National Library of Energy BETA

Sample records for global forecast system

  1. Global disease monitoring and forecasting with Wikipedia

    SciTech Connect (OSTI)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  2. Global disease monitoring and forecasting with Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  3. Intermediate future forecasting system

    SciTech Connect (OSTI)

    Gass, S.I.; Murphy, F.H.; Shaw, S.H.

    1983-12-01

    The purposes of the Symposium on the Department of Energy's Intermediate Future Forecasting System (IFFS) were: (1) to present to the energy community details of DOE's new energy market model IFFS; and (2) to have an open forum in which IFFS and its major elements could be reviewed and critiqued by external experts. DOE speakers discussed the total system, its software design, and the modeling aspects of oil and gas supply, refineries, electric utilities, coal, and the energy economy. Invited experts critiqued each of these topics and offered suggestions for modifications and improvement. This volume documents the proceedings (papers and discussion) of the Symposium. Separate abstracts have been prepared for each presentation for inclusion in the Energy Data Base.

  4. Flood Forecasting in River System Using ANFIS

    SciTech Connect (OSTI)

    Ullah, Nazrin; Choudhury, P.

    2010-10-26

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  5. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  6. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is delayed and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  7. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect (OSTI)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the systems ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  8. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect (OSTI)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  9. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  10. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect (OSTI)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  11. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema (OSTI)

    Gonzalez, Frank

    2010-01-08

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  12. Validation of Global Weather Forecast and Climate Models Over the North

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slope of Alaska Validation of Global Weather Forecast and Climate Models Over the North Slope of Alaska Xie, Shaocheng Lawrence Livermore National Laboratory Klein, Stephen Lawrence Livermore National Laboratory Boyle, Jim Lawrence Livermore National Laboratory Fiorino, Michael DOE/Lawrence Livermore National Laboratory Hnilo, Justin DOE/Lawrence Livermore National Laboratory Phillips, Thomas PCMDI/LLNL Potter, Gerald Lawrence Livermore National Laboratory Beljaars, Anton ECMWF Category:

  13. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  14. Final Report on California Regional Wind Energy Forecasting Project:Application of NARAC Wind Prediction System

    SciTech Connect (OSTI)

    Chin, H S

    2005-07-26

    Wind power is the fastest growing renewable energy technology and electric power source (AWEA, 2004a). This renewable energy has demonstrated its readiness to become a more significant contributor to the electricity supply in the western U.S. and help ease the power shortage (AWEA, 2000). The practical exercise of this alternative energy supply also showed its function in stabilizing electricity prices and reducing the emissions of pollution and greenhouse gases from other natural gas-fired power plants. According to the U.S. Department of Energy (DOE), the world's winds could theoretically supply the equivalent of 5800 quadrillion BTUs of energy each year, which is 15 times current world energy demand (AWEA, 2004b). Archer and Jacobson (2005) also reported an estimation of the global wind energy potential with the magnitude near half of DOE's quote. Wind energy has been widely used in Europe; it currently supplies 20% and 6% of Denmark's and Germany's electric power, respectively, while less than 1% of U.S. electricity is generated from wind (AWEA, 2004a). The production of wind energy in California ({approx}1.2% of total power) is slightly higher than the national average (CEC & EPRI, 2003). With the recently enacted Renewable Portfolio Standards calling for 20% of renewables in California's power generation mix by 2010, the growth of wind energy would become an important resource on the electricity network. Based on recent wind energy research (Roulston et al., 2003), accurate weather forecasting has been recognized as an important factor to further improve the wind energy forecast for effective power management. To this end, UC-Davis (UCD) and LLNL proposed a joint effort through the use of UCD's wind tunnel facility and LLNL's real-time weather forecasting capability to develop an improved regional wind energy forecasting system. The current effort of UC-Davis is aimed at developing a database of wind turbine power curves as a function of wind speed and

  15. Final Report- Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California independent system operator’s load forecasts by integrating behind-the-meter photovoltaic forecasts.

  16. Material World: Forecasting Household Appliance Ownership in a Growing Global Economy

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2009-03-23

    Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

  17. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  18. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    SciTech Connect (OSTI)

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; Sharp, Justin; Wilczak, James M.; Freedman, Jeffrey; Haupt, Sue Ellen; Cline, Joel; Bartholomy, Obadiah; Hamann, Hendrik F.; Hodge, Bri-Mathias; Finley, Catherine; Nakafuji, Dora; Peterson, Jack L.; Maggio, David; Marquis, Melinda

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value of adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.

  19. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; Sharp, Justin; Wilczak, James M.; Freedman, Jeffrey; Haupt, Sue Ellen; Cline, Joel; Bartholomy, Obadiah; Hamann, Hendrik F.; et al

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value ofmore » adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.« less

  20. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid

    SciTech Connect (OSTI)

    Tian; Tian; Chernyakhovskiy, Ilya

    2016-01-01

    This document discusses improving system operations with forecasting and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  1. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  2. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    SciTech Connect (OSTI)

    Das, S.

    1991-12-01

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

  3. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  4. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  5. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    SciTech Connect (OSTI)

    Zulkepli, Jafri Abidin, Norhaslinda Zainal; Fong, Chan Hwa

    2015-12-11

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand from the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.

  6. World Energy Projection System Plus (WEPS ): Global Activity Module

    Reports and Publications (EIA)

    2016-01-01

    The World Energy Projection System Plus (WEPS ) is a comprehensive, mid?term energy forecasting and policy analysis tool used by EIA. WEPS projects energy supply, demand, and prices by country or region, given assumptions about the state of various economies, international energy markets, and energy policies. The Global Activity Module (GLAM) provides projections of economic driver variables for use by the supply, demand, and conversion modules of WEPS . GLAM’s baseline economic projection contains the economic assumptions used in WEPS to help determine energy demand and supply. GLAM can also provide WEPS with alternative economic assumptions representing a range of uncertainty about economic growth. The resulting economic impacts of such assumptions are inputs to the remaining supply and demand modules of WEPS .

  7. Global Wind Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Global Wind Systems, Inc. Place: Novi, Michigan Zip: 48375 Product: Michigan-based startup company that plans to develop a turbine assembly plant in the town of Novi, using a...

  8. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Part of a 100 million ...

  9. GWPS Global Wind Power Systems | Open Energy Information

    Open Energy Info (EERE)

    GWPS Global Wind Power Systems Jump to: navigation, search Name: GWPS (Global Wind Power Systems) Place: Hamburg, Germany Zip: 20095 Sector: Wind energy Product: Company...

  10. Global Alignment System for Large Genomic Sequencing

    Energy Science and Technology Software Center (OSTI)

    2002-03-01

    AVID is a global alignment system tailored for the alignment of large genomic sequences up to megabases in length. Features include the possibility of one sequence being in draft form, fast alignment, robustness and accuracy. The method is an anchor based alignment using maximal matches derived from suffix trees.

  11. A Distributed Modeling System for Short-Term to Seasonal Ensemble Streamflow Forecasting in Snowmelt Dominated Basins

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Gill, Muhammad K.; Coleman, Andre M.; Prasad, Rajiv; Vail, Lance W.

    2007-12-01

    This paper describes a distributed modeling system for short-term to seasonal water supply forecasts with the ability to utilize remotely-sensed snow cover products and real-time streamflow measurements. Spatial variability in basin characteristics and meteorology is represented using a raster-based computational grid. Canopy interception, snow accumulation and melt, and simplified soil water movement are simulated in each computational unit. The model is run at a daily time step with surface runoff and subsurface flow aggregated at the basin scale. This approach allows the model to be updated with spatial snow cover and measured streamflow using an Ensemble Kalman-based data assimilation strategy that accounts for uncertainty in weather forecasts, model parameters, and observations used for updating. Model inflow forecasts for the Dworshak Reservoir in northern Idaho are compared to observations and to April-July volumetric forecasts issued by the Natural Resource Conservation Service (NRCS) for Water Years 2000 2006. October 1 volumetric forecasts are superior to those issued by the NRCS, while March 1 forecasts are comparable. The ensemble spread brackets the observed April-July volumetric inflows in all years. Short-term (one and three day) forecasts also show excellent agreement with observations.

  12. Incorporating Wind Generation Forecast Uncertainty into Power System Operation, Dispatch, and Unit Commitment Procedures

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Subbarao, Krishnappa

    2010-10-19

    In this paper, an approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the "flying-brick" technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through integration with an EMS system illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems from other vendors.

  13. Rapid deployable global sensing hazard alert system

    DOE Patents [OSTI]

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  14. Global positioning system recorder and method

    DOE Patents [OSTI]

    Hayes, D.W.; Hofstetter, K.J.; Eakle, R.F. Jr.; Reeves, G.E.

    1998-12-22

    A global positioning system recorder (GPSR) is disclosed in which operational parameters and recorded positional data are stored on a transferable memory element. Through this transferrable memory element, the user of the GPSR need have no knowledge of GPSR devices other than that the memory element needs to be inserted into the memory element slot and the GPSR must be activated. The use of the data element also allows for minimal downtime of the GPSR and the ability to reprogram the GPSR and download data therefrom, without having to physically attach it to another computer. 4 figs.

