTech Connect (OSTI)

    Zweibel, K.

    2005-08-01T23:59:59.000Z

    The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

  6. Solar Works! In Seattle: Introduction to Solar Electric (PV)

    Broader source: Energy.gov [DOE]

    Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

  7. Washington City Power- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Washington City offers a rebate of $1,000 per kilowatt-DC (kW-DC) to customers who install photovoltaic (PV) systems or wind-energy systems. The rebate is limited to $3,000 for residential systems...

  8. Pacific Power- PV Rebate Program (California)

    Broader source: Energy.gov [DOE]

    Pacific Power is providing rebates to their customers who install photovoltaic (PV) systems on their homes and facilities. These rebates step down over time as key installation targets are met. As...

  9. Austin Energy- Commercial Solar PV Incentive Program

    Broader source: Energy.gov [DOE]

    In order to qualify for this program, PV modules must be new and be listed on the California Energy Commission's Go Solar web site. In addition, all solar panels must have a 20-year manufacturer ...

  10. PV Module Reliability Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

  11. Distributed PV Permitting and Inspection Processes

    Broader source: Energy.gov [DOE]

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  12. Merced Irrigation District- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate...

  13. IID Energy- PV Solutions Rebate Program

    Broader source: Energy.gov [DOE]

    '''''IID accepted applications for the 2013 PV Solutions Program from Jan. 2, 2013 – Jan. 31, 2013. Winners were determined via lottery. The program is now closed for the remainder of 2013, but...

  14. SMUD- Non-Residential PV Incentive Program

    Broader source: Energy.gov [DOE]

    SMUD offers cash incentives to commercial, industrial, and non-profit customers who install solar photovoltaic (PV) systems. Customers have the option of taking a one-time, up-front payment through...

  15. Austin Energy- Residential Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

  16. Austin Energy- Commercial PV Incentive Program

    Broader source: Energy.gov [DOE]

    Austin Energy, a municipal utility, offers a production incentive to its commercial and multi-family residential customers for electricity generated by qualifying photovoltaic (PV) systems of up to...

  17. Plumas-Sierra REC- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25...

  18. City of Lompoc Utilities- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $2.00 per watt-AC. The incentive amount may not exceed 50% the...

  19. Summary of First PV Performance Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AnalystsOther Steve Ransome Navigant SolarTech Modelers CEC-UW Clean Power King Solar Works PVDesign Pro - Hoes Engineering PV*Sol PVSyst Universities U of Arizona U of...

  20. Power losses in PV arrays due to variations in the I-V characteristics of PV modules

    E-Print Network [OSTI]

    Heinemann, Detlev

    Power losses in PV arrays due to variations in the I-V characteristics of PV modules Wolfgang Damm-V characteristics of the 36 individual modules of a PV generator at the University of Oldenburg were measured the basis for the calculations of the mismatch losses due to series and parallel connection of PV modules

  1. The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems

    E-Print Network [OSTI]

    array on the performance for a diesel/battery/inverter/pv system. It seeks to determine whetherThe Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 k

  2. NATL Grid Map 50-Meter Grid

    E-Print Network [OSTI]

    Slatton, Clint

    NATL-east NATL Grid Map 50-Meter Grid Locations in NATL can be specified by reference to a grid intervals. Each gridline intersection ("grid point") is identified by its two gridlines (e.g., E5). Each 50x50-m block formed by the gridlines is identified by the grid point in its northwest corner (e

  3. PV System Energy Evaluation Method (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-01-01T23:59:59.000Z

    This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

  4. Standards for PV Modules and Components -- Recent Developments and Challenges: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.

    2012-10-01T23:59:59.000Z

    International standards play an important role in the Photovoltaic industry. Since PV is such a global industry it is critical that PV products be measured and qualified the same way everywhere in the world. IEC TC82 has developed and published a number of module and component measurement and qualification standards. These are continually being updated to take advantage of new techniques and equipment as well as better understanding of test requirements. Standards presently being updated include the third edition of IEC 61215, Crystalline Silicon Qualification and the second edition of IEC 61730, PV Module Safety Requirements. New standards under development include qualification of junction boxes, connectors, PV cables, and module integrated electronics as well as for testing the packaging used during transport of modules. After many years of effort, a draft standard on Module Energy Rating should be circulated for review soon. New activities have been undertaken to develop standards for the materials within a module and to develop tests that evaluate modules for wear-out in the field (International PV Module QA Task Force). This paper will discuss these efforts and indicate how the audience can participate in development of international standards.

  5. SMART WATER GRID PLAN B TECHNICAL REPORT

    E-Print Network [OSTI]

    Julien, Pierre Y.

    SMART WATER GRID PLAN B TECHNICAL REPORT FALL 2014 PREPARED BY: OLGA MARTYUSHEVA IN PARTIAL of water resources is currently under stress due to climatic changes, and continuous increase in water demand linked to the global population increase. A Smart Water Grid (SWG) is a two-way real time network

  6. Sandia Energy - PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshore Wind RD&D:PVReliabilitySystems

  7. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGrid

  8. An Analysis of Residential PV System Price Differences Between the United States and Germany

    E-Print Network [OSTI]

    Seel, Joachim

    2014-01-01T23:59:59.000Z

    barriers for PV systems in Germany at the national level, PVfor residential PV systems in Germany. Bundesverband derof PV Power Applications in Germany 2006, Exchange and

  9. Holdover inoculum of Pseudomonas syringae pv. alisalensis from broccoli raab causes disease in subsequent plantings

    E-Print Network [OSTI]

    Cintas, N A; Koike, S T; Bunch, R A; Bull, C T

    2006-01-01T23:59:59.000Z

    by Pseudomonas syringae pv. alisalensis in California. Plantof Pseudo- monas syringae pv. alisalensis. (Abstr. ) Phyto-2004. Pseudomonas syringae pv. alisalensis and Pseudomonas

  10. Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    Dan. 2006. Best Practices in PV Rebate Programs: Helpingprogram staff. Designing PV Incentive Programs to PromoteGroup), Mike Taylor Designing PV Incentive Programs to

  11. Designing PV Incentive Programs to Promote Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2007-01-01T23:59:59.000Z

    DESIGNING PV INCENTIVE PROGRAMS TO PROMOTE SYSTEMcustomer-sited photovoltaic (PV) systems, provided throughface to ensuring that their PV systems perform well, and the

  12. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01T23:59:59.000Z

    Analysis of Distributed PV, American Solar Energy Society,Simulating the Reduction in PV Powerplant Variability due to8] T. Hoff, R. Perez, Modeling PV Fleet Output Variability,

  13. An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta.

    E-Print Network [OSTI]

    Han, Sang-Wook; Park, Chang-Jin; Lee, Sang-Won; Ronald, Pamela C

    2008-01-01T23:59:59.000Z

    Background Xanthomonas oryzae pv. oryzae, a yellow-pigmentedsativa L. ) plants. X. oryzae pv. oryzae infection can causetropical Asia [1]. X. oryzae pv. oryzae infects rice leaves

  14. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    E-Print Network [OSTI]

    Feldman, David

    2014-01-01T23:59:59.000Z

    Utility-Scale Photovoltaic (PV) System Prices in the Unitedphotovoltaic (PV) systems has soared in recent years, driven by declining PV prices

  15. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Model (WVM) for Solar PV Power Plants Matthew Lave, Janoutput of a solar photovoltaic (PV) plant was presented andsimulating solar photovoltaic (PV) power plant output given

  16. HOURLY GLOBAL RADIATION PREDICTION FROM GEOSTATIONARY SATELLITE DATA Pierrick Haurant1,2*

    E-Print Network [OSTI]

    Boyer, Edmond

    limits the photovoltaic (PV) systems integration on electrical grids. Indeed, fluctuations of the solar resource lead to strong variations of PV production that can destabilize the electrical network, in case failures. However, a good management of these different power sources needs predictions of load and fatal

  17. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    SciTech Connect (OSTI)

    Letendre, Steven E.; Perez, Richard

    2006-07-15T23:59:59.000Z

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  18. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities

    SciTech Connect (OSTI)

    Goodrich, A.; James, T.; Woodhouse, M.