  15. Incorporating Uncertainty of Wind Power Generation Forecast into Power System Operation, Dispatch, and Unit Commitment Procedures

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian; Huang, Zhenyu; Subbarao, Krishnappa

    2011-06-23

    An approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. An assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty - both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures). A new method called the 'flying-brick' technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through EMS integration illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems in control rooms.

  16. Short-Term Energy Outlook Supplement: Uncertainties in the Short-Term Global Petroleum and Other Liquids Supply Forecast

    Gasoline and Diesel Fuel Update (EIA)

    Summer 2013 Outlook for Residential Electric Bills June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: Summer 2013 Outlook for Residential Electric Bills i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by

  17. Sandia Is Developing a Doppler Global Velocimetry System to Understand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is Developing a Doppler Global Velocimetry System to Understand Fundamental Wind-Turbine ... System to Understand Fundamental Wind-Turbine Wake Phenomena HomeComputational ...

  18. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  19. Geoscience Australia Continuous Global Positioning System (CGPS...

    Office of Scientific and Technical Information (OSTI)

    applications including maintenance of the Geospatial Reference Frame, both national and international, continental and tectonic plate motions, sea level rise, and global warming. ...

  20. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique

  1. 2016 Solar Forecasting Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    On August 3, 2016, the SunShot Initiative's systems integration subprogram hosted the Solar Forecasting Workshop to convene experts in the areas of bulk power system operations, distribution system operations, weather and solar irradiance forecasting, and photovoltaic system operation and modeling. The goal was to identify the technical challenges and opportunities in solar forecasting as a capability that can significantly reduce the integration cost of high levels of solar energy into the electricity grid. This will help SunShot to assess current technology and practices in this field and identify the gaps and needs for further research.

  2. Integrated Global System Modeling Framework | Open Energy Information

    Open Energy Info (EERE)

    System Modeling Framework AgencyCompany Organization: MIT Joint Program on the Science and Policy of Global Change Sector: Climate, Energy Focus Area: Renewable Energy...

  3. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  4. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter

  5. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    SciTech Connect (OSTI)

    Dyson, Brian; Chang, N.-B. . E-mail: nchang@even.tamuk.edu

    2005-07-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues.

  6. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  7. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  8. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  9. World Energy Projection System Plus (WEPS ): Global Activity Module

    Reports and Publications (EIA)

    2013-01-01

    World Energy Projection System Plus Model Documentation: Global Activity Module Documents the objectives, analytical approach, and development of the World Energy Projection Plus (WEPS ) Global Activity Module (GAM) used to develop the International Energy Outlook for 2013 (IEO2013). The report catalogues and describes the module assumptions, computations, methodology, parameter estimation techniques, and mainframe source code.

  10. Geoscience Australia Continuous Global Positioning System (GPS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including maintenance of the Geospatial Reference Frame, both national and ... the maintenance of the National Geospatial Reference Systems, tectonic plate ...

  11. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  12. Robotic Intelligent System | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intelligent System Could Save Hospitals Millions Click to email this to a friend (Opens in ... accuracy, all of the medical devices doctors need to perform life-saving procedures. ...

  13. Growth Rates of Global Energy Systems and Future Outlooks

    SciTech Connect (OSTI)

    Hoeoek, Mikael; Li, Junchen; Johansson, Kersti; Snowden, Simon

    2012-03-15

    The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems' growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid 'oil boom'-development-i.e. they mimic the most extreme historical events-their contribution to global energy supply by 2050 will be marginal.

  14. Building global HEP systems on Kerberos

    SciTech Connect (OSTI)

    Crawford, Matt; /Fermilab

    2004-12-01

    As an underpinning of AFS and Windows 2000, and as a formally proven security protocol [1] in its own right, Kerberos is ubiquitous among HEP sites. Fermilab and users from other sites have taken advantage of this and built a diversity of distributed applications over Kerberos v5. We present several projects in which this security infrastructure has been leveraged to meet the requirements of geographically dispersed collaborations. These range from straightforward ''Kerberization'' of applications such as database and batch services, to quick tricks like simulating a user-authenticated web service with AFS and the ''file'': schema, to more complex systems. Examples of the latter include experiment control room operations and the Central Analysis Farm (CAF). We present several use cases and their security models, and examine how they attempt to address some of the outstanding problems of secure distributed computing: delegation of the least necessary privilege; establishment of trust between a user and a remote processing facility; credentials for long-queued or long-running processes, and automated processes running without any user's presence; security of remotely-stored credentials; and ability to scale to the numbers of sites, machines and users expected in the collaborations of the coming decade.

  15. Global Energy Management System Implementation: General Dynamics Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Energy Management System Implementation: Case Study 1 USA, Superior Energy Performance Defense contractor improves energy performance nearly 12%, achieving a six-month payback and earning Gold- level certification by Superior Energy Performance Business Benefits Achieved General Dynamics Ordnance and Tactical Systems (GD-OTS) worked with the U.S. Department of Energy's Advanced Manufacturing Office to successfully implement an energy management system (EnMS) at a federal ammunition plant

  16. The sustainable system for global nuclear energy utilization

    SciTech Connect (OSTI)

    Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Kawashima, Masatoshi; Nakayama, Yoshiyuki; Ishiguma, Kazuo; Fuji-ie, Yoichi

    2007-07-01

    The sustainable system for global nuclear energy utilization has been developed based on the concept of the Self-Consistent Nuclear Energy System. As the results, it is clarified that metallic fuel fast reactor cycle with recycling of actinides and five LLFPs is one of the most promising systems for the sustainable nuclear utilization. It is important to develop the related technologies toward its realization. (authors)

  17. Global garbage collection for distributed heap storage systems

    SciTech Connect (OSTI)

    Ali, K.A.M.; Haridi, S.

    1986-10-01

    The authors present a garbage-collection algorithm, suitable for loosely-coupled multi-processor systems, in which the processing elements (PEs) share only the communication medium. The algorithm is global, i.e., it involves all the PEs in the system. It allows space compaction, and it uses a system-wide marking phase to mark all accessible objects where a combination of parallel breadth-first/depth-first strategies is used for tracing the object-graphs according to a decentralized credit mechanism that regulates the number of garbage collections messages in the system. The credit mechanism is crucial for determining the space requirement of the garbage-collection messages. Also a variation of this algorithm is presented for systems with high locality of reference. It allows each PE to perform first its local garbage collection and only invokes the global garbage collection when the freed space by the local collector is insufficient.

  18. The waveform correlation event detection system global prototype software design

    SciTech Connect (OSTI)

    Beiriger, J.I.; Moore, S.G.; Trujillo, J.R.; Young, C.J.

    1997-12-01

    The WCEDS prototype software system was developed to investigate the usefulness of waveform correlation methods for CTBT monitoring. The WCEDS prototype performs global seismic event detection and has been used in numerous experiments. This report documents the software system design, presenting an overview of the system operation, describing the system functions, tracing the information flow through the system, discussing the software structures, and describing the subsystem services and interactions. The effectiveness of the software design in meeting project objectives is considered, as well as opportunities for code refuse and lessons learned from the development process. The report concludes with recommendations for modifications and additions envisioned for regional waveform-correlation-based detector.

  19. Wind Forecasting Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Improvement Project Wind Forecasting Improvement Project October 3, 2011 - 12:12pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. In July, the Department of Energy launched a $6 million project with the National Oceanic and Atmospheric Administration (NOAA) and private partners to improve wind forecasting. Wind power forecasting allows system operators to anticipate the electrical output of wind plants and adjust the electrical

  20. HOW TO DEAL WITH WASTE ACCEPTANCE UNCERTAINTY USING THE WASTE ACCEPTANCE CRITERIA FORECASTING AND ANALYSIS CAPABILITY SYSTEM (WACFACS)

    SciTech Connect (OSTI)

    Redus, K. S.; Hampshire, G. J.; Patterson, J. E.; Perkins, A. B.

    2002-02-25

    The Waste Acceptance Criteria Forecasting and Analysis Capability System (WACFACS) is used to plan for, evaluate, and control the supply of approximately 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous wastes from over 60 environmental restoration projects between FY02 through FY10 to the Oak Ridge Environmental Management Waste Management Facility (EMWMF). WACFACS is a validated decision support tool that propagates uncertainties inherent in site-related contaminant characterization data, disposition volumes during EMWMF operations, and project schedules to quantitatively determine the confidence that risk-based performance standards are met. Trade-offs in schedule, volumes of waste lots, and allowable concentrations of contaminants are performed to optimize project waste disposition, regulatory compliance, and disposal cell management.