    2012-02-01T23:59:59.000Z

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

  19. PV performance modeling workshop summary report.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Cameron, Christopher P.

    2011-05-01T23:59:59.000Z

    During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

  20. DOE High Performance Concentrator PV Project

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2005-08-01T23:59:59.000Z

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  1. Evaluation of Encapsulant Materials for PV Applications

    SciTech Connect (OSTI)

    Kempe, M.

    2010-01-01T23:59:59.000Z

    Encapsulant materials used in PV modules serve multiple purposes. They physically hold components in place, provide electrical insulation, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically de-coupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Encapsulant materials by themselves do not completely prevent water vapour ingress [1-3], but if they are well adhered, they will prevent the accumulation of liquid water providing protection against corrosion as well as electrical shock. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

  2. Updating Interconnection Screens for PV System Integration

    SciTech Connect (OSTI)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01T23:59:59.000Z

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  3. Global Solar Photovoltaic (PV) Installation Market to be Propelled by

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEF Jump to: navigation,GW byGreater Concerns

  4. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    SciTech Connect (OSTI)

    NONE

    1998-09-28T23:59:59.000Z

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.

  5. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Kurtz, S.

    2014-10-01T23:59:59.000Z

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

  6. axonopodis pv phaseoli: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control objective is to balance the power flow from the PV module to the battery and the load such that the PV power is utilized effectively and the battery is charged with three...

  7. arboricola pv pruni: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the battery charging loop. The control objective is to balance the power flow from the PV module to the battery and the load such that the PV power is utilized effectively and...

  8. accelerating pv cost: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mix of wind and solar PV comes at around 80% solar PV share, owing to the US summer load peak. By picking this mix, long-term storage requirements can be more than halved...

  9. Breakout Session: Getting in the Loop: PV Hardware Recycling...

    Energy Savers [EERE]

    Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT...

  10. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hourly satellite solar radiation information is used to determine the amount of annual solar energy that can be pro- duced from PV for the designated area populated with PV....

  11. NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Projects FUPWG Meeting: "Going Costal for Energy Efficiency" Bob Westby, NREL FEMP Program Manager and Sustainable NREL Lead April 14-16, 2008 Contents * Mesa Top PV project -...

  12. Sandia Energy - Grid Modernization Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGridGrid

  13. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01T23:59:59.000Z

    WVM) for Solar PV Power Plants, Sustainable Energy, IEEESolar PV Power Plants," IEEE Transactions on Sustainable Energy,

  14. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    simulating solar photovoltaic (PV) power plant output givenfor simulating the power output of a solar photovoltaic (PV)

  15. PV Performance and Reliability Validation Capabilities at Sandia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Reliability Validation Capabilities at Sandia National Laboratories PV Performance and Reliability Validation Capabilities at Sandia National Laboratories This...

  16. El Paso Electric Company- Solar PV Pilot Program

    Broader source: Energy.gov [DOE]

    '''''El Paso Electric's 2013 Solar PV Rebate program will reopen at 12:00 pm MST on February 1, 2013.'''''

  17. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Savers [EERE]

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

  18. Dynamic Interactions of PV units in Low Volatge Distribution Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Dynamic Interactions of PV units in Low Volatge Distribution Systems M. J. Hossain, J. Lu Griffith. Abstract--Photovoltaic (PV) units along with other distributed energy resources (DERs) are located close, robust control, stability. I. Introduction The integration level of PV units in low and medium voltage

  19. VADE-MECUM DE LA VORTICITE POTENTIELLE Dfinition (PV) P=

    E-Print Network [OSTI]

    Legras, Bernard

    VADE-MECUM DE LA VORTICITE POTENTIELLE Définition (PV) P= rot u2 Unité 1PVU = 106 K kg1 m2 s1 Pour les mouvements inviscides et adiabatiques, la PV est conservée pour chaque particule. Forme 102 s1 . La PV croît en magnitude vers les pôles. Ceci est dű ŕ la croissance de |f| vers les pôles

  20. Personeelsvereniging Technische Universiteit Eindhoven DOE MEE met de PV !!

    E-Print Network [OSTI]

    Franssen, Michael

    Personeelsvereniging Technische Universiteit Eindhoven DOE MEE met de PV !! Eindhoven 12 maart 2012 Het bestuur van de PV is dringend op zoek naar verjonging en nieuwe invulling van de volgende rollen Aanspreekpunt voor activiteiten Exacte invulling van de functie, mogelijk in duo, in overleg met het PV bestuur

  1. pV3 Programmer's Guide Client Side & Concentrator Programming

    E-Print Network [OSTI]

    Peraire, Jaime

    pV3 Programmer's Guide Rev. 2.05 Client Side & Concentrator Programming Bob Haimes Massachusetts.I.T., and USER agrees to preserve same. 2 #12;Contents 1 Introduction 6 2 pV3 in the Message Passing Environment 7 2.1 Using PVM Message Passing with the Simulation . . . . . . . . . . . . . . . . . . . . 7 2.2 pV

  2. November 21, 2000 PV Lesson Plan 2 Sample Questions & Answers

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 2 ­ Sample Questions & Answers Prepared for the Oregon Million a single PV cell produces; so how can you get the amperage that you need? 4. You want to run your small CD player that requires 17 Watts. If you have a 12% efficient PV array operating about noon on a sunny day

  3. Informations et rservations : ce.pv-holidays.com

    E-Print Network [OSTI]

    Arleo, Angelo

    Informations et réservations : ce.pv-holidays.com * Offre valable pour tout séjour de 7 nuits détails sur ce.pv-holidays.com. Offre valable sur l'hébergement seul (hors frais de dossier, prestations cumulable avec votre remise partenaire, toute offre promotionnelle ou réductions. PV-CPDistribution, Société

  4. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01T23:59:59.000Z

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  5. A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION A GUIDE TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION JUNE 2001 TO PHOTOVOLTAIC (PV) SYSTEM DESIGN AND INSTALLATION Prepared for: California Energy Commission Energy Technology installing photovoltaic (PV) systems under the Emerging Renewables Buydown Program. This is the first

  6. Modular Power Converters for PV Applications

    SciTech Connect (OSTI)

    Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-05-01T23:59:59.000Z

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

  7. 2 IAEI NEWS September . October 2011 www.iaei.org perspectives on pv

    E-Print Network [OSTI]

    Johnson, Eric E.

    design and configuration -- and some of the newer systems with micro inverters or AC PV modules have 1202 IAEI NEWS September . October 2011 www.iaei.org perspectives on pv www.iaei.org September . October 2011 IAEI NEWS 3 perspectives on pv P hotovoltaic (PV) power systems have PV modules and PV arrays

  8. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect (OSTI)

    von Roedern, B.; Ullal, H. S.

    2008-05-01T23:59:59.000Z

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  9. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  10. Solar Photovoltaic (PV) System Permit Application Checklist

    Broader source: Energy.gov [DOE]

    The Permit Application Checklist is intended to be used as a best management practice when establishing local government requirements for residential and commercial solar photovoltaic (PV) system permits. Local governments may modify this checklist to accommodate their local ordinances, code requirements, and permit procedures.

  11. Sandia National Laboratories: high PV penetration levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  12. Sandia National Laboratories: PV Reliability Operations Maintenance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintenance database Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid...

  13. Grid Parity for Residential Photovoltaics in the United States: Key Drivers and Sensitivities; Preprint

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.; Clark, N.

    2012-08-01T23:59:59.000Z

    In this report, we analyze PV break-even costs for U.S. residential customers. We evaluate some key drivers of grid parity both regionally and over time. We also examine the impact of moving from flat to time-of-use (TOU) rates, and we evaluate individual components of the break-even cost, including effect of rate structure and various incentives. Finally, we examine how PV markets might evolve on a regional basis considering the sensitivity of the break-even cost to four major drivers: technical performance, financing parameters, electricity prices and rates, and policies. We find that electricity price rather than technical parameters are in general the key drivers of the break-even cost of PV. Additionally, this analysis provides insight about the potential viability of PV markets.

  14. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect (OSTI)

    Weissman, J.M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.

    2005-08-14T23:59:59.000Z

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy?s solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership position in developing quality and competency standards for solar professionals and for training programs ? critical components to bring the solar industry into step with other recognized craft labor forces. IREC?s objective was to provide consumer assurances and assist the states and the solar industry in building a strong and qualified workforce. IREC?s Schools Going Solar Clearinghouse provided channels of information to educate students, teachers, parents and the community at large about the benefits of solar energy. Solar school projects enhance science and math education while creating an initial entry market for domestic PV. And, IREC?s community and outreach network got the right information out to capture the interest and met the needs of different audiences and reached groups that weren?t traditionally part of the solar community. IREC?s PV4You project was effective because it resulted in reduced costs through easier interconnection and better net metering agreements and by raising the competency standards for solar practitioners. The project provided ways to eliminate barriers and constraints by providing technical assistance, offering model agreements based on industry consensus that were used by state and local decision makers. And, the project increased public acceptance by providing information, news and guidelines for different audiences.

  15. Product Quality Assurance for Off-Grid Lighting in Africa

    SciTech Connect (OSTI)

    World Bank; Mills, Evan; Mills, Evan

    2008-07-13T23:59:59.000Z

    Although the emergence of markets for high efficiency off-grid lighting technologies holds promise, realizing the potential of this opportunity on a long-term, sustainable basis requires careful attention to issues of product quality, consumer protection, and the potential for significant 'market spoiling', in anticipation of increases of sales of low cost, low performance off-grid lighting products. The goal of the Lighting Africa quality assurance workshop was to articulate strategies to mitigate the dangers of market spoiling and to explore ways to protect consumers from misleading advertising for sales of inferior, off-grid lighting products in the context of Lighting Africa's overarching objective to support the industry in developing a robust off-grid lighting market in Africa. The workshop resulted in the identification of two strategic approaches for meeting Lighting Africa quality assurance programmatic needs. The first strategy is intended to meet a short-term programmatic need for quality associated with requests for lighting products by bulk procurement agents, such as in a World Bank-financed project. The development of procurement specifications and test procedures that could be used in a quality/usability screening method in order to provide guidance for forthcoming large volume purchases emerged as the best solution to meet this need. Such approaches are used in World Bank-financed solar home systems (SHSs) projects in Bangladesh, Sri Lanka, and China, among others. However, unlike the SHSs which have multiple balance-of-system (BOS) components warranting the need for an array of specifications for individual components, stand alone lighting systems require specifications that are amenable to individual light points. To test this approach, Lighting Africa elected to use the technical specifications issued by the Photovoltaic Global Approval Program for solar lanterns that use CFL bulbs (PVRS11A) as the basis of qualifying such products. A contract has been competitively awarded to the Global Approval Program for Photovoltaics (PV GAP) under the Lighting Africa Program to select and test ten solar lantern product models. Lantern selection will be determined based on a number of criteria, among them, the ability to provide a daily duty cycle of at least 3 hours of light, the number of days of autonomy of battery, the volume of sales (especially in Africa), and whether or not the manufacturing facility is ISO 9000 certified. Those that are confirmed as meeting the specifications may be eligible to receive a PVGAP quality seal. The work is being carried out in partnership with the Photovoltaic and Wind Quality Test Center in Beijing, China and TUV Rhineland in Koeln, Germany. As off-grid LED-based stand-alone lighting products is in a nascent stage of development compared to CFL-based lanterns, Lighting Africa will support the development of a 'Quality Screening' approach to selecting LED lighting, in order not to delay consumers benefiting from such advances. The screening methodology could be used by procurement agencies to qualify LED lighting products for bulk or programmatic procurements. The main elements of this work comprises of developing a procurement specification and test procedure for undertaking a 'quick' quality/usability screening to be used for procuring LED lights and to test up to 30 LED-based lights to screen products that meet the requirement. The second strategy is intended to meet a longer-term need associated with creating a self-sustaining product quality assurance program that will effectively protect the African consumer, prevent significant market spoiling, adapt with expected technological advancements over the long-term--in other words, give consumers the ability to detect quality products and the information needed to find products that meet their specific needs from among the myriad of lighting products that become available commercially. Workshop discussions and the discussions evolving from the workshop led the Lighting Africa team to opt for an approach similar to that of th

  16. Smart Grid Enabled EVSE

    SciTech Connect (OSTI)

    None, None

    2014-10-15T23:59:59.000Z

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  17. Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities

    SciTech Connect (OSTI)

    Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

    1999-01-20T23:59:59.000Z

    In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

  18. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    SciTech Connect (OSTI)

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01T23:59:59.000Z

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  19. Materials Testing for PV Module Encapsulation

    SciTech Connect (OSTI)

    Jorgensen, G.; Terwilliger, K.; Glick, S.; Pern, J.; McMahon, T.

    2003-05-01T23:59:59.000Z

    Important physical properties of materials used in PV module packaging are presented. High-moisture-barrier, high-resistivity, adhesion-promoting coatings on polyethyl-ene terephthalate (PET) films have been fabricated and characterized for use in PV module application and com-pared to standard polymer backsheet materials. Ethylene vinyl acetate (EVA) and an encapsulant replacement for EVA are studied for their water vapor transmission rate (WVTR) and adhesion properties. WVTR, at test conditions up to 85C/100% relative humidity (RH), and adhesion val-ues are measured before and after filtered xenon arc lamp ultraviolet (UV) exposure and damp heat exposure at 85C/85% RH. Water ingress is quantified by weight gain and embedded humidity sensors.

  20. Development of New Three-Level Current-Source Inverter for Grid Connected Photovoltaic System

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    photovoltaic system 1. INTRODUCTION Solid state inverters allow to put photovoltaic (PV) systems into the powerDevelopment of New Three-Level Current-Source Inverter for Grid Connected Photovoltaic System-phase three-level current source inverter (CSI) driven by a single gate-drive power supply in both chopper

  1. PV output smoothing using a battery and natural gas engine-generator.

    SciTech Connect (OSTI)

    Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

    2013-02-01T23:59:59.000Z

    In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

  2. A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes.

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of Xanthomonas oryzae pv. oryzae hrp Genes in XOM2, a Novelin Xanthomonas oryzae pv. oryzae. Journal of bacteriologyrice by Xanthomonas oryzae pv. oryzicola. Mol Plant-Microbe

  3. Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson,Information PV Corp JSPV aka Solar PV

  4. BeyondPV Co Ltd Bayang Solar PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative Sources ofBeyondPV Co Ltd Bayang Solar PV

  5. NREL: Transmission Grid Integration - Grid Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchersGrid

  6. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01T23:59:59.000Z

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  7. Study on PID Resistance of HIT PV Modules

    Broader source: Energy.gov (indexed) [DOE]

    2013 Photovoltaic Module Reliability Workshop NREL, Golden, CO February 26-27, 2013 Study on PID resistance of HIT PV modules Tasuku Ishiguro 1 , Hiroshi Kanno 1 , Mikio...