  1. Sandia Is Developing a Doppler Global Velocimetry System to Understand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamental Wind-Turbine Wake Phenomena Is Developing a Doppler Global Velocimetry System to Understand Fundamental Wind-Turbine Wake Phenomena - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage

  2. Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permalink EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Analysis, Capabilities, Facilities, Global, Infrastructure Security, Modeling, Modeling & Analysis, NISAC, Partnership, Research & Capabilities EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Natural disasters create emergency situations that must be dealt with quickly and effectively in order to minimize injury and loss of life. Simulating such events before they occur can

  3. Global positioning system recorder and method government rights

    DOE Patents [OSTI]

    Hayes, David W.; Hofstetter, Kenneth J.; Eakle, Jr., Robert F.; Reeves, George E.

    1998-01-01

    A global positioning system recorder (GPSR) is disclosed in which operational parameters and recorded positional data are stored on a transferable memory element. Through this transferrable memory element, the user of the GPSR need have no knowledge of GPSR devices other than that the memory element needs to be inserted into the memory element slot and the GPSR must be activated. The use of the data element also allows for minimal downtime of the GPSR and the ability to reprogram the GPSR and download data therefrom, without having to physically attach it to another computer.

  4. Application of global weather and climate model output to the design and operation of wind-energy systems

    SciTech Connect (OSTI)

    Curry, Judith

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  5. Forecast Change

    U.S. Energy Information Administration (EIA) Indexed Site

    Forecast Change 2011 2012 2013 2014 2015 2016 from 2015 United States Usage (kWh) 3,444 3,354 3,129 3,037 3,151 3,302 4.8% Price (cents/kWh) 12.06 12.09 12.58 13.04 12.95 12.84 -0.9% Expenditures $415 $405 $393 $396 $408 $424 3.9% New England Usage (kWh) 2,122 2,188 2,173 1,930 1,992 2,082 4.5% Price (cents/kWh) 15.85 15.50 16.04 17.63 18.64 18.37 -1.5% Expenditures $336 $339 $348 $340 $371 $382 3.0% Mid-Atlantic Usage (kWh) 2,531 2,548 2,447 2,234 2,371 2,497 5.3% Price (cents/kWh) 16.39 15.63

  6. Industrial market for sulfur dioxide emission-control systems. Final report. [Forecasting to 2000

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Under the postulated EIA medium world oil price scenario, in which oil prices are projected to rise at a real rate of 2.2% per year, coal will represent from 78 to 91% of MFBI fuel consumption by the year 2000, up from the present 16%. This increase would occur even in the absence of FUA, because the cost of coal is substantially lower than the cost of oil or gas. Much of this market will develop in the relatively near to intermediate term (before 1990). Annual installations will be much lower (by about 40%) after that period, reflecting a lower overall steam demand growth rate and the fact that much of the discretionary conversion of gas and oil boilers to coal will have been completed. About 22% of the sales will be for discretionary conversion of oil and gas boilers still having some useful life; the rest will be for nondiscretionary expansion or replacement of worn-out boilers. Under the postulated cost and performance estimates for the competing coal-burning technologies, we expect that AFB combustors and lime spray dryer FGD systems will dominate the market, with 42% of the market in our base case scenario. If the attitudes of the industrial decision-makers are factored into the analyses, particularly their aversion to FGD systems with wet wastes, the AFB and lime spray dryer technologies will capture as much as 73% of the coal-burning market. Costs for the various flue gas desulfurization (FGD) technologies were projected to be sufficiently close that the selection of one over another will depend on site-specific factors such as the availability of waste disposal facilities, the demonstrated reliability of the particular systems, and the vendor's reputation.

  7. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V.

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help

  8. Sensing, Measurement, and Forecasting | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensing, Measurement, and Forecasting NREL measures weather resources and power systems, forecasts renewable resources and grid conditions, and converts measurements into operational intelligence to support a modern grid. Photo of solar resource monitoring equipment Modernizing the grid involves assessing its health in real time, predicting its behavior and potential disruptions, and quickly responding to events-which requires understanding vital parameters throughout the electric

  9. World oil inventories forecast to grow significantly in 2016...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World oil inventories forecast to grow significantly in 2016 and 2017 Global oil inventories are expected to continue strong growth over the next two years which should keep oil ...

  10. Solar Trackers Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Forecast Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  11. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  12. probabilistic energy production forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy production forecasts - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary ...

  13. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data Presentations BPA Super Forecast Methodology Related Links Near Real-time Wind Animation Meteorological Data Customer Supplied Generation Imbalance Dynamic Transfer Limits...

  14. Forecasting Water Quality & Biodiversity

    Broader source: Energy.gov (indexed) [DOE]

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability ... that measure feedstock production, water quality, water quantity, and biodiversity. ...

  15. Demonstration of Next Generation PEM CHP Systems for Global Markets Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PBI Membrane Technology | Department of Energy Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 7a_plugpwr.pdf (22.69 KB) More Documents & Publications International Stationary Fuel Cell Demonstration Intergovernmental Stationary Fuel Cell System

  16. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  17. Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression | Department of Energy Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption.<br />Photo Credit: Mechanical Solutions, Inc. Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption. Photo Credit:

  18. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forecasting NREL researchers use solar and wind resource assessment and forecasting techniques to develop models that better characterize the potential benefits and impacts of ...

  19. TMA Global Wind Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Zip: 82001 Sector: Wind energy Product: Involved in the development, manufacture, and marketing of vertical axis wind energy turbines and hybrid energy systems. References: TMA...

  20. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  1. The Intelligence Behind the Robotic-Enabled System | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intelligence Behind the Robotic-Enabled System Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  2. Global DC Power System Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  3. Global DC Power System Market Growth | OpenEI Community

    Open Energy Info (EERE)

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  4. Global DC Power System Market Space | OpenEI Community

    Open Energy Info (EERE)

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  5. Complex Adaptive Systems of Systems (CASoS) engineering and foundations for global design.

    SciTech Connect (OSTI)

    Brodsky, Nancy S.; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Linebarger, John Michael; Moore, Thomas W.; Glass, Robert John, Jr.; Maffitt, S. Louise; Mitchell, Michael David; Ames, Arlo Leroy

    2012-01-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understanding and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS

  6. Today's Forecast: Improved Wind Predictions

    Broader source: Energy.gov [DOE]

    Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable.

  7. Analysis of energy conversion systems, including material and global warming aspects

    SciTech Connect (OSTI)

    Zhang, M.; Reistad, G.M.

    1998-12-31

    This paper addresses a method for the overall evaluation of energy conversion systems, including material and global environmental aspects. To limit the scope of the work reported here, the global environmental aspects have been limited to global warming aspects. A method is presented that uses exergy as an overall evaluation measure of energy conversion systems for their lifetime. The method takes the direct exergy consumption (fuel consumption) of the conventional exergy analyses and adds (1) the exergy of the energy conversion system equipment materials, (2) the fuel production exergy and material exergy, and (3) the exergy needed to recover the total global warming gases (equivalent) of the energy conversion system. This total, termed Total Equivalent Resource Exergy (TERE), provides a measure of the effectiveness of the energy conversion system in its use of natural resources. The results presented here for several example systems illustrate how the method can be used to screen candidate energy conversion systems and perhaps, as data become more available, to optimize systems. It appears that this concept may be particularly useful for comparing systems that have quite different direct energy and/or environmental impacts. This work should be viewed in the context of being primarily a concept paper in that the lack of detailed data available to the authors at this time limits the accuracy of the overall results. The authors are working on refinements to data used in the evaluation.

  8. Final Report - Integration of Behind-the-Meter PV Fleet Forecasts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System ...

  9. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat; Black, Jon; Tedesco, John

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.

  10. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat; Black, Jon; Tedesco, John

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  11. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  12. R&D Needs for Global Technical Regulations for Hydrogen Vehicle Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Needs for Global Technical Regulations for Hydrogen Vehicle Systems R&D Needs for Global Technical Regulations for Hydrogen Vehicle Systems These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpv_nguyen.pdf (658.17 KB) More Documents & Publications Test Protocol for Hydrogen Storage Systems in SAE J2579 and GTR Requirements for Cycling Testing and Its Effects on Type 3 and 4

  13. Acquisition Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Forecast Acquisition Forecast Acquisition Forecast It is the policy of the U.S. Department of Energy (DOE) to provide timely information to the public regarding DOE's forecast of future prime contracting opportunities and subcontracting opportunities which are available via the Department's major site and facilities management contractors. This forecast has been expanded to also provide timely status information for ongoing prime contracting actions that are valued in excess of the

  14. The Global Positioning System constellation as a space weather monitor. Comparison of electron measurements with Van Allen Probes data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; Blake, J. Bernard; Baker, Daniel N.

    2016-02-06

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, wemore » use a combination of four distributions that together capture a wide range of observed spectral shapes. Moreover, our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a “gold standard,” here we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies inline image4 MeV. Our team present data from 17 CXD-equipped GPS satellites covering the 2015 “St. Patrick's Day” geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.« less

  15. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  16. Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment

    SciTech Connect (OSTI)

    Zupanski, M. )

    1993-08-01

    Four-dimensional variational data assimilation is applied to a regional forecast model as part of the development of a new data assimilation system at the National Meteorological Center (NMC). The assimilation employs an operational version of the NMC's new regional forecast model defined in eta vertical coordinates, and data used are operationally produced optimal interpolation (OI) analyses (using the first guess from the NMC's global spectral model), available every 3 h. Humidity and parameterized processes are not included in the adjoint model integration. The calculation of gradients by the adjoint model is approximate since the forecast model is used in its full-physics operational form. All experiments are over a 12-h assimilation period with subsequent 48-h forecast. Three different types of assimilation experiments are performed: (a) adjustment of initial conditions only (standard [open quotes]adjoint[close quotes] approach), (b) adjustment of a correction to the model equations only (variational continuous assimilation), and (c) simultaneous or sequential adjustment of both initial conditions and the correction term. Results indicate significantly better results when the correction term is included in the assimilation. It is shown, for a single case, that the new technique [experiment (c)] is able to produce a forecast better than the current conventional OI assimilation. It is very important to note that these results are obtained with an approximate gradient, calculated from a simplified adjoint model. Thus, it may be possible to perform an operational four-dimensional variational data assimilation of realistic forecast models, even before more complex adjoint models are developed. Also, the results suggest that it may be possible to reduce the large computational cost of assimilation by using only a few iterations of the minimization algorithm. This fast convergence is encouraging from the prospective of operational use. 37 refs., 10 figs., 1 tab.

  17. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. December 21, 2015 Los Alamos scientist Nate McDowell discusses how climate change is killing trees with PBS NewsHour reporter Miles O'Brien. Los Alamos scientist Nate McDowell discusses how climate change is

  18. System for the Analysis of Global Energy Markets - Vol. II, Model Documentation

    Reports and Publications (EIA)

    2003-01-01

    The second volume provides a data implementation guide that lists all naming conventions and model constraints. In addition, Volume 1 has two appendixes that provide a schematic of the System for the Analysis of Global Energy Markets (SAGE) structure and a listing of the source code, respectively.

  19. System for the Analysis of Global Energy Markets - Vol. I, Model Documentation

    Reports and Publications (EIA)

    2003-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of projections for the International Energy Outlook. The first volume of this report describes the System for the Analysis of Global Energy Markets (SAGE) methodology and provides an in-depth explanation of the equations of the model.

  20. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  1. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  2. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  3. A critical evaluation of the upper ocean heat budget in the Climate Forecast System Reanalysis data for the south central equatorial Pacific

    SciTech Connect (OSTI)

    Liu H.; Lin W.; Liu, X.; Zhang, M.

    2011-08-26

    Coupled ocean-atmospheric models suffer from the common bias of a spurious rain belt south of the central equatorial Pacific throughout the year. Observational constraints on key processes responsible for this bias are scarce. The recently available reanalysis from a coupled model system for the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data is a potential benchmark for climate models in this region. Its suitability for model evaluation and validation, however, needs to be established. This paper examines the mixed layer heat budget and the ocean surface currents - key factors for the sea surface temperature control in the double Inter-Tropical Convergence Zone in the central Pacific - from 5{sup o}S to 10{sup o}S and 170{sup o}E to 150{sup o}W. Two independent approaches are used. The first approach is through comparison of CFSR data with collocated station observations from field experiments; the second is through the residual analysis of the heat budget of the mixed layer. We show that the CFSR overestimates the net surface flux in this region by 23 W m{sup -2}. The overestimated net surface flux is mainly due to an even larger overestimation of shortwave radiation by 44 W m{sup -2}, which is compensated by a surface latent heat flux overestimated by 14 W m{sup -2}. However, the quality of surface currents and the associated oceanic heat transport in CFSR are not compromised by the surface flux biases, and they agree with the best available estimates. The uncertainties of the observational data from field experiments are also briefly discussed in the present study.

  4. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; et al

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we havemore » the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.« less

  5. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    SciTech Connect (OSTI)

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; Lancaster, Nick; Marani, Marco; Merritts, Dorothy J.; Moore, Laura J.; Pederson, Joel L.; Poulos, Michael J.; Rittenour, Tammy M.; Rowland, Joel C.; Ruggiero, Peter; Ward, Dylan J.; Wickert, Andrew D.; Yager, Elowyn M.

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.

  6. Solar Trackers Market - Global Industry Analysis, Size, Share...

    Open Energy Info (EERE)

    Solar Trackers Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2010 - 2020 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture...

  7. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  8. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.

  9. Waiver of Mandatory Use of the Strategic Integrated Procurement Enterprise System (STRIPES) for GSA Global Supply Service Transactions

    Broader source: Energy.gov [DOE]

    Pursuant to Federal Acquisition Regulation (FAR) 8.402 (c)(1), orders placed through the General Service Administration (GSA) Global Supply System are not subject to FAR Subpart 8.4, Federal Supply Schedules. In addition, FAR 4.606 (c)(2) eliminates the requirement for orders from GSA Global Supply System be reported to the Federal Procurement Data System – Next Generation (FPDS-NG).

  10. Using Wikipedia to forecast diseases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Wikipedia to forecast diseases Using Wikipedia to forecast diseases Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles. November 13, 2014 Del Valle and her team observe findings from their research on disease patterns from analyzing Wikipedia articles. Del Valle and her team observe findings from their research on disease patterns from analyzing Wikipedia articles. Contact Nancy Ambrosiano Communications Office (505)

  11. Baseline and Target Values for PV Forecasts: Toward Improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting ... Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting Jie ...

  12. A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios

    SciTech Connect (OSTI)

    Lu, Wei; Liu, Cheng; Thomas, Neil; Bhaduri, Budhendra L; Han, Lee

    2015-01-01

    Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. For left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.

  13. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  14. The forecast calls for flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on the Hill: The forecast calls for flu Using mathematics, computer programs, ... We're getting close. Using mathematics, computer programs, statistics and information ...

  15. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94965 Region: Bay Area Sector: Services Product: Intelligent Monitoring and Forecasting Services Year Founded: 2010 Website: www.forecastenergy.net Coordinates:...

  16. Value of Improved Short-Term Wind Power Forecasting

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Sharp, J.; Margulis, M.; Mcreavy, D.

    2015-02-01

    This report summarizes an assessment of improved short-term wind power forecasting in the California Independent System Operator (CAISO) market and provides a quantification of its potential value.

  17. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  18. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  19. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  20. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am ...

  1. Solar Energy Market Forecast | Open Energy Information

    Open Energy Info (EERE)

    Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast AgencyCompany Organization: United States Department of Energy Sector:...

  2. Project Profile: Forecasting and Influencing Technological Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Project Profile: Forecasting and Influencing Technological Progress in Solar Energy Project Profile: Forecasting and Influencing Technological Progress in Solar ...

  3. National Oceanic and Atmospheric Administration Provides Forecasting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... will share their expertise with CLASIC and CHAPS forecasters and project leaders as they consult on the forecast that will determine the day's operations plan. -- Storm Prediction ...

  4. Development of the first nonhydrostatic nested-grid grid-point global atmospheric modeling system on parallel machines

    SciTech Connect (OSTI)

    Kao, C.Y.J.; Langley, D.L.; Reisner, J.M.; Smith, W.S.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Evaluating the importance of global and regional climate response to increasing atmospheric concentrations of greenhouse gases requires a comprehensive global atmospheric modeling system (GAMS) capable of simulations over a wide range of atmospheric circulations, from complex terrain to continental scales, on high-performance computers. Unfortunately, all of the existing global circulation models (GCMs) do not meet this requirements, because they suffer from one or more of the following three shortcomings: (1) use of the hydrostatic approximation, which makes the models potentially ill-posed; (2) lack of a nested-grid (or multi-grid) capability, which makes it difficult to consistently evaluate the regional climate response to the global warming, and (3) spherical spectral (opposed to grid-point finite-difference) representation of model variables, which hinders model performance for parallel machine applications. The end product of the research is a highly modularized, multi-gridded, self-calibratable (for further parameterization development) global modeling system with state-of-the-science physics and chemistry. This system will be suitable for a suite of atmospheric problems: from local circulations to climate, from thunderstorms to global cloud radiative forcing, from urban pollution to global greenhouse trace gases, and from the guiding of field experiments to coupling with ocean models. It will also provide a unique testbed for high-performance computing architecture.

  5. An INMARSAT-C goes, and EIA485 hybrid communication system for global experiment control

    SciTech Connect (OSTI)

    Reynolds, R.B.; Behrens, W.