  8. Sandia Energy - PV Performance Modeling Collaborative's New and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation Solar Newsletter Photovoltaic Systems Evaluation Laboratory (PSEL) PV Performance Modeling Collaborative's New and Improved Website Is Launched Previous Next...

  9. PV Arc Fault Detector Challenges Due to Module Frequency Response...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This poster does not contain any proprietary or confidential information. Introduction PV system arc faults have led to a number of rooftop fires which have caused significant...

  10. Sandia National Laboratories: 2014 PV Systems Symposium Details

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 PV Systems Symposium (May 5-7, 2014) Sandia National Laboratories and the Electric Power Research Institute (EPRI) are delighted to host this symposium on technical issues...

  11. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Energy Savers [EERE]

    Tucson's Solar Experience: Developing PV with RFPs and PPAs Bruce Plenk Solar Coordinator City of Tucson Office of Conservation and Sustainable Development DOE EERE- January 15,...

  12. Sandia National Laboratories: verify PV performance-prediction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV performance-prediction models Solar Regional Test Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities,...

  13. Estimating Rooftop Suitability for PV: A Review of Methods, Patents...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For researchers looking to understand the market potential of rooftop-installed photovoltaics (PV) in particular, understanding the amount and characteristics of rooftop space...

  14. Sandia National Laboratories: c-Si PV materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    c-Si PV materials Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  15. Sandia National Laboratories: III-V PV materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V PV materials Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  16. MARKET-ORIENTED COMPUTING AND GLOBAL GRIDS

    E-Print Network [OSTI]

    Buyya, Rajkumar

    and alternating current (AC), respectively. Figure 1.1 shows Volta demonstrating the battery for Napoleon I demonstrates the battery for Napoleon I at the French National Institute, Paris, in 1801. The painting (by N

  17. Connecting to the Grid | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submitCollector/ReceiverConflict Betweengrape growersConnecting to

  18. Grid Logging: Best Practices Guide

    SciTech Connect (OSTI)

    Tierney, Brian L; Tierney, Brian L; Gunter, Dan

    2008-04-01T23:59:59.000Z

    The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

  19. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

  20. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  1. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

  2. Integrating Solar PV in Utility System Operations

    SciTech Connect (OSTI)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31T23:59:59.000Z

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the

  3. Energy 101: Solar PV | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCool Roofs Energy 101: Cool RoofsLumens EnergySolar PV

  4. Zhonghuite PV Technology Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga Solar LtdZhonghuite PV Technology Co Jump

  5. PV Powered Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark, Alabama:ASES 2003,PUD No 1PUD No 2PV

  6. All Solar PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAgua Caliente Solar PowerAlaskanSolar PV Jump

  7. Gansu PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUK Place: Newport, Wales,DanielJieyuanPV Co Ltd

  8. PV Solar Planet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to:PUD No 1 ofPV Solar Planet

  9. Tokyo Electron PV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower Station Jump to:Tioga EnergyTokyo Electron PV Jump

  10. FUTURE POWER GRID INITIATIVE GridOPTICSTM

    E-Print Network [OSTI]

    of individual software products November 2012 PNNL-SA-90162 Ian Gorton Pacific Northwest National Laboratory (509) 375-3850 ian.gorton@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver next National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science

  11. Realisation of the full potential of PV Extract of report from workgroup 4 in EU's PV Technology Platform by Peter Ahm.

    E-Print Network [OSTI]

    Realisation of the full potential of PV Extract of report from workgroup 4 in EU's PV Technology. Realisation of the full potential of PV as an important and integral part of our energy supply to those that use it. There is thus an imperative to facilitate and promote education on PV

  12. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  13. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  14. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  15. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  16. Grid Logging: Best Practices Guide

    E-Print Network [OSTI]

    Tierney, Brian L

    2008-01-01T23:59:59.000Z

    Revision date: March 1, 2008 Grid Logging: Best Practicesis to help developers of Grid middleware and applicationlog files that will be useful to Grid administrators, users,

  17. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Data Injection Attacks on Power Grids”, IEEE Transactionson Smart Grid, vol. 2, no. 2, June [21] O. Kosut, L.Data Attacks on Smart Grid State Estimation: Attack

  18. Sandia National Laboratories: electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

  19. Comparison Between TRNSYS Software Simulation and PV F-Chart Program on Photovoltaic System

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    This report covers the comparisons of Photovoltaic System by TRNSYS simulation and PV F-Chart program to test TRNSYS simulation accuracy. The report starts with the Photovoltaic (PV) (PV) System introduction in Section one which is followed...

  20. U.S. Aims for Zero-Energy: Support for PV on New Homes

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    Figure 1. Relative Cost of PV on New, Market-Rate Homesfor Zero-Energy: Support for PV on New Homes Galen Barbose,segment for solar photovoltaic (PV) adoption, new homes have

  1. Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    Shaking Up the Residential PV Market: Implications of Recentfor commercial photovoltaic (PV) systems from 10% to 30% of2005’s solar tax credits on PV system owners, in light of

  2. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A.

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    relationships among X. oryzae pv. oryzae (Xoo) strains PXO99MAFF311018, and X. oryzae pv. oryzicola (Xoc) strain BLS256biology of Xanthomonas oryzae pv. oryzae and approaches to

  3. Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    No. DE-AC02-05CH11231. Do PV Systems Increase Residentialimpacts of photovoltaic (PV) energy systems on home salesthat existing homes with PV systems sold for a premium over

  4. Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae.

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    of Xanthomonas oryzae pv. oryzae AvrXa21 and implicationsto Xanthomonas oryzae pv. oryzae Chang-Jin Park a , Sang-Wonreceptor XA21 Xanthomonas oryzae pv. oryzae a b s t r a c t

  5. The Economic Value of PV and Net Metering to Residential Customers in California

    E-Print Network [OSTI]

    Darghouth, Naim

    2010-01-01T23:59:59.000Z

    a Substantial Benefit of Solar PV”, The Electricity Journal,2008. MRW & Associates. “Solar PV and Retail Rate Design”,The Economic Value of PV and Net Metering to Residential

  6. BRST Invariant PV Regularization of SUSY Yang-Mills and SUGRA

    E-Print Network [OSTI]

    Gaillard, Mary K

    2012-01-01T23:59:59.000Z

    September 2011 BRST Invariant PV Regularization of SUSYemployer. ii BRST INVARIANT PV REGULARIZATION OF SUSY YANG-a number of years on Pauli-Villars (PV) regu- larization of

  7. Designing PV Incentive Programs to Promote Performance: A Review of Current Practice

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2007-01-01T23:59:59.000Z

    manufacturers of PV modules and inverters are to establishPV modules, and UL- 1741 is the analogous standard for inverters andPV incentive programs surveyed for this paper, most require that inverters

  8. Comparison Between TRNSYS Software Simulation and PV F-Chart Program on Photovoltaic System 

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01T23:59:59.000Z

    This report covers the comparisons of Photovoltaic System by TRNSYS simulation and PV F-Chart program to test TRNSYS simulation accuracy. The report starts with the Photovoltaic (PV) (PV) System introduction in Section one which is followed...

  9. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect (OSTI)

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01T23:59:59.000Z

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  10. Smart Grid Overview

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Overview Ben Kroposki, PhD, PE Director, Energy Systems IntegraLon NaLonal Renewable Energy Laboratory What is t he S mart Grid? and DER Source: NISTEPRI Architecture...

  11. Fuel rod support grid

    DOE Patents [OSTI]

    Downs, Robert E. (Monroeville, PA); Schwallie, Ambrose L. (Greensburg, PA)

    1985-01-01T23:59:59.000Z

    A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

  12. The soft grid

    E-Print Network [OSTI]

    Kardasis, Ari (Ari David)

    2011-01-01T23:59:59.000Z

    The grid in architecture is a systematic organization of space. The means that architects use to organize space are, almost by definition, rigid and totalizing. The Cartesian grid, which will serve as the antagonist of the ...