    1995-08-01

    The Atmosphere Radiation Measurement (ARM) program is constructing and radiation monitoring instrument that will be deployed at several island sites in the Tropical Western Pacific Ocean. The atmospheric radiation and cloud systems (ARCS) must operate the minimal maintenance for decades, producing and storing many megabytes of data per day. A reliable global communication system is an essential element of the ARCS design. It must provide immediate direct access to the equipment. High availability and reasonably low cost are essential for this very long-term deployment. Providing executive management and control, the communication system incorporates several special technologies to meet its requirements: (a) INMARSAT-C provides a simple two-way messaging capability. (b) Built-in GPS in the INMARSAT-C radio provides an accurate time standard. (c) The NOAA GOES satellite provides a one-way link for hourly health and basic measurement data. (d) An EIA485 local area network provides a digital link throughout the installation. (e) Node units located conveniently throughout the ARCS and linked by the EIA485 network allow an almost unlimited flexibility and expandability. (f) A robust packet protocol ensures message security and accuracy. The complete communication, control, and data acquisition system is described in detail. The ability of the system to adapt to other physical configurations (telephone, UHF, telnet) is discussed.

  6. The Value of Improved Wind Power Forecasting in the Western Interconne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this research will facilitate a better functional understanding of wind forecasting accuracy and power system operations at various spatial and temporal scales.* Of particular ...

  7. Energy Department Announces $2.5 Million to Improve Wind Forecasting...

    Broader source: Energy.gov (indexed) [DOE]

    turbines operate closer to maximum capacity, leading to lower energy costs for consumers. ... for the Weather Research and Forecasting model, a widely used weather prediction system. ...

  8. EERE Success Story-Solar Forecasting Gets a Boost from Watson...

    Broader source: Energy.gov (indexed) [DOE]

    electric system operators, and solar project owners better predict when and how much ... production varies, an accurate solar forecast is needed in order to maintain an ...

  9. New Climate Research Centers Forecast Changes and Challenges | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Climate Research Centers Forecast Changes and Challenges New Climate Research Centers Forecast Changes and Challenges October 25, 2013 - 12:24pm Addthis This artist's rendering illustrates the full site installation, including a new aerosol observing system (far left) and a precipitation radar (far right, with 20-ft tower). The site is located near the Graciosa Island aiport terminal, hidden by the image inset. | Image courtesy of ARM Climate Research Facility. This artist's

  10. Science on Tap - Forecasting illness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Forecasting illness Science on Tap - Forecasting illness WHEN: Mar 17, 2016 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544 USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Mark your calendars for this event held every third Thursday from 5:30 to 7 p.m. A short presentation is followed by a lively discussion on a different subject each month. Forecasting the flu (and other

  11. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J.

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios

  12. Use of global navigation satellite systems for monitoring deformations of water-development works

    SciTech Connect (OSTI)

    Kaftan, V. I.; Ustinov, A. V.

    2013-05-15

    The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurance of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.

  13. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  14. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  15. Acquisition Forecast Download | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Forecast Download Acquisition Forecast Download Click on the link to download a copy of the DOE HQ Acquisition Forecast. Acquisition-Forecast-2016-07-20.xlsx (72.85 KB) More Documents & Publications Small Business Program Manager Directory EA-1900: Notice of Availability of a Draft Environmental Assessment Assessment Report: OAS-V-15-01

  16. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the

  17. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  18. Preliminary Concept of Operations for a Global Cylinder Identification and Monitoring System

    SciTech Connect (OSTI)

    Whitaker, J. M.; White-Horton, J. L.; Morgan, J. B.

    2013-08-01

    This report describes a preliminary concept of operations for a Global Cylinder Identification and Monitoring System that could improve the efficiency of the International Atomic Energy Agency (IAEA) in conducting its current inspection activities and could provide a capability to substantially increase its ability to detect credible diversion scenarios and undeclared production pathways involving UF6 cylinders. There exist concerns that a proliferant State with access to enrichment technology could obtain a cylinder containing natural or low-enriched uranium hexafluoride (UF6) and produce a significant quantity (SQ)1 of highly enriched uranium in as little as 30 days. The National Nuclear Security Administration (NNSA) through the Next Generation Safeguards Initiative sponsored a multi-laboratory team to develop an integrated system that provides for detecting scenarios involving 1) diverting an entire declared cylinder for enrichment at a clandestine facility, 2) misusing a declared cylinder at a safeguarded facility, and 3) using an undeclared cylinder at a safeguarded facility. An important objective in developing this integrated system was to improve the timeliness for detecting the cylinder diversion and undeclared production scenarios. Developing this preliminary concept required in-depth analyses of current operational and safeguards practices at conversion, enrichment, and fuel fabrication facilities. The analyses evaluated the processing, movement, and storage of cylinders at the facilities; the movement of cylinders between facilities (including cylinder fabrication); and the misuse of safeguarded facilities.

  19. Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

  20. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect (OSTI)

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  1. Feasibility of integrating other federal information systems into the Global Network of Environment and Technology, GNET{reg_sign}

    SciTech Connect (OSTI)

    1998-05-01

    The Global Environment and Technology Enterprise (GETE) of the Global Environment and Technology Foundation (GETF) has been tasked by the US Department of Energy`s (DOE), Federal Energy Technology Center (FETC) to assist in reducing DOE`s cost for the Global Network of Environment and Technology (GNET{reg_sign}). As part of this task, GETE is seeking federal partners to invest in GNET{reg_sign}. The authors are also seeking FETC`s commitment to serve as GNET`s federal agency champion promoting the system to potential agency partners. This report assesses the benefits of partnering with GNET{reg_sign} and provides recommendations for identifying and integrating other federally funded (non-DOE) environmental information management systems into GNET{reg_sign}.

  2. Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology IBM logo.png As part of this project, new solar forecasting technology will be developed that leverages big data processing, deep machine learning, and cloud modeling integrated in a universal platform with an open architecture. Similar to the Watson computer system, this proposed technology

  3. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern ...

  4. Leaf respiration (GlobResp) - global trait database supports Earth System Models

    SciTech Connect (OSTI)

    Wullschleger, Stan D.; Warren, Jeffrey; Thornton, Peter E.

    2015-03-20

    Here we detail how Atkin and his colleagues compiled a global database (GlobResp) that details rates of leaf dark respiration and associated traits from sites that span Arctic tundra to tropical forests. This compilation builds upon earlier research (Reich et al., 1998; Wright et al., 2006) and was supplemented by recent field campaigns and unpublished data.In keeping with other trait databases, GlobResp provides insights on how physiological traits, especially rates of dark respiration, vary as a function of environment and how that variation can be used to inform terrestrial biosphere models and land surface components of Earth System Models. Although an important component of plant and ecosystem carbon (C) budgets (Wythers et al., 2013), respiration has only limited representation in models. Seen through the eyes of a plant scientist, Atkin et al. (2015) give readers a unique perspective on the climatic controls on respiration, thermal acclimation and evolutionary adaptation of dark respiration, and insights into the covariation of respiration with other leaf traits. We find there is ample evidence that once large databases are compiled, like GlobResp, they can reveal new knowledge of plant function and provide a valuable resource for hypothesis testing and model development.

  5. The National Academies of Sciences, Engineering, and Medicine Release Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions

    Broader source: Energy.gov [DOE]

    The National Academies of Sciences, Engineering, and Medicine releases the Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions report, which focuses on large (single- and twin-aisle) planes that transport more than 100 people. These aircraft account for more than 90% of greenhouse gas emissions from all commercial aircraft.

  6. Picture of the Week: Forecasting Flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? March 6, 2016 flu epidemics modellled using social media Watch the video on YouTube. Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? Using real-time data from Wikipedia and social media, Sara del

  7. Global warming: Science or politics? Part 2

    SciTech Connect (OSTI)

    Dorweiler, V.P.

    1998-05-01

    Supplementing the conclusion that ``there has been a discernible influence of human activity on global climate`` is a set of dire consequences to the globe and human population. One consequence is the spread of tropical diseases. It has not been concluded whether the spread of disease is due to global conditions or to opening of tropical forests to commerce, allowing spread by travelers. Whether these forecasts abet the claimed relation of human activity to global warming, they are not a new phenomenon. In the space of several decades, dire consequences have been forecast in three sectors: natural resource consumption, energy resources and environmental fate. These three areas are reviewed.

  8. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  9. Earth System Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Earth System Observations Research comprises Earth, ocean, and atmospheric sciences to better understand and predict climate change's impact on ecosystems and to study subsurface geological materials and their interactions. Deploying research facilities globally Forecasting forests' responses to climate change Monitoring terrestrial ecosystems Contact Us Group Leader Claudia Mora Email Deputy Group Leader Bob Roback Email Profile pages header Search our Profile pages Investigating carbon

  10. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... day-ahead wind generation forecasts yields an average of 195M savings in annual operating costs. Figure 6 shows how operating cost savings vary with improvements in forecasting. ...

  11. EIA lowers forecast for summer gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be ... according to the new monthly forecast from the U.S. Energy Information Administration. ...