  13. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01T23:59:59.000Z

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  14. Large Power Transformers and the U.S. Electric Grid Report Update...

    Broader source: Energy.gov (indexed) [DOE]

    Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes updated information about global electrical...

  15. Oxynitride Thin Film Barriers for PV Packaging

    SciTech Connect (OSTI)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01T23:59:59.000Z

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  16. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term

    E-Print Network [OSTI]

    Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections November 2012 #12;Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections David Feldman1 , Galen Barbose2 , Robert Margolis1 , Ryan Wiser2 , NaĂŻm Darghouth2 , and Alan Goodrich1 1 National Renewable Energy

  17. Separating myths from reality in PV inverter reliability

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Separating myths from reality in PV inverter reliability Or, How I learned to stop worrying: Navigant Consulting report to NREL on PV inverter status. NCI found that inverters were limited by 18 and love the BOM Timothy J. Peshek SDLE Reliability workshop, CWRU 4/9/2012 #12;What inverter manufacturers

  18. Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sengupta, M.; Andreas, A.

    Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.

  19. PVUSA experience with power conversion for grid-connected photovoltaic systems

    SciTech Connect (OSTI)

    Stolte, W.

    1995-11-01T23:59:59.000Z

    The Photovoltaics for Utility Scale Application (PVUSA) project was established to demonstrate photovoltaic (PV) systems in grid-connected utility applications. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of the PV balance of system (BOS). Power conditioning units (PCUs) are the interface between the dc PV arrays and the ac utility lines, and have proved to be the most critical element in grid-connected PV systems. There are five different models of PCUs at PVUSA`s Davis and Kerman sites. This report describes the design, testing, performance characteristics, and maintenance history of each of these PCUs. PVUSA required PCUs in the power range 25 kW to 500 kW which could operate automatically and reliably under changing conditions of sunlight and changing conditions on the utility grid. Although a number of manufacturers can provide PCUs in this power range, none of these PCUs have been produced in sufficient quantity to allow refinement of a particular model into the highly reliable unit needed for long-term, unattended operation. Factory tests were useful but limited by the inability to test under full power and changing power conditions. The inability to completely test PCUs at the factory resulted in difficulty during startup, field testing, and subsequent operation. PVUSA has made significant progress in understanding the requirements for PCUs in grid-connected PV applications and improving field performance. This record of PVUSA`s experience with a variety of PCUs is intended to help utilities and their suppliers identify and retain the good performance characteristics of PCUs, and to make improvements where necessary to meet the needs of utilities.

  20. An Analysis of Residential PV System Price Differences between the United States and Germany

    E-Print Network [OSTI]

    Seel, Joachim

    2014-01-01T23:59:59.000Z

    why residential customers in Germany pay 25% less for a PVFor Residential PV Systems in Germany. Bundesverband derof PV power applications in Germany”. International Energy

  1. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01T23:59:59.000Z

    Models of diffuse solar radiation, Renew Energ, 33 (2008) [solar irradiance for analyzing areally- totalized PV systems, Sol Energsolar irradiance for analyzing areally- totalized PV systems, Sol Energ

  2. Linkage to Previous International PV Module QA Task Force Workshops; Proposal for Rating System (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.; Kondo, M.

    2013-05-01T23:59:59.000Z

    This presentation gives the historical background of the creation of the International PV QA Task Force as an introduction to the PV Module Reliability Workshop.

  3. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    E-Print Network [OSTI]

    Feldman, David

    2014-01-01T23:59:59.000Z

    if at all. Super monocrystalline PV modules are currentlyPV modules varies from about 10% (for tandem microcrystalline-amorphous silicon) to 20% (for super monocrystalline

  4. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy Lab. Chart by Daniel Wood. View...

  5. Utility Scale PV Perspective on SunShot Progress and Opportunities...

    Energy Savers [EERE]

    Utility Scale PV Perspective on SunShot Progress and Opportunities Utility Scale PV Perspective on SunShot Progress and Opportunities These slides correspond to a presentation...

  6. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Model (WVM) for Solar PV Power Plants Matthew Lave, Jansolar photovoltaic (PV) power plant output given a singleproduce a simulated power plant output. The WVM is validated

  7. Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects

    SciTech Connect (OSTI)

    Margolis, R.; Mitchell, R.; Zweibel, K.

    2006-09-01T23:59:59.000Z

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

  8. Understanding The Smart Grid

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

  9. Electrochemical Approaches to PV Busbar Application

    SciTech Connect (OSTI)

    Pankow, J. W.

    2005-01-01T23:59:59.000Z

    Busbars are an integral component of any thin-film photovoltaic module and must be easy and quick to apply by PV manufacturers, as well as provide long-term reliability in deployed modules. Potential reliability issues include loss of adhesion and delamination, chemical instability under current collection conditions (electromigration or corrosion), compatibility of material and application method with subsequent encapsulation steps. Several new and novel busbar materials and application methods have been explored, including adhering metal busbars with various one- and two-part conductive epoxies or conductive adhesive films, ultrasonic bonding of metal busbar strips, and bonding of busbar strips using low-temperature solders. The most promising approach to date has been the direct application of metal busbars via various electrochemical techniques, which offers a variety of distinct advantages.

  10. Innovations in Wind and Solar PV Financing

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01T23:59:59.000Z

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  11. Software-Based Challenges of Developing the Future Distribution Grid

    E-Print Network [OSTI]

    Stewart, Emma

    2014-01-01T23:59:59.000Z

    for  each  inverter  or  equivalent  PV  system,  there  system  studies.     Currently  there  is  no  approved  PV  inverter  

  12. Kauai Island Utility Co-op (KIUC) PV integration study.

    SciTech Connect (OSTI)

    Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

    2011-08-01T23:59:59.000Z

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  13. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13T23:59:59.000Z

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  14. PV Validation and Bankability Workshop: San Jose, California

    SciTech Connect (OSTI)

    Granata, J.; Howard, J.

    2011-12-01T23:59:59.000Z

    This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

  15. Robust control strategy for PV system integration in distribution systems M.J. Hossain a,

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Robust control strategy for PV system integration in distribution systems M.J. Hossain a, , T t s " Robust control provides flexible photovoltaic (PV) accommodations. " A robust PV control can significantly enhance the penetration level. " The change in volatile PV generations is considered

  16. 12 IAEI NEWS July.August 2004 www.iaei.org PERSPECTIVES ON PV

    E-Print Network [OSTI]

    Johnson, Eric E.

    12 IAEI NEWS July.August 2004 www.iaei.org PERSPECTIVES ON PV A series of articles on photovoltaic (PV) power systems and the National Electrical Code Single Conductor Exposed Cables! Not In My or commercial PV installation. Yes, PV systems have some unusual wiring meth- ods allowed by the Code. However

  17. 18 IAEI NEWS November.December 2004 www.iaei.org PERSPECTIVES ON PV

    E-Print Network [OSTI]

    Johnson, Eric E.

    18 IAEI NEWS November.December 2004 www.iaei.org PERSPECTIVES ON PV Photo 1. Framed PV modules A series of articles on photovoltaic (PV) power systems and the National Electrical Code by John Wiles Stalking the Elusive and Somewhat Strange PV System #12;www.iaei.org November.December 2004 IAEI NEWS 19

  18. Multiple Jets as PV Staircases: The Phillips Effect and the Resilience of Eddy-Transport Barriers

    E-Print Network [OSTI]

    Cambridge, University of

    Multiple Jets as PV Staircases: The Phillips Effect and the Resilience of Eddy-Transport Barriers D 2007) ABSTRACT A review is given that focuses on why the sideways mixing of potential vorticity (PV. PV mixing often produces a sideways layering or banding of the PV distribution and therefore

  19. Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    of Photovoltaic Energy Systems on Residential Selling Pricesof photovoltaic (PV) energy systems on home sales prices.

  20. 80 IAEI NEWS March.April 2005 www.iaei.org PERSPECTIVES ON PV

    E-Print Network [OSTI]

    Johnson, Eric E.

    the PV array. However, dc and ac disconnects must be located at the inverter and an additional ac for a readily accessible, visible-blade, lockable ac disconnect for the PV system. These disconnect requirements were covered in the article on PV systems in the March/April 2004 issue of the IAEI News. PV Source

  1. 66 IAEI NEWS September.October 2004 www.iaei.org PERSPECTIVES ON PV

    E-Print Network [OSTI]

    Johnson, Eric E.

    of utility-interactive PV systems use inverters that operate up to 600 volts direct current (dc conductors. PV Inverters Create Separately Derived Systems The second area focuses on the fact that PV, but not all, PV systems (both stand- alone systems and utility-interactive systems) employ an inverter

  2. 80 IAEI NEWS May . June 2012 www.iaei.org Microinverters and ac Pv Modules

    E-Print Network [OSTI]

    Johnson, Eric E.

    and code require- ments. However, they are different from the typical PV string inverters that use multiple80 IAEI NEWS May . June 2012 www.iaei.org Microinverters and ac Pv Modules M icroinverters and AC PV modules are becom- ing very common in residential and small commercial PV systems. See photos 1

  3. Optimum Inverter Sizing in Consideration of Irradiance Pattern and PV Incentives

    E-Print Network [OSTI]

    Lehman, Brad

    Optimum Inverter Sizing in Consideration of Irradiance Pattern and PV Incentives Song Chen* Peng Li for a PV system. The method evaluates effects of PV incentive policies, inverter efficiency curves, different scenarios of PV incentives are discussed and compared to show that the optimal inverter size

  4. IAEI NEWS November.December 2007 www.iaei.org WHY INSPECT PV SYSTEMS

    E-Print Network [OSTI]

    Johnson, Eric E.

    and have not worked extensively with these new PV compa- nies. New equipment (inverters and PV modules IAEI NEWS November.December 2007 www.iaei.org WHY INSPECT PV SYSTEMS P hotovoltaic power systems. Previous articles in this "Perspectives on PV" series have covered the details of the Code requirements

  5. Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions

    E-Print Network [OSTI]

    Lehman, Brad

    shadows (a passing cloud) on the output power of solar PV arrays. Each solar array is composed of a matrix of a shaded solar PV array as well as the PV output power. The model is also able to simulate and compute the output power of solar PV arrays for any configuration, with or without bypass diode. NOMENCLATURE IM

  6. Reaching Grid Parity Using BP Solar Crystalline Silicon Technology: A Systems Class Application

    SciTech Connect (OSTI)

    Cunningham, Daniel W; Wohlgemuth, John; Carlson, David E; Clark, Roger F; Gleaton, Mark; Posbic, John P; Zahler, James

    2010-12-06T23:59:59.000Z

    The primary target market for this program was the residential and commercial PV markets, drawing on BP Solar's premium product and service offerings, brand and marketing strength, and unique routes to market. These two markets were chosen because: (1) in 2005 they represented more than 50% of the overall US PV market; (2) they are the two markets that will likely meet grid parity first; and (3) they are the two market segments in which product development can lead to the added value necessary to generate market growth before reaching grid parity. Federal investment in this program resulted in substantial progress toward the DOE TPP target, providing significant advancements in the following areas: (1) Lower component costs particularly the modules and inverters. (2) Increased availability and lower cost of silicon feedstock. (3) Product specifically developed for residential and commercial applications. (4) Reducing the cost of installation through optimization of the products. (5) Increased value of electricity in mid-term to drive volume increases, via the green grid technology. (6) Large scale manufacture of PV products in the US, generating increased US employment in manufacturing and installation. To achieve these goals BP Solar assembled a team that included suppliers of critical materials, automated equipment developers/manufacturers, inverter and other BOS manufacturers, a utility company, and University research groups. The program addressed all aspects of the crystalline silicon PV business from raw materials (particularly silicon feedstock) through installation of the system on the customers site. By involving the material and equipment vendors, we ensured that supplies of silicon feedstock and other PV specific materials like encapsulation materials (EVA and cover glass) will be available in the quantities required to meet the DOE goals of 5 to 10 GW of installed US PV by 2015 and at the prices necessary for PV systems to reach grid parity in 2015. This final technical report highlights the accomplishments of the BP Solar technical team from 2006 to the end of the project in February 2010. All the main contributors and team members are recognized for this accomplishment and their endeavors are recorded in the twelve main tasks described here.

  7. Grid Transformation Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-03-Grid-Transformation-Workshop Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  8. Exploiting the Computational Grid Lecture 1 Globus and the Grid

    E-Print Network [OSTI]

    Exploiting the Computational Grid Lecture 1 ­ Globus and the Grid · The grid needs middleware to enable things such as logins etc · The toolkit model for the grid is to define a set of standards for the grid and then develop applications on top. The low level stuff is then hidden from the user · Globus

  9. Mapping Unstructured Grids to Structured Grids and Multigrid

    E-Print Network [OSTI]

    Chapter 4 Mapping Unstructured Grids to Structured Grids and Multigrid Many problems based solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence). We 65 #12; CHAPTER 4. MAPPING UNSTRUCTURED GRIDS 66 show that unless great care is taken

  10. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    A CONCENTRATION PHOTOVOLTAIC APPLICATIONS A.1 AND EFFICIENCYA   Concentration and Efficiency in Solar PhotovoltaicPhotovoltaic Applications  . 121  A.4  Concentrator Cell Efficiency . 

  11. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    Integration of Intermittent Renewable Technologies Yih-huei,W. ; Parsons, B National Renewable Energy Laboratory, August2020: Towards a Policy of Renewable and Distributed Energy

  12. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    as Applied to Two Large Power Transformers” [153, 154].Applied to Two Large Power Transformers Girgis, R. ; Chung-

  13. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    by 2020 by from renewable resources [140]. Solar costto remotely located renewable resources including permittingand remote access to renewable resources. The water-borne

  14. Remote performance check and automated failure identification for grid-connected PV systems

    E-Print Network [OSTI]

    Heinemann, Detlev

    . Stettler5 , P. Toggweiler5 , S. Bofinger6 , M. Schneider6 , G. Heilscher6 , D. Heinemann1 1 Oldenburg

  15. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    the source of the sun’s energy, yet it is unclear preciselyfor which the sun supplies the energy and water supplies theas the amount of energy from the sun striking the earth is

  16. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    price that is paid is incomplete illumination. A secondary concentrator may be called for in photovoltaic

  17. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    currents. ? Utility protection relays are designed to detectand protection for all protective devices (relays, fuses,

  18. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    connection the water borne solar plant and the City of Lodi1.1 January 13, 2013 Solar Plant Modeling Impacts onborne solar on waste water treatment plants. In response to

  19. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    Electric Coordinating Council (WECC), the National RenewableSubstations Recommendations For WECC Transmission Expansioncoordinated with the CAISO and WECC. OTHER The target budget

  20. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    of the absorber or photovoltaic cell. Color behavior, oras ln (A.27) For a photovoltaic cell under concentrated2 day Multijunction photovoltaic cells are used with medium

  1. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    high levels of short circuit current, but the addition ofsum to large short circuit currents. ? Utility protectionthe cell, is the short-circuit current of the cell. The fill

  2. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    entering into an Interconnection Agreement. Dynamic modelingof the Interconnection Facilities Study Agreement (IFASA);