  12. Collaborative Proposal: Transforming How Climate System Models are Used: A Global, Multi-Resolution Approach

    SciTech Connect (OSTI)

    Estep, Donald

    2013-04-15

    Despite the great interest in regional modeling for both weather and climate applications, regional modeling is not yet at the stage that it can be used routinely and effectively for climate modeling of the ocean. The overarching goal of this project is to transform how climate models are used by developing and implementing a robust, efficient, and accurate global approach to regional ocean modeling. To achieve this goal, we will use theoretical and computational means to resolve several basic modeling and algorithmic issues. The first task is to develop techniques for transitioning between parameterized and high-fidelity regional ocean models as the discretization grid transitions from coarse to fine regions. The second task is to develop estimates for the error in scientifically relevant quantities of interest that provide a systematic way to automatically determine where refinement is needed in order to obtain accurate simulations of dynamic and tracer transport in regional ocean models. The third task is to develop efficient, accurate, and robust time-stepping schemes for variable spatial resolution discretizations used in regional ocean models of dynamics and tracer transport. The fourth task is to develop frequency-dependent eddy viscosity finite element and discontinuous Galerkin methods and study their performance and effectiveness for simulation of dynamics and tracer transport in regional ocean models. These four projects share common difficulties and will be approach using a common computational and mathematical toolbox. This is a multidisciplinary project involving faculty and postdocs from Colorado State University, Florida State University, and Penn State University along with scientists from Los Alamos National Laboratory. The completion of the tasks listed within the discussion of the four sub-projects will go a long way towards meeting our goal of developing superior regional ocean models that will transform how climate system models are used.

  13. UPF Forecast | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subcontracting / Subcontracting Forecasts / UPF Forecast UPF Forecast UPF Procurement provides the following forecast of subcontracting opportunities. Keep in mind that these requirements may be revised or cancelled, depending on program budget funding or departmental needs. If you have questions or would like to express an interest in any of the opportunities listed below, contact UPF Procurement. Descriptiona Methodb NAICS Est. Dollar Range RFP release/ Award datec Buyer/ Phone Commodities

  14. Incorporating Forecast Uncertainty in Utility Control Center

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

    2014-07-09

    Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

  15. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

    2013-10-01

    This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

  16. Future Power Systems 20: The Smart Enterprise, its Objective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, ...

  17. Modeling the Oil Transition: A Summary of the Proceedings of the DOE/EPA Workshop on the Economic and Environmental Implications of Global Energy Transitions

    SciTech Connect (OSTI)

    Greene, David L

    2007-02-01

    The global energy system faces sweeping changes in the next few decades, with potentially critical implications for the global economy and the global environment. It is important that global institutions have the tools necessary to predict, analyze and plan for such massive change. This report summarizes the proceedings of an international workshop concerning methods of forecasting, analyzing, and planning for global energy transitions and their economic and environmental consequences. A specific case, it focused on the transition from conventional to unconventional oil and other energy sources likely to result from a peak in non-OPEC and/or global production of conventional oil. Leading energy models from around the world in government, academia and the private sector met, reviewed the state-of-the-art of global energy modeling and evaluated its ability to analyze and predict large-scale energy transitions.

  18. 1980 annual report to Congress: Volume three, Forecasts: Summary

    SciTech Connect (OSTI)

    Not Available

    1981-05-27

    This report presents an overview of forecasts of domestic energy consumption, production, and prices for the year 1990. These results are selected from more detailed projections prepared and published in Volume 3 of the Energy Information Administration 1980 Annual Report to Congress. This report focuses specifically upon the 1980's and concentrates upon similarities and differences in the domestic energy system, as forecast, compared to the national experience in the years immediately following the 1973--1974 oil embargo. Interest in the 1980's stems not only from its immediacy in time, but also from its importance as a time in which certain adjustments to higher energy prices are expected to take place. The forecasts presented do not attempt to account for all of this wide range of potentially important forces that could conceivably alter the energy situation. Instead, the projections are based on a particular set of assumptions that seems reasonable in light of what is currently known. 9 figs., 25 tabs.

  19. Research Study - Global Enterprise VoIP Equipment Market Forecasts...

    Open Energy Info (EERE)

    we deeply analyzed the world's main region market conditions that including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  20. Global GPS Phones Market Size, Segmentation, Demand Forecast...

    Open Energy Info (EERE)

    we deeply analyzed the world's main region market conditions that including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  1. Supply Forecast and Analysis (SFA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Matthew Langholtz Science Team Leader Oak Ridge National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Supply Forecast and Analysis (SFA) 2 | Bioenergy Technologies Office Goal Statement * Provide timely and credible estimates of feedstock supplies and prices to support - the development of a bioeconomy; feedstock demand analysis of EISA, RFS2, and RPS mandates - the data and analysis of other projects in Analysis and Sustainability, Feedstock Supply and Logistics,

  2. Global warming from HFC

    SciTech Connect (OSTI)

    Johnson, E.

    1998-11-01

    Using a variety of public sources, a computer model of hydrofluorocarbon (HFC) refrigerant emissions in the UK has been developed. This model has been used to estimate and project emissions in 2010 under three types of scenarios: (1) business as usual; (2) voluntary agreements to reduce refrigerant leakage; and (3) comprehensive regulations to reduce refrigerant leakage. This resulting forecast is that UK emissions of HFC refrigerants in 2010 will account for 2% to 4% of the UK`s 1990 baseline global warming contribution.

  3. Towards a Fine-Resolution Global Coupled Climate System for Prediction...

    Office of Scientific and Technical Information (OSTI)

    58 GEOSCIENCES climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale eddies climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale...

  4. ARM - CARES - Tracer Forecast for CARES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CampaignsCarbonaceous Aerosols and Radiative Effects Study (CARES)Tracer Forecast for CARES Related Links CARES Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Field Updates CARES Wiki Campaign Images Experiment Planning Proposal Abstract and Related Campaigns Science Plan Operations Plan Measurements Forecasts News News & Press Backgrounder (PDF, 1.45MB) G-1 Aircraft Fact Sheet (PDF, 1.3MB) Contacts Rahul Zaveri, Lead Scientist Tracer Forecasts for CARES This webpage

  5. LED Lighting Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications » Market Studies » LED Lighting Forecast LED Lighting Forecast The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030. With declining costs and improving performance, LED products have been seeing increased adoption for general illumination applications. This is a positive development in terms of energy consumption, as LEDs use significantly

  6. NREL: Resource Assessment and Forecasting Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are used to plan and develop renewable energy technologies and support climate change research. Learn more about NREL's resource assessment and forecasting research:...

  7. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    There is no cost to participate and all applicants are encouraged to attend. To join the ... Related Articles Upcoming Funding Opportunity for Wind Forecasting Improvement Project in ...

  8. Module 6 - Metrics, Performance Measurements and Forecasting...

    Broader source: Energy.gov (indexed) [DOE]

    This module reviews metrics such as cost and schedule variance along with cost and schedule performance indices. In addition, this module will outline forecasting tools such as ...

  9. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Waste Forecast and Funding Arrangements About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford...

  10. NREL: Resource Assessment and Forecasting - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    email address: Your message: Send Message Printable Version Resource Assessment & Forecasting Home Capabilities Facilities Working with Us Research Staff Data & Resources Did...

  11. Development and Demonstration of Advanced Forecasting, Power...

    Broader source: Energy.gov (indexed) [DOE]

    and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices 63wateruseoptimizationprojectanlgasper.ppt (7.72 MB) More ...

  12. A Public-Private-Academic Partnership to Advance Solar Power Forecasting

    Broader source: Energy.gov [DOE]

    The University Corporation for Atmospheric  Research (UCAR) will develop a solar power forecasting system that advances the state of the science through cutting-edge research.

  13. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    SciTech Connect (OSTI)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  14. Hybrid robust predictive optimization method of power system dispatch

    DOE Patents [OSTI]

    Chandra, Ramu Sharat; Liu, Yan; Bose, Sumit; de Bedout, Juan Manuel

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  15. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  16. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  17. Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Climate & Earth Systems Climate Measurement & Modeling Arctic Climate Measurements Global ...

  18. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  19. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  20. Global DC Power System Market Trends, Analysis 2015-2019 | OpenEI...

    Open Energy Info (EERE)

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  1. Global DC Power System Market Key Vendors | OpenEI Community

    Open Energy Info (EERE)

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  2. Review of Variable Generation Forecasting in the West: July 2013 - March 2014

    SciTech Connect (OSTI)

    Widiss, R.; Porter, K.

    2014-03-01

    This report interviews 13 operating entities (OEs) in the Western Interconnection about their implementation of wind and solar forecasting. The report updates and expands upon one issued by NREL in 2012. As in the 2012 report, the OEs interviewed vary in size and character; the group includes independent system operators, balancing authorities, utilities, and other entities. Respondents' advice for other utilities includes starting sooner rather than later as it can take time to plan, prepare, and train a forecast; setting realistic expectations; using multiple forecasts; and incorporating several performance metrics.

  3. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in ...

  4. 915 MHz Wind Profiler for Cloud Forecasting at Brookhaven National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen MJ ... Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen, ...

  5. Data Collection and Comparison with Forecasted Unit Sales of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Collection and Comparison with Forecasted Unit Sales of Five Lamp Types Data Collection and Comparison with Forecasted Unit Sales of Five Lamp Types PDF icon Data Collection ...

  6. Exciting News About LEAP-X and Thermal Systems | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exciting News About LEAP-X and Thermal Systems Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Exciting News About LEAP-X and Thermal Systems Todd Wetzel 2011.07.20 I was excited to hear that the LEAP-X engine (Leading Edge Aviation Propulsion) developed by CFM International, a 50/50 joint venture between GE and Snecma

  7. An Optimized Autoregressive Forecast Error Generator for Wind and Load Uncertainty Study

    SciTech Connect (OSTI)

    De Mello, Phillip; Lu, Ning; Makarov, Yuri V.

    2011-01-17

    This paper presents a first-order autoregressive algorithm to generate real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast errors. The methodology aims at producing random wind and load forecast time series reflecting the autocorrelation and cross-correlation of historical forecast data sets. Five statistical characteristics are considered: the means, standard deviations, autocorrelations, and cross-correlations. A stochastic optimization routine is developed to minimize the differences between the statistical characteristics of the generated time series and the targeted ones. An optimal set of parameters are obtained and used to produce the RT, HA, and DA forecasts in due order of succession. This method, although implemented as the first-order regressive random forecast error generator, can be extended to higher-order. Results show that the methodology produces random series with desired statistics derived from real data sets provided by the California Independent System Operator (CAISO). The wind and load forecast error generator is currently used in wind integration studies to generate wind and load inputs for stochastic planning processes. Our future studies will focus on reflecting the diurnal and seasonal differences of the wind and load statistics and implementing them in the random forecast generator.

  8. Beyond climate-smart agriculture: toward safe operating spaces for global food systems

    SciTech Connect (OSTI)

    Gulledge, Jay; Neufeldt, Heinrich; Jahn, Margaret M; Lezaks, David P; Meinke, Jan H; Scholes, Robert J

    2013-01-01

    Agriculture is considered to be climate-smart when it contributes to increasing food security, adaptation and mitigation in a sustainable way. This new concept now dominates current discussions in agricultural development because of its capacity to unite the agendas of the agriculture, development and climate change communities under one brand. In this opinion piece authored by scientists from a variety of international agricultural and climate research communities, we argue that the concept needs to be evaluated critically because the relationship between the three dimensions is poorly understood, such that practically any improved agricultural practice can be considered climate-smart. This lack of clarity may have contributed to the broad appeal of the concept. From the understanding that we must hold ourselves accountable to demonstrably better meet human needs in the short and long term within foreseeable local and planetary limits, we develop a conceptualization of climate-smart agriculture as agriculture that can be shown to bring us closer to safe operating spaces for agricultural and food systems across spatial and temporal scales. Improvements in the management of agricultural systems that bring us significantly closer to safe operating spaces will require transformations in governance and use of our natural resources, underpinned by enabling political, social and economic conditions beyond incremental changes. Establishing scientifically credible indicators and metrics of long-term safe operating spaces in the context of a changing climate and growing social-ecological challenges is critical to creating the societal demand and political will required to motivate deep transformations. Answering questions on how the needed transformational change can be achieved will require actively setting and testing hypotheses to refine and characterize our concepts of safer spaces for social-ecological systems across scales. This effort will demand prioritizing key

  9. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-02-01

    This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  10. Assessment of the possibility of forecasting future natural gas curtailments

    SciTech Connect (OSTI)

    Lemont, S.

    1980-01-01

    This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

  11. Coal Fired Power Generation Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Forecast Home There are currently no posts in this category. Syndicate...

  12. Offshore Lubricants Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Offshore Lubricants Market Forecast Home There are currently no posts in this category. Syndicate...

  13. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  14. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

    2013-11-01

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

  15. Future Power Systems 20: The Smart Enterprise, its Objective and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting. | Department of Energy 0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. (297.93 KB) More Documents & Publications Future Power Systems 21 - The Smart Customer Smart Grid R&D Multi-Year Program Plan (2010-2014) - September 2011 Update

  16. Text-Alternative Version LED Lighting Forecast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  17. energy data + forecasting | OpenEI Community

    Open Energy Info (EERE)

    energy data + forecasting Home FRED Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in...

  18. Science on the Hill: The forecast calls for flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The forecast calls for flu The forecast calls for flu Using mathematics, computer programs, statistics and information about how disease develops and spreads, a research team at Los Alamos National Laboratory found a way to forecast the flu season and even next week's sickness trends. January 15, 2016 Forecasting flu A team from Los Alamos has developed a method to predict flu outbreaks based in part on influenza-related searches of Wikipedia. The forecast calls for flu Beyond the familiar flu,

  19. Forecast of transportation energy demand through the year 2010

    SciTech Connect (OSTI)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  20. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  1. Fast Global File Status

    Energy Science and Technology Software Center (OSTI)

    2013-01-01

    Fast Global File Status (FGFS) is a system software package that implimints a scalable mechanism to retrieve file information, such as its degree of distribution or replication and consistency.

  2. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participated in the 2013 Domenici Public Policy Conference Carbon Capture & Storage, Carbon Storage, Climate, Earth Sciences Research Center, Energy, Global Climate & Energy, Global Climate & Energy, News, News & Events, Systems Analysis, Systems Engineering, Water Security Sandia Participated in the 2013 Domenici Public Policy Conference Marianne Walck, Director of Sandia's Geoscience, Climate, and Consequence Effects Center, spoke on "Hydraulic Fracturing: The Role

  3. Global Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Solutions Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search BANGLADESH INDIA CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII SOUTH POLE ANTARCTICA NEW MEXICO SOUTH DAKOTA TEXAS GULF OF MEXICO NEW YORK PUERTO RICO AMAZON RAIN FOREST CANARY ISLANDS SWITZERLAND ETHIOPIA

  4. AVLIS: a technical and economic forecast

    SciTech Connect (OSTI)

    Davis, J.I.; Spaeth, M.L.

    1986-01-01

    The AVLIS process has intrinsically large isotopic selectivity and hence high separative capacity per module. The critical components essential to achieving the high production rates represent a small fraction (approx.10%) of the total capital cost of a production facility, and the reference production designs are based on frequent replacement of these components. The specifications for replacement frequencies in a plant are conservative with respect to our expectations; it is reasonable to expect that, as the plant is operated, the specifications will be exceeded and production costs will continue to fall. Major improvements in separator production rates and laser system efficiencies (approx.power) are expected to occur as a natural evolution in component improvements. With respect to the reference design, such improvements have only marginal economic value, but given the exigencies of moving from engineering demonstration to production operations, we continue to pursue these improvements in order to offset any unforeseen cost increases. Thus, our technical and economic forecasts for the AVLIS process remain very positive. The near-term challenge is to obtain stable funding and a commitment to bring the process to full production conditions within the next five years. If the funding and commitment are not maintained, the team will disperse and the know-how will be lost before it can be translated into production operations. The motivation to preserve the option for low-cost AVLIS SWU production is integrally tied to the motivation to maintain a competitive nuclear option. The US industry can certainly survive without AVLIS, but our tradition as technology leader in the industry will certainly be lost.

  5. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)

    Reports and Publications (EIA)

    1998-01-01

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  6. The Value of Improved Short-Term Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... up-ramp reserves c down cost in MWh of down-ramp reserves R down MW range for ... power forecasting and the increased gas usage that comes with less-accurate forecasting. ...

  7. PBL FY 2003 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the rate period (i.e., FY 2002-2006), a forecast of that end-of-year Accumulated Net Revenue (ANR) will be completed. If the ANR at the end of the forecast year falls below the...

  8. Solar Forecasting Gets a Boost from Watson, Accuracy Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM ...

  9. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  10. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  11. Wind power forecasting in U.S. electricity markets.

    SciTech Connect (OSTI)

    Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

    2010-04-01

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

  12. Wind power forecasting in U.S. Electricity markets

    SciTech Connect (OSTI)

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  13. DOE Taking Wind Forecasting to New Heights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Taking Wind Forecasting to New Heights DOE Taking Wind Forecasting to New Heights May 18, 2015 - 3:24pm Addthis A 2013 study conducted for the U.S. Department of Energy (DOE) by the National Oceanic and Atmospheric Administration (NOAA), AWS Truepower, and WindLogics in the Great Plains and Western Texas, demonstrated that wind power forecasts can be improved substantially using data collected from tall towers, remote sensors, and other devices, and incorporated into improved forecasting models

  14. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    1996-08-01

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  15. Wind Forecast Improvement Project Southern Study Area Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf (15.76 MB) More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association QER - Comment of Edison Electric Institute (EEI) 2

  16. The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs

    SciTech Connect (OSTI)

    Wilczak, James M.; Finley, Cathy; Freedman, Jeff; Cline, Joel; Bianco, L.; Olson, J.; Djalaova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; Zack, J.; Carley, J.; Benjamin, S.; Coulter, R. L.; Berg, Larry K.; Mirocha, Jeff D.; Clawson, K.; Natenberg, E.; Marquis, M.