  3. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    stability became a serious concern for the studied system when 40% power (System Protection Analysis  47  Reactive Power Deficiency Analysis  .. 47  Dynamic Stability Stability for Residential Customers Due to High Photovoltaic Penetrations Yan, R,; Saha, T.K IEEE TRANSACTIONS OF POWER SYSTEMS,

  4. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    of a distribution control system managing reliability andwith distribution control systems to ensure reliability andwith distribution control systems to ensure reliability and

  5. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    U.S. Renewable Energy Technical Potentials: A GIS-BasedStates has ample potential renewable energy resources,Figure 2.2 Potential Renewable Energy Zones in Southwestern 

  6. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    W. ; Parsons, B National Renewable Energy Laboratory, Augusthas ample potential renewable energy resources, especiallyx  Figure 2.1 Renewable Energy Zones in 

  7. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    Happy Camp Sanitation District  Harwood Products, Inc.   Healdsburg City  Herlong PUD  Hess Collection Winery  Hidden Valley 

  8. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    of way costs per acre. Substation costs also vary with size.the transmission and substation costs to produce a realisticRight of Way Cost Substation Cost AFUDC/ Overhead Cost Total

  9. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    solar ramping and produce the fastest ramp rate output powersolar panels or modules into AC) needs to automatically adjust the power output

  10. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    93609  1960 CATE MESA RD, Carpinteria, CA 93013  46041 Road CA 94558  Carneros Partnership LLC  CARPINTERIA SD WWTP 5351 Sixth Street, Carpinteria, CA 93013  Carpinteria SD 

  11. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergy Integrated EnergyIntegratedAdapting

  12. Pallets of PV: Communities Purchase Solar and Drive Down Costs...

    Open Energy Info (EERE)

    Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2017) Super...

  13. Impact of Soiling and Pollution on PV Generation Performance

    Broader source: Energy.gov [DOE]

    This 5-page technical letter addresses air pollution effects on PV performance by quantifying, based on a literature search, the average annual loss due to soiling, the impact of cleaning, and a recommended cleaning schedule.

  14. New York Sun Competitive PV Program (New York)

    Broader source: Energy.gov [DOE]

    The New York Sun Competitive Photovoltaic (PV) Program is an expansion of the Renewable Portfolio Standard (RPS) Customer-Sited Tier Regional Program that includes Upstate New York. The New York...

  15. Taunton Municipal Lighting Plant- Residential PV Rebate Program

    Broader source: Energy.gov [DOE]

    Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

  16. Gainesville Regional Utilities- Solar-Electric (PV) System Rebate Program

    Broader source: Energy.gov [DOE]

    '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of...

  17. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01T23:59:59.000Z

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  18. Giant Leap Forward Toward Quality Assurance of PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.

    2012-03-01T23:59:59.000Z

    The presentation describes the composition of and motivation for the International PV QA Task Force, then describes the presentations and discussion that occurred at the workshop on Feb. 29th, 2012.

  19. Agenda for the PV Module Reliability Workshop, February 26 -...

    Broader source: Energy.gov (indexed) [DOE]

    PV Modules to Hygrothermal Stress" 9. P. Hacke and K. Terwilliger of NREL; S. Koch, T. Weber, and J. Berghold of PI-Berlin; S.Hoffmann, H. Ambrosi, and M. Koehl of Fraunhofer ISE;...

  20. AEP SWEPCO - SMART Source Solar PV Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Amount Residential: 1.50watt DC Non-residential: 1.20watt DC Provider Smart Source PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that...

  1. AEP Texas Central Company- SMART Source Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to...

  2. AEP Texas North Company- SMART Source Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    American Electric Power Texas North Company (AEP-TNC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes (e.g.,...

  3. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

  4. Full Steam Ahead for PV in US Homes?

    SciTech Connect (OSTI)

    Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

    2009-01-15T23:59:59.000Z

    In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

  5. DOE-LPO-MiniReport_PV_v10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy's Loan Programs O ce (LPO) was instrumental in launching the utility-scale photovoltaic (PV) solar industry in the United States. In 2009, there was not a...

  6. PV VALUE(tm) User Manual v. 1.0

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Value(tm) User Manual v. 1.0 Jamie L. Johnson - Solar Power Electric(tm) Geoffrey T. Klise - Sandia National Laboratories 1312012 SAND2012-0682P Sandia National Laboratories...

  7. Real-time POD-CFD Wind-Load Calculator for PV Systems

    SciTech Connect (OSTI)

    Huayamave, Victor [Centecorp; Divo, Eduardo [Centecorp; Ceballos, Andres [Centecorp; Barriento, Carolina [Centecorp; Stephen, Barkaszi [FSEC; Hubert, Seigneur [FSEC

    2014-03-21T23:59:59.000Z

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such as those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals of reducing the total installed cost of solar energy systems by 75%. The largest percentage of the total installed cost of solar energy system is associated with balance of system cost, with up to 40% going to “soft” costs; which include customer acquisition, financing, contracting, permitting, interconnection, inspection, installation, performance, operations, and maintenance. The calculator that is being developed will provide wind loads in real-time for any solar system designs and suggest the proper installation configuration and hardware; and therefore, it is anticipated to reduce system design, installation and permitting costs.

  8. Evaluation of tracking flat plate and concentrator PV systems

    SciTech Connect (OSTI)

    Lepley, T. [Phasor Energy Co., Phoenix, AZ (United States); Hammond, B.; Harris, A. [Arizona State Univ., Tempe, AZ (United States)

    1997-12-31T23:59:59.000Z

    Arizona Public Service Company has conducted side-by-side field tests of most of the leading tracking flat plate and concentrating PV technologies. The results verify the added value due to tracking, but show that additional reliability improvements are needed in most cases. Concentrator PV systems can be high performers in sunny regions. In addition, a novel inverter system design by Raytheon has demonstrated excellent performance and promises to be more reliable and have lower cost than competing technologies.

  9. Grid Architecture William E. Johnston

    E-Print Network [OSTI]

    Grid Architecture William E. Johnston Lawrence Berkeley National Lab and NASA Ames Research Center wejohnston@lbl.gov (These slides are available at grid.lbl.gov/~wej/Grids) #12;Distributed Resources Condor Internet optical networks space-based networks Grid Communication Functions Communications BasicGrid

  10. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    SciTech Connect (OSTI)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken [Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Nakamachi (Japan)

    2010-12-15T23:59:59.000Z

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  11. Review of PV Inverter Technology Cost and Performance Projections

    SciTech Connect (OSTI)

    Navigant Consulting Inc.

    2006-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

  12. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    SciTech Connect (OSTI)

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01T23:59:59.000Z

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  13. How Can We Make PV Modules Safer?: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S. R.

    2012-06-01T23:59:59.000Z

    Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

  14. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13T23:59:59.000Z

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  15. Analysis and synthesis of the variability of irradiance and PV power time series with the wavelet transform

    SciTech Connect (OSTI)

    Perpinan, O. [Electrical Engineering Department, EUITI-UPM, Ronda de Valencia 3, 28012 Madrid (Spain); Lorenzo, E. [Instituto de Energia Solar, UPM, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2011-01-15T23:59:59.000Z

    The irradiance fluctuations and the subsequent variability of the power output of a PV system are analysed with some mathematical tools based on the wavelet transform. It can be shown that the irradiance and power time series are nonstationary process whose behaviour resembles that of a long memory process. Besides, the long memory spectral exponent {alpha} is a useful indicator of the fluctuation level of a irradiance time series. On the other side, a time series of global irradiance on the horizontal plane can be simulated by means of the wavestrapping technique on the clearness index and the fluctuation behaviour of this simulated time series correctly resembles the original series. Moreover, a time series of global irradiance on the inclined plane can be simulated with the wavestrapping procedure applied over a signal previously detrended by a partial reconstruction with a wavelet multiresolution analysis, and, once again, the fluctuation behaviour of this simulated time series is correct. This procedure is a suitable tool for the simulation of irradiance incident over a group of distant PV plants. Finally, a wavelet variance analysis and the long memory spectral exponent show that a PV plant behaves as a low-pass filter. (author)

  16. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect (OSTI)

    None

    2012-01-30T23:59:59.000Z

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPC’s initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%—reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPC’s next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPC’s $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  17. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Grid Modernization Renewable Energy Integration Smart Grid Tools and Technology Smart Grid Tools and TechnologyTara...

  18. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    SciTech Connect (OSTI)

    Ropp, Michael (Northern Plains Power Technologies, Brookings, SD); Gonzalez, Sigifredo; Schaffer, Alan (Lakeland Electric Utilities, Lakeland, FL); Katz, Stanley (Satcon Technology Corporation, Boston, MA); Perkinson, Jim (Satcon Technology Corporation, Boston, MA); Bower, Ward Isaac; Prestero, Mark (Satcon Technology Corporation, Boston, MA); Casey, Leo (Satcon Technology Corporation, Boston, MA); Moaveni, Houtan (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Click, David (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Davis, Kristopher (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Reedy, Robert (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01T23:59:59.000Z

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  19. Flat Plate PV Module Eligibility Listing Procedure Updated 6/2/14 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV

    E-Print Network [OSTI]

    Flat Plate PV Module Eligibility Listing Procedure Updated 6/2/14 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV modules 1 must be listed on the SB1 for adding PV modules to the SB1 list is as follows: 1 . Data submitted to the Energy Commission

  20. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Framework and Roadmap for Smart Grid Interoperability Stan-

  1. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Attack and Detection in Smart Grid,” to appear in IEEE

  2. Updating Interconnection Screens for PV System Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon TalksDigitalRevisionof Energy |Michael

  3. Sandia Energy - PV Reliability & Performance Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshore Wind RD&D:PVReliability &

  4. PV Module Arc Fault Modeling and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO Website Directory PPPOLarson.Cheryl A -Chapter17/2011,

  5. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Meters, Conductor, Surge Protection Devices, Connectors, Lighting Controls, Grid-Scale Battery Storage, Grid-Scale Flywheel Energy for Frequency Regulation, Automation...

  6. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Renewable Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Sandia finalized and submitted the updated "WECC Wind Power Plant...

  7. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEC 61400-26 Availability Standard On June 12, 2014, in Analysis, Distribution Grid Integration, Energy, Grid Integration, Infrastructure Security, News, News & Events,...

  8. Sandia National Laboratories: grid modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid modernization Renewables, Other Energy Issues To Be Focus of Enhanced Sandia-SINTEF Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy,...

  9. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

  10. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Specialists (PVSC) Conference On August 14, 2013, in DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

  11. Sandia National Laboratories: Grid Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InfrastructureEnergy AssuranceGrid Capabilities Grid Capabilities Goal: To develop and implement a comprehensive Sandia program to support the modernization of the U.S. electric...

  12. Methods of integrating a high penetration photovoltaic power plant into a micro grid.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Johnson, Lars (SunPower Corporation, Richmond, CA); Nelson, Lauren (SunPower Corporation, Richmond, CA); Lenox, Carl (SunPower Corporation, Richmond, CA); Johnson, Robert. (SunPower Corporation, Richmond, CA)

    2010-06-01T23:59:59.000Z

    The island of Lanai is currently one of the highest penetration PV micro grids in the world, with the 1.2 MWAC La Ola Solar Farm operating on a grid with a peak net load of 4.7 MW. This facility interconnects to one of Lanai's three 12.47 kV distribution circuits. An initial interconnection requirements study (IRS) determined that several control and performance features are necessary to ensure safe and reliable operation of the island grid. These include power curtailment, power factor control, over/under voltage and frequency ride through, and power ramp rate limiting. While deemed necessary for stable grid operation, many of these features contradict the current IEEE 1547 interconnection requirements governing distributed generators. These controls have been successfully implemented, tested, and operated since January 2009. Currently, the system is producing power in a curtailed mode according to the requirements of a power purchase agreement (PPA).

  13. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae.

    E-Print Network [OSTI]

    Bart, Rebecca S; Chern, Mawsheng; Vega-Sánchez, Miguel E; Canlas, Patrick; Ronald, Pamela C

    2010-01-01T23:59:59.000Z

    Immunity to Xanthomonas oryzae pv. oryzae Rebecca S. Bartpathogen, Xanthomonas oryzae pv. oryzae (Xoo), constitutiveagainst Xanthomonas oryzae pv. oryzae in Rice. Molecular

  14. The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence.

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    against Xanthomonas oryzae pv. oryzae in Korea. Kor. J.the Xanthomonas campestris pv. campestris lipopolysaccharidein Xanthomonas oryzae pv. oryzae re- quired for AvrXa21

  15. Future Grid: The Environment Future Grid Initiative White Paper

    E-Print Network [OSTI]

    Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

  16. PV Module Reliability R&D Project Overview

    SciTech Connect (OSTI)

    Hulstrom, R. L.

    2005-01-01T23:59:59.000Z

    The DOE Solar Energy Technologies Program includes a sub-key activity entitled ''Photovoltaic Module Reliability R&D''. This activity has been in existence for several years to help ensure that the PV technologies that advance to the commercial module stage have acceptable service lifetimes and annual performance degradation rates. The long-term (2020) goal, as stated in the Solar Program Multi-Year Technical Plan [1], is to assist industry with the development of PV systems that have 30-year service lifetimes and 1% annual performance degradation rates. The corresponding module service lifetimes and annual performance degradation rate would have to be 30 years lifetime and approximately 0.5% (or less, depending on the type of PV system) annual performance degradation. Reaching this goal is critical to achieving the PV technology Levelized Energy Cost Targets, as listed and described in the Solar Program Multi-Year Technical Plan. This paper is an overview of the Module Reliability R&D sub-key activity. More details and the major results and accomplishments are covered in the papers presented in the PV Module Reliability Session of the DOE Solar Energy Technology Review Meeting, October 25-28, 2004, in Denver, Colorado.

  17. GridWise Alliance

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the GRIDWISE ALLIANCE including its mission, today and tomorrow's grid, membership, work groups, and key policy initiatives.

  18. Impact of network topology on synchrony of oscillatory power grids

    SciTech Connect (OSTI)

    Rohden, Martin; Sorge, Andreas; Witthaut, Dirk [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany)] [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany) [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Faculty of Physics, Georg August Universität Göttingen, Göttingen (Germany)

    2014-03-15T23:59:59.000Z

    Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular, random, and small-world topologies and focusing on the influence of decentralization. We model the consumers and sources of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle (power outage), and coexistence of both. Second, we estimate stability thresholds for the collective dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For larger networks, we numerically investigate decentralization scenarios finding that decentralization itself may support power grids in exhibiting a stable state for lower transmission line capacities. Decentralization may thus be beneficial for power grids, regardless of the details of their resulting topology. Regular grids show a specific sharper transition not found for random or small-world grids.

  19. Random array grid collimator

    DOE Patents [OSTI]

    Fenimore, E.E.

    1980-08-22T23:59:59.000Z

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  20. Cyber Security & Smart Grid

    E-Print Network [OSTI]

    Shapiro, J.

    2011-01-01T23:59:59.000Z

    of the impacts of long-term power shortages from the destruction of critical electric infrastructure. ? A Hitachi factory north of Tokyo that makes 60% of the world?s supply of airflow sensors was shut down. This caused General Motors to shut a plant... at The University of Texas at Dallas ? Next Generation Control Systems ? Trustworthy Cyber Infrastructure for the Power Grid ? Active Defense Systems ? System Vulnerability Assessments ? Grid Test Bed ? Integrated Risk Analysis ? Modeling and Simulation...