    2015-10-30

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.

  17. High-Resolution Global Modeling of the Effects of Subgrid-Scale Clouds and Turbulence on Precipitating Cloud Systems

    SciTech Connect (OSTI)

    Bogenschutz, Peter; Moeng, Chin-Hoh

    2015-10-13

    The PI’s at the National Center for Atmospheric Research (NCAR), Chin-Hoh Moeng and Peter Bogenschutz, have primarily focused their time on the implementation of the Simplified-Higher Order Turbulence Closure (SHOC; Bogenschutz and Krueger 2013) to the Multi-scale Modeling Framework (MMF) global model and testing of SHOC on deep convective cloud regimes.

  18. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  19. Sandia National Laboratories: Global Insight, Inc. / Department of Labor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Working with Sandia Global Insight, Inc. / Department of Labor Global Insight, Inc. (GII), was created by combining DRI (formerly Data Resources, Inc.) and WEFA (formerly Wharton Econometric Forecasting Associates). Due to copyright/distribution laws being derived from a proprietary service that Sandia pays for, Sandia can no longer provide GII factor information at this website. However, Sandia will continue to supply the DOL and the "combined key

  20. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect (OSTI)

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  1. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach

    SciTech Connect (OSTI)

    Brown, C. W.; Hood, Raleigh R.; Long, Wen; Jacobs, John M.; Ramers, D. L.; Wazniak, C.; Wiggert, J. D.; Wood, R.; Xu, J.

    2013-09-01

    The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the concentrations of chlorophyll, nitrate, and dissolved oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. While the physical and biogeochemical variables are forecast mechanistically using the Regional Ocean Modeling System configured for the Chesapeake Bay, the species predictions are generated using a novel mechanistic empirical approach, whereby real-time output from the coupled physical biogeochemical model drives multivariate empirical habitat models of the target species. The predictions, in the form of digital images, are available via the World Wide Web to interested groups to guide recreational, management, and research activities. Though full validation of the integrated forecasts for all species is still a work in progress, we argue that the mechanisticempirical approach can be used to generate a wide variety of short-term ecological forecasts, and that it can be applied in any marine system where sufficient data exist to develop empirical habitat models. This paper provides an overview of this system, its predictions, and the approach taken.

  2. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less

  3. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    SciTech Connect (OSTI)

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; Link, Robert P.; Bond-Lamberty, Benjamin

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganic carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.

  4. Forecasting hotspots using predictive visual analytics approach

    SciTech Connect (OSTI)

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  5. Global interrupt and barrier networks

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.

    2008-10-28

    A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.

  6. Global warming, global research, and global governing

    SciTech Connect (OSTI)

    Preining, O.

    1997-12-31

    The anticipated dangers of Global Warming can be mitigated by reducing atmospheric greenhouse gas concentrations, especially CO{sub 2}. To reach acceptable, constant levels within the next couple of centuries it might be necessary to accept stabilization levels higher than present ones, The annual CO{sub 2} emissions must be reduced far below today`s values. This is a very important result of the models discussed in the 1995 IPCC report. However, any even very modest scenario for the future must take into account a substantial increase in the world population which might double during the 21st century, There is a considerable emission reduction potential of the industrialized world due to efficiency increase, However, the demand for energy services by the growing world population will, inspite of the availability of alternative energy resources, possibly lead to a net increase in fossil fuel consumption. If the climate models are right, and the science community believes they are, we will experience a global warming of the order of a couple of degrees over the next century; we have to live with it. To be prepared for the future it is essential for us to use new research techniques embracing not only the familiar fields of hard sciences but also social, educational, ethical and economic aspects, We must find a way to build up the essential intellectual capacities needed to deal with these kinds of general problems within all nations and all societies. But this is not Although, we also have to find the necessary dynamical and highly flexible structures for a global governing using tools such as the environmental regime. The first step was the Framework Convention On Climate Change, UN 1992; for resolution of questions regarding implementations the Conference of the Parties was established.

  7. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by dynamic global mapping of contended links

    DOE Patents [OSTI]

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2011-10-04

    A massively parallel nodal computer system periodically collects and broadcasts usage data for an internal communications network. A node sending data over the network makes a global routing determination using the network usage data. Preferably, network usage data comprises an N-bit usage value for each output buffer associated with a network link. An optimum routing is determined by summing the N-bit values associated with each link through which a data packet must pass, and comparing the sums associated with different possible routes.

  8. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less

  9. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    SciTech Connect (OSTI)

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equations at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.

  10. Upcoming Funding Opportunity for Wind Forecasting Improvement Project in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex Terrain | Department of Energy Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am Addthis On February 11, 2014 the Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex terrain, this funding would improve

  11. Roel Neggers European Centre for Medium-range Weather Forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transition from shallow to deep convection using a dual mass flux boundary layer scheme Roel Neggers European Centre for Medium-range Weather Forecasts Introduction " " % % &...

  12. Radar Wind Profiler for Cloud Forecasting at Brookhaven National...

    Office of Scientific and Technical Information (OSTI)

    forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. ...

  13. DOE Announces Webinars on Solar Forecasting Metrics, the DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Solar Forecasting Metrics, the DOE ... from adopting the latest energy efficiency and renewable ... to liquids technology, advantages of using natural gas, ...

  14. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    SciTech Connect (OSTI)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  15. FY 2004 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration Power Business Line Generation (PBL) Accumulated Net Revenue Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net...

  16. PBL FY 2003 Third Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2003 Bonneville Power Administration Power Business Line Generation Accumulated Net Revenue Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net...

  17. Improving the Accuracy of Solar Forecasting Funding Opportunity...

    Energy Savers [EERE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and ...

  18. NREL: Resource Assessment and Forecasting - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources National Solar Radiation Database NREL resource assessment and forecasting research information is available from the following sources. Renewable Resource Data ...

  19. New Forecasting Tools Enhance Wind Energy Integration In Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... RIT forecasting is saving costs and improving operational practices for IPC and helping integrate wind power more efficiently and cost effectively. Figure 3 shows how the ...

  20. A Review of Variable Generation Forecasting in the West: July...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost Assignment - Only a few respondents partly or fully recover forecasting costs from variable generators. Many simply absorb the costs, possibly viewing them as relatively ...

  1. ANL Software Improves Wind Power Forecasting | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    ... The licensing arrangement helps to facilitate transfer of the statistical learning algorithms developed in the project to industry use. A leading forecast provider in the United ...

  2. DOE Benefits Forecasts: Report of the External Peer Review Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    A report for the FY 2007 GPRA methodology review, highlighting the views of an external expert peer review panel on DOE benefits forecasts.

  3. Selected papers on fuel forecasting and analysis

    SciTech Connect (OSTI)

    Gordon, R.L.; Prast, W.G.

    1983-05-01

    Of the 19 presentations at this seminar, covering coal, uranium, oil, and gas issues as well as related EPRI research projects, eleven papers are published in this volume. Nine of the papers primarily address coal-market analysis, coal transportation, and uranium supply. Two additional papers provide an evaluation and perspective on the art and use of coal-supply forecasting models and on the relationship between coal and oil prices. The authors are energy analysts and EPRI research contractors from academia, the consulting profession, and the coal industry. A separate abstract was prepared for each of the 11 papers.

  4. Global/Local Dynamic Models

    SciTech Connect (OSTI)

    Pfeffer, A; Das, S; Lawless, D; Ng, B

    2006-10-10

    Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.

  5. Global Arrays

    Energy Science and Technology Software Center (OSTI)

    2006-02-23

    The Global Arrays (GA) toolkit provides an efficient and portable “shared-memory” programming interface for distributed-memory computers. Each process in a MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-dimensional arrays, without need for explicit cooperation by other processes. Unlike other shared-memory environments, the GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of the high performance computers and acknowledges that access to a remote portion of the sharedmore » data is slower than to the local portion. The locality information for the shared data is available, and a direct access to the local portions of shared data is provided. Global Arrays have been designed to complement rather than substitute for the message-passing programming model. The programmer is free to use both the shared-memory and message-passing paradigms in the same program, and to take advantage of existing message-passing software libraries. Global Arrays are compatible with the Message Passing Interface (MPI).« less

  6. ARM - What is Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is Global Warming? The surface temperature of each of the planets in our solar system depends on a process called the heat budget. This budget, like any other type of budget, remains balanced if the amount (of energy)

  7. Structural Design Feasibility Study for the Global Climate Experiment

    SciTech Connect (OSTI)

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal

  8. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  9. Global tree network for computing structures enabling global processing operations

    DOE Patents [OSTI]

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  10. Technical analysis in short-term uranium price forecasting

    SciTech Connect (OSTI)

    Schramm, D.S.

    1990-03-01

    As market participants anticipate the end of the current uranium price decline and its subsequent reversal, increased attention will be focused upon forecasting future price movements. Although uranium is economically similar to other mineral commodities, it is questionable whether methodologies used to forecast price movements of such commodities may be successfully applied to uranium.